xref: /openbmc/linux/fs/btrfs/block-group.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 	bool leftmost = true;
172 
173 	ASSERT(block_group->length != 0);
174 
175 	write_lock(&info->block_group_cache_lock);
176 	p = &info->block_group_cache_tree.rb_root.rb_node;
177 
178 	while (*p) {
179 		parent = *p;
180 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 		if (block_group->start < cache->start) {
182 			p = &(*p)->rb_left;
183 		} else if (block_group->start > cache->start) {
184 			p = &(*p)->rb_right;
185 			leftmost = false;
186 		} else {
187 			write_unlock(&info->block_group_cache_lock);
188 			return -EEXIST;
189 		}
190 	}
191 
192 	rb_link_node(&block_group->cache_node, parent, p);
193 	rb_insert_color_cached(&block_group->cache_node,
194 			       &info->block_group_cache_tree, leftmost);
195 
196 	write_unlock(&info->block_group_cache_lock);
197 
198 	return 0;
199 }
200 
201 /*
202  * This will return the block group at or after bytenr if contains is 0, else
203  * it will return the block group that contains the bytenr
204  */
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 		struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 	struct btrfs_block_group *cache, *ret = NULL;
209 	struct rb_node *n;
210 	u64 end, start;
211 
212 	read_lock(&info->block_group_cache_lock);
213 	n = info->block_group_cache_tree.rb_root.rb_node;
214 
215 	while (n) {
216 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 		end = cache->start + cache->length - 1;
218 		start = cache->start;
219 
220 		if (bytenr < start) {
221 			if (!contains && (!ret || start < ret->start))
222 				ret = cache;
223 			n = n->rb_left;
224 		} else if (bytenr > start) {
225 			if (contains && bytenr <= end) {
226 				ret = cache;
227 				break;
228 			}
229 			n = n->rb_right;
230 		} else {
231 			ret = cache;
232 			break;
233 		}
234 	}
235 	if (ret)
236 		btrfs_get_block_group(ret);
237 	read_unlock(&info->block_group_cache_lock);
238 
239 	return ret;
240 }
241 
242 /*
243  * Return the block group that starts at or after bytenr
244  */
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 		struct btrfs_fs_info *info, u64 bytenr)
247 {
248 	return block_group_cache_tree_search(info, bytenr, 0);
249 }
250 
251 /*
252  * Return the block group that contains the given bytenr
253  */
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 		struct btrfs_fs_info *info, u64 bytenr)
256 {
257 	return block_group_cache_tree_search(info, bytenr, 1);
258 }
259 
260 struct btrfs_block_group *btrfs_next_block_group(
261 		struct btrfs_block_group *cache)
262 {
263 	struct btrfs_fs_info *fs_info = cache->fs_info;
264 	struct rb_node *node;
265 
266 	read_lock(&fs_info->block_group_cache_lock);
267 
268 	/* If our block group was removed, we need a full search. */
269 	if (RB_EMPTY_NODE(&cache->cache_node)) {
270 		const u64 next_bytenr = cache->start + cache->length;
271 
272 		read_unlock(&fs_info->block_group_cache_lock);
273 		btrfs_put_block_group(cache);
274 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 	}
276 	node = rb_next(&cache->cache_node);
277 	btrfs_put_block_group(cache);
278 	if (node) {
279 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 		btrfs_get_block_group(cache);
281 	} else
282 		cache = NULL;
283 	read_unlock(&fs_info->block_group_cache_lock);
284 	return cache;
285 }
286 
287 /**
288  * Check if we can do a NOCOW write for a given extent.
289  *
290  * @fs_info:       The filesystem information object.
291  * @bytenr:        Logical start address of the extent.
292  *
293  * Check if we can do a NOCOW write for the given extent, and increments the
294  * number of NOCOW writers in the block group that contains the extent, as long
295  * as the block group exists and it's currently not in read-only mode.
296  *
297  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298  *          is responsible for calling btrfs_dec_nocow_writers() later.
299  *
300  *          Or NULL if we can not do a NOCOW write
301  */
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 						  u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 	bool can_nocow = true;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	if (!bg)
310 		return NULL;
311 
312 	spin_lock(&bg->lock);
313 	if (bg->ro)
314 		can_nocow = false;
315 	else
316 		atomic_inc(&bg->nocow_writers);
317 	spin_unlock(&bg->lock);
318 
319 	if (!can_nocow) {
320 		btrfs_put_block_group(bg);
321 		return NULL;
322 	}
323 
324 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
325 	return bg;
326 }
327 
328 /**
329  * Decrement the number of NOCOW writers in a block group.
330  *
331  * @bg:       The block group.
332  *
333  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334  * and on the block group returned by that call. Typically this is called after
335  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336  * relocation.
337  *
338  * After this call, the caller should not use the block group anymore. It it wants
339  * to use it, then it should get a reference on it before calling this function.
340  */
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 	if (atomic_dec_and_test(&bg->nocow_writers))
344 		wake_up_var(&bg->nocow_writers);
345 
346 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 	btrfs_put_block_group(bg);
348 }
349 
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354 
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 					const u64 start)
357 {
358 	struct btrfs_block_group *bg;
359 
360 	bg = btrfs_lookup_block_group(fs_info, start);
361 	ASSERT(bg);
362 	if (atomic_dec_and_test(&bg->reservations))
363 		wake_up_var(&bg->reservations);
364 	btrfs_put_block_group(bg);
365 }
366 
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 	struct btrfs_space_info *space_info = bg->space_info;
370 
371 	ASSERT(bg->ro);
372 
373 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 		return;
375 
376 	/*
377 	 * Our block group is read only but before we set it to read only,
378 	 * some task might have had allocated an extent from it already, but it
379 	 * has not yet created a respective ordered extent (and added it to a
380 	 * root's list of ordered extents).
381 	 * Therefore wait for any task currently allocating extents, since the
382 	 * block group's reservations counter is incremented while a read lock
383 	 * on the groups' semaphore is held and decremented after releasing
384 	 * the read access on that semaphore and creating the ordered extent.
385 	 */
386 	down_write(&space_info->groups_sem);
387 	up_write(&space_info->groups_sem);
388 
389 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391 
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 		struct btrfs_block_group *cache)
394 {
395 	struct btrfs_caching_control *ctl;
396 
397 	spin_lock(&cache->lock);
398 	if (!cache->caching_ctl) {
399 		spin_unlock(&cache->lock);
400 		return NULL;
401 	}
402 
403 	ctl = cache->caching_ctl;
404 	refcount_inc(&ctl->count);
405 	spin_unlock(&cache->lock);
406 	return ctl;
407 }
408 
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 	if (refcount_dec_and_test(&ctl->count))
412 		kfree(ctl);
413 }
414 
415 /*
416  * When we wait for progress in the block group caching, its because our
417  * allocation attempt failed at least once.  So, we must sleep and let some
418  * progress happen before we try again.
419  *
420  * This function will sleep at least once waiting for new free space to show
421  * up, and then it will check the block group free space numbers for our min
422  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
423  * a free extent of a given size, but this is a good start.
424  *
425  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426  * any of the information in this block group.
427  */
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 					   u64 num_bytes)
430 {
431 	struct btrfs_caching_control *caching_ctl;
432 
433 	caching_ctl = btrfs_get_caching_control(cache);
434 	if (!caching_ctl)
435 		return;
436 
437 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 		   (cache->free_space_ctl->free_space >= num_bytes));
439 
440 	btrfs_put_caching_control(caching_ctl);
441 }
442 
443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 				       struct btrfs_caching_control *caching_ctl)
445 {
446 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448 }
449 
450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
451 {
452 	struct btrfs_caching_control *caching_ctl;
453 	int ret;
454 
455 	caching_ctl = btrfs_get_caching_control(cache);
456 	if (!caching_ctl)
457 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 	btrfs_put_caching_control(caching_ctl);
460 	return ret;
461 }
462 
463 #ifdef CONFIG_BTRFS_DEBUG
464 static void fragment_free_space(struct btrfs_block_group *block_group)
465 {
466 	struct btrfs_fs_info *fs_info = block_group->fs_info;
467 	u64 start = block_group->start;
468 	u64 len = block_group->length;
469 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 		fs_info->nodesize : fs_info->sectorsize;
471 	u64 step = chunk << 1;
472 
473 	while (len > chunk) {
474 		btrfs_remove_free_space(block_group, start, chunk);
475 		start += step;
476 		if (len < step)
477 			len = 0;
478 		else
479 			len -= step;
480 	}
481 }
482 #endif
483 
484 /*
485  * This is only called by btrfs_cache_block_group, since we could have freed
486  * extents we need to check the pinned_extents for any extents that can't be
487  * used yet since their free space will be released as soon as the transaction
488  * commits.
489  */
490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
491 {
492 	struct btrfs_fs_info *info = block_group->fs_info;
493 	u64 extent_start, extent_end, size, total_added = 0;
494 	int ret;
495 
496 	while (start < end) {
497 		ret = find_first_extent_bit(&info->excluded_extents, start,
498 					    &extent_start, &extent_end,
499 					    EXTENT_DIRTY | EXTENT_UPTODATE,
500 					    NULL);
501 		if (ret)
502 			break;
503 
504 		if (extent_start <= start) {
505 			start = extent_end + 1;
506 		} else if (extent_start > start && extent_start < end) {
507 			size = extent_start - start;
508 			total_added += size;
509 			ret = btrfs_add_free_space_async_trimmed(block_group,
510 								 start, size);
511 			BUG_ON(ret); /* -ENOMEM or logic error */
512 			start = extent_end + 1;
513 		} else {
514 			break;
515 		}
516 	}
517 
518 	if (start < end) {
519 		size = end - start;
520 		total_added += size;
521 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 							 size);
523 		BUG_ON(ret); /* -ENOMEM or logic error */
524 	}
525 
526 	return total_added;
527 }
528 
529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530 {
531 	struct btrfs_block_group *block_group = caching_ctl->block_group;
532 	struct btrfs_fs_info *fs_info = block_group->fs_info;
533 	struct btrfs_root *extent_root;
534 	struct btrfs_path *path;
535 	struct extent_buffer *leaf;
536 	struct btrfs_key key;
537 	u64 total_found = 0;
538 	u64 last = 0;
539 	u32 nritems;
540 	int ret;
541 	bool wakeup = true;
542 
543 	path = btrfs_alloc_path();
544 	if (!path)
545 		return -ENOMEM;
546 
547 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 	extent_root = btrfs_extent_root(fs_info, last);
549 
550 #ifdef CONFIG_BTRFS_DEBUG
551 	/*
552 	 * If we're fragmenting we don't want to make anybody think we can
553 	 * allocate from this block group until we've had a chance to fragment
554 	 * the free space.
555 	 */
556 	if (btrfs_should_fragment_free_space(block_group))
557 		wakeup = false;
558 #endif
559 	/*
560 	 * We don't want to deadlock with somebody trying to allocate a new
561 	 * extent for the extent root while also trying to search the extent
562 	 * root to add free space.  So we skip locking and search the commit
563 	 * root, since its read-only
564 	 */
565 	path->skip_locking = 1;
566 	path->search_commit_root = 1;
567 	path->reada = READA_FORWARD;
568 
569 	key.objectid = last;
570 	key.offset = 0;
571 	key.type = BTRFS_EXTENT_ITEM_KEY;
572 
573 next:
574 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 	if (ret < 0)
576 		goto out;
577 
578 	leaf = path->nodes[0];
579 	nritems = btrfs_header_nritems(leaf);
580 
581 	while (1) {
582 		if (btrfs_fs_closing(fs_info) > 1) {
583 			last = (u64)-1;
584 			break;
585 		}
586 
587 		if (path->slots[0] < nritems) {
588 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 		} else {
590 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 			if (ret)
592 				break;
593 
594 			if (need_resched() ||
595 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
596 				btrfs_release_path(path);
597 				up_read(&fs_info->commit_root_sem);
598 				mutex_unlock(&caching_ctl->mutex);
599 				cond_resched();
600 				mutex_lock(&caching_ctl->mutex);
601 				down_read(&fs_info->commit_root_sem);
602 				goto next;
603 			}
604 
605 			ret = btrfs_next_leaf(extent_root, path);
606 			if (ret < 0)
607 				goto out;
608 			if (ret)
609 				break;
610 			leaf = path->nodes[0];
611 			nritems = btrfs_header_nritems(leaf);
612 			continue;
613 		}
614 
615 		if (key.objectid < last) {
616 			key.objectid = last;
617 			key.offset = 0;
618 			key.type = BTRFS_EXTENT_ITEM_KEY;
619 			btrfs_release_path(path);
620 			goto next;
621 		}
622 
623 		if (key.objectid < block_group->start) {
624 			path->slots[0]++;
625 			continue;
626 		}
627 
628 		if (key.objectid >= block_group->start + block_group->length)
629 			break;
630 
631 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
632 		    key.type == BTRFS_METADATA_ITEM_KEY) {
633 			total_found += add_new_free_space(block_group, last,
634 							  key.objectid);
635 			if (key.type == BTRFS_METADATA_ITEM_KEY)
636 				last = key.objectid +
637 					fs_info->nodesize;
638 			else
639 				last = key.objectid + key.offset;
640 
641 			if (total_found > CACHING_CTL_WAKE_UP) {
642 				total_found = 0;
643 				if (wakeup)
644 					wake_up(&caching_ctl->wait);
645 			}
646 		}
647 		path->slots[0]++;
648 	}
649 	ret = 0;
650 
651 	total_found += add_new_free_space(block_group, last,
652 				block_group->start + block_group->length);
653 
654 out:
655 	btrfs_free_path(path);
656 	return ret;
657 }
658 
659 static noinline void caching_thread(struct btrfs_work *work)
660 {
661 	struct btrfs_block_group *block_group;
662 	struct btrfs_fs_info *fs_info;
663 	struct btrfs_caching_control *caching_ctl;
664 	int ret;
665 
666 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
667 	block_group = caching_ctl->block_group;
668 	fs_info = block_group->fs_info;
669 
670 	mutex_lock(&caching_ctl->mutex);
671 	down_read(&fs_info->commit_root_sem);
672 
673 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
674 		ret = load_free_space_cache(block_group);
675 		if (ret == 1) {
676 			ret = 0;
677 			goto done;
678 		}
679 
680 		/*
681 		 * We failed to load the space cache, set ourselves to
682 		 * CACHE_STARTED and carry on.
683 		 */
684 		spin_lock(&block_group->lock);
685 		block_group->cached = BTRFS_CACHE_STARTED;
686 		spin_unlock(&block_group->lock);
687 		wake_up(&caching_ctl->wait);
688 	}
689 
690 	/*
691 	 * If we are in the transaction that populated the free space tree we
692 	 * can't actually cache from the free space tree as our commit root and
693 	 * real root are the same, so we could change the contents of the blocks
694 	 * while caching.  Instead do the slow caching in this case, and after
695 	 * the transaction has committed we will be safe.
