xref: /openbmc/linux/fs/btrfs/block-group.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		kfree(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 	int progress;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	/*
451 	 * We've already failed to allocate from this block group, so even if
452 	 * there's enough space in the block group it isn't contiguous enough to
453 	 * allow for an allocation, so wait for at least the next wakeup tick,
454 	 * or for the thing to be done.
455 	 */
456 	progress = atomic_read(&caching_ctl->progress);
457 
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 		   (progress != atomic_read(&caching_ctl->progress) &&
460 		    (cache->free_space_ctl->free_space >= num_bytes)));
461 
462 	btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 				       struct btrfs_caching_control *caching_ctl)
467 {
468 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 	struct btrfs_caching_control *caching_ctl;
475 	int ret;
476 
477 	caching_ctl = btrfs_get_caching_control(cache);
478 	if (!caching_ctl)
479 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 	btrfs_put_caching_control(caching_ctl);
482 	return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
489 	u64 start = block_group->start;
490 	u64 len = block_group->length;
491 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 		fs_info->nodesize : fs_info->sectorsize;
493 	u64 step = chunk << 1;
494 
495 	while (len > chunk) {
496 		btrfs_remove_free_space(block_group, start, chunk);
497 		start += step;
498 		if (len < step)
499 			len = 0;
500 		else
501 			len -= step;
502 	}
503 }
504 #endif
505 
506 /*
507  * Add a free space range to the in memory free space cache of a block group.
508  * This checks if the range contains super block locations and any such
509  * locations are not added to the free space cache.
510  *
511  * @block_group:      The target block group.
512  * @start:            Start offset of the range.
513  * @end:              End offset of the range (exclusive).
514  * @total_added_ret:  Optional pointer to return the total amount of space
515  *                    added to the block group's free space cache.
516  *
517  * Returns 0 on success or < 0 on error.
518  */
519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 			     u64 end, u64 *total_added_ret)
521 {
522 	struct btrfs_fs_info *info = block_group->fs_info;
523 	u64 extent_start, extent_end, size;
524 	int ret;
525 
526 	if (total_added_ret)
527 		*total_added_ret = 0;
528 
529 	while (start < end) {
530 		if (!find_first_extent_bit(&info->excluded_extents, start,
531 					   &extent_start, &extent_end,
532 					   EXTENT_DIRTY | EXTENT_UPTODATE,
533 					   NULL))
534 			break;
535 
536 		if (extent_start <= start) {
537 			start = extent_end + 1;
538 		} else if (extent_start > start && extent_start < end) {
539 			size = extent_start - start;
540 			ret = btrfs_add_free_space_async_trimmed(block_group,
541 								 start, size);
542 			if (ret)
543 				return ret;
544 			if (total_added_ret)
545 				*total_added_ret += size;
546 			start = extent_end + 1;
547 		} else {
548 			break;
549 		}
550 	}
551 
552 	if (start < end) {
553 		size = end - start;
554 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 							 size);
556 		if (ret)
557 			return ret;
558 		if (total_added_ret)
559 			*total_added_ret += size;
560 	}
561 
562 	return 0;
563 }
564 
565 /*
566  * Get an arbitrary extent item index / max_index through the block group
567  *
568  * @block_group   the block group to sample from
569  * @index:        the integral step through the block group to grab from
570  * @max_index:    the granularity of the sampling
571  * @key:          return value parameter for the item we find
572  *
573  * Pre-conditions on indices:
574  * 0 <= index <= max_index
575  * 0 < max_index
576  *
577  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578  * error code on error.
579  */
580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 					  struct btrfs_block_group *block_group,
582 					  int index, int max_index,
583 					  struct btrfs_key *found_key)
584 {
585 	struct btrfs_fs_info *fs_info = block_group->fs_info;
586 	struct btrfs_root *extent_root;
587 	u64 search_offset;
588 	u64 search_end = block_group->start + block_group->length;
589 	struct btrfs_path *path;
590 	struct btrfs_key search_key;
591 	int ret = 0;
592 
593 	ASSERT(index >= 0);
594 	ASSERT(index <= max_index);
595 	ASSERT(max_index > 0);
596 	lockdep_assert_held(&caching_ctl->mutex);
597 	lockdep_assert_held_read(&fs_info->commit_root_sem);
598 
599 	path = btrfs_alloc_path();
600 	if (!path)
601 		return -ENOMEM;
602 
603 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 						       BTRFS_SUPER_INFO_OFFSET));
605 
606 	path->skip_locking = 1;
607 	path->search_commit_root = 1;
608 	path->reada = READA_FORWARD;
609 
610 	search_offset = index * div_u64(block_group->length, max_index);
611 	search_key.objectid = block_group->start + search_offset;
612 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 	search_key.offset = 0;
614 
615 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 		/* Success; sampled an extent item in the block group */
617 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 		    found_key->objectid >= block_group->start &&
619 		    found_key->objectid + found_key->offset <= search_end)
620 			break;
621 
622 		/* We can't possibly find a valid extent item anymore */
623 		if (found_key->objectid >= search_end) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 
629 	lockdep_assert_held(&caching_ctl->mutex);
630 	lockdep_assert_held_read(&fs_info->commit_root_sem);
631 	btrfs_free_path(path);
632 	return ret;
633 }
634 
635 /*
636  * Best effort attempt to compute a block group's size class while caching it.
637  *
638  * @block_group: the block group we are caching
639  *
640  * We cannot infer the size class while adding free space extents, because that
641  * logic doesn't care about contiguous file extents (it doesn't differentiate
642  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643  * file extent items. Reading all of them is quite wasteful, because usually
644  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645  * them at even steps through the block group and pick the smallest size class
646  * we see. Since size class is best effort, and not guaranteed in general,
647  * inaccuracy is acceptable.
648  *
649  * To be more explicit about why this algorithm makes sense:
650  *
651  * If we are caching in a block group from disk, then there are three major cases
652  * to consider:
653  * 1. the block group is well behaved and all extents in it are the same size
654  *    class.
655  * 2. the block group is mostly one size class with rare exceptions for last
656  *    ditch allocations
657  * 3. the block group was populated before size classes and can have a totally
658  *    arbitrary mix of size classes.
659  *
660  * In case 1, looking at any extent in the block group will yield the correct
661  * result. For the mixed cases, taking the minimum size class seems like a good
662  * approximation, since gaps from frees will be usable to the size class. For
663  * 2., a small handful of file extents is likely to yield the right answer. For
664  * 3, we can either read every file extent, or admit that this is best effort
665  * anyway and try to stay fast.
666  *
667  * Returns: 0 on success, negative error code on error.
668  */
669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 				       struct btrfs_block_group *block_group)
671 {
672 	struct btrfs_fs_info *fs_info = block_group->fs_info;
673 	struct btrfs_key key;
674 	int i;
675 	u64 min_size = block_group->length;
676 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 	int ret;
678 
679 	if (!btrfs_block_group_should_use_size_class(block_group))
680 		return 0;
681 
682 	lockdep_assert_held(&caching_ctl->mutex);
683 	lockdep_assert_held_read(&fs_info->commit_root_sem);
684 	for (i = 0; i < 5; ++i) {
685 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 		if (ret < 0)
687 			goto out;
688 		if (ret > 0)
689 			continue;
690 		min_size = min_t(u64, min_size, key.offset);
691 		size_class = btrfs_calc_block_group_size_class(min_size);
692 	}
693 	if (size_class != BTRFS_BG_SZ_NONE) {
694 		spin_lock(&block_group->lock);
695 		block_group->size_class = size_class;
696 		spin_unlock(&block_group->lock);
697 	}
698 out:
699 	return ret;
700 }
701 
702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 	struct btrfs_block_group *block_group = caching_ctl->block_group;
705 	struct btrfs_fs_info *fs_info = block_group->fs_info;
706 	struct btrfs_root *extent_root;
707 	struct btrfs_path *path;
708 	struct extent_buffer *leaf;
709 	struct btrfs_key key;
710 	u64 total_found = 0;
711 	u64 last = 0;
712 	u32 nritems;
713 	int ret;
714 	bool wakeup = true;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 	extent_root = btrfs_extent_root(fs_info, last);
722 
723 #ifdef CONFIG_BTRFS_DEBUG
724 	/*
725 	 * If we're fragmenting we don't want to make anybody think we can
726 	 * allocate from this block group until we've had a chance to fragment
727 	 * the free space.
728 	 */
729 	if (btrfs_should_fragment_free_space(block_group))
730 		wakeup = false;
731 #endif
732 	/*
733 	 * We don't want to deadlock with somebody trying to allocate a new
734 	 * extent for the extent root while also trying to search the extent
735 	 * root to add free space.  So we skip locking and search the commit
736 	 * root, since its read-only
737 	 */
738 	path->skip_locking = 1;
739 	path->search_commit_root = 1;
740 	path->reada = READA_FORWARD;
741 
742 	key.objectid = last;
743 	key.offset = 0;
744 	key.type = BTRFS_EXTENT_ITEM_KEY;
745 
746 next:
747 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 	if (ret < 0)
749 		goto out;
750 
751 	leaf = path->nodes[0];
752 	nritems = btrfs_header_nritems(leaf);
753 
754 	while (1) {
755 		if (btrfs_fs_closing(fs_info) > 1) {
756 			last = (u64)-1;
757 			break;
758 		}
759 
760 		if (path->slots[0] < nritems) {
761 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 		} else {
763 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 			if (ret)
765 				break;
766 
767 			if (need_resched() ||
768 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
769 				btrfs_release_path(path);
770 				up_read(&fs_info->commit_root_sem);
771 				mutex_unlock(&caching_ctl->mutex);
772 				cond_resched();
773 				mutex_lock(&caching_ctl->mutex);
774 				down_read(&fs_info->commit_root_sem);
775 				goto next;
776 			}
777 
778 			ret = btrfs_next_leaf(extent_root, path);
779 			if (ret < 0)
780 				goto out;
781 			if (ret)
782 				break;
783 			leaf = path->nodes[0];
784 			nritems = btrfs_header_nritems(leaf);
785 			continue;
786 		}
787 
788 		if (key.objectid < last) {
789 			key.objectid = last;
790 			key.offset = 0;
791 			key.type = BTRFS_EXTENT_ITEM_KEY;
792 			btrfs_release_path(path);
793 			goto next;
794 		}
795 
796 		if (key.objectid < block_group->start) {
797 			path->slots[0]++;
798 			continue;
799 		}
800 
801 		if (key.objectid >= block_group->start + block_group->length)
802 			break;
803 
804 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 		    key.type == BTRFS_METADATA_ITEM_KEY) {
806 			u64 space_added;
807 
808 			ret = btrfs_add_new_free_space(block_group, last,
809 						       key.objectid, &space_added);
810 			if (ret)
811 				goto out;
812 			total_found += space_added;
813 			if (key.type == BTRFS_METADATA_ITEM_KEY)
814 				last = key.objectid +
815 					fs_info->nodesize;
816 			else
817 				last = key.objectid + key.offset;
818 
819 			if (total_found > CACHING_CTL_WAKE_UP) {
820 				total_found = 0;
821 				if (wakeup) {
822 					atomic_inc(&caching_ctl->progress);
823 					wake_up(&caching_ctl->wait);
824 				}
825 			}
826 		}
827 		path->slots[0]++;
828 	}
829 
830 	ret = btrfs_add_new_free_space(block_group, last,
831 				       block_group->start + block_group->length,
832 				       NULL);
833 out:
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 			  bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843 
844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 	struct btrfs_block_group *block_group;
847 	struct btrfs_fs_info *fs_info;
848 	struct btrfs_caching_control *caching_ctl;
849 	int ret;
850 
851 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 	block_group = caching_ctl->block_group;
853 	fs_info = block_group->fs_info;
854 
855 	mutex_lock(&caching_ctl->mutex);
856 	down_read(&fs_info->commit_root_sem);
857 
858 	load_block_group_size_class(caching_ctl, block_group);
859 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 		ret = load_free_space_cache(block_group);
861 		if (ret == 1) {
862 			ret = 0;
863 			goto done;
864 		}
865 
866 		/*
867 		 * We failed to load the space cache, set ourselves to
868 		 * CACHE_STARTED and carry on.
869 		 */
870 		spin_lock(&block_group->lock);
871 		block_group->cached = BTRFS_CACHE_STARTED;
872 		spin_unlock(&block_group->lock);
873 		wake_up(&caching_ctl->wait);
874 	}
875 
876 	/*
877 	 * If we are in the transaction that populated the free space tree we
878 	 * can't actually cache from the free space tree as our commit root and
879 	 * real root are the same, so we could change the contents of the blocks
880 	 * while caching.  Instead do the slow caching in this case, and after
881 	 * the transaction has committed we will be safe.
882 	 */
883 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 		ret = load_free_space_tree(caching_ctl);
886 	else
887 		ret = load_extent_tree_free(caching_ctl);
888 done:
889 	spin_lock(&block_group->lock);
890 	block_group->caching_ctl = NULL;
891 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 	spin_unlock(&block_group->lock);
893 
894 #ifdef CONFIG_BTRFS_DEBUG
895 	if (btrfs_should_fragment_free_space(block_group)) {
896 		u64 bytes_used;
897 
898 		spin_lock(&block_group->space_info->lock);
899 		spin_lock(&block_group->lock);
900 		bytes_used = block_group->length - block_group->used;
901 		block_group->space_info->bytes_used += bytes_used >> 1;
902 		spin_unlock(&block_group->lock);
903 		spin_unlock(&block_group->space_info->lock);
904 		fragment_free_space(block_group);
905 	}
906 #endif
907 
908 	up_read(&fs_info->commit_root_sem);
909 	btrfs_free_excluded_extents(block_group);
910 	mutex_unlock(&caching_ctl->mutex);
911 
912 	wake_up(&caching_ctl->wait);
913 
914 	btrfs_put_caching_control(caching_ctl);
915 	btrfs_put_block_group(block_group);
916 }
917 
918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 	struct btrfs_fs_info *fs_info = cache->fs_info;
921 	struct btrfs_caching_control *caching_ctl = NULL;
922 	int ret = 0;
923 
924 	/* Allocator for zoned filesystems does not use the cache at all */
925 	if (btrfs_is_zoned(fs_info))
926 		return 0;
927 
928 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 	if (!caching_ctl)
930 		return -ENOMEM;
931 
932 	INIT_LIST_HEAD(&caching_ctl->list);
933 	mutex_init(&caching_ctl->mutex);
934 	init_waitqueue_head(&caching_ctl->wait);
935 	caching_ctl->block_group = cache;
936 	refcount_set(&caching_ctl->count, 2);
937 	atomic_set(&caching_ctl->progress, 0);
938 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939 
940 	spin_lock(&cache->lock);
941 	if (cache->cached != BTRFS_CACHE_NO) {
942 		kfree(caching_ctl);
943 
944 		caching_ctl = cache->caching_ctl;
945 		if (caching_ctl)
946 			refcount_inc(&caching_ctl->count);
947 		spin_unlock(&cache->lock);
948 		goto out;
949 	}
950 	WARN_ON(cache->caching_ctl);
951 	cache->caching_ctl = caching_ctl;
952 	cache->cached = BTRFS_CACHE_STARTED;
953 	spin_unlock(&cache->lock);
954 
955 	write_lock(&fs_info->block_group_cache_lock);
956 	refcount_inc(&caching_ctl->count);
957 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 	write_unlock(&fs_info->block_group_cache_lock);
959 
960 	btrfs_get_block_group(cache);
961 
962 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 	if (wait && caching_ctl)
965 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 	if (caching_ctl)
967 		btrfs_put_caching_control(caching_ctl);
968 
969 	return ret;
970 }
971 
972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 	u64 extra_flags = chunk_to_extended(flags) &
975 				BTRFS_EXTENDED_PROFILE_MASK;
976 
977 	write_seqlock(&fs_info->profiles_lock);
978 	if (flags & BTRFS_BLOCK_GROUP_DATA)
979 		fs_info->avail_data_alloc_bits &= ~extra_flags;
980 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 		fs_info->avail_system_alloc_bits &= ~extra_flags;
984 	write_sequnlock(&fs_info->profiles_lock);
985 }
986 
987 /*
988  * Clear incompat bits for the following feature(s):
989  *
990  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991  *            in the whole filesystem
992  *
993  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994  */
995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 	bool found_raid56 = false;
998 	bool found_raid1c34 = false;
999 
1000 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 		struct list_head *head = &fs_info->space_info;
1004 		struct btrfs_space_info *sinfo;
1005 
1006 		list_for_each_entry_rcu(sinfo, head, list) {
1007 			down_read(&sinfo->groups_sem);
1008 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 				found_raid56 = true;
1010 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 				found_raid56 = true;
1012 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 				found_raid1c34 = true;
1014 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 				found_raid1c34 = true;
1016 			up_read(&sinfo->groups_sem);
1017 		}
1018 		if (!found_raid56)
1019 			btrfs_clear_fs_incompat(fs_info, RAID56);
1020 		if (!found_raid1c34)
1021 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 	}
1023 }
1024 
1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 				   struct btrfs_path *path,
1027 				   struct btrfs_block_group *block_group)
1028 {
1029 	struct btrfs_fs_info *fs_info = trans->fs_info;
1030 	struct btrfs_root *root;
1031 	struct btrfs_key key;
1032 	int ret;
1033 
1034 	root = btrfs_block_group_root(fs_info);
1035 	key.objectid = block_group->start;
1036 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 	key.offset = block_group->length;
1038 
1039 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 	if (ret > 0)
1041 		ret = -ENOENT;
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	ret = btrfs_del_item(trans, root, path);
1046 	return ret;
1047 }
1048 
1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 			     u64 group_start, struct extent_map *em)
1051 {
1052 	struct btrfs_fs_info *fs_info = trans->fs_info;
1053 	struct btrfs_path *path;
1054 	struct btrfs_block_group *block_group;
1055 	struct btrfs_free_cluster *cluster;
1056 	struct inode *inode;
1057 	struct kobject *kobj = NULL;
1058 	int ret;
1059 	int index;
1060 	int factor;
1061 	struct btrfs_caching_control *caching_ctl = NULL;
1062 	bool remove_em;
1063 	bool remove_rsv = false;
1064 
1065 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1066 	BUG_ON(!block_group);
1067 	BUG_ON(!block_group->ro);
1068 
1069 	trace_btrfs_remove_block_group(block_group);
1070 	/*
1071 	 * Free the reserved super bytes from this block group before
1072 	 * remove it.
