1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 /* 128 * If there was a failure to cleanup a log tree, very likely due 129 * to an IO failure on a writeback attempt of one or more of its 130 * extent buffers, we could not do proper (and cheap) unaccounting 131 * of their reserved space, so don't warn on reserved > 0 in that 132 * case. 133 */ 134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 136 WARN_ON(cache->reserved > 0); 137 138 /* 139 * A block_group shouldn't be on the discard_list anymore. 140 * Remove the block_group from the discard_list to prevent us 141 * from causing a panic due to NULL pointer dereference. 142 */ 143 if (WARN_ON(!list_empty(&cache->discard_list))) 144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 145 cache); 146 147 /* 148 * If not empty, someone is still holding mutex of 149 * full_stripe_lock, which can only be released by caller. 150 * And it will definitely cause use-after-free when caller 151 * tries to release full stripe lock. 152 * 153 * No better way to resolve, but only to warn. 154 */ 155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 156 kfree(cache->free_space_ctl); 157 kfree(cache->physical_map); 158 kfree(cache); 159 } 160 } 161 162 /* 163 * This adds the block group to the fs_info rb tree for the block group cache 164 */ 165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 166 struct btrfs_block_group *block_group) 167 { 168 struct rb_node **p; 169 struct rb_node *parent = NULL; 170 struct btrfs_block_group *cache; 171 bool leftmost = true; 172 173 ASSERT(block_group->length != 0); 174 175 write_lock(&info->block_group_cache_lock); 176 p = &info->block_group_cache_tree.rb_root.rb_node; 177 178 while (*p) { 179 parent = *p; 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 181 if (block_group->start < cache->start) { 182 p = &(*p)->rb_left; 183 } else if (block_group->start > cache->start) { 184 p = &(*p)->rb_right; 185 leftmost = false; 186 } else { 187 write_unlock(&info->block_group_cache_lock); 188 return -EEXIST; 189 } 190 } 191 192 rb_link_node(&block_group->cache_node, parent, p); 193 rb_insert_color_cached(&block_group->cache_node, 194 &info->block_group_cache_tree, leftmost); 195 196 write_unlock(&info->block_group_cache_lock); 197 198 return 0; 199 } 200 201 /* 202 * This will return the block group at or after bytenr if contains is 0, else 203 * it will return the block group that contains the bytenr 204 */ 205 static struct btrfs_block_group *block_group_cache_tree_search( 206 struct btrfs_fs_info *info, u64 bytenr, int contains) 207 { 208 struct btrfs_block_group *cache, *ret = NULL; 209 struct rb_node *n; 210 u64 end, start; 211 212 read_lock(&info->block_group_cache_lock); 213 n = info->block_group_cache_tree.rb_root.rb_node; 214 215 while (n) { 216 cache = rb_entry(n, struct btrfs_block_group, cache_node); 217 end = cache->start + cache->length - 1; 218 start = cache->start; 219 220 if (bytenr < start) { 221 if (!contains && (!ret || start < ret->start)) 222 ret = cache; 223 n = n->rb_left; 224 } else if (bytenr > start) { 225 if (contains && bytenr <= end) { 226 ret = cache; 227 break; 228 } 229 n = n->rb_right; 230 } else { 231 ret = cache; 232 break; 233 } 234 } 235 if (ret) 236 btrfs_get_block_group(ret); 237 read_unlock(&info->block_group_cache_lock); 238 239 return ret; 240 } 241 242 /* 243 * Return the block group that starts at or after bytenr 244 */ 245 struct btrfs_block_group *btrfs_lookup_first_block_group( 246 struct btrfs_fs_info *info, u64 bytenr) 247 { 248 return block_group_cache_tree_search(info, bytenr, 0); 249 } 250 251 /* 252 * Return the block group that contains the given bytenr 253 */ 254 struct btrfs_block_group *btrfs_lookup_block_group( 255 struct btrfs_fs_info *info, u64 bytenr) 256 { 257 return block_group_cache_tree_search(info, bytenr, 1); 258 } 259 260 struct btrfs_block_group *btrfs_next_block_group( 261 struct btrfs_block_group *cache) 262 { 263 struct btrfs_fs_info *fs_info = cache->fs_info; 264 struct rb_node *node; 265 266 read_lock(&fs_info->block_group_cache_lock); 267 268 /* If our block group was removed, we need a full search. */ 269 if (RB_EMPTY_NODE(&cache->cache_node)) { 270 const u64 next_bytenr = cache->start + cache->length; 271 272 read_unlock(&fs_info->block_group_cache_lock); 273 btrfs_put_block_group(cache); 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 275 } 276 node = rb_next(&cache->cache_node); 277 btrfs_put_block_group(cache); 278 if (node) { 279 cache = rb_entry(node, struct btrfs_block_group, cache_node); 280 btrfs_get_block_group(cache); 281 } else 282 cache = NULL; 283 read_unlock(&fs_info->block_group_cache_lock); 284 return cache; 285 } 286 287 /** 288 * Check if we can do a NOCOW write for a given extent. 289 * 290 * @fs_info: The filesystem information object. 291 * @bytenr: Logical start address of the extent. 292 * 293 * Check if we can do a NOCOW write for the given extent, and increments the 294 * number of NOCOW writers in the block group that contains the extent, as long 295 * as the block group exists and it's currently not in read-only mode. 296 * 297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 298 * is responsible for calling btrfs_dec_nocow_writers() later. 299 * 300 * Or NULL if we can not do a NOCOW write 301 */ 302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 303 u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 bool can_nocow = true; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 if (!bg) 310 return NULL; 311 312 spin_lock(&bg->lock); 313 if (bg->ro) 314 can_nocow = false; 315 else 316 atomic_inc(&bg->nocow_writers); 317 spin_unlock(&bg->lock); 318 319 if (!can_nocow) { 320 btrfs_put_block_group(bg); 321 return NULL; 322 } 323 324 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 325 return bg; 326 } 327 328 /** 329 * Decrement the number of NOCOW writers in a block group. 330 * 331 * @bg: The block group. 332 * 333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 334 * and on the block group returned by that call. Typically this is called after 335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 336 * relocation. 337 * 338 * After this call, the caller should not use the block group anymore. It it wants 339 * to use it, then it should get a reference on it before calling this function. 340 */ 341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 342 { 343 if (atomic_dec_and_test(&bg->nocow_writers)) 344 wake_up_var(&bg->nocow_writers); 345 346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 347 btrfs_put_block_group(bg); 348 } 349 350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 351 { 352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 353 } 354 355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 356 const u64 start) 357 { 358 struct btrfs_block_group *bg; 359 360 bg = btrfs_lookup_block_group(fs_info, start); 361 ASSERT(bg); 362 if (atomic_dec_and_test(&bg->reservations)) 363 wake_up_var(&bg->reservations); 364 btrfs_put_block_group(bg); 365 } 366 367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 368 { 369 struct btrfs_space_info *space_info = bg->space_info; 370 371 ASSERT(bg->ro); 372 373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 374 return; 375 376 /* 377 * Our block group is read only but before we set it to read only, 378 * some task might have had allocated an extent from it already, but it 379 * has not yet created a respective ordered extent (and added it to a 380 * root's list of ordered extents). 381 * Therefore wait for any task currently allocating extents, since the 382 * block group's reservations counter is incremented while a read lock 383 * on the groups' semaphore is held and decremented after releasing 384 * the read access on that semaphore and creating the ordered extent. 385 */ 386 down_write(&space_info->groups_sem); 387 up_write(&space_info->groups_sem); 388 389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 390 } 391 392 struct btrfs_caching_control *btrfs_get_caching_control( 393 struct btrfs_block_group *cache) 394 { 395 struct btrfs_caching_control *ctl; 396 397 spin_lock(&cache->lock); 398 if (!cache->caching_ctl) { 399 spin_unlock(&cache->lock); 400 return NULL; 401 } 402 403 ctl = cache->caching_ctl; 404 refcount_inc(&ctl->count); 405 spin_unlock(&cache->lock); 406 return ctl; 407 } 408 409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 410 { 411 if (refcount_dec_and_test(&ctl->count)) 412 kfree(ctl); 413 } 414 415 /* 416 * When we wait for progress in the block group caching, its because our 417 * allocation attempt failed at least once. So, we must sleep and let some 418 * progress happen before we try again. 419 * 420 * This function will sleep at least once waiting for new free space to show 421 * up, and then it will check the block group free space numbers for our min 422 * num_bytes. Another option is to have it go ahead and look in the rbtree for 423 * a free extent of a given size, but this is a good start. 424 * 425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 426 * any of the information in this block group. 427 */ 428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 429 u64 num_bytes) 430 { 431 struct btrfs_caching_control *caching_ctl; 432 433 caching_ctl = btrfs_get_caching_control(cache); 434 if (!caching_ctl) 435 return; 436 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 438 (cache->free_space_ctl->free_space >= num_bytes)); 439 440 btrfs_put_caching_control(caching_ctl); 441 } 442 443 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 444 { 445 struct btrfs_caching_control *caching_ctl; 446 int ret = 0; 447 448 caching_ctl = btrfs_get_caching_control(cache); 449 if (!caching_ctl) 450 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 451 452 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 453 if (cache->cached == BTRFS_CACHE_ERROR) 454 ret = -EIO; 455 btrfs_put_caching_control(caching_ctl); 456 return ret; 457 } 458 459 static bool space_cache_v1_done(struct btrfs_block_group *cache) 460 { 461 bool ret; 462 463 spin_lock(&cache->lock); 464 ret = cache->cached != BTRFS_CACHE_FAST; 465 spin_unlock(&cache->lock); 466 467 return ret; 468 } 469 470 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 471 struct btrfs_caching_control *caching_ctl) 472 { 473 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 474 } 475 476 #ifdef CONFIG_BTRFS_DEBUG 477 static void fragment_free_space(struct btrfs_block_group *block_group) 478 { 479 struct btrfs_fs_info *fs_info = block_group->fs_info; 480 u64 start = block_group->start; 481 u64 len = block_group->length; 482 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 483 fs_info->nodesize : fs_info->sectorsize; 484 u64 step = chunk << 1; 485 486 while (len > chunk) { 487 btrfs_remove_free_space(block_group, start, chunk); 488 start += step; 489 if (len < step) 490 len = 0; 491 else 492 len -= step; 493 } 494 } 495 #endif 496 497 /* 498 * This is only called by btrfs_cache_block_group, since we could have freed 499 * extents we need to check the pinned_extents for any extents that can't be 500 * used yet since their free space will be released as soon as the transaction 501 * commits. 502 */ 503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 504 { 505 struct btrfs_fs_info *info = block_group->fs_info; 506 u64 extent_start, extent_end, size, total_added = 0; 507 int ret; 508 509 while (start < end) { 510 ret = find_first_extent_bit(&info->excluded_extents, start, 511 &extent_start, &extent_end, 512 EXTENT_DIRTY | EXTENT_UPTODATE, 513 NULL); 514 if (ret) 515 break; 516 517 if (extent_start <= start) { 518 start = extent_end + 1; 519 } else if (extent_start > start && extent_start < end) { 520 size = extent_start - start; 521 total_added += size; 522 ret = btrfs_add_free_space_async_trimmed(block_group, 523 start, size); 524 BUG_ON(ret); /* -ENOMEM or logic error */ 525 start = extent_end + 1; 526 } else { 527 break; 528 } 529 } 530 531 if (start < end) { 532 size = end - start; 533 total_added += size; 534 ret = btrfs_add_free_space_async_trimmed(block_group, start, 535 size); 536 BUG_ON(ret); /* -ENOMEM or logic error */ 537 } 538 539 return total_added; 540 } 541 542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 543 { 544 struct btrfs_block_group *block_group = caching_ctl->block_group; 545 struct btrfs_fs_info *fs_info = block_group->fs_info; 546 struct btrfs_root *extent_root; 547 struct btrfs_path *path; 548 struct extent_buffer *leaf; 549 struct btrfs_key key; 550 u64 total_found = 0; 551 u64 last = 0; 552 u32 nritems; 553 int ret; 554 bool wakeup = true; 555 556 path = btrfs_alloc_path(); 557 if (!path) 558 return -ENOMEM; 559 560 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 561 extent_root = btrfs_extent_root(fs_info, last); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 /* 565 * If we're fragmenting we don't want to make anybody think we can 566 * allocate from this block group until we've had a chance to fragment 567 * the free space. 568 */ 569 if (btrfs_should_fragment_free_space(block_group)) 570 wakeup = false; 571 #endif 572 /* 573 * We don't want to deadlock with somebody trying to allocate a new 574 * extent for the extent root while also trying to search the extent 575 * root to add free space. So we skip locking and search the commit 576 * root, since its read-only 577 */ 578 path->skip_locking = 1; 579 path->search_commit_root = 1; 580 path->reada = READA_FORWARD; 581 582 key.objectid = last; 583 key.offset = 0; 584 key.type = BTRFS_EXTENT_ITEM_KEY; 585 586 next: 587 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 588 if (ret < 0) 589 goto out; 590 591 leaf = path->nodes[0]; 592 nritems = btrfs_header_nritems(leaf); 593 594 while (1) { 595 if (btrfs_fs_closing(fs_info) > 1) { 596 last = (u64)-1; 597 break; 598 } 599 600 if (path->slots[0] < nritems) { 601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 602 } else { 603 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 604 if (ret) 605 break; 606 607 if (need_resched() || 608 rwsem_is_contended(&fs_info->commit_root_sem)) { 609 if (wakeup) 610 caching_ctl->progress = last; 611 btrfs_release_path(path); 612 up_read(&fs_info->commit_root_sem); 613 mutex_unlock(&caching_ctl->mutex); 614 cond_resched(); 615 mutex_lock(&caching_ctl->mutex); 616 down_read(&fs_info->commit_root_sem); 617 goto next; 618 } 619 620 ret = btrfs_next_leaf(extent_root, path); 621 if (ret < 0) 622 goto out; 623 if (ret) 624 break; 625 leaf = path->nodes[0]; 626 nritems = btrfs_header_nritems(leaf); 627 continue; 628 } 629 630 if (key.objectid < last) { 631 key.objectid = last; 632 key.offset = 0; 633 key.type = BTRFS_EXTENT_ITEM_KEY; 634 635 if (wakeup) 636 caching_ctl->progress = last; 637 btrfs_release_path(path); 638 goto next; 639 } 640 641 if (key.objectid < block_group->start) { 642 path->slots[0]++; 643 continue; 644 } 645 646 if (key.objectid >= block_group->start + block_group->length) 647 break; 648 649 if (key.type == BTRFS_EXTENT_ITEM_KEY || 650 key.type == BTRFS_METADATA_ITEM_KEY) { 651 total_found += add_new_free_space(block_group, last, 652 key.objectid); 653 if (key.type == BTRFS_METADATA_ITEM_KEY) 654 last = key.objectid + 655 fs_info->nodesize; 656 else 657 last = key.objectid + key.offset; 658 659 if (total_found > CACHING_CTL_WAKE_UP) { 660 total_found = 0; 661 if (wakeup) 662 wake_up(&caching_ctl->wait); 663 } 664 } 665 path->slots[0]++; 666 } 667 ret = 0; 668 669 total_found += add_new_free_space(block_group, last, 670 block_group->start + block_group->length); 671 caching_ctl->progress = (u64)-1; 672 673 out: 674 btrfs_free_path(path); 675 return ret; 676 } 677 678 static noinline void caching_thread(struct btrfs_work *work) 679 { 680 struct btrfs_block_group *block_group; 681 struct btrfs_fs_info *fs_info; 682 struct btrfs_caching_control *caching_ctl; 683 int ret; 684 685 caching_ctl = container_of(work, struct btrfs_caching_control, work); 686 block_group = caching_ctl->block_group; 687 fs_info = block_group->fs_info; 688 689 mutex_lock(&caching_ctl->mutex); 690 down_read(&fs_info->commit_root_sem); 691 692 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 693 ret = load_free_space_cache(block_group); 694 if (ret == 1) { 695 ret = 0; 696 goto done; 697 } 698 699 /* 700 * We failed to load the space cache, set ourselves to 701 * CACHE_STARTED and carry on. 702 */ 703 spin_lock(&block_group->lock); 704 block_group->cached = BTRFS_CACHE_STARTED; 705 spin_unlock(&block_group->lock); 706 wake_up(&caching_ctl->wait); 