696 	 */
697 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
698 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
699 		ret = load_free_space_tree(caching_ctl);
700 	else
701 		ret = load_extent_tree_free(caching_ctl);
702 done:
703 	spin_lock(&block_group->lock);
704 	block_group->caching_ctl = NULL;
705 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
706 	spin_unlock(&block_group->lock);
707 
708 #ifdef CONFIG_BTRFS_DEBUG
709 	if (btrfs_should_fragment_free_space(block_group)) {
710 		u64 bytes_used;
711 
712 		spin_lock(&block_group->space_info->lock);
713 		spin_lock(&block_group->lock);
714 		bytes_used = block_group->length - block_group->used;
715 		block_group->space_info->bytes_used += bytes_used >> 1;
716 		spin_unlock(&block_group->lock);
717 		spin_unlock(&block_group->space_info->lock);
718 		fragment_free_space(block_group);
719 	}
720 #endif
721 
722 	up_read(&fs_info->commit_root_sem);
723 	btrfs_free_excluded_extents(block_group);
724 	mutex_unlock(&caching_ctl->mutex);
725 
726 	wake_up(&caching_ctl->wait);
727 
728 	btrfs_put_caching_control(caching_ctl);
729 	btrfs_put_block_group(block_group);
730 }
731 
732 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
733 {
734 	struct btrfs_fs_info *fs_info = cache->fs_info;
735 	struct btrfs_caching_control *caching_ctl = NULL;
736 	int ret = 0;
737 
738 	/* Allocator for zoned filesystems does not use the cache at all */
739 	if (btrfs_is_zoned(fs_info))
740 		return 0;
741 
742 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
743 	if (!caching_ctl)
744 		return -ENOMEM;
745 
746 	INIT_LIST_HEAD(&caching_ctl->list);
747 	mutex_init(&caching_ctl->mutex);
748 	init_waitqueue_head(&caching_ctl->wait);
749 	caching_ctl->block_group = cache;
750 	refcount_set(&caching_ctl->count, 2);
751 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
752 
753 	spin_lock(&cache->lock);
754 	if (cache->cached != BTRFS_CACHE_NO) {
755 		kfree(caching_ctl);
756 
757 		caching_ctl = cache->caching_ctl;
758 		if (caching_ctl)
759 			refcount_inc(&caching_ctl->count);
760 		spin_unlock(&cache->lock);
761 		goto out;
762 	}
763 	WARN_ON(cache->caching_ctl);
764 	cache->caching_ctl = caching_ctl;
765 	cache->cached = BTRFS_CACHE_STARTED;
766 	spin_unlock(&cache->lock);
767 
768 	write_lock(&fs_info->block_group_cache_lock);
769 	refcount_inc(&caching_ctl->count);
770 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
771 	write_unlock(&fs_info->block_group_cache_lock);
772 
773 	btrfs_get_block_group(cache);
774 
775 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
776 out:
777 	/* REVIEW */
778 	if (wait && caching_ctl)
779 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
780 		/* wait_event(caching_ctl->wait, space_cache_v1_done(cache)); */
781 	if (caching_ctl)
782 		btrfs_put_caching_control(caching_ctl);
783 
784 	return ret;
785 }
786 
787 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
788 {
789 	u64 extra_flags = chunk_to_extended(flags) &
790 				BTRFS_EXTENDED_PROFILE_MASK;
791 
792 	write_seqlock(&fs_info->profiles_lock);
793 	if (flags & BTRFS_BLOCK_GROUP_DATA)
794 		fs_info->avail_data_alloc_bits &= ~extra_flags;
795 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
796 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
797 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
798 		fs_info->avail_system_alloc_bits &= ~extra_flags;
799 	write_sequnlock(&fs_info->profiles_lock);
800 }
801 
802 /*
803  * Clear incompat bits for the following feature(s):
804  *
805  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
806  *            in the whole filesystem
807  *
808  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
809  */
810 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
811 {
812 	bool found_raid56 = false;
813 	bool found_raid1c34 = false;
814 
815 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
816 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
817 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
818 		struct list_head *head = &fs_info->space_info;
819 		struct btrfs_space_info *sinfo;
820 
821 		list_for_each_entry_rcu(sinfo, head, list) {
822 			down_read(&sinfo->groups_sem);
823 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
824 				found_raid56 = true;
825 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
826 				found_raid56 = true;
827 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
828 				found_raid1c34 = true;
829 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
830 				found_raid1c34 = true;
831 			up_read(&sinfo->groups_sem);
832 		}
833 		if (!found_raid56)
834 			btrfs_clear_fs_incompat(fs_info, RAID56);
835 		if (!found_raid1c34)
836 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
837 	}
838 }
839 
840 static int remove_block_group_item(struct btrfs_trans_handle *trans,
841 				   struct btrfs_path *path,
842 				   struct btrfs_block_group *block_group)
843 {
844 	struct btrfs_fs_info *fs_info = trans->fs_info;
845 	struct btrfs_root *root;
846 	struct btrfs_key key;
847 	int ret;
848 
849 	root = btrfs_block_group_root(fs_info);
850 	key.objectid = block_group->start;
851 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
852 	key.offset = block_group->length;
853 
854 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
855 	if (ret > 0)
856 		ret = -ENOENT;
857 	if (ret < 0)
858 		return ret;
859 
860 	ret = btrfs_del_item(trans, root, path);
861 	return ret;
862 }
863 
864 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
865 			     u64 group_start, struct extent_map *em)
866 {
867 	struct btrfs_fs_info *fs_info = trans->fs_info;
868 	struct btrfs_path *path;
869 	struct btrfs_block_group *block_group;
870 	struct btrfs_free_cluster *cluster;
871 	struct inode *inode;
872 	struct kobject *kobj = NULL;
873 	int ret;
874 	int index;
875 	int factor;
876 	struct btrfs_caching_control *caching_ctl = NULL;
877 	bool remove_em;
878 	bool remove_rsv = false;
879 
880 	block_group = btrfs_lookup_block_group(fs_info, group_start);
881 	BUG_ON(!block_group);
882 	BUG_ON(!block_group->ro);
883 
884 	trace_btrfs_remove_block_group(block_group);
885 	/*
886 	 * Free the reserved super bytes from this block group before
887 	 * remove it.
888 	 */
889 	btrfs_free_excluded_extents(block_group);
890 	btrfs_free_ref_tree_range(fs_info, block_group->start,
891 				  block_group->length);
892 
893 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
894 	factor = btrfs_bg_type_to_factor(block_group->flags);
895 
896 	/* make sure this block group isn't part of an allocation cluster */
897 	cluster = &fs_info->data_alloc_cluster;
898 	spin_lock(&cluster->refill_lock);
899 	btrfs_return_cluster_to_free_space(block_group, cluster);
900 	spin_unlock(&cluster->refill_lock);
901 
902 	/*
903 	 * make sure this block group isn't part of a metadata
904 	 * allocation cluster
905 	 */
906 	cluster = &fs_info->meta_alloc_cluster;
907 	spin_lock(&cluster->refill_lock);
908 	btrfs_return_cluster_to_free_space(block_group, cluster);
909 	spin_unlock(&cluster->refill_lock);
910 
911 	btrfs_clear_treelog_bg(block_group);
912 	btrfs_clear_data_reloc_bg(block_group);
913 
914 	path = btrfs_alloc_path();
915 	if (!path) {
916 		ret = -ENOMEM;
917 		goto out;
918 	}
919 
920 	/*
921 	 * get the inode first so any iput calls done for the io_list
922 	 * aren't the final iput (no unlinks allowed now)
923 	 */
924 	inode = lookup_free_space_inode(block_group, path);
925 
926 	mutex_lock(&trans->transaction->cache_write_mutex);
927 	/*
928 	 * Make sure our free space cache IO is done before removing the
929 	 * free space inode
930 	 */
931 	spin_lock(&trans->transaction->dirty_bgs_lock);
932 	if (!list_empty(&block_group->io_list)) {
933 		list_del_init(&block_group->io_list);
934 
935 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
936 
937 		spin_unlock(&trans->transaction->dirty_bgs_lock);
938 		btrfs_wait_cache_io(trans, block_group, path);
939 		btrfs_put_block_group(block_group);
940 		spin_lock(&trans->transaction->dirty_bgs_lock);
941 	}
942 
943 	if (!list_empty(&block_group->dirty_list)) {
944 		list_del_init(&block_group->dirty_list);
945 		remove_rsv = true;
946 		btrfs_put_block_group(block_group);
947 	}
948 	spin_unlock(&trans->transaction->dirty_bgs_lock);
949 	mutex_unlock(&trans->transaction->cache_write_mutex);
950 
951 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
952 	if (ret)
953 		goto out;
954 
955 	write_lock(&fs_info->block_group_cache_lock);
956 	rb_erase_cached(&block_group->cache_node,
957 			&fs_info->block_group_cache_tree);
958 	RB_CLEAR_NODE(&block_group->cache_node);
959 
960 	/* Once for the block groups rbtree */
961 	btrfs_put_block_group(block_group);
962 
963 	write_unlock(&fs_info->block_group_cache_lock);
964 
965 	down_write(&block_group->space_info->groups_sem);
966 	/*
967 	 * we must use list_del_init so people can check to see if they
968 	 * are still on the list after taking the semaphore
969 	 */
970 	list_del_init(&block_group->list);
971 	if (list_empty(&block_group->space_info->block_groups[index])) {
972 		kobj = block_group->space_info->block_group_kobjs[index];
973 		block_group->space_info->block_group_kobjs[index] = NULL;
974 		clear_avail_alloc_bits(fs_info, block_group->flags);
975 	}
976 	up_write(&block_group->space_info->groups_sem);
977 	clear_incompat_bg_bits(fs_info, block_group->flags);
978 	if (kobj) {
979 		kobject_del(kobj);
980 		kobject_put(kobj);
981 	}
982 
983 	if (block_group->cached == BTRFS_CACHE_STARTED)
984 		btrfs_wait_block_group_cache_done(block_group);
985 
986 	write_lock(&fs_info->block_group_cache_lock);
987 	caching_ctl = btrfs_get_caching_control(block_group);
988 	if (!caching_ctl) {
989 		struct btrfs_caching_control *ctl;
990 
991 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
992 			if (ctl->block_group == block_group) {
993 				caching_ctl = ctl;
994 				refcount_inc(&caching_ctl->count);
995 				break;
996 			}
997 		}
998 	}
999 	if (caching_ctl)
1000 		list_del_init(&caching_ctl->list);
1001 	write_unlock(&fs_info->block_group_cache_lock);
1002 
1003 	if (caching_ctl) {
1004 		/* Once for the caching bgs list and once for us. */
1005 		btrfs_put_caching_control(caching_ctl);
1006 		btrfs_put_caching_control(caching_ctl);
1007 	}
1008 
1009 	spin_lock(&trans->transaction->dirty_bgs_lock);
1010 	WARN_ON(!list_empty(&block_group->dirty_list));
1011 	WARN_ON(!list_empty(&block_group->io_list));
1012 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1013 
1014 	btrfs_remove_free_space_cache(block_group);
1015 
1016 	spin_lock(&block_group->space_info->lock);
1017 	list_del_init(&block_group->ro_list);
1018 
1019 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1020 		WARN_ON(block_group->space_info->total_bytes
1021 			< block_group->length);
1022 		WARN_ON(block_group->space_info->bytes_readonly
1023 			< block_group->length - block_group->zone_unusable);
1024 		WARN_ON(block_group->space_info->bytes_zone_unusable
1025 			< block_group->zone_unusable);
1026 		WARN_ON(block_group->space_info->disk_total
1027 			< block_group->length * factor);
1028 		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1029 				 &block_group->runtime_flags) &&
1030 			block_group->space_info->active_total_bytes
1031 			< block_group->length);
1032 	}
1033 	block_group->space_info->total_bytes -= block_group->length;
1034 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1035 		block_group->space_info->active_total_bytes -= block_group->length;
1036 	block_group->space_info->bytes_readonly -=
1037 		(block_group->length - block_group->zone_unusable);
1038 	block_group->space_info->bytes_zone_unusable -=
1039 		block_group->zone_unusable;
1040 	block_group->space_info->disk_total -= block_group->length * factor;
1041 
1042 	spin_unlock(&block_group->space_info->lock);
1043 
1044 	/*
1045 	 * Remove the free space for the block group from the free space tree
1046 	 * and the block group's item from the extent tree before marking the
1047 	 * block group as removed. This is to prevent races with tasks that
1048 	 * freeze and unfreeze a block group, this task and another task
1049 	 * allocating a new block group - the unfreeze task ends up removing
1050 	 * the block group's extent map before the task calling this function
1051 	 * deletes the block group item from the extent tree, allowing for
1052 	 * another task to attempt to create another block group with the same
1053 	 * item key (and failing with -EEXIST and a transaction abort).
1054 	 */
1055 	ret = remove_block_group_free_space(trans, block_group);
1056 	if (ret)
1057 		goto out;
1058 
1059 	ret = remove_block_group_item(trans, path, block_group);
1060 	if (ret < 0)
1061 		goto out;
1062 
1063 	spin_lock(&block_group->lock);
1064 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1065 
1066 	/*
1067 	 * At this point trimming or scrub can't start on this block group,
1068 	 * because we removed the block group from the rbtree
1069 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1070 	 * even if someone already got this block group before we removed it
1071 	 * from the rbtree, they have already incremented block_group->frozen -
1072 	 * if they didn't, for the trimming case they won't find any free space
1073 	 * entries because we already removed them all when we called
1074 	 * btrfs_remove_free_space_cache().
1075 	 *
1076 	 * And we must not remove the extent map from the fs_info->mapping_tree
1077 	 * to prevent the same logical address range and physical device space
1078 	 * ranges from being reused for a new block group. This is needed to
1079 	 * avoid races with trimming and scrub.
1080 	 *
1081 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1082 	 * completely transactionless, so while it is trimming a range the
1083 	 * currently running transaction might finish and a new one start,
1084 	 * allowing for new block groups to be created that can reuse the same
1085 	 * physical device locations unless we take this special care.
1086 	 *
1087 	 * There may also be an implicit trim operation if the file system
1088 	 * is mounted with -odiscard. The same protections must remain
1089 	 * in place until the extents have been discarded completely when
1090 	 * the transaction commit has completed.
1091 	 */
1092 	remove_em = (atomic_read(&block_group->frozen) == 0);
1093 	spin_unlock(&block_group->lock);
1094 
1095 	if (remove_em) {
1096 		struct extent_map_tree *em_tree;
1097 
1098 		em_tree = &fs_info->mapping_tree;
1099 		write_lock(&em_tree->lock);
1100 		remove_extent_mapping(em_tree, em);
1101 		write_unlock(&em_tree->lock);
1102 		/* once for the tree */
1103 		free_extent_map(em);
1104 	}
1105 
1106 out:
1107 	/* Once for the lookup reference */
1108 	btrfs_put_block_group(block_group);
1109 	if (remove_rsv)
1110 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1111 	btrfs_free_path(path);
1112 	return ret;
1113 }
1114 
1115 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1116 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1117 {
1118 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1119 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1120 	struct extent_map *em;
1121 	struct map_lookup *map;
1122 	unsigned int num_items;
1123 
1124 	read_lock(&em_tree->lock);
1125 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1126 	read_unlock(&em_tree->lock);
1127 	ASSERT(em && em->start == chunk_offset);
1128 
1129 	/*
1130 	 * We need to reserve 3 + N units from the metadata space info in order
1131 	 * to remove a block group (done at btrfs_remove_chunk() and at
1132 	 * btrfs_remove_block_group()), which are used for:
1133 	 *
1134 	 * 1 unit for adding the free space inode's orphan (located in the tree
1135 	 * of tree roots).
1136 	 * 1 unit for deleting the block group item (located in the extent
1137 	 * tree).
1138 	 * 1 unit for deleting the free space item (located in tree of tree
1139 	 * roots).
1140 	 * N units for deleting N device extent items corresponding to each
1141 	 * stripe (located in the device tree).
1142 	 *
1143 	 * In order to remove a block group we also need to reserve units in the
1144 	 * system space info in order to update the chunk tree (update one or
1145 	 * more device items and remove one chunk item), but this is done at
1146 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1147 	 */
1148 	map = em->map_lookup;
1149 	num_items = 3 + map->num_stripes;
1150 	free_extent_map(em);
1151 
1152 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1153 }
1154 
1155 /*
1156  * Mark block group @cache read-only, so later write won't happen to block
1157  * group @cache.
1158  *
1159  * If @force is not set, this function will only mark the block group readonly
1160  * if we have enough free space (1M) in other metadata/system block groups.
1161  * If @force is not set, this function will mark the block group readonly
1162  * without checking free space.
1163  *
1164  * NOTE: This function doesn't care if other block groups can contain all the
1165  * data in this block group. That check should be done by relocation routine,
1166  * not this function.
1167  */
1168 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1169 {
1170 	struct btrfs_space_info *sinfo = cache->space_info;
1171 	u64 num_bytes;
1172 	int ret = -ENOSPC;
1173 
1174 	spin_lock(&sinfo->lock);
1175 	spin_lock(&cache->lock);
1176 
1177 	if (cache->swap_extents) {
1178 		ret = -ETXTBSY;
1179 		goto out;
1180 	}
1181 
1182 	if (cache->ro) {
1183 		cache->ro++;
1184 		ret = 0;
1185 		goto out;
1186 	}
1187 
1188 	num_bytes = cache->length - cache->reserved - cache->pinned -
1189 		    cache->bytes_super - cache->zone_unusable - cache->used;
1190 
1191 	/*
1192 	 * Data never overcommits, even in mixed mode, so do just the straight
1193 	 * check of left over space in how much we have allocated.
1194 	 */
1195 	if (force) {
1196 		ret = 0;
1197 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1198 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1199 
1200 		/*
1201 		 * Here we make sure if we mark this bg RO, we still have enough
1202 		 * free space as buffer.
1203 		 */
1204 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1205 			ret = 0;
1206 	} else {
1207 		/*
1208 		 * We overcommit metadata, so we need to do the
1209 		 * btrfs_can_overcommit check here, and we need to pass in
1210 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1211 		 * leeway to allow us to mark this block group as read only.
