1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "disk-io.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 /* Pick target profile only if it's already available */ 70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 71 spin_unlock(&fs_info->balance_lock); 72 return extended_to_chunk(target); 73 } 74 } 75 spin_unlock(&fs_info->balance_lock); 76 77 /* First, mask out the RAID levels which aren't possible */ 78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 79 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 80 allowed |= btrfs_raid_array[raid_type].bg_flag; 81 } 82 allowed &= flags; 83 84 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 85 allowed = BTRFS_BLOCK_GROUP_RAID6; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 87 allowed = BTRFS_BLOCK_GROUP_RAID5; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 89 allowed = BTRFS_BLOCK_GROUP_RAID10; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 91 allowed = BTRFS_BLOCK_GROUP_RAID1; 92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 93 allowed = BTRFS_BLOCK_GROUP_RAID0; 94 95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 96 97 return extended_to_chunk(flags | allowed); 98 } 99 100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 101 { 102 unsigned seq; 103 u64 flags; 104 105 do { 106 flags = orig_flags; 107 seq = read_seqbegin(&fs_info->profiles_lock); 108 109 if (flags & BTRFS_BLOCK_GROUP_DATA) 110 flags |= fs_info->avail_data_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 112 flags |= fs_info->avail_system_alloc_bits; 113 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 114 flags |= fs_info->avail_metadata_alloc_bits; 115 } while (read_seqretry(&fs_info->profiles_lock, seq)); 116 117 return btrfs_reduce_alloc_profile(fs_info, flags); 118 } 119 120 void btrfs_get_block_group(struct btrfs_block_group *cache) 121 { 122 atomic_inc(&cache->count); 123 } 124 125 void btrfs_put_block_group(struct btrfs_block_group *cache) 126 { 127 if (atomic_dec_and_test(&cache->count)) { 128 WARN_ON(cache->pinned > 0); 129 WARN_ON(cache->reserved > 0); 130 131 /* 132 * A block_group shouldn't be on the discard_list anymore. 133 * Remove the block_group from the discard_list to prevent us 134 * from causing a panic due to NULL pointer dereference. 135 */ 136 if (WARN_ON(!list_empty(&cache->discard_list))) 137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 138 cache); 139 140 /* 141 * If not empty, someone is still holding mutex of 142 * full_stripe_lock, which can only be released by caller. 143 * And it will definitely cause use-after-free when caller 144 * tries to release full stripe lock. 145 * 146 * No better way to resolve, but only to warn. 147 */ 148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 149 kfree(cache->free_space_ctl); 150 kfree(cache); 151 } 152 } 153 154 /* 155 * This adds the block group to the fs_info rb tree for the block group cache 156 */ 157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 158 struct btrfs_block_group *block_group) 159 { 160 struct rb_node **p; 161 struct rb_node *parent = NULL; 162 struct btrfs_block_group *cache; 163 164 spin_lock(&info->block_group_cache_lock); 165 p = &info->block_group_cache_tree.rb_node; 166 167 while (*p) { 168 parent = *p; 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 170 if (block_group->start < cache->start) { 171 p = &(*p)->rb_left; 172 } else if (block_group->start > cache->start) { 173 p = &(*p)->rb_right; 174 } else { 175 spin_unlock(&info->block_group_cache_lock); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(&block_group->cache_node, parent, p); 181 rb_insert_color(&block_group->cache_node, 182 &info->block_group_cache_tree); 183 184 if (info->first_logical_byte > block_group->start) 185 info->first_logical_byte = block_group->start; 186 187 spin_unlock(&info->block_group_cache_lock); 188 189 return 0; 190 } 191 192 /* 193 * This will return the block group at or after bytenr if contains is 0, else 194 * it will return the block group that contains the bytenr 195 */ 196 static struct btrfs_block_group *block_group_cache_tree_search( 197 struct btrfs_fs_info *info, u64 bytenr, int contains) 198 { 199 struct btrfs_block_group *cache, *ret = NULL; 200 struct rb_node *n; 201 u64 end, start; 202 203 spin_lock(&info->block_group_cache_lock); 204 n = info->block_group_cache_tree.rb_node; 205 206 while (n) { 207 cache = rb_entry(n, struct btrfs_block_group, cache_node); 208 end = cache->start + cache->length - 1; 209 start = cache->start; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->start)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->start) 229 info->first_logical_byte = ret->start; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 /* 237 * Return the block group that starts at or after bytenr 238 */ 239 struct btrfs_block_group *btrfs_lookup_first_block_group( 240 struct btrfs_fs_info *info, u64 bytenr) 241 { 242 return block_group_cache_tree_search(info, bytenr, 0); 243 } 244 245 /* 246 * Return the block group that contains the given bytenr 247 */ 248 struct btrfs_block_group *btrfs_lookup_block_group( 249 struct btrfs_fs_info *info, u64 bytenr) 250 { 251 return block_group_cache_tree_search(info, bytenr, 1); 252 } 253 254 struct btrfs_block_group *btrfs_next_block_group( 255 struct btrfs_block_group *cache) 256 { 257 struct btrfs_fs_info *fs_info = cache->fs_info; 258 struct rb_node *node; 259 260 spin_lock(&fs_info->block_group_cache_lock); 261 262 /* If our block group was removed, we need a full search. */ 263 if (RB_EMPTY_NODE(&cache->cache_node)) { 264 const u64 next_bytenr = cache->start + cache->length; 265 266 spin_unlock(&fs_info->block_group_cache_lock); 267 btrfs_put_block_group(cache); 268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 269 } 270 node = rb_next(&cache->cache_node); 271 btrfs_put_block_group(cache); 272 if (node) { 273 cache = rb_entry(node, struct btrfs_block_group, cache_node); 274 btrfs_get_block_group(cache); 275 } else 276 cache = NULL; 277 spin_unlock(&fs_info->block_group_cache_lock); 278 return cache; 279 } 280 281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 282 { 283 struct btrfs_block_group *bg; 284 bool ret = true; 285 286 bg = btrfs_lookup_block_group(fs_info, bytenr); 287 if (!bg) 288 return false; 289 290 spin_lock(&bg->lock); 291 if (bg->ro) 292 ret = false; 293 else 294 atomic_inc(&bg->nocow_writers); 295 spin_unlock(&bg->lock); 296 297 /* No put on block group, done by btrfs_dec_nocow_writers */ 298 if (!ret) 299 btrfs_put_block_group(bg); 300 301 return ret; 302 } 303 304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 305 { 306 struct btrfs_block_group *bg; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 ASSERT(bg); 310 if (atomic_dec_and_test(&bg->nocow_writers)) 311 wake_up_var(&bg->nocow_writers); 312 /* 313 * Once for our lookup and once for the lookup done by a previous call 314 * to btrfs_inc_nocow_writers() 315 */ 316 btrfs_put_block_group(bg); 317 btrfs_put_block_group(bg); 318 } 319 320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 321 { 322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 323 } 324 325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 326 const u64 start) 327 { 328 struct btrfs_block_group *bg; 329 330 bg = btrfs_lookup_block_group(fs_info, start); 331 ASSERT(bg); 332 if (atomic_dec_and_test(&bg->reservations)) 333 wake_up_var(&bg->reservations); 334 btrfs_put_block_group(bg); 335 } 336 337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 338 { 339 struct btrfs_space_info *space_info = bg->space_info; 340 341 ASSERT(bg->ro); 342 343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 344 return; 345 346 /* 347 * Our block group is read only but before we set it to read only, 348 * some task might have had allocated an extent from it already, but it 349 * has not yet created a respective ordered extent (and added it to a 350 * root's list of ordered extents). 351 * Therefore wait for any task currently allocating extents, since the 352 * block group's reservations counter is incremented while a read lock 353 * on the groups' semaphore is held and decremented after releasing 354 * the read access on that semaphore and creating the ordered extent. 355 */ 356 down_write(&space_info->groups_sem); 357 up_write(&space_info->groups_sem); 358 359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 360 } 361 362 struct btrfs_caching_control *btrfs_get_caching_control( 363 struct btrfs_block_group *cache) 364 { 365 struct btrfs_caching_control *ctl; 366 367 spin_lock(&cache->lock); 368 if (!cache->caching_ctl) { 369 spin_unlock(&cache->lock); 370 return NULL; 371 } 372 373 ctl = cache->caching_ctl; 374 refcount_inc(&ctl->count); 375 spin_unlock(&cache->lock); 376 return ctl; 377 } 378 379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 380 { 381 if (refcount_dec_and_test(&ctl->count)) 382 kfree(ctl); 383 } 384 385 /* 386 * When we wait for progress in the block group caching, its because our 387 * allocation attempt failed at least once. So, we must sleep and let some 388 * progress happen before we try again. 389 * 390 * This function will sleep at least once waiting for new free space to show 391 * up, and then it will check the block group free space numbers for our min 392 * num_bytes. Another option is to have it go ahead and look in the rbtree for 393 * a free extent of a given size, but this is a good start. 394 * 395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 396 * any of the information in this block group. 397 */ 398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 399 u64 num_bytes) 400 { 401 struct btrfs_caching_control *caching_ctl; 402 403 caching_ctl = btrfs_get_caching_control(cache); 404 if (!caching_ctl) 405 return; 406 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 408 (cache->free_space_ctl->free_space >= num_bytes)); 409 410 btrfs_put_caching_control(caching_ctl); 411 } 412 413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 414 { 415 struct btrfs_caching_control *caching_ctl; 416 int ret = 0; 417 418 caching_ctl = btrfs_get_caching_control(cache); 419 if (!caching_ctl) 420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 421 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 423 if (cache->cached == BTRFS_CACHE_ERROR) 424 ret = -EIO; 425 btrfs_put_caching_control(caching_ctl); 426 return ret; 427 } 428 429 #ifdef CONFIG_BTRFS_DEBUG 430 static void fragment_free_space(struct btrfs_block_group *block_group) 431 { 432 struct btrfs_fs_info *fs_info = block_group->fs_info; 433 u64 start = block_group->start; 434 u64 len = block_group->length; 435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 436 fs_info->nodesize : fs_info->sectorsize; 437 u64 step = chunk << 1; 438 439 while (len > chunk) { 440 btrfs_remove_free_space(block_group, start, chunk); 441 start += step; 442 if (len < step) 443 len = 0; 444 else 445 len -= step; 446 } 447 } 448 #endif 449 450 /* 451 * This is only called by btrfs_cache_block_group, since we could have freed 452 * extents we need to check the pinned_extents for any extents that can't be 453 * used yet since their free space will be released as soon as the transaction 454 * commits. 455 */ 456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 457 { 458 struct btrfs_fs_info *info = block_group->fs_info; 459 u64 extent_start, extent_end, size, total_added = 0; 460 int ret; 461 462 while (start < end) { 463 ret = find_first_extent_bit(&info->excluded_extents, start, 464 &extent_start, &extent_end, 465 EXTENT_DIRTY | EXTENT_UPTODATE, 466 NULL); 467 if (ret) 468 break; 469 470 if (extent_start <= start) { 471 start = extent_end + 1; 472 } else if (extent_start > start && extent_start < end) { 473 size = extent_start - start; 474 total_added += size; 475 ret = btrfs_add_free_space_async_trimmed(block_group, 476 start, size); 477 BUG_ON(ret); /* -ENOMEM or logic error */ 478 start = extent_end + 1; 479 } else { 480 break; 481 } 482 } 483 484 if (start < end) { 485 size = end - start; 486 total_added += size; 487 ret = btrfs_add_free_space_async_trimmed(block_group, start, 488 size); 489 BUG_ON(ret); /* -ENOMEM or logic error */ 490 } 491 492 return total_added; 493 } 494 495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 496 { 497 struct btrfs_block_group *block_group = caching_ctl->block_group; 498 struct btrfs_fs_info *fs_info = block_group->fs_info; 499 struct btrfs_root *extent_root = fs_info->extent_root; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_key key; 503 u64 total_found = 0; 504 u64 last = 0; 505 u32 nritems; 506 int ret; 507 bool wakeup = true; 508 509 path = btrfs_alloc_path(); 510 if (!path) 511 return -ENOMEM; 512 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 514 515 #ifdef CONFIG_BTRFS_DEBUG 516 /* 517 * If we're fragmenting we don't want to make anybody think we can 518 * allocate from this block group until we've had a chance to fragment 519 * the free space. 