707 } 708 709 /* 710 * If we are in the transaction that populated the free space tree we 711 * can't actually cache from the free space tree as our commit root and 712 * real root are the same, so we could change the contents of the blocks 713 * while caching. Instead do the slow caching in this case, and after 714 * the transaction has committed we will be safe. 715 */ 716 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 717 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 718 ret = load_free_space_tree(caching_ctl); 719 else 720 ret = load_extent_tree_free(caching_ctl); 721 done: 722 spin_lock(&block_group->lock); 723 block_group->caching_ctl = NULL; 724 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 725 spin_unlock(&block_group->lock); 726 727 #ifdef CONFIG_BTRFS_DEBUG 728 if (btrfs_should_fragment_free_space(block_group)) { 729 u64 bytes_used; 730 731 spin_lock(&block_group->space_info->lock); 732 spin_lock(&block_group->lock); 733 bytes_used = block_group->length - block_group->used; 734 block_group->space_info->bytes_used += bytes_used >> 1; 735 spin_unlock(&block_group->lock); 736 spin_unlock(&block_group->space_info->lock); 737 fragment_free_space(block_group); 738 } 739 #endif 740 741 caching_ctl->progress = (u64)-1; 742 743 up_read(&fs_info->commit_root_sem); 744 btrfs_free_excluded_extents(block_group); 745 mutex_unlock(&caching_ctl->mutex); 746 747 wake_up(&caching_ctl->wait); 748 749 btrfs_put_caching_control(caching_ctl); 750 btrfs_put_block_group(block_group); 751 } 752 753 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 754 { 755 DEFINE_WAIT(wait); 756 struct btrfs_fs_info *fs_info = cache->fs_info; 757 struct btrfs_caching_control *caching_ctl = NULL; 758 int ret = 0; 759 760 /* Allocator for zoned filesystems does not use the cache at all */ 761 if (btrfs_is_zoned(fs_info)) 762 return 0; 763 764 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 765 if (!caching_ctl) 766 return -ENOMEM; 767 768 INIT_LIST_HEAD(&caching_ctl->list); 769 mutex_init(&caching_ctl->mutex); 770 init_waitqueue_head(&caching_ctl->wait); 771 caching_ctl->block_group = cache; 772 caching_ctl->progress = cache->start; 773 refcount_set(&caching_ctl->count, 2); 774 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 775 776 spin_lock(&cache->lock); 777 if (cache->cached != BTRFS_CACHE_NO) { 778 kfree(caching_ctl); 779 780 caching_ctl = cache->caching_ctl; 781 if (caching_ctl) 782 refcount_inc(&caching_ctl->count); 783 spin_unlock(&cache->lock); 784 goto out; 785 } 786 WARN_ON(cache->caching_ctl); 787 cache->caching_ctl = caching_ctl; 788 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 789 cache->cached = BTRFS_CACHE_FAST; 790 else 791 cache->cached = BTRFS_CACHE_STARTED; 792 cache->has_caching_ctl = 1; 793 spin_unlock(&cache->lock); 794 795 write_lock(&fs_info->block_group_cache_lock); 796 refcount_inc(&caching_ctl->count); 797 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 798 write_unlock(&fs_info->block_group_cache_lock); 799 800 btrfs_get_block_group(cache); 801 802 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 803 out: 804 if (load_cache_only && caching_ctl) 805 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 806 if (caching_ctl) 807 btrfs_put_caching_control(caching_ctl); 808 809 return ret; 810 } 811 812 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 813 { 814 u64 extra_flags = chunk_to_extended(flags) & 815 BTRFS_EXTENDED_PROFILE_MASK; 816 817 write_seqlock(&fs_info->profiles_lock); 818 if (flags & BTRFS_BLOCK_GROUP_DATA) 819 fs_info->avail_data_alloc_bits &= ~extra_flags; 820 if (flags & BTRFS_BLOCK_GROUP_METADATA) 821 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 822 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 823 fs_info->avail_system_alloc_bits &= ~extra_flags; 824 write_sequnlock(&fs_info->profiles_lock); 825 } 826 827 /* 828 * Clear incompat bits for the following feature(s): 829 * 830 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 831 * in the whole filesystem 832 * 833 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 834 */ 835 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 836 { 837 bool found_raid56 = false; 838 bool found_raid1c34 = false; 839 840 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 841 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 843 struct list_head *head = &fs_info->space_info; 844 struct btrfs_space_info *sinfo; 845 846 list_for_each_entry_rcu(sinfo, head, list) { 847 down_read(&sinfo->groups_sem); 848 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 849 found_raid56 = true; 850 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 851 found_raid56 = true; 852 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 853 found_raid1c34 = true; 854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 855 found_raid1c34 = true; 856 up_read(&sinfo->groups_sem); 857 } 858 if (!found_raid56) 859 btrfs_clear_fs_incompat(fs_info, RAID56); 860 if (!found_raid1c34) 861 btrfs_clear_fs_incompat(fs_info, RAID1C34); 862 } 863 } 864 865 static int remove_block_group_item(struct btrfs_trans_handle *trans, 866 struct btrfs_path *path, 867 struct btrfs_block_group *block_group) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root; 871 struct btrfs_key key; 872 int ret; 873 874 root = btrfs_block_group_root(fs_info); 875 key.objectid = block_group->start; 876 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 877 key.offset = block_group->length; 878 879 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 880 if (ret > 0) 881 ret = -ENOENT; 882 if (ret < 0) 883 return ret; 884 885 ret = btrfs_del_item(trans, root, path); 886 return ret; 887 } 888 889 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 890 u64 group_start, struct extent_map *em) 891 { 892 struct btrfs_fs_info *fs_info = trans->fs_info; 893 struct btrfs_path *path; 894 struct btrfs_block_group *block_group; 895 struct btrfs_free_cluster *cluster; 896 struct inode *inode; 897 struct kobject *kobj = NULL; 898 int ret; 899 int index; 900 int factor; 901 struct btrfs_caching_control *caching_ctl = NULL; 902 bool remove_em; 903 bool remove_rsv = false; 904 905 block_group = btrfs_lookup_block_group(fs_info, group_start); 906 BUG_ON(!block_group); 907 BUG_ON(!block_group->ro); 908 909 trace_btrfs_remove_block_group(block_group); 910 /* 911 * Free the reserved super bytes from this block group before 912 * remove it. 913 */ 914 btrfs_free_excluded_extents(block_group); 915 btrfs_free_ref_tree_range(fs_info, block_group->start, 916 block_group->length); 917 918 index = btrfs_bg_flags_to_raid_index(block_group->flags); 919 factor = btrfs_bg_type_to_factor(block_group->flags); 920 921 /* make sure this block group isn't part of an allocation cluster */ 922 cluster = &fs_info->data_alloc_cluster; 923 spin_lock(&cluster->refill_lock); 924 btrfs_return_cluster_to_free_space(block_group, cluster); 925 spin_unlock(&cluster->refill_lock); 926 927 /* 928 * make sure this block group isn't part of a metadata 929 * allocation cluster 930 */ 931 cluster = &fs_info->meta_alloc_cluster; 932 spin_lock(&cluster->refill_lock); 933 btrfs_return_cluster_to_free_space(block_group, cluster); 934 spin_unlock(&cluster->refill_lock); 935 936 btrfs_clear_treelog_bg(block_group); 937 btrfs_clear_data_reloc_bg(block_group); 938 939 path = btrfs_alloc_path(); 940 if (!path) { 941 ret = -ENOMEM; 942 goto out; 943 } 944 945 /* 946 * get the inode first so any iput calls done for the io_list 947 * aren't the final iput (no unlinks allowed now) 948 */ 949 inode = lookup_free_space_inode(block_group, path); 950 951 mutex_lock(&trans->transaction->cache_write_mutex); 952 /* 953 * Make sure our free space cache IO is done before removing the 954 * free space inode 955 */ 956 spin_lock(&trans->transaction->dirty_bgs_lock); 957 if (!list_empty(&block_group->io_list)) { 958 list_del_init(&block_group->io_list); 959 960 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 961 962 spin_unlock(&trans->transaction->dirty_bgs_lock); 963 btrfs_wait_cache_io(trans, block_group, path); 964 btrfs_put_block_group(block_group); 965 spin_lock(&trans->transaction->dirty_bgs_lock); 966 } 967 968 if (!list_empty(&block_group->dirty_list)) { 969 list_del_init(&block_group->dirty_list); 970 remove_rsv = true; 971 btrfs_put_block_group(block_group); 972 } 973 spin_unlock(&trans->transaction->dirty_bgs_lock); 974 mutex_unlock(&trans->transaction->cache_write_mutex); 975 976 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 977 if (ret) 978 goto out; 979 980 write_lock(&fs_info->block_group_cache_lock); 981 rb_erase_cached(&block_group->cache_node, 982 &fs_info->block_group_cache_tree); 983 RB_CLEAR_NODE(&block_group->cache_node); 984 985 /* Once for the block groups rbtree */ 986 btrfs_put_block_group(block_group); 987 988 write_unlock(&fs_info->block_group_cache_lock); 989 990 down_write(&block_group->space_info->groups_sem); 991 /* 992 * we must use list_del_init so people can check to see if they 993 * are still on the list after taking the semaphore 994 */ 995 list_del_init(&block_group->list); 996 if (list_empty(&block_group->space_info->block_groups[index])) { 997 kobj = block_group->space_info->block_group_kobjs[index]; 998 block_group->space_info->block_group_kobjs[index] = NULL; 999 clear_avail_alloc_bits(fs_info, block_group->flags); 1000 } 1001 up_write(&block_group->space_info->groups_sem); 1002 clear_incompat_bg_bits(fs_info, block_group->flags); 1003 if (kobj) { 1004 kobject_del(kobj); 1005 kobject_put(kobj); 1006 } 1007 1008 if (block_group->has_caching_ctl) 1009 caching_ctl = btrfs_get_caching_control(block_group); 1010 if (block_group->cached == BTRFS_CACHE_STARTED) 1011 btrfs_wait_block_group_cache_done(block_group); 1012 if (block_group->has_caching_ctl) { 1013 write_lock(&fs_info->block_group_cache_lock); 1014 if (!caching_ctl) { 1015 struct btrfs_caching_control *ctl; 1016 1017 list_for_each_entry(ctl, 1018 &fs_info->caching_block_groups, list) 1019 if (ctl->block_group == block_group) { 1020 caching_ctl = ctl; 1021 refcount_inc(&caching_ctl->count); 1022 break; 1023 } 1024 } 1025 if (caching_ctl) 1026 list_del_init(&caching_ctl->list); 1027 write_unlock(&fs_info->block_group_cache_lock); 1028 if (caching_ctl) { 1029 /* Once for the caching bgs list and once for us. */ 1030 btrfs_put_caching_control(caching_ctl); 1031 btrfs_put_caching_control(caching_ctl); 1032 } 1033 } 1034 1035 spin_lock(&trans->transaction->dirty_bgs_lock); 1036 WARN_ON(!list_empty(&block_group->dirty_list)); 1037 WARN_ON(!list_empty(&block_group->io_list)); 1038 spin_unlock(&trans->transaction->dirty_bgs_lock); 1039 1040 btrfs_remove_free_space_cache(block_group); 1041 1042 spin_lock(&block_group->space_info->lock); 1043 list_del_init(&block_group->ro_list); 1044 1045 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1046 WARN_ON(block_group->space_info->total_bytes 1047 < block_group->length); 1048 WARN_ON(block_group->space_info->bytes_readonly 1049 < block_group->length - block_group->zone_unusable); 1050 WARN_ON(block_group->space_info->bytes_zone_unusable 1051 < block_group->zone_unusable); 1052 WARN_ON(block_group->space_info->disk_total 1053 < block_group->length * factor); 1054 WARN_ON(block_group->zone_is_active && 1055 block_group->space_info->active_total_bytes 1056 < block_group->length); 1057 } 1058 block_group->space_info->total_bytes -= block_group->length; 1059 if (block_group->zone_is_active) 1060 block_group->space_info->active_total_bytes -= block_group->length; 1061 block_group->space_info->bytes_readonly -= 1062 (block_group->length - block_group->zone_unusable); 1063 block_group->space_info->bytes_zone_unusable -= 1064 block_group->zone_unusable; 1065 block_group->space_info->disk_total -= block_group->length * factor; 1066 1067 spin_unlock(&block_group->space_info->lock); 1068 1069 /* 1070 * Remove the free space for the block group from the free space tree 1071 * and the block group's item from the extent tree before marking the 1072 * block group as removed. This is to prevent races with tasks that 1073 * freeze and unfreeze a block group, this task and another task 1074 * allocating a new block group - the unfreeze task ends up removing 1075 * the block group's extent map before the task calling this function 1076 * deletes the block group item from the extent tree, allowing for 1077 * another task to attempt to create another block group with the same 1078 * item key (and failing with -EEXIST and a transaction abort). 1079 */ 1080 ret = remove_block_group_free_space(trans, block_group); 1081 if (ret) 1082 goto out; 1083 1084 ret = remove_block_group_item(trans, path, block_group); 1085 if (ret < 0) 1086 goto out; 1087 1088 spin_lock(&block_group->lock); 1089 block_group->removed = 1; 1090 /* 1091 * At this point trimming or scrub can't start on this block group, 1092 * because we removed the block group from the rbtree 1093 * fs_info->block_group_cache_tree so no one can't find it anymore and 1094 * even if someone already got this block group before we removed it 1095 * from the rbtree, they have already incremented block_group->frozen - 1096 * if they didn't, for the trimming case they won't find any free space 1097 * entries because we already removed them all when we called 1098 * btrfs_remove_free_space_cache(). 1099 * 1100 * And we must not remove the extent map from the fs_info->mapping_tree 1101 * to prevent the same logical address range and physical device space 1102 * ranges from being reused for a new block group. This is needed to 1103 * avoid races with trimming and scrub. 1104 * 1105 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1106 * completely transactionless, so while it is trimming a range the 1107 * currently running transaction might finish and a new one start, 1108 * allowing for new block groups to be created that can reuse the same 1109 * physical device locations unless we take this special care. 1110 * 1111 * There may also be an implicit trim operation if the file system 1112 * is mounted with -odiscard. The same protections must remain 1113 * in place until the extents have been discarded completely when 1114 * the transaction commit has completed. 1115 */ 1116 remove_em = (atomic_read(&block_group->frozen) == 0); 1117 spin_unlock(&block_group->lock); 1118 1119 if (remove_em) { 1120 struct extent_map_tree *em_tree; 1121 1122 em_tree = &fs_info->mapping_tree; 1123 write_lock(&em_tree->lock); 1124 remove_extent_mapping(em_tree, em); 1125 write_unlock(&em_tree->lock); 1126 /* once for the tree */ 1127 free_extent_map(em); 1128 } 1129 1130 out: 1131 /* Once for the lookup reference */ 1132 btrfs_put_block_group(block_group); 1133 if (remove_rsv) 1134 btrfs_delayed_refs_rsv_release(fs_info, 1); 1135 btrfs_free_path(path); 1136 return ret; 1137 } 1138 1139 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1140 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1141 { 1142 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1143 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1144 struct extent_map *em; 1145 struct map_lookup *map; 1146 unsigned int num_items; 1147 1148 read_lock(&em_tree->lock); 1149 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1150 read_unlock(&em_tree->lock); 1151 ASSERT(em && em->start == chunk_offset); 1152 1153 /* 1154 * We need to reserve 3 + N units from the metadata space info in order 1155 * to remove a block group (done at btrfs_remove_chunk() and at 1156 * btrfs_remove_block_group()), which are used for: 1157 * 1158 * 1 unit for adding the free space inode's orphan (located in the tree 1159 * of tree roots). 1160 * 1 unit for deleting the block group item (located in the extent 1161 * tree). 1162 * 1 unit for deleting the free space item (located in tree of tree 1163 * roots). 1164 * N units for deleting N device extent items corresponding to each 1165 * stripe (located in the device tree). 1166 * 1167 * In order to remove a block group we also need to reserve units in the 1168 * system space info in order to update the chunk tree (update one or 1169 * more device items and remove one chunk item), but this is done at 1170 * btrfs_remove_chunk() through a call to check_system_chunk(). 1171 */ 1172 map = em->map_lookup; 1173 num_items = 3 + map->num_stripes; 1174 free_extent_map(em); 1175 1176 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1177 } 1178 1179 /* 1180 * Mark block group @cache read-only, so later write won't happen to block 1181 * group @cache. 