1212 		 */
1213 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1214 					 BTRFS_RESERVE_NO_FLUSH))
1215 			ret = 0;
1216 	}
1217 
1218 	if (!ret) {
1219 		sinfo->bytes_readonly += num_bytes;
1220 		if (btrfs_is_zoned(cache->fs_info)) {
1221 			/* Migrate zone_unusable bytes to readonly */
1222 			sinfo->bytes_readonly += cache->zone_unusable;
1223 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1224 			cache->zone_unusable = 0;
1225 		}
1226 		cache->ro++;
1227 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1228 	}
1229 out:
1230 	spin_unlock(&cache->lock);
1231 	spin_unlock(&sinfo->lock);
1232 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 		btrfs_info(cache->fs_info,
1234 			"unable to make block group %llu ro", cache->start);
1235 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1236 	}
1237 	return ret;
1238 }
1239 
1240 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1241 				 struct btrfs_block_group *bg)
1242 {
1243 	struct btrfs_fs_info *fs_info = bg->fs_info;
1244 	struct btrfs_transaction *prev_trans = NULL;
1245 	const u64 start = bg->start;
1246 	const u64 end = start + bg->length - 1;
1247 	int ret;
1248 
1249 	spin_lock(&fs_info->trans_lock);
1250 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1251 		prev_trans = list_last_entry(&trans->transaction->list,
1252 					     struct btrfs_transaction, list);
1253 		refcount_inc(&prev_trans->use_count);
1254 	}
1255 	spin_unlock(&fs_info->trans_lock);
1256 
1257 	/*
1258 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1259 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1260 	 * task might be running finish_extent_commit() for the previous
1261 	 * transaction N - 1, and have seen a range belonging to the block
1262 	 * group in pinned_extents before we were able to clear the whole block
1263 	 * group range from pinned_extents. This means that task can lookup for
1264 	 * the block group after we unpinned it from pinned_extents and removed
1265 	 * it, leading to a BUG_ON() at unpin_extent_range().
1266 	 */
1267 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1268 	if (prev_trans) {
1269 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1270 					EXTENT_DIRTY);
1271 		if (ret)
1272 			goto out;
1273 	}
1274 
1275 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1276 				EXTENT_DIRTY);
1277 out:
1278 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1279 	if (prev_trans)
1280 		btrfs_put_transaction(prev_trans);
1281 
1282 	return ret == 0;
1283 }
1284 
1285 /*
1286  * Process the unused_bgs list and remove any that don't have any allocated
1287  * space inside of them.
1288  */
1289 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1290 {
1291 	struct btrfs_block_group *block_group;
1292 	struct btrfs_space_info *space_info;
1293 	struct btrfs_trans_handle *trans;
1294 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1295 	int ret = 0;
1296 
1297 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1298 		return;
1299 
1300 	if (btrfs_fs_closing(fs_info))
1301 		return;
1302 
1303 	/*
1304 	 * Long running balances can keep us blocked here for eternity, so
1305 	 * simply skip deletion if we're unable to get the mutex.
1306 	 */
1307 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1308 		return;
1309 
1310 	spin_lock(&fs_info->unused_bgs_lock);
1311 	while (!list_empty(&fs_info->unused_bgs)) {
1312 		int trimming;
1313 
1314 		block_group = list_first_entry(&fs_info->unused_bgs,
1315 					       struct btrfs_block_group,
1316 					       bg_list);
1317 		list_del_init(&block_group->bg_list);
1318 
1319 		space_info = block_group->space_info;
1320 
1321 		if (ret || btrfs_mixed_space_info(space_info)) {
1322 			btrfs_put_block_group(block_group);
1323 			continue;
1324 		}
1325 		spin_unlock(&fs_info->unused_bgs_lock);
1326 
1327 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1328 
1329 		/* Don't want to race with allocators so take the groups_sem */
1330 		down_write(&space_info->groups_sem);
1331 
1332 		/*
1333 		 * Async discard moves the final block group discard to be prior
1334 		 * to the unused_bgs code path.  Therefore, if it's not fully
1335 		 * trimmed, punt it back to the async discard lists.
1336 		 */
1337 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1338 		    !btrfs_is_free_space_trimmed(block_group)) {
1339 			trace_btrfs_skip_unused_block_group(block_group);
1340 			up_write(&space_info->groups_sem);
1341 			/* Requeue if we failed because of async discard */
1342 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1343 						 block_group);
1344 			goto next;
1345 		}
1346 
1347 		spin_lock(&block_group->lock);
1348 		if (block_group->reserved || block_group->pinned ||
1349 		    block_group->used || block_group->ro ||
1350 		    list_is_singular(&block_group->list)) {
1351 			/*
1352 			 * We want to bail if we made new allocations or have
1353 			 * outstanding allocations in this block group.  We do
1354 			 * the ro check in case balance is currently acting on
1355 			 * this block group.
1356 			 */
1357 			trace_btrfs_skip_unused_block_group(block_group);
1358 			spin_unlock(&block_group->lock);
1359 			up_write(&space_info->groups_sem);
1360 			goto next;
1361 		}
1362 		spin_unlock(&block_group->lock);
1363 
1364 		/* We don't want to force the issue, only flip if it's ok. */
1365 		ret = inc_block_group_ro(block_group, 0);
1366 		up_write(&space_info->groups_sem);
1367 		if (ret < 0) {
1368 			ret = 0;
1369 			goto next;
1370 		}
1371 
1372 		ret = btrfs_zone_finish(block_group);
1373 		if (ret < 0) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			if (ret == -EAGAIN)
1376 				ret = 0;
1377 			goto next;
1378 		}
1379 
1380 		/*
1381 		 * Want to do this before we do anything else so we can recover
1382 		 * properly if we fail to join the transaction.
1383 		 */
1384 		trans = btrfs_start_trans_remove_block_group(fs_info,
1385 						     block_group->start);
1386 		if (IS_ERR(trans)) {
1387 			btrfs_dec_block_group_ro(block_group);
1388 			ret = PTR_ERR(trans);
1389 			goto next;
1390 		}
1391 
1392 		/*
1393 		 * We could have pending pinned extents for this block group,
1394 		 * just delete them, we don't care about them anymore.
1395 		 */
1396 		if (!clean_pinned_extents(trans, block_group)) {
1397 			btrfs_dec_block_group_ro(block_group);
1398 			goto end_trans;
1399 		}
1400 
1401 		/*
1402 		 * At this point, the block_group is read only and should fail
1403 		 * new allocations.  However, btrfs_finish_extent_commit() can
1404 		 * cause this block_group to be placed back on the discard
1405 		 * lists because now the block_group isn't fully discarded.
1406 		 * Bail here and try again later after discarding everything.
1407 		 */
1408 		spin_lock(&fs_info->discard_ctl.lock);
1409 		if (!list_empty(&block_group->discard_list)) {
1410 			spin_unlock(&fs_info->discard_ctl.lock);
1411 			btrfs_dec_block_group_ro(block_group);
1412 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1413 						 block_group);
1414 			goto end_trans;
1415 		}
1416 		spin_unlock(&fs_info->discard_ctl.lock);
1417 
1418 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1419 		spin_lock(&space_info->lock);
1420 		spin_lock(&block_group->lock);
1421 
1422 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1423 						     -block_group->pinned);
1424 		space_info->bytes_readonly += block_group->pinned;
1425 		block_group->pinned = 0;
1426 
1427 		spin_unlock(&block_group->lock);
1428 		spin_unlock(&space_info->lock);
1429 
1430 		/*
1431 		 * The normal path here is an unused block group is passed here,
1432 		 * then trimming is handled in the transaction commit path.
1433 		 * Async discard interposes before this to do the trimming
1434 		 * before coming down the unused block group path as trimming
1435 		 * will no longer be done later in the transaction commit path.
1436 		 */
1437 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1438 			goto flip_async;
1439 
1440 		/*
1441 		 * DISCARD can flip during remount. On zoned filesystems, we
1442 		 * need to reset sequential-required zones.
1443 		 */
1444 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1445 				btrfs_is_zoned(fs_info);
1446 
1447 		/* Implicit trim during transaction commit. */
1448 		if (trimming)
1449 			btrfs_freeze_block_group(block_group);
1450 
1451 		/*
1452 		 * Btrfs_remove_chunk will abort the transaction if things go
1453 		 * horribly wrong.
1454 		 */
1455 		ret = btrfs_remove_chunk(trans, block_group->start);
1456 
1457 		if (ret) {
1458 			if (trimming)
1459 				btrfs_unfreeze_block_group(block_group);
1460 			goto end_trans;
1461 		}
1462 
1463 		/*
1464 		 * If we're not mounted with -odiscard, we can just forget
1465 		 * about this block group. Otherwise we'll need to wait
1466 		 * until transaction commit to do the actual discard.
1467 		 */
1468 		if (trimming) {
1469 			spin_lock(&fs_info->unused_bgs_lock);
1470 			/*
1471 			 * A concurrent scrub might have added us to the list
1472 			 * fs_info->unused_bgs, so use a list_move operation
1473 			 * to add the block group to the deleted_bgs list.
1474 			 */
1475 			list_move(&block_group->bg_list,
1476 				  &trans->transaction->deleted_bgs);
1477 			spin_unlock(&fs_info->unused_bgs_lock);
1478 			btrfs_get_block_group(block_group);
1479 		}
1480 end_trans:
1481 		btrfs_end_transaction(trans);
1482 next:
1483 		btrfs_put_block_group(block_group);
1484 		spin_lock(&fs_info->unused_bgs_lock);
1485 	}
1486 	spin_unlock(&fs_info->unused_bgs_lock);
1487 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1488 	return;
1489 
1490 flip_async:
1491 	btrfs_end_transaction(trans);
1492 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1493 	btrfs_put_block_group(block_group);
1494 	btrfs_discard_punt_unused_bgs_list(fs_info);
1495 }
1496 
1497 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1498 {
1499 	struct btrfs_fs_info *fs_info = bg->fs_info;
1500 
1501 	spin_lock(&fs_info->unused_bgs_lock);
1502 	if (list_empty(&bg->bg_list)) {
1503 		btrfs_get_block_group(bg);
1504 		trace_btrfs_add_unused_block_group(bg);
1505 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1506 	}
1507 	spin_unlock(&fs_info->unused_bgs_lock);
1508 }
1509 
1510 /*
1511  * We want block groups with a low number of used bytes to be in the beginning
1512  * of the list, so they will get reclaimed first.
1513  */
1514 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1515 			   const struct list_head *b)
1516 {
1517 	const struct btrfs_block_group *bg1, *bg2;
1518 
1519 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1520 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1521 
1522 	return bg1->used > bg2->used;
1523 }
1524 
1525 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1526 {
1527 	if (btrfs_is_zoned(fs_info))
1528 		return btrfs_zoned_should_reclaim(fs_info);
1529 	return true;
1530 }
1531 
1532 void btrfs_reclaim_bgs_work(struct work_struct *work)
1533 {
1534 	struct btrfs_fs_info *fs_info =
1535 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1536 	struct btrfs_block_group *bg;
1537 	struct btrfs_space_info *space_info;
1538 
1539 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1540 		return;
1541 
1542 	if (btrfs_fs_closing(fs_info))
1543 		return;
1544 
1545 	if (!btrfs_should_reclaim(fs_info))
1546 		return;
1547 
1548 	sb_start_write(fs_info->sb);
1549 
1550 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1551 		sb_end_write(fs_info->sb);
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * Long running balances can keep us blocked here for eternity, so
1557 	 * simply skip reclaim if we're unable to get the mutex.
1558 	 */
1559 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1560 		btrfs_exclop_finish(fs_info);
1561 		sb_end_write(fs_info->sb);
1562 		return;
1563 	}
1564 
1565 	spin_lock(&fs_info->unused_bgs_lock);
1566 	/*
1567 	 * Sort happens under lock because we can't simply splice it and sort.
1568 	 * The block groups might still be in use and reachable via bg_list,
1569 	 * and their presence in the reclaim_bgs list must be preserved.
1570 	 */
1571 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1572 	while (!list_empty(&fs_info->reclaim_bgs)) {
1573 		u64 zone_unusable;
1574 		int ret = 0;
1575 
1576 		bg = list_first_entry(&fs_info->reclaim_bgs,
1577 				      struct btrfs_block_group,
1578 				      bg_list);
1579 		list_del_init(&bg->bg_list);
1580 
1581 		space_info = bg->space_info;
1582 		spin_unlock(&fs_info->unused_bgs_lock);
1583 
1584 		/* Don't race with allocators so take the groups_sem */
1585 		down_write(&space_info->groups_sem);
1586 
1587 		spin_lock(&bg->lock);
1588 		if (bg->reserved || bg->pinned || bg->ro) {
1589 			/*
1590 			 * We want to bail if we made new allocations or have
1591 			 * outstanding allocations in this block group.  We do
1592 			 * the ro check in case balance is currently acting on
1593 			 * this block group.
1594 			 */
1595 			spin_unlock(&bg->lock);
1596 			up_write(&space_info->groups_sem);
1597 			goto next;
1598 		}
1599 		spin_unlock(&bg->lock);
1600 
1601 		/* Get out fast, in case we're unmounting the filesystem */
1602 		if (btrfs_fs_closing(fs_info)) {
1603 			up_write(&space_info->groups_sem);
1604 			goto next;
1605 		}
1606 
1607 		/*
1608 		 * Cache the zone_unusable value before turning the block group
1609 		 * to read only. As soon as the blog group is read only it's
1610 		 * zone_unusable value gets moved to the block group's read-only
1611 		 * bytes and isn't available for calculations anymore.
1612 		 */
1613 		zone_unusable = bg->zone_unusable;
1614 		ret = inc_block_group_ro(bg, 0);
1615 		up_write(&space_info->groups_sem);
1616 		if (ret < 0)
1617 			goto next;
1618 
1619 		btrfs_info(fs_info,
1620 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1621 				bg->start, div_u64(bg->used * 100, bg->length),
1622 				div64_u64(zone_unusable * 100, bg->length));
1623 		trace_btrfs_reclaim_block_group(bg);
1624 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1625 		if (ret) {
1626 			btrfs_dec_block_group_ro(bg);
1627 			btrfs_err(fs_info, "error relocating chunk %llu",
1628 				  bg->start);
1629 		}
1630 
1631 next:
1632 		btrfs_put_block_group(bg);
1633 		spin_lock(&fs_info->unused_bgs_lock);
1634 	}
1635 	spin_unlock(&fs_info->unused_bgs_lock);
1636 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1637 	btrfs_exclop_finish(fs_info);
1638 	sb_end_write(fs_info->sb);
1639 }
1640 
1641 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1642 {
1643 	spin_lock(&fs_info->unused_bgs_lock);
1644 	if (!list_empty(&fs_info->reclaim_bgs))
1645 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1646 	spin_unlock(&fs_info->unused_bgs_lock);
1647 }
1648 
1649 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1650 {
1651 	struct btrfs_fs_info *fs_info = bg->fs_info;
1652 
1653 	spin_lock(&fs_info->unused_bgs_lock);
1654 	if (list_empty(&bg->bg_list)) {
1655 		btrfs_get_block_group(bg);
1656 		trace_btrfs_add_reclaim_block_group(bg);
1657 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1658 	}
1659 	spin_unlock(&fs_info->unused_bgs_lock);
1660 }
1661 
1662 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1663 			   struct btrfs_path *path)
1664 {
1665 	struct extent_map_tree *em_tree;
1666 	struct extent_map *em;
1667 	struct btrfs_block_group_item bg;
1668 	struct extent_buffer *leaf;
1669 	int slot;
1670 	u64 flags;
1671 	int ret = 0;
1672 
1673 	slot = path->slots[0];
1674 	leaf = path->nodes[0];
1675 
1676 	em_tree = &fs_info->mapping_tree;
1677 	read_lock(&em_tree->lock);
1678 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1679 	read_unlock(&em_tree->lock);
1680 	if (!em) {
1681 		btrfs_err(fs_info,
1682 			  "logical %llu len %llu found bg but no related chunk",
1683 			  key->objectid, key->offset);
1684 		return -ENOENT;
1685 	}
1686 
1687 	if (em->start != key->objectid || em->len != key->offset) {
1688 		btrfs_err(fs_info,
1689 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1690 			key->objectid, key->offset, em->start, em->len);
1691 		ret = -EUCLEAN;
1692 		goto out_free_em;
1693 	}
1694 
1695 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1696 			   sizeof(bg));
1697 	flags = btrfs_stack_block_group_flags(&bg) &
1698 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1699 
1700 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1701 		btrfs_err(fs_info,
1702 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1703 			  key->objectid, key->offset, flags,
1704 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1705 		ret = -EUCLEAN;
1706 	}
1707 
1708 out_free_em:
1709 	free_extent_map(em);
1710 	return ret;
1711 }
1712 
1713 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1714 				  struct btrfs_path *path,
1715 				  struct btrfs_key *key)
1716 {
1717 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1718 	int ret;
1719 	struct btrfs_key found_key;
1720 
1721 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1722 		if (found_key.objectid >= key->objectid &&
1723 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1724 			return read_bg_from_eb(fs_info, &found_key, path);
1725 		}
1726 	}
1727 	return ret;
1728 }
1729 
1730 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1731 {
1732 	u64 extra_flags = chunk_to_extended(flags) &
1733 				BTRFS_EXTENDED_PROFILE_MASK;
1734 
1735 	write_seqlock(&fs_info->profiles_lock);
1736 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1737 		fs_info->avail_data_alloc_bits |= extra_flags;
1738 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1739 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1740 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1741 		fs_info->avail_system_alloc_bits |= extra_flags;
1742 	write_sequnlock(&fs_info->profiles_lock);
1743 }
1744 
1745 /**
1746  * Map a physical disk address to a list of logical addresses
1747  *
1748  * @fs_info:       the filesystem
1749  * @chunk_start:   logical address of block group
1750  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1751  * @physical:	   physical address to map to logical addresses
1752  * @logical:	   return array of logical addresses which map to @physical
1753  * @naddrs:	   length of @logical
1754  * @stripe_len:    size of IO stripe for the given block group
1755  *
1756  * Maps a particular @physical disk address to a list of @logical addresses.
