xref: /openbmc/linux/fs/btrfs/block-group.c (revision 86edac7d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
99 		allowed = BTRFS_BLOCK_GROUP_RAID6;
100 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
101 		allowed = BTRFS_BLOCK_GROUP_RAID5;
102 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
103 		allowed = BTRFS_BLOCK_GROUP_RAID10;
104 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
105 		allowed = BTRFS_BLOCK_GROUP_RAID1;
106 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
107 		allowed = BTRFS_BLOCK_GROUP_RAID0;
108 
109 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
110 
111 	return extended_to_chunk(flags | allowed);
112 }
113 
114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
115 {
116 	unsigned seq;
117 	u64 flags;
118 
119 	do {
120 		flags = orig_flags;
121 		seq = read_seqbegin(&fs_info->profiles_lock);
122 
123 		if (flags & BTRFS_BLOCK_GROUP_DATA)
124 			flags |= fs_info->avail_data_alloc_bits;
125 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
126 			flags |= fs_info->avail_system_alloc_bits;
127 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
128 			flags |= fs_info->avail_metadata_alloc_bits;
129 	} while (read_seqretry(&fs_info->profiles_lock, seq));
130 
131 	return btrfs_reduce_alloc_profile(fs_info, flags);
132 }
133 
134 void btrfs_get_block_group(struct btrfs_block_group *cache)
135 {
136 	refcount_inc(&cache->refs);
137 }
138 
139 void btrfs_put_block_group(struct btrfs_block_group *cache)
140 {
141 	if (refcount_dec_and_test(&cache->refs)) {
142 		WARN_ON(cache->pinned > 0);
143 		/*
144 		 * If there was a failure to cleanup a log tree, very likely due
145 		 * to an IO failure on a writeback attempt of one or more of its
146 		 * extent buffers, we could not do proper (and cheap) unaccounting
147 		 * of their reserved space, so don't warn on reserved > 0 in that
148 		 * case.
149 		 */
150 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
151 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
152 			WARN_ON(cache->reserved > 0);
153 
154 		/*
155 		 * A block_group shouldn't be on the discard_list anymore.
156 		 * Remove the block_group from the discard_list to prevent us
157 		 * from causing a panic due to NULL pointer dereference.
158 		 */
159 		if (WARN_ON(!list_empty(&cache->discard_list)))
160 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
161 						  cache);
162 
163 		kfree(cache->free_space_ctl);
164 		kfree(cache->physical_map);
165 		kfree(cache);
166 	}
167 }
168 
169 /*
170  * This adds the block group to the fs_info rb tree for the block group cache
171  */
172 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
173 				       struct btrfs_block_group *block_group)
174 {
175 	struct rb_node **p;
176 	struct rb_node *parent = NULL;
177 	struct btrfs_block_group *cache;
178 	bool leftmost = true;
179 
180 	ASSERT(block_group->length != 0);
181 
182 	write_lock(&info->block_group_cache_lock);
183 	p = &info->block_group_cache_tree.rb_root.rb_node;
184 
185 	while (*p) {
186 		parent = *p;
187 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
188 		if (block_group->start < cache->start) {
189 			p = &(*p)->rb_left;
190 		} else if (block_group->start > cache->start) {
191 			p = &(*p)->rb_right;
192 			leftmost = false;
193 		} else {
194 			write_unlock(&info->block_group_cache_lock);
195 			return -EEXIST;
196 		}
197 	}
198 
199 	rb_link_node(&block_group->cache_node, parent, p);
200 	rb_insert_color_cached(&block_group->cache_node,
201 			       &info->block_group_cache_tree, leftmost);
202 
203 	write_unlock(&info->block_group_cache_lock);
204 
205 	return 0;
206 }
207 
208 /*
209  * This will return the block group at or after bytenr if contains is 0, else
210  * it will return the block group that contains the bytenr
211  */
212 static struct btrfs_block_group *block_group_cache_tree_search(
213 		struct btrfs_fs_info *info, u64 bytenr, int contains)
214 {
215 	struct btrfs_block_group *cache, *ret = NULL;
216 	struct rb_node *n;
217 	u64 end, start;
218 
219 	read_lock(&info->block_group_cache_lock);
220 	n = info->block_group_cache_tree.rb_root.rb_node;
221 
222 	while (n) {
223 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
224 		end = cache->start + cache->length - 1;
225 		start = cache->start;
226 
227 		if (bytenr < start) {
228 			if (!contains && (!ret || start < ret->start))
229 				ret = cache;
230 			n = n->rb_left;
231 		} else if (bytenr > start) {
232 			if (contains && bytenr <= end) {
233 				ret = cache;
234 				break;
235 			}
236 			n = n->rb_right;
237 		} else {
238 			ret = cache;
239 			break;
240 		}
241 	}
242 	if (ret)
243 		btrfs_get_block_group(ret);
244 	read_unlock(&info->block_group_cache_lock);
245 
246 	return ret;
247 }
248 
249 /*
250  * Return the block group that starts at or after bytenr
251  */
252 struct btrfs_block_group *btrfs_lookup_first_block_group(
253 		struct btrfs_fs_info *info, u64 bytenr)
254 {
255 	return block_group_cache_tree_search(info, bytenr, 0);
256 }
257 
258 /*
259  * Return the block group that contains the given bytenr
260  */
261 struct btrfs_block_group *btrfs_lookup_block_group(
262 		struct btrfs_fs_info *info, u64 bytenr)
263 {
264 	return block_group_cache_tree_search(info, bytenr, 1);
265 }
266 
267 struct btrfs_block_group *btrfs_next_block_group(
268 		struct btrfs_block_group *cache)
269 {
270 	struct btrfs_fs_info *fs_info = cache->fs_info;
271 	struct rb_node *node;
272 
273 	read_lock(&fs_info->block_group_cache_lock);
274 
275 	/* If our block group was removed, we need a full search. */
276 	if (RB_EMPTY_NODE(&cache->cache_node)) {
277 		const u64 next_bytenr = cache->start + cache->length;
278 
279 		read_unlock(&fs_info->block_group_cache_lock);
280 		btrfs_put_block_group(cache);
281 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
282 	}
283 	node = rb_next(&cache->cache_node);
284 	btrfs_put_block_group(cache);
285 	if (node) {
286 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
287 		btrfs_get_block_group(cache);
288 	} else
289 		cache = NULL;
290 	read_unlock(&fs_info->block_group_cache_lock);
291 	return cache;
292 }
293 
294 /*
295  * Check if we can do a NOCOW write for a given extent.
296  *
297  * @fs_info:       The filesystem information object.
298  * @bytenr:        Logical start address of the extent.
299  *
300  * Check if we can do a NOCOW write for the given extent, and increments the
301  * number of NOCOW writers in the block group that contains the extent, as long
302  * as the block group exists and it's currently not in read-only mode.
303  *
304  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
305  *          is responsible for calling btrfs_dec_nocow_writers() later.
306  *
307  *          Or NULL if we can not do a NOCOW write
308  */
309 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
310 						  u64 bytenr)
311 {
312 	struct btrfs_block_group *bg;
313 	bool can_nocow = true;
314 
315 	bg = btrfs_lookup_block_group(fs_info, bytenr);
316 	if (!bg)
317 		return NULL;
318 
319 	spin_lock(&bg->lock);
320 	if (bg->ro)
321 		can_nocow = false;
322 	else
323 		atomic_inc(&bg->nocow_writers);
324 	spin_unlock(&bg->lock);
325 
326 	if (!can_nocow) {
327 		btrfs_put_block_group(bg);
328 		return NULL;
329 	}
330 
331 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
332 	return bg;
333 }
334 
335 /*
336  * Decrement the number of NOCOW writers in a block group.
337  *
338  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
339  * and on the block group returned by that call. Typically this is called after
340  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
341  * relocation.
342  *
343  * After this call, the caller should not use the block group anymore. It it wants
344  * to use it, then it should get a reference on it before calling this function.
345  */
346 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
347 {
348 	if (atomic_dec_and_test(&bg->nocow_writers))
349 		wake_up_var(&bg->nocow_writers);
350 
351 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
352 	btrfs_put_block_group(bg);
353 }
354 
355 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
356 {
357 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
358 }
359 
360 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
361 					const u64 start)
362 {
363 	struct btrfs_block_group *bg;
364 
365 	bg = btrfs_lookup_block_group(fs_info, start);
366 	ASSERT(bg);
367 	if (atomic_dec_and_test(&bg->reservations))
368 		wake_up_var(&bg->reservations);
369 	btrfs_put_block_group(bg);
370 }
371 
372 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
373 {
374 	struct btrfs_space_info *space_info = bg->space_info;
375 
376 	ASSERT(bg->ro);
377 
378 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
379 		return;
380 
381 	/*
382 	 * Our block group is read only but before we set it to read only,
383 	 * some task might have had allocated an extent from it already, but it
384 	 * has not yet created a respective ordered extent (and added it to a
385 	 * root's list of ordered extents).
386 	 * Therefore wait for any task currently allocating extents, since the
387 	 * block group's reservations counter is incremented while a read lock
388 	 * on the groups' semaphore is held and decremented after releasing
389 	 * the read access on that semaphore and creating the ordered extent.
390 	 */
391 	down_write(&space_info->groups_sem);
392 	up_write(&space_info->groups_sem);
393 
394 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
395 }
396 
397 struct btrfs_caching_control *btrfs_get_caching_control(
398 		struct btrfs_block_group *cache)
399 {
400 	struct btrfs_caching_control *ctl;
401 
402 	spin_lock(&cache->lock);
403 	if (!cache->caching_ctl) {
404 		spin_unlock(&cache->lock);
405 		return NULL;
406 	}
407 
408 	ctl = cache->caching_ctl;
409 	refcount_inc(&ctl->count);
410 	spin_unlock(&cache->lock);
411 	return ctl;
412 }
413 
414 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
415 {
416 	if (refcount_dec_and_test(&ctl->count))
417 		kfree(ctl);
418 }
419 
420 /*
421  * When we wait for progress in the block group caching, its because our
422  * allocation attempt failed at least once.  So, we must sleep and let some
423  * progress happen before we try again.
424  *
425  * This function will sleep at least once waiting for new free space to show
426  * up, and then it will check the block group free space numbers for our min
427  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
428  * a free extent of a given size, but this is a good start.
429  *
430  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
431  * any of the information in this block group.
432  */
433 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
434 					   u64 num_bytes)
435 {
436 	struct btrfs_caching_control *caching_ctl;
437 
438 	caching_ctl = btrfs_get_caching_control(cache);
439 	if (!caching_ctl)
440 		return;
441 
442 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
443 		   (cache->free_space_ctl->free_space >= num_bytes));
444 
445 	btrfs_put_caching_control(caching_ctl);
446 }
447 
448 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
449 				       struct btrfs_caching_control *caching_ctl)
450 {
451 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
452 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
453 }
454 
455 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
456 {
457 	struct btrfs_caching_control *caching_ctl;
458 	int ret;
459 
460 	caching_ctl = btrfs_get_caching_control(cache);
461 	if (!caching_ctl)
462 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
463 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
464 	btrfs_put_caching_control(caching_ctl);
465 	return ret;
466 }
467 
468 #ifdef CONFIG_BTRFS_DEBUG
469 static void fragment_free_space(struct btrfs_block_group *block_group)
470 {
471 	struct btrfs_fs_info *fs_info = block_group->fs_info;
472 	u64 start = block_group->start;
473 	u64 len = block_group->length;
474 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
475 		fs_info->nodesize : fs_info->sectorsize;
476 	u64 step = chunk << 1;
477 
478 	while (len > chunk) {
479 		btrfs_remove_free_space(block_group, start, chunk);
480 		start += step;
481 		if (len < step)
482 			len = 0;
483 		else
484 			len -= step;
485 	}
486 }
487 #endif
488 
489 /*
490  * This is only called by btrfs_cache_block_group, since we could have freed
491  * extents we need to check the pinned_extents for any extents that can't be
492  * used yet since their free space will be released as soon as the transaction
493  * commits.
494  */
495 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
496 {
497 	struct btrfs_fs_info *info = block_group->fs_info;
498 	u64 extent_start, extent_end, size, total_added = 0;
499 	int ret;
500 
501 	while (start < end) {
502 		ret = find_first_extent_bit(&info->excluded_extents, start,
503 					    &extent_start, &extent_end,
504 					    EXTENT_DIRTY | EXTENT_UPTODATE,
505 					    NULL);
506 		if (ret)
507 			break;
508 
509 		if (extent_start <= start) {
510 			start = extent_end + 1;
511 		} else if (extent_start > start && extent_start < end) {
512 			size = extent_start - start;
513 			total_added += size;
514 			ret = btrfs_add_free_space_async_trimmed(block_group,
515 								 start, size);
516 			BUG_ON(ret); /* -ENOMEM or logic error */
517 			start = extent_end + 1;
518 		} else {
519 			break;
520 		}
521 	}
522 
523 	if (start < end) {
524 		size = end - start;
525 		total_added += size;
526 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
527 							 size);
528 		BUG_ON(ret); /* -ENOMEM or logic error */
529 	}
530 
531 	return total_added;
532 }
533 
534 /*
535  * Get an arbitrary extent item index / max_index through the block group
536  *
537  * @block_group   the block group to sample from
538  * @index:        the integral step through the block group to grab from
539  * @max_index:    the granularity of the sampling
540  * @key:          return value parameter for the item we find
541  *
542  * Pre-conditions on indices:
543  * 0 <= index <= max_index
544  * 0 < max_index
545  *
546  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
547  * error code on error.
548  */
549 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
550 					  struct btrfs_block_group *block_group,
551 					  int index, int max_index,
552 					  struct btrfs_key *found_key)
553 {
554 	struct btrfs_fs_info *fs_info = block_group->fs_info;
555 	struct btrfs_root *extent_root;
556 	u64 search_offset;
557 	u64 search_end = block_group->start + block_group->length;
558 	struct btrfs_path *path;
559 	struct btrfs_key search_key;
560 	int ret = 0;
561 
562 	ASSERT(index >= 0);
563 	ASSERT(index <= max_index);
564 	ASSERT(max_index > 0);
565 	lockdep_assert_held(&caching_ctl->mutex);
566 	lockdep_assert_held_read(&fs_info->commit_root_sem);
567 
568 	path = btrfs_alloc_path();
569 	if (!path)
570 		return -ENOMEM;
571 
572 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
573 						       BTRFS_SUPER_INFO_OFFSET));
574 
575 	path->skip_locking = 1;
576 	path->search_commit_root = 1;
577 	path->reada = READA_FORWARD;
578 
579 	search_offset = index * div_u64(block_group->length, max_index);
580 	search_key.objectid = block_group->start + search_offset;
581 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
582 	search_key.offset = 0;
583 
584 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
585 		/* Success; sampled an extent item in the block group */
586 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
587 		    found_key->objectid >= block_group->start &&
588 		    found_key->objectid + found_key->offset <= search_end)
589 			break;
590 
591 		/* We can't possibly find a valid extent item anymore */
592 		if (found_key->objectid >= search_end) {
593 			ret = 1;
594 			break;
595 		}
596 	}
597 
598 	lockdep_assert_held(&caching_ctl->mutex);
599 	lockdep_assert_held_read(&fs_info->commit_root_sem);
600 	btrfs_free_path(path);
601 	return ret;
602 }
603 
604 /*
605  * Best effort attempt to compute a block group's size class while caching it.
606  *
607  * @block_group: the block group we are caching
608  *
609  * We cannot infer the size class while adding free space extents, because that
610  * logic doesn't care about contiguous file extents (it doesn't differentiate
611  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
612  * file extent items. Reading all of them is quite wasteful, because usually
613  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
614  * them at even steps through the block group and pick the smallest size class
615  * we see. Since size class is best effort, and not guaranteed in general,
616  * inaccuracy is acceptable.
617  *
618  * To be more explicit about why this algorithm makes sense:
619  *
620  * If we are caching in a block group from disk, then there are three major cases
621  * to consider:
622  * 1. the block group is well behaved and all extents in it are the same size
623  *    class.
624  * 2. the block group is mostly one size class with rare exceptions for last
625  *    ditch allocations
626  * 3. the block group was populated before size classes and can have a totally
627  *    arbitrary mix of size classes.
628  *
629  * In case 1, looking at any extent in the block group will yield the correct
630  * result. For the mixed cases, taking the minimum size class seems like a good
631  * approximation, since gaps from frees will be usable to the size class. For
632  * 2., a small handful of file extents is likely to yield the right answer. For
633  * 3, we can either read every file extent, or admit that this is best effort
634  * anyway and try to stay fast.
635  *
636  * Returns: 0 on success, negative error code on error.
637  */
638 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
639 				       struct btrfs_block_group *block_group)
640 {
641 	struct btrfs_fs_info *fs_info = block_group->fs_info;
642 	struct btrfs_key key;
643 	int i;
644 	u64 min_size = block_group->length;
645 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
646 	int ret;
647 
648 	if (!btrfs_block_group_should_use_size_class(block_group))
649 		return 0;
650 
651 	lockdep_assert_held(&caching_ctl->mutex);
652 	lockdep_assert_held_read(&fs_info->commit_root_sem);
653 	for (i = 0; i < 5; ++i) {
654 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
655 		if (ret < 0)
656 			goto out;
657 		if (ret > 0)
658 			continue;
659 		min_size = min_t(u64, min_size, key.offset);
660 		size_class = btrfs_calc_block_group_size_class(min_size);
661 	}
662 	if (size_class != BTRFS_BG_SZ_NONE) {
663 		spin_lock(&block_group->lock);
664 		block_group->size_class = size_class;
665 		spin_unlock(&block_group->lock);
666 	}
667 out:
668 	return ret;
669 }
670 
671 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
672 {
673 	struct btrfs_block_group *block_group = caching_ctl->block_group;
674 	struct btrfs_fs_info *fs_info = block_group->fs_info;
675 	struct btrfs_root *extent_root;
676 	struct btrfs_path *path;
677 	struct extent_buffer *leaf;
678 	struct btrfs_key key;
679 	u64 total_found = 0;
680 	u64 last = 0;
681 	u32 nritems;
682 	int ret;
683 	bool wakeup = true;
684 
685 	path = btrfs_alloc_path();
686 	if (!path)
687 		return -ENOMEM;
688 
689 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
690 	extent_root = btrfs_extent_root(fs_info, last);
691 
692 #ifdef CONFIG_BTRFS_DEBUG
693 	/*
694 	 * If we're fragmenting we don't want to make anybody think we can
695 	 * allocate from this block group until we've had a chance to fragment
696 	 * the free space.