1182 * 1183 * If @force is not set, this function will only mark the block group readonly 1184 * if we have enough free space (1M) in other metadata/system block groups. 1185 * If @force is not set, this function will mark the block group readonly 1186 * without checking free space. 1187 * 1188 * NOTE: This function doesn't care if other block groups can contain all the 1189 * data in this block group. That check should be done by relocation routine, 1190 * not this function. 1191 */ 1192 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1193 { 1194 struct btrfs_space_info *sinfo = cache->space_info; 1195 u64 num_bytes; 1196 int ret = -ENOSPC; 1197 1198 spin_lock(&sinfo->lock); 1199 spin_lock(&cache->lock); 1200 1201 if (cache->swap_extents) { 1202 ret = -ETXTBSY; 1203 goto out; 1204 } 1205 1206 if (cache->ro) { 1207 cache->ro++; 1208 ret = 0; 1209 goto out; 1210 } 1211 1212 num_bytes = cache->length - cache->reserved - cache->pinned - 1213 cache->bytes_super - cache->zone_unusable - cache->used; 1214 1215 /* 1216 * Data never overcommits, even in mixed mode, so do just the straight 1217 * check of left over space in how much we have allocated. 1218 */ 1219 if (force) { 1220 ret = 0; 1221 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1222 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1223 1224 /* 1225 * Here we make sure if we mark this bg RO, we still have enough 1226 * free space as buffer. 1227 */ 1228 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1229 ret = 0; 1230 } else { 1231 /* 1232 * We overcommit metadata, so we need to do the 1233 * btrfs_can_overcommit check here, and we need to pass in 1234 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1235 * leeway to allow us to mark this block group as read only. 1236 */ 1237 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1238 BTRFS_RESERVE_NO_FLUSH)) 1239 ret = 0; 1240 } 1241 1242 if (!ret) { 1243 sinfo->bytes_readonly += num_bytes; 1244 if (btrfs_is_zoned(cache->fs_info)) { 1245 /* Migrate zone_unusable bytes to readonly */ 1246 sinfo->bytes_readonly += cache->zone_unusable; 1247 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1248 cache->zone_unusable = 0; 1249 } 1250 cache->ro++; 1251 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1252 } 1253 out: 1254 spin_unlock(&cache->lock); 1255 spin_unlock(&sinfo->lock); 1256 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1257 btrfs_info(cache->fs_info, 1258 "unable to make block group %llu ro", cache->start); 1259 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1260 } 1261 return ret; 1262 } 1263 1264 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1265 struct btrfs_block_group *bg) 1266 { 1267 struct btrfs_fs_info *fs_info = bg->fs_info; 1268 struct btrfs_transaction *prev_trans = NULL; 1269 const u64 start = bg->start; 1270 const u64 end = start + bg->length - 1; 1271 int ret; 1272 1273 spin_lock(&fs_info->trans_lock); 1274 if (trans->transaction->list.prev != &fs_info->trans_list) { 1275 prev_trans = list_last_entry(&trans->transaction->list, 1276 struct btrfs_transaction, list); 1277 refcount_inc(&prev_trans->use_count); 1278 } 1279 spin_unlock(&fs_info->trans_lock); 1280 1281 /* 1282 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1283 * btrfs_finish_extent_commit(). If we are at transaction N, another 1284 * task might be running finish_extent_commit() for the previous 1285 * transaction N - 1, and have seen a range belonging to the block 1286 * group in pinned_extents before we were able to clear the whole block 1287 * group range from pinned_extents. This means that task can lookup for 1288 * the block group after we unpinned it from pinned_extents and removed 1289 * it, leading to a BUG_ON() at unpin_extent_range(). 1290 */ 1291 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1292 if (prev_trans) { 1293 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1294 EXTENT_DIRTY); 1295 if (ret) 1296 goto out; 1297 } 1298 1299 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1300 EXTENT_DIRTY); 1301 out: 1302 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1303 if (prev_trans) 1304 btrfs_put_transaction(prev_trans); 1305 1306 return ret == 0; 1307 } 1308 1309 /* 1310 * Process the unused_bgs list and remove any that don't have any allocated 1311 * space inside of them. 1312 */ 1313 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1314 { 1315 struct btrfs_block_group *block_group; 1316 struct btrfs_space_info *space_info; 1317 struct btrfs_trans_handle *trans; 1318 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1319 int ret = 0; 1320 1321 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1322 return; 1323 1324 /* 1325 * Long running balances can keep us blocked here for eternity, so 1326 * simply skip deletion if we're unable to get the mutex. 1327 */ 1328 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1329 return; 1330 1331 spin_lock(&fs_info->unused_bgs_lock); 1332 while (!list_empty(&fs_info->unused_bgs)) { 1333 int trimming; 1334 1335 block_group = list_first_entry(&fs_info->unused_bgs, 1336 struct btrfs_block_group, 1337 bg_list); 1338 list_del_init(&block_group->bg_list); 1339 1340 space_info = block_group->space_info; 1341 1342 if (ret || btrfs_mixed_space_info(space_info)) { 1343 btrfs_put_block_group(block_group); 1344 continue; 1345 } 1346 spin_unlock(&fs_info->unused_bgs_lock); 1347 1348 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1349 1350 /* Don't want to race with allocators so take the groups_sem */ 1351 down_write(&space_info->groups_sem); 1352 1353 /* 1354 * Async discard moves the final block group discard to be prior 1355 * to the unused_bgs code path. Therefore, if it's not fully 1356 * trimmed, punt it back to the async discard lists. 1357 */ 1358 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1359 !btrfs_is_free_space_trimmed(block_group)) { 1360 trace_btrfs_skip_unused_block_group(block_group); 1361 up_write(&space_info->groups_sem); 1362 /* Requeue if we failed because of async discard */ 1363 btrfs_discard_queue_work(&fs_info->discard_ctl, 1364 block_group); 1365 goto next; 1366 } 1367 1368 spin_lock(&block_group->lock); 1369 if (block_group->reserved || block_group->pinned || 1370 block_group->used || block_group->ro || 1371 list_is_singular(&block_group->list)) { 1372 /* 1373 * We want to bail if we made new allocations or have 1374 * outstanding allocations in this block group. We do 1375 * the ro check in case balance is currently acting on 1376 * this block group. 1377 */ 1378 trace_btrfs_skip_unused_block_group(block_group); 1379 spin_unlock(&block_group->lock); 1380 up_write(&space_info->groups_sem); 1381 goto next; 1382 } 1383 spin_unlock(&block_group->lock); 1384 1385 /* We don't want to force the issue, only flip if it's ok. */ 1386 ret = inc_block_group_ro(block_group, 0); 1387 up_write(&space_info->groups_sem); 1388 if (ret < 0) { 1389 ret = 0; 1390 goto next; 1391 } 1392 1393 ret = btrfs_zone_finish(block_group); 1394 if (ret < 0) { 1395 btrfs_dec_block_group_ro(block_group); 1396 if (ret == -EAGAIN) 1397 ret = 0; 1398 goto next; 1399 } 1400 1401 /* 1402 * Want to do this before we do anything else so we can recover 1403 * properly if we fail to join the transaction. 1404 */ 1405 trans = btrfs_start_trans_remove_block_group(fs_info, 1406 block_group->start); 1407 if (IS_ERR(trans)) { 1408 btrfs_dec_block_group_ro(block_group); 1409 ret = PTR_ERR(trans); 1410 goto next; 1411 } 1412 1413 /* 1414 * We could have pending pinned extents for this block group, 1415 * just delete them, we don't care about them anymore. 1416 */ 1417 if (!clean_pinned_extents(trans, block_group)) { 1418 btrfs_dec_block_group_ro(block_group); 1419 goto end_trans; 1420 } 1421 1422 /* 1423 * At this point, the block_group is read only and should fail 1424 * new allocations. However, btrfs_finish_extent_commit() can 1425 * cause this block_group to be placed back on the discard 1426 * lists because now the block_group isn't fully discarded. 1427 * Bail here and try again later after discarding everything. 1428 */ 1429 spin_lock(&fs_info->discard_ctl.lock); 1430 if (!list_empty(&block_group->discard_list)) { 1431 spin_unlock(&fs_info->discard_ctl.lock); 1432 btrfs_dec_block_group_ro(block_group); 1433 btrfs_discard_queue_work(&fs_info->discard_ctl, 1434 block_group); 1435 goto end_trans; 1436 } 1437 spin_unlock(&fs_info->discard_ctl.lock); 1438 1439 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1440 spin_lock(&space_info->lock); 1441 spin_lock(&block_group->lock); 1442 1443 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1444 -block_group->pinned); 1445 space_info->bytes_readonly += block_group->pinned; 1446 block_group->pinned = 0; 1447 1448 spin_unlock(&block_group->lock); 1449 spin_unlock(&space_info->lock); 1450 1451 /* 1452 * The normal path here is an unused block group is passed here, 1453 * then trimming is handled in the transaction commit path. 1454 * Async discard interposes before this to do the trimming 1455 * before coming down the unused block group path as trimming 1456 * will no longer be done later in the transaction commit path. 1457 */ 1458 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1459 goto flip_async; 1460 1461 /* 1462 * DISCARD can flip during remount. On zoned filesystems, we 1463 * need to reset sequential-required zones. 1464 */ 1465 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1466 btrfs_is_zoned(fs_info); 1467 1468 /* Implicit trim during transaction commit. */ 1469 if (trimming) 1470 btrfs_freeze_block_group(block_group); 1471 1472 /* 1473 * Btrfs_remove_chunk will abort the transaction if things go 1474 * horribly wrong. 1475 */ 1476 ret = btrfs_remove_chunk(trans, block_group->start); 1477 1478 if (ret) { 1479 if (trimming) 1480 btrfs_unfreeze_block_group(block_group); 1481 goto end_trans; 1482 } 1483 1484 /* 1485 * If we're not mounted with -odiscard, we can just forget 1486 * about this block group. Otherwise we'll need to wait 1487 * until transaction commit to do the actual discard. 1488 */ 1489 if (trimming) { 1490 spin_lock(&fs_info->unused_bgs_lock); 1491 /* 1492 * A concurrent scrub might have added us to the list 1493 * fs_info->unused_bgs, so use a list_move operation 1494 * to add the block group to the deleted_bgs list. 1495 */ 1496 list_move(&block_group->bg_list, 1497 &trans->transaction->deleted_bgs); 1498 spin_unlock(&fs_info->unused_bgs_lock); 1499 btrfs_get_block_group(block_group); 1500 } 1501 end_trans: 1502 btrfs_end_transaction(trans); 1503 next: 1504 btrfs_put_block_group(block_group); 1505 spin_lock(&fs_info->unused_bgs_lock); 1506 } 1507 spin_unlock(&fs_info->unused_bgs_lock); 1508 mutex_unlock(&fs_info->reclaim_bgs_lock); 1509 return; 1510 1511 flip_async: 1512 btrfs_end_transaction(trans); 1513 mutex_unlock(&fs_info->reclaim_bgs_lock); 1514 btrfs_put_block_group(block_group); 1515 btrfs_discard_punt_unused_bgs_list(fs_info); 1516 } 1517 1518 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1519 { 1520 struct btrfs_fs_info *fs_info = bg->fs_info; 1521 1522 spin_lock(&fs_info->unused_bgs_lock); 1523 if (list_empty(&bg->bg_list)) { 1524 btrfs_get_block_group(bg); 1525 trace_btrfs_add_unused_block_group(bg); 1526 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1527 } 1528 spin_unlock(&fs_info->unused_bgs_lock); 1529 } 1530 1531 /* 1532 * We want block groups with a low number of used bytes to be in the beginning 1533 * of the list, so they will get reclaimed first. 1534 */ 1535 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1536 const struct list_head *b) 1537 { 1538 const struct btrfs_block_group *bg1, *bg2; 1539 1540 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1541 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1542 1543 return bg1->used > bg2->used; 1544 } 1545 1546 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1547 { 1548 if (btrfs_is_zoned(fs_info)) 1549 return btrfs_zoned_should_reclaim(fs_info); 1550 return true; 1551 } 1552 1553 void btrfs_reclaim_bgs_work(struct work_struct *work) 1554 { 1555 struct btrfs_fs_info *fs_info = 1556 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1557 struct btrfs_block_group *bg; 1558 struct btrfs_space_info *space_info; 1559 1560 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1561 return; 1562 1563 if (!btrfs_should_reclaim(fs_info)) 1564 return; 1565 1566 sb_start_write(fs_info->sb); 1567 1568 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1569 sb_end_write(fs_info->sb); 1570 return; 1571 } 1572 1573 /* 1574 * Long running balances can keep us blocked here for eternity, so 1575 * simply skip reclaim if we're unable to get the mutex. 1576 */ 1577 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1578 btrfs_exclop_finish(fs_info); 1579 sb_end_write(fs_info->sb); 1580 return; 1581 } 1582 1583 spin_lock(&fs_info->unused_bgs_lock); 1584 /* 1585 * Sort happens under lock because we can't simply splice it and sort. 1586 * The block groups might still be in use and reachable via bg_list, 1587 * and their presence in the reclaim_bgs list must be preserved. 1588 */ 1589 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1590 while (!list_empty(&fs_info->reclaim_bgs)) { 1591 u64 zone_unusable; 1592 int ret = 0; 1593 1594 bg = list_first_entry(&fs_info->reclaim_bgs, 1595 struct btrfs_block_group, 1596 bg_list); 1597 list_del_init(&bg->bg_list); 1598 1599 space_info = bg->space_info; 1600 spin_unlock(&fs_info->unused_bgs_lock); 1601 1602 /* Don't race with allocators so take the groups_sem */ 1603 down_write(&space_info->groups_sem); 1604 1605 spin_lock(&bg->lock); 1606 if (bg->reserved || bg->pinned || bg->ro) { 1607 /* 1608 * We want to bail if we made new allocations or have 1609 * outstanding allocations in this block group. We do 1610 * the ro check in case balance is currently acting on 1611 * this block group. 1612 */ 1613 spin_unlock(&bg->lock); 1614 up_write(&space_info->groups_sem); 1615 goto next; 1616 } 1617 spin_unlock(&bg->lock); 1618 1619 /* Get out fast, in case we're unmounting the filesystem */ 1620 if (btrfs_fs_closing(fs_info)) { 1621 up_write(&space_info->groups_sem); 1622 goto next; 1623 } 1624 1625 /* 1626 * Cache the zone_unusable value before turning the block group 1627 * to read only. As soon as the blog group is read only it's 1628 * zone_unusable value gets moved to the block group's read-only 1629 * bytes and isn't available for calculations anymore. 