1757  * Used primarily to exclude those portions of a block group that contain super
1758  * block copies.
1759  */
1760 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1761 		     struct block_device *bdev, u64 physical, u64 **logical,
1762 		     int *naddrs, int *stripe_len)
1763 {
1764 	struct extent_map *em;
1765 	struct map_lookup *map;
1766 	u64 *buf;
1767 	u64 bytenr;
1768 	u64 data_stripe_length;
1769 	u64 io_stripe_size;
1770 	int i, nr = 0;
1771 	int ret = 0;
1772 
1773 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1774 	if (IS_ERR(em))
1775 		return -EIO;
1776 
1777 	map = em->map_lookup;
1778 	data_stripe_length = em->orig_block_len;
1779 	io_stripe_size = map->stripe_len;
1780 	chunk_start = em->start;
1781 
1782 	/* For RAID5/6 adjust to a full IO stripe length */
1783 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1784 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1785 
1786 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1787 	if (!buf) {
1788 		ret = -ENOMEM;
1789 		goto out;
1790 	}
1791 
1792 	for (i = 0; i < map->num_stripes; i++) {
1793 		bool already_inserted = false;
1794 		u64 stripe_nr;
1795 		u64 offset;
1796 		int j;
1797 
1798 		if (!in_range(physical, map->stripes[i].physical,
1799 			      data_stripe_length))
1800 			continue;
1801 
1802 		if (bdev && map->stripes[i].dev->bdev != bdev)
1803 			continue;
1804 
1805 		stripe_nr = physical - map->stripes[i].physical;
1806 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1807 
1808 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1809 				 BTRFS_BLOCK_GROUP_RAID10)) {
1810 			stripe_nr = stripe_nr * map->num_stripes + i;
1811 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1812 		}
1813 		/*
1814 		 * The remaining case would be for RAID56, multiply by
1815 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1816 		 * instead of map->stripe_len
1817 		 */
1818 
1819 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1820 
1821 		/* Ensure we don't add duplicate addresses */
1822 		for (j = 0; j < nr; j++) {
1823 			if (buf[j] == bytenr) {
1824 				already_inserted = true;
1825 				break;
1826 			}
1827 		}
1828 
1829 		if (!already_inserted)
1830 			buf[nr++] = bytenr;
1831 	}
1832 
1833 	*logical = buf;
1834 	*naddrs = nr;
1835 	*stripe_len = io_stripe_size;
1836 out:
1837 	free_extent_map(em);
1838 	return ret;
1839 }
1840 
1841 static int exclude_super_stripes(struct btrfs_block_group *cache)
1842 {
1843 	struct btrfs_fs_info *fs_info = cache->fs_info;
1844 	const bool zoned = btrfs_is_zoned(fs_info);
1845 	u64 bytenr;
1846 	u64 *logical;
1847 	int stripe_len;
1848 	int i, nr, ret;
1849 
1850 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1851 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1852 		cache->bytes_super += stripe_len;
1853 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1854 						stripe_len);
1855 		if (ret)
1856 			return ret;
1857 	}
1858 
1859 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1860 		bytenr = btrfs_sb_offset(i);
1861 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1862 				       bytenr, &logical, &nr, &stripe_len);
1863 		if (ret)
1864 			return ret;
1865 
1866 		/* Shouldn't have super stripes in sequential zones */
1867 		if (zoned && nr) {
1868 			btrfs_err(fs_info,
1869 			"zoned: block group %llu must not contain super block",
1870 				  cache->start);
1871 			return -EUCLEAN;
1872 		}
1873 
1874 		while (nr--) {
1875 			u64 len = min_t(u64, stripe_len,
1876 				cache->start + cache->length - logical[nr]);
1877 
1878 			cache->bytes_super += len;
1879 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1880 							len);
1881 			if (ret) {
1882 				kfree(logical);
1883 				return ret;
1884 			}
1885 		}
1886 
1887 		kfree(logical);
1888 	}
1889 	return 0;
1890 }
1891 
1892 static struct btrfs_block_group *btrfs_create_block_group_cache(
1893 		struct btrfs_fs_info *fs_info, u64 start)
1894 {
1895 	struct btrfs_block_group *cache;
1896 
1897 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1898 	if (!cache)
1899 		return NULL;
1900 
1901 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1902 					GFP_NOFS);
1903 	if (!cache->free_space_ctl) {
1904 		kfree(cache);
1905 		return NULL;
1906 	}
1907 
1908 	cache->start = start;
1909 
1910 	cache->fs_info = fs_info;
1911 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1912 
1913 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1914 
1915 	refcount_set(&cache->refs, 1);
1916 	spin_lock_init(&cache->lock);
1917 	init_rwsem(&cache->data_rwsem);
1918 	INIT_LIST_HEAD(&cache->list);
1919 	INIT_LIST_HEAD(&cache->cluster_list);
1920 	INIT_LIST_HEAD(&cache->bg_list);
1921 	INIT_LIST_HEAD(&cache->ro_list);
1922 	INIT_LIST_HEAD(&cache->discard_list);
1923 	INIT_LIST_HEAD(&cache->dirty_list);
1924 	INIT_LIST_HEAD(&cache->io_list);
1925 	INIT_LIST_HEAD(&cache->active_bg_list);
1926 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1927 	atomic_set(&cache->frozen, 0);
1928 	mutex_init(&cache->free_space_lock);
1929 	cache->full_stripe_locks_root.root = RB_ROOT;
1930 	mutex_init(&cache->full_stripe_locks_root.lock);
1931 
1932 	return cache;
1933 }
1934 
1935 /*
1936  * Iterate all chunks and verify that each of them has the corresponding block
1937  * group
1938  */
1939 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1940 {
1941 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1942 	struct extent_map *em;
1943 	struct btrfs_block_group *bg;
1944 	u64 start = 0;
1945 	int ret = 0;
1946 
1947 	while (1) {
1948 		read_lock(&map_tree->lock);
1949 		/*
1950 		 * lookup_extent_mapping will return the first extent map
1951 		 * intersecting the range, so setting @len to 1 is enough to
1952 		 * get the first chunk.
1953 		 */
1954 		em = lookup_extent_mapping(map_tree, start, 1);
1955 		read_unlock(&map_tree->lock);
1956 		if (!em)
1957 			break;
1958 
1959 		bg = btrfs_lookup_block_group(fs_info, em->start);
1960 		if (!bg) {
1961 			btrfs_err(fs_info,
1962 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1963 				     em->start, em->len);
1964 			ret = -EUCLEAN;
1965 			free_extent_map(em);
1966 			break;
1967 		}
1968 		if (bg->start != em->start || bg->length != em->len ||
1969 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1970 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1971 			btrfs_err(fs_info,
1972 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1973 				em->start, em->len,
1974 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1975 				bg->start, bg->length,
1976 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1977 			ret = -EUCLEAN;
1978 			free_extent_map(em);
1979 			btrfs_put_block_group(bg);
1980 			break;
1981 		}
1982 		start = em->start + em->len;
1983 		free_extent_map(em);
1984 		btrfs_put_block_group(bg);
1985 	}
1986 	return ret;
1987 }
1988 
1989 static int read_one_block_group(struct btrfs_fs_info *info,
1990 				struct btrfs_block_group_item *bgi,
1991 				const struct btrfs_key *key,
1992 				int need_clear)
1993 {
1994 	struct btrfs_block_group *cache;
1995 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1996 	int ret;
1997 
1998 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1999 
2000 	cache = btrfs_create_block_group_cache(info, key->objectid);
2001 	if (!cache)
2002 		return -ENOMEM;
2003 
2004 	cache->length = key->offset;
2005 	cache->used = btrfs_stack_block_group_used(bgi);
2006 	cache->flags = btrfs_stack_block_group_flags(bgi);
2007 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2008 
2009 	set_free_space_tree_thresholds(cache);
2010 
2011 	if (need_clear) {
2012 		/*
2013 		 * When we mount with old space cache, we need to
2014 		 * set BTRFS_DC_CLEAR and set dirty flag.
2015 		 *
2016 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2017 		 *    truncate the old free space cache inode and
2018 		 *    setup a new one.
2019 		 * b) Setting 'dirty flag' makes sure that we flush
2020 		 *    the new space cache info onto disk.
2021 		 */
2022 		if (btrfs_test_opt(info, SPACE_CACHE))
2023 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2024 	}
2025 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2026 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2027 			btrfs_err(info,
2028 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2029 				  cache->start);
2030 			ret = -EINVAL;
2031 			goto error;
2032 	}
2033 
2034 	ret = btrfs_load_block_group_zone_info(cache, false);
2035 	if (ret) {
2036 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2037 			  cache->start);
2038 		goto error;
2039 	}
2040 
2041 	/*
2042 	 * We need to exclude the super stripes now so that the space info has
2043 	 * super bytes accounted for, otherwise we'll think we have more space
2044 	 * than we actually do.
2045 	 */
2046 	ret = exclude_super_stripes(cache);
2047 	if (ret) {
2048 		/* We may have excluded something, so call this just in case. */
2049 		btrfs_free_excluded_extents(cache);
2050 		goto error;
2051 	}
2052 
2053 	/*
2054 	 * For zoned filesystem, space after the allocation offset is the only
2055 	 * free space for a block group. So, we don't need any caching work.
2056 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2057 	 * zone_unusable space.
2058 	 *
2059 	 * For regular filesystem, check for two cases, either we are full, and
2060 	 * therefore don't need to bother with the caching work since we won't
2061 	 * find any space, or we are empty, and we can just add all the space
2062 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2063 	 * in the full case.
2064 	 */
2065 	if (btrfs_is_zoned(info)) {
2066 		btrfs_calc_zone_unusable(cache);
2067 		/* Should not have any excluded extents. Just in case, though. */
2068 		btrfs_free_excluded_extents(cache);
2069 	} else if (cache->length == cache->used) {
2070 		cache->cached = BTRFS_CACHE_FINISHED;
2071 		btrfs_free_excluded_extents(cache);
2072 	} else if (cache->used == 0) {
2073 		cache->cached = BTRFS_CACHE_FINISHED;
2074 		add_new_free_space(cache, cache->start,
2075 				   cache->start + cache->length);
2076 		btrfs_free_excluded_extents(cache);
2077 	}
2078 
2079 	ret = btrfs_add_block_group_cache(info, cache);
2080 	if (ret) {
2081 		btrfs_remove_free_space_cache(cache);
2082 		goto error;
2083 	}
2084 	trace_btrfs_add_block_group(info, cache, 0);
2085 	btrfs_add_bg_to_space_info(info, cache);
2086 
2087 	set_avail_alloc_bits(info, cache->flags);
2088 	if (btrfs_chunk_writeable(info, cache->start)) {
2089 		if (cache->used == 0) {
2090 			ASSERT(list_empty(&cache->bg_list));
2091 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2092 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2093 			else
2094 				btrfs_mark_bg_unused(cache);
2095 		}
2096 	} else {
2097 		inc_block_group_ro(cache, 1);
2098 	}
2099 
2100 	return 0;
2101 error:
2102 	btrfs_put_block_group(cache);
2103 	return ret;
2104 }
2105 
2106 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2107 {
2108 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2109 	struct rb_node *node;
2110 	int ret = 0;
2111 
2112 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2113 		struct extent_map *em;
2114 		struct map_lookup *map;
2115 		struct btrfs_block_group *bg;
2116 
2117 		em = rb_entry(node, struct extent_map, rb_node);
2118 		map = em->map_lookup;
2119 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2120 		if (!bg) {
2121 			ret = -ENOMEM;
2122 			break;
2123 		}
2124 
2125 		/* Fill dummy cache as FULL */
2126 		bg->length = em->len;
2127 		bg->flags = map->type;
2128 		bg->cached = BTRFS_CACHE_FINISHED;
2129 		bg->used = em->len;
2130 		bg->flags = map->type;
2131 		ret = btrfs_add_block_group_cache(fs_info, bg);
2132 		/*
2133 		 * We may have some valid block group cache added already, in
2134 		 * that case we skip to the next one.
2135 		 */
2136 		if (ret == -EEXIST) {
2137 			ret = 0;
2138 			btrfs_put_block_group(bg);
2139 			continue;
2140 		}
2141 
2142 		if (ret) {
2143 			btrfs_remove_free_space_cache(bg);
2144 			btrfs_put_block_group(bg);
2145 			break;
2146 		}
2147 
2148 		btrfs_add_bg_to_space_info(fs_info, bg);
2149 
2150 		set_avail_alloc_bits(fs_info, bg->flags);
2151 	}
2152 	if (!ret)
2153 		btrfs_init_global_block_rsv(fs_info);
2154 	return ret;
2155 }
2156 
2157 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2158 {
2159 	struct btrfs_root *root = btrfs_block_group_root(info);
2160 	struct btrfs_path *path;
2161 	int ret;
2162 	struct btrfs_block_group *cache;
2163 	struct btrfs_space_info *space_info;
2164 	struct btrfs_key key;
2165 	int need_clear = 0;
2166 	u64 cache_gen;
2167 
2168 	/*
2169 	 * Either no extent root (with ibadroots rescue option) or we have
2170 	 * unsupported RO options. The fs can never be mounted read-write, so no
2171 	 * need to waste time searching block group items.
2172 	 *
2173 	 * This also allows new extent tree related changes to be RO compat,
2174 	 * no need for a full incompat flag.
2175 	 */
2176 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2177 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2178 		return fill_dummy_bgs(info);
2179 
2180 	key.objectid = 0;
2181 	key.offset = 0;
2182 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2183 	path = btrfs_alloc_path();
2184 	if (!path)
2185 		return -ENOMEM;
2186 
2187 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2188 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2189 	    btrfs_super_generation(info->super_copy) != cache_gen)
2190 		need_clear = 1;
2191 	if (btrfs_test_opt(info, CLEAR_CACHE))
2192 		need_clear = 1;
2193 
2194 	while (1) {
2195 		struct btrfs_block_group_item bgi;
2196 		struct extent_buffer *leaf;
2197 		int slot;
2198 
2199 		ret = find_first_block_group(info, path, &key);
2200 		if (ret > 0)
2201 			break;
2202 		if (ret != 0)
2203 			goto error;
2204 
2205 		leaf = path->nodes[0];
2206 		slot = path->slots[0];
2207 
2208 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2209 				   sizeof(bgi));
2210 
2211 		btrfs_item_key_to_cpu(leaf, &key, slot);
2212 		btrfs_release_path(path);
2213 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2214 		if (ret < 0)
2215 			goto error;
2216 		key.objectid += key.offset;
2217 		key.offset = 0;
2218 	}
2219 	btrfs_release_path(path);
2220 
2221 	list_for_each_entry(space_info, &info->space_info, list) {
2222 		int i;
2223 
2224 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2225 			if (list_empty(&space_info->block_groups[i]))
2226 				continue;
2227 			cache = list_first_entry(&space_info->block_groups[i],
2228 						 struct btrfs_block_group,
2229 						 list);
2230 			btrfs_sysfs_add_block_group_type(cache);
2231 		}
2232 
2233 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2234 		      (BTRFS_BLOCK_GROUP_RAID10 |
2235 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2236 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2237 		       BTRFS_BLOCK_GROUP_DUP)))
2238 			continue;
2239 		/*
2240 		 * Avoid allocating from un-mirrored block group if there are
2241 		 * mirrored block groups.