1073 	 */
1074 	btrfs_free_excluded_extents(block_group);
1075 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 				  block_group->length);
1077 
1078 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 	factor = btrfs_bg_type_to_factor(block_group->flags);
1080 
1081 	/* make sure this block group isn't part of an allocation cluster */
1082 	cluster = &fs_info->data_alloc_cluster;
1083 	spin_lock(&cluster->refill_lock);
1084 	btrfs_return_cluster_to_free_space(block_group, cluster);
1085 	spin_unlock(&cluster->refill_lock);
1086 
1087 	/*
1088 	 * make sure this block group isn't part of a metadata
1089 	 * allocation cluster
1090 	 */
1091 	cluster = &fs_info->meta_alloc_cluster;
1092 	spin_lock(&cluster->refill_lock);
1093 	btrfs_return_cluster_to_free_space(block_group, cluster);
1094 	spin_unlock(&cluster->refill_lock);
1095 
1096 	btrfs_clear_treelog_bg(block_group);
1097 	btrfs_clear_data_reloc_bg(block_group);
1098 
1099 	path = btrfs_alloc_path();
1100 	if (!path) {
1101 		ret = -ENOMEM;
1102 		goto out;
1103 	}
1104 
1105 	/*
1106 	 * get the inode first so any iput calls done for the io_list
1107 	 * aren't the final iput (no unlinks allowed now)
1108 	 */
1109 	inode = lookup_free_space_inode(block_group, path);
1110 
1111 	mutex_lock(&trans->transaction->cache_write_mutex);
1112 	/*
1113 	 * Make sure our free space cache IO is done before removing the
1114 	 * free space inode
1115 	 */
1116 	spin_lock(&trans->transaction->dirty_bgs_lock);
1117 	if (!list_empty(&block_group->io_list)) {
1118 		list_del_init(&block_group->io_list);
1119 
1120 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121 
1122 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 		btrfs_wait_cache_io(trans, block_group, path);
1124 		btrfs_put_block_group(block_group);
1125 		spin_lock(&trans->transaction->dirty_bgs_lock);
1126 	}
1127 
1128 	if (!list_empty(&block_group->dirty_list)) {
1129 		list_del_init(&block_group->dirty_list);
1130 		remove_rsv = true;
1131 		btrfs_put_block_group(block_group);
1132 	}
1133 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 	mutex_unlock(&trans->transaction->cache_write_mutex);
1135 
1136 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 	if (ret)
1138 		goto out;
1139 
1140 	write_lock(&fs_info->block_group_cache_lock);
1141 	rb_erase_cached(&block_group->cache_node,
1142 			&fs_info->block_group_cache_tree);
1143 	RB_CLEAR_NODE(&block_group->cache_node);
1144 
1145 	/* Once for the block groups rbtree */
1146 	btrfs_put_block_group(block_group);
1147 
1148 	write_unlock(&fs_info->block_group_cache_lock);
1149 
1150 	down_write(&block_group->space_info->groups_sem);
1151 	/*
1152 	 * we must use list_del_init so people can check to see if they
1153 	 * are still on the list after taking the semaphore
1154 	 */
1155 	list_del_init(&block_group->list);
1156 	if (list_empty(&block_group->space_info->block_groups[index])) {
1157 		kobj = block_group->space_info->block_group_kobjs[index];
1158 		block_group->space_info->block_group_kobjs[index] = NULL;
1159 		clear_avail_alloc_bits(fs_info, block_group->flags);
1160 	}
1161 	up_write(&block_group->space_info->groups_sem);
1162 	clear_incompat_bg_bits(fs_info, block_group->flags);
1163 	if (kobj) {
1164 		kobject_del(kobj);
1165 		kobject_put(kobj);
1166 	}
1167 
1168 	if (block_group->cached == BTRFS_CACHE_STARTED)
1169 		btrfs_wait_block_group_cache_done(block_group);
1170 
1171 	write_lock(&fs_info->block_group_cache_lock);
1172 	caching_ctl = btrfs_get_caching_control(block_group);
1173 	if (!caching_ctl) {
1174 		struct btrfs_caching_control *ctl;
1175 
1176 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 			if (ctl->block_group == block_group) {
1178 				caching_ctl = ctl;
1179 				refcount_inc(&caching_ctl->count);
1180 				break;
1181 			}
1182 		}
1183 	}
1184 	if (caching_ctl)
1185 		list_del_init(&caching_ctl->list);
1186 	write_unlock(&fs_info->block_group_cache_lock);
1187 
1188 	if (caching_ctl) {
1189 		/* Once for the caching bgs list and once for us. */
1190 		btrfs_put_caching_control(caching_ctl);
1191 		btrfs_put_caching_control(caching_ctl);
1192 	}
1193 
1194 	spin_lock(&trans->transaction->dirty_bgs_lock);
1195 	WARN_ON(!list_empty(&block_group->dirty_list));
1196 	WARN_ON(!list_empty(&block_group->io_list));
1197 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1198 
1199 	btrfs_remove_free_space_cache(block_group);
1200 
1201 	spin_lock(&block_group->space_info->lock);
1202 	list_del_init(&block_group->ro_list);
1203 
1204 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 		WARN_ON(block_group->space_info->total_bytes
1206 			< block_group->length);
1207 		WARN_ON(block_group->space_info->bytes_readonly
1208 			< block_group->length - block_group->zone_unusable);
1209 		WARN_ON(block_group->space_info->bytes_zone_unusable
1210 			< block_group->zone_unusable);
1211 		WARN_ON(block_group->space_info->disk_total
1212 			< block_group->length * factor);
1213 	}
1214 	block_group->space_info->total_bytes -= block_group->length;
1215 	block_group->space_info->bytes_readonly -=
1216 		(block_group->length - block_group->zone_unusable);
1217 	block_group->space_info->bytes_zone_unusable -=
1218 		block_group->zone_unusable;
1219 	block_group->space_info->disk_total -= block_group->length * factor;
1220 
1221 	spin_unlock(&block_group->space_info->lock);
1222 
1223 	/*
1224 	 * Remove the free space for the block group from the free space tree
1225 	 * and the block group's item from the extent tree before marking the
1226 	 * block group as removed. This is to prevent races with tasks that
1227 	 * freeze and unfreeze a block group, this task and another task
1228 	 * allocating a new block group - the unfreeze task ends up removing
1229 	 * the block group's extent map before the task calling this function
1230 	 * deletes the block group item from the extent tree, allowing for
1231 	 * another task to attempt to create another block group with the same
1232 	 * item key (and failing with -EEXIST and a transaction abort).
1233 	 */
1234 	ret = remove_block_group_free_space(trans, block_group);
1235 	if (ret)
1236 		goto out;
1237 
1238 	ret = remove_block_group_item(trans, path, block_group);
1239 	if (ret < 0)
1240 		goto out;
1241 
1242 	spin_lock(&block_group->lock);
1243 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244 
1245 	/*
1246 	 * At this point trimming or scrub can't start on this block group,
1247 	 * because we removed the block group from the rbtree
1248 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 	 * even if someone already got this block group before we removed it
1250 	 * from the rbtree, they have already incremented block_group->frozen -
1251 	 * if they didn't, for the trimming case they won't find any free space
1252 	 * entries because we already removed them all when we called
1253 	 * btrfs_remove_free_space_cache().
1254 	 *
1255 	 * And we must not remove the extent map from the fs_info->mapping_tree
1256 	 * to prevent the same logical address range and physical device space
1257 	 * ranges from being reused for a new block group. This is needed to
1258 	 * avoid races with trimming and scrub.
1259 	 *
1260 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 	 * completely transactionless, so while it is trimming a range the
1262 	 * currently running transaction might finish and a new one start,
1263 	 * allowing for new block groups to be created that can reuse the same
1264 	 * physical device locations unless we take this special care.
1265 	 *
1266 	 * There may also be an implicit trim operation if the file system
1267 	 * is mounted with -odiscard. The same protections must remain
1268 	 * in place until the extents have been discarded completely when
1269 	 * the transaction commit has completed.
1270 	 */
1271 	remove_em = (atomic_read(&block_group->frozen) == 0);
1272 	spin_unlock(&block_group->lock);
1273 
1274 	if (remove_em) {
1275 		struct extent_map_tree *em_tree;
1276 
1277 		em_tree = &fs_info->mapping_tree;
1278 		write_lock(&em_tree->lock);
1279 		remove_extent_mapping(em_tree, em);
1280 		write_unlock(&em_tree->lock);
1281 		/* once for the tree */
1282 		free_extent_map(em);
1283 	}
1284 
1285 out:
1286 	/* Once for the lookup reference */
1287 	btrfs_put_block_group(block_group);
1288 	if (remove_rsv)
1289 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1290 	btrfs_free_path(path);
1291 	return ret;
1292 }
1293 
1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296 {
1297 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299 	struct extent_map *em;
1300 	struct map_lookup *map;
1301 	unsigned int num_items;
1302 
1303 	read_lock(&em_tree->lock);
1304 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305 	read_unlock(&em_tree->lock);
1306 	ASSERT(em && em->start == chunk_offset);
1307 
1308 	/*
1309 	 * We need to reserve 3 + N units from the metadata space info in order
1310 	 * to remove a block group (done at btrfs_remove_chunk() and at
1311 	 * btrfs_remove_block_group()), which are used for:
1312 	 *
1313 	 * 1 unit for adding the free space inode's orphan (located in the tree
1314 	 * of tree roots).
1315 	 * 1 unit for deleting the block group item (located in the extent
1316 	 * tree).
1317 	 * 1 unit for deleting the free space item (located in tree of tree
1318 	 * roots).
1319 	 * N units for deleting N device extent items corresponding to each
1320 	 * stripe (located in the device tree).
1321 	 *
1322 	 * In order to remove a block group we also need to reserve units in the
1323 	 * system space info in order to update the chunk tree (update one or
1324 	 * more device items and remove one chunk item), but this is done at
1325 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1326 	 */
1327 	map = em->map_lookup;
1328 	num_items = 3 + map->num_stripes;
1329 	free_extent_map(em);
1330 
1331 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332 }
1333 
1334 /*
1335  * Mark block group @cache read-only, so later write won't happen to block
1336  * group @cache.
1337  *
1338  * If @force is not set, this function will only mark the block group readonly
1339  * if we have enough free space (1M) in other metadata/system block groups.
1340  * If @force is not set, this function will mark the block group readonly
1341  * without checking free space.
1342  *
1343  * NOTE: This function doesn't care if other block groups can contain all the
1344  * data in this block group. That check should be done by relocation routine,
1345  * not this function.
1346  */
1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348 {
1349 	struct btrfs_space_info *sinfo = cache->space_info;
1350 	u64 num_bytes;
1351 	int ret = -ENOSPC;
1352 
1353 	spin_lock(&sinfo->lock);
1354 	spin_lock(&cache->lock);
1355 
1356 	if (cache->swap_extents) {
1357 		ret = -ETXTBSY;
1358 		goto out;
1359 	}
1360 
1361 	if (cache->ro) {
1362 		cache->ro++;
1363 		ret = 0;
1364 		goto out;
1365 	}
1366 
1367 	num_bytes = cache->length - cache->reserved - cache->pinned -
1368 		    cache->bytes_super - cache->zone_unusable - cache->used;
1369 
1370 	/*
1371 	 * Data never overcommits, even in mixed mode, so do just the straight
1372 	 * check of left over space in how much we have allocated.
1373 	 */
1374 	if (force) {
1375 		ret = 0;
1376 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378 
1379 		/*
1380 		 * Here we make sure if we mark this bg RO, we still have enough
1381 		 * free space as buffer.
1382 		 */
1383 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384 			ret = 0;
1385 	} else {
1386 		/*
1387 		 * We overcommit metadata, so we need to do the
1388 		 * btrfs_can_overcommit check here, and we need to pass in
1389 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390 		 * leeway to allow us to mark this block group as read only.
1391 		 */
1392 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393 					 BTRFS_RESERVE_NO_FLUSH))
1394 			ret = 0;
1395 	}
1396 
1397 	if (!ret) {
1398 		sinfo->bytes_readonly += num_bytes;
1399 		if (btrfs_is_zoned(cache->fs_info)) {
1400 			/* Migrate zone_unusable bytes to readonly */
1401 			sinfo->bytes_readonly += cache->zone_unusable;
1402 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1403 			cache->zone_unusable = 0;
1404 		}
1405 		cache->ro++;
1406 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1407 	}
1408 out:
1409 	spin_unlock(&cache->lock);
1410 	spin_unlock(&sinfo->lock);
1411 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1412 		btrfs_info(cache->fs_info,
1413 			"unable to make block group %llu ro", cache->start);
1414 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1415 	}
1416 	return ret;
1417 }
1418 
1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1420 				 struct btrfs_block_group *bg)
1421 {
1422 	struct btrfs_fs_info *fs_info = bg->fs_info;
1423 	struct btrfs_transaction *prev_trans = NULL;
1424 	const u64 start = bg->start;
1425 	const u64 end = start + bg->length - 1;
1426 	int ret;
1427 
1428 	spin_lock(&fs_info->trans_lock);
1429 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1430 		prev_trans = list_last_entry(&trans->transaction->list,
1431 					     struct btrfs_transaction, list);
1432 		refcount_inc(&prev_trans->use_count);
1433 	}
1434 	spin_unlock(&fs_info->trans_lock);
1435 
1436 	/*
1437 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1438 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1439 	 * task might be running finish_extent_commit() for the previous
1440 	 * transaction N - 1, and have seen a range belonging to the block
1441 	 * group in pinned_extents before we were able to clear the whole block
1442 	 * group range from pinned_extents. This means that task can lookup for
1443 	 * the block group after we unpinned it from pinned_extents and removed
1444 	 * it, leading to a BUG_ON() at unpin_extent_range().
1445 	 */
1446 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1447 	if (prev_trans) {
1448 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1449 					EXTENT_DIRTY);
1450 		if (ret)
1451 			goto out;
1452 	}
1453 
1454 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1455 				EXTENT_DIRTY);
1456 out:
1457 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1458 	if (prev_trans)
1459 		btrfs_put_transaction(prev_trans);
1460 
1461 	return ret == 0;
1462 }
1463 
1464 /*
1465  * Process the unused_bgs list and remove any that don't have any allocated
1466  * space inside of them.
1467  */
1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1469 {
1470 	struct btrfs_block_group *block_group;
1471 	struct btrfs_space_info *space_info;
1472 	struct btrfs_trans_handle *trans;
1473 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1474 	int ret = 0;
1475 
1476 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1477 		return;
1478 
1479 	if (btrfs_fs_closing(fs_info))
1480 		return;
1481 
1482 	/*
1483 	 * Long running balances can keep us blocked here for eternity, so
1484 	 * simply skip deletion if we're unable to get the mutex.
1485 	 */
1486 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1487 		return;
1488 
1489 	spin_lock(&fs_info->unused_bgs_lock);
1490 	while (!list_empty(&fs_info->unused_bgs)) {
1491 		int trimming;
1492 
1493 		block_group = list_first_entry(&fs_info->unused_bgs,
1494 					       struct btrfs_block_group,
1495 					       bg_list);
1496 		list_del_init(&block_group->bg_list);
1497 
1498 		space_info = block_group->space_info;
1499 
1500 		if (ret || btrfs_mixed_space_info(space_info)) {
1501 			btrfs_put_block_group(block_group);
1502 			continue;
1503 		}
1504 		spin_unlock(&fs_info->unused_bgs_lock);
1505 
1506 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1507 
1508 		/* Don't want to race with allocators so take the groups_sem */
1509 		down_write(&space_info->groups_sem);
1510 
1511 		/*
1512 		 * Async discard moves the final block group discard to be prior
1513 		 * to the unused_bgs code path.  Therefore, if it's not fully
1514 		 * trimmed, punt it back to the async discard lists.