520 */ 521 if (btrfs_should_fragment_free_space(block_group)) 522 wakeup = false; 523 #endif 524 /* 525 * We don't want to deadlock with somebody trying to allocate a new 526 * extent for the extent root while also trying to search the extent 527 * root to add free space. So we skip locking and search the commit 528 * root, since its read-only 529 */ 530 path->skip_locking = 1; 531 path->search_commit_root = 1; 532 path->reada = READA_FORWARD; 533 534 key.objectid = last; 535 key.offset = 0; 536 key.type = BTRFS_EXTENT_ITEM_KEY; 537 538 next: 539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 540 if (ret < 0) 541 goto out; 542 543 leaf = path->nodes[0]; 544 nritems = btrfs_header_nritems(leaf); 545 546 while (1) { 547 if (btrfs_fs_closing(fs_info) > 1) { 548 last = (u64)-1; 549 break; 550 } 551 552 if (path->slots[0] < nritems) { 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 554 } else { 555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 556 if (ret) 557 break; 558 559 if (need_resched() || 560 rwsem_is_contended(&fs_info->commit_root_sem)) { 561 if (wakeup) 562 caching_ctl->progress = last; 563 btrfs_release_path(path); 564 up_read(&fs_info->commit_root_sem); 565 mutex_unlock(&caching_ctl->mutex); 566 cond_resched(); 567 mutex_lock(&caching_ctl->mutex); 568 down_read(&fs_info->commit_root_sem); 569 goto next; 570 } 571 572 ret = btrfs_next_leaf(extent_root, path); 573 if (ret < 0) 574 goto out; 575 if (ret) 576 break; 577 leaf = path->nodes[0]; 578 nritems = btrfs_header_nritems(leaf); 579 continue; 580 } 581 582 if (key.objectid < last) { 583 key.objectid = last; 584 key.offset = 0; 585 key.type = BTRFS_EXTENT_ITEM_KEY; 586 587 if (wakeup) 588 caching_ctl->progress = last; 589 btrfs_release_path(path); 590 goto next; 591 } 592 593 if (key.objectid < block_group->start) { 594 path->slots[0]++; 595 continue; 596 } 597 598 if (key.objectid >= block_group->start + block_group->length) 599 break; 600 601 if (key.type == BTRFS_EXTENT_ITEM_KEY || 602 key.type == BTRFS_METADATA_ITEM_KEY) { 603 total_found += add_new_free_space(block_group, last, 604 key.objectid); 605 if (key.type == BTRFS_METADATA_ITEM_KEY) 606 last = key.objectid + 607 fs_info->nodesize; 608 else 609 last = key.objectid + key.offset; 610 611 if (total_found > CACHING_CTL_WAKE_UP) { 612 total_found = 0; 613 if (wakeup) 614 wake_up(&caching_ctl->wait); 615 } 616 } 617 path->slots[0]++; 618 } 619 ret = 0; 620 621 total_found += add_new_free_space(block_group, last, 622 block_group->start + block_group->length); 623 caching_ctl->progress = (u64)-1; 624 625 out: 626 btrfs_free_path(path); 627 return ret; 628 } 629 630 static noinline void caching_thread(struct btrfs_work *work) 631 { 632 struct btrfs_block_group *block_group; 633 struct btrfs_fs_info *fs_info; 634 struct btrfs_caching_control *caching_ctl; 635 int ret; 636 637 caching_ctl = container_of(work, struct btrfs_caching_control, work); 638 block_group = caching_ctl->block_group; 639 fs_info = block_group->fs_info; 640 641 mutex_lock(&caching_ctl->mutex); 642 down_read(&fs_info->commit_root_sem); 643 644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 645 ret = load_free_space_tree(caching_ctl); 646 else 647 ret = load_extent_tree_free(caching_ctl); 648 649 spin_lock(&block_group->lock); 650 block_group->caching_ctl = NULL; 651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 652 spin_unlock(&block_group->lock); 653 654 #ifdef CONFIG_BTRFS_DEBUG 655 if (btrfs_should_fragment_free_space(block_group)) { 656 u64 bytes_used; 657 658 spin_lock(&block_group->space_info->lock); 659 spin_lock(&block_group->lock); 660 bytes_used = block_group->length - block_group->used; 661 block_group->space_info->bytes_used += bytes_used >> 1; 662 spin_unlock(&block_group->lock); 663 spin_unlock(&block_group->space_info->lock); 664 fragment_free_space(block_group); 665 } 666 #endif 667 668 caching_ctl->progress = (u64)-1; 669 670 up_read(&fs_info->commit_root_sem); 671 btrfs_free_excluded_extents(block_group); 672 mutex_unlock(&caching_ctl->mutex); 673 674 wake_up(&caching_ctl->wait); 675 676 btrfs_put_caching_control(caching_ctl); 677 btrfs_put_block_group(block_group); 678 } 679 680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 681 { 682 DEFINE_WAIT(wait); 683 struct btrfs_fs_info *fs_info = cache->fs_info; 684 struct btrfs_caching_control *caching_ctl; 685 int ret = 0; 686 687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 688 if (!caching_ctl) 689 return -ENOMEM; 690 691 INIT_LIST_HEAD(&caching_ctl->list); 692 mutex_init(&caching_ctl->mutex); 693 init_waitqueue_head(&caching_ctl->wait); 694 caching_ctl->block_group = cache; 695 caching_ctl->progress = cache->start; 696 refcount_set(&caching_ctl->count, 1); 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 698 699 spin_lock(&cache->lock); 700 /* 701 * This should be a rare occasion, but this could happen I think in the 702 * case where one thread starts to load the space cache info, and then 703 * some other thread starts a transaction commit which tries to do an 704 * allocation while the other thread is still loading the space cache 705 * info. The previous loop should have kept us from choosing this block 706 * group, but if we've moved to the state where we will wait on caching 707 * block groups we need to first check if we're doing a fast load here, 708 * so we can wait for it to finish, otherwise we could end up allocating 709 * from a block group who's cache gets evicted for one reason or 710 * another. 711 */ 712 while (cache->cached == BTRFS_CACHE_FAST) { 713 struct btrfs_caching_control *ctl; 714 715 ctl = cache->caching_ctl; 716 refcount_inc(&ctl->count); 717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 718 spin_unlock(&cache->lock); 719 720 schedule(); 721 722 finish_wait(&ctl->wait, &wait); 723 btrfs_put_caching_control(ctl); 724 spin_lock(&cache->lock); 725 } 726 727 if (cache->cached != BTRFS_CACHE_NO) { 728 spin_unlock(&cache->lock); 729 kfree(caching_ctl); 730 return 0; 731 } 732 WARN_ON(cache->caching_ctl); 733 cache->caching_ctl = caching_ctl; 734 cache->cached = BTRFS_CACHE_FAST; 735 spin_unlock(&cache->lock); 736 737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 738 mutex_lock(&caching_ctl->mutex); 739 ret = load_free_space_cache(cache); 740 741 spin_lock(&cache->lock); 742 if (ret == 1) { 743 cache->caching_ctl = NULL; 744 cache->cached = BTRFS_CACHE_FINISHED; 745 cache->last_byte_to_unpin = (u64)-1; 746 caching_ctl->progress = (u64)-1; 747 } else { 748 if (load_cache_only) { 749 cache->caching_ctl = NULL; 750 cache->cached = BTRFS_CACHE_NO; 751 } else { 752 cache->cached = BTRFS_CACHE_STARTED; 753 cache->has_caching_ctl = 1; 754 } 755 } 756 spin_unlock(&cache->lock); 757 #ifdef CONFIG_BTRFS_DEBUG 758 if (ret == 1 && 759 btrfs_should_fragment_free_space(cache)) { 760 u64 bytes_used; 761 762 spin_lock(&cache->space_info->lock); 763 spin_lock(&cache->lock); 764 bytes_used = cache->length - cache->used; 765 cache->space_info->bytes_used += bytes_used >> 1; 766 spin_unlock(&cache->lock); 767 spin_unlock(&cache->space_info->lock); 768 fragment_free_space(cache); 769 } 770 #endif 771 mutex_unlock(&caching_ctl->mutex); 772 773 wake_up(&caching_ctl->wait); 774 if (ret == 1) { 775 btrfs_put_caching_control(caching_ctl); 776 btrfs_free_excluded_extents(cache); 777 return 0; 778 } 779 } else { 780 /* 781 * We're either using the free space tree or no caching at all. 782 * Set cached to the appropriate value and wakeup any waiters. 783 */ 784 spin_lock(&cache->lock); 785 if (load_cache_only) { 786 cache->caching_ctl = NULL; 787 cache->cached = BTRFS_CACHE_NO; 788 } else { 789 cache->cached = BTRFS_CACHE_STARTED; 790 cache->has_caching_ctl = 1; 791 } 792 spin_unlock(&cache->lock); 793 wake_up(&caching_ctl->wait); 794 } 795 796 if (load_cache_only) { 797 btrfs_put_caching_control(caching_ctl); 798 return 0; 799 } 800 801 down_write(&fs_info->commit_root_sem); 802 refcount_inc(&caching_ctl->count); 803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 804 up_write(&fs_info->commit_root_sem); 805 806 btrfs_get_block_group(cache); 807 808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 809 810 return ret; 811 } 812 813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 814 { 815 u64 extra_flags = chunk_to_extended(flags) & 816 BTRFS_EXTENDED_PROFILE_MASK; 817 818 write_seqlock(&fs_info->profiles_lock); 819 if (flags & BTRFS_BLOCK_GROUP_DATA) 820 fs_info->avail_data_alloc_bits &= ~extra_flags; 821 if (flags & BTRFS_BLOCK_GROUP_METADATA) 822 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 824 fs_info->avail_system_alloc_bits &= ~extra_flags; 825 write_sequnlock(&fs_info->profiles_lock); 826 } 827 828 /* 829 * Clear incompat bits for the following feature(s): 830 * 831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 832 * in the whole filesystem 833 * 834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 835 */ 836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 837 { 838 bool found_raid56 = false; 839 bool found_raid1c34 = false; 840 841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 844 struct list_head *head = &fs_info->space_info; 845 struct btrfs_space_info *sinfo; 846 847 list_for_each_entry_rcu(sinfo, head, list) { 848 down_read(&sinfo->groups_sem); 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 850 found_raid56 = true; 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 852 found_raid56 = true; 853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 854 found_raid1c34 = true; 855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 856 found_raid1c34 = true; 857 up_read(&sinfo->groups_sem); 858 } 859 if (!found_raid56) 860 btrfs_clear_fs_incompat(fs_info, RAID56); 861 if (!found_raid1c34) 862 btrfs_clear_fs_incompat(fs_info, RAID1C34); 863 } 864 } 865 866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 867 u64 group_start, struct extent_map *em) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root = fs_info->extent_root; 871 struct btrfs_path *path; 872 struct btrfs_block_group *block_group; 873 struct btrfs_free_cluster *cluster; 874 struct btrfs_root *tree_root = fs_info->tree_root; 875 struct btrfs_key key; 876 struct inode *inode; 877 struct kobject *kobj = NULL; 878 int ret; 879 int index; 880 int factor; 881 struct btrfs_caching_control *caching_ctl = NULL; 882 bool remove_em; 883 bool remove_rsv = false; 884 885 block_group = btrfs_lookup_block_group(fs_info, group_start); 886 BUG_ON(!block_group); 887 BUG_ON(!block_group->ro); 888 889 trace_btrfs_remove_block_group(block_group); 890 /* 891 * Free the reserved super bytes from this block group before 892 * remove it. 893 */ 894 btrfs_free_excluded_extents(block_group); 895 btrfs_free_ref_tree_range(fs_info, block_group->start, 896 block_group->length); 897 898 index = btrfs_bg_flags_to_raid_index(block_group->flags); 899 factor = btrfs_bg_type_to_factor(block_group->flags); 900 901 /* make sure this block group isn't part of an allocation cluster */ 902 cluster = &fs_info->data_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 /* 908 * make sure this block group isn't part of a metadata 909 * allocation cluster 910 */ 911 cluster = &fs_info->meta_alloc_cluster; 912 spin_lock(&cluster->refill_lock); 913 btrfs_return_cluster_to_free_space(block_group, cluster); 914 spin_unlock(&cluster->refill_lock); 915 916 path = btrfs_alloc_path(); 917 if (!path) { 918 ret = -ENOMEM; 919 goto out; 920 } 921 922 /* 923 * get the inode first so any iput calls done for the io_list 924 * aren't the final iput (no unlinks allowed now) 925 */ 926 inode = lookup_free_space_inode(block_group, path); 927 928 mutex_lock(&trans->transaction->cache_write_mutex); 929 /* 930 * Make sure our free space cache IO is done before removing the 931 * free space inode 932 */ 933 spin_lock(&trans->transaction->dirty_bgs_lock); 934 if (!list_empty(&block_group->io_list)) { 935 list_del_init(&block_group->io_list); 936 937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 938 939 spin_unlock(&trans->transaction->dirty_bgs_lock); 940 btrfs_wait_cache_io(trans, block_group, path); 941 btrfs_put_block_group(block_group); 942 spin_lock(&trans->transaction->dirty_bgs_lock); 943 } 944 945 if (!list_empty(&block_group->dirty_list)) { 946 list_del_init(&block_group->dirty_list); 947 remove_rsv = true; 948 btrfs_put_block_group(block_group); 949 } 950 spin_unlock(&trans->transaction->dirty_bgs_lock); 951 mutex_unlock(&trans->transaction->cache_write_mutex); 952 953 if (!IS_ERR(inode)) { 954 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 955 if (ret) { 956 btrfs_add_delayed_iput(inode); 957 goto out; 958 } 959 clear_nlink(inode); 960 /* One for the block groups ref */ 961 spin_lock(&block_group->lock); 962 if (block_group->iref) { 