697 	 */
698 	if (btrfs_should_fragment_free_space(block_group))
699 		wakeup = false;
700 #endif
701 	/*
702 	 * We don't want to deadlock with somebody trying to allocate a new
703 	 * extent for the extent root while also trying to search the extent
704 	 * root to add free space.  So we skip locking and search the commit
705 	 * root, since its read-only
706 	 */
707 	path->skip_locking = 1;
708 	path->search_commit_root = 1;
709 	path->reada = READA_FORWARD;
710 
711 	key.objectid = last;
712 	key.offset = 0;
713 	key.type = BTRFS_EXTENT_ITEM_KEY;
714 
715 next:
716 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
717 	if (ret < 0)
718 		goto out;
719 
720 	leaf = path->nodes[0];
721 	nritems = btrfs_header_nritems(leaf);
722 
723 	while (1) {
724 		if (btrfs_fs_closing(fs_info) > 1) {
725 			last = (u64)-1;
726 			break;
727 		}
728 
729 		if (path->slots[0] < nritems) {
730 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
731 		} else {
732 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
733 			if (ret)
734 				break;
735 
736 			if (need_resched() ||
737 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
738 				btrfs_release_path(path);
739 				up_read(&fs_info->commit_root_sem);
740 				mutex_unlock(&caching_ctl->mutex);
741 				cond_resched();
742 				mutex_lock(&caching_ctl->mutex);
743 				down_read(&fs_info->commit_root_sem);
744 				goto next;
745 			}
746 
747 			ret = btrfs_next_leaf(extent_root, path);
748 			if (ret < 0)
749 				goto out;
750 			if (ret)
751 				break;
752 			leaf = path->nodes[0];
753 			nritems = btrfs_header_nritems(leaf);
754 			continue;
755 		}
756 
757 		if (key.objectid < last) {
758 			key.objectid = last;
759 			key.offset = 0;
760 			key.type = BTRFS_EXTENT_ITEM_KEY;
761 			btrfs_release_path(path);
762 			goto next;
763 		}
764 
765 		if (key.objectid < block_group->start) {
766 			path->slots[0]++;
767 			continue;
768 		}
769 
770 		if (key.objectid >= block_group->start + block_group->length)
771 			break;
772 
773 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
774 		    key.type == BTRFS_METADATA_ITEM_KEY) {
775 			total_found += add_new_free_space(block_group, last,
776 							  key.objectid);
777 			if (key.type == BTRFS_METADATA_ITEM_KEY)
778 				last = key.objectid +
779 					fs_info->nodesize;
780 			else
781 				last = key.objectid + key.offset;
782 
783 			if (total_found > CACHING_CTL_WAKE_UP) {
784 				total_found = 0;
785 				if (wakeup)
786 					wake_up(&caching_ctl->wait);
787 			}
788 		}
789 		path->slots[0]++;
790 	}
791 	ret = 0;
792 
793 	total_found += add_new_free_space(block_group, last,
794 				block_group->start + block_group->length);
795 
796 out:
797 	btrfs_free_path(path);
798 	return ret;
799 }
800 
801 static noinline void caching_thread(struct btrfs_work *work)
802 {
803 	struct btrfs_block_group *block_group;
804 	struct btrfs_fs_info *fs_info;
805 	struct btrfs_caching_control *caching_ctl;
806 	int ret;
807 
808 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
809 	block_group = caching_ctl->block_group;
810 	fs_info = block_group->fs_info;
811 
812 	mutex_lock(&caching_ctl->mutex);
813 	down_read(&fs_info->commit_root_sem);
814 
815 	load_block_group_size_class(caching_ctl, block_group);
816 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
817 		ret = load_free_space_cache(block_group);
818 		if (ret == 1) {
819 			ret = 0;
820 			goto done;
821 		}
822 
823 		/*
824 		 * We failed to load the space cache, set ourselves to
825 		 * CACHE_STARTED and carry on.
826 		 */
827 		spin_lock(&block_group->lock);
828 		block_group->cached = BTRFS_CACHE_STARTED;
829 		spin_unlock(&block_group->lock);
830 		wake_up(&caching_ctl->wait);
831 	}
832 
833 	/*
834 	 * If we are in the transaction that populated the free space tree we
835 	 * can't actually cache from the free space tree as our commit root and
836 	 * real root are the same, so we could change the contents of the blocks
837 	 * while caching.  Instead do the slow caching in this case, and after
838 	 * the transaction has committed we will be safe.
839 	 */
840 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
841 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
842 		ret = load_free_space_tree(caching_ctl);
843 	else
844 		ret = load_extent_tree_free(caching_ctl);
845 done:
846 	spin_lock(&block_group->lock);
847 	block_group->caching_ctl = NULL;
848 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
849 	spin_unlock(&block_group->lock);
850 
851 #ifdef CONFIG_BTRFS_DEBUG
852 	if (btrfs_should_fragment_free_space(block_group)) {
853 		u64 bytes_used;
854 
855 		spin_lock(&block_group->space_info->lock);
856 		spin_lock(&block_group->lock);
857 		bytes_used = block_group->length - block_group->used;
858 		block_group->space_info->bytes_used += bytes_used >> 1;
859 		spin_unlock(&block_group->lock);
860 		spin_unlock(&block_group->space_info->lock);
861 		fragment_free_space(block_group);
862 	}
863 #endif
864 
865 	up_read(&fs_info->commit_root_sem);
866 	btrfs_free_excluded_extents(block_group);
867 	mutex_unlock(&caching_ctl->mutex);
868 
869 	wake_up(&caching_ctl->wait);
870 
871 	btrfs_put_caching_control(caching_ctl);
872 	btrfs_put_block_group(block_group);
873 }
874 
875 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
876 {
877 	struct btrfs_fs_info *fs_info = cache->fs_info;
878 	struct btrfs_caching_control *caching_ctl = NULL;
879 	int ret = 0;
880 
881 	/* Allocator for zoned filesystems does not use the cache at all */
882 	if (btrfs_is_zoned(fs_info))
883 		return 0;
884 
885 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
886 	if (!caching_ctl)
887 		return -ENOMEM;
888 
889 	INIT_LIST_HEAD(&caching_ctl->list);
890 	mutex_init(&caching_ctl->mutex);
891 	init_waitqueue_head(&caching_ctl->wait);
892 	caching_ctl->block_group = cache;
893 	refcount_set(&caching_ctl->count, 2);
894 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
895 
896 	spin_lock(&cache->lock);
897 	if (cache->cached != BTRFS_CACHE_NO) {
898 		kfree(caching_ctl);
899 
900 		caching_ctl = cache->caching_ctl;
901 		if (caching_ctl)
902 			refcount_inc(&caching_ctl->count);
903 		spin_unlock(&cache->lock);
904 		goto out;
905 	}
906 	WARN_ON(cache->caching_ctl);
907 	cache->caching_ctl = caching_ctl;
908 	cache->cached = BTRFS_CACHE_STARTED;
909 	spin_unlock(&cache->lock);
910 
911 	write_lock(&fs_info->block_group_cache_lock);
912 	refcount_inc(&caching_ctl->count);
913 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
914 	write_unlock(&fs_info->block_group_cache_lock);
915 
916 	btrfs_get_block_group(cache);
917 
918 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
919 out:
920 	if (wait && caching_ctl)
921 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
922 	if (caching_ctl)
923 		btrfs_put_caching_control(caching_ctl);
924 
925 	return ret;
926 }
927 
928 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
929 {
930 	u64 extra_flags = chunk_to_extended(flags) &
931 				BTRFS_EXTENDED_PROFILE_MASK;
932 
933 	write_seqlock(&fs_info->profiles_lock);
934 	if (flags & BTRFS_BLOCK_GROUP_DATA)
935 		fs_info->avail_data_alloc_bits &= ~extra_flags;
936 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
937 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
938 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
939 		fs_info->avail_system_alloc_bits &= ~extra_flags;
940 	write_sequnlock(&fs_info->profiles_lock);
941 }
942 
943 /*
944  * Clear incompat bits for the following feature(s):
945  *
946  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
947  *            in the whole filesystem
948  *
949  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
950  */
951 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
952 {
953 	bool found_raid56 = false;
954 	bool found_raid1c34 = false;
955 
956 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
957 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
958 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
959 		struct list_head *head = &fs_info->space_info;
960 		struct btrfs_space_info *sinfo;
961 
962 		list_for_each_entry_rcu(sinfo, head, list) {
963 			down_read(&sinfo->groups_sem);
964 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
965 				found_raid56 = true;
966 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
967 				found_raid56 = true;
968 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
969 				found_raid1c34 = true;
970 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
971 				found_raid1c34 = true;
972 			up_read(&sinfo->groups_sem);
973 		}
974 		if (!found_raid56)
975 			btrfs_clear_fs_incompat(fs_info, RAID56);
976 		if (!found_raid1c34)
977 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
978 	}
979 }
980 
981 static int remove_block_group_item(struct btrfs_trans_handle *trans,
982 				   struct btrfs_path *path,
983 				   struct btrfs_block_group *block_group)
984 {
985 	struct btrfs_fs_info *fs_info = trans->fs_info;
986 	struct btrfs_root *root;
987 	struct btrfs_key key;
988 	int ret;
989 
990 	root = btrfs_block_group_root(fs_info);
991 	key.objectid = block_group->start;
992 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
993 	key.offset = block_group->length;
994 
995 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
996 	if (ret > 0)
997 		ret = -ENOENT;
998 	if (ret < 0)
999 		return ret;
1000 
1001 	ret = btrfs_del_item(trans, root, path);
1002 	return ret;
1003 }
1004 
1005 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1006 			     u64 group_start, struct extent_map *em)
1007 {
1008 	struct btrfs_fs_info *fs_info = trans->fs_info;
1009 	struct btrfs_path *path;
1010 	struct btrfs_block_group *block_group;
1011 	struct btrfs_free_cluster *cluster;
1012 	struct inode *inode;
1013 	struct kobject *kobj = NULL;
1014 	int ret;
1015 	int index;
1016 	int factor;
1017 	struct btrfs_caching_control *caching_ctl = NULL;
1018 	bool remove_em;
1019 	bool remove_rsv = false;
1020 
1021 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1022 	BUG_ON(!block_group);
1023 	BUG_ON(!block_group->ro);
1024 
1025 	trace_btrfs_remove_block_group(block_group);
1026 	/*
1027 	 * Free the reserved super bytes from this block group before
1028 	 * remove it.
1029 	 */
1030 	btrfs_free_excluded_extents(block_group);
1031 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1032 				  block_group->length);
1033 
1034 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1035 	factor = btrfs_bg_type_to_factor(block_group->flags);
1036 
1037 	/* make sure this block group isn't part of an allocation cluster */
1038 	cluster = &fs_info->data_alloc_cluster;
1039 	spin_lock(&cluster->refill_lock);
1040 	btrfs_return_cluster_to_free_space(block_group, cluster);
1041 	spin_unlock(&cluster->refill_lock);
1042 
1043 	/*
1044 	 * make sure this block group isn't part of a metadata
1045 	 * allocation cluster
1046 	 */
1047 	cluster = &fs_info->meta_alloc_cluster;
1048 	spin_lock(&cluster->refill_lock);
1049 	btrfs_return_cluster_to_free_space(block_group, cluster);
1050 	spin_unlock(&cluster->refill_lock);
1051 
1052 	btrfs_clear_treelog_bg(block_group);
1053 	btrfs_clear_data_reloc_bg(block_group);
1054 
1055 	path = btrfs_alloc_path();
1056 	if (!path) {
1057 		ret = -ENOMEM;
1058 		goto out;
1059 	}
1060 
1061 	/*
1062 	 * get the inode first so any iput calls done for the io_list
1063 	 * aren't the final iput (no unlinks allowed now)
1064 	 */
1065 	inode = lookup_free_space_inode(block_group, path);
1066 
1067 	mutex_lock(&trans->transaction->cache_write_mutex);
1068 	/*
1069 	 * Make sure our free space cache IO is done before removing the
1070 	 * free space inode
1071 	 */
1072 	spin_lock(&trans->transaction->dirty_bgs_lock);
1073 	if (!list_empty(&block_group->io_list)) {
1074 		list_del_init(&block_group->io_list);
1075 
1076 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1077 
1078 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1079 		btrfs_wait_cache_io(trans, block_group, path);
1080 		btrfs_put_block_group(block_group);
1081 		spin_lock(&trans->transaction->dirty_bgs_lock);
1082 	}
1083 
1084 	if (!list_empty(&block_group->dirty_list)) {
1085 		list_del_init(&block_group->dirty_list);
1086 		remove_rsv = true;
1087 		btrfs_put_block_group(block_group);
1088 	}
1089 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1090 	mutex_unlock(&trans->transaction->cache_write_mutex);
1091 
1092 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1093 	if (ret)
1094 		goto out;
1095 
1096 	write_lock(&fs_info->block_group_cache_lock);
1097 	rb_erase_cached(&block_group->cache_node,
1098 			&fs_info->block_group_cache_tree);
1099 	RB_CLEAR_NODE(&block_group->cache_node);
1100 
1101 	/* Once for the block groups rbtree */
1102 	btrfs_put_block_group(block_group);
1103 
1104 	write_unlock(&fs_info->block_group_cache_lock);
1105 
1106 	down_write(&block_group->space_info->groups_sem);
1107 	/*
1108 	 * we must use list_del_init so people can check to see if they
1109 	 * are still on the list after taking the semaphore
1110 	 */
1111 	list_del_init(&block_group->list);
1112 	if (list_empty(&block_group->space_info->block_groups[index])) {
1113 		kobj = block_group->space_info->block_group_kobjs[index];
1114 		block_group->space_info->block_group_kobjs[index] = NULL;
1115 		clear_avail_alloc_bits(fs_info, block_group->flags);
1116 	}
1117 	up_write(&block_group->space_info->groups_sem);
1118 	clear_incompat_bg_bits(fs_info, block_group->flags);
1119 	if (kobj) {
1120 		kobject_del(kobj);
1121 		kobject_put(kobj);
1122 	}
1123 
1124 	if (block_group->cached == BTRFS_CACHE_STARTED)
1125 		btrfs_wait_block_group_cache_done(block_group);
1126 
1127 	write_lock(&fs_info->block_group_cache_lock);
1128 	caching_ctl = btrfs_get_caching_control(block_group);
1129 	if (!caching_ctl) {
1130 		struct btrfs_caching_control *ctl;
1131 
1132 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1133 			if (ctl->block_group == block_group) {
1134 				caching_ctl = ctl;
1135 				refcount_inc(&caching_ctl->count);
1136 				break;
1137 			}
1138 		}
1139 	}
1140 	if (caching_ctl)
1141 		list_del_init(&caching_ctl->list);
1142 	write_unlock(&fs_info->block_group_cache_lock);
1143 
1144 	if (caching_ctl) {
1145 		/* Once for the caching bgs list and once for us. */
1146 		btrfs_put_caching_control(caching_ctl);
1147 		btrfs_put_caching_control(caching_ctl);
1148 	}
1149 
1150 	spin_lock(&trans->transaction->dirty_bgs_lock);
1151 	WARN_ON(!list_empty(&block_group->dirty_list));
1152 	WARN_ON(!list_empty(&block_group->io_list));
1153 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1154 
1155 	btrfs_remove_free_space_cache(block_group);
1156 
1157 	spin_lock(&block_group->space_info->lock);
1158 	list_del_init(&block_group->ro_list);
1159 
1160 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1161 		WARN_ON(block_group->space_info->total_bytes
1162 			< block_group->length);
1163 		WARN_ON(block_group->space_info->bytes_readonly
1164 			< block_group->length - block_group->zone_unusable);
1165 		WARN_ON(block_group->space_info->bytes_zone_unusable
1166 			< block_group->zone_unusable);
1167 		WARN_ON(block_group->space_info->disk_total
1168 			< block_group->length * factor);
1169 	}
1170 	block_group->space_info->total_bytes -= block_group->length;
1171 	block_group->space_info->bytes_readonly -=
1172 		(block_group->length - block_group->zone_unusable);
1173 	block_group->space_info->bytes_zone_unusable -=
1174 		block_group->zone_unusable;
1175 	block_group->space_info->disk_total -= block_group->length * factor;
1176 
1177 	spin_unlock(&block_group->space_info->lock);
1178 
1179 	/*
1180 	 * Remove the free space for the block group from the free space tree
1181 	 * and the block group's item from the extent tree before marking the
1182 	 * block group as removed. This is to prevent races with tasks that
1183 	 * freeze and unfreeze a block group, this task and another task
1184 	 * allocating a new block group - the unfreeze task ends up removing
1185 	 * the block group's extent map before the task calling this function
1186 	 * deletes the block group item from the extent tree, allowing for
1187 	 * another task to attempt to create another block group with the same
1188 	 * item key (and failing with -EEXIST and a transaction abort).
1189 	 */
1190 	ret = remove_block_group_free_space(trans, block_group);
1191 	if (ret)
1192 		goto out;
1193 
1194 	ret = remove_block_group_item(trans, path, block_group);
1195 	if (ret < 0)
1196 		goto out;
1197 
1198 	spin_lock(&block_group->lock);
1199 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1200 
1201 	/*
1202 	 * At this point trimming or scrub can't start on this block group,
1203 	 * because we removed the block group from the rbtree
1204 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1205 	 * even if someone already got this block group before we removed it
1206 	 * from the rbtree, they have already incremented block_group->frozen -
1207 	 * if they didn't, for the trimming case they won't find any free space
1208 	 * entries because we already removed them all when we called
1209 	 * btrfs_remove_free_space_cache().
1210 	 *
1211 	 * And we must not remove the extent map from the fs_info->mapping_tree
1212 	 * to prevent the same logical address range and physical device space
1213 	 * ranges from being reused for a new block group. This is needed to
1214 	 * avoid races with trimming and scrub.
1215 	 *
1216 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1217 	 * completely transactionless, so while it is trimming a range the
1218 	 * currently running transaction might finish and a new one start,
1219 	 * allowing for new block groups to be created that can reuse the same
1220 	 * physical device locations unless we take this special care.