1515 		 */
1516 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1517 		    !btrfs_is_free_space_trimmed(block_group)) {
1518 			trace_btrfs_skip_unused_block_group(block_group);
1519 			up_write(&space_info->groups_sem);
1520 			/* Requeue if we failed because of async discard */
1521 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1522 						 block_group);
1523 			goto next;
1524 		}
1525 
1526 		spin_lock(&block_group->lock);
1527 		if (block_group->reserved || block_group->pinned ||
1528 		    block_group->used || block_group->ro ||
1529 		    list_is_singular(&block_group->list)) {
1530 			/*
1531 			 * We want to bail if we made new allocations or have
1532 			 * outstanding allocations in this block group.  We do
1533 			 * the ro check in case balance is currently acting on
1534 			 * this block group.
1535 			 */
1536 			trace_btrfs_skip_unused_block_group(block_group);
1537 			spin_unlock(&block_group->lock);
1538 			up_write(&space_info->groups_sem);
1539 			goto next;
1540 		}
1541 		spin_unlock(&block_group->lock);
1542 
1543 		/* We don't want to force the issue, only flip if it's ok. */
1544 		ret = inc_block_group_ro(block_group, 0);
1545 		up_write(&space_info->groups_sem);
1546 		if (ret < 0) {
1547 			ret = 0;
1548 			goto next;
1549 		}
1550 
1551 		ret = btrfs_zone_finish(block_group);
1552 		if (ret < 0) {
1553 			btrfs_dec_block_group_ro(block_group);
1554 			if (ret == -EAGAIN)
1555 				ret = 0;
1556 			goto next;
1557 		}
1558 
1559 		/*
1560 		 * Want to do this before we do anything else so we can recover
1561 		 * properly if we fail to join the transaction.
1562 		 */
1563 		trans = btrfs_start_trans_remove_block_group(fs_info,
1564 						     block_group->start);
1565 		if (IS_ERR(trans)) {
1566 			btrfs_dec_block_group_ro(block_group);
1567 			ret = PTR_ERR(trans);
1568 			goto next;
1569 		}
1570 
1571 		/*
1572 		 * We could have pending pinned extents for this block group,
1573 		 * just delete them, we don't care about them anymore.
1574 		 */
1575 		if (!clean_pinned_extents(trans, block_group)) {
1576 			btrfs_dec_block_group_ro(block_group);
1577 			goto end_trans;
1578 		}
1579 
1580 		/*
1581 		 * At this point, the block_group is read only and should fail
1582 		 * new allocations.  However, btrfs_finish_extent_commit() can
1583 		 * cause this block_group to be placed back on the discard
1584 		 * lists because now the block_group isn't fully discarded.
1585 		 * Bail here and try again later after discarding everything.
1586 		 */
1587 		spin_lock(&fs_info->discard_ctl.lock);
1588 		if (!list_empty(&block_group->discard_list)) {
1589 			spin_unlock(&fs_info->discard_ctl.lock);
1590 			btrfs_dec_block_group_ro(block_group);
1591 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1592 						 block_group);
1593 			goto end_trans;
1594 		}
1595 		spin_unlock(&fs_info->discard_ctl.lock);
1596 
1597 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1598 		spin_lock(&space_info->lock);
1599 		spin_lock(&block_group->lock);
1600 
1601 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1602 						     -block_group->pinned);
1603 		space_info->bytes_readonly += block_group->pinned;
1604 		block_group->pinned = 0;
1605 
1606 		spin_unlock(&block_group->lock);
1607 		spin_unlock(&space_info->lock);
1608 
1609 		/*
1610 		 * The normal path here is an unused block group is passed here,
1611 		 * then trimming is handled in the transaction commit path.
1612 		 * Async discard interposes before this to do the trimming
1613 		 * before coming down the unused block group path as trimming
1614 		 * will no longer be done later in the transaction commit path.
1615 		 */
1616 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1617 			goto flip_async;
1618 
1619 		/*
1620 		 * DISCARD can flip during remount. On zoned filesystems, we
1621 		 * need to reset sequential-required zones.
1622 		 */
1623 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1624 				btrfs_is_zoned(fs_info);
1625 
1626 		/* Implicit trim during transaction commit. */
1627 		if (trimming)
1628 			btrfs_freeze_block_group(block_group);
1629 
1630 		/*
1631 		 * Btrfs_remove_chunk will abort the transaction if things go
1632 		 * horribly wrong.
1633 		 */
1634 		ret = btrfs_remove_chunk(trans, block_group->start);
1635 
1636 		if (ret) {
1637 			if (trimming)
1638 				btrfs_unfreeze_block_group(block_group);
1639 			goto end_trans;
1640 		}
1641 
1642 		/*
1643 		 * If we're not mounted with -odiscard, we can just forget
1644 		 * about this block group. Otherwise we'll need to wait
1645 		 * until transaction commit to do the actual discard.
1646 		 */
1647 		if (trimming) {
1648 			spin_lock(&fs_info->unused_bgs_lock);
1649 			/*
1650 			 * A concurrent scrub might have added us to the list
1651 			 * fs_info->unused_bgs, so use a list_move operation
1652 			 * to add the block group to the deleted_bgs list.
1653 			 */
1654 			list_move(&block_group->bg_list,
1655 				  &trans->transaction->deleted_bgs);
1656 			spin_unlock(&fs_info->unused_bgs_lock);
1657 			btrfs_get_block_group(block_group);
1658 		}
1659 end_trans:
1660 		btrfs_end_transaction(trans);
1661 next:
1662 		btrfs_put_block_group(block_group);
1663 		spin_lock(&fs_info->unused_bgs_lock);
1664 	}
1665 	spin_unlock(&fs_info->unused_bgs_lock);
1666 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1667 	return;
1668 
1669 flip_async:
1670 	btrfs_end_transaction(trans);
1671 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1672 	btrfs_put_block_group(block_group);
1673 	btrfs_discard_punt_unused_bgs_list(fs_info);
1674 }
1675 
1676 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1677 {
1678 	struct btrfs_fs_info *fs_info = bg->fs_info;
1679 
1680 	spin_lock(&fs_info->unused_bgs_lock);
1681 	if (list_empty(&bg->bg_list)) {
1682 		btrfs_get_block_group(bg);
1683 		trace_btrfs_add_unused_block_group(bg);
1684 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1685 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1686 		/* Pull out the block group from the reclaim_bgs list. */
1687 		trace_btrfs_add_unused_block_group(bg);
1688 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1689 	}
1690 	spin_unlock(&fs_info->unused_bgs_lock);
1691 }
1692 
1693 /*
1694  * We want block groups with a low number of used bytes to be in the beginning
1695  * of the list, so they will get reclaimed first.
1696  */
1697 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1698 			   const struct list_head *b)
1699 {
1700 	const struct btrfs_block_group *bg1, *bg2;
1701 
1702 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1703 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1704 
1705 	return bg1->used > bg2->used;
1706 }
1707 
1708 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1709 {
1710 	if (btrfs_is_zoned(fs_info))
1711 		return btrfs_zoned_should_reclaim(fs_info);
1712 	return true;
1713 }
1714 
1715 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1716 {
1717 	const struct btrfs_space_info *space_info = bg->space_info;
1718 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1719 	const u64 new_val = bg->used;
1720 	const u64 old_val = new_val + bytes_freed;
1721 	u64 thresh;
1722 
1723 	if (reclaim_thresh == 0)
1724 		return false;
1725 
1726 	thresh = mult_perc(bg->length, reclaim_thresh);
1727 
1728 	/*
1729 	 * If we were below the threshold before don't reclaim, we are likely a
1730 	 * brand new block group and we don't want to relocate new block groups.
1731 	 */
1732 	if (old_val < thresh)
1733 		return false;
1734 	if (new_val >= thresh)
1735 		return false;
1736 	return true;
1737 }
1738 
1739 void btrfs_reclaim_bgs_work(struct work_struct *work)
1740 {
1741 	struct btrfs_fs_info *fs_info =
1742 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1743 	struct btrfs_block_group *bg;
1744 	struct btrfs_space_info *space_info;
1745 
1746 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1747 		return;
1748 
1749 	if (btrfs_fs_closing(fs_info))
1750 		return;
1751 
1752 	if (!btrfs_should_reclaim(fs_info))
1753 		return;
1754 
1755 	sb_start_write(fs_info->sb);
1756 
1757 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1758 		sb_end_write(fs_info->sb);
1759 		return;
1760 	}
1761 
1762 	/*
1763 	 * Long running balances can keep us blocked here for eternity, so
1764 	 * simply skip reclaim if we're unable to get the mutex.
1765 	 */
1766 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1767 		btrfs_exclop_finish(fs_info);
1768 		sb_end_write(fs_info->sb);
1769 		return;
1770 	}
1771 
1772 	spin_lock(&fs_info->unused_bgs_lock);
1773 	/*
1774 	 * Sort happens under lock because we can't simply splice it and sort.
1775 	 * The block groups might still be in use and reachable via bg_list,
1776 	 * and their presence in the reclaim_bgs list must be preserved.
1777 	 */
1778 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1779 	while (!list_empty(&fs_info->reclaim_bgs)) {
1780 		u64 zone_unusable;
1781 		int ret = 0;
1782 
1783 		bg = list_first_entry(&fs_info->reclaim_bgs,
1784 				      struct btrfs_block_group,
1785 				      bg_list);
1786 		list_del_init(&bg->bg_list);
1787 
1788 		space_info = bg->space_info;
1789 		spin_unlock(&fs_info->unused_bgs_lock);
1790 
1791 		/* Don't race with allocators so take the groups_sem */
1792 		down_write(&space_info->groups_sem);
1793 
1794 		spin_lock(&bg->lock);
1795 		if (bg->reserved || bg->pinned || bg->ro) {
1796 			/*
1797 			 * We want to bail if we made new allocations or have
1798 			 * outstanding allocations in this block group.  We do
1799 			 * the ro check in case balance is currently acting on
1800 			 * this block group.
1801 			 */
1802 			spin_unlock(&bg->lock);
1803 			up_write(&space_info->groups_sem);
1804 			goto next;
1805 		}
1806 		if (bg->used == 0) {
1807 			/*
1808 			 * It is possible that we trigger relocation on a block
1809 			 * group as its extents are deleted and it first goes
1810 			 * below the threshold, then shortly after goes empty.
1811 			 *
1812 			 * In this case, relocating it does delete it, but has
1813 			 * some overhead in relocation specific metadata, looking
1814 			 * for the non-existent extents and running some extra
1815 			 * transactions, which we can avoid by using one of the
1816 			 * other mechanisms for dealing with empty block groups.
1817 			 */
1818 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1819 				btrfs_mark_bg_unused(bg);
1820 			spin_unlock(&bg->lock);
1821 			up_write(&space_info->groups_sem);
1822 			goto next;
1823 
1824 		}
1825 		/*
1826 		 * The block group might no longer meet the reclaim condition by
1827 		 * the time we get around to reclaiming it, so to avoid
1828 		 * reclaiming overly full block_groups, skip reclaiming them.
1829 		 *
1830 		 * Since the decision making process also depends on the amount
1831 		 * being freed, pass in a fake giant value to skip that extra
1832 		 * check, which is more meaningful when adding to the list in
1833 		 * the first place.
1834 		 */
1835 		if (!should_reclaim_block_group(bg, bg->length)) {
1836 			spin_unlock(&bg->lock);
1837 			up_write(&space_info->groups_sem);
1838 			goto next;
1839 		}
1840 		spin_unlock(&bg->lock);
1841 
1842 		/*
1843 		 * Get out fast, in case we're read-only or unmounting the
1844 		 * filesystem. It is OK to drop block groups from the list even
1845 		 * for the read-only case. As we did sb_start_write(),
1846 		 * "mount -o remount,ro" won't happen and read-only filesystem
1847 		 * means it is forced read-only due to a fatal error. So, it
1848 		 * never gets back to read-write to let us reclaim again.
1849 		 */
1850 		if (btrfs_need_cleaner_sleep(fs_info)) {
1851 			up_write(&space_info->groups_sem);
1852 			goto next;
1853 		}
1854 
1855 		/*
1856 		 * Cache the zone_unusable value before turning the block group
1857 		 * to read only. As soon as the blog group is read only it's
1858 		 * zone_unusable value gets moved to the block group's read-only
1859 		 * bytes and isn't available for calculations anymore.
1860 		 */
1861 		zone_unusable = bg->zone_unusable;
1862 		ret = inc_block_group_ro(bg, 0);
1863 		up_write(&space_info->groups_sem);
1864 		if (ret < 0)
1865 			goto next;
1866 
1867 		btrfs_info(fs_info,
1868 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1869 				bg->start,
1870 				div64_u64(bg->used * 100, bg->length),
1871 				div64_u64(zone_unusable * 100, bg->length));
1872 		trace_btrfs_reclaim_block_group(bg);
1873 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1874 		if (ret) {
1875 			btrfs_dec_block_group_ro(bg);
1876 			btrfs_err(fs_info, "error relocating chunk %llu",
1877 				  bg->start);
1878 		}
1879 
1880 next:
1881 		if (ret)
1882 			btrfs_mark_bg_to_reclaim(bg);
1883 		btrfs_put_block_group(bg);
1884 
1885 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1886 		/*
1887 		 * Reclaiming all the block groups in the list can take really
1888 		 * long.  Prioritize cleaning up unused block groups.
1889 		 */
1890 		btrfs_delete_unused_bgs(fs_info);
1891 		/*
1892 		 * If we are interrupted by a balance, we can just bail out. The
1893 		 * cleaner thread restart again if necessary.
1894 		 */
1895 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1896 			goto end;
1897 		spin_lock(&fs_info->unused_bgs_lock);
1898 	}
1899 	spin_unlock(&fs_info->unused_bgs_lock);
1900 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1901 end:
1902 	btrfs_exclop_finish(fs_info);
1903 	sb_end_write(fs_info->sb);
1904 }
1905 
1906 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1907 {
1908 	spin_lock(&fs_info->unused_bgs_lock);
1909 	if (!list_empty(&fs_info->reclaim_bgs))
1910 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1911 	spin_unlock(&fs_info->unused_bgs_lock);
1912 }
1913 
1914 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1915 {
1916 	struct btrfs_fs_info *fs_info = bg->fs_info;
1917 
1918 	spin_lock(&fs_info->unused_bgs_lock);
1919 	if (list_empty(&bg->bg_list)) {
1920 		btrfs_get_block_group(bg);
1921 		trace_btrfs_add_reclaim_block_group(bg);
1922 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1923 	}
1924 	spin_unlock(&fs_info->unused_bgs_lock);
1925 }
1926 
1927 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1928 			   struct btrfs_path *path)
1929 {
1930 	struct extent_map_tree *em_tree;
1931 	struct extent_map *em;
1932 	struct btrfs_block_group_item bg;
1933 	struct extent_buffer *leaf;
1934 	int slot;
1935 	u64 flags;
1936 	int ret = 0;
1937 
1938 	slot = path->slots[0];
1939 	leaf = path->nodes[0];
1940 
1941 	em_tree = &fs_info->mapping_tree;
1942 	read_lock(&em_tree->lock);
1943 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1944 	read_unlock(&em_tree->lock);
1945 	if (!em) {
1946 		btrfs_err(fs_info,
1947 			  "logical %llu len %llu found bg but no related chunk",
1948 			  key->objectid, key->offset);
1949 		return -ENOENT;
1950 	}
1951 
1952 	if (em->start != key->objectid || em->len != key->offset) {
1953 		btrfs_err(fs_info,
1954 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1955 			key->objectid, key->offset, em->start, em->len);
1956 		ret = -EUCLEAN;
1957 		goto out_free_em;
1958 	}
1959 
1960 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1961 			   sizeof(bg));
1962 	flags = btrfs_stack_block_group_flags(&bg) &
1963 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1964 
1965 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1966 		btrfs_err(fs_info,
1967 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1968 			  key->objectid, key->offset, flags,
1969 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1970 		ret = -EUCLEAN;
1971 	}
1972 
1973 out_free_em:
1974 	free_extent_map(em);
1975 	return ret;
1976 }
1977 
1978 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1979 				  struct btrfs_path *path,
1980 				  struct btrfs_key *key)
1981 {
1982 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1983 	int ret;
1984 	struct btrfs_key found_key;
1985 
1986 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1987 		if (found_key.objectid >= key->objectid &&
1988 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1989 			return read_bg_from_eb(fs_info, &found_key, path);
1990 		}
1991 	}
1992 	return ret;
1993 }
1994 
1995 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1996 {
1997 	u64 extra_flags = chunk_to_extended(flags) &
1998 				BTRFS_EXTENDED_PROFILE_MASK;
1999 
2000 	write_seqlock(&fs_info->profiles_lock);
2001 	if (flags & BTRFS_BLOCK_GROUP_DATA)
2002 		fs_info->avail_data_alloc_bits |= extra_flags;
2003 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
2004 		fs_info->avail_metadata_alloc_bits |= extra_flags;
2005 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2006 		fs_info->avail_system_alloc_bits |= extra_flags;
2007 	write_sequnlock(&fs_info->profiles_lock);
2008 }
2009 
2010 /*
2011  * Map a physical disk address to a list of logical addresses.
2012  *
2013  * @fs_info:       the filesystem
2014  * @chunk_start:   logical address of block group
2015  * @physical:	   physical address to map to logical addresses
2016  * @logical:	   return array of logical addresses which map to @physical
2017  * @naddrs:	   length of @logical
2018  * @stripe_len:    size of IO stripe for the given block group
2019  *
2020  * Maps a particular @physical disk address to a list of @logical addresses.
2021  * Used primarily to exclude those portions of a block group that contain super
2022  * block copies.
