1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 445 caching_ctl = btrfs_get_caching_control(cache); 446 if (!caching_ctl) 447 return; 448 449 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 450 (cache->free_space_ctl->free_space >= num_bytes)); 451 452 btrfs_put_caching_control(caching_ctl); 453 } 454 455 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 456 struct btrfs_caching_control *caching_ctl) 457 { 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 459 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 460 } 461 462 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 463 { 464 struct btrfs_caching_control *caching_ctl; 465 int ret; 466 467 caching_ctl = btrfs_get_caching_control(cache); 468 if (!caching_ctl) 469 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 470 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 471 btrfs_put_caching_control(caching_ctl); 472 return ret; 473 } 474 475 #ifdef CONFIG_BTRFS_DEBUG 476 static void fragment_free_space(struct btrfs_block_group *block_group) 477 { 478 struct btrfs_fs_info *fs_info = block_group->fs_info; 479 u64 start = block_group->start; 480 u64 len = block_group->length; 481 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 482 fs_info->nodesize : fs_info->sectorsize; 483 u64 step = chunk << 1; 484 485 while (len > chunk) { 486 btrfs_remove_free_space(block_group, start, chunk); 487 start += step; 488 if (len < step) 489 len = 0; 490 else 491 len -= step; 492 } 493 } 494 #endif 495 496 /* 497 * This is only called by btrfs_cache_block_group, since we could have freed 498 * extents we need to check the pinned_extents for any extents that can't be 499 * used yet since their free space will be released as soon as the transaction 500 * commits. 501 */ 502 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 503 { 504 struct btrfs_fs_info *info = block_group->fs_info; 505 u64 extent_start, extent_end, size, total_added = 0; 506 int ret; 507 508 while (start < end) { 509 ret = find_first_extent_bit(&info->excluded_extents, start, 510 &extent_start, &extent_end, 511 EXTENT_DIRTY | EXTENT_UPTODATE, 512 NULL); 513 if (ret) 514 break; 515 516 if (extent_start <= start) { 517 start = extent_end + 1; 518 } else if (extent_start > start && extent_start < end) { 519 size = extent_start - start; 520 total_added += size; 521 ret = btrfs_add_free_space_async_trimmed(block_group, 522 start, size); 523 BUG_ON(ret); /* -ENOMEM or logic error */ 524 start = extent_end + 1; 525 } else { 526 break; 527 } 528 } 529 530 if (start < end) { 531 size = end - start; 532 total_added += size; 533 ret = btrfs_add_free_space_async_trimmed(block_group, start, 534 size); 535 BUG_ON(ret); /* -ENOMEM or logic error */ 536 } 537 538 return total_added; 539 } 540 541 /* 542 * Get an arbitrary extent item index / max_index through the block group 543 * 544 * @block_group the block group to sample from 545 * @index: the integral step through the block group to grab from 546 * @max_index: the granularity of the sampling 547 * @key: return value parameter for the item we find 548 * 549 * Pre-conditions on indices: 550 * 0 <= index <= max_index 551 * 0 < max_index 552 * 553 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 554 * error code on error. 555 */ 556 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 557 struct btrfs_block_group *block_group, 558 int index, int max_index, 559 struct btrfs_key *found_key) 560 { 561 struct btrfs_fs_info *fs_info = block_group->fs_info; 562 struct btrfs_root *extent_root; 563 u64 search_offset; 564 u64 search_end = block_group->start + block_group->length; 565 struct btrfs_path *path; 566 struct btrfs_key search_key; 567 int ret = 0; 568 569 ASSERT(index >= 0); 570 ASSERT(index <= max_index); 571 ASSERT(max_index > 0); 572 lockdep_assert_held(&caching_ctl->mutex); 573 lockdep_assert_held_read(&fs_info->commit_root_sem); 574 575 path = btrfs_alloc_path(); 576 if (!path) 577 return -ENOMEM; 578 579 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 580 BTRFS_SUPER_INFO_OFFSET)); 581 582 path->skip_locking = 1; 583 path->search_commit_root = 1; 584 path->reada = READA_FORWARD; 585 586 search_offset = index * div_u64(block_group->length, max_index); 587 search_key.objectid = block_group->start + search_offset; 588 search_key.type = BTRFS_EXTENT_ITEM_KEY; 589 search_key.offset = 0; 590 591 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 592 /* Success; sampled an extent item in the block group */ 593 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 594 found_key->objectid >= block_group->start && 595 found_key->objectid + found_key->offset <= search_end) 596 break; 597 598 /* We can't possibly find a valid extent item anymore */ 599 if (found_key->objectid >= search_end) { 600 ret = 1; 601 break; 602 } 603 } 604 605 lockdep_assert_held(&caching_ctl->mutex); 606 lockdep_assert_held_read(&fs_info->commit_root_sem); 607 btrfs_free_path(path); 608 return ret; 609 } 610 611 /* 612 * Best effort attempt to compute a block group's size class while caching it. 613 * 614 * @block_group: the block group we are caching 615 * 616 * We cannot infer the size class while adding free space extents, because that 617 * logic doesn't care about contiguous file extents (it doesn't differentiate 618 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 619 * file extent items. Reading all of them is quite wasteful, because usually 620 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 621 * them at even steps through the block group and pick the smallest size class 622 * we see. Since size class is best effort, and not guaranteed in general, 623 * inaccuracy is acceptable. 624 * 625 * To be more explicit about why this algorithm makes sense: 626 * 627 * If we are caching in a block group from disk, then there are three major cases 628 * to consider: 629 * 1. the block group is well behaved and all extents in it are the same size 630 * class. 631 * 2. the block group is mostly one size class with rare exceptions for last 632 * ditch allocations 633 * 3. the block group was populated before size classes and can have a totally 634 * arbitrary mix of size classes. 635 * 636 * In case 1, looking at any extent in the block group will yield the correct 637 * result. For the mixed cases, taking the minimum size class seems like a good 638 * approximation, since gaps from frees will be usable to the size class. For 639 * 2., a small handful of file extents is likely to yield the right answer. For 640 * 3, we can either read every file extent, or admit that this is best effort 641 * anyway and try to stay fast. 642 * 643 * Returns: 0 on success, negative error code on error. 644 */ 645 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 646 struct btrfs_block_group *block_group) 647 { 648 struct btrfs_fs_info *fs_info = block_group->fs_info; 649 struct btrfs_key key; 650 int i; 651 u64 min_size = block_group->length; 652 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 653 int ret; 654 655 if (!btrfs_block_group_should_use_size_class(block_group)) 656 return 0; 657 658 lockdep_assert_held(&caching_ctl->mutex); 659 lockdep_assert_held_read(&fs_info->commit_root_sem); 660 for (i = 0; i < 5; ++i) { 661 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 662 if (ret < 0) 663 goto out; 664 if (ret > 0) 665 continue; 666 min_size = min_t(u64, min_size, key.offset); 667 size_class = btrfs_calc_block_group_size_class(min_size); 668 } 669 if (size_class != BTRFS_BG_SZ_NONE) { 670 spin_lock(&block_group->lock); 671 block_group->size_class = size_class; 672 spin_unlock(&block_group->lock); 673 } 674 out: 675 return ret; 676 } 677 678 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 679 { 680 struct btrfs_block_group *block_group = caching_ctl->block_group; 681 struct btrfs_fs_info *fs_info = block_group->fs_info; 682 struct btrfs_root *extent_root; 683 struct btrfs_path *path; 684 struct extent_buffer *leaf; 685 struct btrfs_key key; 686 u64 total_found = 0; 687 u64 last = 0; 688 u32 nritems; 689 int ret; 690 bool wakeup = true; 691 692 path = btrfs_alloc_path(); 693 if (!path) 694 return -ENOMEM; 695 696 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 697 extent_root = btrfs_extent_root(fs_info, last); 698 699 #ifdef CONFIG_BTRFS_DEBUG 700 /* 701 * If we're fragmenting we don't want to make anybody think we can 702 * allocate from this block group until we've had a chance to fragment 703 * the free space. 