1221 	 *
1222 	 * There may also be an implicit trim operation if the file system
1223 	 * is mounted with -odiscard. The same protections must remain
1224 	 * in place until the extents have been discarded completely when
1225 	 * the transaction commit has completed.
1226 	 */
1227 	remove_em = (atomic_read(&block_group->frozen) == 0);
1228 	spin_unlock(&block_group->lock);
1229 
1230 	if (remove_em) {
1231 		struct extent_map_tree *em_tree;
1232 
1233 		em_tree = &fs_info->mapping_tree;
1234 		write_lock(&em_tree->lock);
1235 		remove_extent_mapping(em_tree, em);
1236 		write_unlock(&em_tree->lock);
1237 		/* once for the tree */
1238 		free_extent_map(em);
1239 	}
1240 
1241 out:
1242 	/* Once for the lookup reference */
1243 	btrfs_put_block_group(block_group);
1244 	if (remove_rsv)
1245 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1246 	btrfs_free_path(path);
1247 	return ret;
1248 }
1249 
1250 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1251 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1252 {
1253 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1254 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1255 	struct extent_map *em;
1256 	struct map_lookup *map;
1257 	unsigned int num_items;
1258 
1259 	read_lock(&em_tree->lock);
1260 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1261 	read_unlock(&em_tree->lock);
1262 	ASSERT(em && em->start == chunk_offset);
1263 
1264 	/*
1265 	 * We need to reserve 3 + N units from the metadata space info in order
1266 	 * to remove a block group (done at btrfs_remove_chunk() and at
1267 	 * btrfs_remove_block_group()), which are used for:
1268 	 *
1269 	 * 1 unit for adding the free space inode's orphan (located in the tree
1270 	 * of tree roots).
1271 	 * 1 unit for deleting the block group item (located in the extent
1272 	 * tree).
1273 	 * 1 unit for deleting the free space item (located in tree of tree
1274 	 * roots).
1275 	 * N units for deleting N device extent items corresponding to each
1276 	 * stripe (located in the device tree).
1277 	 *
1278 	 * In order to remove a block group we also need to reserve units in the
1279 	 * system space info in order to update the chunk tree (update one or
1280 	 * more device items and remove one chunk item), but this is done at
1281 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1282 	 */
1283 	map = em->map_lookup;
1284 	num_items = 3 + map->num_stripes;
1285 	free_extent_map(em);
1286 
1287 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1288 }
1289 
1290 /*
1291  * Mark block group @cache read-only, so later write won't happen to block
1292  * group @cache.
1293  *
1294  * If @force is not set, this function will only mark the block group readonly
1295  * if we have enough free space (1M) in other metadata/system block groups.
1296  * If @force is not set, this function will mark the block group readonly
1297  * without checking free space.
1298  *
1299  * NOTE: This function doesn't care if other block groups can contain all the
1300  * data in this block group. That check should be done by relocation routine,
1301  * not this function.
1302  */
1303 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1304 {
1305 	struct btrfs_space_info *sinfo = cache->space_info;
1306 	u64 num_bytes;
1307 	int ret = -ENOSPC;
1308 
1309 	spin_lock(&sinfo->lock);
1310 	spin_lock(&cache->lock);
1311 
1312 	if (cache->swap_extents) {
1313 		ret = -ETXTBSY;
1314 		goto out;
1315 	}
1316 
1317 	if (cache->ro) {
1318 		cache->ro++;
1319 		ret = 0;
1320 		goto out;
1321 	}
1322 
1323 	num_bytes = cache->length - cache->reserved - cache->pinned -
1324 		    cache->bytes_super - cache->zone_unusable - cache->used;
1325 
1326 	/*
1327 	 * Data never overcommits, even in mixed mode, so do just the straight
1328 	 * check of left over space in how much we have allocated.
1329 	 */
1330 	if (force) {
1331 		ret = 0;
1332 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1333 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1334 
1335 		/*
1336 		 * Here we make sure if we mark this bg RO, we still have enough
1337 		 * free space as buffer.
1338 		 */
1339 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1340 			ret = 0;
1341 	} else {
1342 		/*
1343 		 * We overcommit metadata, so we need to do the
1344 		 * btrfs_can_overcommit check here, and we need to pass in
1345 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1346 		 * leeway to allow us to mark this block group as read only.
1347 		 */
1348 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1349 					 BTRFS_RESERVE_NO_FLUSH))
1350 			ret = 0;
1351 	}
1352 
1353 	if (!ret) {
1354 		sinfo->bytes_readonly += num_bytes;
1355 		if (btrfs_is_zoned(cache->fs_info)) {
1356 			/* Migrate zone_unusable bytes to readonly */
1357 			sinfo->bytes_readonly += cache->zone_unusable;
1358 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1359 			cache->zone_unusable = 0;
1360 		}
1361 		cache->ro++;
1362 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1363 	}
1364 out:
1365 	spin_unlock(&cache->lock);
1366 	spin_unlock(&sinfo->lock);
1367 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1368 		btrfs_info(cache->fs_info,
1369 			"unable to make block group %llu ro", cache->start);
1370 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1371 	}
1372 	return ret;
1373 }
1374 
1375 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1376 				 struct btrfs_block_group *bg)
1377 {
1378 	struct btrfs_fs_info *fs_info = bg->fs_info;
1379 	struct btrfs_transaction *prev_trans = NULL;
1380 	const u64 start = bg->start;
1381 	const u64 end = start + bg->length - 1;
1382 	int ret;
1383 
1384 	spin_lock(&fs_info->trans_lock);
1385 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1386 		prev_trans = list_last_entry(&trans->transaction->list,
1387 					     struct btrfs_transaction, list);
1388 		refcount_inc(&prev_trans->use_count);
1389 	}
1390 	spin_unlock(&fs_info->trans_lock);
1391 
1392 	/*
1393 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1394 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1395 	 * task might be running finish_extent_commit() for the previous
1396 	 * transaction N - 1, and have seen a range belonging to the block
1397 	 * group in pinned_extents before we were able to clear the whole block
1398 	 * group range from pinned_extents. This means that task can lookup for
1399 	 * the block group after we unpinned it from pinned_extents and removed
1400 	 * it, leading to a BUG_ON() at unpin_extent_range().
1401 	 */
1402 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1403 	if (prev_trans) {
1404 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1405 					EXTENT_DIRTY);
1406 		if (ret)
1407 			goto out;
1408 	}
1409 
1410 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1411 				EXTENT_DIRTY);
1412 out:
1413 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1414 	if (prev_trans)
1415 		btrfs_put_transaction(prev_trans);
1416 
1417 	return ret == 0;
1418 }
1419 
1420 /*
1421  * Process the unused_bgs list and remove any that don't have any allocated
1422  * space inside of them.
1423  */
1424 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1425 {
1426 	struct btrfs_block_group *block_group;
1427 	struct btrfs_space_info *space_info;
1428 	struct btrfs_trans_handle *trans;
1429 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1430 	int ret = 0;
1431 
1432 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1433 		return;
1434 
1435 	if (btrfs_fs_closing(fs_info))
1436 		return;
1437 
1438 	/*
1439 	 * Long running balances can keep us blocked here for eternity, so
1440 	 * simply skip deletion if we're unable to get the mutex.
1441 	 */
1442 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1443 		return;
1444 
1445 	spin_lock(&fs_info->unused_bgs_lock);
1446 	while (!list_empty(&fs_info->unused_bgs)) {
1447 		int trimming;
1448 
1449 		block_group = list_first_entry(&fs_info->unused_bgs,
1450 					       struct btrfs_block_group,
1451 					       bg_list);
1452 		list_del_init(&block_group->bg_list);
1453 
1454 		space_info = block_group->space_info;
1455 
1456 		if (ret || btrfs_mixed_space_info(space_info)) {
1457 			btrfs_put_block_group(block_group);
1458 			continue;
1459 		}
1460 		spin_unlock(&fs_info->unused_bgs_lock);
1461 
1462 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1463 
1464 		/* Don't want to race with allocators so take the groups_sem */
1465 		down_write(&space_info->groups_sem);
1466 
1467 		/*
1468 		 * Async discard moves the final block group discard to be prior
1469 		 * to the unused_bgs code path.  Therefore, if it's not fully
1470 		 * trimmed, punt it back to the async discard lists.
1471 		 */
1472 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1473 		    !btrfs_is_free_space_trimmed(block_group)) {
1474 			trace_btrfs_skip_unused_block_group(block_group);
1475 			up_write(&space_info->groups_sem);
1476 			/* Requeue if we failed because of async discard */
1477 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1478 						 block_group);
1479 			goto next;
1480 		}
1481 
1482 		spin_lock(&block_group->lock);
1483 		if (block_group->reserved || block_group->pinned ||
1484 		    block_group->used || block_group->ro ||
1485 		    list_is_singular(&block_group->list)) {
1486 			/*
1487 			 * We want to bail if we made new allocations or have
1488 			 * outstanding allocations in this block group.  We do
1489 			 * the ro check in case balance is currently acting on
1490 			 * this block group.
1491 			 */
1492 			trace_btrfs_skip_unused_block_group(block_group);
1493 			spin_unlock(&block_group->lock);
1494 			up_write(&space_info->groups_sem);
1495 			goto next;
1496 		}
1497 		spin_unlock(&block_group->lock);
1498 
1499 		/* We don't want to force the issue, only flip if it's ok. */
1500 		ret = inc_block_group_ro(block_group, 0);
1501 		up_write(&space_info->groups_sem);
1502 		if (ret < 0) {
1503 			ret = 0;
1504 			goto next;
1505 		}
1506 
1507 		ret = btrfs_zone_finish(block_group);
1508 		if (ret < 0) {
1509 			btrfs_dec_block_group_ro(block_group);
1510 			if (ret == -EAGAIN)
1511 				ret = 0;
1512 			goto next;
1513 		}
1514 
1515 		/*
1516 		 * Want to do this before we do anything else so we can recover
1517 		 * properly if we fail to join the transaction.
1518 		 */
1519 		trans = btrfs_start_trans_remove_block_group(fs_info,
1520 						     block_group->start);
1521 		if (IS_ERR(trans)) {
1522 			btrfs_dec_block_group_ro(block_group);
1523 			ret = PTR_ERR(trans);
1524 			goto next;
1525 		}
1526 
1527 		/*
1528 		 * We could have pending pinned extents for this block group,
1529 		 * just delete them, we don't care about them anymore.
1530 		 */
1531 		if (!clean_pinned_extents(trans, block_group)) {
1532 			btrfs_dec_block_group_ro(block_group);
1533 			goto end_trans;
1534 		}
1535 
1536 		/*
1537 		 * At this point, the block_group is read only and should fail
1538 		 * new allocations.  However, btrfs_finish_extent_commit() can
1539 		 * cause this block_group to be placed back on the discard
1540 		 * lists because now the block_group isn't fully discarded.
1541 		 * Bail here and try again later after discarding everything.
1542 		 */
1543 		spin_lock(&fs_info->discard_ctl.lock);
1544 		if (!list_empty(&block_group->discard_list)) {
1545 			spin_unlock(&fs_info->discard_ctl.lock);
1546 			btrfs_dec_block_group_ro(block_group);
1547 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1548 						 block_group);
1549 			goto end_trans;
1550 		}
1551 		spin_unlock(&fs_info->discard_ctl.lock);
1552 
1553 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1554 		spin_lock(&space_info->lock);
1555 		spin_lock(&block_group->lock);
1556 
1557 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1558 						     -block_group->pinned);
1559 		space_info->bytes_readonly += block_group->pinned;
1560 		block_group->pinned = 0;
1561 
1562 		spin_unlock(&block_group->lock);
1563 		spin_unlock(&space_info->lock);
1564 
1565 		/*
1566 		 * The normal path here is an unused block group is passed here,
1567 		 * then trimming is handled in the transaction commit path.
1568 		 * Async discard interposes before this to do the trimming
1569 		 * before coming down the unused block group path as trimming
1570 		 * will no longer be done later in the transaction commit path.
1571 		 */
1572 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1573 			goto flip_async;
1574 
1575 		/*
1576 		 * DISCARD can flip during remount. On zoned filesystems, we
1577 		 * need to reset sequential-required zones.
1578 		 */
1579 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1580 				btrfs_is_zoned(fs_info);
1581 
1582 		/* Implicit trim during transaction commit. */
1583 		if (trimming)
1584 			btrfs_freeze_block_group(block_group);
1585 
1586 		/*
1587 		 * Btrfs_remove_chunk will abort the transaction if things go
1588 		 * horribly wrong.
1589 		 */
1590 		ret = btrfs_remove_chunk(trans, block_group->start);
1591 
1592 		if (ret) {
1593 			if (trimming)
1594 				btrfs_unfreeze_block_group(block_group);
1595 			goto end_trans;
1596 		}
1597 
1598 		/*
1599 		 * If we're not mounted with -odiscard, we can just forget
1600 		 * about this block group. Otherwise we'll need to wait
1601 		 * until transaction commit to do the actual discard.
1602 		 */
1603 		if (trimming) {
1604 			spin_lock(&fs_info->unused_bgs_lock);
1605 			/*
1606 			 * A concurrent scrub might have added us to the list
1607 			 * fs_info->unused_bgs, so use a list_move operation
1608 			 * to add the block group to the deleted_bgs list.
1609 			 */
1610 			list_move(&block_group->bg_list,
1611 				  &trans->transaction->deleted_bgs);
1612 			spin_unlock(&fs_info->unused_bgs_lock);
1613 			btrfs_get_block_group(block_group);
1614 		}
1615 end_trans:
1616 		btrfs_end_transaction(trans);
1617 next:
1618 		btrfs_put_block_group(block_group);
1619 		spin_lock(&fs_info->unused_bgs_lock);
1620 	}
1621 	spin_unlock(&fs_info->unused_bgs_lock);
1622 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1623 	return;
1624 
1625 flip_async:
1626 	btrfs_end_transaction(trans);
1627 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1628 	btrfs_put_block_group(block_group);
1629 	btrfs_discard_punt_unused_bgs_list(fs_info);
1630 }
1631 
1632 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1633 {
1634 	struct btrfs_fs_info *fs_info = bg->fs_info;
1635 
1636 	spin_lock(&fs_info->unused_bgs_lock);
1637 	if (list_empty(&bg->bg_list)) {
1638 		btrfs_get_block_group(bg);
1639 		trace_btrfs_add_unused_block_group(bg);
1640 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1641 	}
1642 	spin_unlock(&fs_info->unused_bgs_lock);
1643 }
1644 
1645 /*
1646  * We want block groups with a low number of used bytes to be in the beginning
1647  * of the list, so they will get reclaimed first.
1648  */
1649 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1650 			   const struct list_head *b)
1651 {
1652 	const struct btrfs_block_group *bg1, *bg2;
1653 
1654 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1655 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1656 
1657 	return bg1->used > bg2->used;
1658 }
1659 
1660 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1661 {
1662 	if (btrfs_is_zoned(fs_info))
1663 		return btrfs_zoned_should_reclaim(fs_info);
1664 	return true;
1665 }
1666 
1667 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1668 {
1669 	const struct btrfs_space_info *space_info = bg->space_info;
1670 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1671 	const u64 new_val = bg->used;
1672 	const u64 old_val = new_val + bytes_freed;
1673 	u64 thresh;
1674 
1675 	if (reclaim_thresh == 0)
1676 		return false;
1677 
1678 	thresh = mult_perc(bg->length, reclaim_thresh);
1679 
1680 	/*
1681 	 * If we were below the threshold before don't reclaim, we are likely a
1682 	 * brand new block group and we don't want to relocate new block groups.
1683 	 */
1684 	if (old_val < thresh)
1685 		return false;
1686 	if (new_val >= thresh)
1687 		return false;
1688 	return true;
1689 }
1690 
1691 void btrfs_reclaim_bgs_work(struct work_struct *work)
1692 {
1693 	struct btrfs_fs_info *fs_info =
1694 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1695 	struct btrfs_block_group *bg;
1696 	struct btrfs_space_info *space_info;
1697 
1698 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1699 		return;
1700 
1701 	if (btrfs_fs_closing(fs_info))
1702 		return;
1703 
1704 	if (!btrfs_should_reclaim(fs_info))
1705 		return;
1706 
1707 	sb_start_write(fs_info->sb);
1708 
1709 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1710 		sb_end_write(fs_info->sb);
1711 		return;
1712 	}
1713 
1714 	/*
1715 	 * Long running balances can keep us blocked here for eternity, so
1716 	 * simply skip reclaim if we're unable to get the mutex.
1717 	 */
1718 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1719 		btrfs_exclop_finish(fs_info);
1720 		sb_end_write(fs_info->sb);
1721 		return;
1722 	}
1723 
1724 	spin_lock(&fs_info->unused_bgs_lock);
1725 	/*
1726 	 * Sort happens under lock because we can't simply splice it and sort.
1727 	 * The block groups might still be in use and reachable via bg_list,
1728 	 * and their presence in the reclaim_bgs list must be preserved.
1729 	 */
1730 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1731 	while (!list_empty(&fs_info->reclaim_bgs)) {
1732 		u64 zone_unusable;
1733 		int ret = 0;
1734 
1735 		bg = list_first_entry(&fs_info->reclaim_bgs,
1736 				      struct btrfs_block_group,
1737 				      bg_list);
1738 		list_del_init(&bg->bg_list);
1739 
1740 		space_info = bg->space_info;
1741 		spin_unlock(&fs_info->unused_bgs_lock);
1742 
1743 		/* Don't race with allocators so take the groups_sem */
1744 		down_write(&space_info->groups_sem);
1745 
1746 		spin_lock(&bg->lock);
1747 		if (bg->reserved || bg->pinned || bg->ro) {
1748 			/*
1749 			 * We want to bail if we made new allocations or have
1750 			 * outstanding allocations in this block group.  We do
1751 			 * the ro check in case balance is currently acting on
1752 			 * this block group.
1753 			 */
1754 			spin_unlock(&bg->lock);
1755 			up_write(&space_info->groups_sem);
1756 			goto next;
1757 		}
1758 		if (bg->used == 0) {
1759 			/*
1760 			 * It is possible that we trigger relocation on a block
1761 			 * group as its extents are deleted and it first goes
1762 			 * below the threshold, then shortly after goes empty.