963 block_group->iref = 0; 964 block_group->inode = NULL; 965 spin_unlock(&block_group->lock); 966 iput(inode); 967 } else { 968 spin_unlock(&block_group->lock); 969 } 970 /* One for our lookup ref */ 971 btrfs_add_delayed_iput(inode); 972 } 973 974 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 975 key.type = 0; 976 key.offset = block_group->start; 977 978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 979 if (ret < 0) 980 goto out; 981 if (ret > 0) 982 btrfs_release_path(path); 983 if (ret == 0) { 984 ret = btrfs_del_item(trans, tree_root, path); 985 if (ret) 986 goto out; 987 btrfs_release_path(path); 988 } 989 990 spin_lock(&fs_info->block_group_cache_lock); 991 rb_erase(&block_group->cache_node, 992 &fs_info->block_group_cache_tree); 993 RB_CLEAR_NODE(&block_group->cache_node); 994 995 if (fs_info->first_logical_byte == block_group->start) 996 fs_info->first_logical_byte = (u64)-1; 997 spin_unlock(&fs_info->block_group_cache_lock); 998 999 down_write(&block_group->space_info->groups_sem); 1000 /* 1001 * we must use list_del_init so people can check to see if they 1002 * are still on the list after taking the semaphore 1003 */ 1004 list_del_init(&block_group->list); 1005 if (list_empty(&block_group->space_info->block_groups[index])) { 1006 kobj = block_group->space_info->block_group_kobjs[index]; 1007 block_group->space_info->block_group_kobjs[index] = NULL; 1008 clear_avail_alloc_bits(fs_info, block_group->flags); 1009 } 1010 up_write(&block_group->space_info->groups_sem); 1011 clear_incompat_bg_bits(fs_info, block_group->flags); 1012 if (kobj) { 1013 kobject_del(kobj); 1014 kobject_put(kobj); 1015 } 1016 1017 if (block_group->has_caching_ctl) 1018 caching_ctl = btrfs_get_caching_control(block_group); 1019 if (block_group->cached == BTRFS_CACHE_STARTED) 1020 btrfs_wait_block_group_cache_done(block_group); 1021 if (block_group->has_caching_ctl) { 1022 down_write(&fs_info->commit_root_sem); 1023 if (!caching_ctl) { 1024 struct btrfs_caching_control *ctl; 1025 1026 list_for_each_entry(ctl, 1027 &fs_info->caching_block_groups, list) 1028 if (ctl->block_group == block_group) { 1029 caching_ctl = ctl; 1030 refcount_inc(&caching_ctl->count); 1031 break; 1032 } 1033 } 1034 if (caching_ctl) 1035 list_del_init(&caching_ctl->list); 1036 up_write(&fs_info->commit_root_sem); 1037 if (caching_ctl) { 1038 /* Once for the caching bgs list and once for us. */ 1039 btrfs_put_caching_control(caching_ctl); 1040 btrfs_put_caching_control(caching_ctl); 1041 } 1042 } 1043 1044 spin_lock(&trans->transaction->dirty_bgs_lock); 1045 WARN_ON(!list_empty(&block_group->dirty_list)); 1046 WARN_ON(!list_empty(&block_group->io_list)); 1047 spin_unlock(&trans->transaction->dirty_bgs_lock); 1048 1049 btrfs_remove_free_space_cache(block_group); 1050 1051 spin_lock(&block_group->space_info->lock); 1052 list_del_init(&block_group->ro_list); 1053 1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1055 WARN_ON(block_group->space_info->total_bytes 1056 < block_group->length); 1057 WARN_ON(block_group->space_info->bytes_readonly 1058 < block_group->length); 1059 WARN_ON(block_group->space_info->disk_total 1060 < block_group->length * factor); 1061 } 1062 block_group->space_info->total_bytes -= block_group->length; 1063 block_group->space_info->bytes_readonly -= block_group->length; 1064 block_group->space_info->disk_total -= block_group->length * factor; 1065 1066 spin_unlock(&block_group->space_info->lock); 1067 1068 key.objectid = block_group->start; 1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1070 key.offset = block_group->length; 1071 1072 mutex_lock(&fs_info->chunk_mutex); 1073 spin_lock(&block_group->lock); 1074 block_group->removed = 1; 1075 /* 1076 * At this point trimming can't start on this block group, because we 1077 * removed the block group from the tree fs_info->block_group_cache_tree 1078 * so no one can't find it anymore and even if someone already got this 1079 * block group before we removed it from the rbtree, they have already 1080 * incremented block_group->trimming - if they didn't, they won't find 1081 * any free space entries because we already removed them all when we 1082 * called btrfs_remove_free_space_cache(). 1083 * 1084 * And we must not remove the extent map from the fs_info->mapping_tree 1085 * to prevent the same logical address range and physical device space 1086 * ranges from being reused for a new block group. This is because our 1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1088 * completely transactionless, so while it is trimming a range the 1089 * currently running transaction might finish and a new one start, 1090 * allowing for new block groups to be created that can reuse the same 1091 * physical device locations unless we take this special care. 1092 * 1093 * There may also be an implicit trim operation if the file system 1094 * is mounted with -odiscard. The same protections must remain 1095 * in place until the extents have been discarded completely when 1096 * the transaction commit has completed. 1097 */ 1098 remove_em = (atomic_read(&block_group->trimming) == 0); 1099 spin_unlock(&block_group->lock); 1100 1101 mutex_unlock(&fs_info->chunk_mutex); 1102 1103 ret = remove_block_group_free_space(trans, block_group); 1104 if (ret) 1105 goto out; 1106 1107 btrfs_put_block_group(block_group); 1108 btrfs_put_block_group(block_group); 1109 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret > 0) 1112 ret = -EIO; 1113 if (ret < 0) 1114 goto out; 1115 1116 ret = btrfs_del_item(trans, root, path); 1117 if (ret) 1118 goto out; 1119 1120 if (remove_em) { 1121 struct extent_map_tree *em_tree; 1122 1123 em_tree = &fs_info->mapping_tree; 1124 write_lock(&em_tree->lock); 1125 remove_extent_mapping(em_tree, em); 1126 write_unlock(&em_tree->lock); 1127 /* once for the tree */ 1128 free_extent_map(em); 1129 } 1130 out: 1131 if (remove_rsv) 1132 btrfs_delayed_refs_rsv_release(fs_info, 1); 1133 btrfs_free_path(path); 1134 return ret; 1135 } 1136 1137 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1138 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1139 { 1140 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1141 struct extent_map *em; 1142 struct map_lookup *map; 1143 unsigned int num_items; 1144 1145 read_lock(&em_tree->lock); 1146 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1147 read_unlock(&em_tree->lock); 1148 ASSERT(em && em->start == chunk_offset); 1149 1150 /* 1151 * We need to reserve 3 + N units from the metadata space info in order 1152 * to remove a block group (done at btrfs_remove_chunk() and at 1153 * btrfs_remove_block_group()), which are used for: 1154 * 1155 * 1 unit for adding the free space inode's orphan (located in the tree 1156 * of tree roots). 1157 * 1 unit for deleting the block group item (located in the extent 1158 * tree). 1159 * 1 unit for deleting the free space item (located in tree of tree 1160 * roots). 1161 * N units for deleting N device extent items corresponding to each 1162 * stripe (located in the device tree). 1163 * 1164 * In order to remove a block group we also need to reserve units in the 1165 * system space info in order to update the chunk tree (update one or 1166 * more device items and remove one chunk item), but this is done at 1167 * btrfs_remove_chunk() through a call to check_system_chunk(). 1168 */ 1169 map = em->map_lookup; 1170 num_items = 3 + map->num_stripes; 1171 free_extent_map(em); 1172 1173 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1174 num_items, 1); 1175 } 1176 1177 /* 1178 * Mark block group @cache read-only, so later write won't happen to block 1179 * group @cache. 1180 * 1181 * If @force is not set, this function will only mark the block group readonly 1182 * if we have enough free space (1M) in other metadata/system block groups. 1183 * If @force is not set, this function will mark the block group readonly 1184 * without checking free space. 1185 * 1186 * NOTE: This function doesn't care if other block groups can contain all the 1187 * data in this block group. That check should be done by relocation routine, 1188 * not this function. 1189 */ 1190 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1191 { 1192 struct btrfs_space_info *sinfo = cache->space_info; 1193 u64 num_bytes; 1194 int ret = -ENOSPC; 1195 1196 spin_lock(&sinfo->lock); 1197 spin_lock(&cache->lock); 1198 1199 if (cache->ro) { 1200 cache->ro++; 1201 ret = 0; 1202 goto out; 1203 } 1204 1205 num_bytes = cache->length - cache->reserved - cache->pinned - 1206 cache->bytes_super - cache->used; 1207 1208 /* 1209 * Data never overcommits, even in mixed mode, so do just the straight 1210 * check of left over space in how much we have allocated. 1211 */ 1212 if (force) { 1213 ret = 0; 1214 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1215 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1216 1217 /* 1218 * Here we make sure if we mark this bg RO, we still have enough 1219 * free space as buffer. 1220 */ 1221 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1222 ret = 0; 1223 } else { 1224 /* 1225 * We overcommit metadata, so we need to do the 1226 * btrfs_can_overcommit check here, and we need to pass in 1227 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1228 * leeway to allow us to mark this block group as read only. 1229 */ 1230 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1231 BTRFS_RESERVE_NO_FLUSH)) 1232 ret = 0; 1233 } 1234 1235 if (!ret) { 1236 sinfo->bytes_readonly += num_bytes; 1237 cache->ro++; 1238 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1239 } 1240 out: 1241 spin_unlock(&cache->lock); 1242 spin_unlock(&sinfo->lock); 1243 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1244 btrfs_info(cache->fs_info, 1245 "unable to make block group %llu ro", cache->start); 1246 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1247 } 1248 return ret; 1249 } 1250 1251 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1252 struct btrfs_block_group *bg) 1253 { 1254 struct btrfs_fs_info *fs_info = bg->fs_info; 1255 struct btrfs_transaction *prev_trans = NULL; 1256 const u64 start = bg->start; 1257 const u64 end = start + bg->length - 1; 1258 int ret; 1259 1260 spin_lock(&fs_info->trans_lock); 1261 if (trans->transaction->list.prev != &fs_info->trans_list) { 1262 prev_trans = list_last_entry(&trans->transaction->list, 1263 struct btrfs_transaction, list); 1264 refcount_inc(&prev_trans->use_count); 1265 } 1266 spin_unlock(&fs_info->trans_lock); 1267 1268 /* 1269 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1270 * btrfs_finish_extent_commit(). If we are at transaction N, another 1271 * task might be running finish_extent_commit() for the previous 1272 * transaction N - 1, and have seen a range belonging to the block 1273 * group in pinned_extents before we were able to clear the whole block 1274 * group range from pinned_extents. This means that task can lookup for 1275 * the block group after we unpinned it from pinned_extents and removed 1276 * it, leading to a BUG_ON() at unpin_extent_range(). 1277 */ 1278 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1279 if (prev_trans) { 1280 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1281 EXTENT_DIRTY); 1282 if (ret) 1283 goto err; 1284 } 1285 1286 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1287 EXTENT_DIRTY); 1288 if (ret) 1289 goto err; 1290 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1291 1292 return true; 1293 1294 err: 1295 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1296 btrfs_dec_block_group_ro(bg); 1297 return false; 1298 } 1299 1300 /* 1301 * Process the unused_bgs list and remove any that don't have any allocated 1302 * space inside of them. 1303 */ 1304 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1305 { 1306 struct btrfs_block_group *block_group; 1307 struct btrfs_space_info *space_info; 1308 struct btrfs_trans_handle *trans; 1309 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1310 int ret = 0; 1311 1312 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1313 return; 1314 1315 spin_lock(&fs_info->unused_bgs_lock); 1316 while (!list_empty(&fs_info->unused_bgs)) { 1317 int trimming; 1318 1319 block_group = list_first_entry(&fs_info->unused_bgs, 1320 struct btrfs_block_group, 1321 bg_list); 1322 list_del_init(&block_group->bg_list); 1323 1324 space_info = block_group->space_info; 1325 1326 if (ret || btrfs_mixed_space_info(space_info)) { 1327 btrfs_put_block_group(block_group); 1328 continue; 1329 } 1330 spin_unlock(&fs_info->unused_bgs_lock); 1331 1332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1333 1334 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1335 1336 /* Don't want to race with allocators so take the groups_sem */ 1337 down_write(&space_info->groups_sem); 1338 1339 /* 1340 * Async discard moves the final block group discard to be prior 1341 * to the unused_bgs code path. Therefore, if it's not fully 1342 * trimmed, punt it back to the async discard lists. 