1630 */ 1631 zone_unusable = bg->zone_unusable; 1632 ret = inc_block_group_ro(bg, 0); 1633 up_write(&space_info->groups_sem); 1634 if (ret < 0) 1635 goto next; 1636 1637 btrfs_info(fs_info, 1638 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1639 bg->start, div_u64(bg->used * 100, bg->length), 1640 div64_u64(zone_unusable * 100, bg->length)); 1641 trace_btrfs_reclaim_block_group(bg); 1642 ret = btrfs_relocate_chunk(fs_info, bg->start); 1643 if (ret) { 1644 btrfs_dec_block_group_ro(bg); 1645 btrfs_err(fs_info, "error relocating chunk %llu", 1646 bg->start); 1647 } 1648 1649 next: 1650 btrfs_put_block_group(bg); 1651 spin_lock(&fs_info->unused_bgs_lock); 1652 } 1653 spin_unlock(&fs_info->unused_bgs_lock); 1654 mutex_unlock(&fs_info->reclaim_bgs_lock); 1655 btrfs_exclop_finish(fs_info); 1656 sb_end_write(fs_info->sb); 1657 } 1658 1659 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1660 { 1661 spin_lock(&fs_info->unused_bgs_lock); 1662 if (!list_empty(&fs_info->reclaim_bgs)) 1663 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1664 spin_unlock(&fs_info->unused_bgs_lock); 1665 } 1666 1667 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1668 { 1669 struct btrfs_fs_info *fs_info = bg->fs_info; 1670 1671 spin_lock(&fs_info->unused_bgs_lock); 1672 if (list_empty(&bg->bg_list)) { 1673 btrfs_get_block_group(bg); 1674 trace_btrfs_add_reclaim_block_group(bg); 1675 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1676 } 1677 spin_unlock(&fs_info->unused_bgs_lock); 1678 } 1679 1680 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1681 struct btrfs_path *path) 1682 { 1683 struct extent_map_tree *em_tree; 1684 struct extent_map *em; 1685 struct btrfs_block_group_item bg; 1686 struct extent_buffer *leaf; 1687 int slot; 1688 u64 flags; 1689 int ret = 0; 1690 1691 slot = path->slots[0]; 1692 leaf = path->nodes[0]; 1693 1694 em_tree = &fs_info->mapping_tree; 1695 read_lock(&em_tree->lock); 1696 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1697 read_unlock(&em_tree->lock); 1698 if (!em) { 1699 btrfs_err(fs_info, 1700 "logical %llu len %llu found bg but no related chunk", 1701 key->objectid, key->offset); 1702 return -ENOENT; 1703 } 1704 1705 if (em->start != key->objectid || em->len != key->offset) { 1706 btrfs_err(fs_info, 1707 "block group %llu len %llu mismatch with chunk %llu len %llu", 1708 key->objectid, key->offset, em->start, em->len); 1709 ret = -EUCLEAN; 1710 goto out_free_em; 1711 } 1712 1713 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1714 sizeof(bg)); 1715 flags = btrfs_stack_block_group_flags(&bg) & 1716 BTRFS_BLOCK_GROUP_TYPE_MASK; 1717 1718 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1719 btrfs_err(fs_info, 1720 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1721 key->objectid, key->offset, flags, 1722 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1723 ret = -EUCLEAN; 1724 } 1725 1726 out_free_em: 1727 free_extent_map(em); 1728 return ret; 1729 } 1730 1731 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1732 struct btrfs_path *path, 1733 struct btrfs_key *key) 1734 { 1735 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1736 int ret; 1737 struct btrfs_key found_key; 1738 1739 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1740 if (found_key.objectid >= key->objectid && 1741 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1742 return read_bg_from_eb(fs_info, &found_key, path); 1743 } 1744 } 1745 return ret; 1746 } 1747 1748 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1749 { 1750 u64 extra_flags = chunk_to_extended(flags) & 1751 BTRFS_EXTENDED_PROFILE_MASK; 1752 1753 write_seqlock(&fs_info->profiles_lock); 1754 if (flags & BTRFS_BLOCK_GROUP_DATA) 1755 fs_info->avail_data_alloc_bits |= extra_flags; 1756 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1757 fs_info->avail_metadata_alloc_bits |= extra_flags; 1758 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1759 fs_info->avail_system_alloc_bits |= extra_flags; 1760 write_sequnlock(&fs_info->profiles_lock); 1761 } 1762 1763 /** 1764 * Map a physical disk address to a list of logical addresses 1765 * 1766 * @fs_info: the filesystem 1767 * @chunk_start: logical address of block group 1768 * @bdev: physical device to resolve, can be NULL to indicate any device 1769 * @physical: physical address to map to logical addresses 1770 * @logical: return array of logical addresses which map to @physical 1771 * @naddrs: length of @logical 1772 * @stripe_len: size of IO stripe for the given block group 1773 * 1774 * Maps a particular @physical disk address to a list of @logical addresses. 1775 * Used primarily to exclude those portions of a block group that contain super 1776 * block copies. 1777 */ 1778 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1779 struct block_device *bdev, u64 physical, u64 **logical, 1780 int *naddrs, int *stripe_len) 1781 { 1782 struct extent_map *em; 1783 struct map_lookup *map; 1784 u64 *buf; 1785 u64 bytenr; 1786 u64 data_stripe_length; 1787 u64 io_stripe_size; 1788 int i, nr = 0; 1789 int ret = 0; 1790 1791 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1792 if (IS_ERR(em)) 1793 return -EIO; 1794 1795 map = em->map_lookup; 1796 data_stripe_length = em->orig_block_len; 1797 io_stripe_size = map->stripe_len; 1798 chunk_start = em->start; 1799 1800 /* For RAID5/6 adjust to a full IO stripe length */ 1801 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1802 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1803 1804 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1805 if (!buf) { 1806 ret = -ENOMEM; 1807 goto out; 1808 } 1809 1810 for (i = 0; i < map->num_stripes; i++) { 1811 bool already_inserted = false; 1812 u64 stripe_nr; 1813 u64 offset; 1814 int j; 1815 1816 if (!in_range(physical, map->stripes[i].physical, 1817 data_stripe_length)) 1818 continue; 1819 1820 if (bdev && map->stripes[i].dev->bdev != bdev) 1821 continue; 1822 1823 stripe_nr = physical - map->stripes[i].physical; 1824 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1825 1826 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 1827 BTRFS_BLOCK_GROUP_RAID10)) { 1828 stripe_nr = stripe_nr * map->num_stripes + i; 1829 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1830 } 1831 /* 1832 * The remaining case would be for RAID56, multiply by 1833 * nr_data_stripes(). Alternatively, just use rmap_len below 1834 * instead of map->stripe_len 1835 */ 1836 1837 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1838 1839 /* Ensure we don't add duplicate addresses */ 1840 for (j = 0; j < nr; j++) { 1841 if (buf[j] == bytenr) { 1842 already_inserted = true; 1843 break; 1844 } 1845 } 1846 1847 if (!already_inserted) 1848 buf[nr++] = bytenr; 1849 } 1850 1851 *logical = buf; 1852 *naddrs = nr; 1853 *stripe_len = io_stripe_size; 1854 out: 1855 free_extent_map(em); 1856 return ret; 1857 } 1858 1859 static int exclude_super_stripes(struct btrfs_block_group *cache) 1860 { 1861 struct btrfs_fs_info *fs_info = cache->fs_info; 1862 const bool zoned = btrfs_is_zoned(fs_info); 1863 u64 bytenr; 1864 u64 *logical; 1865 int stripe_len; 1866 int i, nr, ret; 1867 1868 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1869 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1870 cache->bytes_super += stripe_len; 1871 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1872 stripe_len); 1873 if (ret) 1874 return ret; 1875 } 1876 1877 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1878 bytenr = btrfs_sb_offset(i); 1879 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1880 bytenr, &logical, &nr, &stripe_len); 1881 if (ret) 1882 return ret; 1883 1884 /* Shouldn't have super stripes in sequential zones */ 1885 if (zoned && nr) { 1886 btrfs_err(fs_info, 1887 "zoned: block group %llu must not contain super block", 1888 cache->start); 1889 return -EUCLEAN; 1890 } 1891 1892 while (nr--) { 1893 u64 len = min_t(u64, stripe_len, 1894 cache->start + cache->length - logical[nr]); 1895 1896 cache->bytes_super += len; 1897 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1898 len); 1899 if (ret) { 1900 kfree(logical); 1901 return ret; 1902 } 1903 } 1904 1905 kfree(logical); 1906 } 1907 return 0; 1908 } 1909 1910 static void link_block_group(struct btrfs_block_group *cache) 1911 { 1912 struct btrfs_space_info *space_info = cache->space_info; 1913 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1914 1915 down_write(&space_info->groups_sem); 1916 list_add_tail(&cache->list, &space_info->block_groups[index]); 1917 up_write(&space_info->groups_sem); 1918 } 1919 1920 static struct btrfs_block_group *btrfs_create_block_group_cache( 1921 struct btrfs_fs_info *fs_info, u64 start) 1922 { 1923 struct btrfs_block_group *cache; 1924 1925 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1926 if (!cache) 1927 return NULL; 1928 1929 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1930 GFP_NOFS); 1931 if (!cache->free_space_ctl) { 1932 kfree(cache); 1933 return NULL; 1934 } 1935 1936 cache->start = start; 1937 1938 cache->fs_info = fs_info; 1939 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1940 1941 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1942 1943 refcount_set(&cache->refs, 1); 1944 spin_lock_init(&cache->lock); 1945 init_rwsem(&cache->data_rwsem); 1946 INIT_LIST_HEAD(&cache->list); 1947 INIT_LIST_HEAD(&cache->cluster_list); 1948 INIT_LIST_HEAD(&cache->bg_list); 1949 INIT_LIST_HEAD(&cache->ro_list); 1950 INIT_LIST_HEAD(&cache->discard_list); 1951 INIT_LIST_HEAD(&cache->dirty_list); 1952 INIT_LIST_HEAD(&cache->io_list); 1953 INIT_LIST_HEAD(&cache->active_bg_list); 1954 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1955 atomic_set(&cache->frozen, 0); 1956 mutex_init(&cache->free_space_lock); 1957 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1958 1959 return cache; 1960 } 1961 1962 /* 1963 * Iterate all chunks and verify that each of them has the corresponding block 1964 * group 1965 */ 1966 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1967 { 1968 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1969 struct extent_map *em; 1970 struct btrfs_block_group *bg; 1971 u64 start = 0; 1972 int ret = 0; 1973 1974 while (1) { 1975 read_lock(&map_tree->lock); 1976 /* 1977 * lookup_extent_mapping will return the first extent map 1978 * intersecting the range, so setting @len to 1 is enough to 1979 * get the first chunk. 1980 */ 1981 em = lookup_extent_mapping(map_tree, start, 1); 1982 read_unlock(&map_tree->lock); 1983 if (!em) 1984 break; 1985 1986 bg = btrfs_lookup_block_group(fs_info, em->start); 1987 if (!bg) { 1988 btrfs_err(fs_info, 1989 "chunk start=%llu len=%llu doesn't have corresponding block group", 1990 em->start, em->len); 1991 ret = -EUCLEAN; 1992 free_extent_map(em); 1993 break; 1994 } 1995 if (bg->start != em->start || bg->length != em->len || 1996 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1997 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1998 btrfs_err(fs_info, 1999 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2000 em->start, em->len, 2001 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2002 bg->start, bg->length, 2003 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2004 ret = -EUCLEAN; 2005 free_extent_map(em); 2006 btrfs_put_block_group(bg); 2007 break; 2008 } 2009 start = em->start + em->len; 2010 free_extent_map(em); 2011 btrfs_put_block_group(bg); 2012 } 2013 return ret; 2014 } 2015 2016 static int read_one_block_group(struct btrfs_fs_info *info, 2017 struct btrfs_block_group_item *bgi, 2018 const struct btrfs_key *key, 2019 int need_clear) 2020 { 2021 struct btrfs_block_group *cache; 2022 struct btrfs_space_info *space_info; 2023 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2024 int ret; 2025 2026 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2027 2028 cache = btrfs_create_block_group_cache(info, key->objectid); 2029 if (!cache) 2030 return -ENOMEM; 2031 2032 cache->length = key->offset; 2033 cache->used = btrfs_stack_block_group_used(bgi); 2034 cache->flags = btrfs_stack_block_group_flags(bgi); 2035 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2036 2037 set_free_space_tree_thresholds(cache); 2038 2039 if (need_clear) { 2040 /* 2041 * When we mount with old space cache, we need to 2042 * set BTRFS_DC_CLEAR and set dirty flag. 2043 * 2044 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2045 * truncate the old free space cache inode and 2046 * setup a new one. 2047 * b) Setting 'dirty flag' makes sure that we flush 2048 * the new space cache info onto disk. 2049 */ 2050 if (btrfs_test_opt(info, SPACE_CACHE)) 2051 cache->disk_cache_state = BTRFS_DC_CLEAR; 2052 } 2053 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2054 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2055 btrfs_err(info, 2056 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2057 cache->start); 2058 ret = -EINVAL; 2059 goto error; 2060 } 2061 2062 ret = btrfs_load_block_group_zone_info(cache, false); 2063 if (ret) { 2064 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2065 cache->start); 2066 goto error; 2067 } 2068 2069 /* 2070 * We need to exclude the super stripes now so that the space info has 2071 * super bytes accounted for, otherwise we'll think we have more space 2072 * than we actually do. 2073 */ 2074 ret = exclude_super_stripes(cache); 2075 if (ret) { 2076 /* We may have excluded something, so call this just in case. */ 2077 btrfs_free_excluded_extents(cache); 2078 goto error; 2079 } 2080 2081 /* 2082 * For zoned filesystem, space after the allocation offset is the only 2083 * free space for a block group. So, we don't need any caching work. 2084 * btrfs_calc_zone_unusable() will set the amount of free space and 2085 * zone_unusable space. 2086 * 2087 * For regular filesystem, check for two cases, either we are full, and 2088 * therefore don't need to bother with the caching work since we won't 2089 * find any space, or we are empty, and we can just add all the space 2090 * in and be done with it. This saves us _a_lot_ of time, particularly 2091 * in the full case. 2092 */ 2093 if (btrfs_is_zoned(info)) { 2094 btrfs_calc_zone_unusable(cache); 2095 /* Should not have any excluded extents. Just in case, though. */ 2096 btrfs_free_excluded_extents(cache); 2097 } else if (cache->length == cache->used) { 2098 cache->last_byte_to_unpin = (u64)-1; 2099 cache->cached = BTRFS_CACHE_FINISHED; 2100 btrfs_free_excluded_extents(cache); 2101 } else if (cache->used == 0) { 2102 cache->last_byte_to_unpin = (u64)-1; 2103 cache->cached = BTRFS_CACHE_FINISHED; 2104 add_new_free_space(cache, cache->start, 2105 cache->start + cache->length); 2106 btrfs_free_excluded_extents(cache); 2107 } 2108 2109 ret = btrfs_add_block_group_cache(info, cache); 2110 if (ret) { 2111 btrfs_remove_free_space_cache(cache); 2112 goto error; 2113 } 2114 trace_btrfs_add_block_group(info, cache, 0); 2115 btrfs_update_space_info(info, cache->flags, cache->length, 2116 cache->used, cache->bytes_super, 2117 cache->zone_unusable, cache->zone_is_active, 2118 &space_info); 2119 2120 cache->space_info = space_info; 2121 2122 link_block_group(cache); 2123 2124 set_avail_alloc_bits(info, cache->flags); 2125 if (btrfs_chunk_writeable(info, cache->start)) { 2126 if (cache->used == 0) { 2127 ASSERT(list_empty(&cache->bg_list)); 2128 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2129 btrfs_discard_queue_work(&info->discard_ctl, cache); 2130 else 2131 btrfs_mark_bg_unused(cache); 2132 } 2133 } else { 2134 inc_block_group_ro(cache, 1); 2135 } 2136 2137 return 0; 2138 error: 2139 btrfs_put_block_group(cache); 2140 return ret; 2141 } 2142 2143 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2144 { 2145 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2146 struct btrfs_space_info *space_info; 2147 struct rb_node *node; 2148 int ret = 0; 2149 2150 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2151 struct extent_map *em; 2152 struct map_lookup *map; 2153 struct btrfs_block_group *bg; 2154 2155 em = rb_entry(node, struct extent_map, rb_node); 2156 map = em->map_lookup; 2157 bg = btrfs_create_block_group_cache(fs_info, em->start); 2158 if (!bg) { 2159 ret = -ENOMEM; 2160 break; 2161 } 2162 2163 /* Fill dummy cache as FULL */ 2164 bg->length = em->len; 2165 bg->flags = map->type; 2166 bg->last_byte_to_unpin = (u64)-1; 2167 bg->cached = BTRFS_CACHE_FINISHED; 2168 bg->used = em->len; 2169 bg->flags = map->type; 2170 ret = btrfs_add_block_group_cache(fs_info, bg); 2171 /* 2172 * We may have some valid block group cache added already, in 2173 * that case we skip to the next one. 2174 */ 2175 if (ret == -EEXIST) { 2176 ret = 0; 2177 btrfs_put_block_group(bg); 2178 continue; 2179 } 2180 2181 if (ret) { 2182 btrfs_remove_free_space_cache(bg); 2183 btrfs_put_block_group(bg); 2184 break; 2185 } 2186 2187 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2188 0, 0, false, &space_info); 2189 bg->space_info = space_info; 2190 link_block_group(bg); 2191 2192 set_avail_alloc_bits(fs_info, bg->flags); 2193 } 2194 if (!ret) 2195 btrfs_init_global_block_rsv(fs_info); 2196 return ret; 2197 } 2198 2199 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2200 { 2201 struct btrfs_root *root = btrfs_block_group_root(info); 2202 struct btrfs_path *path; 2203 int ret; 2204 struct btrfs_block_group *cache; 2205 struct btrfs_space_info *space_info; 2206 struct btrfs_key key; 2207 int need_clear = 0; 2208 u64 cache_gen; 2209 2210 if (!root) 2211 return fill_dummy_bgs(info); 2212 2213 key.objectid = 0; 2214 key.offset = 0; 2215 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2216 path = btrfs_alloc_path(); 2217 if (!path) 2218 return -ENOMEM; 2219 2220 cache_gen = btrfs_super_cache_generation(info->super_copy); 2221 if (btrfs_test_opt(info, SPACE_CACHE) && 2222 btrfs_super_generation(info->super_copy) != cache_gen) 2223 need_clear = 1; 2224 if (btrfs_test_opt(info, CLEAR_CACHE)) 2225 need_clear = 1; 2226 2227 while (1) { 2228 struct btrfs_block_group_item bgi; 2229 struct extent_buffer *leaf; 2230 int slot; 2231 2232 ret = find_first_block_group(info, path, &key); 2233 if (ret > 0) 2234 break; 2235 if (ret != 0) 2236 goto error; 2237 2238 leaf = path->nodes[0]; 2239 slot = path->slots[0]; 2240 2241 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2242 sizeof(bgi)); 2243 2244 btrfs_item_key_to_cpu(leaf, &key, slot); 2245 btrfs_release_path(path); 2246 ret = read_one_block_group(info, &bgi, &key, need_clear); 2247 if (ret < 0) 2248 goto error; 2249 key.objectid += key.offset; 2250 key.offset = 0; 2251 } 2252 btrfs_release_path(path); 2253 2254 list_for_each_entry(space_info, &info->space_info, list) { 2255 int i; 2256 2257 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2258 if (list_empty(&space_info->block_groups[i])) 2259 continue; 2260 cache = list_first_entry(&space_info->block_groups[i], 2261 struct btrfs_block_group, 2262 list); 2263 btrfs_sysfs_add_block_group_type(cache); 2264 } 2265 2266 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2267 (BTRFS_BLOCK_GROUP_RAID10 | 2268 BTRFS_BLOCK_GROUP_RAID1_MASK | 2269 BTRFS_BLOCK_GROUP_RAID56_MASK | 2270 BTRFS_BLOCK_GROUP_DUP))) 2271 continue; 2272 /* 2273 * Avoid allocating from un-mirrored block group if there are 2274 * mirrored block groups. 