1763 			 *
1764 			 * In this case, relocating it does delete it, but has
1765 			 * some overhead in relocation specific metadata, looking
1766 			 * for the non-existent extents and running some extra
1767 			 * transactions, which we can avoid by using one of the
1768 			 * other mechanisms for dealing with empty block groups.
1769 			 */
1770 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1771 				btrfs_mark_bg_unused(bg);
1772 			spin_unlock(&bg->lock);
1773 			up_write(&space_info->groups_sem);
1774 			goto next;
1775 
1776 		}
1777 		/*
1778 		 * The block group might no longer meet the reclaim condition by
1779 		 * the time we get around to reclaiming it, so to avoid
1780 		 * reclaiming overly full block_groups, skip reclaiming them.
1781 		 *
1782 		 * Since the decision making process also depends on the amount
1783 		 * being freed, pass in a fake giant value to skip that extra
1784 		 * check, which is more meaningful when adding to the list in
1785 		 * the first place.
1786 		 */
1787 		if (!should_reclaim_block_group(bg, bg->length)) {
1788 			spin_unlock(&bg->lock);
1789 			up_write(&space_info->groups_sem);
1790 			goto next;
1791 		}
1792 		spin_unlock(&bg->lock);
1793 
1794 		/* Get out fast, in case we're unmounting the filesystem */
1795 		if (btrfs_fs_closing(fs_info)) {
1796 			up_write(&space_info->groups_sem);
1797 			goto next;
1798 		}
1799 
1800 		/*
1801 		 * Cache the zone_unusable value before turning the block group
1802 		 * to read only. As soon as the blog group is read only it's
1803 		 * zone_unusable value gets moved to the block group's read-only
1804 		 * bytes and isn't available for calculations anymore.
1805 		 */
1806 		zone_unusable = bg->zone_unusable;
1807 		ret = inc_block_group_ro(bg, 0);
1808 		up_write(&space_info->groups_sem);
1809 		if (ret < 0)
1810 			goto next;
1811 
1812 		btrfs_info(fs_info,
1813 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1814 				bg->start,
1815 				div64_u64(bg->used * 100, bg->length),
1816 				div64_u64(zone_unusable * 100, bg->length));
1817 		trace_btrfs_reclaim_block_group(bg);
1818 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1819 		if (ret) {
1820 			btrfs_dec_block_group_ro(bg);
1821 			btrfs_err(fs_info, "error relocating chunk %llu",
1822 				  bg->start);
1823 		}
1824 
1825 next:
1826 		btrfs_put_block_group(bg);
1827 		spin_lock(&fs_info->unused_bgs_lock);
1828 	}
1829 	spin_unlock(&fs_info->unused_bgs_lock);
1830 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1831 	btrfs_exclop_finish(fs_info);
1832 	sb_end_write(fs_info->sb);
1833 }
1834 
1835 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1836 {
1837 	spin_lock(&fs_info->unused_bgs_lock);
1838 	if (!list_empty(&fs_info->reclaim_bgs))
1839 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1840 	spin_unlock(&fs_info->unused_bgs_lock);
1841 }
1842 
1843 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1844 {
1845 	struct btrfs_fs_info *fs_info = bg->fs_info;
1846 
1847 	spin_lock(&fs_info->unused_bgs_lock);
1848 	if (list_empty(&bg->bg_list)) {
1849 		btrfs_get_block_group(bg);
1850 		trace_btrfs_add_reclaim_block_group(bg);
1851 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1852 	}
1853 	spin_unlock(&fs_info->unused_bgs_lock);
1854 }
1855 
1856 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1857 			   struct btrfs_path *path)
1858 {
1859 	struct extent_map_tree *em_tree;
1860 	struct extent_map *em;
1861 	struct btrfs_block_group_item bg;
1862 	struct extent_buffer *leaf;
1863 	int slot;
1864 	u64 flags;
1865 	int ret = 0;
1866 
1867 	slot = path->slots[0];
1868 	leaf = path->nodes[0];
1869 
1870 	em_tree = &fs_info->mapping_tree;
1871 	read_lock(&em_tree->lock);
1872 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1873 	read_unlock(&em_tree->lock);
1874 	if (!em) {
1875 		btrfs_err(fs_info,
1876 			  "logical %llu len %llu found bg but no related chunk",
1877 			  key->objectid, key->offset);
1878 		return -ENOENT;
1879 	}
1880 
1881 	if (em->start != key->objectid || em->len != key->offset) {
1882 		btrfs_err(fs_info,
1883 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1884 			key->objectid, key->offset, em->start, em->len);
1885 		ret = -EUCLEAN;
1886 		goto out_free_em;
1887 	}
1888 
1889 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1890 			   sizeof(bg));
1891 	flags = btrfs_stack_block_group_flags(&bg) &
1892 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1893 
1894 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1895 		btrfs_err(fs_info,
1896 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1897 			  key->objectid, key->offset, flags,
1898 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1899 		ret = -EUCLEAN;
1900 	}
1901 
1902 out_free_em:
1903 	free_extent_map(em);
1904 	return ret;
1905 }
1906 
1907 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1908 				  struct btrfs_path *path,
1909 				  struct btrfs_key *key)
1910 {
1911 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1912 	int ret;
1913 	struct btrfs_key found_key;
1914 
1915 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1916 		if (found_key.objectid >= key->objectid &&
1917 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1918 			return read_bg_from_eb(fs_info, &found_key, path);
1919 		}
1920 	}
1921 	return ret;
1922 }
1923 
1924 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1925 {
1926 	u64 extra_flags = chunk_to_extended(flags) &
1927 				BTRFS_EXTENDED_PROFILE_MASK;
1928 
1929 	write_seqlock(&fs_info->profiles_lock);
1930 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1931 		fs_info->avail_data_alloc_bits |= extra_flags;
1932 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1933 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1934 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1935 		fs_info->avail_system_alloc_bits |= extra_flags;
1936 	write_sequnlock(&fs_info->profiles_lock);
1937 }
1938 
1939 /*
1940  * Map a physical disk address to a list of logical addresses.
1941  *
1942  * @fs_info:       the filesystem
1943  * @chunk_start:   logical address of block group
1944  * @physical:	   physical address to map to logical addresses
1945  * @logical:	   return array of logical addresses which map to @physical
1946  * @naddrs:	   length of @logical
1947  * @stripe_len:    size of IO stripe for the given block group
1948  *
1949  * Maps a particular @physical disk address to a list of @logical addresses.
1950  * Used primarily to exclude those portions of a block group that contain super
1951  * block copies.
1952  */
1953 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1954 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1955 {
1956 	struct extent_map *em;
1957 	struct map_lookup *map;
1958 	u64 *buf;
1959 	u64 bytenr;
1960 	u64 data_stripe_length;
1961 	u64 io_stripe_size;
1962 	int i, nr = 0;
1963 	int ret = 0;
1964 
1965 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1966 	if (IS_ERR(em))
1967 		return -EIO;
1968 
1969 	map = em->map_lookup;
1970 	data_stripe_length = em->orig_block_len;
1971 	io_stripe_size = BTRFS_STRIPE_LEN;
1972 	chunk_start = em->start;
1973 
1974 	/* For RAID5/6 adjust to a full IO stripe length */
1975 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1976 		io_stripe_size = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
1977 
1978 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1979 	if (!buf) {
1980 		ret = -ENOMEM;
1981 		goto out;
1982 	}
1983 
1984 	for (i = 0; i < map->num_stripes; i++) {
1985 		bool already_inserted = false;
1986 		u32 stripe_nr;
1987 		u32 offset;
1988 		int j;
1989 
1990 		if (!in_range(physical, map->stripes[i].physical,
1991 			      data_stripe_length))
1992 			continue;
1993 
1994 		stripe_nr = (physical - map->stripes[i].physical) >>
1995 			    BTRFS_STRIPE_LEN_SHIFT;
1996 		offset = (physical - map->stripes[i].physical) &
1997 			 BTRFS_STRIPE_LEN_MASK;
1998 
1999 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2000 				 BTRFS_BLOCK_GROUP_RAID10))
2001 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2002 					    map->sub_stripes);
2003 		/*
2004 		 * The remaining case would be for RAID56, multiply by
2005 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2006 		 * instead of map->stripe_len
2007 		 */
2008 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2009 
2010 		/* Ensure we don't add duplicate addresses */
2011 		for (j = 0; j < nr; j++) {
2012 			if (buf[j] == bytenr) {
2013 				already_inserted = true;
2014 				break;
2015 			}
2016 		}
2017 
2018 		if (!already_inserted)
2019 			buf[nr++] = bytenr;
2020 	}
2021 
2022 	*logical = buf;
2023 	*naddrs = nr;
2024 	*stripe_len = io_stripe_size;
2025 out:
2026 	free_extent_map(em);
2027 	return ret;
2028 }
2029 
2030 static int exclude_super_stripes(struct btrfs_block_group *cache)
2031 {
2032 	struct btrfs_fs_info *fs_info = cache->fs_info;
2033 	const bool zoned = btrfs_is_zoned(fs_info);
2034 	u64 bytenr;
2035 	u64 *logical;
2036 	int stripe_len;
2037 	int i, nr, ret;
2038 
2039 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2040 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2041 		cache->bytes_super += stripe_len;
2042 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2043 						stripe_len);
2044 		if (ret)
2045 			return ret;
2046 	}
2047 
2048 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2049 		bytenr = btrfs_sb_offset(i);
2050 		ret = btrfs_rmap_block(fs_info, cache->start,
2051 				       bytenr, &logical, &nr, &stripe_len);
2052 		if (ret)
2053 			return ret;
2054 
2055 		/* Shouldn't have super stripes in sequential zones */
2056 		if (zoned && nr) {
2057 			btrfs_err(fs_info,
2058 			"zoned: block group %llu must not contain super block",
2059 				  cache->start);
2060 			return -EUCLEAN;
2061 		}
2062 
2063 		while (nr--) {
2064 			u64 len = min_t(u64, stripe_len,
2065 				cache->start + cache->length - logical[nr]);
2066 
2067 			cache->bytes_super += len;
2068 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2069 							len);
2070 			if (ret) {
2071 				kfree(logical);
2072 				return ret;
2073 			}
2074 		}
2075 
2076 		kfree(logical);
2077 	}
2078 	return 0;
2079 }
2080 
2081 static struct btrfs_block_group *btrfs_create_block_group_cache(
2082 		struct btrfs_fs_info *fs_info, u64 start)
2083 {
2084 	struct btrfs_block_group *cache;
2085 
2086 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2087 	if (!cache)
2088 		return NULL;
2089 
2090 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2091 					GFP_NOFS);
2092 	if (!cache->free_space_ctl) {
2093 		kfree(cache);
2094 		return NULL;
2095 	}
2096 
2097 	cache->start = start;
2098 
2099 	cache->fs_info = fs_info;
2100 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2101 
2102 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2103 
2104 	refcount_set(&cache->refs, 1);
2105 	spin_lock_init(&cache->lock);
2106 	init_rwsem(&cache->data_rwsem);
2107 	INIT_LIST_HEAD(&cache->list);
2108 	INIT_LIST_HEAD(&cache->cluster_list);
2109 	INIT_LIST_HEAD(&cache->bg_list);
2110 	INIT_LIST_HEAD(&cache->ro_list);
2111 	INIT_LIST_HEAD(&cache->discard_list);
2112 	INIT_LIST_HEAD(&cache->dirty_list);
2113 	INIT_LIST_HEAD(&cache->io_list);
2114 	INIT_LIST_HEAD(&cache->active_bg_list);
2115 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2116 	atomic_set(&cache->frozen, 0);
2117 	mutex_init(&cache->free_space_lock);
2118 
2119 	return cache;
2120 }
2121 
2122 /*
2123  * Iterate all chunks and verify that each of them has the corresponding block
2124  * group
2125  */
2126 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2127 {
2128 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2129 	struct extent_map *em;
2130 	struct btrfs_block_group *bg;
2131 	u64 start = 0;
2132 	int ret = 0;
2133 
2134 	while (1) {
2135 		read_lock(&map_tree->lock);
2136 		/*
2137 		 * lookup_extent_mapping will return the first extent map
2138 		 * intersecting the range, so setting @len to 1 is enough to
2139 		 * get the first chunk.
2140 		 */
2141 		em = lookup_extent_mapping(map_tree, start, 1);
2142 		read_unlock(&map_tree->lock);
2143 		if (!em)
2144 			break;
2145 
2146 		bg = btrfs_lookup_block_group(fs_info, em->start);
2147 		if (!bg) {
2148 			btrfs_err(fs_info,
2149 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2150 				     em->start, em->len);
2151 			ret = -EUCLEAN;
2152 			free_extent_map(em);
2153 			break;
2154 		}
2155 		if (bg->start != em->start || bg->length != em->len ||
2156 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2157 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2158 			btrfs_err(fs_info,
2159 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2160 				em->start, em->len,
2161 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2162 				bg->start, bg->length,
2163 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2164 			ret = -EUCLEAN;
2165 			free_extent_map(em);
2166 			btrfs_put_block_group(bg);
2167 			break;
2168 		}
2169 		start = em->start + em->len;
2170 		free_extent_map(em);
2171 		btrfs_put_block_group(bg);
2172 	}
2173 	return ret;
2174 }
2175 
2176 static int read_one_block_group(struct btrfs_fs_info *info,
2177 				struct btrfs_block_group_item *bgi,
2178 				const struct btrfs_key *key,
2179 				int need_clear)
2180 {
2181 	struct btrfs_block_group *cache;
2182 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2183 	int ret;
2184 
2185 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2186 
2187 	cache = btrfs_create_block_group_cache(info, key->objectid);
2188 	if (!cache)
2189 		return -ENOMEM;
2190 
2191 	cache->length = key->offset;
2192 	cache->used = btrfs_stack_block_group_used(bgi);
2193 	cache->commit_used = cache->used;
2194 	cache->flags = btrfs_stack_block_group_flags(bgi);
2195 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2196 
2197 	set_free_space_tree_thresholds(cache);
2198 
2199 	if (need_clear) {
2200 		/*
2201 		 * When we mount with old space cache, we need to
2202 		 * set BTRFS_DC_CLEAR and set dirty flag.
2203 		 *
2204 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2205 		 *    truncate the old free space cache inode and
2206 		 *    setup a new one.
2207 		 * b) Setting 'dirty flag' makes sure that we flush
2208 		 *    the new space cache info onto disk.
2209 		 */
2210 		if (btrfs_test_opt(info, SPACE_CACHE))
2211 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2212 	}
2213 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2214 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2215 			btrfs_err(info,
2216 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2217 				  cache->start);
2218 			ret = -EINVAL;
2219 			goto error;
2220 	}
2221 
2222 	ret = btrfs_load_block_group_zone_info(cache, false);
2223 	if (ret) {
2224 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2225 			  cache->start);
2226 		goto error;
2227 	}
2228 
2229 	/*
2230 	 * We need to exclude the super stripes now so that the space info has
2231 	 * super bytes accounted for, otherwise we'll think we have more space
2232 	 * than we actually do.
2233 	 */
2234 	ret = exclude_super_stripes(cache);
2235 	if (ret) {
2236 		/* We may have excluded something, so call this just in case. */
2237 		btrfs_free_excluded_extents(cache);
2238 		goto error;
2239 	}
2240 
2241 	/*
2242 	 * For zoned filesystem, space after the allocation offset is the only
2243 	 * free space for a block group. So, we don't need any caching work.
2244 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2245 	 * zone_unusable space.
2246 	 *
2247 	 * For regular filesystem, check for two cases, either we are full, and
2248 	 * therefore don't need to bother with the caching work since we won't
2249 	 * find any space, or we are empty, and we can just add all the space
2250 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2251 	 * in the full case.
2252 	 */
2253 	if (btrfs_is_zoned(info)) {
2254 		btrfs_calc_zone_unusable(cache);
2255 		/* Should not have any excluded extents. Just in case, though. */
2256 		btrfs_free_excluded_extents(cache);
2257 	} else if (cache->length == cache->used) {
2258 		cache->cached = BTRFS_CACHE_FINISHED;
2259 		btrfs_free_excluded_extents(cache);
2260 	} else if (cache->used == 0) {
2261 		cache->cached = BTRFS_CACHE_FINISHED;
2262 		add_new_free_space(cache, cache->start,
2263 				   cache->start + cache->length);
2264 		btrfs_free_excluded_extents(cache);
2265 	}
2266 
2267 	ret = btrfs_add_block_group_cache(info, cache);
2268 	if (ret) {
2269 		btrfs_remove_free_space_cache(cache);
2270 		goto error;
2271 	}
2272 	trace_btrfs_add_block_group(info, cache, 0);
2273 	btrfs_add_bg_to_space_info(info, cache);
2274 
2275 	set_avail_alloc_bits(info, cache->flags);
2276 	if (btrfs_chunk_writeable(info, cache->start)) {
2277 		if (cache->used == 0) {
2278 			ASSERT(list_empty(&cache->bg_list));
2279 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2280 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2281 			else
2282 				btrfs_mark_bg_unused(cache);
2283 		}
2284 	} else {
2285 		inc_block_group_ro(cache, 1);
2286 	}
2287 
2288 	return 0;
2289 error:
2290 	btrfs_put_block_group(cache);
2291 	return ret;
2292 }
2293 
2294 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2295 {
2296 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2297 	struct rb_node *node;
2298 	int ret = 0;
2299 
2300 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2301 		struct extent_map *em;
2302 		struct map_lookup *map;
2303 		struct btrfs_block_group *bg;
2304 
2305 		em = rb_entry(node, struct extent_map, rb_node);
2306 		map = em->map_lookup;
2307 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2308 		if (!bg) {
2309 			ret = -ENOMEM;
2310 			break;
2311 		}
2312 
2313 		/* Fill dummy cache as FULL */
2314 		bg->length = em->len;
2315 		bg->flags = map->type;
2316 		bg->cached = BTRFS_CACHE_FINISHED;
2317 		bg->used = em->len;
2318 		bg->flags = map->type;
2319 		ret = btrfs_add_block_group_cache(fs_info, bg);
2320 		/*
2321 		 * We may have some valid block group cache added already, in
2322 		 * that case we skip to the next one.