1343 */ 1344 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1345 !btrfs_is_free_space_trimmed(block_group)) { 1346 trace_btrfs_skip_unused_block_group(block_group); 1347 up_write(&space_info->groups_sem); 1348 /* Requeue if we failed because of async discard */ 1349 btrfs_discard_queue_work(&fs_info->discard_ctl, 1350 block_group); 1351 goto next; 1352 } 1353 1354 spin_lock(&block_group->lock); 1355 if (block_group->reserved || block_group->pinned || 1356 block_group->used || block_group->ro || 1357 list_is_singular(&block_group->list)) { 1358 /* 1359 * We want to bail if we made new allocations or have 1360 * outstanding allocations in this block group. We do 1361 * the ro check in case balance is currently acting on 1362 * this block group. 1363 */ 1364 trace_btrfs_skip_unused_block_group(block_group); 1365 spin_unlock(&block_group->lock); 1366 up_write(&space_info->groups_sem); 1367 goto next; 1368 } 1369 spin_unlock(&block_group->lock); 1370 1371 /* We don't want to force the issue, only flip if it's ok. */ 1372 ret = inc_block_group_ro(block_group, 0); 1373 up_write(&space_info->groups_sem); 1374 if (ret < 0) { 1375 ret = 0; 1376 goto next; 1377 } 1378 1379 /* 1380 * Want to do this before we do anything else so we can recover 1381 * properly if we fail to join the transaction. 1382 */ 1383 trans = btrfs_start_trans_remove_block_group(fs_info, 1384 block_group->start); 1385 if (IS_ERR(trans)) { 1386 btrfs_dec_block_group_ro(block_group); 1387 ret = PTR_ERR(trans); 1388 goto next; 1389 } 1390 1391 /* 1392 * We could have pending pinned extents for this block group, 1393 * just delete them, we don't care about them anymore. 1394 */ 1395 if (!clean_pinned_extents(trans, block_group)) 1396 goto end_trans; 1397 1398 /* 1399 * At this point, the block_group is read only and should fail 1400 * new allocations. However, btrfs_finish_extent_commit() can 1401 * cause this block_group to be placed back on the discard 1402 * lists because now the block_group isn't fully discarded. 1403 * Bail here and try again later after discarding everything. 1404 */ 1405 spin_lock(&fs_info->discard_ctl.lock); 1406 if (!list_empty(&block_group->discard_list)) { 1407 spin_unlock(&fs_info->discard_ctl.lock); 1408 btrfs_dec_block_group_ro(block_group); 1409 btrfs_discard_queue_work(&fs_info->discard_ctl, 1410 block_group); 1411 goto end_trans; 1412 } 1413 spin_unlock(&fs_info->discard_ctl.lock); 1414 1415 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1416 spin_lock(&space_info->lock); 1417 spin_lock(&block_group->lock); 1418 1419 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1420 -block_group->pinned); 1421 space_info->bytes_readonly += block_group->pinned; 1422 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1423 -block_group->pinned, 1424 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1425 block_group->pinned = 0; 1426 1427 spin_unlock(&block_group->lock); 1428 spin_unlock(&space_info->lock); 1429 1430 /* 1431 * The normal path here is an unused block group is passed here, 1432 * then trimming is handled in the transaction commit path. 1433 * Async discard interposes before this to do the trimming 1434 * before coming down the unused block group path as trimming 1435 * will no longer be done later in the transaction commit path. 1436 */ 1437 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1438 goto flip_async; 1439 1440 /* DISCARD can flip during remount */ 1441 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1442 1443 /* Implicit trim during transaction commit. */ 1444 if (trimming) 1445 btrfs_get_block_group_trimming(block_group); 1446 1447 /* 1448 * Btrfs_remove_chunk will abort the transaction if things go 1449 * horribly wrong. 1450 */ 1451 ret = btrfs_remove_chunk(trans, block_group->start); 1452 1453 if (ret) { 1454 if (trimming) 1455 btrfs_put_block_group_trimming(block_group); 1456 goto end_trans; 1457 } 1458 1459 /* 1460 * If we're not mounted with -odiscard, we can just forget 1461 * about this block group. Otherwise we'll need to wait 1462 * until transaction commit to do the actual discard. 1463 */ 1464 if (trimming) { 1465 spin_lock(&fs_info->unused_bgs_lock); 1466 /* 1467 * A concurrent scrub might have added us to the list 1468 * fs_info->unused_bgs, so use a list_move operation 1469 * to add the block group to the deleted_bgs list. 1470 */ 1471 list_move(&block_group->bg_list, 1472 &trans->transaction->deleted_bgs); 1473 spin_unlock(&fs_info->unused_bgs_lock); 1474 btrfs_get_block_group(block_group); 1475 } 1476 end_trans: 1477 btrfs_end_transaction(trans); 1478 next: 1479 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1480 btrfs_put_block_group(block_group); 1481 spin_lock(&fs_info->unused_bgs_lock); 1482 } 1483 spin_unlock(&fs_info->unused_bgs_lock); 1484 return; 1485 1486 flip_async: 1487 btrfs_end_transaction(trans); 1488 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1489 btrfs_put_block_group(block_group); 1490 btrfs_discard_punt_unused_bgs_list(fs_info); 1491 } 1492 1493 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1494 { 1495 struct btrfs_fs_info *fs_info = bg->fs_info; 1496 1497 spin_lock(&fs_info->unused_bgs_lock); 1498 if (list_empty(&bg->bg_list)) { 1499 btrfs_get_block_group(bg); 1500 trace_btrfs_add_unused_block_group(bg); 1501 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1502 } 1503 spin_unlock(&fs_info->unused_bgs_lock); 1504 } 1505 1506 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1507 struct btrfs_path *path, 1508 struct btrfs_key *key) 1509 { 1510 struct btrfs_root *root = fs_info->extent_root; 1511 int ret = 0; 1512 struct btrfs_key found_key; 1513 struct extent_buffer *leaf; 1514 struct btrfs_block_group_item bg; 1515 u64 flags; 1516 int slot; 1517 1518 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1519 if (ret < 0) 1520 goto out; 1521 1522 while (1) { 1523 slot = path->slots[0]; 1524 leaf = path->nodes[0]; 1525 if (slot >= btrfs_header_nritems(leaf)) { 1526 ret = btrfs_next_leaf(root, path); 1527 if (ret == 0) 1528 continue; 1529 if (ret < 0) 1530 goto out; 1531 break; 1532 } 1533 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1534 1535 if (found_key.objectid >= key->objectid && 1536 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1537 struct extent_map_tree *em_tree; 1538 struct extent_map *em; 1539 1540 em_tree = &root->fs_info->mapping_tree; 1541 read_lock(&em_tree->lock); 1542 em = lookup_extent_mapping(em_tree, found_key.objectid, 1543 found_key.offset); 1544 read_unlock(&em_tree->lock); 1545 if (!em) { 1546 btrfs_err(fs_info, 1547 "logical %llu len %llu found bg but no related chunk", 1548 found_key.objectid, found_key.offset); 1549 ret = -ENOENT; 1550 } else if (em->start != found_key.objectid || 1551 em->len != found_key.offset) { 1552 btrfs_err(fs_info, 1553 "block group %llu len %llu mismatch with chunk %llu len %llu", 1554 found_key.objectid, found_key.offset, 1555 em->start, em->len); 1556 ret = -EUCLEAN; 1557 } else { 1558 read_extent_buffer(leaf, &bg, 1559 btrfs_item_ptr_offset(leaf, slot), 1560 sizeof(bg)); 1561 flags = btrfs_stack_block_group_flags(&bg) & 1562 BTRFS_BLOCK_GROUP_TYPE_MASK; 1563 1564 if (flags != (em->map_lookup->type & 1565 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1566 btrfs_err(fs_info, 1567 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1568 found_key.objectid, 1569 found_key.offset, flags, 1570 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1571 em->map_lookup->type)); 1572 ret = -EUCLEAN; 1573 } else { 1574 ret = 0; 1575 } 1576 } 1577 free_extent_map(em); 1578 goto out; 1579 } 1580 path->slots[0]++; 1581 } 1582 out: 1583 return ret; 1584 } 1585 1586 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1587 { 1588 u64 extra_flags = chunk_to_extended(flags) & 1589 BTRFS_EXTENDED_PROFILE_MASK; 1590 1591 write_seqlock(&fs_info->profiles_lock); 1592 if (flags & BTRFS_BLOCK_GROUP_DATA) 1593 fs_info->avail_data_alloc_bits |= extra_flags; 1594 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1595 fs_info->avail_metadata_alloc_bits |= extra_flags; 1596 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1597 fs_info->avail_system_alloc_bits |= extra_flags; 1598 write_sequnlock(&fs_info->profiles_lock); 1599 } 1600 1601 /** 1602 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1603 * @chunk_start: logical address of block group 1604 * @physical: physical address to map to logical addresses 1605 * @logical: return array of logical addresses which map to @physical 1606 * @naddrs: length of @logical 1607 * @stripe_len: size of IO stripe for the given block group 1608 * 1609 * Maps a particular @physical disk address to a list of @logical addresses. 1610 * Used primarily to exclude those portions of a block group that contain super 1611 * block copies. 1612 */ 1613 EXPORT_FOR_TESTS 1614 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1615 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1616 { 1617 struct extent_map *em; 1618 struct map_lookup *map; 1619 u64 *buf; 1620 u64 bytenr; 1621 u64 data_stripe_length; 1622 u64 io_stripe_size; 1623 int i, nr = 0; 1624 int ret = 0; 1625 1626 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1627 if (IS_ERR(em)) 1628 return -EIO; 1629 1630 map = em->map_lookup; 1631 data_stripe_length = em->len; 1632 io_stripe_size = map->stripe_len; 1633 1634 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 1635 data_stripe_length = div_u64(data_stripe_length, 1636 map->num_stripes / map->sub_stripes); 1637 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 1638 data_stripe_length = div_u64(data_stripe_length, map->num_stripes); 1639 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1640 data_stripe_length = div_u64(data_stripe_length, 1641 nr_data_stripes(map)); 1642 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1643 } 1644 1645 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1646 if (!buf) { 1647 ret = -ENOMEM; 1648 goto out; 1649 } 1650 1651 for (i = 0; i < map->num_stripes; i++) { 1652 bool already_inserted = false; 1653 u64 stripe_nr; 1654 int j; 1655 1656 if (!in_range(physical, map->stripes[i].physical, 1657 data_stripe_length)) 1658 continue; 1659 1660 stripe_nr = physical - map->stripes[i].physical; 1661 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1662 1663 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1664 stripe_nr = stripe_nr * map->num_stripes + i; 1665 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1666 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1667 stripe_nr = stripe_nr * map->num_stripes + i; 1668 } 1669 /* 1670 * The remaining case would be for RAID56, multiply by 1671 * nr_data_stripes(). Alternatively, just use rmap_len below 1672 * instead of map->stripe_len 1673 */ 1674 1675 bytenr = chunk_start + stripe_nr * io_stripe_size; 1676 1677 /* Ensure we don't add duplicate addresses */ 1678 for (j = 0; j < nr; j++) { 1679 if (buf[j] == bytenr) { 1680 already_inserted = true; 1681 break; 1682 } 1683 } 1684 1685 if (!already_inserted) 1686 buf[nr++] = bytenr; 1687 } 1688 1689 *logical = buf; 1690 *naddrs = nr; 1691 *stripe_len = io_stripe_size; 1692 out: 1693 free_extent_map(em); 1694 return ret; 1695 } 1696 1697 static int exclude_super_stripes(struct btrfs_block_group *cache) 1698 { 1699 struct btrfs_fs_info *fs_info = cache->fs_info; 1700 u64 bytenr; 1701 u64 *logical; 1702 int stripe_len; 1703 int i, nr, ret; 1704 1705 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1706 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1707 cache->bytes_super += stripe_len; 1708 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1709 stripe_len); 1710 if (ret) 1711 return ret; 1712 } 1713 1714 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1715 bytenr = btrfs_sb_offset(i); 1716 ret = btrfs_rmap_block(fs_info, cache->start, 1717 bytenr, &logical, &nr, &stripe_len); 1718 if (ret) 1719 return ret; 1720 1721 while (nr--) { 1722 u64 start, len; 1723 1724 if (logical[nr] > cache->start + cache->length) 1725 continue; 1726 1727 if (logical[nr] + stripe_len <= cache->start) 1728 continue; 1729 1730 start = logical[nr]; 1731 if (start < cache->start) { 1732 start = cache->start; 1733 len = (logical[nr] + stripe_len) - start; 1734 } else { 1735 len = min_t(u64, stripe_len, 1736 cache->start + cache->length - start); 1737 } 1738 1739 cache->bytes_super += len; 1740 ret = btrfs_add_excluded_extent(fs_info, start, len); 1741 if (ret) { 1742 kfree(logical); 1743 return ret; 1744 } 1745 } 1746 1747 kfree(logical); 1748 } 1749 return 0; 1750 } 1751 1752 static void link_block_group(struct btrfs_block_group *cache) 1753 { 1754 struct btrfs_space_info *space_info = cache->space_info; 1755 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1756 