2242 		 */
2243 		list_for_each_entry(cache,
2244 				&space_info->block_groups[BTRFS_RAID_RAID0],
2245 				list)
2246 			inc_block_group_ro(cache, 1);
2247 		list_for_each_entry(cache,
2248 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2249 				list)
2250 			inc_block_group_ro(cache, 1);
2251 	}
2252 
2253 	btrfs_init_global_block_rsv(info);
2254 	ret = check_chunk_block_group_mappings(info);
2255 error:
2256 	btrfs_free_path(path);
2257 	/*
2258 	 * We've hit some error while reading the extent tree, and have
2259 	 * rescue=ibadroots mount option.
2260 	 * Try to fill the tree using dummy block groups so that the user can
2261 	 * continue to mount and grab their data.
2262 	 */
2263 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2264 		ret = fill_dummy_bgs(info);
2265 	return ret;
2266 }
2267 
2268 /*
2269  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2270  * allocation.
2271  *
2272  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2273  * phases.
2274  */
2275 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2276 				   struct btrfs_block_group *block_group)
2277 {
2278 	struct btrfs_fs_info *fs_info = trans->fs_info;
2279 	struct btrfs_block_group_item bgi;
2280 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2281 	struct btrfs_key key;
2282 
2283 	spin_lock(&block_group->lock);
2284 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2285 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2286 						   block_group->global_root_id);
2287 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2288 	key.objectid = block_group->start;
2289 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2290 	key.offset = block_group->length;
2291 	spin_unlock(&block_group->lock);
2292 
2293 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2294 }
2295 
2296 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2297 			    struct btrfs_device *device, u64 chunk_offset,
2298 			    u64 start, u64 num_bytes)
2299 {
2300 	struct btrfs_fs_info *fs_info = device->fs_info;
2301 	struct btrfs_root *root = fs_info->dev_root;
2302 	struct btrfs_path *path;
2303 	struct btrfs_dev_extent *extent;
2304 	struct extent_buffer *leaf;
2305 	struct btrfs_key key;
2306 	int ret;
2307 
2308 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2309 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2310 	path = btrfs_alloc_path();
2311 	if (!path)
2312 		return -ENOMEM;
2313 
2314 	key.objectid = device->devid;
2315 	key.type = BTRFS_DEV_EXTENT_KEY;
2316 	key.offset = start;
2317 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2318 	if (ret)
2319 		goto out;
2320 
2321 	leaf = path->nodes[0];
2322 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2323 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2324 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2325 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2326 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2327 
2328 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2329 	btrfs_mark_buffer_dirty(leaf);
2330 out:
2331 	btrfs_free_path(path);
2332 	return ret;
2333 }
2334 
2335 /*
2336  * This function belongs to phase 2.
2337  *
2338  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2339  * phases.
2340  */
2341 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2342 				   u64 chunk_offset, u64 chunk_size)
2343 {
2344 	struct btrfs_fs_info *fs_info = trans->fs_info;
2345 	struct btrfs_device *device;
2346 	struct extent_map *em;
2347 	struct map_lookup *map;
2348 	u64 dev_offset;
2349 	u64 stripe_size;
2350 	int i;
2351 	int ret = 0;
2352 
2353 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2354 	if (IS_ERR(em))
2355 		return PTR_ERR(em);
2356 
2357 	map = em->map_lookup;
2358 	stripe_size = em->orig_block_len;
2359 
2360 	/*
2361 	 * Take the device list mutex to prevent races with the final phase of
2362 	 * a device replace operation that replaces the device object associated
2363 	 * with the map's stripes, because the device object's id can change
2364 	 * at any time during that final phase of the device replace operation
2365 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2366 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2367 	 * resulting in persisting a device extent item with such ID.
2368 	 */
2369 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2370 	for (i = 0; i < map->num_stripes; i++) {
2371 		device = map->stripes[i].dev;
2372 		dev_offset = map->stripes[i].physical;
2373 
2374 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2375 				       stripe_size);
2376 		if (ret)
2377 			break;
2378 	}
2379 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2380 
2381 	free_extent_map(em);
2382 	return ret;
2383 }
2384 
2385 /*
2386  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2387  * chunk allocation.
2388  *
2389  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2390  * phases.
2391  */
2392 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2393 {
2394 	struct btrfs_fs_info *fs_info = trans->fs_info;
2395 	struct btrfs_block_group *block_group;
2396 	int ret = 0;
2397 
2398 	while (!list_empty(&trans->new_bgs)) {
2399 		int index;
2400 
2401 		block_group = list_first_entry(&trans->new_bgs,
2402 					       struct btrfs_block_group,
2403 					       bg_list);
2404 		if (ret)
2405 			goto next;
2406 
2407 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2408 
2409 		ret = insert_block_group_item(trans, block_group);
2410 		if (ret)
2411 			btrfs_abort_transaction(trans, ret);
2412 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2413 			      &block_group->runtime_flags)) {
2414 			mutex_lock(&fs_info->chunk_mutex);
2415 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2416 			mutex_unlock(&fs_info->chunk_mutex);
2417 			if (ret)
2418 				btrfs_abort_transaction(trans, ret);
2419 		}
2420 		ret = insert_dev_extents(trans, block_group->start,
2421 					 block_group->length);
2422 		if (ret)
2423 			btrfs_abort_transaction(trans, ret);
2424 		add_block_group_free_space(trans, block_group);
2425 
2426 		/*
2427 		 * If we restriped during balance, we may have added a new raid
2428 		 * type, so now add the sysfs entries when it is safe to do so.
2429 		 * We don't have to worry about locking here as it's handled in
2430 		 * btrfs_sysfs_add_block_group_type.
2431 		 */
2432 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2433 			btrfs_sysfs_add_block_group_type(block_group);
2434 
2435 		/* Already aborted the transaction if it failed. */
2436 next:
2437 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2438 		list_del_init(&block_group->bg_list);
2439 	}
2440 	btrfs_trans_release_chunk_metadata(trans);
2441 }
2442 
2443 /*
2444  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2445  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2446  */
2447 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2448 {
2449 	u64 div = SZ_1G;
2450 	u64 index;
2451 
2452 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2453 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2454 
2455 	/* If we have a smaller fs index based on 128MiB. */
2456 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2457 		div = SZ_128M;
2458 
2459 	offset = div64_u64(offset, div);
2460 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2461 	return index;
2462 }
2463 
2464 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2465 						 u64 bytes_used, u64 type,
2466 						 u64 chunk_offset, u64 size)
2467 {
2468 	struct btrfs_fs_info *fs_info = trans->fs_info;
2469 	struct btrfs_block_group *cache;
2470 	int ret;
2471 
2472 	btrfs_set_log_full_commit(trans);
2473 
2474 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2475 	if (!cache)
2476 		return ERR_PTR(-ENOMEM);
2477 
2478 	cache->length = size;
2479 	set_free_space_tree_thresholds(cache);
2480 	cache->used = bytes_used;
2481 	cache->flags = type;
2482 	cache->cached = BTRFS_CACHE_FINISHED;
2483 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2484 
2485 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2486 		cache->needs_free_space = 1;
2487 
2488 	ret = btrfs_load_block_group_zone_info(cache, true);
2489 	if (ret) {
2490 		btrfs_put_block_group(cache);
2491 		return ERR_PTR(ret);
2492 	}
2493 
2494 	ret = exclude_super_stripes(cache);
2495 	if (ret) {
2496 		/* We may have excluded something, so call this just in case */
2497 		btrfs_free_excluded_extents(cache);
2498 		btrfs_put_block_group(cache);
2499 		return ERR_PTR(ret);
2500 	}
2501 
2502 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2503 
2504 	btrfs_free_excluded_extents(cache);
2505 
2506 	/*
2507 	 * Ensure the corresponding space_info object is created and
2508 	 * assigned to our block group. We want our bg to be added to the rbtree
2509 	 * with its ->space_info set.
2510 	 */
2511 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2512 	ASSERT(cache->space_info);
2513 
2514 	ret = btrfs_add_block_group_cache(fs_info, cache);
2515 	if (ret) {
2516 		btrfs_remove_free_space_cache(cache);
2517 		btrfs_put_block_group(cache);
2518 		return ERR_PTR(ret);
2519 	}
2520 
2521 	/*
2522 	 * Now that our block group has its ->space_info set and is inserted in
2523 	 * the rbtree, update the space info's counters.
2524 	 */
2525 	trace_btrfs_add_block_group(fs_info, cache, 1);
2526 	btrfs_add_bg_to_space_info(fs_info, cache);
2527 	btrfs_update_global_block_rsv(fs_info);
2528 
2529 #ifdef CONFIG_BTRFS_DEBUG
2530 	if (btrfs_should_fragment_free_space(cache)) {
2531 		u64 new_bytes_used = size - bytes_used;
2532 
2533 		cache->space_info->bytes_used += new_bytes_used >> 1;
2534 		fragment_free_space(cache);
2535 	}
2536 #endif
2537 
2538 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2539 	trans->delayed_ref_updates++;
2540 	btrfs_update_delayed_refs_rsv(trans);
2541 
2542 	set_avail_alloc_bits(fs_info, type);
2543 	return cache;
2544 }
2545 
2546 /*
2547  * Mark one block group RO, can be called several times for the same block
2548  * group.
2549  *
2550  * @cache:		the destination block group
2551  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2552  * 			ensure we still have some free space after marking this
2553  * 			block group RO.
2554  */
2555 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2556 			     bool do_chunk_alloc)
2557 {
2558 	struct btrfs_fs_info *fs_info = cache->fs_info;
2559 	struct btrfs_trans_handle *trans;
2560 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2561 	u64 alloc_flags;
2562 	int ret;
2563 	bool dirty_bg_running;
2564 
2565 	/*
2566 	 * This can only happen when we are doing read-only scrub on read-only
2567 	 * mount.
2568 	 * In that case we should not start a new transaction on read-only fs.
2569 	 * Thus here we skip all chunk allocations.
2570 	 */
2571 	if (sb_rdonly(fs_info->sb)) {
2572 		mutex_lock(&fs_info->ro_block_group_mutex);
2573 		ret = inc_block_group_ro(cache, 0);
2574 		mutex_unlock(&fs_info->ro_block_group_mutex);
2575 		return ret;
2576 	}
2577 
2578 	do {
2579 		trans = btrfs_join_transaction(root);
2580 		if (IS_ERR(trans))
2581 			return PTR_ERR(trans);
2582 
2583 		dirty_bg_running = false;
2584 
2585 		/*
2586 		 * We're not allowed to set block groups readonly after the dirty
2587 		 * block group cache has started writing.  If it already started,
2588 		 * back off and let this transaction commit.
2589 		 */
2590 		mutex_lock(&fs_info->ro_block_group_mutex);
2591 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2592 			u64 transid = trans->transid;
2593 
2594 			mutex_unlock(&fs_info->ro_block_group_mutex);
2595 			btrfs_end_transaction(trans);
2596 
2597 			ret = btrfs_wait_for_commit(fs_info, transid);
2598 			if (ret)
2599 				return ret;
2600 			dirty_bg_running = true;
2601 		}
2602 	} while (dirty_bg_running);
2603 
2604 	if (do_chunk_alloc) {
2605 		/*
2606 		 * If we are changing raid levels, try to allocate a
2607 		 * corresponding block group with the new raid level.
2608 		 */
2609 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2610 		if (alloc_flags != cache->flags) {
2611 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2612 						CHUNK_ALLOC_FORCE);
2613 			/*
2614 			 * ENOSPC is allowed here, we may have enough space
2615 			 * already allocated at the new raid level to carry on
2616 			 */
2617 			if (ret == -ENOSPC)
2618 				ret = 0;
2619 			if (ret < 0)
2620 				goto out;
2621 		}
2622 	}
2623 
2624 	ret = inc_block_group_ro(cache, 0);
2625 	if (!do_chunk_alloc || ret == -ETXTBSY)
2626 		goto unlock_out;
2627 	if (!ret)
2628 		goto out;
2629 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2630 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2631 	if (ret < 0)
2632 		goto out;
2633 	/*
2634 	 * We have allocated a new chunk. We also need to activate that chunk to
2635 	 * grant metadata tickets for zoned filesystem.
2636 	 */
2637 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2638 	if (ret < 0)
2639 		goto out;
2640 
2641 	ret = inc_block_group_ro(cache, 0);
2642 	if (ret == -ETXTBSY)
2643 		goto unlock_out;
2644 out:
2645 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2646 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2647 		mutex_lock(&fs_info->chunk_mutex);
2648 		check_system_chunk(trans, alloc_flags);
2649 		mutex_unlock(&fs_info->chunk_mutex);
2650 	}
2651 unlock_out:
2652 	mutex_unlock(&fs_info->ro_block_group_mutex);
2653 
2654 	btrfs_end_transaction(trans);
2655 	return ret;
2656 }
2657 
2658 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2659 {
2660 	struct btrfs_space_info *sinfo = cache->space_info;
2661 	u64 num_bytes;
2662 
2663 	BUG_ON(!cache->ro);
2664 
2665 	spin_lock(&sinfo->lock);
2666 	spin_lock(&cache->lock);
2667 	if (!--cache->ro) {
2668 		if (btrfs_is_zoned(cache->fs_info)) {
2669 			/* Migrate zone_unusable bytes back */
2670 			cache->zone_unusable =
2671 				(cache->alloc_offset - cache->used) +
2672 				(cache->length - cache->zone_capacity);
2673 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2674 			sinfo->bytes_readonly -= cache->zone_unusable;
2675 		}
2676 		num_bytes = cache->length - cache->reserved -
2677 			    cache->pinned - cache->bytes_super -
2678 			    cache->zone_unusable - cache->used;
2679 		sinfo->bytes_readonly -= num_bytes;
2680 		list_del_init(&cache->ro_list);
2681 	}
2682 	spin_unlock(&cache->lock);
2683 	spin_unlock(&sinfo->lock);
2684 }
2685 
2686 static int update_block_group_item(struct btrfs_trans_handle *trans,
2687 				   struct btrfs_path *path,
2688 				   struct btrfs_block_group *cache)
2689 {
2690 	struct btrfs_fs_info *fs_info = trans->fs_info;
2691 	int ret;
2692 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2693 	unsigned long bi;
2694 	struct extent_buffer *leaf;
2695 	struct btrfs_block_group_item bgi;
2696 	struct btrfs_key key;
2697 
2698 	key.objectid = cache->start;
2699 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2700 	key.offset = cache->length;
2701 
2702 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2703 	if (ret) {
2704 		if (ret > 0)
2705 			ret = -ENOENT;
2706 		goto fail;
2707 	}
2708 
2709 	leaf = path->nodes[0];
2710 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2711 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2712 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2713 						   cache->global_root_id);
2714 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2715 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2716 	btrfs_mark_buffer_dirty(leaf);
2717 fail:
2718 	btrfs_release_path(path);
2719 	return ret;
2720 
2721 }
2722 
2723 static int cache_save_setup(struct btrfs_block_group *block_group,
2724 			    struct btrfs_trans_handle *trans,
2725 			    struct btrfs_path *path)
2726 {
2727 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2728 	struct btrfs_root *root = fs_info->tree_root;
2729 	struct inode *inode = NULL;
2730 	struct extent_changeset *data_reserved = NULL;
2731 	u64 alloc_hint = 0;
2732 	int dcs = BTRFS_DC_ERROR;
2733 	u64 cache_size = 0;
2734 	int retries = 0;
2735 	int ret = 0;
2736 
2737 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2738 		return 0;
2739 
2740 	/*
2741 	 * If this block group is smaller than 100 megs don't bother caching the
2742 	 * block group.
2743 	 */
2744 	if (block_group->length < (100 * SZ_1M)) {
2745 		spin_lock(&block_group->lock);
2746 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2747 		spin_unlock(&block_group->lock);
2748 		return 0;
2749 	}
2750 
2751 	if (TRANS_ABORTED(trans))
2752 		return 0;
2753 again:
2754 	inode = lookup_free_space_inode(block_group, path);
2755 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2756 		ret = PTR_ERR(inode);
2757 		btrfs_release_path(path);
2758 		goto out;
2759 	}
2760 
2761 	if (IS_ERR(inode)) {
2762 		BUG_ON(retries);
2763 		retries++;
2764 
2765 		if (block_group->ro)
2766 			goto out_free;
2767 
2768 		ret = create_free_space_inode(trans, block_group, path);
2769 		if (ret)
2770 			goto out_free;
2771 		goto again;
2772 	}
2773 
2774 	/*
2775 	 * We want to set the generation to 0, that way if anything goes wrong
2776 	 * from here on out we know not to trust this cache when we load up next
2777 	 * time.