2023  */
2024 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2025 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2026 {
2027 	struct extent_map *em;
2028 	struct map_lookup *map;
2029 	u64 *buf;
2030 	u64 bytenr;
2031 	u64 data_stripe_length;
2032 	u64 io_stripe_size;
2033 	int i, nr = 0;
2034 	int ret = 0;
2035 
2036 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2037 	if (IS_ERR(em))
2038 		return -EIO;
2039 
2040 	map = em->map_lookup;
2041 	data_stripe_length = em->orig_block_len;
2042 	io_stripe_size = BTRFS_STRIPE_LEN;
2043 	chunk_start = em->start;
2044 
2045 	/* For RAID5/6 adjust to a full IO stripe length */
2046 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2047 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2048 
2049 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2050 	if (!buf) {
2051 		ret = -ENOMEM;
2052 		goto out;
2053 	}
2054 
2055 	for (i = 0; i < map->num_stripes; i++) {
2056 		bool already_inserted = false;
2057 		u32 stripe_nr;
2058 		u32 offset;
2059 		int j;
2060 
2061 		if (!in_range(physical, map->stripes[i].physical,
2062 			      data_stripe_length))
2063 			continue;
2064 
2065 		stripe_nr = (physical - map->stripes[i].physical) >>
2066 			    BTRFS_STRIPE_LEN_SHIFT;
2067 		offset = (physical - map->stripes[i].physical) &
2068 			 BTRFS_STRIPE_LEN_MASK;
2069 
2070 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2071 				 BTRFS_BLOCK_GROUP_RAID10))
2072 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2073 					    map->sub_stripes);
2074 		/*
2075 		 * The remaining case would be for RAID56, multiply by
2076 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2077 		 * instead of map->stripe_len
2078 		 */
2079 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2080 
2081 		/* Ensure we don't add duplicate addresses */
2082 		for (j = 0; j < nr; j++) {
2083 			if (buf[j] == bytenr) {
2084 				already_inserted = true;
2085 				break;
2086 			}
2087 		}
2088 
2089 		if (!already_inserted)
2090 			buf[nr++] = bytenr;
2091 	}
2092 
2093 	*logical = buf;
2094 	*naddrs = nr;
2095 	*stripe_len = io_stripe_size;
2096 out:
2097 	free_extent_map(em);
2098 	return ret;
2099 }
2100 
2101 static int exclude_super_stripes(struct btrfs_block_group *cache)
2102 {
2103 	struct btrfs_fs_info *fs_info = cache->fs_info;
2104 	const bool zoned = btrfs_is_zoned(fs_info);
2105 	u64 bytenr;
2106 	u64 *logical;
2107 	int stripe_len;
2108 	int i, nr, ret;
2109 
2110 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2111 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2112 		cache->bytes_super += stripe_len;
2113 		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2114 				     cache->start + stripe_len - 1,
2115 				     EXTENT_UPTODATE, NULL);
2116 		if (ret)
2117 			return ret;
2118 	}
2119 
2120 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2121 		bytenr = btrfs_sb_offset(i);
2122 		ret = btrfs_rmap_block(fs_info, cache->start,
2123 				       bytenr, &logical, &nr, &stripe_len);
2124 		if (ret)
2125 			return ret;
2126 
2127 		/* Shouldn't have super stripes in sequential zones */
2128 		if (zoned && nr) {
2129 			kfree(logical);
2130 			btrfs_err(fs_info,
2131 			"zoned: block group %llu must not contain super block",
2132 				  cache->start);
2133 			return -EUCLEAN;
2134 		}
2135 
2136 		while (nr--) {
2137 			u64 len = min_t(u64, stripe_len,
2138 				cache->start + cache->length - logical[nr]);
2139 
2140 			cache->bytes_super += len;
2141 			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2142 					     logical[nr] + len - 1,
2143 					     EXTENT_UPTODATE, NULL);
2144 			if (ret) {
2145 				kfree(logical);
2146 				return ret;
2147 			}
2148 		}
2149 
2150 		kfree(logical);
2151 	}
2152 	return 0;
2153 }
2154 
2155 static struct btrfs_block_group *btrfs_create_block_group_cache(
2156 		struct btrfs_fs_info *fs_info, u64 start)
2157 {
2158 	struct btrfs_block_group *cache;
2159 
2160 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2161 	if (!cache)
2162 		return NULL;
2163 
2164 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2165 					GFP_NOFS);
2166 	if (!cache->free_space_ctl) {
2167 		kfree(cache);
2168 		return NULL;
2169 	}
2170 
2171 	cache->start = start;
2172 
2173 	cache->fs_info = fs_info;
2174 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2175 
2176 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2177 
2178 	refcount_set(&cache->refs, 1);
2179 	spin_lock_init(&cache->lock);
2180 	init_rwsem(&cache->data_rwsem);
2181 	INIT_LIST_HEAD(&cache->list);
2182 	INIT_LIST_HEAD(&cache->cluster_list);
2183 	INIT_LIST_HEAD(&cache->bg_list);
2184 	INIT_LIST_HEAD(&cache->ro_list);
2185 	INIT_LIST_HEAD(&cache->discard_list);
2186 	INIT_LIST_HEAD(&cache->dirty_list);
2187 	INIT_LIST_HEAD(&cache->io_list);
2188 	INIT_LIST_HEAD(&cache->active_bg_list);
2189 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2190 	atomic_set(&cache->frozen, 0);
2191 	mutex_init(&cache->free_space_lock);
2192 
2193 	return cache;
2194 }
2195 
2196 /*
2197  * Iterate all chunks and verify that each of them has the corresponding block
2198  * group
2199  */
2200 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2201 {
2202 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2203 	struct extent_map *em;
2204 	struct btrfs_block_group *bg;
2205 	u64 start = 0;
2206 	int ret = 0;
2207 
2208 	while (1) {
2209 		read_lock(&map_tree->lock);
2210 		/*
2211 		 * lookup_extent_mapping will return the first extent map
2212 		 * intersecting the range, so setting @len to 1 is enough to
2213 		 * get the first chunk.
2214 		 */
2215 		em = lookup_extent_mapping(map_tree, start, 1);
2216 		read_unlock(&map_tree->lock);
2217 		if (!em)
2218 			break;
2219 
2220 		bg = btrfs_lookup_block_group(fs_info, em->start);
2221 		if (!bg) {
2222 			btrfs_err(fs_info,
2223 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2224 				     em->start, em->len);
2225 			ret = -EUCLEAN;
2226 			free_extent_map(em);
2227 			break;
2228 		}
2229 		if (bg->start != em->start || bg->length != em->len ||
2230 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2231 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2232 			btrfs_err(fs_info,
2233 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2234 				em->start, em->len,
2235 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2236 				bg->start, bg->length,
2237 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2238 			ret = -EUCLEAN;
2239 			free_extent_map(em);
2240 			btrfs_put_block_group(bg);
2241 			break;
2242 		}
2243 		start = em->start + em->len;
2244 		free_extent_map(em);
2245 		btrfs_put_block_group(bg);
2246 	}
2247 	return ret;
2248 }
2249 
2250 static int read_one_block_group(struct btrfs_fs_info *info,
2251 				struct btrfs_block_group_item *bgi,
2252 				const struct btrfs_key *key,
2253 				int need_clear)
2254 {
2255 	struct btrfs_block_group *cache;
2256 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2257 	int ret;
2258 
2259 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2260 
2261 	cache = btrfs_create_block_group_cache(info, key->objectid);
2262 	if (!cache)
2263 		return -ENOMEM;
2264 
2265 	cache->length = key->offset;
2266 	cache->used = btrfs_stack_block_group_used(bgi);
2267 	cache->commit_used = cache->used;
2268 	cache->flags = btrfs_stack_block_group_flags(bgi);
2269 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2270 
2271 	set_free_space_tree_thresholds(cache);
2272 
2273 	if (need_clear) {
2274 		/*
2275 		 * When we mount with old space cache, we need to
2276 		 * set BTRFS_DC_CLEAR and set dirty flag.
2277 		 *
2278 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2279 		 *    truncate the old free space cache inode and
2280 		 *    setup a new one.
2281 		 * b) Setting 'dirty flag' makes sure that we flush
2282 		 *    the new space cache info onto disk.
2283 		 */
2284 		if (btrfs_test_opt(info, SPACE_CACHE))
2285 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2286 	}
2287 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2288 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2289 			btrfs_err(info,
2290 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2291 				  cache->start);
2292 			ret = -EINVAL;
2293 			goto error;
2294 	}
2295 
2296 	ret = btrfs_load_block_group_zone_info(cache, false);
2297 	if (ret) {
2298 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2299 			  cache->start);
2300 		goto error;
2301 	}
2302 
2303 	/*
2304 	 * We need to exclude the super stripes now so that the space info has
2305 	 * super bytes accounted for, otherwise we'll think we have more space
2306 	 * than we actually do.
2307 	 */
2308 	ret = exclude_super_stripes(cache);
2309 	if (ret) {
2310 		/* We may have excluded something, so call this just in case. */
2311 		btrfs_free_excluded_extents(cache);
2312 		goto error;
2313 	}
2314 
2315 	/*
2316 	 * For zoned filesystem, space after the allocation offset is the only
2317 	 * free space for a block group. So, we don't need any caching work.
2318 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2319 	 * zone_unusable space.
2320 	 *
2321 	 * For regular filesystem, check for two cases, either we are full, and
2322 	 * therefore don't need to bother with the caching work since we won't
2323 	 * find any space, or we are empty, and we can just add all the space
2324 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2325 	 * in the full case.
2326 	 */
2327 	if (btrfs_is_zoned(info)) {
2328 		btrfs_calc_zone_unusable(cache);
2329 		/* Should not have any excluded extents. Just in case, though. */
2330 		btrfs_free_excluded_extents(cache);
2331 	} else if (cache->length == cache->used) {
2332 		cache->cached = BTRFS_CACHE_FINISHED;
2333 		btrfs_free_excluded_extents(cache);
2334 	} else if (cache->used == 0) {
2335 		cache->cached = BTRFS_CACHE_FINISHED;
2336 		ret = btrfs_add_new_free_space(cache, cache->start,
2337 					       cache->start + cache->length, NULL);
2338 		btrfs_free_excluded_extents(cache);
2339 		if (ret)
2340 			goto error;
2341 	}
2342 
2343 	ret = btrfs_add_block_group_cache(info, cache);
2344 	if (ret) {
2345 		btrfs_remove_free_space_cache(cache);
2346 		goto error;
2347 	}
2348 	trace_btrfs_add_block_group(info, cache, 0);
2349 	btrfs_add_bg_to_space_info(info, cache);
2350 
2351 	set_avail_alloc_bits(info, cache->flags);
2352 	if (btrfs_chunk_writeable(info, cache->start)) {
2353 		if (cache->used == 0) {
2354 			ASSERT(list_empty(&cache->bg_list));
2355 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2356 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2357 			else
2358 				btrfs_mark_bg_unused(cache);
2359 		}
2360 	} else {
2361 		inc_block_group_ro(cache, 1);
2362 	}
2363 
2364 	return 0;
2365 error:
2366 	btrfs_put_block_group(cache);
2367 	return ret;
2368 }
2369 
2370 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2371 {
2372 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2373 	struct rb_node *node;
2374 	int ret = 0;
2375 
2376 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2377 		struct extent_map *em;
2378 		struct map_lookup *map;
2379 		struct btrfs_block_group *bg;
2380 
2381 		em = rb_entry(node, struct extent_map, rb_node);
2382 		map = em->map_lookup;
2383 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2384 		if (!bg) {
2385 			ret = -ENOMEM;
2386 			break;
2387 		}
2388 
2389 		/* Fill dummy cache as FULL */
2390 		bg->length = em->len;
2391 		bg->flags = map->type;
2392 		bg->cached = BTRFS_CACHE_FINISHED;
2393 		bg->used = em->len;
2394 		bg->flags = map->type;
2395 		ret = btrfs_add_block_group_cache(fs_info, bg);
2396 		/*
2397 		 * We may have some valid block group cache added already, in
2398 		 * that case we skip to the next one.
2399 		 */
2400 		if (ret == -EEXIST) {
2401 			ret = 0;
2402 			btrfs_put_block_group(bg);
2403 			continue;
2404 		}
2405 
2406 		if (ret) {
2407 			btrfs_remove_free_space_cache(bg);
2408 			btrfs_put_block_group(bg);
2409 			break;
2410 		}
2411 
2412 		btrfs_add_bg_to_space_info(fs_info, bg);
2413 
2414 		set_avail_alloc_bits(fs_info, bg->flags);
2415 	}
2416 	if (!ret)
2417 		btrfs_init_global_block_rsv(fs_info);
2418 	return ret;
2419 }
2420 
2421 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2422 {
2423 	struct btrfs_root *root = btrfs_block_group_root(info);
2424 	struct btrfs_path *path;
2425 	int ret;
2426 	struct btrfs_block_group *cache;
2427 	struct btrfs_space_info *space_info;
2428 	struct btrfs_key key;
2429 	int need_clear = 0;
2430 	u64 cache_gen;
2431 
2432 	/*
2433 	 * Either no extent root (with ibadroots rescue option) or we have
2434 	 * unsupported RO options. The fs can never be mounted read-write, so no
2435 	 * need to waste time searching block group items.
2436 	 *
2437 	 * This also allows new extent tree related changes to be RO compat,
2438 	 * no need for a full incompat flag.
2439 	 */
2440 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2441 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2442 		return fill_dummy_bgs(info);
2443 
2444 	key.objectid = 0;
2445 	key.offset = 0;
2446 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2447 	path = btrfs_alloc_path();
2448 	if (!path)
2449 		return -ENOMEM;
2450 
2451 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2452 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2453 	    btrfs_super_generation(info->super_copy) != cache_gen)
2454 		need_clear = 1;
2455 	if (btrfs_test_opt(info, CLEAR_CACHE))
2456 		need_clear = 1;
2457 
2458 	while (1) {
2459 		struct btrfs_block_group_item bgi;
2460 		struct extent_buffer *leaf;
2461 		int slot;
2462 
2463 		ret = find_first_block_group(info, path, &key);
2464 		if (ret > 0)
2465 			break;
2466 		if (ret != 0)
2467 			goto error;
2468 
2469 		leaf = path->nodes[0];
2470 		slot = path->slots[0];
2471 
2472 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2473 				   sizeof(bgi));
2474 
2475 		btrfs_item_key_to_cpu(leaf, &key, slot);
2476 		btrfs_release_path(path);
2477 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2478 		if (ret < 0)
2479 			goto error;
2480 		key.objectid += key.offset;
2481 		key.offset = 0;
2482 	}
2483 	btrfs_release_path(path);
2484 
2485 	list_for_each_entry(space_info, &info->space_info, list) {
2486 		int i;
2487 
2488 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2489 			if (list_empty(&space_info->block_groups[i]))
2490 				continue;
2491 			cache = list_first_entry(&space_info->block_groups[i],
2492 						 struct btrfs_block_group,
2493 						 list);
2494 			btrfs_sysfs_add_block_group_type(cache);
2495 		}
2496 
2497 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2498 		      (BTRFS_BLOCK_GROUP_RAID10 |
2499 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2500 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2501 		       BTRFS_BLOCK_GROUP_DUP)))
2502 			continue;
2503 		/*
2504 		 * Avoid allocating from un-mirrored block group if there are
2505 		 * mirrored block groups.
2506 		 */
2507 		list_for_each_entry(cache,
2508 				&space_info->block_groups[BTRFS_RAID_RAID0],
2509 				list)
2510 			inc_block_group_ro(cache, 1);
2511 		list_for_each_entry(cache,
2512 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2513 				list)
2514 			inc_block_group_ro(cache, 1);
2515 	}
2516 
2517 	btrfs_init_global_block_rsv(info);
2518 	ret = check_chunk_block_group_mappings(info);
2519 error:
2520 	btrfs_free_path(path);
2521 	/*
2522 	 * We've hit some error while reading the extent tree, and have
2523 	 * rescue=ibadroots mount option.
2524 	 * Try to fill the tree using dummy block groups so that the user can
2525 	 * continue to mount and grab their data.
2526 	 */
2527 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2528 		ret = fill_dummy_bgs(info);
2529 	return ret;
2530 }
2531 
2532 /*
2533  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2534  * allocation.
2535  *
2536  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2537  * phases.