bool first = false; 1757 1758 down_write(&space_info->groups_sem); 1759 if (list_empty(&space_info->block_groups[index])) 1760 first = true; 1761 list_add_tail(&cache->list, &space_info->block_groups[index]); 1762 up_write(&space_info->groups_sem); 1763 1764 if (first) 1765 btrfs_sysfs_add_block_group_type(cache); 1766 } 1767 1768 static struct btrfs_block_group *btrfs_create_block_group_cache( 1769 struct btrfs_fs_info *fs_info, u64 start, u64 size) 1770 { 1771 struct btrfs_block_group *cache; 1772 1773 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1774 if (!cache) 1775 return NULL; 1776 1777 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1778 GFP_NOFS); 1779 if (!cache->free_space_ctl) { 1780 kfree(cache); 1781 return NULL; 1782 } 1783 1784 cache->start = start; 1785 cache->length = size; 1786 1787 cache->fs_info = fs_info; 1788 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1789 set_free_space_tree_thresholds(cache); 1790 1791 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1792 1793 atomic_set(&cache->count, 1); 1794 spin_lock_init(&cache->lock); 1795 init_rwsem(&cache->data_rwsem); 1796 INIT_LIST_HEAD(&cache->list); 1797 INIT_LIST_HEAD(&cache->cluster_list); 1798 INIT_LIST_HEAD(&cache->bg_list); 1799 INIT_LIST_HEAD(&cache->ro_list); 1800 INIT_LIST_HEAD(&cache->discard_list); 1801 INIT_LIST_HEAD(&cache->dirty_list); 1802 INIT_LIST_HEAD(&cache->io_list); 1803 btrfs_init_free_space_ctl(cache); 1804 atomic_set(&cache->trimming, 0); 1805 mutex_init(&cache->free_space_lock); 1806 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1807 1808 return cache; 1809 } 1810 1811 /* 1812 * Iterate all chunks and verify that each of them has the corresponding block 1813 * group 1814 */ 1815 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1816 { 1817 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1818 struct extent_map *em; 1819 struct btrfs_block_group *bg; 1820 u64 start = 0; 1821 int ret = 0; 1822 1823 while (1) { 1824 read_lock(&map_tree->lock); 1825 /* 1826 * lookup_extent_mapping will return the first extent map 1827 * intersecting the range, so setting @len to 1 is enough to 1828 * get the first chunk. 1829 */ 1830 em = lookup_extent_mapping(map_tree, start, 1); 1831 read_unlock(&map_tree->lock); 1832 if (!em) 1833 break; 1834 1835 bg = btrfs_lookup_block_group(fs_info, em->start); 1836 if (!bg) { 1837 btrfs_err(fs_info, 1838 "chunk start=%llu len=%llu doesn't have corresponding block group", 1839 em->start, em->len); 1840 ret = -EUCLEAN; 1841 free_extent_map(em); 1842 break; 1843 } 1844 if (bg->start != em->start || bg->length != em->len || 1845 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1846 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1847 btrfs_err(fs_info, 1848 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1849 em->start, em->len, 1850 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1851 bg->start, bg->length, 1852 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1853 ret = -EUCLEAN; 1854 free_extent_map(em); 1855 btrfs_put_block_group(bg); 1856 break; 1857 } 1858 start = em->start + em->len; 1859 free_extent_map(em); 1860 btrfs_put_block_group(bg); 1861 } 1862 return ret; 1863 } 1864 1865 static int read_one_block_group(struct btrfs_fs_info *info, 1866 struct btrfs_path *path, 1867 const struct btrfs_key *key, 1868 int need_clear) 1869 { 1870 struct extent_buffer *leaf = path->nodes[0]; 1871 struct btrfs_block_group *cache; 1872 struct btrfs_space_info *space_info; 1873 struct btrfs_block_group_item bgi; 1874 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1875 int slot = path->slots[0]; 1876 int ret; 1877 1878 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1879 1880 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); 1881 if (!cache) 1882 return -ENOMEM; 1883 1884 if (need_clear) { 1885 /* 1886 * When we mount with old space cache, we need to 1887 * set BTRFS_DC_CLEAR and set dirty flag. 1888 * 1889 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1890 * truncate the old free space cache inode and 1891 * setup a new one. 1892 * b) Setting 'dirty flag' makes sure that we flush 1893 * the new space cache info onto disk. 1894 */ 1895 if (btrfs_test_opt(info, SPACE_CACHE)) 1896 cache->disk_cache_state = BTRFS_DC_CLEAR; 1897 } 1898 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1899 sizeof(bgi)); 1900 cache->used = btrfs_stack_block_group_used(&bgi); 1901 cache->flags = btrfs_stack_block_group_flags(&bgi); 1902 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1903 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1904 btrfs_err(info, 1905 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1906 cache->start); 1907 ret = -EINVAL; 1908 goto error; 1909 } 1910 1911 /* 1912 * We need to exclude the super stripes now so that the space info has 1913 * super bytes accounted for, otherwise we'll think we have more space 1914 * than we actually do. 1915 */ 1916 ret = exclude_super_stripes(cache); 1917 if (ret) { 1918 /* We may have excluded something, so call this just in case. */ 1919 btrfs_free_excluded_extents(cache); 1920 goto error; 1921 } 1922 1923 /* 1924 * Check for two cases, either we are full, and therefore don't need 1925 * to bother with the caching work since we won't find any space, or we 1926 * are empty, and we can just add all the space in and be done with it. 1927 * This saves us _a_lot_ of time, particularly in the full case. 1928 */ 1929 if (key->offset == cache->used) { 1930 cache->last_byte_to_unpin = (u64)-1; 1931 cache->cached = BTRFS_CACHE_FINISHED; 1932 btrfs_free_excluded_extents(cache); 1933 } else if (cache->used == 0) { 1934 cache->last_byte_to_unpin = (u64)-1; 1935 cache->cached = BTRFS_CACHE_FINISHED; 1936 add_new_free_space(cache, key->objectid, 1937 key->objectid + key->offset); 1938 btrfs_free_excluded_extents(cache); 1939 } 1940 1941 ret = btrfs_add_block_group_cache(info, cache); 1942 if (ret) { 1943 btrfs_remove_free_space_cache(cache); 1944 goto error; 1945 } 1946 trace_btrfs_add_block_group(info, cache, 0); 1947 btrfs_update_space_info(info, cache->flags, key->offset, 1948 cache->used, cache->bytes_super, &space_info); 1949 1950 cache->space_info = space_info; 1951 1952 link_block_group(cache); 1953 1954 set_avail_alloc_bits(info, cache->flags); 1955 if (btrfs_chunk_readonly(info, cache->start)) { 1956 inc_block_group_ro(cache, 1); 1957 } else if (cache->used == 0) { 1958 ASSERT(list_empty(&cache->bg_list)); 1959 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1960 btrfs_discard_queue_work(&info->discard_ctl, cache); 1961 else 1962 btrfs_mark_bg_unused(cache); 1963 } 1964 return 0; 1965 error: 1966 btrfs_put_block_group(cache); 1967 return ret; 1968 } 1969 1970 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1971 { 1972 struct btrfs_path *path; 1973 int ret; 1974 struct btrfs_block_group *cache; 1975 struct btrfs_space_info *space_info; 1976 struct btrfs_key key; 1977 int need_clear = 0; 1978 u64 cache_gen; 1979 1980 key.objectid = 0; 1981 key.offset = 0; 1982 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1983 path = btrfs_alloc_path(); 1984 if (!path) 1985 return -ENOMEM; 1986 path->reada = READA_FORWARD; 1987 1988 cache_gen = btrfs_super_cache_generation(info->super_copy); 1989 if (btrfs_test_opt(info, SPACE_CACHE) && 1990 btrfs_super_generation(info->super_copy) != cache_gen) 1991 need_clear = 1; 1992 if (btrfs_test_opt(info, CLEAR_CACHE)) 1993 need_clear = 1; 1994 1995 while (1) { 1996 ret = find_first_block_group(info, path, &key); 1997 if (ret > 0) 1998 break; 1999 if (ret != 0) 2000 goto error; 2001 2002 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2003 ret = read_one_block_group(info, path, &key, need_clear); 2004 if (ret < 0) 2005 goto error; 2006 key.objectid += key.offset; 2007 key.offset = 0; 2008 btrfs_release_path(path); 2009 } 2010 2011 rcu_read_lock(); 2012 list_for_each_entry_rcu(space_info, &info->space_info, list) { 2013 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2014 (BTRFS_BLOCK_GROUP_RAID10 | 2015 BTRFS_BLOCK_GROUP_RAID1_MASK | 2016 BTRFS_BLOCK_GROUP_RAID56_MASK | 2017 BTRFS_BLOCK_GROUP_DUP))) 2018 continue; 2019 /* 2020 * Avoid allocating from un-mirrored block group if there are 2021 * mirrored block groups. 2022 */ 2023 list_for_each_entry(cache, 2024 &space_info->block_groups[BTRFS_RAID_RAID0], 2025 list) 2026 inc_block_group_ro(cache, 1); 2027 list_for_each_entry(cache, 2028 &space_info->block_groups[BTRFS_RAID_SINGLE], 2029 list) 2030 inc_block_group_ro(cache, 1); 2031 } 2032 rcu_read_unlock(); 2033 2034 btrfs_init_global_block_rsv(info); 2035 ret = check_chunk_block_group_mappings(info); 2036 error: 2037 btrfs_free_path(path); 2038 return ret; 2039 } 2040 2041 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2042 { 2043 struct btrfs_fs_info *fs_info = trans->fs_info; 2044 struct btrfs_block_group *block_group; 2045 struct btrfs_root *extent_root = fs_info->extent_root; 2046 struct btrfs_block_group_item item; 2047 struct btrfs_key key; 2048 int ret = 0; 2049 2050 if (!trans->can_flush_pending_bgs) 2051 return; 2052 2053 while (!list_empty(&trans->new_bgs)) { 2054 block_group = list_first_entry(&trans->new_bgs, 2055 struct btrfs_block_group, 2056 bg_list); 2057 if (ret) 2058 goto next; 2059 2060 spin_lock(&block_group->lock); 2061 btrfs_set_stack_block_group_used(&item, block_group->used); 2062 btrfs_set_stack_block_group_chunk_objectid(&item, 2063 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2064 btrfs_set_stack_block_group_flags(&item, block_group->flags); 2065 key.objectid = block_group->start; 2066 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2067 key.offset = block_group->length; 2068 spin_unlock(&block_group->lock); 2069 2070 ret = btrfs_insert_item(trans, extent_root, &key, &item, 2071 sizeof(item)); 2072 if (ret) 2073 btrfs_abort_transaction(trans, ret); 2074 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 2075 if (ret) 2076 btrfs_abort_transaction(trans, ret); 2077 add_block_group_free_space(trans, block_group); 2078 /* Already aborted the transaction if it failed. */ 2079 next: 2080 btrfs_delayed_refs_rsv_release(fs_info, 1); 2081 list_del_init(&block_group->bg_list); 2082 } 2083 btrfs_trans_release_chunk_metadata(trans); 2084 } 2085 2086 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2087 u64 type, u64 chunk_offset, u64 size) 2088 { 2089 struct btrfs_fs_info *fs_info = trans->fs_info; 2090 struct btrfs_block_group *cache; 2091 int ret; 2092 2093 btrfs_set_log_full_commit(trans); 2094 2095 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 2096 if (!cache) 2097 return -ENOMEM; 2098 2099 cache->used = bytes_used; 2100 cache->flags = type; 2101 cache->last_byte_to_unpin = (u64)-1; 2102 cache->cached = BTRFS_CACHE_FINISHED; 2103 cache->needs_free_space = 1; 2104 ret = exclude_super_stripes(cache); 2105 if (ret) { 2106 /* We may have excluded something, so call this just in case */ 2107 btrfs_free_excluded_extents(cache); 2108 btrfs_put_block_group(cache); 2109 return ret; 2110 } 2111 2112 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2113 2114 btrfs_free_excluded_extents(cache); 2115 2116 #ifdef CONFIG_BTRFS_DEBUG 2117 if (btrfs_should_fragment_free_space(cache)) { 2118 u64 new_bytes_used = size - bytes_used; 2119 2120 bytes_used += new_bytes_used >> 1; 2121 fragment_free_space(cache); 2122 } 2123 #endif 2124 /* 2125 * Ensure the corresponding space_info object is created and 2126 * assigned to our block group. We want our bg to be added to the rbtree 2127 * with its ->space_info set. 2128 */ 2129 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2130 ASSERT(cache->space_info); 2131 2132 ret = btrfs_add_block_group_cache(fs_info, cache); 2133 if (ret) { 2134 btrfs_remove_free_space_cache(cache); 2135 btrfs_put_block_group(cache); 2136 return ret; 2137 } 2138 2139 /* 2140 * Now that our block group has its ->space_info set and is inserted in 2141 * the rbtree, update the space info's counters. 