2778 	 */
2779 	BTRFS_I(inode)->generation = 0;
2780 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2781 	if (ret) {
2782 		/*
2783 		 * So theoretically we could recover from this, simply set the
2784 		 * super cache generation to 0 so we know to invalidate the
2785 		 * cache, but then we'd have to keep track of the block groups
2786 		 * that fail this way so we know we _have_ to reset this cache
2787 		 * before the next commit or risk reading stale cache.  So to
2788 		 * limit our exposure to horrible edge cases lets just abort the
2789 		 * transaction, this only happens in really bad situations
2790 		 * anyway.
2791 		 */
2792 		btrfs_abort_transaction(trans, ret);
2793 		goto out_put;
2794 	}
2795 	WARN_ON(ret);
2796 
2797 	/* We've already setup this transaction, go ahead and exit */
2798 	if (block_group->cache_generation == trans->transid &&
2799 	    i_size_read(inode)) {
2800 		dcs = BTRFS_DC_SETUP;
2801 		goto out_put;
2802 	}
2803 
2804 	if (i_size_read(inode) > 0) {
2805 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2806 					&fs_info->global_block_rsv);
2807 		if (ret)
2808 			goto out_put;
2809 
2810 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2811 		if (ret)
2812 			goto out_put;
2813 	}
2814 
2815 	spin_lock(&block_group->lock);
2816 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2817 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2818 		/*
2819 		 * don't bother trying to write stuff out _if_
2820 		 * a) we're not cached,
2821 		 * b) we're with nospace_cache mount option,
2822 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2823 		 */
2824 		dcs = BTRFS_DC_WRITTEN;
2825 		spin_unlock(&block_group->lock);
2826 		goto out_put;
2827 	}
2828 	spin_unlock(&block_group->lock);
2829 
2830 	/*
2831 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2832 	 * skip doing the setup, we've already cleared the cache so we're safe.
2833 	 */
2834 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2835 		ret = -ENOSPC;
2836 		goto out_put;
2837 	}
2838 
2839 	/*
2840 	 * Try to preallocate enough space based on how big the block group is.
2841 	 * Keep in mind this has to include any pinned space which could end up
2842 	 * taking up quite a bit since it's not folded into the other space
2843 	 * cache.
2844 	 */
2845 	cache_size = div_u64(block_group->length, SZ_256M);
2846 	if (!cache_size)
2847 		cache_size = 1;
2848 
2849 	cache_size *= 16;
2850 	cache_size *= fs_info->sectorsize;
2851 
2852 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2853 					  cache_size, false);
2854 	if (ret)
2855 		goto out_put;
2856 
2857 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2858 					      cache_size, cache_size,
2859 					      &alloc_hint);
2860 	/*
2861 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2862 	 * of metadata or split extents when writing the cache out, which means
2863 	 * we can enospc if we are heavily fragmented in addition to just normal
2864 	 * out of space conditions.  So if we hit this just skip setting up any
2865 	 * other block groups for this transaction, maybe we'll unpin enough
2866 	 * space the next time around.
2867 	 */
2868 	if (!ret)
2869 		dcs = BTRFS_DC_SETUP;
2870 	else if (ret == -ENOSPC)
2871 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2872 
2873 out_put:
2874 	iput(inode);
2875 out_free:
2876 	btrfs_release_path(path);
2877 out:
2878 	spin_lock(&block_group->lock);
2879 	if (!ret && dcs == BTRFS_DC_SETUP)
2880 		block_group->cache_generation = trans->transid;
2881 	block_group->disk_cache_state = dcs;
2882 	spin_unlock(&block_group->lock);
2883 
2884 	extent_changeset_free(data_reserved);
2885 	return ret;
2886 }
2887 
2888 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2889 {
2890 	struct btrfs_fs_info *fs_info = trans->fs_info;
2891 	struct btrfs_block_group *cache, *tmp;
2892 	struct btrfs_transaction *cur_trans = trans->transaction;
2893 	struct btrfs_path *path;
2894 
2895 	if (list_empty(&cur_trans->dirty_bgs) ||
2896 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2897 		return 0;
2898 
2899 	path = btrfs_alloc_path();
2900 	if (!path)
2901 		return -ENOMEM;
2902 
2903 	/* Could add new block groups, use _safe just in case */
2904 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2905 				 dirty_list) {
2906 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2907 			cache_save_setup(cache, trans, path);
2908 	}
2909 
2910 	btrfs_free_path(path);
2911 	return 0;
2912 }
2913 
2914 /*
2915  * Transaction commit does final block group cache writeback during a critical
2916  * section where nothing is allowed to change the FS.  This is required in
2917  * order for the cache to actually match the block group, but can introduce a
2918  * lot of latency into the commit.
2919  *
2920  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2921  * There's a chance we'll have to redo some of it if the block group changes
2922  * again during the commit, but it greatly reduces the commit latency by
2923  * getting rid of the easy block groups while we're still allowing others to
2924  * join the commit.
2925  */
2926 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2927 {
2928 	struct btrfs_fs_info *fs_info = trans->fs_info;
2929 	struct btrfs_block_group *cache;
2930 	struct btrfs_transaction *cur_trans = trans->transaction;
2931 	int ret = 0;
2932 	int should_put;
2933 	struct btrfs_path *path = NULL;
2934 	LIST_HEAD(dirty);
2935 	struct list_head *io = &cur_trans->io_bgs;
2936 	int loops = 0;
2937 
2938 	spin_lock(&cur_trans->dirty_bgs_lock);
2939 	if (list_empty(&cur_trans->dirty_bgs)) {
2940 		spin_unlock(&cur_trans->dirty_bgs_lock);
2941 		return 0;
2942 	}
2943 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2944 	spin_unlock(&cur_trans->dirty_bgs_lock);
2945 
2946 again:
2947 	/* Make sure all the block groups on our dirty list actually exist */
2948 	btrfs_create_pending_block_groups(trans);
2949 
2950 	if (!path) {
2951 		path = btrfs_alloc_path();
2952 		if (!path) {
2953 			ret = -ENOMEM;
2954 			goto out;
2955 		}
2956 	}
2957 
2958 	/*
2959 	 * cache_write_mutex is here only to save us from balance or automatic
2960 	 * removal of empty block groups deleting this block group while we are
2961 	 * writing out the cache
2962 	 */
2963 	mutex_lock(&trans->transaction->cache_write_mutex);
2964 	while (!list_empty(&dirty)) {
2965 		bool drop_reserve = true;
2966 
2967 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2968 					 dirty_list);
2969 		/*
2970 		 * This can happen if something re-dirties a block group that
2971 		 * is already under IO.  Just wait for it to finish and then do
2972 		 * it all again
2973 		 */
2974 		if (!list_empty(&cache->io_list)) {
2975 			list_del_init(&cache->io_list);
2976 			btrfs_wait_cache_io(trans, cache, path);
2977 			btrfs_put_block_group(cache);
2978 		}
2979 
2980 
2981 		/*
2982 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2983 		 * it should update the cache_state.  Don't delete until after
2984 		 * we wait.
2985 		 *
2986 		 * Since we're not running in the commit critical section
2987 		 * we need the dirty_bgs_lock to protect from update_block_group
2988 		 */
2989 		spin_lock(&cur_trans->dirty_bgs_lock);
2990 		list_del_init(&cache->dirty_list);
2991 		spin_unlock(&cur_trans->dirty_bgs_lock);
2992 
2993 		should_put = 1;
2994 
2995 		cache_save_setup(cache, trans, path);
2996 
2997 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2998 			cache->io_ctl.inode = NULL;
2999 			ret = btrfs_write_out_cache(trans, cache, path);
3000 			if (ret == 0 && cache->io_ctl.inode) {
3001 				should_put = 0;
3002 
3003 				/*
3004 				 * The cache_write_mutex is protecting the
3005 				 * io_list, also refer to the definition of
3006 				 * btrfs_transaction::io_bgs for more details
3007 				 */
3008 				list_add_tail(&cache->io_list, io);
3009 			} else {
3010 				/*
3011 				 * If we failed to write the cache, the
3012 				 * generation will be bad and life goes on
3013 				 */
3014 				ret = 0;
3015 			}
3016 		}
3017 		if (!ret) {
3018 			ret = update_block_group_item(trans, path, cache);
3019 			/*
3020 			 * Our block group might still be attached to the list
3021 			 * of new block groups in the transaction handle of some
3022 			 * other task (struct btrfs_trans_handle->new_bgs). This
3023 			 * means its block group item isn't yet in the extent
3024 			 * tree. If this happens ignore the error, as we will
3025 			 * try again later in the critical section of the
3026 			 * transaction commit.
3027 			 */
3028 			if (ret == -ENOENT) {
3029 				ret = 0;
3030 				spin_lock(&cur_trans->dirty_bgs_lock);
3031 				if (list_empty(&cache->dirty_list)) {
3032 					list_add_tail(&cache->dirty_list,
3033 						      &cur_trans->dirty_bgs);
3034 					btrfs_get_block_group(cache);
3035 					drop_reserve = false;
3036 				}
3037 				spin_unlock(&cur_trans->dirty_bgs_lock);
3038 			} else if (ret) {
3039 				btrfs_abort_transaction(trans, ret);
3040 			}
3041 		}
3042 
3043 		/* If it's not on the io list, we need to put the block group */
3044 		if (should_put)
3045 			btrfs_put_block_group(cache);
3046 		if (drop_reserve)
3047 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3048 		/*
3049 		 * Avoid blocking other tasks for too long. It might even save
3050 		 * us from writing caches for block groups that are going to be
3051 		 * removed.
3052 		 */
3053 		mutex_unlock(&trans->transaction->cache_write_mutex);
3054 		if (ret)
3055 			goto out;
3056 		mutex_lock(&trans->transaction->cache_write_mutex);
3057 	}
3058 	mutex_unlock(&trans->transaction->cache_write_mutex);
3059 
3060 	/*
3061 	 * Go through delayed refs for all the stuff we've just kicked off
3062 	 * and then loop back (just once)
3063 	 */
3064 	if (!ret)
3065 		ret = btrfs_run_delayed_refs(trans, 0);
3066 	if (!ret && loops == 0) {
3067 		loops++;
3068 		spin_lock(&cur_trans->dirty_bgs_lock);
3069 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3070 		/*
3071 		 * dirty_bgs_lock protects us from concurrent block group
3072 		 * deletes too (not just cache_write_mutex).
3073 		 */
3074 		if (!list_empty(&dirty)) {
3075 			spin_unlock(&cur_trans->dirty_bgs_lock);
3076 			goto again;
3077 		}
3078 		spin_unlock(&cur_trans->dirty_bgs_lock);
3079 	}
3080 out:
3081 	if (ret < 0) {
3082 		spin_lock(&cur_trans->dirty_bgs_lock);
3083 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3084 		spin_unlock(&cur_trans->dirty_bgs_lock);
3085 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3086 	}
3087 
3088 	btrfs_free_path(path);
3089 	return ret;
3090 }
3091 
3092 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3093 {
3094 	struct btrfs_fs_info *fs_info = trans->fs_info;
3095 	struct btrfs_block_group *cache;
3096 	struct btrfs_transaction *cur_trans = trans->transaction;
3097 	int ret = 0;
3098 	int should_put;
3099 	struct btrfs_path *path;
3100 	struct list_head *io = &cur_trans->io_bgs;
3101 
3102 	path = btrfs_alloc_path();
3103 	if (!path)
3104 		return -ENOMEM;
3105 
3106 	/*
3107 	 * Even though we are in the critical section of the transaction commit,
3108 	 * we can still have concurrent tasks adding elements to this
3109 	 * transaction's list of dirty block groups. These tasks correspond to
3110 	 * endio free space workers started when writeback finishes for a
3111 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3112 	 * allocate new block groups as a result of COWing nodes of the root
3113 	 * tree when updating the free space inode. The writeback for the space
3114 	 * caches is triggered by an earlier call to
3115 	 * btrfs_start_dirty_block_groups() and iterations of the following
3116 	 * loop.
3117 	 * Also we want to do the cache_save_setup first and then run the
3118 	 * delayed refs to make sure we have the best chance at doing this all
3119 	 * in one shot.
3120 	 */
3121 	spin_lock(&cur_trans->dirty_bgs_lock);
3122 	while (!list_empty(&cur_trans->dirty_bgs)) {
3123 		cache = list_first_entry(&cur_trans->dirty_bgs,
3124 					 struct btrfs_block_group,
3125 					 dirty_list);
3126 
3127 		/*
3128 		 * This can happen if cache_save_setup re-dirties a block group
3129 		 * that is already under IO.  Just wait for it to finish and
3130 		 * then do it all again
3131 		 */
3132 		if (!list_empty(&cache->io_list)) {
3133 			spin_unlock(&cur_trans->dirty_bgs_lock);
3134 			list_del_init(&cache->io_list);
3135 			btrfs_wait_cache_io(trans, cache, path);
3136 			btrfs_put_block_group(cache);
3137 			spin_lock(&cur_trans->dirty_bgs_lock);
3138 		}
3139 
3140 		/*
3141 		 * Don't remove from the dirty list until after we've waited on
3142 		 * any pending IO
3143 		 */
3144 		list_del_init(&cache->dirty_list);
3145 		spin_unlock(&cur_trans->dirty_bgs_lock);
3146 		should_put = 1;
3147 
3148 		cache_save_setup(cache, trans, path);
3149 
3150 		if (!ret)
3151 			ret = btrfs_run_delayed_refs(trans,
3152 						     (unsigned long) -1);
3153 
3154 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3155 			cache->io_ctl.inode = NULL;
3156 			ret = btrfs_write_out_cache(trans, cache, path);
3157 			if (ret == 0 && cache->io_ctl.inode) {
3158 				should_put = 0;
3159 				list_add_tail(&cache->io_list, io);
3160 			} else {
3161 				/*
3162 				 * If we failed to write the cache, the
3163 				 * generation will be bad and life goes on
3164 				 */
3165 				ret = 0;
3166 			}
3167 		}
3168 		if (!ret) {
3169 			ret = update_block_group_item(trans, path, cache);
3170 			/*
3171 			 * One of the free space endio workers might have
3172 			 * created a new block group while updating a free space
3173 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3174 			 * and hasn't released its transaction handle yet, in
3175 			 * which case the new block group is still attached to
3176 			 * its transaction handle and its creation has not
3177 			 * finished yet (no block group item in the extent tree
3178 			 * yet, etc). If this is the case, wait for all free
3179 			 * space endio workers to finish and retry. This is a
3180 			 * very rare case so no need for a more efficient and
3181 			 * complex approach.
3182 			 */
3183 			if (ret == -ENOENT) {
3184 				wait_event(cur_trans->writer_wait,
3185 				   atomic_read(&cur_trans->num_writers) == 1);
3186 				ret = update_block_group_item(trans, path, cache);
3187 			}
3188 			if (ret)
3189 				btrfs_abort_transaction(trans, ret);
3190 		}
3191 
3192 		/* If its not on the io list, we need to put the block group */
3193 		if (should_put)
3194 			btrfs_put_block_group(cache);
3195 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3196 		spin_lock(&cur_trans->dirty_bgs_lock);
3197 	}
3198 	spin_unlock(&cur_trans->dirty_bgs_lock);
3199 
3200 	/*
3201 	 * Refer to the definition of io_bgs member for details why it's safe
3202 	 * to use it without any locking
3203 	 */
3204 	while (!list_empty(io)) {
3205 		cache = list_first_entry(io, struct btrfs_block_group,
3206 					 io_list);
3207 		list_del_init(&cache->io_list);
3208 		btrfs_wait_cache_io(trans, cache, path);
3209 		btrfs_put_block_group(cache);
3210 	}
3211 
3212 	btrfs_free_path(path);
3213 	return ret;
3214 }
3215 
3216 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3217 					      u64 bytes_freed)
3218 {
3219 	const struct btrfs_space_info *space_info = bg->space_info;
3220 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3221 	const u64 new_val = bg->used;
3222 	const u64 old_val = new_val + bytes_freed;
3223 	u64 thresh;
3224 
3225 	if (reclaim_thresh == 0)
3226 		return false;
3227 
3228 	thresh = div_factor_fine(bg->length, reclaim_thresh);
3229 
3230 	/*
3231 	 * If we were below the threshold before don't reclaim, we are likely a
3232 	 * brand new block group and we don't want to relocate new block groups.