2323 		 */
2324 		if (ret == -EEXIST) {
2325 			ret = 0;
2326 			btrfs_put_block_group(bg);
2327 			continue;
2328 		}
2329 
2330 		if (ret) {
2331 			btrfs_remove_free_space_cache(bg);
2332 			btrfs_put_block_group(bg);
2333 			break;
2334 		}
2335 
2336 		btrfs_add_bg_to_space_info(fs_info, bg);
2337 
2338 		set_avail_alloc_bits(fs_info, bg->flags);
2339 	}
2340 	if (!ret)
2341 		btrfs_init_global_block_rsv(fs_info);
2342 	return ret;
2343 }
2344 
2345 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2346 {
2347 	struct btrfs_root *root = btrfs_block_group_root(info);
2348 	struct btrfs_path *path;
2349 	int ret;
2350 	struct btrfs_block_group *cache;
2351 	struct btrfs_space_info *space_info;
2352 	struct btrfs_key key;
2353 	int need_clear = 0;
2354 	u64 cache_gen;
2355 
2356 	/*
2357 	 * Either no extent root (with ibadroots rescue option) or we have
2358 	 * unsupported RO options. The fs can never be mounted read-write, so no
2359 	 * need to waste time searching block group items.
2360 	 *
2361 	 * This also allows new extent tree related changes to be RO compat,
2362 	 * no need for a full incompat flag.
2363 	 */
2364 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2365 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2366 		return fill_dummy_bgs(info);
2367 
2368 	key.objectid = 0;
2369 	key.offset = 0;
2370 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2371 	path = btrfs_alloc_path();
2372 	if (!path)
2373 		return -ENOMEM;
2374 
2375 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2376 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2377 	    btrfs_super_generation(info->super_copy) != cache_gen)
2378 		need_clear = 1;
2379 	if (btrfs_test_opt(info, CLEAR_CACHE))
2380 		need_clear = 1;
2381 
2382 	while (1) {
2383 		struct btrfs_block_group_item bgi;
2384 		struct extent_buffer *leaf;
2385 		int slot;
2386 
2387 		ret = find_first_block_group(info, path, &key);
2388 		if (ret > 0)
2389 			break;
2390 		if (ret != 0)
2391 			goto error;
2392 
2393 		leaf = path->nodes[0];
2394 		slot = path->slots[0];
2395 
2396 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2397 				   sizeof(bgi));
2398 
2399 		btrfs_item_key_to_cpu(leaf, &key, slot);
2400 		btrfs_release_path(path);
2401 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2402 		if (ret < 0)
2403 			goto error;
2404 		key.objectid += key.offset;
2405 		key.offset = 0;
2406 	}
2407 	btrfs_release_path(path);
2408 
2409 	list_for_each_entry(space_info, &info->space_info, list) {
2410 		int i;
2411 
2412 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2413 			if (list_empty(&space_info->block_groups[i]))
2414 				continue;
2415 			cache = list_first_entry(&space_info->block_groups[i],
2416 						 struct btrfs_block_group,
2417 						 list);
2418 			btrfs_sysfs_add_block_group_type(cache);
2419 		}
2420 
2421 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2422 		      (BTRFS_BLOCK_GROUP_RAID10 |
2423 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2424 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2425 		       BTRFS_BLOCK_GROUP_DUP)))
2426 			continue;
2427 		/*
2428 		 * Avoid allocating from un-mirrored block group if there are
2429 		 * mirrored block groups.
2430 		 */
2431 		list_for_each_entry(cache,
2432 				&space_info->block_groups[BTRFS_RAID_RAID0],
2433 				list)
2434 			inc_block_group_ro(cache, 1);
2435 		list_for_each_entry(cache,
2436 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2437 				list)
2438 			inc_block_group_ro(cache, 1);
2439 	}
2440 
2441 	btrfs_init_global_block_rsv(info);
2442 	ret = check_chunk_block_group_mappings(info);
2443 error:
2444 	btrfs_free_path(path);
2445 	/*
2446 	 * We've hit some error while reading the extent tree, and have
2447 	 * rescue=ibadroots mount option.
2448 	 * Try to fill the tree using dummy block groups so that the user can
2449 	 * continue to mount and grab their data.
2450 	 */
2451 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2452 		ret = fill_dummy_bgs(info);
2453 	return ret;
2454 }
2455 
2456 /*
2457  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2458  * allocation.
2459  *
2460  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2461  * phases.
2462  */
2463 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2464 				   struct btrfs_block_group *block_group)
2465 {
2466 	struct btrfs_fs_info *fs_info = trans->fs_info;
2467 	struct btrfs_block_group_item bgi;
2468 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2469 	struct btrfs_key key;
2470 	u64 old_commit_used;
2471 	int ret;
2472 
2473 	spin_lock(&block_group->lock);
2474 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2475 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2476 						   block_group->global_root_id);
2477 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2478 	old_commit_used = block_group->commit_used;
2479 	block_group->commit_used = block_group->used;
2480 	key.objectid = block_group->start;
2481 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2482 	key.offset = block_group->length;
2483 	spin_unlock(&block_group->lock);
2484 
2485 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2486 	if (ret < 0) {
2487 		spin_lock(&block_group->lock);
2488 		block_group->commit_used = old_commit_used;
2489 		spin_unlock(&block_group->lock);
2490 	}
2491 
2492 	return ret;
2493 }
2494 
2495 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2496 			    struct btrfs_device *device, u64 chunk_offset,
2497 			    u64 start, u64 num_bytes)
2498 {
2499 	struct btrfs_fs_info *fs_info = device->fs_info;
2500 	struct btrfs_root *root = fs_info->dev_root;
2501 	struct btrfs_path *path;
2502 	struct btrfs_dev_extent *extent;
2503 	struct extent_buffer *leaf;
2504 	struct btrfs_key key;
2505 	int ret;
2506 
2507 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2508 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2509 	path = btrfs_alloc_path();
2510 	if (!path)
2511 		return -ENOMEM;
2512 
2513 	key.objectid = device->devid;
2514 	key.type = BTRFS_DEV_EXTENT_KEY;
2515 	key.offset = start;
2516 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2517 	if (ret)
2518 		goto out;
2519 
2520 	leaf = path->nodes[0];
2521 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2522 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2523 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2524 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2525 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2526 
2527 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2528 	btrfs_mark_buffer_dirty(leaf);
2529 out:
2530 	btrfs_free_path(path);
2531 	return ret;
2532 }
2533 
2534 /*
2535  * This function belongs to phase 2.
2536  *
2537  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2538  * phases.
2539  */
2540 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2541 				   u64 chunk_offset, u64 chunk_size)
2542 {
2543 	struct btrfs_fs_info *fs_info = trans->fs_info;
2544 	struct btrfs_device *device;
2545 	struct extent_map *em;
2546 	struct map_lookup *map;
2547 	u64 dev_offset;
2548 	u64 stripe_size;
2549 	int i;
2550 	int ret = 0;
2551 
2552 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2553 	if (IS_ERR(em))
2554 		return PTR_ERR(em);
2555 
2556 	map = em->map_lookup;
2557 	stripe_size = em->orig_block_len;
2558 
2559 	/*
2560 	 * Take the device list mutex to prevent races with the final phase of
2561 	 * a device replace operation that replaces the device object associated
2562 	 * with the map's stripes, because the device object's id can change
2563 	 * at any time during that final phase of the device replace operation
2564 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2565 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2566 	 * resulting in persisting a device extent item with such ID.
2567 	 */
2568 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2569 	for (i = 0; i < map->num_stripes; i++) {
2570 		device = map->stripes[i].dev;
2571 		dev_offset = map->stripes[i].physical;
2572 
2573 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2574 				       stripe_size);
2575 		if (ret)
2576 			break;
2577 	}
2578 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2579 
2580 	free_extent_map(em);
2581 	return ret;
2582 }
2583 
2584 /*
2585  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2586  * chunk allocation.
2587  *
2588  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2589  * phases.
2590  */
2591 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2592 {
2593 	struct btrfs_fs_info *fs_info = trans->fs_info;
2594 	struct btrfs_block_group *block_group;
2595 	int ret = 0;
2596 
2597 	while (!list_empty(&trans->new_bgs)) {
2598 		int index;
2599 
2600 		block_group = list_first_entry(&trans->new_bgs,
2601 					       struct btrfs_block_group,
2602 					       bg_list);
2603 		if (ret)
2604 			goto next;
2605 
2606 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2607 
2608 		ret = insert_block_group_item(trans, block_group);
2609 		if (ret)
2610 			btrfs_abort_transaction(trans, ret);
2611 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2612 			      &block_group->runtime_flags)) {
2613 			mutex_lock(&fs_info->chunk_mutex);
2614 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2615 			mutex_unlock(&fs_info->chunk_mutex);
2616 			if (ret)
2617 				btrfs_abort_transaction(trans, ret);
2618 		}
2619 		ret = insert_dev_extents(trans, block_group->start,
2620 					 block_group->length);
2621 		if (ret)
2622 			btrfs_abort_transaction(trans, ret);
2623 		add_block_group_free_space(trans, block_group);
2624 
2625 		/*
2626 		 * If we restriped during balance, we may have added a new raid
2627 		 * type, so now add the sysfs entries when it is safe to do so.
2628 		 * We don't have to worry about locking here as it's handled in
2629 		 * btrfs_sysfs_add_block_group_type.
2630 		 */
2631 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2632 			btrfs_sysfs_add_block_group_type(block_group);
2633 
2634 		/* Already aborted the transaction if it failed. */
2635 next:
2636 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2637 		list_del_init(&block_group->bg_list);
2638 	}
2639 	btrfs_trans_release_chunk_metadata(trans);
2640 }
2641 
2642 /*
2643  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2644  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2645  */
2646 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2647 {
2648 	u64 div = SZ_1G;
2649 	u64 index;
2650 
2651 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2652 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2653 
2654 	/* If we have a smaller fs index based on 128MiB. */
2655 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2656 		div = SZ_128M;
2657 
2658 	offset = div64_u64(offset, div);
2659 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2660 	return index;
2661 }
2662 
2663 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2664 						 u64 type,
2665 						 u64 chunk_offset, u64 size)
2666 {
2667 	struct btrfs_fs_info *fs_info = trans->fs_info;
2668 	struct btrfs_block_group *cache;
2669 	int ret;
2670 
2671 	btrfs_set_log_full_commit(trans);
2672 
2673 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2674 	if (!cache)
2675 		return ERR_PTR(-ENOMEM);
2676 
2677 	cache->length = size;
2678 	set_free_space_tree_thresholds(cache);
2679 	cache->flags = type;
2680 	cache->cached = BTRFS_CACHE_FINISHED;
2681 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2682 
2683 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2684 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2685 
2686 	ret = btrfs_load_block_group_zone_info(cache, true);
2687 	if (ret) {
2688 		btrfs_put_block_group(cache);
2689 		return ERR_PTR(ret);
2690 	}
2691 
2692 	ret = exclude_super_stripes(cache);
2693 	if (ret) {
2694 		/* We may have excluded something, so call this just in case */
2695 		btrfs_free_excluded_extents(cache);
2696 		btrfs_put_block_group(cache);
2697 		return ERR_PTR(ret);
2698 	}
2699 
2700 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2701 
2702 	btrfs_free_excluded_extents(cache);
2703 
2704 	/*
2705 	 * Ensure the corresponding space_info object is created and
2706 	 * assigned to our block group. We want our bg to be added to the rbtree
2707 	 * with its ->space_info set.
2708 	 */
2709 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2710 	ASSERT(cache->space_info);
2711 
2712 	ret = btrfs_add_block_group_cache(fs_info, cache);
2713 	if (ret) {
2714 		btrfs_remove_free_space_cache(cache);
2715 		btrfs_put_block_group(cache);
2716 		return ERR_PTR(ret);
2717 	}
2718 
2719 	/*
2720 	 * Now that our block group has its ->space_info set and is inserted in
2721 	 * the rbtree, update the space info's counters.
2722 	 */
2723 	trace_btrfs_add_block_group(fs_info, cache, 1);
2724 	btrfs_add_bg_to_space_info(fs_info, cache);
2725 	btrfs_update_global_block_rsv(fs_info);
2726 
2727 #ifdef CONFIG_BTRFS_DEBUG
2728 	if (btrfs_should_fragment_free_space(cache)) {
2729 		cache->space_info->bytes_used += size >> 1;
2730 		fragment_free_space(cache);
2731 	}
2732 #endif
2733 
2734 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2735 	trans->delayed_ref_updates++;
2736 	btrfs_update_delayed_refs_rsv(trans);
2737 
2738 	set_avail_alloc_bits(fs_info, type);
2739 	return cache;
2740 }
2741 
2742 /*
2743  * Mark one block group RO, can be called several times for the same block
2744  * group.
2745  *
2746  * @cache:		the destination block group
2747  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2748  * 			ensure we still have some free space after marking this
2749  * 			block group RO.
2750  */
2751 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2752 			     bool do_chunk_alloc)
2753 {
2754 	struct btrfs_fs_info *fs_info = cache->fs_info;
2755 	struct btrfs_trans_handle *trans;
2756 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2757 	u64 alloc_flags;
2758 	int ret;
2759 	bool dirty_bg_running;
2760 
2761 	/*
2762 	 * This can only happen when we are doing read-only scrub on read-only
2763 	 * mount.
2764 	 * In that case we should not start a new transaction on read-only fs.
2765 	 * Thus here we skip all chunk allocations.
2766 	 */
2767 	if (sb_rdonly(fs_info->sb)) {
2768 		mutex_lock(&fs_info->ro_block_group_mutex);
2769 		ret = inc_block_group_ro(cache, 0);
2770 		mutex_unlock(&fs_info->ro_block_group_mutex);
2771 		return ret;
2772 	}
2773 
2774 	do {
2775 		trans = btrfs_join_transaction(root);
2776 		if (IS_ERR(trans))
2777 			return PTR_ERR(trans);
2778 
2779 		dirty_bg_running = false;
2780 
2781 		/*
2782 		 * We're not allowed to set block groups readonly after the dirty
2783 		 * block group cache has started writing.  If it already started,
2784 		 * back off and let this transaction commit.
2785 		 */
2786 		mutex_lock(&fs_info->ro_block_group_mutex);
2787 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2788 			u64 transid = trans->transid;
2789 
2790 			mutex_unlock(&fs_info->ro_block_group_mutex);
2791 			btrfs_end_transaction(trans);
2792 
2793 			ret = btrfs_wait_for_commit(fs_info, transid);
2794 			if (ret)
2795 				return ret;
2796 			dirty_bg_running = true;
2797 		}
2798 	} while (dirty_bg_running);
2799 
2800 	if (do_chunk_alloc) {
2801 		/*
2802 		 * If we are changing raid levels, try to allocate a
2803 		 * corresponding block group with the new raid level.
2804 		 */
2805 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2806 		if (alloc_flags != cache->flags) {
2807 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2808 						CHUNK_ALLOC_FORCE);
2809 			/*
2810 			 * ENOSPC is allowed here, we may have enough space
2811 			 * already allocated at the new raid level to carry on
2812 			 */
2813 			if (ret == -ENOSPC)
2814 				ret = 0;
2815 			if (ret < 0)
2816 				goto out;
2817 		}
2818 	}
2819 
2820 	ret = inc_block_group_ro(cache, 0);
2821 	if (!ret)
2822 		goto out;
2823 	if (ret == -ETXTBSY)
2824 		goto unlock_out;
2825 
2826 	/*
2827 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2828 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2829 	 * we still want to try our best to mark the block group read-only.
2830 	 */
2831 	if (!do_chunk_alloc && ret == -ENOSPC &&
2832 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2833 		goto unlock_out;
2834 
2835 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2836 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2837 	if (ret < 0)
2838 		goto out;
2839 	/*
2840 	 * We have allocated a new chunk. We also need to activate that chunk to
2841 	 * grant metadata tickets for zoned filesystem.
2842 	 */
2843 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2844 	if (ret < 0)
2845 		goto out;
2846 
2847 	ret = inc_block_group_ro(cache, 0);
2848 	if (ret == -ETXTBSY)
2849 		goto unlock_out;
2850 out:
2851 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2852 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2853 		mutex_lock(&fs_info->chunk_mutex);
2854 		check_system_chunk(trans, alloc_flags);
2855 		mutex_unlock(&fs_info->chunk_mutex);
2856 	}
2857 unlock_out:
2858 	mutex_unlock(&fs_info->ro_block_group_mutex);
2859 
2860 	btrfs_end_transaction(trans);
2861 	return ret;
2862 }
2863 
2864 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2865 {
2866 	struct btrfs_space_info *sinfo = cache->space_info;
2867 	u64 num_bytes;
2868 
2869 	BUG_ON(!cache->ro);
2870 
2871 	spin_lock(&sinfo->lock);
2872 	spin_lock(&cache->lock);
2873 	if (!--cache->ro) {
2874 		if (btrfs_is_zoned(cache->fs_info)) {
2875 			/* Migrate zone_unusable bytes back */
2876 			cache->zone_unusable =
2877 				(cache->alloc_offset - cache->used) +
2878 				(cache->length - cache->zone_capacity);
2879 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2880 			sinfo->bytes_readonly -= cache->zone_unusable;
2881 		}
2882 		num_bytes = cache->length - cache->reserved -
2883 			    cache->pinned - cache->bytes_super -
2884 			    cache->zone_unusable - cache->used;
2885 		sinfo->bytes_readonly -= num_bytes;
2886 		list_del_init(&cache->ro_list);
2887 	}
2888 	spin_unlock(&cache->lock);
2889 	spin_unlock(&sinfo->lock);
2890 }
2891 
2892 static int update_block_group_item(struct btrfs_trans_handle *trans,
2893 				   struct btrfs_path *path,
2894 				   struct btrfs_block_group *cache)
2895 {
2896 	struct btrfs_fs_info *fs_info = trans->fs_info;
2897 	int ret;
2898 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2899 	unsigned long bi;
2900 	struct extent_buffer *leaf;
2901 	struct btrfs_block_group_item bgi;
2902 	struct btrfs_key key;
2903 	u64 old_commit_used;
2904 	u64 used;
2905 
2906 	/*
2907 	 * Block group items update can be triggered out of commit transaction
2908 	 * critical section, thus we need a consistent view of used bytes.
2909 	 * We cannot use cache->used directly outside of the spin lock, as it
2910 	 * may be changed.