2275 */ 2276 list_for_each_entry(cache, 2277 &space_info->block_groups[BTRFS_RAID_RAID0], 2278 list) 2279 inc_block_group_ro(cache, 1); 2280 list_for_each_entry(cache, 2281 &space_info->block_groups[BTRFS_RAID_SINGLE], 2282 list) 2283 inc_block_group_ro(cache, 1); 2284 } 2285 2286 btrfs_init_global_block_rsv(info); 2287 ret = check_chunk_block_group_mappings(info); 2288 error: 2289 btrfs_free_path(path); 2290 /* 2291 * We've hit some error while reading the extent tree, and have 2292 * rescue=ibadroots mount option. 2293 * Try to fill the tree using dummy block groups so that the user can 2294 * continue to mount and grab their data. 2295 */ 2296 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2297 ret = fill_dummy_bgs(info); 2298 return ret; 2299 } 2300 2301 /* 2302 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2303 * allocation. 2304 * 2305 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2306 * phases. 2307 */ 2308 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2309 struct btrfs_block_group *block_group) 2310 { 2311 struct btrfs_fs_info *fs_info = trans->fs_info; 2312 struct btrfs_block_group_item bgi; 2313 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2314 struct btrfs_key key; 2315 2316 spin_lock(&block_group->lock); 2317 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2318 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2319 block_group->global_root_id); 2320 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2321 key.objectid = block_group->start; 2322 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2323 key.offset = block_group->length; 2324 spin_unlock(&block_group->lock); 2325 2326 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2327 } 2328 2329 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2330 struct btrfs_device *device, u64 chunk_offset, 2331 u64 start, u64 num_bytes) 2332 { 2333 struct btrfs_fs_info *fs_info = device->fs_info; 2334 struct btrfs_root *root = fs_info->dev_root; 2335 struct btrfs_path *path; 2336 struct btrfs_dev_extent *extent; 2337 struct extent_buffer *leaf; 2338 struct btrfs_key key; 2339 int ret; 2340 2341 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2342 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2343 path = btrfs_alloc_path(); 2344 if (!path) 2345 return -ENOMEM; 2346 2347 key.objectid = device->devid; 2348 key.type = BTRFS_DEV_EXTENT_KEY; 2349 key.offset = start; 2350 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2351 if (ret) 2352 goto out; 2353 2354 leaf = path->nodes[0]; 2355 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2356 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2357 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2358 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2359 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2360 2361 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2362 btrfs_mark_buffer_dirty(leaf); 2363 out: 2364 btrfs_free_path(path); 2365 return ret; 2366 } 2367 2368 /* 2369 * This function belongs to phase 2. 2370 * 2371 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2372 * phases. 2373 */ 2374 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2375 u64 chunk_offset, u64 chunk_size) 2376 { 2377 struct btrfs_fs_info *fs_info = trans->fs_info; 2378 struct btrfs_device *device; 2379 struct extent_map *em; 2380 struct map_lookup *map; 2381 u64 dev_offset; 2382 u64 stripe_size; 2383 int i; 2384 int ret = 0; 2385 2386 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2387 if (IS_ERR(em)) 2388 return PTR_ERR(em); 2389 2390 map = em->map_lookup; 2391 stripe_size = em->orig_block_len; 2392 2393 /* 2394 * Take the device list mutex to prevent races with the final phase of 2395 * a device replace operation that replaces the device object associated 2396 * with the map's stripes, because the device object's id can change 2397 * at any time during that final phase of the device replace operation 2398 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2399 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2400 * resulting in persisting a device extent item with such ID. 2401 */ 2402 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2403 for (i = 0; i < map->num_stripes; i++) { 2404 device = map->stripes[i].dev; 2405 dev_offset = map->stripes[i].physical; 2406 2407 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2408 stripe_size); 2409 if (ret) 2410 break; 2411 } 2412 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2413 2414 free_extent_map(em); 2415 return ret; 2416 } 2417 2418 /* 2419 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2420 * chunk allocation. 2421 * 2422 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2423 * phases. 2424 */ 2425 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2426 { 2427 struct btrfs_fs_info *fs_info = trans->fs_info; 2428 struct btrfs_block_group *block_group; 2429 int ret = 0; 2430 2431 while (!list_empty(&trans->new_bgs)) { 2432 int index; 2433 2434 block_group = list_first_entry(&trans->new_bgs, 2435 struct btrfs_block_group, 2436 bg_list); 2437 if (ret) 2438 goto next; 2439 2440 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2441 2442 ret = insert_block_group_item(trans, block_group); 2443 if (ret) 2444 btrfs_abort_transaction(trans, ret); 2445 if (!block_group->chunk_item_inserted) { 2446 mutex_lock(&fs_info->chunk_mutex); 2447 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2448 mutex_unlock(&fs_info->chunk_mutex); 2449 if (ret) 2450 btrfs_abort_transaction(trans, ret); 2451 } 2452 ret = insert_dev_extents(trans, block_group->start, 2453 block_group->length); 2454 if (ret) 2455 btrfs_abort_transaction(trans, ret); 2456 add_block_group_free_space(trans, block_group); 2457 2458 /* 2459 * If we restriped during balance, we may have added a new raid 2460 * type, so now add the sysfs entries when it is safe to do so. 2461 * We don't have to worry about locking here as it's handled in 2462 * btrfs_sysfs_add_block_group_type. 2463 */ 2464 if (block_group->space_info->block_group_kobjs[index] == NULL) 2465 btrfs_sysfs_add_block_group_type(block_group); 2466 2467 /* Already aborted the transaction if it failed. */ 2468 next: 2469 btrfs_delayed_refs_rsv_release(fs_info, 1); 2470 list_del_init(&block_group->bg_list); 2471 } 2472 btrfs_trans_release_chunk_metadata(trans); 2473 } 2474 2475 /* 2476 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2477 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2478 */ 2479 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2480 { 2481 u64 div = SZ_1G; 2482 u64 index; 2483 2484 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2485 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2486 2487 /* If we have a smaller fs index based on 128MiB. */ 2488 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2489 div = SZ_128M; 2490 2491 offset = div64_u64(offset, div); 2492 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2493 return index; 2494 } 2495 2496 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2497 u64 bytes_used, u64 type, 2498 u64 chunk_offset, u64 size) 2499 { 2500 struct btrfs_fs_info *fs_info = trans->fs_info; 2501 struct btrfs_block_group *cache; 2502 int ret; 2503 2504 btrfs_set_log_full_commit(trans); 2505 2506 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2507 if (!cache) 2508 return ERR_PTR(-ENOMEM); 2509 2510 cache->length = size; 2511 set_free_space_tree_thresholds(cache); 2512 cache->used = bytes_used; 2513 cache->flags = type; 2514 cache->last_byte_to_unpin = (u64)-1; 2515 cache->cached = BTRFS_CACHE_FINISHED; 2516 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2517 2518 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2519 cache->needs_free_space = 1; 2520 2521 ret = btrfs_load_block_group_zone_info(cache, true); 2522 if (ret) { 2523 btrfs_put_block_group(cache); 2524 return ERR_PTR(ret); 2525 } 2526 2527 ret = exclude_super_stripes(cache); 2528 if (ret) { 2529 /* We may have excluded something, so call this just in case */ 2530 btrfs_free_excluded_extents(cache); 2531 btrfs_put_block_group(cache); 2532 return ERR_PTR(ret); 2533 } 2534 2535 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2536 2537 btrfs_free_excluded_extents(cache); 2538 2539 #ifdef CONFIG_BTRFS_DEBUG 2540 if (btrfs_should_fragment_free_space(cache)) { 2541 u64 new_bytes_used = size - bytes_used; 2542 2543 bytes_used += new_bytes_used >> 1; 2544 fragment_free_space(cache); 2545 } 2546 #endif 2547 /* 2548 * Ensure the corresponding space_info object is created and 2549 * assigned to our block group. We want our bg to be added to the rbtree 2550 * with its ->space_info set. 2551 */ 2552 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2553 ASSERT(cache->space_info); 2554 2555 ret = btrfs_add_block_group_cache(fs_info, cache); 2556 if (ret) { 2557 btrfs_remove_free_space_cache(cache); 2558 btrfs_put_block_group(cache); 2559 return ERR_PTR(ret); 2560 } 2561 2562 /* 2563 * Now that our block group has its ->space_info set and is inserted in 2564 * the rbtree, update the space info's counters. 2565 */ 2566 trace_btrfs_add_block_group(fs_info, cache, 1); 2567 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2568 cache->bytes_super, cache->zone_unusable, 2569 cache->zone_is_active, &cache->space_info); 2570 btrfs_update_global_block_rsv(fs_info); 2571 2572 link_block_group(cache); 2573 2574 list_add_tail(&cache->bg_list, &trans->new_bgs); 2575 trans->delayed_ref_updates++; 2576 btrfs_update_delayed_refs_rsv(trans); 2577 2578 set_avail_alloc_bits(fs_info, type); 2579 return cache; 2580 } 2581 2582 /* 2583 * Mark one block group RO, can be called several times for the same block 2584 * group. 2585 * 2586 * @cache: the destination block group 2587 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2588 * ensure we still have some free space after marking this 2589 * block group RO. 2590 */ 2591 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2592 bool do_chunk_alloc) 2593 { 2594 struct btrfs_fs_info *fs_info = cache->fs_info; 2595 struct btrfs_trans_handle *trans; 2596 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2597 u64 alloc_flags; 2598 int ret; 2599 bool dirty_bg_running; 2600 2601 /* 2602 * This can only happen when we are doing read-only scrub on read-only 2603 * mount. 2604 * In that case we should not start a new transaction on read-only fs. 2605 * Thus here we skip all chunk allocations. 2606 */ 2607 if (sb_rdonly(fs_info->sb)) { 2608 mutex_lock(&fs_info->ro_block_group_mutex); 2609 ret = inc_block_group_ro(cache, 0); 2610 mutex_unlock(&fs_info->ro_block_group_mutex); 2611 return ret; 2612 } 2613 2614 do { 2615 trans = btrfs_join_transaction(root); 2616 if (IS_ERR(trans)) 2617 return PTR_ERR(trans); 2618 2619 dirty_bg_running = false; 2620 2621 /* 2622 * We're not allowed to set block groups readonly after the dirty 2623 * block group cache has started writing. If it already started, 2624 * back off and let this transaction commit. 2625 */ 2626 mutex_lock(&fs_info->ro_block_group_mutex); 2627 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2628 u64 transid = trans->transid; 2629 2630 mutex_unlock(&fs_info->ro_block_group_mutex); 2631 btrfs_end_transaction(trans); 2632 2633 ret = btrfs_wait_for_commit(fs_info, transid); 2634 if (ret) 2635 return ret; 2636 dirty_bg_running = true; 2637 } 2638 } while (dirty_bg_running); 2639 2640 if (do_chunk_alloc) { 2641 /* 2642 * If we are changing raid levels, try to allocate a 2643 * corresponding block group with the new raid level. 2644 */ 2645 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2646 if (alloc_flags != cache->flags) { 2647 ret = btrfs_chunk_alloc(trans, alloc_flags, 2648 CHUNK_ALLOC_FORCE); 2649 /* 2650 * ENOSPC is allowed here, we may have enough space 2651 * already allocated at the new raid level to carry on 2652 */ 2653 if (ret == -ENOSPC) 2654 ret = 0; 2655 if (ret < 0) 2656 goto out; 2657 } 2658 } 2659 2660 ret = inc_block_group_ro(cache, 0); 2661 if (!do_chunk_alloc || ret == -ETXTBSY) 2662 goto unlock_out; 2663 if (!ret) 2664 goto out; 2665 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2666 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2667 if (ret < 0) 2668 goto out; 2669 /* 2670 * We have allocated a new chunk. We also need to activate that chunk to 2671 * grant metadata tickets for zoned filesystem. 2672 */ 2673 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2674 if (ret < 0) 2675 goto out; 2676 2677 ret = inc_block_group_ro(cache, 0); 2678 if (ret == -ETXTBSY) 2679 goto unlock_out; 2680 out: 2681 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2682 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2683 mutex_lock(&fs_info->chunk_mutex); 2684 check_system_chunk(trans, alloc_flags); 2685 mutex_unlock(&fs_info->chunk_mutex); 2686 } 2687 unlock_out: 2688 mutex_unlock(&fs_info->ro_block_group_mutex); 2689 2690 btrfs_end_transaction(trans); 2691 return ret; 2692 } 2693 2694 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2695 { 2696 struct btrfs_space_info *sinfo = cache->space_info; 2697 u64 num_bytes; 2698 2699 BUG_ON(!cache->ro); 2700 2701 spin_lock(&sinfo->lock); 2702 spin_lock(&cache->lock); 2703 if (!--cache->ro) { 2704 if (btrfs_is_zoned(cache->fs_info)) { 2705 /* Migrate zone_unusable bytes back */ 2706 cache->zone_unusable = 2707 (cache->alloc_offset - cache->used) + 2708 (cache->length - cache->zone_capacity); 2709 sinfo->bytes_zone_unusable += cache->zone_unusable; 2710 sinfo->bytes_readonly -= cache->zone_unusable; 2711 } 2712 num_bytes = cache->length - cache->reserved - 2713 cache->pinned - cache->bytes_super - 2714 cache->zone_unusable - cache->used; 2715 sinfo->bytes_readonly -= num_bytes; 2716 list_del_init(&cache->ro_list); 2717 } 2718 spin_unlock(&cache->lock); 2719 spin_unlock(&sinfo->lock); 2720 } 2721 2722 static int update_block_group_item(struct btrfs_trans_handle *trans, 2723 struct btrfs_path *path, 2724 struct btrfs_block_group *cache) 2725 { 2726 struct btrfs_fs_info *fs_info = trans->fs_info; 2727 int ret; 2728 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2729 unsigned long bi; 2730 struct extent_buffer *leaf; 2731 struct btrfs_block_group_item bgi; 2732 struct btrfs_key key; 2733 2734 key.objectid = cache->start; 2735 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2736 key.offset = cache->length; 2737 2738 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2739 if (ret) { 2740 if (ret > 0) 2741 ret = -ENOENT; 2742 goto fail; 2743 } 2744 2745 leaf = path->nodes[0]; 2746 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2747 btrfs_set_stack_block_group_used(&bgi, cache->used); 2748 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2749 cache->global_root_id); 2750 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2751 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2752 btrfs_mark_buffer_dirty(leaf); 2753 fail: 2754 btrfs_release_path(path); 2755 return ret; 2756 2757 } 2758 2759 static int cache_save_setup(struct btrfs_block_group *block_group, 2760 struct btrfs_trans_handle *trans, 2761 struct btrfs_path *path) 2762 { 2763 struct btrfs_fs_info *fs_info = block_group->fs_info; 2764 struct btrfs_root *root = fs_info->tree_root; 2765 struct inode *inode = NULL; 2766 struct extent_changeset *data_reserved = NULL; 2767 u64 alloc_hint = 0; 2768 int dcs = BTRFS_DC_ERROR; 2769 u64 cache_size = 0; 2770 int retries = 0; 2771 int ret = 0; 2772 2773 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2774 return 0; 2775 2776 /* 2777 * If this block group is smaller than 100 megs don't bother caching the 2778 * block group. 