3233 	 */
3234 	if (old_val < thresh)
3235 		return false;
3236 	if (new_val >= thresh)
3237 		return false;
3238 	return true;
3239 }
3240 
3241 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3242 			     u64 bytenr, u64 num_bytes, bool alloc)
3243 {
3244 	struct btrfs_fs_info *info = trans->fs_info;
3245 	struct btrfs_block_group *cache = NULL;
3246 	u64 total = num_bytes;
3247 	u64 old_val;
3248 	u64 byte_in_group;
3249 	int factor;
3250 	int ret = 0;
3251 
3252 	/* Block accounting for super block */
3253 	spin_lock(&info->delalloc_root_lock);
3254 	old_val = btrfs_super_bytes_used(info->super_copy);
3255 	if (alloc)
3256 		old_val += num_bytes;
3257 	else
3258 		old_val -= num_bytes;
3259 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3260 	spin_unlock(&info->delalloc_root_lock);
3261 
3262 	while (total) {
3263 		bool reclaim;
3264 
3265 		cache = btrfs_lookup_block_group(info, bytenr);
3266 		if (!cache) {
3267 			ret = -ENOENT;
3268 			break;
3269 		}
3270 		factor = btrfs_bg_type_to_factor(cache->flags);
3271 
3272 		/*
3273 		 * If this block group has free space cache written out, we
3274 		 * need to make sure to load it if we are removing space.  This
3275 		 * is because we need the unpinning stage to actually add the
3276 		 * space back to the block group, otherwise we will leak space.
3277 		 */
3278 		if (!alloc && !btrfs_block_group_done(cache))
3279 			btrfs_cache_block_group(cache, true);
3280 
3281 		byte_in_group = bytenr - cache->start;
3282 		WARN_ON(byte_in_group > cache->length);
3283 
3284 		spin_lock(&cache->space_info->lock);
3285 		spin_lock(&cache->lock);
3286 
3287 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3288 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3289 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3290 
3291 		old_val = cache->used;
3292 		num_bytes = min(total, cache->length - byte_in_group);
3293 		if (alloc) {
3294 			old_val += num_bytes;
3295 			cache->used = old_val;
3296 			cache->reserved -= num_bytes;
3297 			cache->space_info->bytes_reserved -= num_bytes;
3298 			cache->space_info->bytes_used += num_bytes;
3299 			cache->space_info->disk_used += num_bytes * factor;
3300 			spin_unlock(&cache->lock);
3301 			spin_unlock(&cache->space_info->lock);
3302 		} else {
3303 			old_val -= num_bytes;
3304 			cache->used = old_val;
3305 			cache->pinned += num_bytes;
3306 			btrfs_space_info_update_bytes_pinned(info,
3307 					cache->space_info, num_bytes);
3308 			cache->space_info->bytes_used -= num_bytes;
3309 			cache->space_info->disk_used -= num_bytes * factor;
3310 
3311 			reclaim = should_reclaim_block_group(cache, num_bytes);
3312 			spin_unlock(&cache->lock);
3313 			spin_unlock(&cache->space_info->lock);
3314 
3315 			set_extent_dirty(&trans->transaction->pinned_extents,
3316 					 bytenr, bytenr + num_bytes - 1,
3317 					 GFP_NOFS | __GFP_NOFAIL);
3318 		}
3319 
3320 		spin_lock(&trans->transaction->dirty_bgs_lock);
3321 		if (list_empty(&cache->dirty_list)) {
3322 			list_add_tail(&cache->dirty_list,
3323 				      &trans->transaction->dirty_bgs);
3324 			trans->delayed_ref_updates++;
3325 			btrfs_get_block_group(cache);
3326 		}
3327 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3328 
3329 		/*
3330 		 * No longer have used bytes in this block group, queue it for
3331 		 * deletion. We do this after adding the block group to the
3332 		 * dirty list to avoid races between cleaner kthread and space
3333 		 * cache writeout.
3334 		 */
3335 		if (!alloc && old_val == 0) {
3336 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3337 				btrfs_mark_bg_unused(cache);
3338 		} else if (!alloc && reclaim) {
3339 			btrfs_mark_bg_to_reclaim(cache);
3340 		}
3341 
3342 		btrfs_put_block_group(cache);
3343 		total -= num_bytes;
3344 		bytenr += num_bytes;
3345 	}
3346 
3347 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3348 	btrfs_update_delayed_refs_rsv(trans);
3349 	return ret;
3350 }
3351 
3352 /**
3353  * btrfs_add_reserved_bytes - update the block_group and space info counters
3354  * @cache:	The cache we are manipulating
3355  * @ram_bytes:  The number of bytes of file content, and will be same to
3356  *              @num_bytes except for the compress path.
3357  * @num_bytes:	The number of bytes in question
3358  * @delalloc:   The blocks are allocated for the delalloc write
3359  *
3360  * This is called by the allocator when it reserves space. If this is a
3361  * reservation and the block group has become read only we cannot make the
3362  * reservation and return -EAGAIN, otherwise this function always succeeds.
3363  */
3364 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3365 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3366 {
3367 	struct btrfs_space_info *space_info = cache->space_info;
3368 	int ret = 0;
3369 
3370 	spin_lock(&space_info->lock);
3371 	spin_lock(&cache->lock);
3372 	if (cache->ro) {
3373 		ret = -EAGAIN;
3374 	} else {
3375 		cache->reserved += num_bytes;
3376 		space_info->bytes_reserved += num_bytes;
3377 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3378 					      space_info->flags, num_bytes, 1);
3379 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3380 						      space_info, -ram_bytes);
3381 		if (delalloc)
3382 			cache->delalloc_bytes += num_bytes;
3383 
3384 		/*
3385 		 * Compression can use less space than we reserved, so wake
3386 		 * tickets if that happens
3387 		 */
3388 		if (num_bytes < ram_bytes)
3389 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3390 	}
3391 	spin_unlock(&cache->lock);
3392 	spin_unlock(&space_info->lock);
3393 	return ret;
3394 }
3395 
3396 /**
3397  * btrfs_free_reserved_bytes - update the block_group and space info counters
3398  * @cache:      The cache we are manipulating
3399  * @num_bytes:  The number of bytes in question
3400  * @delalloc:   The blocks are allocated for the delalloc write
3401  *
3402  * This is called by somebody who is freeing space that was never actually used
3403  * on disk.  For example if you reserve some space for a new leaf in transaction
3404  * A and before transaction A commits you free that leaf, you call this with
3405  * reserve set to 0 in order to clear the reservation.
3406  */
3407 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3408 			       u64 num_bytes, int delalloc)
3409 {
3410 	struct btrfs_space_info *space_info = cache->space_info;
3411 
3412 	spin_lock(&space_info->lock);
3413 	spin_lock(&cache->lock);
3414 	if (cache->ro)
3415 		space_info->bytes_readonly += num_bytes;
3416 	cache->reserved -= num_bytes;
3417 	space_info->bytes_reserved -= num_bytes;
3418 	space_info->max_extent_size = 0;
3419 
3420 	if (delalloc)
3421 		cache->delalloc_bytes -= num_bytes;
3422 	spin_unlock(&cache->lock);
3423 
3424 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3425 	spin_unlock(&space_info->lock);
3426 }
3427 
3428 static void force_metadata_allocation(struct btrfs_fs_info *info)
3429 {
3430 	struct list_head *head = &info->space_info;
3431 	struct btrfs_space_info *found;
3432 
3433 	list_for_each_entry(found, head, list) {
3434 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3435 			found->force_alloc = CHUNK_ALLOC_FORCE;
3436 	}
3437 }
3438 
3439 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3440 			      struct btrfs_space_info *sinfo, int force)
3441 {
3442 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3443 	u64 thresh;
3444 
3445 	if (force == CHUNK_ALLOC_FORCE)
3446 		return 1;
3447 
3448 	/*
3449 	 * in limited mode, we want to have some free space up to
3450 	 * about 1% of the FS size.
3451 	 */
3452 	if (force == CHUNK_ALLOC_LIMITED) {
3453 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3454 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3455 
3456 		if (sinfo->total_bytes - bytes_used < thresh)
3457 			return 1;
3458 	}
3459 
3460 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3461 		return 0;
3462 	return 1;
3463 }
3464 
3465 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3466 {
3467 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3468 
3469 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3470 }
3471 
3472 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3473 {
3474 	struct btrfs_block_group *bg;
3475 	int ret;
3476 
3477 	/*
3478 	 * Check if we have enough space in the system space info because we
3479 	 * will need to update device items in the chunk btree and insert a new
3480 	 * chunk item in the chunk btree as well. This will allocate a new
3481 	 * system block group if needed.
3482 	 */
3483 	check_system_chunk(trans, flags);
3484 
3485 	bg = btrfs_create_chunk(trans, flags);
3486 	if (IS_ERR(bg)) {
3487 		ret = PTR_ERR(bg);
3488 		goto out;
3489 	}
3490 
3491 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3492 	/*
3493 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3494 	 * previously reserved space in the system space_info and allocated one
3495 	 * new system chunk if necessary. However there are three exceptions:
3496 	 *
3497 	 * 1) We may have enough free space in the system space_info but all the
3498 	 *    existing system block groups have a profile which can not be used
3499 	 *    for extent allocation.
3500 	 *
3501 	 *    This happens when mounting in degraded mode. For example we have a
3502 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3503 	 *    using the other device in degraded mode. If we then allocate a chunk,
3504 	 *    we may have enough free space in the existing system space_info, but
3505 	 *    none of the block groups can be used for extent allocation since they
3506 	 *    have a RAID1 profile, and because we are in degraded mode with a
3507 	 *    single device, we are forced to allocate a new system chunk with a
3508 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3509 	 *    block groups and check if they have a usable profile and enough space
3510 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3511 	 *    try again after forcing allocation of a new system chunk. Like this
3512 	 *    we avoid paying the cost of that search in normal circumstances, when
3513 	 *    we were not mounted in degraded mode;
3514 	 *
3515 	 * 2) We had enough free space info the system space_info, and one suitable
3516 	 *    block group to allocate from when we called check_system_chunk()
3517 	 *    above. However right after we called it, the only system block group
3518 	 *    with enough free space got turned into RO mode by a running scrub,
3519 	 *    and in this case we have to allocate a new one and retry. We only
3520 	 *    need do this allocate and retry once, since we have a transaction
3521 	 *    handle and scrub uses the commit root to search for block groups;
3522 	 *
3523 	 * 3) We had one system block group with enough free space when we called
3524 	 *    check_system_chunk(), but after that, right before we tried to
3525 	 *    allocate the last extent buffer we needed, a discard operation came
3526 	 *    in and it temporarily removed the last free space entry from the
3527 	 *    block group (discard removes a free space entry, discards it, and
3528 	 *    then adds back the entry to the block group cache).
3529 	 */
3530 	if (ret == -ENOSPC) {
3531 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3532 		struct btrfs_block_group *sys_bg;
3533 
3534 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3535 		if (IS_ERR(sys_bg)) {
3536 			ret = PTR_ERR(sys_bg);
3537 			btrfs_abort_transaction(trans, ret);
3538 			goto out;
3539 		}
3540 
3541 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3542 		if (ret) {
3543 			btrfs_abort_transaction(trans, ret);
3544 			goto out;
3545 		}
3546 
3547 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3548 		if (ret) {
3549 			btrfs_abort_transaction(trans, ret);
3550 			goto out;
3551 		}
3552 	} else if (ret) {
3553 		btrfs_abort_transaction(trans, ret);
3554 		goto out;
3555 	}
3556 out:
3557 	btrfs_trans_release_chunk_metadata(trans);
3558 
3559 	if (ret)
3560 		return ERR_PTR(ret);
3561 
3562 	btrfs_get_block_group(bg);
3563 	return bg;
3564 }
3565 
3566 /*
3567  * Chunk allocation is done in 2 phases:
3568  *
3569  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3570  *    the chunk, the chunk mapping, create its block group and add the items
3571  *    that belong in the chunk btree to it - more specifically, we need to
3572  *    update device items in the chunk btree and add a new chunk item to it.
3573  *
3574  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3575  *    group item to the extent btree and the device extent items to the devices
3576  *    btree.
3577  *
3578  * This is done to prevent deadlocks. For example when COWing a node from the
3579  * extent btree we are holding a write lock on the node's parent and if we
3580  * trigger chunk allocation and attempted to insert the new block group item
3581  * in the extent btree right way, we could deadlock because the path for the
3582  * insertion can include that parent node. At first glance it seems impossible
3583  * to trigger chunk allocation after starting a transaction since tasks should
3584  * reserve enough transaction units (metadata space), however while that is true
3585  * most of the time, chunk allocation may still be triggered for several reasons:
3586  *
3587  * 1) When reserving metadata, we check if there is enough free space in the
3588  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3589  *    However later when the task actually tries to COW an extent buffer from
3590  *    the extent btree or from the device btree for example, it is forced to
3591  *    allocate a new block group (chunk) because the only one that had enough
3592  *    free space was just turned to RO mode by a running scrub for example (or
3593  *    device replace, block group reclaim thread, etc), so we can not use it
3594  *    for allocating an extent and end up being forced to allocate a new one;
3595  *
3596  * 2) Because we only check that the metadata space_info has enough free bytes,
3597  *    we end up not allocating a new metadata chunk in that case. However if
3598  *    the filesystem was mounted in degraded mode, none of the existing block
3599  *    groups might be suitable for extent allocation due to their incompatible
3600  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3601  *    use a RAID1 profile, in degraded mode using a single device). In this case
3602  *    when the task attempts to COW some extent buffer of the extent btree for
3603  *    example, it will trigger allocation of a new metadata block group with a
3604  *    suitable profile (SINGLE profile in the example of the degraded mount of
3605  *    the RAID1 filesystem);
3606  *
3607  * 3) The task has reserved enough transaction units / metadata space, but when
3608  *    it attempts to COW an extent buffer from the extent or device btree for
3609  *    example, it does not find any free extent in any metadata block group,
3610  *    therefore forced to try to allocate a new metadata block group.
3611  *    This is because some other task allocated all available extents in the
3612  *    meanwhile - this typically happens with tasks that don't reserve space
3613  *    properly, either intentionally or as a bug. One example where this is
3614  *    done intentionally is fsync, as it does not reserve any transaction units
3615  *    and ends up allocating a variable number of metadata extents for log
3616  *    tree extent buffers;
3617  *
3618  * 4) The task has reserved enough transaction units / metadata space, but right
3619  *    before it tries to allocate the last extent buffer it needs, a discard
3620  *    operation comes in and, temporarily, removes the last free space entry from
3621  *    the only metadata block group that had free space (discard starts by
3622  *    removing a free space entry from a block group, then does the discard
3623  *    operation and, once it's done, it adds back the free space entry to the
3624  *    block group).
3625  *
3626  * We also need this 2 phases setup when adding a device to a filesystem with
3627  * a seed device - we must create new metadata and system chunks without adding
3628  * any of the block group items to the chunk, extent and device btrees. If we
3629  * did not do it this way, we would get ENOSPC when attempting to update those
3630  * btrees, since all the chunks from the seed device are read-only.
3631  *
3632  * Phase 1 does the updates and insertions to the chunk btree because if we had
3633  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3634  * parallel, we risk having too many system chunks allocated by many tasks if
3635  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3636  * extreme case this leads to exhaustion of the system chunk array in the
3637  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3638  * and with RAID filesystems (so we have more device items in the chunk btree).
3639  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3640  * the system chunk array due to concurrent allocations") provides more details.
3641  *
3642  * Allocation of system chunks does not happen through this function. A task that
3643  * needs to update the chunk btree (the only btree that uses system chunks), must
3644  * preallocate chunk space by calling either check_system_chunk() or
3645  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3646  * metadata chunk or when removing a chunk, while the later is used before doing
3647  * a modification to the chunk btree - use cases for the later are adding,
3648  * removing and resizing a device as well as relocation of a system chunk.
3649  * See the comment below for more details.
3650  *
3651  * The reservation of system space, done through check_system_chunk(), as well
3652  * as all the updates and insertions into the chunk btree must be done while
3653  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3654  * an extent buffer from the chunks btree we never trigger allocation of a new
3655  * system chunk, which would result in a deadlock (trying to lock twice an
3656  * extent buffer of the chunk btree, first time before triggering the chunk
3657  * allocation and the second time during chunk allocation while attempting to
3658  * update the chunks btree). The system chunk array is also updated while holding
3659  * that mutex. The same logic applies to removing chunks - we must reserve system
3660  * space, update the chunk btree and the system chunk array in the superblock
3661  * while holding fs_info->chunk_mutex.
3662  *
3663  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3664  *
3665  * If @force is CHUNK_ALLOC_FORCE:
3666  *    - return 1 if it successfully allocates a chunk,
3667  *    - return errors including -ENOSPC otherwise.
3668  * If @force is NOT CHUNK_ALLOC_FORCE:
3669  *    - return 0 if it doesn't need to allocate a new chunk,
3670  *    - return 1 if it successfully allocates a chunk,
3671  *    - return errors including -ENOSPC otherwise.