2142 */ 2143 trace_btrfs_add_block_group(fs_info, cache, 1); 2144 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2145 cache->bytes_super, &cache->space_info); 2146 btrfs_update_global_block_rsv(fs_info); 2147 2148 link_block_group(cache); 2149 2150 list_add_tail(&cache->bg_list, &trans->new_bgs); 2151 trans->delayed_ref_updates++; 2152 btrfs_update_delayed_refs_rsv(trans); 2153 2154 set_avail_alloc_bits(fs_info, type); 2155 return 0; 2156 } 2157 2158 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 2159 { 2160 u64 num_devices; 2161 u64 stripped; 2162 2163 /* 2164 * if restripe for this chunk_type is on pick target profile and 2165 * return, otherwise do the usual balance 2166 */ 2167 stripped = get_restripe_target(fs_info, flags); 2168 if (stripped) 2169 return extended_to_chunk(stripped); 2170 2171 num_devices = fs_info->fs_devices->rw_devices; 2172 2173 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 2174 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 2175 2176 if (num_devices == 1) { 2177 stripped |= BTRFS_BLOCK_GROUP_DUP; 2178 stripped = flags & ~stripped; 2179 2180 /* turn raid0 into single device chunks */ 2181 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2182 return stripped; 2183 2184 /* turn mirroring into duplication */ 2185 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2186 BTRFS_BLOCK_GROUP_RAID10)) 2187 return stripped | BTRFS_BLOCK_GROUP_DUP; 2188 } else { 2189 /* they already had raid on here, just return */ 2190 if (flags & stripped) 2191 return flags; 2192 2193 stripped |= BTRFS_BLOCK_GROUP_DUP; 2194 stripped = flags & ~stripped; 2195 2196 /* switch duplicated blocks with raid1 */ 2197 if (flags & BTRFS_BLOCK_GROUP_DUP) 2198 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2199 2200 /* this is drive concat, leave it alone */ 2201 } 2202 2203 return flags; 2204 } 2205 2206 /* 2207 * Mark one block group RO, can be called several times for the same block 2208 * group. 2209 * 2210 * @cache: the destination block group 2211 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2212 * ensure we still have some free space after marking this 2213 * block group RO. 2214 */ 2215 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2216 bool do_chunk_alloc) 2217 { 2218 struct btrfs_fs_info *fs_info = cache->fs_info; 2219 struct btrfs_trans_handle *trans; 2220 u64 alloc_flags; 2221 int ret; 2222 2223 again: 2224 trans = btrfs_join_transaction(fs_info->extent_root); 2225 if (IS_ERR(trans)) 2226 return PTR_ERR(trans); 2227 2228 /* 2229 * we're not allowed to set block groups readonly after the dirty 2230 * block groups cache has started writing. If it already started, 2231 * back off and let this transaction commit 2232 */ 2233 mutex_lock(&fs_info->ro_block_group_mutex); 2234 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2235 u64 transid = trans->transid; 2236 2237 mutex_unlock(&fs_info->ro_block_group_mutex); 2238 btrfs_end_transaction(trans); 2239 2240 ret = btrfs_wait_for_commit(fs_info, transid); 2241 if (ret) 2242 return ret; 2243 goto again; 2244 } 2245 2246 if (do_chunk_alloc) { 2247 /* 2248 * If we are changing raid levels, try to allocate a 2249 * corresponding block group with the new raid level. 2250 */ 2251 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2252 if (alloc_flags != cache->flags) { 2253 ret = btrfs_chunk_alloc(trans, alloc_flags, 2254 CHUNK_ALLOC_FORCE); 2255 /* 2256 * ENOSPC is allowed here, we may have enough space 2257 * already allocated at the new raid level to carry on 2258 */ 2259 if (ret == -ENOSPC) 2260 ret = 0; 2261 if (ret < 0) 2262 goto out; 2263 } 2264 } 2265 2266 ret = inc_block_group_ro(cache, 0); 2267 if (!do_chunk_alloc) 2268 goto unlock_out; 2269 if (!ret) 2270 goto out; 2271 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2272 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2273 if (ret < 0) 2274 goto out; 2275 ret = inc_block_group_ro(cache, 0); 2276 out: 2277 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2278 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2279 mutex_lock(&fs_info->chunk_mutex); 2280 check_system_chunk(trans, alloc_flags); 2281 mutex_unlock(&fs_info->chunk_mutex); 2282 } 2283 unlock_out: 2284 mutex_unlock(&fs_info->ro_block_group_mutex); 2285 2286 btrfs_end_transaction(trans); 2287 return ret; 2288 } 2289 2290 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2291 { 2292 struct btrfs_space_info *sinfo = cache->space_info; 2293 u64 num_bytes; 2294 2295 BUG_ON(!cache->ro); 2296 2297 spin_lock(&sinfo->lock); 2298 spin_lock(&cache->lock); 2299 if (!--cache->ro) { 2300 num_bytes = cache->length - cache->reserved - 2301 cache->pinned - cache->bytes_super - cache->used; 2302 sinfo->bytes_readonly -= num_bytes; 2303 list_del_init(&cache->ro_list); 2304 } 2305 spin_unlock(&cache->lock); 2306 spin_unlock(&sinfo->lock); 2307 } 2308 2309 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2310 struct btrfs_path *path, 2311 struct btrfs_block_group *cache) 2312 { 2313 struct btrfs_fs_info *fs_info = trans->fs_info; 2314 int ret; 2315 struct btrfs_root *extent_root = fs_info->extent_root; 2316 unsigned long bi; 2317 struct extent_buffer *leaf; 2318 struct btrfs_block_group_item bgi; 2319 struct btrfs_key key; 2320 2321 key.objectid = cache->start; 2322 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2323 key.offset = cache->length; 2324 2325 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); 2326 if (ret) { 2327 if (ret > 0) 2328 ret = -ENOENT; 2329 goto fail; 2330 } 2331 2332 leaf = path->nodes[0]; 2333 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2334 btrfs_set_stack_block_group_used(&bgi, cache->used); 2335 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2336 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2337 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2338 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2339 btrfs_mark_buffer_dirty(leaf); 2340 fail: 2341 btrfs_release_path(path); 2342 return ret; 2343 2344 } 2345 2346 static int cache_save_setup(struct btrfs_block_group *block_group, 2347 struct btrfs_trans_handle *trans, 2348 struct btrfs_path *path) 2349 { 2350 struct btrfs_fs_info *fs_info = block_group->fs_info; 2351 struct btrfs_root *root = fs_info->tree_root; 2352 struct inode *inode = NULL; 2353 struct extent_changeset *data_reserved = NULL; 2354 u64 alloc_hint = 0; 2355 int dcs = BTRFS_DC_ERROR; 2356 u64 num_pages = 0; 2357 int retries = 0; 2358 int ret = 0; 2359 2360 /* 2361 * If this block group is smaller than 100 megs don't bother caching the 2362 * block group. 2363 */ 2364 if (block_group->length < (100 * SZ_1M)) { 2365 spin_lock(&block_group->lock); 2366 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2367 spin_unlock(&block_group->lock); 2368 return 0; 2369 } 2370 2371 if (TRANS_ABORTED(trans)) 2372 return 0; 2373 again: 2374 inode = lookup_free_space_inode(block_group, path); 2375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2376 ret = PTR_ERR(inode); 2377 btrfs_release_path(path); 2378 goto out; 2379 } 2380 2381 if (IS_ERR(inode)) { 2382 BUG_ON(retries); 2383 retries++; 2384 2385 if (block_group->ro) 2386 goto out_free; 2387 2388 ret = create_free_space_inode(trans, block_group, path); 2389 if (ret) 2390 goto out_free; 2391 goto again; 2392 } 2393 2394 /* 2395 * We want to set the generation to 0, that way if anything goes wrong 2396 * from here on out we know not to trust this cache when we load up next 2397 * time. 2398 */ 2399 BTRFS_I(inode)->generation = 0; 2400 ret = btrfs_update_inode(trans, root, inode); 2401 if (ret) { 2402 /* 2403 * So theoretically we could recover from this, simply set the 2404 * super cache generation to 0 so we know to invalidate the 2405 * cache, but then we'd have to keep track of the block groups 2406 * that fail this way so we know we _have_ to reset this cache 2407 * before the next commit or risk reading stale cache. So to 2408 * limit our exposure to horrible edge cases lets just abort the 2409 * transaction, this only happens in really bad situations 2410 * anyway. 2411 */ 2412 btrfs_abort_transaction(trans, ret); 2413 goto out_put; 2414 } 2415 WARN_ON(ret); 2416 2417 /* We've already setup this transaction, go ahead and exit */ 2418 if (block_group->cache_generation == trans->transid && 2419 i_size_read(inode)) { 2420 dcs = BTRFS_DC_SETUP; 2421 goto out_put; 2422 } 2423 2424 if (i_size_read(inode) > 0) { 2425 ret = btrfs_check_trunc_cache_free_space(fs_info, 2426 &fs_info->global_block_rsv); 2427 if (ret) 2428 goto out_put; 2429 2430 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2431 if (ret) 2432 goto out_put; 2433 } 2434 2435 spin_lock(&block_group->lock); 2436 if (block_group->cached != BTRFS_CACHE_FINISHED || 2437 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2438 /* 2439 * don't bother trying to write stuff out _if_ 2440 * a) we're not cached, 2441 * b) we're with nospace_cache mount option, 2442 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2443 */ 2444 dcs = BTRFS_DC_WRITTEN; 2445 spin_unlock(&block_group->lock); 2446 goto out_put; 2447 } 2448 spin_unlock(&block_group->lock); 2449 2450 /* 2451 * We hit an ENOSPC when setting up the cache in this transaction, just 2452 * skip doing the setup, we've already cleared the cache so we're safe. 2453 */ 2454 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2455 ret = -ENOSPC; 2456 goto out_put; 2457 } 2458 2459 /* 2460 * Try to preallocate enough space based on how big the block group is. 2461 * Keep in mind this has to include any pinned space which could end up 2462 * taking up quite a bit since it's not folded into the other space 2463 * cache. 2464 */ 2465 num_pages = div_u64(block_group->length, SZ_256M); 2466 if (!num_pages) 2467 num_pages = 1; 2468 2469 num_pages *= 16; 2470 num_pages *= PAGE_SIZE; 2471 2472 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2473 if (ret) 2474 goto out_put; 2475 2476 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2477 num_pages, num_pages, 2478 &alloc_hint); 2479 /* 2480 * Our cache requires contiguous chunks so that we don't modify a bunch 2481 * of metadata or split extents when writing the cache out, which means 2482 * we can enospc if we are heavily fragmented in addition to just normal 2483 * out of space conditions. So if we hit this just skip setting up any 2484 * other block groups for this transaction, maybe we'll unpin enough 2485 * space the next time around. 2486 */ 2487 if (!ret) 2488 dcs = BTRFS_DC_SETUP; 2489 else if (ret == -ENOSPC) 2490 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2491 2492 out_put: 2493 iput(inode); 2494 out_free: 2495 btrfs_release_path(path); 2496 out: 2497 spin_lock(&block_group->lock); 2498 if (!ret && dcs == BTRFS_DC_SETUP) 2499 block_group->cache_generation = trans->transid; 2500 block_group->disk_cache_state = dcs; 2501 spin_unlock(&block_group->lock); 2502 2503 extent_changeset_free(data_reserved); 2504 return ret; 2505 } 2506 2507 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2508 { 2509 struct btrfs_fs_info *fs_info = trans->fs_info; 2510 struct btrfs_block_group *cache, *tmp; 2511 struct btrfs_transaction *cur_trans = trans->transaction; 2512 struct btrfs_path *path; 2513 2514 if (list_empty(&cur_trans->dirty_bgs) || 2515 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2516 return 0; 2517 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 return -ENOMEM; 2521 2522 /* Could add new block groups, use _safe just in case */ 2523 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2524 dirty_list) { 2525 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2526 cache_save_setup(cache, trans, path); 2527 } 2528 2529 btrfs_free_path(path); 2530 return 0; 2531 } 2532 2533 /* 2534 * Transaction commit does final block group cache writeback during a critical 2535 * section where nothing is allowed to change the FS. This is required in 2536 * order for the cache to actually match the block group, but can introduce a 2537 * lot of latency into the commit. 2538 * 2539 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2540 * There's a chance we'll have to redo some of it if the block group changes 2541 * again during the commit, but it greatly reduces the commit latency by 2542 * getting rid of the easy block groups while we're still allowing others to 2543 * join the commit. 