2779 */ 2780 if (block_group->length < (100 * SZ_1M)) { 2781 spin_lock(&block_group->lock); 2782 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2783 spin_unlock(&block_group->lock); 2784 return 0; 2785 } 2786 2787 if (TRANS_ABORTED(trans)) 2788 return 0; 2789 again: 2790 inode = lookup_free_space_inode(block_group, path); 2791 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2792 ret = PTR_ERR(inode); 2793 btrfs_release_path(path); 2794 goto out; 2795 } 2796 2797 if (IS_ERR(inode)) { 2798 BUG_ON(retries); 2799 retries++; 2800 2801 if (block_group->ro) 2802 goto out_free; 2803 2804 ret = create_free_space_inode(trans, block_group, path); 2805 if (ret) 2806 goto out_free; 2807 goto again; 2808 } 2809 2810 /* 2811 * We want to set the generation to 0, that way if anything goes wrong 2812 * from here on out we know not to trust this cache when we load up next 2813 * time. 2814 */ 2815 BTRFS_I(inode)->generation = 0; 2816 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2817 if (ret) { 2818 /* 2819 * So theoretically we could recover from this, simply set the 2820 * super cache generation to 0 so we know to invalidate the 2821 * cache, but then we'd have to keep track of the block groups 2822 * that fail this way so we know we _have_ to reset this cache 2823 * before the next commit or risk reading stale cache. So to 2824 * limit our exposure to horrible edge cases lets just abort the 2825 * transaction, this only happens in really bad situations 2826 * anyway. 2827 */ 2828 btrfs_abort_transaction(trans, ret); 2829 goto out_put; 2830 } 2831 WARN_ON(ret); 2832 2833 /* We've already setup this transaction, go ahead and exit */ 2834 if (block_group->cache_generation == trans->transid && 2835 i_size_read(inode)) { 2836 dcs = BTRFS_DC_SETUP; 2837 goto out_put; 2838 } 2839 2840 if (i_size_read(inode) > 0) { 2841 ret = btrfs_check_trunc_cache_free_space(fs_info, 2842 &fs_info->global_block_rsv); 2843 if (ret) 2844 goto out_put; 2845 2846 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2847 if (ret) 2848 goto out_put; 2849 } 2850 2851 spin_lock(&block_group->lock); 2852 if (block_group->cached != BTRFS_CACHE_FINISHED || 2853 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2854 /* 2855 * don't bother trying to write stuff out _if_ 2856 * a) we're not cached, 2857 * b) we're with nospace_cache mount option, 2858 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2859 */ 2860 dcs = BTRFS_DC_WRITTEN; 2861 spin_unlock(&block_group->lock); 2862 goto out_put; 2863 } 2864 spin_unlock(&block_group->lock); 2865 2866 /* 2867 * We hit an ENOSPC when setting up the cache in this transaction, just 2868 * skip doing the setup, we've already cleared the cache so we're safe. 2869 */ 2870 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2871 ret = -ENOSPC; 2872 goto out_put; 2873 } 2874 2875 /* 2876 * Try to preallocate enough space based on how big the block group is. 2877 * Keep in mind this has to include any pinned space which could end up 2878 * taking up quite a bit since it's not folded into the other space 2879 * cache. 2880 */ 2881 cache_size = div_u64(block_group->length, SZ_256M); 2882 if (!cache_size) 2883 cache_size = 1; 2884 2885 cache_size *= 16; 2886 cache_size *= fs_info->sectorsize; 2887 2888 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2889 cache_size); 2890 if (ret) 2891 goto out_put; 2892 2893 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2894 cache_size, cache_size, 2895 &alloc_hint); 2896 /* 2897 * Our cache requires contiguous chunks so that we don't modify a bunch 2898 * of metadata or split extents when writing the cache out, which means 2899 * we can enospc if we are heavily fragmented in addition to just normal 2900 * out of space conditions. So if we hit this just skip setting up any 2901 * other block groups for this transaction, maybe we'll unpin enough 2902 * space the next time around. 2903 */ 2904 if (!ret) 2905 dcs = BTRFS_DC_SETUP; 2906 else if (ret == -ENOSPC) 2907 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2908 2909 out_put: 2910 iput(inode); 2911 out_free: 2912 btrfs_release_path(path); 2913 out: 2914 spin_lock(&block_group->lock); 2915 if (!ret && dcs == BTRFS_DC_SETUP) 2916 block_group->cache_generation = trans->transid; 2917 block_group->disk_cache_state = dcs; 2918 spin_unlock(&block_group->lock); 2919 2920 extent_changeset_free(data_reserved); 2921 return ret; 2922 } 2923 2924 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2925 { 2926 struct btrfs_fs_info *fs_info = trans->fs_info; 2927 struct btrfs_block_group *cache, *tmp; 2928 struct btrfs_transaction *cur_trans = trans->transaction; 2929 struct btrfs_path *path; 2930 2931 if (list_empty(&cur_trans->dirty_bgs) || 2932 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2933 return 0; 2934 2935 path = btrfs_alloc_path(); 2936 if (!path) 2937 return -ENOMEM; 2938 2939 /* Could add new block groups, use _safe just in case */ 2940 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2941 dirty_list) { 2942 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2943 cache_save_setup(cache, trans, path); 2944 } 2945 2946 btrfs_free_path(path); 2947 return 0; 2948 } 2949 2950 /* 2951 * Transaction commit does final block group cache writeback during a critical 2952 * section where nothing is allowed to change the FS. This is required in 2953 * order for the cache to actually match the block group, but can introduce a 2954 * lot of latency into the commit. 2955 * 2956 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2957 * There's a chance we'll have to redo some of it if the block group changes 2958 * again during the commit, but it greatly reduces the commit latency by 2959 * getting rid of the easy block groups while we're still allowing others to 2960 * join the commit. 2961 */ 2962 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2963 { 2964 struct btrfs_fs_info *fs_info = trans->fs_info; 2965 struct btrfs_block_group *cache; 2966 struct btrfs_transaction *cur_trans = trans->transaction; 2967 int ret = 0; 2968 int should_put; 2969 struct btrfs_path *path = NULL; 2970 LIST_HEAD(dirty); 2971 struct list_head *io = &cur_trans->io_bgs; 2972 int loops = 0; 2973 2974 spin_lock(&cur_trans->dirty_bgs_lock); 2975 if (list_empty(&cur_trans->dirty_bgs)) { 2976 spin_unlock(&cur_trans->dirty_bgs_lock); 2977 return 0; 2978 } 2979 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2980 spin_unlock(&cur_trans->dirty_bgs_lock); 2981 2982 again: 2983 /* Make sure all the block groups on our dirty list actually exist */ 2984 btrfs_create_pending_block_groups(trans); 2985 2986 if (!path) { 2987 path = btrfs_alloc_path(); 2988 if (!path) { 2989 ret = -ENOMEM; 2990 goto out; 2991 } 2992 } 2993 2994 /* 2995 * cache_write_mutex is here only to save us from balance or automatic 2996 * removal of empty block groups deleting this block group while we are 2997 * writing out the cache 2998 */ 2999 mutex_lock(&trans->transaction->cache_write_mutex); 3000 while (!list_empty(&dirty)) { 3001 bool drop_reserve = true; 3002 3003 cache = list_first_entry(&dirty, struct btrfs_block_group, 3004 dirty_list); 3005 /* 3006 * This can happen if something re-dirties a block group that 3007 * is already under IO. Just wait for it to finish and then do 3008 * it all again 3009 */ 3010 if (!list_empty(&cache->io_list)) { 3011 list_del_init(&cache->io_list); 3012 btrfs_wait_cache_io(trans, cache, path); 3013 btrfs_put_block_group(cache); 3014 } 3015 3016 3017 /* 3018 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3019 * it should update the cache_state. Don't delete until after 3020 * we wait. 3021 * 3022 * Since we're not running in the commit critical section 3023 * we need the dirty_bgs_lock to protect from update_block_group 3024 */ 3025 spin_lock(&cur_trans->dirty_bgs_lock); 3026 list_del_init(&cache->dirty_list); 3027 spin_unlock(&cur_trans->dirty_bgs_lock); 3028 3029 should_put = 1; 3030 3031 cache_save_setup(cache, trans, path); 3032 3033 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3034 cache->io_ctl.inode = NULL; 3035 ret = btrfs_write_out_cache(trans, cache, path); 3036 if (ret == 0 && cache->io_ctl.inode) { 3037 should_put = 0; 3038 3039 /* 3040 * The cache_write_mutex is protecting the 3041 * io_list, also refer to the definition of 3042 * btrfs_transaction::io_bgs for more details 3043 */ 3044 list_add_tail(&cache->io_list, io); 3045 } else { 3046 /* 3047 * If we failed to write the cache, the 3048 * generation will be bad and life goes on 3049 */ 3050 ret = 0; 3051 } 3052 } 3053 if (!ret) { 3054 ret = update_block_group_item(trans, path, cache); 3055 /* 3056 * Our block group might still be attached to the list 3057 * of new block groups in the transaction handle of some 3058 * other task (struct btrfs_trans_handle->new_bgs). This 3059 * means its block group item isn't yet in the extent 3060 * tree. If this happens ignore the error, as we will 3061 * try again later in the critical section of the 3062 * transaction commit. 3063 */ 3064 if (ret == -ENOENT) { 3065 ret = 0; 3066 spin_lock(&cur_trans->dirty_bgs_lock); 3067 if (list_empty(&cache->dirty_list)) { 3068 list_add_tail(&cache->dirty_list, 3069 &cur_trans->dirty_bgs); 3070 btrfs_get_block_group(cache); 3071 drop_reserve = false; 3072 } 3073 spin_unlock(&cur_trans->dirty_bgs_lock); 3074 } else if (ret) { 3075 btrfs_abort_transaction(trans, ret); 3076 } 3077 } 3078 3079 /* If it's not on the io list, we need to put the block group */ 3080 if (should_put) 3081 btrfs_put_block_group(cache); 3082 if (drop_reserve) 3083 btrfs_delayed_refs_rsv_release(fs_info, 1); 3084 /* 3085 * Avoid blocking other tasks for too long. It might even save 3086 * us from writing caches for block groups that are going to be 3087 * removed. 3088 */ 3089 mutex_unlock(&trans->transaction->cache_write_mutex); 3090 if (ret) 3091 goto out; 3092 mutex_lock(&trans->transaction->cache_write_mutex); 3093 } 3094 mutex_unlock(&trans->transaction->cache_write_mutex); 3095 3096 /* 3097 * Go through delayed refs for all the stuff we've just kicked off 3098 * and then loop back (just once) 3099 */ 3100 if (!ret) 3101 ret = btrfs_run_delayed_refs(trans, 0); 3102 if (!ret && loops == 0) { 3103 loops++; 3104 spin_lock(&cur_trans->dirty_bgs_lock); 3105 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3106 /* 3107 * dirty_bgs_lock protects us from concurrent block group 3108 * deletes too (not just cache_write_mutex). 3109 */ 3110 if (!list_empty(&dirty)) { 3111 spin_unlock(&cur_trans->dirty_bgs_lock); 3112 goto again; 3113 } 3114 spin_unlock(&cur_trans->dirty_bgs_lock); 3115 } 3116 out: 3117 if (ret < 0) { 3118 spin_lock(&cur_trans->dirty_bgs_lock); 3119 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3120 spin_unlock(&cur_trans->dirty_bgs_lock); 3121 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3122 } 3123 3124 btrfs_free_path(path); 3125 return ret; 3126 } 3127 3128 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3129 { 3130 struct btrfs_fs_info *fs_info = trans->fs_info; 3131 struct btrfs_block_group *cache; 3132 struct btrfs_transaction *cur_trans = trans->transaction; 3133 int ret = 0; 3134 int should_put; 3135 struct btrfs_path *path; 3136 struct list_head *io = &cur_trans->io_bgs; 3137 3138 path = btrfs_alloc_path(); 3139 if (!path) 3140 return -ENOMEM; 3141 3142 /* 3143 * Even though we are in the critical section of the transaction commit, 3144 * we can still have concurrent tasks adding elements to this 3145 * transaction's list of dirty block groups. These tasks correspond to 3146 * endio free space workers started when writeback finishes for a 3147 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3148 * allocate new block groups as a result of COWing nodes of the root 3149 * tree when updating the free space inode. The writeback for the space 3150 * caches is triggered by an earlier call to 3151 * btrfs_start_dirty_block_groups() and iterations of the following 3152 * loop. 3153 * Also we want to do the cache_save_setup first and then run the 3154 * delayed refs to make sure we have the best chance at doing this all 3155 * in one shot. 3156 */ 3157 spin_lock(&cur_trans->dirty_bgs_lock); 3158 while (!list_empty(&cur_trans->dirty_bgs)) { 3159 cache = list_first_entry(&cur_trans->dirty_bgs, 3160 struct btrfs_block_group, 3161 dirty_list); 3162 3163 /* 3164 * This can happen if cache_save_setup re-dirties a block group 3165 * that is already under IO. Just wait for it to finish and 3166 * then do it all again 3167 */ 3168 if (!list_empty(&cache->io_list)) { 3169 spin_unlock(&cur_trans->dirty_bgs_lock); 3170 list_del_init(&cache->io_list); 3171 btrfs_wait_cache_io(trans, cache, path); 3172 btrfs_put_block_group(cache); 3173 spin_lock(&cur_trans->dirty_bgs_lock); 3174 } 3175 3176 /* 3177 * Don't remove from the dirty list until after we've waited on 3178 * any pending IO 3179 */ 3180 list_del_init(&cache->dirty_list); 3181 spin_unlock(&cur_trans->dirty_bgs_lock); 3182 should_put = 1; 3183 3184 cache_save_setup(cache, trans, path); 3185 3186 if (!ret) 3187 ret = btrfs_run_delayed_refs(trans, 3188 (unsigned long) -1); 3189 3190 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3191 cache->io_ctl.inode = NULL; 3192 ret = btrfs_write_out_cache(trans, cache, path); 3193 if (ret == 0 && cache->io_ctl.inode) { 3194 should_put = 0; 3195 list_add_tail(&cache->io_list, io); 3196 } else { 3197 /* 3198 * If we failed to write the cache, the 3199 * generation will be bad and life goes on 3200 */ 3201 ret = 0; 3202 } 3203 } 3204 if (!ret) { 3205 ret = update_block_group_item(trans, path, cache); 3206 /* 3207 * One of the free space endio workers might have 3208 * created a new block group while updating a free space 3209 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3210 * and hasn't released its transaction handle yet, in 3211 * which case the new block group is still attached to 3212 * its transaction handle and its creation has not 3213 * finished yet (no block group item in the extent tree 3214 * yet, etc). If this is the case, wait for all free 3215 * space endio workers to finish and retry. This is a 3216 * very rare case so no need for a more efficient and 3217 * complex approach. 3218 */ 3219 if (ret == -ENOENT) { 3220 wait_event(cur_trans->writer_wait, 3221 atomic_read(&cur_trans->num_writers) == 1); 3222 ret = update_block_group_item(trans, path, cache); 3223 } 3224 if (ret) 3225 btrfs_abort_transaction(trans, ret); 3226 } 3227 3228 /* If its not on the io list, we need to put the block group */ 3229 if (should_put) 3230 btrfs_put_block_group(cache); 3231 btrfs_delayed_refs_rsv_release(fs_info, 1); 3232 spin_lock(&cur_trans->dirty_bgs_lock); 3233 } 3234 spin_unlock(&cur_trans->dirty_bgs_lock); 3235 3236 /* 3237 * Refer to the definition of io_bgs member for details why it's safe 3238 * to use it without any locking 3239 */ 3240 while (!list_empty(io)) { 3241 cache = list_first_entry(io, struct btrfs_block_group, 3242 io_list); 3243 list_del_init(&cache->io_list); 3244 btrfs_wait_cache_io(trans, cache, path); 3245 btrfs_put_block_group(cache); 3246 } 3247 3248 btrfs_free_path(path); 3249 return ret; 3250 } 3251 3252 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg, 3253 u64 bytes_freed) 3254 { 3255 const struct btrfs_space_info *space_info = bg->space_info; 3256 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 3257 const u64 new_val = bg->used; 3258 const u64 old_val = new_val + bytes_freed; 3259 u64 thresh; 3260 3261 if (reclaim_thresh == 0) 3262 return false; 3263 3264 thresh = div_factor_fine(bg->length, reclaim_thresh); 3265 3266 /* 3267 * If we were below the threshold before don't reclaim, we are likely a 3268 * brand new block group and we don't want to relocate new block groups. 3269 */ 3270 if (old_val < thresh) 3271 return false; 3272 if (new_val >= thresh) 3273 return false; 3274 return true; 3275 } 3276 3277 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3278 u64 bytenr, u64 num_bytes, bool alloc) 3279 { 3280 struct btrfs_fs_info *info = trans->fs_info; 3281 struct btrfs_block_group *cache = NULL; 3282 u64 total = num_bytes; 3283 u64 old_val; 3284 u64 byte_in_group; 3285 int factor; 3286 int ret = 0; 3287 3288 /* Block accounting for super block */ 3289 spin_lock(&info->delalloc_root_lock); 3290 old_val = btrfs_super_bytes_used(info->super_copy); 3291 if (alloc) 3292 old_val += num_bytes; 3293 else 3294 old_val -= num_bytes; 3295 btrfs_set_super_bytes_used(info->super_copy, old_val); 3296 spin_unlock(&info->delalloc_root_lock); 3297 3298 while (total) { 3299 bool reclaim; 3300 3301 cache = btrfs_lookup_block_group(info, bytenr); 3302 if (!cache) { 3303 ret = -ENOENT; 3304 break; 3305 } 3306 factor = btrfs_bg_type_to_factor(cache->flags); 3307 3308 /* 3309 * If this block group has free space cache written out, we 3310 * need to make sure to load it if we are removing space. This 3311 * is because we need the unpinning stage to actually add the 3312 * space back to the block group, otherwise we will leak space. 