2538  */
2539 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2540 				   struct btrfs_block_group *block_group)
2541 {
2542 	struct btrfs_fs_info *fs_info = trans->fs_info;
2543 	struct btrfs_block_group_item bgi;
2544 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2545 	struct btrfs_key key;
2546 	u64 old_commit_used;
2547 	int ret;
2548 
2549 	spin_lock(&block_group->lock);
2550 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2551 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2552 						   block_group->global_root_id);
2553 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2554 	old_commit_used = block_group->commit_used;
2555 	block_group->commit_used = block_group->used;
2556 	key.objectid = block_group->start;
2557 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2558 	key.offset = block_group->length;
2559 	spin_unlock(&block_group->lock);
2560 
2561 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2562 	if (ret < 0) {
2563 		spin_lock(&block_group->lock);
2564 		block_group->commit_used = old_commit_used;
2565 		spin_unlock(&block_group->lock);
2566 	}
2567 
2568 	return ret;
2569 }
2570 
2571 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2572 			    struct btrfs_device *device, u64 chunk_offset,
2573 			    u64 start, u64 num_bytes)
2574 {
2575 	struct btrfs_fs_info *fs_info = device->fs_info;
2576 	struct btrfs_root *root = fs_info->dev_root;
2577 	struct btrfs_path *path;
2578 	struct btrfs_dev_extent *extent;
2579 	struct extent_buffer *leaf;
2580 	struct btrfs_key key;
2581 	int ret;
2582 
2583 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2584 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2585 	path = btrfs_alloc_path();
2586 	if (!path)
2587 		return -ENOMEM;
2588 
2589 	key.objectid = device->devid;
2590 	key.type = BTRFS_DEV_EXTENT_KEY;
2591 	key.offset = start;
2592 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2593 	if (ret)
2594 		goto out;
2595 
2596 	leaf = path->nodes[0];
2597 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2598 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2599 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2600 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2601 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2602 
2603 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2604 	btrfs_mark_buffer_dirty(leaf);
2605 out:
2606 	btrfs_free_path(path);
2607 	return ret;
2608 }
2609 
2610 /*
2611  * This function belongs to phase 2.
2612  *
2613  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2614  * phases.
2615  */
2616 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2617 				   u64 chunk_offset, u64 chunk_size)
2618 {
2619 	struct btrfs_fs_info *fs_info = trans->fs_info;
2620 	struct btrfs_device *device;
2621 	struct extent_map *em;
2622 	struct map_lookup *map;
2623 	u64 dev_offset;
2624 	u64 stripe_size;
2625 	int i;
2626 	int ret = 0;
2627 
2628 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2629 	if (IS_ERR(em))
2630 		return PTR_ERR(em);
2631 
2632 	map = em->map_lookup;
2633 	stripe_size = em->orig_block_len;
2634 
2635 	/*
2636 	 * Take the device list mutex to prevent races with the final phase of
2637 	 * a device replace operation that replaces the device object associated
2638 	 * with the map's stripes, because the device object's id can change
2639 	 * at any time during that final phase of the device replace operation
2640 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2641 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2642 	 * resulting in persisting a device extent item with such ID.
2643 	 */
2644 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2645 	for (i = 0; i < map->num_stripes; i++) {
2646 		device = map->stripes[i].dev;
2647 		dev_offset = map->stripes[i].physical;
2648 
2649 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2650 				       stripe_size);
2651 		if (ret)
2652 			break;
2653 	}
2654 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2655 
2656 	free_extent_map(em);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2662  * chunk allocation.
2663  *
2664  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2665  * phases.
2666  */
2667 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2668 {
2669 	struct btrfs_fs_info *fs_info = trans->fs_info;
2670 	struct btrfs_block_group *block_group;
2671 	int ret = 0;
2672 
2673 	while (!list_empty(&trans->new_bgs)) {
2674 		int index;
2675 
2676 		block_group = list_first_entry(&trans->new_bgs,
2677 					       struct btrfs_block_group,
2678 					       bg_list);
2679 		if (ret)
2680 			goto next;
2681 
2682 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2683 
2684 		ret = insert_block_group_item(trans, block_group);
2685 		if (ret)
2686 			btrfs_abort_transaction(trans, ret);
2687 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2688 			      &block_group->runtime_flags)) {
2689 			mutex_lock(&fs_info->chunk_mutex);
2690 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2691 			mutex_unlock(&fs_info->chunk_mutex);
2692 			if (ret)
2693 				btrfs_abort_transaction(trans, ret);
2694 		}
2695 		ret = insert_dev_extents(trans, block_group->start,
2696 					 block_group->length);
2697 		if (ret)
2698 			btrfs_abort_transaction(trans, ret);
2699 		add_block_group_free_space(trans, block_group);
2700 
2701 		/*
2702 		 * If we restriped during balance, we may have added a new raid
2703 		 * type, so now add the sysfs entries when it is safe to do so.
2704 		 * We don't have to worry about locking here as it's handled in
2705 		 * btrfs_sysfs_add_block_group_type.
2706 		 */
2707 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2708 			btrfs_sysfs_add_block_group_type(block_group);
2709 
2710 		/* Already aborted the transaction if it failed. */
2711 next:
2712 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2713 		list_del_init(&block_group->bg_list);
2714 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2715 	}
2716 	btrfs_trans_release_chunk_metadata(trans);
2717 }
2718 
2719 /*
2720  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2721  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2722  */
2723 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2724 {
2725 	u64 div = SZ_1G;
2726 	u64 index;
2727 
2728 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2729 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2730 
2731 	/* If we have a smaller fs index based on 128MiB. */
2732 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2733 		div = SZ_128M;
2734 
2735 	offset = div64_u64(offset, div);
2736 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2737 	return index;
2738 }
2739 
2740 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2741 						 u64 type,
2742 						 u64 chunk_offset, u64 size)
2743 {
2744 	struct btrfs_fs_info *fs_info = trans->fs_info;
2745 	struct btrfs_block_group *cache;
2746 	int ret;
2747 
2748 	btrfs_set_log_full_commit(trans);
2749 
2750 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2751 	if (!cache)
2752 		return ERR_PTR(-ENOMEM);
2753 
2754 	/*
2755 	 * Mark it as new before adding it to the rbtree of block groups or any
2756 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2757 	 * before the new flag is set.
2758 	 */
2759 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2760 
2761 	cache->length = size;
2762 	set_free_space_tree_thresholds(cache);
2763 	cache->flags = type;
2764 	cache->cached = BTRFS_CACHE_FINISHED;
2765 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2766 
2767 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2768 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2769 
2770 	ret = btrfs_load_block_group_zone_info(cache, true);
2771 	if (ret) {
2772 		btrfs_put_block_group(cache);
2773 		return ERR_PTR(ret);
2774 	}
2775 
2776 	ret = exclude_super_stripes(cache);
2777 	if (ret) {
2778 		/* We may have excluded something, so call this just in case */
2779 		btrfs_free_excluded_extents(cache);
2780 		btrfs_put_block_group(cache);
2781 		return ERR_PTR(ret);
2782 	}
2783 
2784 	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2785 	btrfs_free_excluded_extents(cache);
2786 	if (ret) {
2787 		btrfs_put_block_group(cache);
2788 		return ERR_PTR(ret);
2789 	}
2790 
2791 	/*
2792 	 * Ensure the corresponding space_info object is created and
2793 	 * assigned to our block group. We want our bg to be added to the rbtree
2794 	 * with its ->space_info set.
2795 	 */
2796 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2797 	ASSERT(cache->space_info);
2798 
2799 	ret = btrfs_add_block_group_cache(fs_info, cache);
2800 	if (ret) {
2801 		btrfs_remove_free_space_cache(cache);
2802 		btrfs_put_block_group(cache);
2803 		return ERR_PTR(ret);
2804 	}
2805 
2806 	/*
2807 	 * Now that our block group has its ->space_info set and is inserted in
2808 	 * the rbtree, update the space info's counters.
2809 	 */
2810 	trace_btrfs_add_block_group(fs_info, cache, 1);
2811 	btrfs_add_bg_to_space_info(fs_info, cache);
2812 	btrfs_update_global_block_rsv(fs_info);
2813 
2814 #ifdef CONFIG_BTRFS_DEBUG
2815 	if (btrfs_should_fragment_free_space(cache)) {
2816 		cache->space_info->bytes_used += size >> 1;
2817 		fragment_free_space(cache);
2818 	}
2819 #endif
2820 
2821 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2822 	trans->delayed_ref_updates++;
2823 	btrfs_update_delayed_refs_rsv(trans);
2824 
2825 	set_avail_alloc_bits(fs_info, type);
2826 	return cache;
2827 }
2828 
2829 /*
2830  * Mark one block group RO, can be called several times for the same block
2831  * group.
2832  *
2833  * @cache:		the destination block group
2834  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2835  * 			ensure we still have some free space after marking this
2836  * 			block group RO.
2837  */
2838 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2839 			     bool do_chunk_alloc)
2840 {
2841 	struct btrfs_fs_info *fs_info = cache->fs_info;
2842 	struct btrfs_trans_handle *trans;
2843 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2844 	u64 alloc_flags;
2845 	int ret;
2846 	bool dirty_bg_running;
2847 
2848 	/*
2849 	 * This can only happen when we are doing read-only scrub on read-only
2850 	 * mount.
2851 	 * In that case we should not start a new transaction on read-only fs.
2852 	 * Thus here we skip all chunk allocations.
2853 	 */
2854 	if (sb_rdonly(fs_info->sb)) {
2855 		mutex_lock(&fs_info->ro_block_group_mutex);
2856 		ret = inc_block_group_ro(cache, 0);
2857 		mutex_unlock(&fs_info->ro_block_group_mutex);
2858 		return ret;
2859 	}
2860 
2861 	do {
2862 		trans = btrfs_join_transaction(root);
2863 		if (IS_ERR(trans))
2864 			return PTR_ERR(trans);
2865 
2866 		dirty_bg_running = false;
2867 
2868 		/*
2869 		 * We're not allowed to set block groups readonly after the dirty
2870 		 * block group cache has started writing.  If it already started,
2871 		 * back off and let this transaction commit.
2872 		 */
2873 		mutex_lock(&fs_info->ro_block_group_mutex);
2874 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2875 			u64 transid = trans->transid;
2876 
2877 			mutex_unlock(&fs_info->ro_block_group_mutex);
2878 			btrfs_end_transaction(trans);
2879 
2880 			ret = btrfs_wait_for_commit(fs_info, transid);
2881 			if (ret)
2882 				return ret;
2883 			dirty_bg_running = true;
2884 		}
2885 	} while (dirty_bg_running);
2886 
2887 	if (do_chunk_alloc) {
2888 		/*
2889 		 * If we are changing raid levels, try to allocate a
2890 		 * corresponding block group with the new raid level.
2891 		 */
2892 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2893 		if (alloc_flags != cache->flags) {
2894 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2895 						CHUNK_ALLOC_FORCE);
2896 			/*
2897 			 * ENOSPC is allowed here, we may have enough space
2898 			 * already allocated at the new raid level to carry on
2899 			 */
2900 			if (ret == -ENOSPC)
2901 				ret = 0;
2902 			if (ret < 0)
2903 				goto out;
2904 		}
2905 	}
2906 
2907 	ret = inc_block_group_ro(cache, 0);
2908 	if (!ret)
2909 		goto out;
2910 	if (ret == -ETXTBSY)
2911 		goto unlock_out;
2912 
2913 	/*
2914 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2915 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2916 	 * we still want to try our best to mark the block group read-only.
2917 	 */
2918 	if (!do_chunk_alloc && ret == -ENOSPC &&
2919 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2920 		goto unlock_out;
2921 
2922 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2923 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2924 	if (ret < 0)
2925 		goto out;
2926 	/*
2927 	 * We have allocated a new chunk. We also need to activate that chunk to
2928 	 * grant metadata tickets for zoned filesystem.
2929 	 */
2930 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2931 	if (ret < 0)
2932 		goto out;
2933 
2934 	ret = inc_block_group_ro(cache, 0);
2935 	if (ret == -ETXTBSY)
2936 		goto unlock_out;
2937 out:
2938 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2939 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2940 		mutex_lock(&fs_info->chunk_mutex);
2941 		check_system_chunk(trans, alloc_flags);
2942 		mutex_unlock(&fs_info->chunk_mutex);
2943 	}
2944 unlock_out:
2945 	mutex_unlock(&fs_info->ro_block_group_mutex);
2946 
2947 	btrfs_end_transaction(trans);
2948 	return ret;
2949 }
2950 
2951 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2952 {
2953 	struct btrfs_space_info *sinfo = cache->space_info;
2954 	u64 num_bytes;
2955 
2956 	BUG_ON(!cache->ro);
2957 
2958 	spin_lock(&sinfo->lock);
2959 	spin_lock(&cache->lock);
2960 	if (!--cache->ro) {
2961 		if (btrfs_is_zoned(cache->fs_info)) {
2962 			/* Migrate zone_unusable bytes back */
2963 			cache->zone_unusable =
2964 				(cache->alloc_offset - cache->used) +
2965 				(cache->length - cache->zone_capacity);
2966 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2967 			sinfo->bytes_readonly -= cache->zone_unusable;
2968 		}
2969 		num_bytes = cache->length - cache->reserved -
2970 			    cache->pinned - cache->bytes_super -
2971 			    cache->zone_unusable - cache->used;
2972 		sinfo->bytes_readonly -= num_bytes;
2973 		list_del_init(&cache->ro_list);
2974 	}
2975 	spin_unlock(&cache->lock);
2976 	spin_unlock(&sinfo->lock);
2977 }
2978 
2979 static int update_block_group_item(struct btrfs_trans_handle *trans,
2980 				   struct btrfs_path *path,
2981 				   struct btrfs_block_group *cache)
2982 {
2983 	struct btrfs_fs_info *fs_info = trans->fs_info;
2984 	int ret;
2985 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2986 	unsigned long bi;
2987 	struct extent_buffer *leaf;
2988 	struct btrfs_block_group_item bgi;
2989 	struct btrfs_key key;
2990 	u64 old_commit_used;
2991 	u64 used;
2992 
2993 	/*
2994 	 * Block group items update can be triggered out of commit transaction
2995 	 * critical section, thus we need a consistent view of used bytes.
2996 	 * We cannot use cache->used directly outside of the spin lock, as it
2997 	 * may be changed.
2998 	 */
2999 	spin_lock(&cache->lock);
3000 	old_commit_used = cache->commit_used;
3001 	used = cache->used;
3002 	/* No change in used bytes, can safely skip it. */
3003 	if (cache->commit_used == used) {
3004 		spin_unlock(&cache->lock);
3005 		return 0;
3006 	}
3007 	cache->commit_used = used;
3008 	spin_unlock(&cache->lock);
3009 
3010 	key.objectid = cache->start;
3011 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3012 	key.offset = cache->length;
3013 
3014 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3015 	if (ret) {
3016 		if (ret > 0)
3017 			ret = -ENOENT;
3018 		goto fail;
3019 	}
3020 
3021 	leaf = path->nodes[0];
3022 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3023 	btrfs_set_stack_block_group_used(&bgi, used);
3024 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3025 						   cache->global_root_id);
3026 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3027 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3028 	btrfs_mark_buffer_dirty(leaf);
3029 fail:
3030 	btrfs_release_path(path);
3031 	/*
3032 	 * We didn't update the block group item, need to revert commit_used
3033 	 * unless the block group item didn't exist yet - this is to prevent a
3034 	 * race with a concurrent insertion of the block group item, with
3035 	 * insert_block_group_item(), that happened just after we attempted to
3036 	 * update. In that case we would reset commit_used to 0 just after the
3037 	 * insertion set it to a value greater than 0 - if the block group later
3038 	 * becomes with 0 used bytes, we would incorrectly skip its update.
3039 	 */
3040 	if (ret < 0 && ret != -ENOENT) {
3041 		spin_lock(&cache->lock);
3042 		cache->commit_used = old_commit_used;
3043 		spin_unlock(&cache->lock);
3044 	}
3045 	return ret;
3046 
3047 }
3048 
3049 static int cache_save_setup(struct btrfs_block_group *block_group,
3050 			    struct btrfs_trans_handle *trans,
3051 			    struct btrfs_path *path)
3052 {
3053 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3054 	struct btrfs_root *root = fs_info->tree_root;
3055 	struct inode *inode = NULL;
3056 	struct extent_changeset *data_reserved = NULL;
3057 	u64 alloc_hint = 0;
3058 	int dcs = BTRFS_DC_ERROR;
3059 	u64 cache_size = 0;
3060 	int retries = 0;
3061 	int ret = 0;
3062 
3063 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3064 		return 0;
3065 
3066 	/*
3067 	 * If this block group is smaller than 100 megs don't bother caching the
3068 	 * block group.
3069 	 */
3070 	if (block_group->length < (100 * SZ_1M)) {
3071 		spin_lock(&block_group->lock);
3072 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3073 		spin_unlock(&block_group->lock);
3074 		return 0;
3075 	}
3076 
3077 	if (TRANS_ABORTED(trans))
3078 		return 0;
3079 again:
3080 	inode = lookup_free_space_inode(block_group, path);
3081 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3082 		ret = PTR_ERR(inode);
3083 		btrfs_release_path(path);
3084 		goto out;
3085 	}
3086 
3087 	if (IS_ERR(inode)) {
3088 		BUG_ON(retries);
3089 		retries++;
3090 
3091 		if (block_group->ro)
3092 			goto out_free;
3093 
3094 		ret = create_free_space_inode(trans, block_group, path);
3095 		if (ret)
3096 			goto out_free;
3097 		goto again;
3098 	}
3099 
3100 	/*
3101 	 * We want to set the generation to 0, that way if anything goes wrong
3102 	 * from here on out we know not to trust this cache when we load up next
3103 	 * time.
3104 	 */
3105 	BTRFS_I(inode)->generation = 0;
3106 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3107 	if (ret) {
3108 		/*
3109 		 * So theoretically we could recover from this, simply set the
3110 		 * super cache generation to 0 so we know to invalidate the
3111 		 * cache, but then we'd have to keep track of the block groups
3112 		 * that fail this way so we know we _have_ to reset this cache
3113 		 * before the next commit or risk reading stale cache.  So to
3114 		 * limit our exposure to horrible edge cases lets just abort the
3115 		 * transaction, this only happens in really bad situations
3116 		 * anyway.