2911 	 */
2912 	spin_lock(&cache->lock);
2913 	old_commit_used = cache->commit_used;
2914 	used = cache->used;
2915 	/* No change in used bytes, can safely skip it. */
2916 	if (cache->commit_used == used) {
2917 		spin_unlock(&cache->lock);
2918 		return 0;
2919 	}
2920 	cache->commit_used = used;
2921 	spin_unlock(&cache->lock);
2922 
2923 	key.objectid = cache->start;
2924 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2925 	key.offset = cache->length;
2926 
2927 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2928 	if (ret) {
2929 		if (ret > 0)
2930 			ret = -ENOENT;
2931 		goto fail;
2932 	}
2933 
2934 	leaf = path->nodes[0];
2935 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2936 	btrfs_set_stack_block_group_used(&bgi, used);
2937 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2938 						   cache->global_root_id);
2939 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2940 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2941 	btrfs_mark_buffer_dirty(leaf);
2942 fail:
2943 	btrfs_release_path(path);
2944 	/* We didn't update the block group item, need to revert @commit_used. */
2945 	if (ret < 0) {
2946 		spin_lock(&cache->lock);
2947 		cache->commit_used = old_commit_used;
2948 		spin_unlock(&cache->lock);
2949 	}
2950 	return ret;
2951 
2952 }
2953 
2954 static int cache_save_setup(struct btrfs_block_group *block_group,
2955 			    struct btrfs_trans_handle *trans,
2956 			    struct btrfs_path *path)
2957 {
2958 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2959 	struct btrfs_root *root = fs_info->tree_root;
2960 	struct inode *inode = NULL;
2961 	struct extent_changeset *data_reserved = NULL;
2962 	u64 alloc_hint = 0;
2963 	int dcs = BTRFS_DC_ERROR;
2964 	u64 cache_size = 0;
2965 	int retries = 0;
2966 	int ret = 0;
2967 
2968 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2969 		return 0;
2970 
2971 	/*
2972 	 * If this block group is smaller than 100 megs don't bother caching the
2973 	 * block group.
2974 	 */
2975 	if (block_group->length < (100 * SZ_1M)) {
2976 		spin_lock(&block_group->lock);
2977 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2978 		spin_unlock(&block_group->lock);
2979 		return 0;
2980 	}
2981 
2982 	if (TRANS_ABORTED(trans))
2983 		return 0;
2984 again:
2985 	inode = lookup_free_space_inode(block_group, path);
2986 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2987 		ret = PTR_ERR(inode);
2988 		btrfs_release_path(path);
2989 		goto out;
2990 	}
2991 
2992 	if (IS_ERR(inode)) {
2993 		BUG_ON(retries);
2994 		retries++;
2995 
2996 		if (block_group->ro)
2997 			goto out_free;
2998 
2999 		ret = create_free_space_inode(trans, block_group, path);
3000 		if (ret)
3001 			goto out_free;
3002 		goto again;
3003 	}
3004 
3005 	/*
3006 	 * We want to set the generation to 0, that way if anything goes wrong
3007 	 * from here on out we know not to trust this cache when we load up next
3008 	 * time.
3009 	 */
3010 	BTRFS_I(inode)->generation = 0;
3011 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3012 	if (ret) {
3013 		/*
3014 		 * So theoretically we could recover from this, simply set the
3015 		 * super cache generation to 0 so we know to invalidate the
3016 		 * cache, but then we'd have to keep track of the block groups
3017 		 * that fail this way so we know we _have_ to reset this cache
3018 		 * before the next commit or risk reading stale cache.  So to
3019 		 * limit our exposure to horrible edge cases lets just abort the
3020 		 * transaction, this only happens in really bad situations
3021 		 * anyway.
3022 		 */
3023 		btrfs_abort_transaction(trans, ret);
3024 		goto out_put;
3025 	}
3026 	WARN_ON(ret);
3027 
3028 	/* We've already setup this transaction, go ahead and exit */
3029 	if (block_group->cache_generation == trans->transid &&
3030 	    i_size_read(inode)) {
3031 		dcs = BTRFS_DC_SETUP;
3032 		goto out_put;
3033 	}
3034 
3035 	if (i_size_read(inode) > 0) {
3036 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3037 					&fs_info->global_block_rsv);
3038 		if (ret)
3039 			goto out_put;
3040 
3041 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3042 		if (ret)
3043 			goto out_put;
3044 	}
3045 
3046 	spin_lock(&block_group->lock);
3047 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3048 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3049 		/*
3050 		 * don't bother trying to write stuff out _if_
3051 		 * a) we're not cached,
3052 		 * b) we're with nospace_cache mount option,
3053 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3054 		 */
3055 		dcs = BTRFS_DC_WRITTEN;
3056 		spin_unlock(&block_group->lock);
3057 		goto out_put;
3058 	}
3059 	spin_unlock(&block_group->lock);
3060 
3061 	/*
3062 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3063 	 * skip doing the setup, we've already cleared the cache so we're safe.
3064 	 */
3065 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3066 		ret = -ENOSPC;
3067 		goto out_put;
3068 	}
3069 
3070 	/*
3071 	 * Try to preallocate enough space based on how big the block group is.
3072 	 * Keep in mind this has to include any pinned space which could end up
3073 	 * taking up quite a bit since it's not folded into the other space
3074 	 * cache.
3075 	 */
3076 	cache_size = div_u64(block_group->length, SZ_256M);
3077 	if (!cache_size)
3078 		cache_size = 1;
3079 
3080 	cache_size *= 16;
3081 	cache_size *= fs_info->sectorsize;
3082 
3083 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3084 					  cache_size, false);
3085 	if (ret)
3086 		goto out_put;
3087 
3088 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3089 					      cache_size, cache_size,
3090 					      &alloc_hint);
3091 	/*
3092 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3093 	 * of metadata or split extents when writing the cache out, which means
3094 	 * we can enospc if we are heavily fragmented in addition to just normal
3095 	 * out of space conditions.  So if we hit this just skip setting up any
3096 	 * other block groups for this transaction, maybe we'll unpin enough
3097 	 * space the next time around.
3098 	 */
3099 	if (!ret)
3100 		dcs = BTRFS_DC_SETUP;
3101 	else if (ret == -ENOSPC)
3102 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3103 
3104 out_put:
3105 	iput(inode);
3106 out_free:
3107 	btrfs_release_path(path);
3108 out:
3109 	spin_lock(&block_group->lock);
3110 	if (!ret && dcs == BTRFS_DC_SETUP)
3111 		block_group->cache_generation = trans->transid;
3112 	block_group->disk_cache_state = dcs;
3113 	spin_unlock(&block_group->lock);
3114 
3115 	extent_changeset_free(data_reserved);
3116 	return ret;
3117 }
3118 
3119 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3120 {
3121 	struct btrfs_fs_info *fs_info = trans->fs_info;
3122 	struct btrfs_block_group *cache, *tmp;
3123 	struct btrfs_transaction *cur_trans = trans->transaction;
3124 	struct btrfs_path *path;
3125 
3126 	if (list_empty(&cur_trans->dirty_bgs) ||
3127 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3128 		return 0;
3129 
3130 	path = btrfs_alloc_path();
3131 	if (!path)
3132 		return -ENOMEM;
3133 
3134 	/* Could add new block groups, use _safe just in case */
3135 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3136 				 dirty_list) {
3137 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3138 			cache_save_setup(cache, trans, path);
3139 	}
3140 
3141 	btrfs_free_path(path);
3142 	return 0;
3143 }
3144 
3145 /*
3146  * Transaction commit does final block group cache writeback during a critical
3147  * section where nothing is allowed to change the FS.  This is required in
3148  * order for the cache to actually match the block group, but can introduce a
3149  * lot of latency into the commit.
3150  *
3151  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3152  * There's a chance we'll have to redo some of it if the block group changes
3153  * again during the commit, but it greatly reduces the commit latency by
3154  * getting rid of the easy block groups while we're still allowing others to
3155  * join the commit.
3156  */
3157 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3158 {
3159 	struct btrfs_fs_info *fs_info = trans->fs_info;
3160 	struct btrfs_block_group *cache;
3161 	struct btrfs_transaction *cur_trans = trans->transaction;
3162 	int ret = 0;
3163 	int should_put;
3164 	struct btrfs_path *path = NULL;
3165 	LIST_HEAD(dirty);
3166 	struct list_head *io = &cur_trans->io_bgs;
3167 	int loops = 0;
3168 
3169 	spin_lock(&cur_trans->dirty_bgs_lock);
3170 	if (list_empty(&cur_trans->dirty_bgs)) {
3171 		spin_unlock(&cur_trans->dirty_bgs_lock);
3172 		return 0;
3173 	}
3174 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3175 	spin_unlock(&cur_trans->dirty_bgs_lock);
3176 
3177 again:
3178 	/* Make sure all the block groups on our dirty list actually exist */
3179 	btrfs_create_pending_block_groups(trans);
3180 
3181 	if (!path) {
3182 		path = btrfs_alloc_path();
3183 		if (!path) {
3184 			ret = -ENOMEM;
3185 			goto out;
3186 		}
3187 	}
3188 
3189 	/*
3190 	 * cache_write_mutex is here only to save us from balance or automatic
3191 	 * removal of empty block groups deleting this block group while we are
3192 	 * writing out the cache
3193 	 */
3194 	mutex_lock(&trans->transaction->cache_write_mutex);
3195 	while (!list_empty(&dirty)) {
3196 		bool drop_reserve = true;
3197 
3198 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3199 					 dirty_list);
3200 		/*
3201 		 * This can happen if something re-dirties a block group that
3202 		 * is already under IO.  Just wait for it to finish and then do
3203 		 * it all again
3204 		 */
3205 		if (!list_empty(&cache->io_list)) {
3206 			list_del_init(&cache->io_list);
3207 			btrfs_wait_cache_io(trans, cache, path);
3208 			btrfs_put_block_group(cache);
3209 		}
3210 
3211 
3212 		/*
3213 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3214 		 * it should update the cache_state.  Don't delete until after
3215 		 * we wait.
3216 		 *
3217 		 * Since we're not running in the commit critical section
3218 		 * we need the dirty_bgs_lock to protect from update_block_group
3219 		 */
3220 		spin_lock(&cur_trans->dirty_bgs_lock);
3221 		list_del_init(&cache->dirty_list);
3222 		spin_unlock(&cur_trans->dirty_bgs_lock);
3223 
3224 		should_put = 1;
3225 
3226 		cache_save_setup(cache, trans, path);
3227 
3228 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3229 			cache->io_ctl.inode = NULL;
3230 			ret = btrfs_write_out_cache(trans, cache, path);
3231 			if (ret == 0 && cache->io_ctl.inode) {
3232 				should_put = 0;
3233 
3234 				/*
3235 				 * The cache_write_mutex is protecting the
3236 				 * io_list, also refer to the definition of
3237 				 * btrfs_transaction::io_bgs for more details
3238 				 */
3239 				list_add_tail(&cache->io_list, io);
3240 			} else {
3241 				/*
3242 				 * If we failed to write the cache, the
3243 				 * generation will be bad and life goes on
3244 				 */
3245 				ret = 0;
3246 			}
3247 		}
3248 		if (!ret) {
3249 			ret = update_block_group_item(trans, path, cache);
3250 			/*
3251 			 * Our block group might still be attached to the list
3252 			 * of new block groups in the transaction handle of some
3253 			 * other task (struct btrfs_trans_handle->new_bgs). This
3254 			 * means its block group item isn't yet in the extent
3255 			 * tree. If this happens ignore the error, as we will
3256 			 * try again later in the critical section of the
3257 			 * transaction commit.
3258 			 */
3259 			if (ret == -ENOENT) {
3260 				ret = 0;
3261 				spin_lock(&cur_trans->dirty_bgs_lock);
3262 				if (list_empty(&cache->dirty_list)) {
3263 					list_add_tail(&cache->dirty_list,
3264 						      &cur_trans->dirty_bgs);
3265 					btrfs_get_block_group(cache);
3266 					drop_reserve = false;
3267 				}
3268 				spin_unlock(&cur_trans->dirty_bgs_lock);
3269 			} else if (ret) {
3270 				btrfs_abort_transaction(trans, ret);
3271 			}
3272 		}
3273 
3274 		/* If it's not on the io list, we need to put the block group */
3275 		if (should_put)
3276 			btrfs_put_block_group(cache);
3277 		if (drop_reserve)
3278 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3279 		/*
3280 		 * Avoid blocking other tasks for too long. It might even save
3281 		 * us from writing caches for block groups that are going to be
3282 		 * removed.
3283 		 */
3284 		mutex_unlock(&trans->transaction->cache_write_mutex);
3285 		if (ret)
3286 			goto out;
3287 		mutex_lock(&trans->transaction->cache_write_mutex);
3288 	}
3289 	mutex_unlock(&trans->transaction->cache_write_mutex);
3290 
3291 	/*
3292 	 * Go through delayed refs for all the stuff we've just kicked off
3293 	 * and then loop back (just once)
3294 	 */
3295 	if (!ret)
3296 		ret = btrfs_run_delayed_refs(trans, 0);
3297 	if (!ret && loops == 0) {
3298 		loops++;
3299 		spin_lock(&cur_trans->dirty_bgs_lock);
3300 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3301 		/*
3302 		 * dirty_bgs_lock protects us from concurrent block group
3303 		 * deletes too (not just cache_write_mutex).
3304 		 */
3305 		if (!list_empty(&dirty)) {
3306 			spin_unlock(&cur_trans->dirty_bgs_lock);
3307 			goto again;
3308 		}
3309 		spin_unlock(&cur_trans->dirty_bgs_lock);
3310 	}
3311 out:
3312 	if (ret < 0) {
3313 		spin_lock(&cur_trans->dirty_bgs_lock);
3314 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3315 		spin_unlock(&cur_trans->dirty_bgs_lock);
3316 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3317 	}
3318 
3319 	btrfs_free_path(path);
3320 	return ret;
3321 }
3322 
3323 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3324 {
3325 	struct btrfs_fs_info *fs_info = trans->fs_info;
3326 	struct btrfs_block_group *cache;
3327 	struct btrfs_transaction *cur_trans = trans->transaction;
3328 	int ret = 0;
3329 	int should_put;
3330 	struct btrfs_path *path;
3331 	struct list_head *io = &cur_trans->io_bgs;
3332 
3333 	path = btrfs_alloc_path();
3334 	if (!path)
3335 		return -ENOMEM;
3336 
3337 	/*
3338 	 * Even though we are in the critical section of the transaction commit,
3339 	 * we can still have concurrent tasks adding elements to this
3340 	 * transaction's list of dirty block groups. These tasks correspond to
3341 	 * endio free space workers started when writeback finishes for a
3342 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3343 	 * allocate new block groups as a result of COWing nodes of the root
3344 	 * tree when updating the free space inode. The writeback for the space
3345 	 * caches is triggered by an earlier call to
3346 	 * btrfs_start_dirty_block_groups() and iterations of the following
3347 	 * loop.
3348 	 * Also we want to do the cache_save_setup first and then run the
3349 	 * delayed refs to make sure we have the best chance at doing this all
3350 	 * in one shot.
3351 	 */
3352 	spin_lock(&cur_trans->dirty_bgs_lock);
3353 	while (!list_empty(&cur_trans->dirty_bgs)) {
3354 		cache = list_first_entry(&cur_trans->dirty_bgs,
3355 					 struct btrfs_block_group,
3356 					 dirty_list);
3357 
3358 		/*
3359 		 * This can happen if cache_save_setup re-dirties a block group
3360 		 * that is already under IO.  Just wait for it to finish and
3361 		 * then do it all again
3362 		 */
3363 		if (!list_empty(&cache->io_list)) {
3364 			spin_unlock(&cur_trans->dirty_bgs_lock);
3365 			list_del_init(&cache->io_list);
3366 			btrfs_wait_cache_io(trans, cache, path);
3367 			btrfs_put_block_group(cache);
3368 			spin_lock(&cur_trans->dirty_bgs_lock);
3369 		}
3370 
3371 		/*
3372 		 * Don't remove from the dirty list until after we've waited on
3373 		 * any pending IO
3374 		 */
3375 		list_del_init(&cache->dirty_list);
3376 		spin_unlock(&cur_trans->dirty_bgs_lock);
3377 		should_put = 1;
3378 
3379 		cache_save_setup(cache, trans, path);
3380 
3381 		if (!ret)
3382 			ret = btrfs_run_delayed_refs(trans,
3383 						     (unsigned long) -1);
3384 
3385 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3386 			cache->io_ctl.inode = NULL;
3387 			ret = btrfs_write_out_cache(trans, cache, path);
3388 			if (ret == 0 && cache->io_ctl.inode) {
3389 				should_put = 0;
3390 				list_add_tail(&cache->io_list, io);
3391 			} else {
3392 				/*
3393 				 * If we failed to write the cache, the
3394 				 * generation will be bad and life goes on
3395 				 */
3396 				ret = 0;
3397 			}
3398 		}
3399 		if (!ret) {
3400 			ret = update_block_group_item(trans, path, cache);
3401 			/*
3402 			 * One of the free space endio workers might have
3403 			 * created a new block group while updating a free space
3404 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3405 			 * and hasn't released its transaction handle yet, in
3406 			 * which case the new block group is still attached to
3407 			 * its transaction handle and its creation has not
3408 			 * finished yet (no block group item in the extent tree
3409 			 * yet, etc). If this is the case, wait for all free
3410 			 * space endio workers to finish and retry. This is a
3411 			 * very rare case so no need for a more efficient and
3412 			 * complex approach.