3313 */ 3314 if (!alloc && !btrfs_block_group_done(cache)) 3315 btrfs_cache_block_group(cache, 1); 3316 3317 byte_in_group = bytenr - cache->start; 3318 WARN_ON(byte_in_group > cache->length); 3319 3320 spin_lock(&cache->space_info->lock); 3321 spin_lock(&cache->lock); 3322 3323 if (btrfs_test_opt(info, SPACE_CACHE) && 3324 cache->disk_cache_state < BTRFS_DC_CLEAR) 3325 cache->disk_cache_state = BTRFS_DC_CLEAR; 3326 3327 old_val = cache->used; 3328 num_bytes = min(total, cache->length - byte_in_group); 3329 if (alloc) { 3330 old_val += num_bytes; 3331 cache->used = old_val; 3332 cache->reserved -= num_bytes; 3333 cache->space_info->bytes_reserved -= num_bytes; 3334 cache->space_info->bytes_used += num_bytes; 3335 cache->space_info->disk_used += num_bytes * factor; 3336 spin_unlock(&cache->lock); 3337 spin_unlock(&cache->space_info->lock); 3338 } else { 3339 old_val -= num_bytes; 3340 cache->used = old_val; 3341 cache->pinned += num_bytes; 3342 btrfs_space_info_update_bytes_pinned(info, 3343 cache->space_info, num_bytes); 3344 cache->space_info->bytes_used -= num_bytes; 3345 cache->space_info->disk_used -= num_bytes * factor; 3346 3347 reclaim = should_reclaim_block_group(cache, num_bytes); 3348 spin_unlock(&cache->lock); 3349 spin_unlock(&cache->space_info->lock); 3350 3351 set_extent_dirty(&trans->transaction->pinned_extents, 3352 bytenr, bytenr + num_bytes - 1, 3353 GFP_NOFS | __GFP_NOFAIL); 3354 } 3355 3356 spin_lock(&trans->transaction->dirty_bgs_lock); 3357 if (list_empty(&cache->dirty_list)) { 3358 list_add_tail(&cache->dirty_list, 3359 &trans->transaction->dirty_bgs); 3360 trans->delayed_ref_updates++; 3361 btrfs_get_block_group(cache); 3362 } 3363 spin_unlock(&trans->transaction->dirty_bgs_lock); 3364 3365 /* 3366 * No longer have used bytes in this block group, queue it for 3367 * deletion. We do this after adding the block group to the 3368 * dirty list to avoid races between cleaner kthread and space 3369 * cache writeout. 3370 */ 3371 if (!alloc && old_val == 0) { 3372 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3373 btrfs_mark_bg_unused(cache); 3374 } else if (!alloc && reclaim) { 3375 btrfs_mark_bg_to_reclaim(cache); 3376 } 3377 3378 btrfs_put_block_group(cache); 3379 total -= num_bytes; 3380 bytenr += num_bytes; 3381 } 3382 3383 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3384 btrfs_update_delayed_refs_rsv(trans); 3385 return ret; 3386 } 3387 3388 /** 3389 * btrfs_add_reserved_bytes - update the block_group and space info counters 3390 * @cache: The cache we are manipulating 3391 * @ram_bytes: The number of bytes of file content, and will be same to 3392 * @num_bytes except for the compress path. 3393 * @num_bytes: The number of bytes in question 3394 * @delalloc: The blocks are allocated for the delalloc write 3395 * 3396 * This is called by the allocator when it reserves space. If this is a 3397 * reservation and the block group has become read only we cannot make the 3398 * reservation and return -EAGAIN, otherwise this function always succeeds. 3399 */ 3400 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3401 u64 ram_bytes, u64 num_bytes, int delalloc) 3402 { 3403 struct btrfs_space_info *space_info = cache->space_info; 3404 int ret = 0; 3405 3406 spin_lock(&space_info->lock); 3407 spin_lock(&cache->lock); 3408 if (cache->ro) { 3409 ret = -EAGAIN; 3410 } else { 3411 cache->reserved += num_bytes; 3412 space_info->bytes_reserved += num_bytes; 3413 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3414 space_info->flags, num_bytes, 1); 3415 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3416 space_info, -ram_bytes); 3417 if (delalloc) 3418 cache->delalloc_bytes += num_bytes; 3419 3420 /* 3421 * Compression can use less space than we reserved, so wake 3422 * tickets if that happens 3423 */ 3424 if (num_bytes < ram_bytes) 3425 btrfs_try_granting_tickets(cache->fs_info, space_info); 3426 } 3427 spin_unlock(&cache->lock); 3428 spin_unlock(&space_info->lock); 3429 return ret; 3430 } 3431 3432 /** 3433 * btrfs_free_reserved_bytes - update the block_group and space info counters 3434 * @cache: The cache we are manipulating 3435 * @num_bytes: The number of bytes in question 3436 * @delalloc: The blocks are allocated for the delalloc write 3437 * 3438 * This is called by somebody who is freeing space that was never actually used 3439 * on disk. For example if you reserve some space for a new leaf in transaction 3440 * A and before transaction A commits you free that leaf, you call this with 3441 * reserve set to 0 in order to clear the reservation. 3442 */ 3443 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3444 u64 num_bytes, int delalloc) 3445 { 3446 struct btrfs_space_info *space_info = cache->space_info; 3447 3448 spin_lock(&space_info->lock); 3449 spin_lock(&cache->lock); 3450 if (cache->ro) 3451 space_info->bytes_readonly += num_bytes; 3452 cache->reserved -= num_bytes; 3453 space_info->bytes_reserved -= num_bytes; 3454 space_info->max_extent_size = 0; 3455 3456 if (delalloc) 3457 cache->delalloc_bytes -= num_bytes; 3458 spin_unlock(&cache->lock); 3459 3460 btrfs_try_granting_tickets(cache->fs_info, space_info); 3461 spin_unlock(&space_info->lock); 3462 } 3463 3464 static void force_metadata_allocation(struct btrfs_fs_info *info) 3465 { 3466 struct list_head *head = &info->space_info; 3467 struct btrfs_space_info *found; 3468 3469 list_for_each_entry(found, head, list) { 3470 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3471 found->force_alloc = CHUNK_ALLOC_FORCE; 3472 } 3473 } 3474 3475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3476 struct btrfs_space_info *sinfo, int force) 3477 { 3478 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3479 u64 thresh; 3480 3481 if (force == CHUNK_ALLOC_FORCE) 3482 return 1; 3483 3484 /* 3485 * in limited mode, we want to have some free space up to 3486 * about 1% of the FS size. 3487 */ 3488 if (force == CHUNK_ALLOC_LIMITED) { 3489 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3490 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3491 3492 if (sinfo->total_bytes - bytes_used < thresh) 3493 return 1; 3494 } 3495 3496 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3497 return 0; 3498 return 1; 3499 } 3500 3501 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3502 { 3503 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3504 3505 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3506 } 3507 3508 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3509 { 3510 struct btrfs_block_group *bg; 3511 int ret; 3512 3513 /* 3514 * Check if we have enough space in the system space info because we 3515 * will need to update device items in the chunk btree and insert a new 3516 * chunk item in the chunk btree as well. This will allocate a new 3517 * system block group if needed. 3518 */ 3519 check_system_chunk(trans, flags); 3520 3521 bg = btrfs_create_chunk(trans, flags); 3522 if (IS_ERR(bg)) { 3523 ret = PTR_ERR(bg); 3524 goto out; 3525 } 3526 3527 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3528 /* 3529 * Normally we are not expected to fail with -ENOSPC here, since we have 3530 * previously reserved space in the system space_info and allocated one 3531 * new system chunk if necessary. However there are three exceptions: 3532 * 3533 * 1) We may have enough free space in the system space_info but all the 3534 * existing system block groups have a profile which can not be used 3535 * for extent allocation. 3536 * 3537 * This happens when mounting in degraded mode. For example we have a 3538 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3539 * using the other device in degraded mode. If we then allocate a chunk, 3540 * we may have enough free space in the existing system space_info, but 3541 * none of the block groups can be used for extent allocation since they 3542 * have a RAID1 profile, and because we are in degraded mode with a 3543 * single device, we are forced to allocate a new system chunk with a 3544 * SINGLE profile. Making check_system_chunk() iterate over all system 3545 * block groups and check if they have a usable profile and enough space 3546 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3547 * try again after forcing allocation of a new system chunk. Like this 3548 * we avoid paying the cost of that search in normal circumstances, when 3549 * we were not mounted in degraded mode; 3550 * 3551 * 2) We had enough free space info the system space_info, and one suitable 3552 * block group to allocate from when we called check_system_chunk() 3553 * above. However right after we called it, the only system block group 3554 * with enough free space got turned into RO mode by a running scrub, 3555 * and in this case we have to allocate a new one and retry. We only 3556 * need do this allocate and retry once, since we have a transaction 3557 * handle and scrub uses the commit root to search for block groups; 3558 * 3559 * 3) We had one system block group with enough free space when we called 3560 * check_system_chunk(), but after that, right before we tried to 3561 * allocate the last extent buffer we needed, a discard operation came 3562 * in and it temporarily removed the last free space entry from the 3563 * block group (discard removes a free space entry, discards it, and 3564 * then adds back the entry to the block group cache). 3565 */ 3566 if (ret == -ENOSPC) { 3567 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3568 struct btrfs_block_group *sys_bg; 3569 3570 sys_bg = btrfs_create_chunk(trans, sys_flags); 3571 if (IS_ERR(sys_bg)) { 3572 ret = PTR_ERR(sys_bg); 3573 btrfs_abort_transaction(trans, ret); 3574 goto out; 3575 } 3576 3577 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3578 if (ret) { 3579 btrfs_abort_transaction(trans, ret); 3580 goto out; 3581 } 3582 3583 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3584 if (ret) { 3585 btrfs_abort_transaction(trans, ret); 3586 goto out; 3587 } 3588 } else if (ret) { 3589 btrfs_abort_transaction(trans, ret); 3590 goto out; 3591 } 3592 out: 3593 btrfs_trans_release_chunk_metadata(trans); 3594 3595 if (ret) 3596 return ERR_PTR(ret); 3597 3598 btrfs_get_block_group(bg); 3599 return bg; 3600 } 3601 3602 /* 3603 * Chunk allocation is done in 2 phases: 3604 * 3605 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3606 * the chunk, the chunk mapping, create its block group and add the items 3607 * that belong in the chunk btree to it - more specifically, we need to 3608 * update device items in the chunk btree and add a new chunk item to it. 3609 * 3610 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3611 * group item to the extent btree and the device extent items to the devices 3612 * btree. 3613 * 3614 * This is done to prevent deadlocks. For example when COWing a node from the 3615 * extent btree we are holding a write lock on the node's parent and if we 3616 * trigger chunk allocation and attempted to insert the new block group item 3617 * in the extent btree right way, we could deadlock because the path for the 3618 * insertion can include that parent node. At first glance it seems impossible 3619 * to trigger chunk allocation after starting a transaction since tasks should 3620 * reserve enough transaction units (metadata space), however while that is true 3621 * most of the time, chunk allocation may still be triggered for several reasons: 3622 * 3623 * 1) When reserving metadata, we check if there is enough free space in the 3624 * metadata space_info and therefore don't trigger allocation of a new chunk. 3625 * However later when the task actually tries to COW an extent buffer from 3626 * the extent btree or from the device btree for example, it is forced to 3627 * allocate a new block group (chunk) because the only one that had enough 3628 * free space was just turned to RO mode by a running scrub for example (or 3629 * device replace, block group reclaim thread, etc), so we can not use it 3630 * for allocating an extent and end up being forced to allocate a new one; 3631 * 3632 * 2) Because we only check that the metadata space_info has enough free bytes, 3633 * we end up not allocating a new metadata chunk in that case. However if 3634 * the filesystem was mounted in degraded mode, none of the existing block 3635 * groups might be suitable for extent allocation due to their incompatible 3636 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3637 * use a RAID1 profile, in degraded mode using a single device). In this case 3638 * when the task attempts to COW some extent buffer of the extent btree for 3639 * example, it will trigger allocation of a new metadata block group with a 3640 * suitable profile (SINGLE profile in the example of the degraded mount of 3641 * the RAID1 filesystem); 3642 * 3643 * 3) The task has reserved enough transaction units / metadata space, but when 3644 * it attempts to COW an extent buffer from the extent or device btree for 3645 * example, it does not find any free extent in any metadata block group, 3646 * therefore forced to try to allocate a new metadata block group. 3647 * This is because some other task allocated all available extents in the 3648 * meanwhile - this typically happens with tasks that don't reserve space 3649 * properly, either intentionally or as a bug. One example where this is 3650 * done intentionally is fsync, as it does not reserve any transaction units 3651 * and ends up allocating a variable number of metadata extents for log 3652 * tree extent buffers; 3653 * 3654 * 4) The task has reserved enough transaction units / metadata space, but right 3655 * before it tries to allocate the last extent buffer it needs, a discard 3656 * operation comes in and, temporarily, removes the last free space entry from 3657 * the only metadata block group that had free space (discard starts by 3658 * removing a free space entry from a block group, then does the discard 3659 * operation and, once it's done, it adds back the free space entry to the 3660 * block group). 3661 * 3662 * We also need this 2 phases setup when adding a device to a filesystem with 3663 * a seed device - we must create new metadata and system chunks without adding 3664 * any of the block group items to the chunk, extent and device btrees. If we 3665 * did not do it this way, we would get ENOSPC when attempting to update those 3666 * btrees, since all the chunks from the seed device are read-only. 3667 * 3668 * Phase 1 does the updates and insertions to the chunk btree because if we had 3669 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3670 * parallel, we risk having too many system chunks allocated by many tasks if 3671 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3672 * extreme case this leads to exhaustion of the system chunk array in the 3673 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3674 * and with RAID filesystems (so we have more device items in the chunk btree). 3675 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3676 * the system chunk array due to concurrent allocations") provides more details. 3677 * 3678 * Allocation of system chunks does not happen through this function. A task that 3679 * needs to update the chunk btree (the only btree that uses system chunks), must 3680 * preallocate chunk space by calling either check_system_chunk() or 3681 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3682 * metadata chunk or when removing a chunk, while the later is used before doing 3683 * a modification to the chunk btree - use cases for the later are adding, 3684 * removing and resizing a device as well as relocation of a system chunk. 3685 * See the comment below for more details. 3686 * 3687 * The reservation of system space, done through check_system_chunk(), as well 3688 * as all the updates and insertions into the chunk btree must be done while 3689 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3690 * an extent buffer from the chunks btree we never trigger allocation of a new 3691 * system chunk, which would result in a deadlock (trying to lock twice an 3692 * extent buffer of the chunk btree, first time before triggering the chunk 3693 * allocation and the second time during chunk allocation while attempting to 3694 * update the chunks btree). The system chunk array is also updated while holding 3695 * that mutex. The same logic applies to removing chunks - we must reserve system 3696 * space, update the chunk btree and the system chunk array in the superblock 3697 * while holding fs_info->chunk_mutex. 