3117 		 */
3118 		btrfs_abort_transaction(trans, ret);
3119 		goto out_put;
3120 	}
3121 	WARN_ON(ret);
3122 
3123 	/* We've already setup this transaction, go ahead and exit */
3124 	if (block_group->cache_generation == trans->transid &&
3125 	    i_size_read(inode)) {
3126 		dcs = BTRFS_DC_SETUP;
3127 		goto out_put;
3128 	}
3129 
3130 	if (i_size_read(inode) > 0) {
3131 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3132 					&fs_info->global_block_rsv);
3133 		if (ret)
3134 			goto out_put;
3135 
3136 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3137 		if (ret)
3138 			goto out_put;
3139 	}
3140 
3141 	spin_lock(&block_group->lock);
3142 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3143 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3144 		/*
3145 		 * don't bother trying to write stuff out _if_
3146 		 * a) we're not cached,
3147 		 * b) we're with nospace_cache mount option,
3148 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3149 		 */
3150 		dcs = BTRFS_DC_WRITTEN;
3151 		spin_unlock(&block_group->lock);
3152 		goto out_put;
3153 	}
3154 	spin_unlock(&block_group->lock);
3155 
3156 	/*
3157 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3158 	 * skip doing the setup, we've already cleared the cache so we're safe.
3159 	 */
3160 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3161 		ret = -ENOSPC;
3162 		goto out_put;
3163 	}
3164 
3165 	/*
3166 	 * Try to preallocate enough space based on how big the block group is.
3167 	 * Keep in mind this has to include any pinned space which could end up
3168 	 * taking up quite a bit since it's not folded into the other space
3169 	 * cache.
3170 	 */
3171 	cache_size = div_u64(block_group->length, SZ_256M);
3172 	if (!cache_size)
3173 		cache_size = 1;
3174 
3175 	cache_size *= 16;
3176 	cache_size *= fs_info->sectorsize;
3177 
3178 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3179 					  cache_size, false);
3180 	if (ret)
3181 		goto out_put;
3182 
3183 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3184 					      cache_size, cache_size,
3185 					      &alloc_hint);
3186 	/*
3187 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3188 	 * of metadata or split extents when writing the cache out, which means
3189 	 * we can enospc if we are heavily fragmented in addition to just normal
3190 	 * out of space conditions.  So if we hit this just skip setting up any
3191 	 * other block groups for this transaction, maybe we'll unpin enough
3192 	 * space the next time around.
3193 	 */
3194 	if (!ret)
3195 		dcs = BTRFS_DC_SETUP;
3196 	else if (ret == -ENOSPC)
3197 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3198 
3199 out_put:
3200 	iput(inode);
3201 out_free:
3202 	btrfs_release_path(path);
3203 out:
3204 	spin_lock(&block_group->lock);
3205 	if (!ret && dcs == BTRFS_DC_SETUP)
3206 		block_group->cache_generation = trans->transid;
3207 	block_group->disk_cache_state = dcs;
3208 	spin_unlock(&block_group->lock);
3209 
3210 	extent_changeset_free(data_reserved);
3211 	return ret;
3212 }
3213 
3214 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3215 {
3216 	struct btrfs_fs_info *fs_info = trans->fs_info;
3217 	struct btrfs_block_group *cache, *tmp;
3218 	struct btrfs_transaction *cur_trans = trans->transaction;
3219 	struct btrfs_path *path;
3220 
3221 	if (list_empty(&cur_trans->dirty_bgs) ||
3222 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3223 		return 0;
3224 
3225 	path = btrfs_alloc_path();
3226 	if (!path)
3227 		return -ENOMEM;
3228 
3229 	/* Could add new block groups, use _safe just in case */
3230 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3231 				 dirty_list) {
3232 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3233 			cache_save_setup(cache, trans, path);
3234 	}
3235 
3236 	btrfs_free_path(path);
3237 	return 0;
3238 }
3239 
3240 /*
3241  * Transaction commit does final block group cache writeback during a critical
3242  * section where nothing is allowed to change the FS.  This is required in
3243  * order for the cache to actually match the block group, but can introduce a
3244  * lot of latency into the commit.
3245  *
3246  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3247  * There's a chance we'll have to redo some of it if the block group changes
3248  * again during the commit, but it greatly reduces the commit latency by
3249  * getting rid of the easy block groups while we're still allowing others to
3250  * join the commit.
3251  */
3252 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3253 {
3254 	struct btrfs_fs_info *fs_info = trans->fs_info;
3255 	struct btrfs_block_group *cache;
3256 	struct btrfs_transaction *cur_trans = trans->transaction;
3257 	int ret = 0;
3258 	int should_put;
3259 	struct btrfs_path *path = NULL;
3260 	LIST_HEAD(dirty);
3261 	struct list_head *io = &cur_trans->io_bgs;
3262 	int loops = 0;
3263 
3264 	spin_lock(&cur_trans->dirty_bgs_lock);
3265 	if (list_empty(&cur_trans->dirty_bgs)) {
3266 		spin_unlock(&cur_trans->dirty_bgs_lock);
3267 		return 0;
3268 	}
3269 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3270 	spin_unlock(&cur_trans->dirty_bgs_lock);
3271 
3272 again:
3273 	/* Make sure all the block groups on our dirty list actually exist */
3274 	btrfs_create_pending_block_groups(trans);
3275 
3276 	if (!path) {
3277 		path = btrfs_alloc_path();
3278 		if (!path) {
3279 			ret = -ENOMEM;
3280 			goto out;
3281 		}
3282 	}
3283 
3284 	/*
3285 	 * cache_write_mutex is here only to save us from balance or automatic
3286 	 * removal of empty block groups deleting this block group while we are
3287 	 * writing out the cache
3288 	 */
3289 	mutex_lock(&trans->transaction->cache_write_mutex);
3290 	while (!list_empty(&dirty)) {
3291 		bool drop_reserve = true;
3292 
3293 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3294 					 dirty_list);
3295 		/*
3296 		 * This can happen if something re-dirties a block group that
3297 		 * is already under IO.  Just wait for it to finish and then do
3298 		 * it all again
3299 		 */
3300 		if (!list_empty(&cache->io_list)) {
3301 			list_del_init(&cache->io_list);
3302 			btrfs_wait_cache_io(trans, cache, path);
3303 			btrfs_put_block_group(cache);
3304 		}
3305 
3306 
3307 		/*
3308 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3309 		 * it should update the cache_state.  Don't delete until after
3310 		 * we wait.
3311 		 *
3312 		 * Since we're not running in the commit critical section
3313 		 * we need the dirty_bgs_lock to protect from update_block_group
3314 		 */
3315 		spin_lock(&cur_trans->dirty_bgs_lock);
3316 		list_del_init(&cache->dirty_list);
3317 		spin_unlock(&cur_trans->dirty_bgs_lock);
3318 
3319 		should_put = 1;
3320 
3321 		cache_save_setup(cache, trans, path);
3322 
3323 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3324 			cache->io_ctl.inode = NULL;
3325 			ret = btrfs_write_out_cache(trans, cache, path);
3326 			if (ret == 0 && cache->io_ctl.inode) {
3327 				should_put = 0;
3328 
3329 				/*
3330 				 * The cache_write_mutex is protecting the
3331 				 * io_list, also refer to the definition of
3332 				 * btrfs_transaction::io_bgs for more details
3333 				 */
3334 				list_add_tail(&cache->io_list, io);
3335 			} else {
3336 				/*
3337 				 * If we failed to write the cache, the
3338 				 * generation will be bad and life goes on
3339 				 */
3340 				ret = 0;
3341 			}
3342 		}
3343 		if (!ret) {
3344 			ret = update_block_group_item(trans, path, cache);
3345 			/*
3346 			 * Our block group might still be attached to the list
3347 			 * of new block groups in the transaction handle of some
3348 			 * other task (struct btrfs_trans_handle->new_bgs). This
3349 			 * means its block group item isn't yet in the extent
3350 			 * tree. If this happens ignore the error, as we will
3351 			 * try again later in the critical section of the
3352 			 * transaction commit.
3353 			 */
3354 			if (ret == -ENOENT) {
3355 				ret = 0;
3356 				spin_lock(&cur_trans->dirty_bgs_lock);
3357 				if (list_empty(&cache->dirty_list)) {
3358 					list_add_tail(&cache->dirty_list,
3359 						      &cur_trans->dirty_bgs);
3360 					btrfs_get_block_group(cache);
3361 					drop_reserve = false;
3362 				}
3363 				spin_unlock(&cur_trans->dirty_bgs_lock);
3364 			} else if (ret) {
3365 				btrfs_abort_transaction(trans, ret);
3366 			}
3367 		}
3368 
3369 		/* If it's not on the io list, we need to put the block group */
3370 		if (should_put)
3371 			btrfs_put_block_group(cache);
3372 		if (drop_reserve)
3373 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3374 		/*
3375 		 * Avoid blocking other tasks for too long. It might even save
3376 		 * us from writing caches for block groups that are going to be
3377 		 * removed.
3378 		 */
3379 		mutex_unlock(&trans->transaction->cache_write_mutex);
3380 		if (ret)
3381 			goto out;
3382 		mutex_lock(&trans->transaction->cache_write_mutex);
3383 	}
3384 	mutex_unlock(&trans->transaction->cache_write_mutex);
3385 
3386 	/*
3387 	 * Go through delayed refs for all the stuff we've just kicked off
3388 	 * and then loop back (just once)
3389 	 */
3390 	if (!ret)
3391 		ret = btrfs_run_delayed_refs(trans, 0);
3392 	if (!ret && loops == 0) {
3393 		loops++;
3394 		spin_lock(&cur_trans->dirty_bgs_lock);
3395 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3396 		/*
3397 		 * dirty_bgs_lock protects us from concurrent block group
3398 		 * deletes too (not just cache_write_mutex).
3399 		 */
3400 		if (!list_empty(&dirty)) {
3401 			spin_unlock(&cur_trans->dirty_bgs_lock);
3402 			goto again;
3403 		}
3404 		spin_unlock(&cur_trans->dirty_bgs_lock);
3405 	}
3406 out:
3407 	if (ret < 0) {
3408 		spin_lock(&cur_trans->dirty_bgs_lock);
3409 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3410 		spin_unlock(&cur_trans->dirty_bgs_lock);
3411 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3412 	}
3413 
3414 	btrfs_free_path(path);
3415 	return ret;
3416 }
3417 
3418 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3419 {
3420 	struct btrfs_fs_info *fs_info = trans->fs_info;
3421 	struct btrfs_block_group *cache;
3422 	struct btrfs_transaction *cur_trans = trans->transaction;
3423 	int ret = 0;
3424 	int should_put;
3425 	struct btrfs_path *path;
3426 	struct list_head *io = &cur_trans->io_bgs;
3427 
3428 	path = btrfs_alloc_path();
3429 	if (!path)
3430 		return -ENOMEM;
3431 
3432 	/*
3433 	 * Even though we are in the critical section of the transaction commit,
3434 	 * we can still have concurrent tasks adding elements to this
3435 	 * transaction's list of dirty block groups. These tasks correspond to
3436 	 * endio free space workers started when writeback finishes for a
3437 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3438 	 * allocate new block groups as a result of COWing nodes of the root
3439 	 * tree when updating the free space inode. The writeback for the space
3440 	 * caches is triggered by an earlier call to
3441 	 * btrfs_start_dirty_block_groups() and iterations of the following
3442 	 * loop.
3443 	 * Also we want to do the cache_save_setup first and then run the
3444 	 * delayed refs to make sure we have the best chance at doing this all
3445 	 * in one shot.
3446 	 */
3447 	spin_lock(&cur_trans->dirty_bgs_lock);
3448 	while (!list_empty(&cur_trans->dirty_bgs)) {
3449 		cache = list_first_entry(&cur_trans->dirty_bgs,
3450 					 struct btrfs_block_group,
3451 					 dirty_list);
3452 
3453 		/*
3454 		 * This can happen if cache_save_setup re-dirties a block group
3455 		 * that is already under IO.  Just wait for it to finish and
3456 		 * then do it all again
3457 		 */
3458 		if (!list_empty(&cache->io_list)) {
3459 			spin_unlock(&cur_trans->dirty_bgs_lock);
3460 			list_del_init(&cache->io_list);
3461 			btrfs_wait_cache_io(trans, cache, path);
3462 			btrfs_put_block_group(cache);
3463 			spin_lock(&cur_trans->dirty_bgs_lock);
3464 		}
3465 
3466 		/*
3467 		 * Don't remove from the dirty list until after we've waited on
3468 		 * any pending IO
3469 		 */
3470 		list_del_init(&cache->dirty_list);
3471 		spin_unlock(&cur_trans->dirty_bgs_lock);
3472 		should_put = 1;
3473 
3474 		cache_save_setup(cache, trans, path);
3475 
3476 		if (!ret)
3477 			ret = btrfs_run_delayed_refs(trans,
3478 						     (unsigned long) -1);
3479 
3480 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3481 			cache->io_ctl.inode = NULL;
3482 			ret = btrfs_write_out_cache(trans, cache, path);
3483 			if (ret == 0 && cache->io_ctl.inode) {
3484 				should_put = 0;
3485 				list_add_tail(&cache->io_list, io);
3486 			} else {
3487 				/*
3488 				 * If we failed to write the cache, the
3489 				 * generation will be bad and life goes on
3490 				 */
3491 				ret = 0;
3492 			}
3493 		}
3494 		if (!ret) {
3495 			ret = update_block_group_item(trans, path, cache);
3496 			/*
3497 			 * One of the free space endio workers might have
3498 			 * created a new block group while updating a free space
3499 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3500 			 * and hasn't released its transaction handle yet, in
3501 			 * which case the new block group is still attached to
3502 			 * its transaction handle and its creation has not
3503 			 * finished yet (no block group item in the extent tree
3504 			 * yet, etc). If this is the case, wait for all free
3505 			 * space endio workers to finish and retry. This is a
3506 			 * very rare case so no need for a more efficient and
3507 			 * complex approach.
3508 			 */
3509 			if (ret == -ENOENT) {
3510 				wait_event(cur_trans->writer_wait,
3511 				   atomic_read(&cur_trans->num_writers) == 1);
3512 				ret = update_block_group_item(trans, path, cache);
3513 			}
3514 			if (ret)
3515 				btrfs_abort_transaction(trans, ret);
3516 		}
3517 
3518 		/* If its not on the io list, we need to put the block group */
3519 		if (should_put)
3520 			btrfs_put_block_group(cache);
3521 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3522 		spin_lock(&cur_trans->dirty_bgs_lock);
3523 	}
3524 	spin_unlock(&cur_trans->dirty_bgs_lock);
3525 
3526 	/*
3527 	 * Refer to the definition of io_bgs member for details why it's safe
3528 	 * to use it without any locking
3529 	 */
3530 	while (!list_empty(io)) {
3531 		cache = list_first_entry(io, struct btrfs_block_group,
3532 					 io_list);
3533 		list_del_init(&cache->io_list);
3534 		btrfs_wait_cache_io(trans, cache, path);
3535 		btrfs_put_block_group(cache);
3536 	}
3537 
3538 	btrfs_free_path(path);
3539 	return ret;
3540 }
3541 
3542 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3543 			     u64 bytenr, u64 num_bytes, bool alloc)
3544 {
3545 	struct btrfs_fs_info *info = trans->fs_info;
3546 	struct btrfs_block_group *cache = NULL;
3547 	u64 total = num_bytes;
3548 	u64 old_val;
3549 	u64 byte_in_group;
3550 	int factor;
3551 	int ret = 0;
3552 
3553 	/* Block accounting for super block */
3554 	spin_lock(&info->delalloc_root_lock);
3555 	old_val = btrfs_super_bytes_used(info->super_copy);
3556 	if (alloc)
3557 		old_val += num_bytes;
3558 	else
3559 		old_val -= num_bytes;
3560 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3561 	spin_unlock(&info->delalloc_root_lock);
3562 
3563 	while (total) {
3564 		struct btrfs_space_info *space_info;
3565 		bool reclaim = false;
3566 
3567 		cache = btrfs_lookup_block_group(info, bytenr);
3568 		if (!cache) {
3569 			ret = -ENOENT;
3570 			break;
3571 		}
3572 		space_info = cache->space_info;
3573 		factor = btrfs_bg_type_to_factor(cache->flags);
3574 
3575 		/*
3576 		 * If this block group has free space cache written out, we
3577 		 * need to make sure to load it if we are removing space.  This
3578 		 * is because we need the unpinning stage to actually add the
3579 		 * space back to the block group, otherwise we will leak space.