2544 */ 2545 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2546 { 2547 struct btrfs_fs_info *fs_info = trans->fs_info; 2548 struct btrfs_block_group *cache; 2549 struct btrfs_transaction *cur_trans = trans->transaction; 2550 int ret = 0; 2551 int should_put; 2552 struct btrfs_path *path = NULL; 2553 LIST_HEAD(dirty); 2554 struct list_head *io = &cur_trans->io_bgs; 2555 int num_started = 0; 2556 int loops = 0; 2557 2558 spin_lock(&cur_trans->dirty_bgs_lock); 2559 if (list_empty(&cur_trans->dirty_bgs)) { 2560 spin_unlock(&cur_trans->dirty_bgs_lock); 2561 return 0; 2562 } 2563 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2564 spin_unlock(&cur_trans->dirty_bgs_lock); 2565 2566 again: 2567 /* Make sure all the block groups on our dirty list actually exist */ 2568 btrfs_create_pending_block_groups(trans); 2569 2570 if (!path) { 2571 path = btrfs_alloc_path(); 2572 if (!path) 2573 return -ENOMEM; 2574 } 2575 2576 /* 2577 * cache_write_mutex is here only to save us from balance or automatic 2578 * removal of empty block groups deleting this block group while we are 2579 * writing out the cache 2580 */ 2581 mutex_lock(&trans->transaction->cache_write_mutex); 2582 while (!list_empty(&dirty)) { 2583 bool drop_reserve = true; 2584 2585 cache = list_first_entry(&dirty, struct btrfs_block_group, 2586 dirty_list); 2587 /* 2588 * This can happen if something re-dirties a block group that 2589 * is already under IO. Just wait for it to finish and then do 2590 * it all again 2591 */ 2592 if (!list_empty(&cache->io_list)) { 2593 list_del_init(&cache->io_list); 2594 btrfs_wait_cache_io(trans, cache, path); 2595 btrfs_put_block_group(cache); 2596 } 2597 2598 2599 /* 2600 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2601 * it should update the cache_state. Don't delete until after 2602 * we wait. 2603 * 2604 * Since we're not running in the commit critical section 2605 * we need the dirty_bgs_lock to protect from update_block_group 2606 */ 2607 spin_lock(&cur_trans->dirty_bgs_lock); 2608 list_del_init(&cache->dirty_list); 2609 spin_unlock(&cur_trans->dirty_bgs_lock); 2610 2611 should_put = 1; 2612 2613 cache_save_setup(cache, trans, path); 2614 2615 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2616 cache->io_ctl.inode = NULL; 2617 ret = btrfs_write_out_cache(trans, cache, path); 2618 if (ret == 0 && cache->io_ctl.inode) { 2619 num_started++; 2620 should_put = 0; 2621 2622 /* 2623 * The cache_write_mutex is protecting the 2624 * io_list, also refer to the definition of 2625 * btrfs_transaction::io_bgs for more details 2626 */ 2627 list_add_tail(&cache->io_list, io); 2628 } else { 2629 /* 2630 * If we failed to write the cache, the 2631 * generation will be bad and life goes on 2632 */ 2633 ret = 0; 2634 } 2635 } 2636 if (!ret) { 2637 ret = write_one_cache_group(trans, path, cache); 2638 /* 2639 * Our block group might still be attached to the list 2640 * of new block groups in the transaction handle of some 2641 * other task (struct btrfs_trans_handle->new_bgs). This 2642 * means its block group item isn't yet in the extent 2643 * tree. If this happens ignore the error, as we will 2644 * try again later in the critical section of the 2645 * transaction commit. 2646 */ 2647 if (ret == -ENOENT) { 2648 ret = 0; 2649 spin_lock(&cur_trans->dirty_bgs_lock); 2650 if (list_empty(&cache->dirty_list)) { 2651 list_add_tail(&cache->dirty_list, 2652 &cur_trans->dirty_bgs); 2653 btrfs_get_block_group(cache); 2654 drop_reserve = false; 2655 } 2656 spin_unlock(&cur_trans->dirty_bgs_lock); 2657 } else if (ret) { 2658 btrfs_abort_transaction(trans, ret); 2659 } 2660 } 2661 2662 /* If it's not on the io list, we need to put the block group */ 2663 if (should_put) 2664 btrfs_put_block_group(cache); 2665 if (drop_reserve) 2666 btrfs_delayed_refs_rsv_release(fs_info, 1); 2667 2668 if (ret) 2669 break; 2670 2671 /* 2672 * Avoid blocking other tasks for too long. It might even save 2673 * us from writing caches for block groups that are going to be 2674 * removed. 2675 */ 2676 mutex_unlock(&trans->transaction->cache_write_mutex); 2677 mutex_lock(&trans->transaction->cache_write_mutex); 2678 } 2679 mutex_unlock(&trans->transaction->cache_write_mutex); 2680 2681 /* 2682 * Go through delayed refs for all the stuff we've just kicked off 2683 * and then loop back (just once) 2684 */ 2685 ret = btrfs_run_delayed_refs(trans, 0); 2686 if (!ret && loops == 0) { 2687 loops++; 2688 spin_lock(&cur_trans->dirty_bgs_lock); 2689 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2690 /* 2691 * dirty_bgs_lock protects us from concurrent block group 2692 * deletes too (not just cache_write_mutex). 2693 */ 2694 if (!list_empty(&dirty)) { 2695 spin_unlock(&cur_trans->dirty_bgs_lock); 2696 goto again; 2697 } 2698 spin_unlock(&cur_trans->dirty_bgs_lock); 2699 } else if (ret < 0) { 2700 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2701 } 2702 2703 btrfs_free_path(path); 2704 return ret; 2705 } 2706 2707 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2708 { 2709 struct btrfs_fs_info *fs_info = trans->fs_info; 2710 struct btrfs_block_group *cache; 2711 struct btrfs_transaction *cur_trans = trans->transaction; 2712 int ret = 0; 2713 int should_put; 2714 struct btrfs_path *path; 2715 struct list_head *io = &cur_trans->io_bgs; 2716 int num_started = 0; 2717 2718 path = btrfs_alloc_path(); 2719 if (!path) 2720 return -ENOMEM; 2721 2722 /* 2723 * Even though we are in the critical section of the transaction commit, 2724 * we can still have concurrent tasks adding elements to this 2725 * transaction's list of dirty block groups. These tasks correspond to 2726 * endio free space workers started when writeback finishes for a 2727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2728 * allocate new block groups as a result of COWing nodes of the root 2729 * tree when updating the free space inode. The writeback for the space 2730 * caches is triggered by an earlier call to 2731 * btrfs_start_dirty_block_groups() and iterations of the following 2732 * loop. 2733 * Also we want to do the cache_save_setup first and then run the 2734 * delayed refs to make sure we have the best chance at doing this all 2735 * in one shot. 2736 */ 2737 spin_lock(&cur_trans->dirty_bgs_lock); 2738 while (!list_empty(&cur_trans->dirty_bgs)) { 2739 cache = list_first_entry(&cur_trans->dirty_bgs, 2740 struct btrfs_block_group, 2741 dirty_list); 2742 2743 /* 2744 * This can happen if cache_save_setup re-dirties a block group 2745 * that is already under IO. Just wait for it to finish and 2746 * then do it all again 2747 */ 2748 if (!list_empty(&cache->io_list)) { 2749 spin_unlock(&cur_trans->dirty_bgs_lock); 2750 list_del_init(&cache->io_list); 2751 btrfs_wait_cache_io(trans, cache, path); 2752 btrfs_put_block_group(cache); 2753 spin_lock(&cur_trans->dirty_bgs_lock); 2754 } 2755 2756 /* 2757 * Don't remove from the dirty list until after we've waited on 2758 * any pending IO 2759 */ 2760 list_del_init(&cache->dirty_list); 2761 spin_unlock(&cur_trans->dirty_bgs_lock); 2762 should_put = 1; 2763 2764 cache_save_setup(cache, trans, path); 2765 2766 if (!ret) 2767 ret = btrfs_run_delayed_refs(trans, 2768 (unsigned long) -1); 2769 2770 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2771 cache->io_ctl.inode = NULL; 2772 ret = btrfs_write_out_cache(trans, cache, path); 2773 if (ret == 0 && cache->io_ctl.inode) { 2774 num_started++; 2775 should_put = 0; 2776 list_add_tail(&cache->io_list, io); 2777 } else { 2778 /* 2779 * If we failed to write the cache, the 2780 * generation will be bad and life goes on 2781 */ 2782 ret = 0; 2783 } 2784 } 2785 if (!ret) { 2786 ret = write_one_cache_group(trans, path, cache); 2787 /* 2788 * One of the free space endio workers might have 2789 * created a new block group while updating a free space 2790 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2791 * and hasn't released its transaction handle yet, in 2792 * which case the new block group is still attached to 2793 * its transaction handle and its creation has not 2794 * finished yet (no block group item in the extent tree 2795 * yet, etc). If this is the case, wait for all free 2796 * space endio workers to finish and retry. This is a 2797 * a very rare case so no need for a more efficient and 2798 * complex approach. 2799 */ 2800 if (ret == -ENOENT) { 2801 wait_event(cur_trans->writer_wait, 2802 atomic_read(&cur_trans->num_writers) == 1); 2803 ret = write_one_cache_group(trans, path, cache); 2804 } 2805 if (ret) 2806 btrfs_abort_transaction(trans, ret); 2807 } 2808 2809 /* If its not on the io list, we need to put the block group */ 2810 if (should_put) 2811 btrfs_put_block_group(cache); 2812 btrfs_delayed_refs_rsv_release(fs_info, 1); 2813 spin_lock(&cur_trans->dirty_bgs_lock); 2814 } 2815 spin_unlock(&cur_trans->dirty_bgs_lock); 2816 2817 /* 2818 * Refer to the definition of io_bgs member for details why it's safe 2819 * to use it without any locking 2820 */ 2821 while (!list_empty(io)) { 2822 cache = list_first_entry(io, struct btrfs_block_group, 2823 io_list); 2824 list_del_init(&cache->io_list); 2825 btrfs_wait_cache_io(trans, cache, path); 2826 btrfs_put_block_group(cache); 2827 } 2828 2829 btrfs_free_path(path); 2830 return ret; 2831 } 2832 2833 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2834 u64 bytenr, u64 num_bytes, int alloc) 2835 { 2836 struct btrfs_fs_info *info = trans->fs_info; 2837 struct btrfs_block_group *cache = NULL; 2838 u64 total = num_bytes; 2839 u64 old_val; 2840 u64 byte_in_group; 2841 int factor; 2842 int ret = 0; 2843 2844 /* Block accounting for super block */ 2845 spin_lock(&info->delalloc_root_lock); 2846 old_val = btrfs_super_bytes_used(info->super_copy); 2847 if (alloc) 2848 old_val += num_bytes; 2849 else 2850 old_val -= num_bytes; 2851 btrfs_set_super_bytes_used(info->super_copy, old_val); 2852 spin_unlock(&info->delalloc_root_lock); 2853 2854 while (total) { 2855 cache = btrfs_lookup_block_group(info, bytenr); 2856 if (!cache) { 2857 ret = -ENOENT; 2858 break; 2859 } 2860 factor = btrfs_bg_type_to_factor(cache->flags); 2861 2862 /* 2863 * If this block group has free space cache written out, we 2864 * need to make sure to load it if we are removing space. This 2865 * is because we need the unpinning stage to actually add the 2866 * space back to the block group, otherwise we will leak space. 2867 */ 2868 if (!alloc && !btrfs_block_group_done(cache)) 2869 btrfs_cache_block_group(cache, 1); 2870 2871 byte_in_group = bytenr - cache->start; 2872 WARN_ON(byte_in_group > cache->length); 2873 2874 spin_lock(&cache->space_info->lock); 2875 spin_lock(&cache->lock); 2876 2877 if (btrfs_test_opt(info, SPACE_CACHE) && 2878 cache->disk_cache_state < BTRFS_DC_CLEAR) 2879 cache->disk_cache_state = BTRFS_DC_CLEAR; 2880 2881 old_val = cache->used; 2882 num_bytes = min(total, cache->length - byte_in_group); 2883 if (alloc) { 2884 old_val += num_bytes; 2885 cache->used = old_val; 2886 cache->reserved -= num_bytes; 2887 cache->space_info->bytes_reserved -= num_bytes; 2888 cache->space_info->bytes_used += num_bytes; 2889 cache->space_info->disk_used += num_bytes * factor; 2890 spin_unlock(&cache->lock); 2891 spin_unlock(&cache->space_info->lock); 2892 } else { 2893 old_val -= num_bytes; 2894 cache->used = old_val; 2895 cache->pinned += num_bytes; 2896 btrfs_space_info_update_bytes_pinned(info, 2897 cache->space_info, num_bytes); 2898 cache->space_info->bytes_used -= num_bytes; 2899 cache->space_info->disk_used -= num_bytes * factor; 2900 spin_unlock(&cache->lock); 2901 spin_unlock(&cache->space_info->lock); 2902 2903 percpu_counter_add_batch( 2904 &cache->space_info->total_bytes_pinned, 2905 num_bytes, 2906 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2907 set_extent_dirty(&trans->transaction->pinned_extents, 2908 bytenr, bytenr + num_bytes - 1, 2909 GFP_NOFS | __GFP_NOFAIL); 2910 } 2911 2912 spin_lock(&trans->transaction->dirty_bgs_lock); 2913 if (list_empty(&cache->dirty_list)) { 2914 list_add_tail(&cache->dirty_list, 2915 &trans->transaction->dirty_bgs); 2916 trans->delayed_ref_updates++; 2917 btrfs_get_block_group(cache); 2918 } 2919 spin_unlock(&trans->transaction->dirty_bgs_lock); 2920 2921 /* 2922 * No longer have used bytes in this block group, queue it for 2923 * deletion. We do this after adding the block group to the 2924 * dirty list to avoid races between cleaner kthread and space 2925 * cache writeout. 2926 */ 2927 if (!alloc && old_val == 0) { 2928 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2929 btrfs_mark_bg_unused(cache); 2930 } 2931 2932 btrfs_put_block_group(cache); 2933 total -= num_bytes; 2934 bytenr += num_bytes; 2935 } 2936 2937 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2938 btrfs_update_delayed_refs_rsv(trans); 2939 return ret; 2940 } 2941 2942 /** 2943 * btrfs_add_reserved_bytes - update the block_group and space info counters 2944 * @cache: The cache we are manipulating 2945 * @ram_bytes: The number of bytes of file content, and will be same to 2946 * @num_bytes except for the compress path. 2947 * @num_bytes: The number of bytes in question 2948 * @delalloc: The blocks are allocated for the delalloc write 2949 * 2950 * This is called by the allocator when it reserves space. If this is a 2951 * reservation and the block group has become read only we cannot make the 2952 * reservation and return -EAGAIN, otherwise this function always succeeds. 2953 */ 2954 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2955 u64 ram_bytes, u64 num_bytes, int delalloc) 2956 { 2957 struct btrfs_space_info *space_info = cache->space_info; 2958 int ret = 0; 2959 2960 spin_lock(&space_info->lock); 2961 spin_lock(&cache->lock); 2962 if (cache->ro) { 2963 ret = -EAGAIN; 2964 } else { 2965 cache->reserved += num_bytes; 2966 space_info->bytes_reserved += num_bytes; 2967 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2968 space_info->flags, num_bytes, 1); 2969 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2970 space_info, -ram_bytes); 2971 if (delalloc) 2972 cache->delalloc_bytes += num_bytes; 2973 } 2974 spin_unlock(&cache->lock); 2975 spin_unlock(&space_info->lock); 2976 return ret; 2977 } 2978 2979 /** 2980 * btrfs_free_reserved_bytes - update the block_group and space info counters 2981 * @cache: The cache we are manipulating 2982 * @num_bytes: The number of bytes in question 2983 * @delalloc: The blocks are allocated for the delalloc write 2984 * 2985 * This is called by somebody who is freeing space that was never actually used 2986 * on disk. For example if you reserve some space for a new leaf in transaction 2987 * A and before transaction A commits you free that leaf, you call this with 2988 * reserve set to 0 in order to clear the reservation. 