3698 * 3699 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3700 * 3701 * If @force is CHUNK_ALLOC_FORCE: 3702 * - return 1 if it successfully allocates a chunk, 3703 * - return errors including -ENOSPC otherwise. 3704 * If @force is NOT CHUNK_ALLOC_FORCE: 3705 * - return 0 if it doesn't need to allocate a new chunk, 3706 * - return 1 if it successfully allocates a chunk, 3707 * - return errors including -ENOSPC otherwise. 3708 */ 3709 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3710 enum btrfs_chunk_alloc_enum force) 3711 { 3712 struct btrfs_fs_info *fs_info = trans->fs_info; 3713 struct btrfs_space_info *space_info; 3714 struct btrfs_block_group *ret_bg; 3715 bool wait_for_alloc = false; 3716 bool should_alloc = false; 3717 bool from_extent_allocation = false; 3718 int ret = 0; 3719 3720 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3721 from_extent_allocation = true; 3722 force = CHUNK_ALLOC_FORCE; 3723 } 3724 3725 /* Don't re-enter if we're already allocating a chunk */ 3726 if (trans->allocating_chunk) 3727 return -ENOSPC; 3728 /* 3729 * Allocation of system chunks can not happen through this path, as we 3730 * could end up in a deadlock if we are allocating a data or metadata 3731 * chunk and there is another task modifying the chunk btree. 3732 * 3733 * This is because while we are holding the chunk mutex, we will attempt 3734 * to add the new chunk item to the chunk btree or update an existing 3735 * device item in the chunk btree, while the other task that is modifying 3736 * the chunk btree is attempting to COW an extent buffer while holding a 3737 * lock on it and on its parent - if the COW operation triggers a system 3738 * chunk allocation, then we can deadlock because we are holding the 3739 * chunk mutex and we may need to access that extent buffer or its parent 3740 * in order to add the chunk item or update a device item. 3741 * 3742 * Tasks that want to modify the chunk tree should reserve system space 3743 * before updating the chunk btree, by calling either 3744 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3745 * It's possible that after a task reserves the space, it still ends up 3746 * here - this happens in the cases described above at do_chunk_alloc(). 3747 * The task will have to either retry or fail. 3748 */ 3749 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3750 return -ENOSPC; 3751 3752 space_info = btrfs_find_space_info(fs_info, flags); 3753 ASSERT(space_info); 3754 3755 do { 3756 spin_lock(&space_info->lock); 3757 if (force < space_info->force_alloc) 3758 force = space_info->force_alloc; 3759 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3760 if (space_info->full) { 3761 /* No more free physical space */ 3762 if (should_alloc) 3763 ret = -ENOSPC; 3764 else 3765 ret = 0; 3766 spin_unlock(&space_info->lock); 3767 return ret; 3768 } else if (!should_alloc) { 3769 spin_unlock(&space_info->lock); 3770 return 0; 3771 } else if (space_info->chunk_alloc) { 3772 /* 3773 * Someone is already allocating, so we need to block 3774 * until this someone is finished and then loop to 3775 * recheck if we should continue with our allocation 3776 * attempt. 3777 */ 3778 wait_for_alloc = true; 3779 force = CHUNK_ALLOC_NO_FORCE; 3780 spin_unlock(&space_info->lock); 3781 mutex_lock(&fs_info->chunk_mutex); 3782 mutex_unlock(&fs_info->chunk_mutex); 3783 } else { 3784 /* Proceed with allocation */ 3785 space_info->chunk_alloc = 1; 3786 wait_for_alloc = false; 3787 spin_unlock(&space_info->lock); 3788 } 3789 3790 cond_resched(); 3791 } while (wait_for_alloc); 3792 3793 mutex_lock(&fs_info->chunk_mutex); 3794 trans->allocating_chunk = true; 3795 3796 /* 3797 * If we have mixed data/metadata chunks we want to make sure we keep 3798 * allocating mixed chunks instead of individual chunks. 3799 */ 3800 if (btrfs_mixed_space_info(space_info)) 3801 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3802 3803 /* 3804 * if we're doing a data chunk, go ahead and make sure that 3805 * we keep a reasonable number of metadata chunks allocated in the 3806 * FS as well. 3807 */ 3808 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3809 fs_info->data_chunk_allocations++; 3810 if (!(fs_info->data_chunk_allocations % 3811 fs_info->metadata_ratio)) 3812 force_metadata_allocation(fs_info); 3813 } 3814 3815 ret_bg = do_chunk_alloc(trans, flags); 3816 trans->allocating_chunk = false; 3817 3818 if (IS_ERR(ret_bg)) { 3819 ret = PTR_ERR(ret_bg); 3820 } else if (from_extent_allocation) { 3821 /* 3822 * New block group is likely to be used soon. Try to activate 3823 * it now. Failure is OK for now. 3824 */ 3825 btrfs_zone_activate(ret_bg); 3826 } 3827 3828 if (!ret) 3829 btrfs_put_block_group(ret_bg); 3830 3831 spin_lock(&space_info->lock); 3832 if (ret < 0) { 3833 if (ret == -ENOSPC) 3834 space_info->full = 1; 3835 else 3836 goto out; 3837 } else { 3838 ret = 1; 3839 space_info->max_extent_size = 0; 3840 } 3841 3842 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3843 out: 3844 space_info->chunk_alloc = 0; 3845 spin_unlock(&space_info->lock); 3846 mutex_unlock(&fs_info->chunk_mutex); 3847 3848 return ret; 3849 } 3850 3851 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3852 { 3853 u64 num_dev; 3854 3855 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3856 if (!num_dev) 3857 num_dev = fs_info->fs_devices->rw_devices; 3858 3859 return num_dev; 3860 } 3861 3862 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3863 u64 bytes, 3864 u64 type) 3865 { 3866 struct btrfs_fs_info *fs_info = trans->fs_info; 3867 struct btrfs_space_info *info; 3868 u64 left; 3869 int ret = 0; 3870 3871 /* 3872 * Needed because we can end up allocating a system chunk and for an 3873 * atomic and race free space reservation in the chunk block reserve. 3874 */ 3875 lockdep_assert_held(&fs_info->chunk_mutex); 3876 3877 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3878 spin_lock(&info->lock); 3879 left = info->total_bytes - btrfs_space_info_used(info, true); 3880 spin_unlock(&info->lock); 3881 3882 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3883 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3884 left, bytes, type); 3885 btrfs_dump_space_info(fs_info, info, 0, 0); 3886 } 3887 3888 if (left < bytes) { 3889 u64 flags = btrfs_system_alloc_profile(fs_info); 3890 struct btrfs_block_group *bg; 3891 3892 /* 3893 * Ignore failure to create system chunk. We might end up not 3894 * needing it, as we might not need to COW all nodes/leafs from 3895 * the paths we visit in the chunk tree (they were already COWed 3896 * or created in the current transaction for example). 3897 */ 3898 bg = btrfs_create_chunk(trans, flags); 3899 if (IS_ERR(bg)) { 3900 ret = PTR_ERR(bg); 3901 } else { 3902 /* 3903 * We have a new chunk. We also need to activate it for 3904 * zoned filesystem. 3905 */ 3906 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 3907 if (ret < 0) 3908 return; 3909 3910 /* 3911 * If we fail to add the chunk item here, we end up 3912 * trying again at phase 2 of chunk allocation, at 3913 * btrfs_create_pending_block_groups(). So ignore 3914 * any error here. An ENOSPC here could happen, due to 3915 * the cases described at do_chunk_alloc() - the system 3916 * block group we just created was just turned into RO 3917 * mode by a scrub for example, or a running discard 3918 * temporarily removed its free space entries, etc. 3919 */ 3920 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3921 } 3922 } 3923 3924 if (!ret) { 3925 ret = btrfs_block_rsv_add(fs_info, 3926 &fs_info->chunk_block_rsv, 3927 bytes, BTRFS_RESERVE_NO_FLUSH); 3928 if (!ret) 3929 trans->chunk_bytes_reserved += bytes; 3930 } 3931 } 3932 3933 /* 3934 * Reserve space in the system space for allocating or removing a chunk. 3935 * The caller must be holding fs_info->chunk_mutex. 3936 */ 3937 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3938 { 3939 struct btrfs_fs_info *fs_info = trans->fs_info; 3940 const u64 num_devs = get_profile_num_devs(fs_info, type); 3941 u64 bytes; 3942 3943 /* num_devs device items to update and 1 chunk item to add or remove. */ 3944 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3945 btrfs_calc_insert_metadata_size(fs_info, 1); 3946 3947 reserve_chunk_space(trans, bytes, type); 3948 } 3949 3950 /* 3951 * Reserve space in the system space, if needed, for doing a modification to the 3952 * chunk btree. 3953 * 3954 * @trans: A transaction handle. 3955 * @is_item_insertion: Indicate if the modification is for inserting a new item 3956 * in the chunk btree or if it's for the deletion or update 3957 * of an existing item. 3958 * 3959 * This is used in a context where we need to update the chunk btree outside 3960 * block group allocation and removal, to avoid a deadlock with a concurrent 3961 * task that is allocating a metadata or data block group and therefore needs to 3962 * update the chunk btree while holding the chunk mutex. After the update to the 3963 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3964 * 3965 */ 3966 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3967 bool is_item_insertion) 3968 { 3969 struct btrfs_fs_info *fs_info = trans->fs_info; 3970 u64 bytes; 3971 3972 if (is_item_insertion) 3973 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3974 else 3975 bytes = btrfs_calc_metadata_size(fs_info, 1); 3976 3977 mutex_lock(&fs_info->chunk_mutex); 3978 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3979 mutex_unlock(&fs_info->chunk_mutex); 3980 } 3981 3982 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3983 { 3984 struct btrfs_block_group *block_group; 3985 u64 last = 0; 3986 3987 while (1) { 3988 struct inode *inode; 3989 3990 block_group = btrfs_lookup_first_block_group(info, last); 3991 while (block_group) { 3992 btrfs_wait_block_group_cache_done(block_group); 3993 spin_lock(&block_group->lock); 3994 if (block_group->iref) 3995 break; 3996 spin_unlock(&block_group->lock); 3997 block_group = btrfs_next_block_group(block_group); 3998 } 3999 if (!block_group) { 4000 if (last == 0) 4001 break; 4002 last = 0; 4003 continue; 4004 } 4005 4006 inode = block_group->inode; 4007 block_group->iref = 0; 4008 block_group->inode = NULL; 4009 spin_unlock(&block_group->lock); 4010 ASSERT(block_group->io_ctl.inode == NULL); 4011 iput(inode); 4012 last = block_group->start + block_group->length; 4013 btrfs_put_block_group(block_group); 4014 } 4015 } 4016 4017 /* 4018 * Must be called only after stopping all workers, since we could have block 4019 * group caching kthreads running, and therefore they could race with us if we 4020 * freed the block groups before stopping them. 4021 */ 4022 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4023 { 4024 struct btrfs_block_group *block_group; 4025 struct btrfs_space_info *space_info; 4026 struct btrfs_caching_control *caching_ctl; 4027 struct rb_node *n; 4028 4029 write_lock(&info->block_group_cache_lock); 4030 while (!list_empty(&info->caching_block_groups)) { 4031 caching_ctl = list_entry(info->caching_block_groups.next, 4032 struct btrfs_caching_control, list); 4033 list_del(&caching_ctl->list); 4034 btrfs_put_caching_control(caching_ctl); 4035 } 4036 write_unlock(&info->block_group_cache_lock); 4037 4038 spin_lock(&info->unused_bgs_lock); 4039 while (!list_empty(&info->unused_bgs)) { 4040 block_group = list_first_entry(&info->unused_bgs, 4041 struct btrfs_block_group, 4042 bg_list); 4043 list_del_init(&block_group->bg_list); 4044 btrfs_put_block_group(block_group); 4045 } 4046 4047 while (!list_empty(&info->reclaim_bgs)) { 4048 block_group = list_first_entry(&info->reclaim_bgs, 4049 struct btrfs_block_group, 4050 bg_list); 4051 list_del_init(&block_group->bg_list); 4052 btrfs_put_block_group(block_group); 4053 } 4054 spin_unlock(&info->unused_bgs_lock); 4055 4056 spin_lock(&info->zone_active_bgs_lock); 4057 while (!list_empty(&info->zone_active_bgs)) { 4058 block_group = list_first_entry(&info->zone_active_bgs, 4059 struct btrfs_block_group, 4060 active_bg_list); 4061 list_del_init(&block_group->active_bg_list); 4062 btrfs_put_block_group(block_group); 4063 } 4064 spin_unlock(&info->zone_active_bgs_lock); 4065 4066 write_lock(&info->block_group_cache_lock); 4067 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4068 block_group = rb_entry(n, struct btrfs_block_group, 4069 cache_node); 4070 rb_erase_cached(&block_group->cache_node, 4071 &info->block_group_cache_tree); 4072 RB_CLEAR_NODE(&block_group->cache_node); 4073 write_unlock(&info->block_group_cache_lock); 4074 4075 down_write(&block_group->space_info->groups_sem); 4076 list_del(&block_group->list); 4077 up_write(&block_group->space_info->groups_sem); 4078 4079 /* 4080 * We haven't cached this block group, which means we could 4081 * possibly have excluded extents on this block group. 4082 */ 4083 if (block_group->cached == BTRFS_CACHE_NO || 4084 block_group->cached == BTRFS_CACHE_ERROR) 4085 btrfs_free_excluded_extents(block_group); 4086 4087 btrfs_remove_free_space_cache(block_group); 4088 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4089 ASSERT(list_empty(&block_group->dirty_list)); 4090 ASSERT(list_empty(&block_group->io_list)); 4091 ASSERT(list_empty(&block_group->bg_list)); 4092 ASSERT(refcount_read(&block_group->refs) == 1); 4093 ASSERT(block_group->swap_extents == 0); 4094 btrfs_put_block_group(block_group); 4095 4096 write_lock(&info->block_group_cache_lock); 4097 } 4098 write_unlock(&info->block_group_cache_lock); 4099 4100 btrfs_release_global_block_rsv(info); 4101 4102 while (!list_empty(&info->space_info)) { 4103 space_info = list_entry(info->space_info.next, 4104 struct btrfs_space_info, 4105 list); 4106 4107 /* 4108 * Do not hide this behind enospc_debug, this is actually 4109 * important and indicates a real bug if this happens. 4110 */ 4111 if (WARN_ON(space_info->bytes_pinned > 0 || 4112 space_info->bytes_may_use > 0)) 4113 btrfs_dump_space_info(info, space_info, 0, 0); 4114 4115 /* 4116 * If there was a failure to cleanup a log tree, very likely due 4117 * to an IO failure on a writeback attempt of one or more of its 4118 * extent buffers, we could not do proper (and cheap) unaccounting 4119 * of their reserved space, so don't warn on bytes_reserved > 0 in 4120 * that case. 4121 */ 4122 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4123 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4124 if (WARN_ON(space_info->bytes_reserved > 0)) 4125 btrfs_dump_space_info(info, space_info, 0, 0); 4126 } 4127 4128 WARN_ON(space_info->reclaim_size > 0); 4129 list_del(&space_info->list); 4130 btrfs_sysfs_remove_space_info(space_info); 4131 } 4132 return 0; 4133 } 4134 4135 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4136 { 4137 atomic_inc(&cache->frozen); 4138 } 4139 4140 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4141 { 4142 struct btrfs_fs_info *fs_info = block_group->fs_info; 4143 struct extent_map_tree *em_tree; 4144 struct extent_map *em; 4145 bool cleanup; 4146 4147 spin_lock(&block_group->lock); 4148 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4149 block_group->removed); 4150 spin_unlock(&block_group->lock); 4151 4152 if (cleanup) { 4153 em_tree = &fs_info->mapping_tree; 4154 write_lock(&em_tree->lock); 4155 em = lookup_extent_mapping(em_tree, block_group->start, 4156 1); 4157 BUG_ON(!em); /* logic error, can't happen */ 4158 remove_extent_mapping(em_tree, em); 4159 write_unlock(&em_tree->lock); 4160 4161 /* once for us and once for the tree */ 4162 free_extent_map(em); 4163 free_extent_map(em); 4164 4165 /* 4166 * We may have left one free space entry and other possible 4167 * tasks trimming this block group have left 1 entry each one. 4168 * Free them if any. 4169 */ 4170 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 4171 } 4172 } 4173 4174 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4175 { 4176 bool ret = true; 4177 4178 spin_lock(&bg->lock); 4179 if (bg->ro) 4180 ret = false; 4181 else 4182 bg->swap_extents++; 4183 spin_unlock(&bg->lock); 4184 4185 return ret; 4186 } 4187 4188 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4189 { 4190 spin_lock(&bg->lock); 4191 ASSERT(!bg->ro); 4192 ASSERT(bg->swap_extents >= amount); 4193 bg->swap_extents -= amount; 4194 spin_unlock(&bg->lock); 4195 } 4196