3413 			 */
3414 			if (ret == -ENOENT) {
3415 				wait_event(cur_trans->writer_wait,
3416 				   atomic_read(&cur_trans->num_writers) == 1);
3417 				ret = update_block_group_item(trans, path, cache);
3418 			}
3419 			if (ret)
3420 				btrfs_abort_transaction(trans, ret);
3421 		}
3422 
3423 		/* If its not on the io list, we need to put the block group */
3424 		if (should_put)
3425 			btrfs_put_block_group(cache);
3426 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3427 		spin_lock(&cur_trans->dirty_bgs_lock);
3428 	}
3429 	spin_unlock(&cur_trans->dirty_bgs_lock);
3430 
3431 	/*
3432 	 * Refer to the definition of io_bgs member for details why it's safe
3433 	 * to use it without any locking
3434 	 */
3435 	while (!list_empty(io)) {
3436 		cache = list_first_entry(io, struct btrfs_block_group,
3437 					 io_list);
3438 		list_del_init(&cache->io_list);
3439 		btrfs_wait_cache_io(trans, cache, path);
3440 		btrfs_put_block_group(cache);
3441 	}
3442 
3443 	btrfs_free_path(path);
3444 	return ret;
3445 }
3446 
3447 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3448 			     u64 bytenr, u64 num_bytes, bool alloc)
3449 {
3450 	struct btrfs_fs_info *info = trans->fs_info;
3451 	struct btrfs_block_group *cache = NULL;
3452 	u64 total = num_bytes;
3453 	u64 old_val;
3454 	u64 byte_in_group;
3455 	int factor;
3456 	int ret = 0;
3457 
3458 	/* Block accounting for super block */
3459 	spin_lock(&info->delalloc_root_lock);
3460 	old_val = btrfs_super_bytes_used(info->super_copy);
3461 	if (alloc)
3462 		old_val += num_bytes;
3463 	else
3464 		old_val -= num_bytes;
3465 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3466 	spin_unlock(&info->delalloc_root_lock);
3467 
3468 	while (total) {
3469 		struct btrfs_space_info *space_info;
3470 		bool reclaim = false;
3471 
3472 		cache = btrfs_lookup_block_group(info, bytenr);
3473 		if (!cache) {
3474 			ret = -ENOENT;
3475 			break;
3476 		}
3477 		space_info = cache->space_info;
3478 		factor = btrfs_bg_type_to_factor(cache->flags);
3479 
3480 		/*
3481 		 * If this block group has free space cache written out, we
3482 		 * need to make sure to load it if we are removing space.  This
3483 		 * is because we need the unpinning stage to actually add the
3484 		 * space back to the block group, otherwise we will leak space.
3485 		 */
3486 		if (!alloc && !btrfs_block_group_done(cache))
3487 			btrfs_cache_block_group(cache, true);
3488 
3489 		byte_in_group = bytenr - cache->start;
3490 		WARN_ON(byte_in_group > cache->length);
3491 
3492 		spin_lock(&space_info->lock);
3493 		spin_lock(&cache->lock);
3494 
3495 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3496 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3497 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3498 
3499 		old_val = cache->used;
3500 		num_bytes = min(total, cache->length - byte_in_group);
3501 		if (alloc) {
3502 			old_val += num_bytes;
3503 			cache->used = old_val;
3504 			cache->reserved -= num_bytes;
3505 			space_info->bytes_reserved -= num_bytes;
3506 			space_info->bytes_used += num_bytes;
3507 			space_info->disk_used += num_bytes * factor;
3508 			spin_unlock(&cache->lock);
3509 			spin_unlock(&space_info->lock);
3510 		} else {
3511 			old_val -= num_bytes;
3512 			cache->used = old_val;
3513 			cache->pinned += num_bytes;
3514 			btrfs_space_info_update_bytes_pinned(info, space_info,
3515 							     num_bytes);
3516 			space_info->bytes_used -= num_bytes;
3517 			space_info->disk_used -= num_bytes * factor;
3518 
3519 			reclaim = should_reclaim_block_group(cache, num_bytes);
3520 
3521 			spin_unlock(&cache->lock);
3522 			spin_unlock(&space_info->lock);
3523 
3524 			set_extent_dirty(&trans->transaction->pinned_extents,
3525 					 bytenr, bytenr + num_bytes - 1,
3526 					 GFP_NOFS | __GFP_NOFAIL);
3527 		}
3528 
3529 		spin_lock(&trans->transaction->dirty_bgs_lock);
3530 		if (list_empty(&cache->dirty_list)) {
3531 			list_add_tail(&cache->dirty_list,
3532 				      &trans->transaction->dirty_bgs);
3533 			trans->delayed_ref_updates++;
3534 			btrfs_get_block_group(cache);
3535 		}
3536 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3537 
3538 		/*
3539 		 * No longer have used bytes in this block group, queue it for
3540 		 * deletion. We do this after adding the block group to the
3541 		 * dirty list to avoid races between cleaner kthread and space
3542 		 * cache writeout.
3543 		 */
3544 		if (!alloc && old_val == 0) {
3545 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3546 				btrfs_mark_bg_unused(cache);
3547 		} else if (!alloc && reclaim) {
3548 			btrfs_mark_bg_to_reclaim(cache);
3549 		}
3550 
3551 		btrfs_put_block_group(cache);
3552 		total -= num_bytes;
3553 		bytenr += num_bytes;
3554 	}
3555 
3556 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3557 	btrfs_update_delayed_refs_rsv(trans);
3558 	return ret;
3559 }
3560 
3561 /*
3562  * Update the block_group and space info counters.
3563  *
3564  * @cache:	The cache we are manipulating
3565  * @ram_bytes:  The number of bytes of file content, and will be same to
3566  *              @num_bytes except for the compress path.
3567  * @num_bytes:	The number of bytes in question
3568  * @delalloc:   The blocks are allocated for the delalloc write
3569  *
3570  * This is called by the allocator when it reserves space. If this is a
3571  * reservation and the block group has become read only we cannot make the
3572  * reservation and return -EAGAIN, otherwise this function always succeeds.
3573  */
3574 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3575 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3576 			     bool force_wrong_size_class)
3577 {
3578 	struct btrfs_space_info *space_info = cache->space_info;
3579 	enum btrfs_block_group_size_class size_class;
3580 	int ret = 0;
3581 
3582 	spin_lock(&space_info->lock);
3583 	spin_lock(&cache->lock);
3584 	if (cache->ro) {
3585 		ret = -EAGAIN;
3586 		goto out;
3587 	}
3588 
3589 	if (btrfs_block_group_should_use_size_class(cache)) {
3590 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3591 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3592 		if (ret)
3593 			goto out;
3594 	}
3595 	cache->reserved += num_bytes;
3596 	space_info->bytes_reserved += num_bytes;
3597 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3598 				      space_info->flags, num_bytes, 1);
3599 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3600 					      space_info, -ram_bytes);
3601 	if (delalloc)
3602 		cache->delalloc_bytes += num_bytes;
3603 
3604 	/*
3605 	 * Compression can use less space than we reserved, so wake tickets if
3606 	 * that happens.
3607 	 */
3608 	if (num_bytes < ram_bytes)
3609 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3610 out:
3611 	spin_unlock(&cache->lock);
3612 	spin_unlock(&space_info->lock);
3613 	return ret;
3614 }
3615 
3616 /*
3617  * Update the block_group and space info counters.
3618  *
3619  * @cache:      The cache we are manipulating
3620  * @num_bytes:  The number of bytes in question
3621  * @delalloc:   The blocks are allocated for the delalloc write
3622  *
3623  * This is called by somebody who is freeing space that was never actually used
3624  * on disk.  For example if you reserve some space for a new leaf in transaction
3625  * A and before transaction A commits you free that leaf, you call this with
3626  * reserve set to 0 in order to clear the reservation.
3627  */
3628 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3629 			       u64 num_bytes, int delalloc)
3630 {
3631 	struct btrfs_space_info *space_info = cache->space_info;
3632 
3633 	spin_lock(&space_info->lock);
3634 	spin_lock(&cache->lock);
3635 	if (cache->ro)
3636 		space_info->bytes_readonly += num_bytes;
3637 	cache->reserved -= num_bytes;
3638 	space_info->bytes_reserved -= num_bytes;
3639 	space_info->max_extent_size = 0;
3640 
3641 	if (delalloc)
3642 		cache->delalloc_bytes -= num_bytes;
3643 	spin_unlock(&cache->lock);
3644 
3645 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3646 	spin_unlock(&space_info->lock);
3647 }
3648 
3649 static void force_metadata_allocation(struct btrfs_fs_info *info)
3650 {
3651 	struct list_head *head = &info->space_info;
3652 	struct btrfs_space_info *found;
3653 
3654 	list_for_each_entry(found, head, list) {
3655 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3656 			found->force_alloc = CHUNK_ALLOC_FORCE;
3657 	}
3658 }
3659 
3660 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3661 			      struct btrfs_space_info *sinfo, int force)
3662 {
3663 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3664 	u64 thresh;
3665 
3666 	if (force == CHUNK_ALLOC_FORCE)
3667 		return 1;
3668 
3669 	/*
3670 	 * in limited mode, we want to have some free space up to
3671 	 * about 1% of the FS size.
3672 	 */
3673 	if (force == CHUNK_ALLOC_LIMITED) {
3674 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3675 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3676 
3677 		if (sinfo->total_bytes - bytes_used < thresh)
3678 			return 1;
3679 	}
3680 
3681 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3682 		return 0;
3683 	return 1;
3684 }
3685 
3686 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3687 {
3688 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3689 
3690 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3691 }
3692 
3693 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3694 {
3695 	struct btrfs_block_group *bg;
3696 	int ret;
3697 
3698 	/*
3699 	 * Check if we have enough space in the system space info because we
3700 	 * will need to update device items in the chunk btree and insert a new
3701 	 * chunk item in the chunk btree as well. This will allocate a new
3702 	 * system block group if needed.
3703 	 */
3704 	check_system_chunk(trans, flags);
3705 
3706 	bg = btrfs_create_chunk(trans, flags);
3707 	if (IS_ERR(bg)) {
3708 		ret = PTR_ERR(bg);
3709 		goto out;
3710 	}
3711 
3712 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3713 	/*
3714 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3715 	 * previously reserved space in the system space_info and allocated one
3716 	 * new system chunk if necessary. However there are three exceptions:
3717 	 *
3718 	 * 1) We may have enough free space in the system space_info but all the
3719 	 *    existing system block groups have a profile which can not be used
3720 	 *    for extent allocation.
3721 	 *
3722 	 *    This happens when mounting in degraded mode. For example we have a
3723 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3724 	 *    using the other device in degraded mode. If we then allocate a chunk,
3725 	 *    we may have enough free space in the existing system space_info, but
3726 	 *    none of the block groups can be used for extent allocation since they
3727 	 *    have a RAID1 profile, and because we are in degraded mode with a
3728 	 *    single device, we are forced to allocate a new system chunk with a
3729 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3730 	 *    block groups and check if they have a usable profile and enough space
3731 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3732 	 *    try again after forcing allocation of a new system chunk. Like this
3733 	 *    we avoid paying the cost of that search in normal circumstances, when
3734 	 *    we were not mounted in degraded mode;
3735 	 *
3736 	 * 2) We had enough free space info the system space_info, and one suitable
3737 	 *    block group to allocate from when we called check_system_chunk()
3738 	 *    above. However right after we called it, the only system block group
3739 	 *    with enough free space got turned into RO mode by a running scrub,
3740 	 *    and in this case we have to allocate a new one and retry. We only
3741 	 *    need do this allocate and retry once, since we have a transaction
3742 	 *    handle and scrub uses the commit root to search for block groups;
3743 	 *
3744 	 * 3) We had one system block group with enough free space when we called
3745 	 *    check_system_chunk(), but after that, right before we tried to
3746 	 *    allocate the last extent buffer we needed, a discard operation came
3747 	 *    in and it temporarily removed the last free space entry from the
3748 	 *    block group (discard removes a free space entry, discards it, and
3749 	 *    then adds back the entry to the block group cache).
3750 	 */
3751 	if (ret == -ENOSPC) {
3752 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3753 		struct btrfs_block_group *sys_bg;
3754 
3755 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3756 		if (IS_ERR(sys_bg)) {
3757 			ret = PTR_ERR(sys_bg);
3758 			btrfs_abort_transaction(trans, ret);
3759 			goto out;
3760 		}
3761 
3762 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3763 		if (ret) {
3764 			btrfs_abort_transaction(trans, ret);
3765 			goto out;
3766 		}
3767 
3768 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3769 		if (ret) {
3770 			btrfs_abort_transaction(trans, ret);
3771 			goto out;
3772 		}
3773 	} else if (ret) {
3774 		btrfs_abort_transaction(trans, ret);
3775 		goto out;
3776 	}
3777 out:
3778 	btrfs_trans_release_chunk_metadata(trans);
3779 
3780 	if (ret)
3781 		return ERR_PTR(ret);
3782 
3783 	btrfs_get_block_group(bg);
3784 	return bg;
3785 }
3786 
3787 /*
3788  * Chunk allocation is done in 2 phases:
3789  *
3790  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3791  *    the chunk, the chunk mapping, create its block group and add the items
3792  *    that belong in the chunk btree to it - more specifically, we need to
3793  *    update device items in the chunk btree and add a new chunk item to it.
3794  *
3795  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3796  *    group item to the extent btree and the device extent items to the devices
3797  *    btree.
3798  *
3799  * This is done to prevent deadlocks. For example when COWing a node from the
3800  * extent btree we are holding a write lock on the node's parent and if we
3801  * trigger chunk allocation and attempted to insert the new block group item
3802  * in the extent btree right way, we could deadlock because the path for the
3803  * insertion can include that parent node. At first glance it seems impossible
3804  * to trigger chunk allocation after starting a transaction since tasks should
3805  * reserve enough transaction units (metadata space), however while that is true
3806  * most of the time, chunk allocation may still be triggered for several reasons:
3807  *
3808  * 1) When reserving metadata, we check if there is enough free space in the
3809  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3810  *    However later when the task actually tries to COW an extent buffer from
3811  *    the extent btree or from the device btree for example, it is forced to
3812  *    allocate a new block group (chunk) because the only one that had enough
3813  *    free space was just turned to RO mode by a running scrub for example (or
3814  *    device replace, block group reclaim thread, etc), so we can not use it
3815  *    for allocating an extent and end up being forced to allocate a new one;
3816  *
3817  * 2) Because we only check that the metadata space_info has enough free bytes,
3818  *    we end up not allocating a new metadata chunk in that case. However if
3819  *    the filesystem was mounted in degraded mode, none of the existing block
3820  *    groups might be suitable for extent allocation due to their incompatible
3821  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3822  *    use a RAID1 profile, in degraded mode using a single device). In this case
3823  *    when the task attempts to COW some extent buffer of the extent btree for
3824  *    example, it will trigger allocation of a new metadata block group with a
3825  *    suitable profile (SINGLE profile in the example of the degraded mount of
3826  *    the RAID1 filesystem);
3827  *
3828  * 3) The task has reserved enough transaction units / metadata space, but when
3829  *    it attempts to COW an extent buffer from the extent or device btree for
3830  *    example, it does not find any free extent in any metadata block group,
3831  *    therefore forced to try to allocate a new metadata block group.
3832  *    This is because some other task allocated all available extents in the
3833  *    meanwhile - this typically happens with tasks that don't reserve space
3834  *    properly, either intentionally or as a bug. One example where this is
3835  *    done intentionally is fsync, as it does not reserve any transaction units
3836  *    and ends up allocating a variable number of metadata extents for log
3837  *    tree extent buffers;
3838  *
3839  * 4) The task has reserved enough transaction units / metadata space, but right
3840  *    before it tries to allocate the last extent buffer it needs, a discard
3841  *    operation comes in and, temporarily, removes the last free space entry from
3842  *    the only metadata block group that had free space (discard starts by
3843  *    removing a free space entry from a block group, then does the discard
3844  *    operation and, once it's done, it adds back the free space entry to the
3845  *    block group).
3846  *
3847  * We also need this 2 phases setup when adding a device to a filesystem with
3848  * a seed device - we must create new metadata and system chunks without adding
3849  * any of the block group items to the chunk, extent and device btrees. If we
3850  * did not do it this way, we would get ENOSPC when attempting to update those
3851  * btrees, since all the chunks from the seed device are read-only.
3852  *
3853  * Phase 1 does the updates and insertions to the chunk btree because if we had
3854  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3855  * parallel, we risk having too many system chunks allocated by many tasks if
3856  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3857  * extreme case this leads to exhaustion of the system chunk array in the
3858  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3859  * and with RAID filesystems (so we have more device items in the chunk btree).
3860  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3861  * the system chunk array due to concurrent allocations") provides more details.
3862  *
3863  * Allocation of system chunks does not happen through this function. A task that
3864  * needs to update the chunk btree (the only btree that uses system chunks), must
3865  * preallocate chunk space by calling either check_system_chunk() or
3866  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3867  * metadata chunk or when removing a chunk, while the later is used before doing
3868  * a modification to the chunk btree - use cases for the later are adding,
3869  * removing and resizing a device as well as relocation of a system chunk.
3870  * See the comment below for more details.
3871  *
3872  * The reservation of system space, done through check_system_chunk(), as well
3873  * as all the updates and insertions into the chunk btree must be done while
3874  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3875  * an extent buffer from the chunks btree we never trigger allocation of a new
3876  * system chunk, which would result in a deadlock (trying to lock twice an
3877  * extent buffer of the chunk btree, first time before triggering the chunk
3878  * allocation and the second time during chunk allocation while attempting to
3879  * update the chunks btree). The system chunk array is also updated while holding
3880  * that mutex. The same logic applies to removing chunks - we must reserve system
3881  * space, update the chunk btree and the system chunk array in the superblock
3882  * while holding fs_info->chunk_mutex.
3883  *
3884  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3885  *
3886  * If @force is CHUNK_ALLOC_FORCE:
3887  *    - return 1 if it successfully allocates a chunk,
3888  *    - return errors including -ENOSPC otherwise.
3889  * If @force is NOT CHUNK_ALLOC_FORCE:
3890  *    - return 0 if it doesn't need to allocate a new chunk,
3891  *    - return 1 if it successfully allocates a chunk,
3892  *    - return errors including -ENOSPC otherwise.
3893  */
3894 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3895 		      enum btrfs_chunk_alloc_enum force)
3896 {
3897 	struct btrfs_fs_info *fs_info = trans->fs_info;
3898 	struct btrfs_space_info *space_info;
3899 	struct btrfs_block_group *ret_bg;
3900 	bool wait_for_alloc = false;
3901 	bool should_alloc = false;
3902 	bool from_extent_allocation = false;
3903 	int ret = 0;
3904 
3905 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3906 		from_extent_allocation = true;
3907 		force = CHUNK_ALLOC_FORCE;
3908 	}
3909 
3910 	/* Don't re-enter if we're already allocating a chunk */
3911 	if (trans->allocating_chunk)
3912 		return -ENOSPC;
3913 	/*
3914 	 * Allocation of system chunks can not happen through this path, as we
3915 	 * could end up in a deadlock if we are allocating a data or metadata
3916 	 * chunk and there is another task modifying the chunk btree.