3580 		 */
3581 		if (!alloc && !btrfs_block_group_done(cache))
3582 			btrfs_cache_block_group(cache, true);
3583 
3584 		byte_in_group = bytenr - cache->start;
3585 		WARN_ON(byte_in_group > cache->length);
3586 
3587 		spin_lock(&space_info->lock);
3588 		spin_lock(&cache->lock);
3589 
3590 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3591 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3592 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3593 
3594 		old_val = cache->used;
3595 		num_bytes = min(total, cache->length - byte_in_group);
3596 		if (alloc) {
3597 			old_val += num_bytes;
3598 			cache->used = old_val;
3599 			cache->reserved -= num_bytes;
3600 			space_info->bytes_reserved -= num_bytes;
3601 			space_info->bytes_used += num_bytes;
3602 			space_info->disk_used += num_bytes * factor;
3603 			spin_unlock(&cache->lock);
3604 			spin_unlock(&space_info->lock);
3605 		} else {
3606 			old_val -= num_bytes;
3607 			cache->used = old_val;
3608 			cache->pinned += num_bytes;
3609 			btrfs_space_info_update_bytes_pinned(info, space_info,
3610 							     num_bytes);
3611 			space_info->bytes_used -= num_bytes;
3612 			space_info->disk_used -= num_bytes * factor;
3613 
3614 			reclaim = should_reclaim_block_group(cache, num_bytes);
3615 
3616 			spin_unlock(&cache->lock);
3617 			spin_unlock(&space_info->lock);
3618 
3619 			set_extent_bit(&trans->transaction->pinned_extents,
3620 				       bytenr, bytenr + num_bytes - 1,
3621 				       EXTENT_DIRTY, NULL);
3622 		}
3623 
3624 		spin_lock(&trans->transaction->dirty_bgs_lock);
3625 		if (list_empty(&cache->dirty_list)) {
3626 			list_add_tail(&cache->dirty_list,
3627 				      &trans->transaction->dirty_bgs);
3628 			trans->delayed_ref_updates++;
3629 			btrfs_get_block_group(cache);
3630 		}
3631 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3632 
3633 		/*
3634 		 * No longer have used bytes in this block group, queue it for
3635 		 * deletion. We do this after adding the block group to the
3636 		 * dirty list to avoid races between cleaner kthread and space
3637 		 * cache writeout.
3638 		 */
3639 		if (!alloc && old_val == 0) {
3640 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3641 				btrfs_mark_bg_unused(cache);
3642 		} else if (!alloc && reclaim) {
3643 			btrfs_mark_bg_to_reclaim(cache);
3644 		}
3645 
3646 		btrfs_put_block_group(cache);
3647 		total -= num_bytes;
3648 		bytenr += num_bytes;
3649 	}
3650 
3651 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3652 	btrfs_update_delayed_refs_rsv(trans);
3653 	return ret;
3654 }
3655 
3656 /*
3657  * Update the block_group and space info counters.
3658  *
3659  * @cache:	The cache we are manipulating
3660  * @ram_bytes:  The number of bytes of file content, and will be same to
3661  *              @num_bytes except for the compress path.
3662  * @num_bytes:	The number of bytes in question
3663  * @delalloc:   The blocks are allocated for the delalloc write
3664  *
3665  * This is called by the allocator when it reserves space. If this is a
3666  * reservation and the block group has become read only we cannot make the
3667  * reservation and return -EAGAIN, otherwise this function always succeeds.
3668  */
3669 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3670 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3671 			     bool force_wrong_size_class)
3672 {
3673 	struct btrfs_space_info *space_info = cache->space_info;
3674 	enum btrfs_block_group_size_class size_class;
3675 	int ret = 0;
3676 
3677 	spin_lock(&space_info->lock);
3678 	spin_lock(&cache->lock);
3679 	if (cache->ro) {
3680 		ret = -EAGAIN;
3681 		goto out;
3682 	}
3683 
3684 	if (btrfs_block_group_should_use_size_class(cache)) {
3685 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3686 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3687 		if (ret)
3688 			goto out;
3689 	}
3690 	cache->reserved += num_bytes;
3691 	space_info->bytes_reserved += num_bytes;
3692 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3693 				      space_info->flags, num_bytes, 1);
3694 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3695 					      space_info, -ram_bytes);
3696 	if (delalloc)
3697 		cache->delalloc_bytes += num_bytes;
3698 
3699 	/*
3700 	 * Compression can use less space than we reserved, so wake tickets if
3701 	 * that happens.
3702 	 */
3703 	if (num_bytes < ram_bytes)
3704 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3705 out:
3706 	spin_unlock(&cache->lock);
3707 	spin_unlock(&space_info->lock);
3708 	return ret;
3709 }
3710 
3711 /*
3712  * Update the block_group and space info counters.
3713  *
3714  * @cache:      The cache we are manipulating
3715  * @num_bytes:  The number of bytes in question
3716  * @delalloc:   The blocks are allocated for the delalloc write
3717  *
3718  * This is called by somebody who is freeing space that was never actually used
3719  * on disk.  For example if you reserve some space for a new leaf in transaction
3720  * A and before transaction A commits you free that leaf, you call this with
3721  * reserve set to 0 in order to clear the reservation.
3722  */
3723 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3724 			       u64 num_bytes, int delalloc)
3725 {
3726 	struct btrfs_space_info *space_info = cache->space_info;
3727 
3728 	spin_lock(&space_info->lock);
3729 	spin_lock(&cache->lock);
3730 	if (cache->ro)
3731 		space_info->bytes_readonly += num_bytes;
3732 	cache->reserved -= num_bytes;
3733 	space_info->bytes_reserved -= num_bytes;
3734 	space_info->max_extent_size = 0;
3735 
3736 	if (delalloc)
3737 		cache->delalloc_bytes -= num_bytes;
3738 	spin_unlock(&cache->lock);
3739 
3740 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3741 	spin_unlock(&space_info->lock);
3742 }
3743 
3744 static void force_metadata_allocation(struct btrfs_fs_info *info)
3745 {
3746 	struct list_head *head = &info->space_info;
3747 	struct btrfs_space_info *found;
3748 
3749 	list_for_each_entry(found, head, list) {
3750 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3751 			found->force_alloc = CHUNK_ALLOC_FORCE;
3752 	}
3753 }
3754 
3755 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3756 			      struct btrfs_space_info *sinfo, int force)
3757 {
3758 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3759 	u64 thresh;
3760 
3761 	if (force == CHUNK_ALLOC_FORCE)
3762 		return 1;
3763 
3764 	/*
3765 	 * in limited mode, we want to have some free space up to
3766 	 * about 1% of the FS size.
3767 	 */
3768 	if (force == CHUNK_ALLOC_LIMITED) {
3769 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3770 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3771 
3772 		if (sinfo->total_bytes - bytes_used < thresh)
3773 			return 1;
3774 	}
3775 
3776 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3777 		return 0;
3778 	return 1;
3779 }
3780 
3781 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3782 {
3783 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3784 
3785 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3786 }
3787 
3788 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3789 {
3790 	struct btrfs_block_group *bg;
3791 	int ret;
3792 
3793 	/*
3794 	 * Check if we have enough space in the system space info because we
3795 	 * will need to update device items in the chunk btree and insert a new
3796 	 * chunk item in the chunk btree as well. This will allocate a new
3797 	 * system block group if needed.
3798 	 */
3799 	check_system_chunk(trans, flags);
3800 
3801 	bg = btrfs_create_chunk(trans, flags);
3802 	if (IS_ERR(bg)) {
3803 		ret = PTR_ERR(bg);
3804 		goto out;
3805 	}
3806 
3807 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3808 	/*
3809 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3810 	 * previously reserved space in the system space_info and allocated one
3811 	 * new system chunk if necessary. However there are three exceptions:
3812 	 *
3813 	 * 1) We may have enough free space in the system space_info but all the
3814 	 *    existing system block groups have a profile which can not be used
3815 	 *    for extent allocation.
3816 	 *
3817 	 *    This happens when mounting in degraded mode. For example we have a
3818 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3819 	 *    using the other device in degraded mode. If we then allocate a chunk,
3820 	 *    we may have enough free space in the existing system space_info, but
3821 	 *    none of the block groups can be used for extent allocation since they
3822 	 *    have a RAID1 profile, and because we are in degraded mode with a
3823 	 *    single device, we are forced to allocate a new system chunk with a
3824 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3825 	 *    block groups and check if they have a usable profile and enough space
3826 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3827 	 *    try again after forcing allocation of a new system chunk. Like this
3828 	 *    we avoid paying the cost of that search in normal circumstances, when
3829 	 *    we were not mounted in degraded mode;
3830 	 *
3831 	 * 2) We had enough free space info the system space_info, and one suitable
3832 	 *    block group to allocate from when we called check_system_chunk()
3833 	 *    above. However right after we called it, the only system block group
3834 	 *    with enough free space got turned into RO mode by a running scrub,
3835 	 *    and in this case we have to allocate a new one and retry. We only
3836 	 *    need do this allocate and retry once, since we have a transaction
3837 	 *    handle and scrub uses the commit root to search for block groups;
3838 	 *
3839 	 * 3) We had one system block group with enough free space when we called
3840 	 *    check_system_chunk(), but after that, right before we tried to
3841 	 *    allocate the last extent buffer we needed, a discard operation came
3842 	 *    in and it temporarily removed the last free space entry from the
3843 	 *    block group (discard removes a free space entry, discards it, and
3844 	 *    then adds back the entry to the block group cache).
3845 	 */
3846 	if (ret == -ENOSPC) {
3847 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3848 		struct btrfs_block_group *sys_bg;
3849 
3850 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3851 		if (IS_ERR(sys_bg)) {
3852 			ret = PTR_ERR(sys_bg);
3853 			btrfs_abort_transaction(trans, ret);
3854 			goto out;
3855 		}
3856 
3857 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3858 		if (ret) {
3859 			btrfs_abort_transaction(trans, ret);
3860 			goto out;
3861 		}
3862 
3863 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3864 		if (ret) {
3865 			btrfs_abort_transaction(trans, ret);
3866 			goto out;
3867 		}
3868 	} else if (ret) {
3869 		btrfs_abort_transaction(trans, ret);
3870 		goto out;
3871 	}
3872 out:
3873 	btrfs_trans_release_chunk_metadata(trans);
3874 
3875 	if (ret)
3876 		return ERR_PTR(ret);
3877 
3878 	btrfs_get_block_group(bg);
3879 	return bg;
3880 }
3881 
3882 /*
3883  * Chunk allocation is done in 2 phases:
3884  *
3885  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3886  *    the chunk, the chunk mapping, create its block group and add the items
3887  *    that belong in the chunk btree to it - more specifically, we need to
3888  *    update device items in the chunk btree and add a new chunk item to it.
3889  *
3890  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3891  *    group item to the extent btree and the device extent items to the devices
3892  *    btree.
3893  *
3894  * This is done to prevent deadlocks. For example when COWing a node from the
3895  * extent btree we are holding a write lock on the node's parent and if we
3896  * trigger chunk allocation and attempted to insert the new block group item
3897  * in the extent btree right way, we could deadlock because the path for the
3898  * insertion can include that parent node. At first glance it seems impossible
3899  * to trigger chunk allocation after starting a transaction since tasks should
3900  * reserve enough transaction units (metadata space), however while that is true
3901  * most of the time, chunk allocation may still be triggered for several reasons:
3902  *
3903  * 1) When reserving metadata, we check if there is enough free space in the
3904  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3905  *    However later when the task actually tries to COW an extent buffer from
3906  *    the extent btree or from the device btree for example, it is forced to
3907  *    allocate a new block group (chunk) because the only one that had enough
3908  *    free space was just turned to RO mode by a running scrub for example (or
3909  *    device replace, block group reclaim thread, etc), so we can not use it
3910  *    for allocating an extent and end up being forced to allocate a new one;
3911  *
3912  * 2) Because we only check that the metadata space_info has enough free bytes,
3913  *    we end up not allocating a new metadata chunk in that case. However if
3914  *    the filesystem was mounted in degraded mode, none of the existing block
3915  *    groups might be suitable for extent allocation due to their incompatible
3916  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3917  *    use a RAID1 profile, in degraded mode using a single device). In this case
3918  *    when the task attempts to COW some extent buffer of the extent btree for
3919  *    example, it will trigger allocation of a new metadata block group with a
3920  *    suitable profile (SINGLE profile in the example of the degraded mount of
3921  *    the RAID1 filesystem);
3922  *
3923  * 3) The task has reserved enough transaction units / metadata space, but when
3924  *    it attempts to COW an extent buffer from the extent or device btree for
3925  *    example, it does not find any free extent in any metadata block group,
3926  *    therefore forced to try to allocate a new metadata block group.
3927  *    This is because some other task allocated all available extents in the
3928  *    meanwhile - this typically happens with tasks that don't reserve space
3929  *    properly, either intentionally or as a bug. One example where this is
3930  *    done intentionally is fsync, as it does not reserve any transaction units
3931  *    and ends up allocating a variable number of metadata extents for log
3932  *    tree extent buffers;
3933  *
3934  * 4) The task has reserved enough transaction units / metadata space, but right
3935  *    before it tries to allocate the last extent buffer it needs, a discard
3936  *    operation comes in and, temporarily, removes the last free space entry from
3937  *    the only metadata block group that had free space (discard starts by
3938  *    removing a free space entry from a block group, then does the discard
3939  *    operation and, once it's done, it adds back the free space entry to the
3940  *    block group).
3941  *
3942  * We also need this 2 phases setup when adding a device to a filesystem with
3943  * a seed device - we must create new metadata and system chunks without adding
3944  * any of the block group items to the chunk, extent and device btrees. If we
3945  * did not do it this way, we would get ENOSPC when attempting to update those
3946  * btrees, since all the chunks from the seed device are read-only.
3947  *
3948  * Phase 1 does the updates and insertions to the chunk btree because if we had
3949  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3950  * parallel, we risk having too many system chunks allocated by many tasks if
3951  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3952  * extreme case this leads to exhaustion of the system chunk array in the
3953  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3954  * and with RAID filesystems (so we have more device items in the chunk btree).
3955  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3956  * the system chunk array due to concurrent allocations") provides more details.
3957  *
3958  * Allocation of system chunks does not happen through this function. A task that
3959  * needs to update the chunk btree (the only btree that uses system chunks), must
3960  * preallocate chunk space by calling either check_system_chunk() or
3961  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3962  * metadata chunk or when removing a chunk, while the later is used before doing
3963  * a modification to the chunk btree - use cases for the later are adding,
3964  * removing and resizing a device as well as relocation of a system chunk.
3965  * See the comment below for more details.
3966  *
3967  * The reservation of system space, done through check_system_chunk(), as well
3968  * as all the updates and insertions into the chunk btree must be done while
3969  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3970  * an extent buffer from the chunks btree we never trigger allocation of a new
3971  * system chunk, which would result in a deadlock (trying to lock twice an
3972  * extent buffer of the chunk btree, first time before triggering the chunk
3973  * allocation and the second time during chunk allocation while attempting to
3974  * update the chunks btree). The system chunk array is also updated while holding
3975  * that mutex. The same logic applies to removing chunks - we must reserve system
3976  * space, update the chunk btree and the system chunk array in the superblock
3977  * while holding fs_info->chunk_mutex.
3978  *
3979  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3980  *
3981  * If @force is CHUNK_ALLOC_FORCE:
3982  *    - return 1 if it successfully allocates a chunk,
3983  *    - return errors including -ENOSPC otherwise.
3984  * If @force is NOT CHUNK_ALLOC_FORCE:
3985  *    - return 0 if it doesn't need to allocate a new chunk,
3986  *    - return 1 if it successfully allocates a chunk,
3987  *    - return errors including -ENOSPC otherwise.
3988  */
3989 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3990 		      enum btrfs_chunk_alloc_enum force)
3991 {
3992 	struct btrfs_fs_info *fs_info = trans->fs_info;
3993 	struct btrfs_space_info *space_info;
3994 	struct btrfs_block_group *ret_bg;
3995 	bool wait_for_alloc = false;
3996 	bool should_alloc = false;
3997 	bool from_extent_allocation = false;
3998 	int ret = 0;
3999 
4000 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4001 		from_extent_allocation = true;
4002 		force = CHUNK_ALLOC_FORCE;
4003 	}
4004 
4005 	/* Don't re-enter if we're already allocating a chunk */
4006 	if (trans->allocating_chunk)
4007 		return -ENOSPC;
4008 	/*
4009 	 * Allocation of system chunks can not happen through this path, as we
4010 	 * could end up in a deadlock if we are allocating a data or metadata
4011 	 * chunk and there is another task modifying the chunk btree.
4012 	 *
4013 	 * This is because while we are holding the chunk mutex, we will attempt
4014 	 * to add the new chunk item to the chunk btree or update an existing
4015 	 * device item in the chunk btree, while the other task that is modifying
4016 	 * the chunk btree is attempting to COW an extent buffer while holding a
4017 	 * lock on it and on its parent - if the COW operation triggers a system
4018 	 * chunk allocation, then we can deadlock because we are holding the
4019 	 * chunk mutex and we may need to access that extent buffer or its parent
4020 	 * in order to add the chunk item or update a device item.
4021 	 *
4022 	 * Tasks that want to modify the chunk tree should reserve system space
4023 	 * before updating the chunk btree, by calling either
4024 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4025 	 * It's possible that after a task reserves the space, it still ends up
4026 	 * here - this happens in the cases described above at do_chunk_alloc().
4027 	 * The task will have to either retry or fail.