3672  */
3673 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3674 		      enum btrfs_chunk_alloc_enum force)
3675 {
3676 	struct btrfs_fs_info *fs_info = trans->fs_info;
3677 	struct btrfs_space_info *space_info;
3678 	struct btrfs_block_group *ret_bg;
3679 	bool wait_for_alloc = false;
3680 	bool should_alloc = false;
3681 	bool from_extent_allocation = false;
3682 	int ret = 0;
3683 
3684 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3685 		from_extent_allocation = true;
3686 		force = CHUNK_ALLOC_FORCE;
3687 	}
3688 
3689 	/* Don't re-enter if we're already allocating a chunk */
3690 	if (trans->allocating_chunk)
3691 		return -ENOSPC;
3692 	/*
3693 	 * Allocation of system chunks can not happen through this path, as we
3694 	 * could end up in a deadlock if we are allocating a data or metadata
3695 	 * chunk and there is another task modifying the chunk btree.
3696 	 *
3697 	 * This is because while we are holding the chunk mutex, we will attempt
3698 	 * to add the new chunk item to the chunk btree or update an existing
3699 	 * device item in the chunk btree, while the other task that is modifying
3700 	 * the chunk btree is attempting to COW an extent buffer while holding a
3701 	 * lock on it and on its parent - if the COW operation triggers a system
3702 	 * chunk allocation, then we can deadlock because we are holding the
3703 	 * chunk mutex and we may need to access that extent buffer or its parent
3704 	 * in order to add the chunk item or update a device item.
3705 	 *
3706 	 * Tasks that want to modify the chunk tree should reserve system space
3707 	 * before updating the chunk btree, by calling either
3708 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3709 	 * It's possible that after a task reserves the space, it still ends up
3710 	 * here - this happens in the cases described above at do_chunk_alloc().
3711 	 * The task will have to either retry or fail.
3712 	 */
3713 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3714 		return -ENOSPC;
3715 
3716 	space_info = btrfs_find_space_info(fs_info, flags);
3717 	ASSERT(space_info);
3718 
3719 	do {
3720 		spin_lock(&space_info->lock);
3721 		if (force < space_info->force_alloc)
3722 			force = space_info->force_alloc;
3723 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3724 		if (space_info->full) {
3725 			/* No more free physical space */
3726 			if (should_alloc)
3727 				ret = -ENOSPC;
3728 			else
3729 				ret = 0;
3730 			spin_unlock(&space_info->lock);
3731 			return ret;
3732 		} else if (!should_alloc) {
3733 			spin_unlock(&space_info->lock);
3734 			return 0;
3735 		} else if (space_info->chunk_alloc) {
3736 			/*
3737 			 * Someone is already allocating, so we need to block
3738 			 * until this someone is finished and then loop to
3739 			 * recheck if we should continue with our allocation
3740 			 * attempt.
3741 			 */
3742 			wait_for_alloc = true;
3743 			force = CHUNK_ALLOC_NO_FORCE;
3744 			spin_unlock(&space_info->lock);
3745 			mutex_lock(&fs_info->chunk_mutex);
3746 			mutex_unlock(&fs_info->chunk_mutex);
3747 		} else {
3748 			/* Proceed with allocation */
3749 			space_info->chunk_alloc = 1;
3750 			wait_for_alloc = false;
3751 			spin_unlock(&space_info->lock);
3752 		}
3753 
3754 		cond_resched();
3755 	} while (wait_for_alloc);
3756 
3757 	mutex_lock(&fs_info->chunk_mutex);
3758 	trans->allocating_chunk = true;
3759 
3760 	/*
3761 	 * If we have mixed data/metadata chunks we want to make sure we keep
3762 	 * allocating mixed chunks instead of individual chunks.
3763 	 */
3764 	if (btrfs_mixed_space_info(space_info))
3765 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3766 
3767 	/*
3768 	 * if we're doing a data chunk, go ahead and make sure that
3769 	 * we keep a reasonable number of metadata chunks allocated in the
3770 	 * FS as well.
3771 	 */
3772 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3773 		fs_info->data_chunk_allocations++;
3774 		if (!(fs_info->data_chunk_allocations %
3775 		      fs_info->metadata_ratio))
3776 			force_metadata_allocation(fs_info);
3777 	}
3778 
3779 	ret_bg = do_chunk_alloc(trans, flags);
3780 	trans->allocating_chunk = false;
3781 
3782 	if (IS_ERR(ret_bg)) {
3783 		ret = PTR_ERR(ret_bg);
3784 	} else if (from_extent_allocation) {
3785 		/*
3786 		 * New block group is likely to be used soon. Try to activate
3787 		 * it now. Failure is OK for now.
3788 		 */
3789 		btrfs_zone_activate(ret_bg);
3790 	}
3791 
3792 	if (!ret)
3793 		btrfs_put_block_group(ret_bg);
3794 
3795 	spin_lock(&space_info->lock);
3796 	if (ret < 0) {
3797 		if (ret == -ENOSPC)
3798 			space_info->full = 1;
3799 		else
3800 			goto out;
3801 	} else {
3802 		ret = 1;
3803 		space_info->max_extent_size = 0;
3804 	}
3805 
3806 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3807 out:
3808 	space_info->chunk_alloc = 0;
3809 	spin_unlock(&space_info->lock);
3810 	mutex_unlock(&fs_info->chunk_mutex);
3811 
3812 	return ret;
3813 }
3814 
3815 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3816 {
3817 	u64 num_dev;
3818 
3819 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3820 	if (!num_dev)
3821 		num_dev = fs_info->fs_devices->rw_devices;
3822 
3823 	return num_dev;
3824 }
3825 
3826 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3827 				u64 bytes,
3828 				u64 type)
3829 {
3830 	struct btrfs_fs_info *fs_info = trans->fs_info;
3831 	struct btrfs_space_info *info;
3832 	u64 left;
3833 	int ret = 0;
3834 
3835 	/*
3836 	 * Needed because we can end up allocating a system chunk and for an
3837 	 * atomic and race free space reservation in the chunk block reserve.
3838 	 */
3839 	lockdep_assert_held(&fs_info->chunk_mutex);
3840 
3841 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3842 	spin_lock(&info->lock);
3843 	left = info->total_bytes - btrfs_space_info_used(info, true);
3844 	spin_unlock(&info->lock);
3845 
3846 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3847 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3848 			   left, bytes, type);
3849 		btrfs_dump_space_info(fs_info, info, 0, 0);
3850 	}
3851 
3852 	if (left < bytes) {
3853 		u64 flags = btrfs_system_alloc_profile(fs_info);
3854 		struct btrfs_block_group *bg;
3855 
3856 		/*
3857 		 * Ignore failure to create system chunk. We might end up not
3858 		 * needing it, as we might not need to COW all nodes/leafs from
3859 		 * the paths we visit in the chunk tree (they were already COWed
3860 		 * or created in the current transaction for example).
3861 		 */
3862 		bg = btrfs_create_chunk(trans, flags);
3863 		if (IS_ERR(bg)) {
3864 			ret = PTR_ERR(bg);
3865 		} else {
3866 			/*
3867 			 * We have a new chunk. We also need to activate it for
3868 			 * zoned filesystem.
3869 			 */
3870 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3871 			if (ret < 0)
3872 				return;
3873 
3874 			/*
3875 			 * If we fail to add the chunk item here, we end up
3876 			 * trying again at phase 2 of chunk allocation, at
3877 			 * btrfs_create_pending_block_groups(). So ignore
3878 			 * any error here. An ENOSPC here could happen, due to
3879 			 * the cases described at do_chunk_alloc() - the system
3880 			 * block group we just created was just turned into RO
3881 			 * mode by a scrub for example, or a running discard
3882 			 * temporarily removed its free space entries, etc.
3883 			 */
3884 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3885 		}
3886 	}
3887 
3888 	if (!ret) {
3889 		ret = btrfs_block_rsv_add(fs_info,
3890 					  &fs_info->chunk_block_rsv,
3891 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3892 		if (!ret)
3893 			trans->chunk_bytes_reserved += bytes;
3894 	}
3895 }
3896 
3897 /*
3898  * Reserve space in the system space for allocating or removing a chunk.
3899  * The caller must be holding fs_info->chunk_mutex.
3900  */
3901 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3902 {
3903 	struct btrfs_fs_info *fs_info = trans->fs_info;
3904 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3905 	u64 bytes;
3906 
3907 	/* num_devs device items to update and 1 chunk item to add or remove. */
3908 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3909 		btrfs_calc_insert_metadata_size(fs_info, 1);
3910 
3911 	reserve_chunk_space(trans, bytes, type);
3912 }
3913 
3914 /*
3915  * Reserve space in the system space, if needed, for doing a modification to the
3916  * chunk btree.
3917  *
3918  * @trans:		A transaction handle.
3919  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3920  *			in the chunk btree or if it's for the deletion or update
3921  *			of an existing item.
3922  *
3923  * This is used in a context where we need to update the chunk btree outside
3924  * block group allocation and removal, to avoid a deadlock with a concurrent
3925  * task that is allocating a metadata or data block group and therefore needs to
3926  * update the chunk btree while holding the chunk mutex. After the update to the
3927  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3928  *
3929  */
3930 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3931 				  bool is_item_insertion)
3932 {
3933 	struct btrfs_fs_info *fs_info = trans->fs_info;
3934 	u64 bytes;
3935 
3936 	if (is_item_insertion)
3937 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3938 	else
3939 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3940 
3941 	mutex_lock(&fs_info->chunk_mutex);
3942 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3943 	mutex_unlock(&fs_info->chunk_mutex);
3944 }
3945 
3946 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3947 {
3948 	struct btrfs_block_group *block_group;
3949 
3950 	block_group = btrfs_lookup_first_block_group(info, 0);
3951 	while (block_group) {
3952 		btrfs_wait_block_group_cache_done(block_group);
3953 		spin_lock(&block_group->lock);
3954 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
3955 				       &block_group->runtime_flags)) {
3956 			struct inode *inode = block_group->inode;
3957 
3958 			block_group->inode = NULL;
3959 			spin_unlock(&block_group->lock);
3960 
3961 			ASSERT(block_group->io_ctl.inode == NULL);
3962 			iput(inode);
3963 		} else {
3964 			spin_unlock(&block_group->lock);
3965 		}
3966 		block_group = btrfs_next_block_group(block_group);
3967 	}
3968 }
3969 
3970 /*
3971  * Must be called only after stopping all workers, since we could have block
3972  * group caching kthreads running, and therefore they could race with us if we
3973  * freed the block groups before stopping them.
3974  */
3975 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3976 {
3977 	struct btrfs_block_group *block_group;
3978 	struct btrfs_space_info *space_info;
3979 	struct btrfs_caching_control *caching_ctl;
3980 	struct rb_node *n;
3981 
3982 	write_lock(&info->block_group_cache_lock);
3983 	while (!list_empty(&info->caching_block_groups)) {
3984 		caching_ctl = list_entry(info->caching_block_groups.next,
3985 					 struct btrfs_caching_control, list);
3986 		list_del(&caching_ctl->list);
3987 		btrfs_put_caching_control(caching_ctl);
3988 	}
3989 	write_unlock(&info->block_group_cache_lock);
3990 
3991 	spin_lock(&info->unused_bgs_lock);
3992 	while (!list_empty(&info->unused_bgs)) {
3993 		block_group = list_first_entry(&info->unused_bgs,
3994 					       struct btrfs_block_group,
3995 					       bg_list);
3996 		list_del_init(&block_group->bg_list);
3997 		btrfs_put_block_group(block_group);
3998 	}
3999 
4000 	while (!list_empty(&info->reclaim_bgs)) {
4001 		block_group = list_first_entry(&info->reclaim_bgs,
4002 					       struct btrfs_block_group,
4003 					       bg_list);
4004 		list_del_init(&block_group->bg_list);
4005 		btrfs_put_block_group(block_group);
4006 	}
4007 	spin_unlock(&info->unused_bgs_lock);
4008 
4009 	spin_lock(&info->zone_active_bgs_lock);
4010 	while (!list_empty(&info->zone_active_bgs)) {
4011 		block_group = list_first_entry(&info->zone_active_bgs,
4012 					       struct btrfs_block_group,
4013 					       active_bg_list);
4014 		list_del_init(&block_group->active_bg_list);
4015 		btrfs_put_block_group(block_group);
4016 	}
4017 	spin_unlock(&info->zone_active_bgs_lock);
4018 
4019 	write_lock(&info->block_group_cache_lock);
4020 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4021 		block_group = rb_entry(n, struct btrfs_block_group,
4022 				       cache_node);
4023 		rb_erase_cached(&block_group->cache_node,
4024 				&info->block_group_cache_tree);
4025 		RB_CLEAR_NODE(&block_group->cache_node);
4026 		write_unlock(&info->block_group_cache_lock);
4027 
4028 		down_write(&block_group->space_info->groups_sem);
4029 		list_del(&block_group->list);
4030 		up_write(&block_group->space_info->groups_sem);
4031 
4032 		/*
4033 		 * We haven't cached this block group, which means we could
4034 		 * possibly have excluded extents on this block group.
4035 		 */
4036 		if (block_group->cached == BTRFS_CACHE_NO ||
4037 		    block_group->cached == BTRFS_CACHE_ERROR)
4038 			btrfs_free_excluded_extents(block_group);
4039 
4040 		btrfs_remove_free_space_cache(block_group);
4041 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4042 		ASSERT(list_empty(&block_group->dirty_list));
4043 		ASSERT(list_empty(&block_group->io_list));
4044 		ASSERT(list_empty(&block_group->bg_list));
4045 		ASSERT(refcount_read(&block_group->refs) == 1);
4046 		ASSERT(block_group->swap_extents == 0);
4047 		btrfs_put_block_group(block_group);
4048 
4049 		write_lock(&info->block_group_cache_lock);
4050 	}
4051 	write_unlock(&info->block_group_cache_lock);
4052 
4053 	btrfs_release_global_block_rsv(info);
4054 
4055 	while (!list_empty(&info->space_info)) {
4056 		space_info = list_entry(info->space_info.next,
4057 					struct btrfs_space_info,
4058 					list);
4059 
4060 		/*
4061 		 * Do not hide this behind enospc_debug, this is actually
4062 		 * important and indicates a real bug if this happens.
4063 		 */
4064 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4065 			    space_info->bytes_may_use > 0))
4066 			btrfs_dump_space_info(info, space_info, 0, 0);
4067 
4068 		/*
4069 		 * If there was a failure to cleanup a log tree, very likely due
4070 		 * to an IO failure on a writeback attempt of one or more of its
4071 		 * extent buffers, we could not do proper (and cheap) unaccounting
4072 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4073 		 * that case.
4074 		 */
4075 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4076 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4077 			if (WARN_ON(space_info->bytes_reserved > 0))
4078 				btrfs_dump_space_info(info, space_info, 0, 0);
4079 		}
4080 
4081 		WARN_ON(space_info->reclaim_size > 0);
4082 		list_del(&space_info->list);
4083 		btrfs_sysfs_remove_space_info(space_info);
4084 	}
4085 	return 0;
4086 }
4087 
4088 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4089 {
4090 	atomic_inc(&cache->frozen);
4091 }
4092 
4093 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4094 {
4095 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4096 	struct extent_map_tree *em_tree;
4097 	struct extent_map *em;
4098 	bool cleanup;
4099 
4100 	spin_lock(&block_group->lock);
4101 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4102 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4103 	spin_unlock(&block_group->lock);
4104 
4105 	if (cleanup) {
4106 		em_tree = &fs_info->mapping_tree;
4107 		write_lock(&em_tree->lock);
4108 		em = lookup_extent_mapping(em_tree, block_group->start,
4109 					   1);
4110 		BUG_ON(!em); /* logic error, can't happen */
4111 		remove_extent_mapping(em_tree, em);
4112 		write_unlock(&em_tree->lock);
4113 
4114 		/* once for us and once for the tree */
4115 		free_extent_map(em);
4116 		free_extent_map(em);
4117 
4118 		/*
4119 		 * We may have left one free space entry and other possible
4120 		 * tasks trimming this block group have left 1 entry each one.
4121 		 * Free them if any.
4122 		 */
4123 		btrfs_remove_free_space_cache(block_group);
4124 	}
4125 }
4126 
4127 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4128 {
4129 	bool ret = true;
4130 
4131 	spin_lock(&bg->lock);
4132 	if (bg->ro)
4133 		ret = false;
4134 	else
4135 		bg->swap_extents++;
4136 	spin_unlock(&bg->lock);
4137 
4138 	return ret;
4139 }
4140 
4141 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4142 {
4143 	spin_lock(&bg->lock);
4144 	ASSERT(!bg->ro);
4145 	ASSERT(bg->swap_extents >= amount);
4146 	bg->swap_extents -= amount;
4147 	spin_unlock(&bg->lock);
4148 }
4149