3917 	 *
3918 	 * This is because while we are holding the chunk mutex, we will attempt
3919 	 * to add the new chunk item to the chunk btree or update an existing
3920 	 * device item in the chunk btree, while the other task that is modifying
3921 	 * the chunk btree is attempting to COW an extent buffer while holding a
3922 	 * lock on it and on its parent - if the COW operation triggers a system
3923 	 * chunk allocation, then we can deadlock because we are holding the
3924 	 * chunk mutex and we may need to access that extent buffer or its parent
3925 	 * in order to add the chunk item or update a device item.
3926 	 *
3927 	 * Tasks that want to modify the chunk tree should reserve system space
3928 	 * before updating the chunk btree, by calling either
3929 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3930 	 * It's possible that after a task reserves the space, it still ends up
3931 	 * here - this happens in the cases described above at do_chunk_alloc().
3932 	 * The task will have to either retry or fail.
3933 	 */
3934 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3935 		return -ENOSPC;
3936 
3937 	space_info = btrfs_find_space_info(fs_info, flags);
3938 	ASSERT(space_info);
3939 
3940 	do {
3941 		spin_lock(&space_info->lock);
3942 		if (force < space_info->force_alloc)
3943 			force = space_info->force_alloc;
3944 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3945 		if (space_info->full) {
3946 			/* No more free physical space */
3947 			if (should_alloc)
3948 				ret = -ENOSPC;
3949 			else
3950 				ret = 0;
3951 			spin_unlock(&space_info->lock);
3952 			return ret;
3953 		} else if (!should_alloc) {
3954 			spin_unlock(&space_info->lock);
3955 			return 0;
3956 		} else if (space_info->chunk_alloc) {
3957 			/*
3958 			 * Someone is already allocating, so we need to block
3959 			 * until this someone is finished and then loop to
3960 			 * recheck if we should continue with our allocation
3961 			 * attempt.
3962 			 */
3963 			wait_for_alloc = true;
3964 			force = CHUNK_ALLOC_NO_FORCE;
3965 			spin_unlock(&space_info->lock);
3966 			mutex_lock(&fs_info->chunk_mutex);
3967 			mutex_unlock(&fs_info->chunk_mutex);
3968 		} else {
3969 			/* Proceed with allocation */
3970 			space_info->chunk_alloc = 1;
3971 			wait_for_alloc = false;
3972 			spin_unlock(&space_info->lock);
3973 		}
3974 
3975 		cond_resched();
3976 	} while (wait_for_alloc);
3977 
3978 	mutex_lock(&fs_info->chunk_mutex);
3979 	trans->allocating_chunk = true;
3980 
3981 	/*
3982 	 * If we have mixed data/metadata chunks we want to make sure we keep
3983 	 * allocating mixed chunks instead of individual chunks.
3984 	 */
3985 	if (btrfs_mixed_space_info(space_info))
3986 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3987 
3988 	/*
3989 	 * if we're doing a data chunk, go ahead and make sure that
3990 	 * we keep a reasonable number of metadata chunks allocated in the
3991 	 * FS as well.
3992 	 */
3993 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3994 		fs_info->data_chunk_allocations++;
3995 		if (!(fs_info->data_chunk_allocations %
3996 		      fs_info->metadata_ratio))
3997 			force_metadata_allocation(fs_info);
3998 	}
3999 
4000 	ret_bg = do_chunk_alloc(trans, flags);
4001 	trans->allocating_chunk = false;
4002 
4003 	if (IS_ERR(ret_bg)) {
4004 		ret = PTR_ERR(ret_bg);
4005 	} else if (from_extent_allocation) {
4006 		/*
4007 		 * New block group is likely to be used soon. Try to activate
4008 		 * it now. Failure is OK for now.
4009 		 */
4010 		btrfs_zone_activate(ret_bg);
4011 	}
4012 
4013 	if (!ret)
4014 		btrfs_put_block_group(ret_bg);
4015 
4016 	spin_lock(&space_info->lock);
4017 	if (ret < 0) {
4018 		if (ret == -ENOSPC)
4019 			space_info->full = 1;
4020 		else
4021 			goto out;
4022 	} else {
4023 		ret = 1;
4024 		space_info->max_extent_size = 0;
4025 	}
4026 
4027 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4028 out:
4029 	space_info->chunk_alloc = 0;
4030 	spin_unlock(&space_info->lock);
4031 	mutex_unlock(&fs_info->chunk_mutex);
4032 
4033 	return ret;
4034 }
4035 
4036 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4037 {
4038 	u64 num_dev;
4039 
4040 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4041 	if (!num_dev)
4042 		num_dev = fs_info->fs_devices->rw_devices;
4043 
4044 	return num_dev;
4045 }
4046 
4047 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4048 				u64 bytes,
4049 				u64 type)
4050 {
4051 	struct btrfs_fs_info *fs_info = trans->fs_info;
4052 	struct btrfs_space_info *info;
4053 	u64 left;
4054 	int ret = 0;
4055 
4056 	/*
4057 	 * Needed because we can end up allocating a system chunk and for an
4058 	 * atomic and race free space reservation in the chunk block reserve.
4059 	 */
4060 	lockdep_assert_held(&fs_info->chunk_mutex);
4061 
4062 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4063 	spin_lock(&info->lock);
4064 	left = info->total_bytes - btrfs_space_info_used(info, true);
4065 	spin_unlock(&info->lock);
4066 
4067 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4068 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4069 			   left, bytes, type);
4070 		btrfs_dump_space_info(fs_info, info, 0, 0);
4071 	}
4072 
4073 	if (left < bytes) {
4074 		u64 flags = btrfs_system_alloc_profile(fs_info);
4075 		struct btrfs_block_group *bg;
4076 
4077 		/*
4078 		 * Ignore failure to create system chunk. We might end up not
4079 		 * needing it, as we might not need to COW all nodes/leafs from
4080 		 * the paths we visit in the chunk tree (they were already COWed
4081 		 * or created in the current transaction for example).
4082 		 */
4083 		bg = btrfs_create_chunk(trans, flags);
4084 		if (IS_ERR(bg)) {
4085 			ret = PTR_ERR(bg);
4086 		} else {
4087 			/*
4088 			 * We have a new chunk. We also need to activate it for
4089 			 * zoned filesystem.
4090 			 */
4091 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4092 			if (ret < 0)
4093 				return;
4094 
4095 			/*
4096 			 * If we fail to add the chunk item here, we end up
4097 			 * trying again at phase 2 of chunk allocation, at
4098 			 * btrfs_create_pending_block_groups(). So ignore
4099 			 * any error here. An ENOSPC here could happen, due to
4100 			 * the cases described at do_chunk_alloc() - the system
4101 			 * block group we just created was just turned into RO
4102 			 * mode by a scrub for example, or a running discard
4103 			 * temporarily removed its free space entries, etc.
4104 			 */
4105 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4106 		}
4107 	}
4108 
4109 	if (!ret) {
4110 		ret = btrfs_block_rsv_add(fs_info,
4111 					  &fs_info->chunk_block_rsv,
4112 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4113 		if (!ret)
4114 			trans->chunk_bytes_reserved += bytes;
4115 	}
4116 }
4117 
4118 /*
4119  * Reserve space in the system space for allocating or removing a chunk.
4120  * The caller must be holding fs_info->chunk_mutex.
4121  */
4122 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4123 {
4124 	struct btrfs_fs_info *fs_info = trans->fs_info;
4125 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4126 	u64 bytes;
4127 
4128 	/* num_devs device items to update and 1 chunk item to add or remove. */
4129 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4130 		btrfs_calc_insert_metadata_size(fs_info, 1);
4131 
4132 	reserve_chunk_space(trans, bytes, type);
4133 }
4134 
4135 /*
4136  * Reserve space in the system space, if needed, for doing a modification to the
4137  * chunk btree.
4138  *
4139  * @trans:		A transaction handle.
4140  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4141  *			in the chunk btree or if it's for the deletion or update
4142  *			of an existing item.
4143  *
4144  * This is used in a context where we need to update the chunk btree outside
4145  * block group allocation and removal, to avoid a deadlock with a concurrent
4146  * task that is allocating a metadata or data block group and therefore needs to
4147  * update the chunk btree while holding the chunk mutex. After the update to the
4148  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4149  *
4150  */
4151 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4152 				  bool is_item_insertion)
4153 {
4154 	struct btrfs_fs_info *fs_info = trans->fs_info;
4155 	u64 bytes;
4156 
4157 	if (is_item_insertion)
4158 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4159 	else
4160 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4161 
4162 	mutex_lock(&fs_info->chunk_mutex);
4163 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4164 	mutex_unlock(&fs_info->chunk_mutex);
4165 }
4166 
4167 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4168 {
4169 	struct btrfs_block_group *block_group;
4170 
4171 	block_group = btrfs_lookup_first_block_group(info, 0);
4172 	while (block_group) {
4173 		btrfs_wait_block_group_cache_done(block_group);
4174 		spin_lock(&block_group->lock);
4175 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4176 				       &block_group->runtime_flags)) {
4177 			struct inode *inode = block_group->inode;
4178 
4179 			block_group->inode = NULL;
4180 			spin_unlock(&block_group->lock);
4181 
4182 			ASSERT(block_group->io_ctl.inode == NULL);
4183 			iput(inode);
4184 		} else {
4185 			spin_unlock(&block_group->lock);
4186 		}
4187 		block_group = btrfs_next_block_group(block_group);
4188 	}
4189 }
4190 
4191 /*
4192  * Must be called only after stopping all workers, since we could have block
4193  * group caching kthreads running, and therefore they could race with us if we
4194  * freed the block groups before stopping them.
4195  */
4196 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4197 {
4198 	struct btrfs_block_group *block_group;
4199 	struct btrfs_space_info *space_info;
4200 	struct btrfs_caching_control *caching_ctl;
4201 	struct rb_node *n;
4202 
4203 	write_lock(&info->block_group_cache_lock);
4204 	while (!list_empty(&info->caching_block_groups)) {
4205 		caching_ctl = list_entry(info->caching_block_groups.next,
4206 					 struct btrfs_caching_control, list);
4207 		list_del(&caching_ctl->list);
4208 		btrfs_put_caching_control(caching_ctl);
4209 	}
4210 	write_unlock(&info->block_group_cache_lock);
4211 
4212 	spin_lock(&info->unused_bgs_lock);
4213 	while (!list_empty(&info->unused_bgs)) {
4214 		block_group = list_first_entry(&info->unused_bgs,
4215 					       struct btrfs_block_group,
4216 					       bg_list);
4217 		list_del_init(&block_group->bg_list);
4218 		btrfs_put_block_group(block_group);
4219 	}
4220 
4221 	while (!list_empty(&info->reclaim_bgs)) {
4222 		block_group = list_first_entry(&info->reclaim_bgs,
4223 					       struct btrfs_block_group,
4224 					       bg_list);
4225 		list_del_init(&block_group->bg_list);
4226 		btrfs_put_block_group(block_group);
4227 	}
4228 	spin_unlock(&info->unused_bgs_lock);
4229 
4230 	spin_lock(&info->zone_active_bgs_lock);
4231 	while (!list_empty(&info->zone_active_bgs)) {
4232 		block_group = list_first_entry(&info->zone_active_bgs,
4233 					       struct btrfs_block_group,
4234 					       active_bg_list);
4235 		list_del_init(&block_group->active_bg_list);
4236 		btrfs_put_block_group(block_group);
4237 	}
4238 	spin_unlock(&info->zone_active_bgs_lock);
4239 
4240 	write_lock(&info->block_group_cache_lock);
4241 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4242 		block_group = rb_entry(n, struct btrfs_block_group,
4243 				       cache_node);
4244 		rb_erase_cached(&block_group->cache_node,
4245 				&info->block_group_cache_tree);
4246 		RB_CLEAR_NODE(&block_group->cache_node);
4247 		write_unlock(&info->block_group_cache_lock);
4248 
4249 		down_write(&block_group->space_info->groups_sem);
4250 		list_del(&block_group->list);
4251 		up_write(&block_group->space_info->groups_sem);
4252 
4253 		/*
4254 		 * We haven't cached this block group, which means we could
4255 		 * possibly have excluded extents on this block group.
4256 		 */
4257 		if (block_group->cached == BTRFS_CACHE_NO ||
4258 		    block_group->cached == BTRFS_CACHE_ERROR)
4259 			btrfs_free_excluded_extents(block_group);
4260 
4261 		btrfs_remove_free_space_cache(block_group);
4262 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4263 		ASSERT(list_empty(&block_group->dirty_list));
4264 		ASSERT(list_empty(&block_group->io_list));
4265 		ASSERT(list_empty(&block_group->bg_list));
4266 		ASSERT(refcount_read(&block_group->refs) == 1);
4267 		ASSERT(block_group->swap_extents == 0);
4268 		btrfs_put_block_group(block_group);
4269 
4270 		write_lock(&info->block_group_cache_lock);
4271 	}
4272 	write_unlock(&info->block_group_cache_lock);
4273 
4274 	btrfs_release_global_block_rsv(info);
4275 
4276 	while (!list_empty(&info->space_info)) {
4277 		space_info = list_entry(info->space_info.next,
4278 					struct btrfs_space_info,
4279 					list);
4280 
4281 		/*
4282 		 * Do not hide this behind enospc_debug, this is actually
4283 		 * important and indicates a real bug if this happens.
4284 		 */
4285 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4286 			    space_info->bytes_may_use > 0))
4287 			btrfs_dump_space_info(info, space_info, 0, 0);
4288 
4289 		/*
4290 		 * If there was a failure to cleanup a log tree, very likely due
4291 		 * to an IO failure on a writeback attempt of one or more of its
4292 		 * extent buffers, we could not do proper (and cheap) unaccounting
4293 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4294 		 * that case.
4295 		 */
4296 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4297 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4298 			if (WARN_ON(space_info->bytes_reserved > 0))
4299 				btrfs_dump_space_info(info, space_info, 0, 0);
4300 		}
4301 
4302 		WARN_ON(space_info->reclaim_size > 0);
4303 		list_del(&space_info->list);
4304 		btrfs_sysfs_remove_space_info(space_info);
4305 	}
4306 	return 0;
4307 }
4308 
4309 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4310 {
4311 	atomic_inc(&cache->frozen);
4312 }
4313 
4314 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4315 {
4316 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4317 	struct extent_map_tree *em_tree;
4318 	struct extent_map *em;
4319 	bool cleanup;
4320 
4321 	spin_lock(&block_group->lock);
4322 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4323 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4324 	spin_unlock(&block_group->lock);
4325 
4326 	if (cleanup) {
4327 		em_tree = &fs_info->mapping_tree;
4328 		write_lock(&em_tree->lock);
4329 		em = lookup_extent_mapping(em_tree, block_group->start,
4330 					   1);
4331 		BUG_ON(!em); /* logic error, can't happen */
4332 		remove_extent_mapping(em_tree, em);
4333 		write_unlock(&em_tree->lock);
4334 
4335 		/* once for us and once for the tree */
4336 		free_extent_map(em);
4337 		free_extent_map(em);
4338 
4339 		/*
4340 		 * We may have left one free space entry and other possible
4341 		 * tasks trimming this block group have left 1 entry each one.
4342 		 * Free them if any.
4343 		 */
4344 		btrfs_remove_free_space_cache(block_group);
4345 	}
4346 }
4347 
4348 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4349 {
4350 	bool ret = true;
4351 
4352 	spin_lock(&bg->lock);
4353 	if (bg->ro)
4354 		ret = false;
4355 	else
4356 		bg->swap_extents++;
4357 	spin_unlock(&bg->lock);
4358 
4359 	return ret;
4360 }
4361 
4362 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4363 {
4364 	spin_lock(&bg->lock);
4365 	ASSERT(!bg->ro);
4366 	ASSERT(bg->swap_extents >= amount);
4367 	bg->swap_extents -= amount;
4368 	spin_unlock(&bg->lock);
4369 }
4370 
4371 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4372 {
4373 	if (size <= SZ_128K)
4374 		return BTRFS_BG_SZ_SMALL;
4375 	if (size <= SZ_8M)
4376 		return BTRFS_BG_SZ_MEDIUM;
4377 	return BTRFS_BG_SZ_LARGE;
4378 }
4379 
4380 /*
4381  * Handle a block group allocating an extent in a size class
4382  *
4383  * @bg:				The block group we allocated in.
4384  * @size_class:			The size class of the allocation.
4385  * @force_wrong_size_class:	Whether we are desperate enough to allow
4386  *				mismatched size classes.
4387  *
4388  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4389  * case of a race that leads to the wrong size class without
4390  * force_wrong_size_class set.
4391  *
4392  * find_free_extent will skip block groups with a mismatched size class until
4393  * it really needs to avoid ENOSPC. In that case it will set
4394  * force_wrong_size_class. However, if a block group is newly allocated and
4395  * doesn't yet have a size class, then it is possible for two allocations of
4396  * different sizes to race and both try to use it. The loser is caught here and
4397  * has to retry.
4398  */
4399 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4400 				     enum btrfs_block_group_size_class size_class,
4401 				     bool force_wrong_size_class)
4402 {
4403 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4404 
4405 	/* The new allocation is in the right size class, do nothing */
4406 	if (bg->size_class == size_class)
4407 		return 0;
4408 	/*
4409 	 * The new allocation is in a mismatched size class.
4410 	 * This means one of two things:
4411 	 *
4412 	 * 1. Two tasks in find_free_extent for different size_classes raced
4413 	 *    and hit the same empty block_group. Make the loser try again.
4414 	 * 2. A call to find_free_extent got desperate enough to set
4415 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4416 	 *    allocation.
4417 	 */
4418 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4419 		if (force_wrong_size_class)
4420 			return 0;
4421 		return -EAGAIN;
4422 	}
4423 	/*
4424 	 * The happy new block group case: the new allocation is the first
4425 	 * one in the block_group so we set size_class.
4426 	 */
4427 	bg->size_class = size_class;
4428 
4429 	return 0;
4430 }
4431 
4432 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4433 {
4434 	if (btrfs_is_zoned(bg->fs_info))
4435 		return false;
4436 	if (!btrfs_is_block_group_data_only(bg))
4437 		return false;
4438 	return true;
4439 }
4440