4028 	 */
4029 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4030 		return -ENOSPC;
4031 
4032 	space_info = btrfs_find_space_info(fs_info, flags);
4033 	ASSERT(space_info);
4034 
4035 	do {
4036 		spin_lock(&space_info->lock);
4037 		if (force < space_info->force_alloc)
4038 			force = space_info->force_alloc;
4039 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4040 		if (space_info->full) {
4041 			/* No more free physical space */
4042 			if (should_alloc)
4043 				ret = -ENOSPC;
4044 			else
4045 				ret = 0;
4046 			spin_unlock(&space_info->lock);
4047 			return ret;
4048 		} else if (!should_alloc) {
4049 			spin_unlock(&space_info->lock);
4050 			return 0;
4051 		} else if (space_info->chunk_alloc) {
4052 			/*
4053 			 * Someone is already allocating, so we need to block
4054 			 * until this someone is finished and then loop to
4055 			 * recheck if we should continue with our allocation
4056 			 * attempt.
4057 			 */
4058 			wait_for_alloc = true;
4059 			force = CHUNK_ALLOC_NO_FORCE;
4060 			spin_unlock(&space_info->lock);
4061 			mutex_lock(&fs_info->chunk_mutex);
4062 			mutex_unlock(&fs_info->chunk_mutex);
4063 		} else {
4064 			/* Proceed with allocation */
4065 			space_info->chunk_alloc = 1;
4066 			wait_for_alloc = false;
4067 			spin_unlock(&space_info->lock);
4068 		}
4069 
4070 		cond_resched();
4071 	} while (wait_for_alloc);
4072 
4073 	mutex_lock(&fs_info->chunk_mutex);
4074 	trans->allocating_chunk = true;
4075 
4076 	/*
4077 	 * If we have mixed data/metadata chunks we want to make sure we keep
4078 	 * allocating mixed chunks instead of individual chunks.
4079 	 */
4080 	if (btrfs_mixed_space_info(space_info))
4081 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4082 
4083 	/*
4084 	 * if we're doing a data chunk, go ahead and make sure that
4085 	 * we keep a reasonable number of metadata chunks allocated in the
4086 	 * FS as well.
4087 	 */
4088 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4089 		fs_info->data_chunk_allocations++;
4090 		if (!(fs_info->data_chunk_allocations %
4091 		      fs_info->metadata_ratio))
4092 			force_metadata_allocation(fs_info);
4093 	}
4094 
4095 	ret_bg = do_chunk_alloc(trans, flags);
4096 	trans->allocating_chunk = false;
4097 
4098 	if (IS_ERR(ret_bg)) {
4099 		ret = PTR_ERR(ret_bg);
4100 	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4101 		/*
4102 		 * New block group is likely to be used soon. Try to activate
4103 		 * it now. Failure is OK for now.
4104 		 */
4105 		btrfs_zone_activate(ret_bg);
4106 	}
4107 
4108 	if (!ret)
4109 		btrfs_put_block_group(ret_bg);
4110 
4111 	spin_lock(&space_info->lock);
4112 	if (ret < 0) {
4113 		if (ret == -ENOSPC)
4114 			space_info->full = 1;
4115 		else
4116 			goto out;
4117 	} else {
4118 		ret = 1;
4119 		space_info->max_extent_size = 0;
4120 	}
4121 
4122 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4123 out:
4124 	space_info->chunk_alloc = 0;
4125 	spin_unlock(&space_info->lock);
4126 	mutex_unlock(&fs_info->chunk_mutex);
4127 
4128 	return ret;
4129 }
4130 
4131 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4132 {
4133 	u64 num_dev;
4134 
4135 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4136 	if (!num_dev)
4137 		num_dev = fs_info->fs_devices->rw_devices;
4138 
4139 	return num_dev;
4140 }
4141 
4142 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4143 				u64 bytes,
4144 				u64 type)
4145 {
4146 	struct btrfs_fs_info *fs_info = trans->fs_info;
4147 	struct btrfs_space_info *info;
4148 	u64 left;
4149 	int ret = 0;
4150 
4151 	/*
4152 	 * Needed because we can end up allocating a system chunk and for an
4153 	 * atomic and race free space reservation in the chunk block reserve.
4154 	 */
4155 	lockdep_assert_held(&fs_info->chunk_mutex);
4156 
4157 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 	spin_lock(&info->lock);
4159 	left = info->total_bytes - btrfs_space_info_used(info, true);
4160 	spin_unlock(&info->lock);
4161 
4162 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4163 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4164 			   left, bytes, type);
4165 		btrfs_dump_space_info(fs_info, info, 0, 0);
4166 	}
4167 
4168 	if (left < bytes) {
4169 		u64 flags = btrfs_system_alloc_profile(fs_info);
4170 		struct btrfs_block_group *bg;
4171 
4172 		/*
4173 		 * Ignore failure to create system chunk. We might end up not
4174 		 * needing it, as we might not need to COW all nodes/leafs from
4175 		 * the paths we visit in the chunk tree (they were already COWed
4176 		 * or created in the current transaction for example).
4177 		 */
4178 		bg = btrfs_create_chunk(trans, flags);
4179 		if (IS_ERR(bg)) {
4180 			ret = PTR_ERR(bg);
4181 		} else {
4182 			/*
4183 			 * We have a new chunk. We also need to activate it for
4184 			 * zoned filesystem.
4185 			 */
4186 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4187 			if (ret < 0)
4188 				return;
4189 
4190 			/*
4191 			 * If we fail to add the chunk item here, we end up
4192 			 * trying again at phase 2 of chunk allocation, at
4193 			 * btrfs_create_pending_block_groups(). So ignore
4194 			 * any error here. An ENOSPC here could happen, due to
4195 			 * the cases described at do_chunk_alloc() - the system
4196 			 * block group we just created was just turned into RO
4197 			 * mode by a scrub for example, or a running discard
4198 			 * temporarily removed its free space entries, etc.
4199 			 */
4200 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4201 		}
4202 	}
4203 
4204 	if (!ret) {
4205 		ret = btrfs_block_rsv_add(fs_info,
4206 					  &fs_info->chunk_block_rsv,
4207 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4208 		if (!ret)
4209 			trans->chunk_bytes_reserved += bytes;
4210 	}
4211 }
4212 
4213 /*
4214  * Reserve space in the system space for allocating or removing a chunk.
4215  * The caller must be holding fs_info->chunk_mutex.
4216  */
4217 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4218 {
4219 	struct btrfs_fs_info *fs_info = trans->fs_info;
4220 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4221 	u64 bytes;
4222 
4223 	/* num_devs device items to update and 1 chunk item to add or remove. */
4224 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4225 		btrfs_calc_insert_metadata_size(fs_info, 1);
4226 
4227 	reserve_chunk_space(trans, bytes, type);
4228 }
4229 
4230 /*
4231  * Reserve space in the system space, if needed, for doing a modification to the
4232  * chunk btree.
4233  *
4234  * @trans:		A transaction handle.
4235  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4236  *			in the chunk btree or if it's for the deletion or update
4237  *			of an existing item.
4238  *
4239  * This is used in a context where we need to update the chunk btree outside
4240  * block group allocation and removal, to avoid a deadlock with a concurrent
4241  * task that is allocating a metadata or data block group and therefore needs to
4242  * update the chunk btree while holding the chunk mutex. After the update to the
4243  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4244  *
4245  */
4246 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4247 				  bool is_item_insertion)
4248 {
4249 	struct btrfs_fs_info *fs_info = trans->fs_info;
4250 	u64 bytes;
4251 
4252 	if (is_item_insertion)
4253 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4254 	else
4255 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4256 
4257 	mutex_lock(&fs_info->chunk_mutex);
4258 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4259 	mutex_unlock(&fs_info->chunk_mutex);
4260 }
4261 
4262 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4263 {
4264 	struct btrfs_block_group *block_group;
4265 
4266 	block_group = btrfs_lookup_first_block_group(info, 0);
4267 	while (block_group) {
4268 		btrfs_wait_block_group_cache_done(block_group);
4269 		spin_lock(&block_group->lock);
4270 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4271 				       &block_group->runtime_flags)) {
4272 			struct inode *inode = block_group->inode;
4273 
4274 			block_group->inode = NULL;
4275 			spin_unlock(&block_group->lock);
4276 
4277 			ASSERT(block_group->io_ctl.inode == NULL);
4278 			iput(inode);
4279 		} else {
4280 			spin_unlock(&block_group->lock);
4281 		}
4282 		block_group = btrfs_next_block_group(block_group);
4283 	}
4284 }
4285 
4286 /*
4287  * Must be called only after stopping all workers, since we could have block
4288  * group caching kthreads running, and therefore they could race with us if we
4289  * freed the block groups before stopping them.
4290  */
4291 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4292 {
4293 	struct btrfs_block_group *block_group;
4294 	struct btrfs_space_info *space_info;
4295 	struct btrfs_caching_control *caching_ctl;
4296 	struct rb_node *n;
4297 
4298 	if (btrfs_is_zoned(info)) {
4299 		if (info->active_meta_bg) {
4300 			btrfs_put_block_group(info->active_meta_bg);
4301 			info->active_meta_bg = NULL;
4302 		}
4303 		if (info->active_system_bg) {
4304 			btrfs_put_block_group(info->active_system_bg);
4305 			info->active_system_bg = NULL;
4306 		}
4307 	}
4308 
4309 	write_lock(&info->block_group_cache_lock);
4310 	while (!list_empty(&info->caching_block_groups)) {
4311 		caching_ctl = list_entry(info->caching_block_groups.next,
4312 					 struct btrfs_caching_control, list);
4313 		list_del(&caching_ctl->list);
4314 		btrfs_put_caching_control(caching_ctl);
4315 	}
4316 	write_unlock(&info->block_group_cache_lock);
4317 
4318 	spin_lock(&info->unused_bgs_lock);
4319 	while (!list_empty(&info->unused_bgs)) {
4320 		block_group = list_first_entry(&info->unused_bgs,
4321 					       struct btrfs_block_group,
4322 					       bg_list);
4323 		list_del_init(&block_group->bg_list);
4324 		btrfs_put_block_group(block_group);
4325 	}
4326 
4327 	while (!list_empty(&info->reclaim_bgs)) {
4328 		block_group = list_first_entry(&info->reclaim_bgs,
4329 					       struct btrfs_block_group,
4330 					       bg_list);
4331 		list_del_init(&block_group->bg_list);
4332 		btrfs_put_block_group(block_group);
4333 	}
4334 	spin_unlock(&info->unused_bgs_lock);
4335 
4336 	spin_lock(&info->zone_active_bgs_lock);
4337 	while (!list_empty(&info->zone_active_bgs)) {
4338 		block_group = list_first_entry(&info->zone_active_bgs,
4339 					       struct btrfs_block_group,
4340 					       active_bg_list);
4341 		list_del_init(&block_group->active_bg_list);
4342 		btrfs_put_block_group(block_group);
4343 	}
4344 	spin_unlock(&info->zone_active_bgs_lock);
4345 
4346 	write_lock(&info->block_group_cache_lock);
4347 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4348 		block_group = rb_entry(n, struct btrfs_block_group,
4349 				       cache_node);
4350 		rb_erase_cached(&block_group->cache_node,
4351 				&info->block_group_cache_tree);
4352 		RB_CLEAR_NODE(&block_group->cache_node);
4353 		write_unlock(&info->block_group_cache_lock);
4354 
4355 		down_write(&block_group->space_info->groups_sem);
4356 		list_del(&block_group->list);
4357 		up_write(&block_group->space_info->groups_sem);
4358 
4359 		/*
4360 		 * We haven't cached this block group, which means we could
4361 		 * possibly have excluded extents on this block group.
4362 		 */
4363 		if (block_group->cached == BTRFS_CACHE_NO ||
4364 		    block_group->cached == BTRFS_CACHE_ERROR)
4365 			btrfs_free_excluded_extents(block_group);
4366 
4367 		btrfs_remove_free_space_cache(block_group);
4368 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4369 		ASSERT(list_empty(&block_group->dirty_list));
4370 		ASSERT(list_empty(&block_group->io_list));
4371 		ASSERT(list_empty(&block_group->bg_list));
4372 		ASSERT(refcount_read(&block_group->refs) == 1);
4373 		ASSERT(block_group->swap_extents == 0);
4374 		btrfs_put_block_group(block_group);
4375 
4376 		write_lock(&info->block_group_cache_lock);
4377 	}
4378 	write_unlock(&info->block_group_cache_lock);
4379 
4380 	btrfs_release_global_block_rsv(info);
4381 
4382 	while (!list_empty(&info->space_info)) {
4383 		space_info = list_entry(info->space_info.next,
4384 					struct btrfs_space_info,
4385 					list);
4386 
4387 		/*
4388 		 * Do not hide this behind enospc_debug, this is actually
4389 		 * important and indicates a real bug if this happens.
4390 		 */
4391 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4392 			    space_info->bytes_may_use > 0))
4393 			btrfs_dump_space_info(info, space_info, 0, 0);
4394 
4395 		/*
4396 		 * If there was a failure to cleanup a log tree, very likely due
4397 		 * to an IO failure on a writeback attempt of one or more of its
4398 		 * extent buffers, we could not do proper (and cheap) unaccounting
4399 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4400 		 * that case.
4401 		 */
4402 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4403 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4404 			if (WARN_ON(space_info->bytes_reserved > 0))
4405 				btrfs_dump_space_info(info, space_info, 0, 0);
4406 		}
4407 
4408 		WARN_ON(space_info->reclaim_size > 0);
4409 		list_del(&space_info->list);
4410 		btrfs_sysfs_remove_space_info(space_info);
4411 	}
4412 	return 0;
4413 }
4414 
4415 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4416 {
4417 	atomic_inc(&cache->frozen);
4418 }
4419 
4420 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4421 {
4422 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4423 	struct extent_map_tree *em_tree;
4424 	struct extent_map *em;
4425 	bool cleanup;
4426 
4427 	spin_lock(&block_group->lock);
4428 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4429 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4430 	spin_unlock(&block_group->lock);
4431 
4432 	if (cleanup) {
4433 		em_tree = &fs_info->mapping_tree;
4434 		write_lock(&em_tree->lock);
4435 		em = lookup_extent_mapping(em_tree, block_group->start,
4436 					   1);
4437 		BUG_ON(!em); /* logic error, can't happen */
4438 		remove_extent_mapping(em_tree, em);
4439 		write_unlock(&em_tree->lock);
4440 
4441 		/* once for us and once for the tree */
4442 		free_extent_map(em);
4443 		free_extent_map(em);
4444 
4445 		/*
4446 		 * We may have left one free space entry and other possible
4447 		 * tasks trimming this block group have left 1 entry each one.
4448 		 * Free them if any.
4449 		 */
4450 		btrfs_remove_free_space_cache(block_group);
4451 	}
4452 }
4453 
4454 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4455 {
4456 	bool ret = true;
4457 
4458 	spin_lock(&bg->lock);
4459 	if (bg->ro)
4460 		ret = false;
4461 	else
4462 		bg->swap_extents++;
4463 	spin_unlock(&bg->lock);
4464 
4465 	return ret;
4466 }
4467 
4468 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4469 {
4470 	spin_lock(&bg->lock);
4471 	ASSERT(!bg->ro);
4472 	ASSERT(bg->swap_extents >= amount);
4473 	bg->swap_extents -= amount;
4474 	spin_unlock(&bg->lock);
4475 }
4476 
4477 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4478 {
4479 	if (size <= SZ_128K)
4480 		return BTRFS_BG_SZ_SMALL;
4481 	if (size <= SZ_8M)
4482 		return BTRFS_BG_SZ_MEDIUM;
4483 	return BTRFS_BG_SZ_LARGE;
4484 }
4485 
4486 /*
4487  * Handle a block group allocating an extent in a size class
4488  *
4489  * @bg:				The block group we allocated in.
4490  * @size_class:			The size class of the allocation.
4491  * @force_wrong_size_class:	Whether we are desperate enough to allow
4492  *				mismatched size classes.
4493  *
4494  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4495  * case of a race that leads to the wrong size class without
4496  * force_wrong_size_class set.
4497  *
4498  * find_free_extent will skip block groups with a mismatched size class until
4499  * it really needs to avoid ENOSPC. In that case it will set
4500  * force_wrong_size_class. However, if a block group is newly allocated and
4501  * doesn't yet have a size class, then it is possible for two allocations of
4502  * different sizes to race and both try to use it. The loser is caught here and
4503  * has to retry.
4504  */
4505 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4506 				     enum btrfs_block_group_size_class size_class,
4507 				     bool force_wrong_size_class)
4508 {
4509 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4510 
4511 	/* The new allocation is in the right size class, do nothing */
4512 	if (bg->size_class == size_class)
4513 		return 0;
4514 	/*
4515 	 * The new allocation is in a mismatched size class.
4516 	 * This means one of two things:
4517 	 *
4518 	 * 1. Two tasks in find_free_extent for different size_classes raced
4519 	 *    and hit the same empty block_group. Make the loser try again.
4520 	 * 2. A call to find_free_extent got desperate enough to set
4521 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4522 	 *    allocation.
4523 	 */
4524 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4525 		if (force_wrong_size_class)
4526 			return 0;
4527 		return -EAGAIN;
4528 	}
4529 	/*
4530 	 * The happy new block group case: the new allocation is the first
4531 	 * one in the block_group so we set size_class.
4532 	 */
4533 	bg->size_class = size_class;
4534 
4535 	return 0;
4536 }
4537 
4538 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4539 {
4540 	if (btrfs_is_zoned(bg->fs_info))
4541 		return false;
4542 	if (!btrfs_is_block_group_data_only(bg))
4543 		return false;
4544 	return true;
4545 }
4546