2989 */ 2990 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 2991 u64 num_bytes, int delalloc) 2992 { 2993 struct btrfs_space_info *space_info = cache->space_info; 2994 2995 spin_lock(&space_info->lock); 2996 spin_lock(&cache->lock); 2997 if (cache->ro) 2998 space_info->bytes_readonly += num_bytes; 2999 cache->reserved -= num_bytes; 3000 space_info->bytes_reserved -= num_bytes; 3001 space_info->max_extent_size = 0; 3002 3003 if (delalloc) 3004 cache->delalloc_bytes -= num_bytes; 3005 spin_unlock(&cache->lock); 3006 spin_unlock(&space_info->lock); 3007 } 3008 3009 static void force_metadata_allocation(struct btrfs_fs_info *info) 3010 { 3011 struct list_head *head = &info->space_info; 3012 struct btrfs_space_info *found; 3013 3014 rcu_read_lock(); 3015 list_for_each_entry_rcu(found, head, list) { 3016 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3017 found->force_alloc = CHUNK_ALLOC_FORCE; 3018 } 3019 rcu_read_unlock(); 3020 } 3021 3022 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3023 struct btrfs_space_info *sinfo, int force) 3024 { 3025 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3026 u64 thresh; 3027 3028 if (force == CHUNK_ALLOC_FORCE) 3029 return 1; 3030 3031 /* 3032 * in limited mode, we want to have some free space up to 3033 * about 1% of the FS size. 3034 */ 3035 if (force == CHUNK_ALLOC_LIMITED) { 3036 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3037 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3038 3039 if (sinfo->total_bytes - bytes_used < thresh) 3040 return 1; 3041 } 3042 3043 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3044 return 0; 3045 return 1; 3046 } 3047 3048 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3049 { 3050 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3051 3052 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3053 } 3054 3055 /* 3056 * If force is CHUNK_ALLOC_FORCE: 3057 * - return 1 if it successfully allocates a chunk, 3058 * - return errors including -ENOSPC otherwise. 3059 * If force is NOT CHUNK_ALLOC_FORCE: 3060 * - return 0 if it doesn't need to allocate a new chunk, 3061 * - return 1 if it successfully allocates a chunk, 3062 * - return errors including -ENOSPC otherwise. 3063 */ 3064 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3065 enum btrfs_chunk_alloc_enum force) 3066 { 3067 struct btrfs_fs_info *fs_info = trans->fs_info; 3068 struct btrfs_space_info *space_info; 3069 bool wait_for_alloc = false; 3070 bool should_alloc = false; 3071 int ret = 0; 3072 3073 /* Don't re-enter if we're already allocating a chunk */ 3074 if (trans->allocating_chunk) 3075 return -ENOSPC; 3076 3077 space_info = btrfs_find_space_info(fs_info, flags); 3078 ASSERT(space_info); 3079 3080 do { 3081 spin_lock(&space_info->lock); 3082 if (force < space_info->force_alloc) 3083 force = space_info->force_alloc; 3084 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3085 if (space_info->full) { 3086 /* No more free physical space */ 3087 if (should_alloc) 3088 ret = -ENOSPC; 3089 else 3090 ret = 0; 3091 spin_unlock(&space_info->lock); 3092 return ret; 3093 } else if (!should_alloc) { 3094 spin_unlock(&space_info->lock); 3095 return 0; 3096 } else if (space_info->chunk_alloc) { 3097 /* 3098 * Someone is already allocating, so we need to block 3099 * until this someone is finished and then loop to 3100 * recheck if we should continue with our allocation 3101 * attempt. 3102 */ 3103 wait_for_alloc = true; 3104 spin_unlock(&space_info->lock); 3105 mutex_lock(&fs_info->chunk_mutex); 3106 mutex_unlock(&fs_info->chunk_mutex); 3107 } else { 3108 /* Proceed with allocation */ 3109 space_info->chunk_alloc = 1; 3110 wait_for_alloc = false; 3111 spin_unlock(&space_info->lock); 3112 } 3113 3114 cond_resched(); 3115 } while (wait_for_alloc); 3116 3117 mutex_lock(&fs_info->chunk_mutex); 3118 trans->allocating_chunk = true; 3119 3120 /* 3121 * If we have mixed data/metadata chunks we want to make sure we keep 3122 * allocating mixed chunks instead of individual chunks. 3123 */ 3124 if (btrfs_mixed_space_info(space_info)) 3125 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3126 3127 /* 3128 * if we're doing a data chunk, go ahead and make sure that 3129 * we keep a reasonable number of metadata chunks allocated in the 3130 * FS as well. 3131 */ 3132 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3133 fs_info->data_chunk_allocations++; 3134 if (!(fs_info->data_chunk_allocations % 3135 fs_info->metadata_ratio)) 3136 force_metadata_allocation(fs_info); 3137 } 3138 3139 /* 3140 * Check if we have enough space in SYSTEM chunk because we may need 3141 * to update devices. 3142 */ 3143 check_system_chunk(trans, flags); 3144 3145 ret = btrfs_alloc_chunk(trans, flags); 3146 trans->allocating_chunk = false; 3147 3148 spin_lock(&space_info->lock); 3149 if (ret < 0) { 3150 if (ret == -ENOSPC) 3151 space_info->full = 1; 3152 else 3153 goto out; 3154 } else { 3155 ret = 1; 3156 space_info->max_extent_size = 0; 3157 } 3158 3159 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3160 out: 3161 space_info->chunk_alloc = 0; 3162 spin_unlock(&space_info->lock); 3163 mutex_unlock(&fs_info->chunk_mutex); 3164 /* 3165 * When we allocate a new chunk we reserve space in the chunk block 3166 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3167 * add new nodes/leafs to it if we end up needing to do it when 3168 * inserting the chunk item and updating device items as part of the 3169 * second phase of chunk allocation, performed by 3170 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3171 * large number of new block groups to create in our transaction 3172 * handle's new_bgs list to avoid exhausting the chunk block reserve 3173 * in extreme cases - like having a single transaction create many new 3174 * block groups when starting to write out the free space caches of all 3175 * the block groups that were made dirty during the lifetime of the 3176 * transaction. 3177 */ 3178 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3179 btrfs_create_pending_block_groups(trans); 3180 3181 return ret; 3182 } 3183 3184 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3185 { 3186 u64 num_dev; 3187 3188 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3189 if (!num_dev) 3190 num_dev = fs_info->fs_devices->rw_devices; 3191 3192 return num_dev; 3193 } 3194 3195 /* 3196 * Reserve space in the system space for allocating or removing a chunk 3197 */ 3198 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3199 { 3200 struct btrfs_fs_info *fs_info = trans->fs_info; 3201 struct btrfs_space_info *info; 3202 u64 left; 3203 u64 thresh; 3204 int ret = 0; 3205 u64 num_devs; 3206 3207 /* 3208 * Needed because we can end up allocating a system chunk and for an 3209 * atomic and race free space reservation in the chunk block reserve. 3210 */ 3211 lockdep_assert_held(&fs_info->chunk_mutex); 3212 3213 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3214 spin_lock(&info->lock); 3215 left = info->total_bytes - btrfs_space_info_used(info, true); 3216 spin_unlock(&info->lock); 3217 3218 num_devs = get_profile_num_devs(fs_info, type); 3219 3220 /* num_devs device items to update and 1 chunk item to add or remove */ 3221 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3222 btrfs_calc_insert_metadata_size(fs_info, 1); 3223 3224 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3225 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3226 left, thresh, type); 3227 btrfs_dump_space_info(fs_info, info, 0, 0); 3228 } 3229 3230 if (left < thresh) { 3231 u64 flags = btrfs_system_alloc_profile(fs_info); 3232 3233 /* 3234 * Ignore failure to create system chunk. We might end up not 3235 * needing it, as we might not need to COW all nodes/leafs from 3236 * the paths we visit in the chunk tree (they were already COWed 3237 * or created in the current transaction for example). 3238 */ 3239 ret = btrfs_alloc_chunk(trans, flags); 3240 } 3241 3242 if (!ret) { 3243 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3244 &fs_info->chunk_block_rsv, 3245 thresh, BTRFS_RESERVE_NO_FLUSH); 3246 if (!ret) 3247 trans->chunk_bytes_reserved += thresh; 3248 } 3249 } 3250 3251 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3252 { 3253 struct btrfs_block_group *block_group; 3254 u64 last = 0; 3255 3256 while (1) { 3257 struct inode *inode; 3258 3259 block_group = btrfs_lookup_first_block_group(info, last); 3260 while (block_group) { 3261 btrfs_wait_block_group_cache_done(block_group); 3262 spin_lock(&block_group->lock); 3263 if (block_group->iref) 3264 break; 3265 spin_unlock(&block_group->lock); 3266 block_group = btrfs_next_block_group(block_group); 3267 } 3268 if (!block_group) { 3269 if (last == 0) 3270 break; 3271 last = 0; 3272 continue; 3273 } 3274 3275 inode = block_group->inode; 3276 block_group->iref = 0; 3277 block_group->inode = NULL; 3278 spin_unlock(&block_group->lock); 3279 ASSERT(block_group->io_ctl.inode == NULL); 3280 iput(inode); 3281 last = block_group->start + block_group->length; 3282 btrfs_put_block_group(block_group); 3283 } 3284 } 3285 3286 /* 3287 * Must be called only after stopping all workers, since we could have block 3288 * group caching kthreads running, and therefore they could race with us if we 3289 * freed the block groups before stopping them. 3290 */ 3291 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3292 { 3293 struct btrfs_block_group *block_group; 3294 struct btrfs_space_info *space_info; 3295 struct btrfs_caching_control *caching_ctl; 3296 struct rb_node *n; 3297 3298 down_write(&info->commit_root_sem); 3299 while (!list_empty(&info->caching_block_groups)) { 3300 caching_ctl = list_entry(info->caching_block_groups.next, 3301 struct btrfs_caching_control, list); 3302 list_del(&caching_ctl->list); 3303 btrfs_put_caching_control(caching_ctl); 3304 } 3305 up_write(&info->commit_root_sem); 3306 3307 spin_lock(&info->unused_bgs_lock); 3308 while (!list_empty(&info->unused_bgs)) { 3309 block_group = list_first_entry(&info->unused_bgs, 3310 struct btrfs_block_group, 3311 bg_list); 3312 list_del_init(&block_group->bg_list); 3313 btrfs_put_block_group(block_group); 3314 } 3315 spin_unlock(&info->unused_bgs_lock); 3316 3317 spin_lock(&info->block_group_cache_lock); 3318 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3319 block_group = rb_entry(n, struct btrfs_block_group, 3320 cache_node); 3321 rb_erase(&block_group->cache_node, 3322 &info->block_group_cache_tree); 3323 RB_CLEAR_NODE(&block_group->cache_node); 3324 spin_unlock(&info->block_group_cache_lock); 3325 3326 down_write(&block_group->space_info->groups_sem); 3327 list_del(&block_group->list); 3328 up_write(&block_group->space_info->groups_sem); 3329 3330 /* 3331 * We haven't cached this block group, which means we could 3332 * possibly have excluded extents on this block group. 3333 */ 3334 if (block_group->cached == BTRFS_CACHE_NO || 3335 block_group->cached == BTRFS_CACHE_ERROR) 3336 btrfs_free_excluded_extents(block_group); 3337 3338 btrfs_remove_free_space_cache(block_group); 3339 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3340 ASSERT(list_empty(&block_group->dirty_list)); 3341 ASSERT(list_empty(&block_group->io_list)); 3342 ASSERT(list_empty(&block_group->bg_list)); 3343 ASSERT(atomic_read(&block_group->count) == 1); 3344 btrfs_put_block_group(block_group); 3345 3346 spin_lock(&info->block_group_cache_lock); 3347 } 3348 spin_unlock(&info->block_group_cache_lock); 3349 3350 /* 3351 * Now that all the block groups are freed, go through and free all the 3352 * space_info structs. This is only called during the final stages of 3353 * unmount, and so we know nobody is using them. We call 3354 * synchronize_rcu() once before we start, just to be on the safe side. 3355 */ 3356 synchronize_rcu(); 3357 3358 btrfs_release_global_block_rsv(info); 3359 3360 while (!list_empty(&info->space_info)) { 3361 space_info = list_entry(info->space_info.next, 3362 struct btrfs_space_info, 3363 list); 3364 3365 /* 3366 * Do not hide this behind enospc_debug, this is actually 3367 * important and indicates a real bug if this happens. 3368 */ 3369 if (WARN_ON(space_info->bytes_pinned > 0 || 3370 space_info->bytes_reserved > 0 || 3371 space_info->bytes_may_use > 0)) 3372 btrfs_dump_space_info(info, space_info, 0, 0); 3373 list_del(&space_info->list); 3374 btrfs_sysfs_remove_space_info(space_info); 3375 } 3376 return 0; 3377 } 3378