704 */ 705 if (btrfs_should_fragment_free_space(block_group)) 706 wakeup = false; 707 #endif 708 /* 709 * We don't want to deadlock with somebody trying to allocate a new 710 * extent for the extent root while also trying to search the extent 711 * root to add free space. So we skip locking and search the commit 712 * root, since its read-only 713 */ 714 path->skip_locking = 1; 715 path->search_commit_root = 1; 716 path->reada = READA_FORWARD; 717 718 key.objectid = last; 719 key.offset = 0; 720 key.type = BTRFS_EXTENT_ITEM_KEY; 721 722 next: 723 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 724 if (ret < 0) 725 goto out; 726 727 leaf = path->nodes[0]; 728 nritems = btrfs_header_nritems(leaf); 729 730 while (1) { 731 if (btrfs_fs_closing(fs_info) > 1) { 732 last = (u64)-1; 733 break; 734 } 735 736 if (path->slots[0] < nritems) { 737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 738 } else { 739 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 740 if (ret) 741 break; 742 743 if (need_resched() || 744 rwsem_is_contended(&fs_info->commit_root_sem)) { 745 btrfs_release_path(path); 746 up_read(&fs_info->commit_root_sem); 747 mutex_unlock(&caching_ctl->mutex); 748 cond_resched(); 749 mutex_lock(&caching_ctl->mutex); 750 down_read(&fs_info->commit_root_sem); 751 goto next; 752 } 753 754 ret = btrfs_next_leaf(extent_root, path); 755 if (ret < 0) 756 goto out; 757 if (ret) 758 break; 759 leaf = path->nodes[0]; 760 nritems = btrfs_header_nritems(leaf); 761 continue; 762 } 763 764 if (key.objectid < last) { 765 key.objectid = last; 766 key.offset = 0; 767 key.type = BTRFS_EXTENT_ITEM_KEY; 768 btrfs_release_path(path); 769 goto next; 770 } 771 772 if (key.objectid < block_group->start) { 773 path->slots[0]++; 774 continue; 775 } 776 777 if (key.objectid >= block_group->start + block_group->length) 778 break; 779 780 if (key.type == BTRFS_EXTENT_ITEM_KEY || 781 key.type == BTRFS_METADATA_ITEM_KEY) { 782 total_found += add_new_free_space(block_group, last, 783 key.objectid); 784 if (key.type == BTRFS_METADATA_ITEM_KEY) 785 last = key.objectid + 786 fs_info->nodesize; 787 else 788 last = key.objectid + key.offset; 789 790 if (total_found > CACHING_CTL_WAKE_UP) { 791 total_found = 0; 792 if (wakeup) 793 wake_up(&caching_ctl->wait); 794 } 795 } 796 path->slots[0]++; 797 } 798 ret = 0; 799 800 total_found += add_new_free_space(block_group, last, 801 block_group->start + block_group->length); 802 803 out: 804 btrfs_free_path(path); 805 return ret; 806 } 807 808 static noinline void caching_thread(struct btrfs_work *work) 809 { 810 struct btrfs_block_group *block_group; 811 struct btrfs_fs_info *fs_info; 812 struct btrfs_caching_control *caching_ctl; 813 int ret; 814 815 caching_ctl = container_of(work, struct btrfs_caching_control, work); 816 block_group = caching_ctl->block_group; 817 fs_info = block_group->fs_info; 818 819 mutex_lock(&caching_ctl->mutex); 820 down_read(&fs_info->commit_root_sem); 821 822 load_block_group_size_class(caching_ctl, block_group); 823 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 824 ret = load_free_space_cache(block_group); 825 if (ret == 1) { 826 ret = 0; 827 goto done; 828 } 829 830 /* 831 * We failed to load the space cache, set ourselves to 832 * CACHE_STARTED and carry on. 833 */ 834 spin_lock(&block_group->lock); 835 block_group->cached = BTRFS_CACHE_STARTED; 836 spin_unlock(&block_group->lock); 837 wake_up(&caching_ctl->wait); 838 } 839 840 /* 841 * If we are in the transaction that populated the free space tree we 842 * can't actually cache from the free space tree as our commit root and 843 * real root are the same, so we could change the contents of the blocks 844 * while caching. Instead do the slow caching in this case, and after 845 * the transaction has committed we will be safe. 846 */ 847 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 848 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 849 ret = load_free_space_tree(caching_ctl); 850 else 851 ret = load_extent_tree_free(caching_ctl); 852 done: 853 spin_lock(&block_group->lock); 854 block_group->caching_ctl = NULL; 855 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 856 spin_unlock(&block_group->lock); 857 858 #ifdef CONFIG_BTRFS_DEBUG 859 if (btrfs_should_fragment_free_space(block_group)) { 860 u64 bytes_used; 861 862 spin_lock(&block_group->space_info->lock); 863 spin_lock(&block_group->lock); 864 bytes_used = block_group->length - block_group->used; 865 block_group->space_info->bytes_used += bytes_used >> 1; 866 spin_unlock(&block_group->lock); 867 spin_unlock(&block_group->space_info->lock); 868 fragment_free_space(block_group); 869 } 870 #endif 871 872 up_read(&fs_info->commit_root_sem); 873 btrfs_free_excluded_extents(block_group); 874 mutex_unlock(&caching_ctl->mutex); 875 876 wake_up(&caching_ctl->wait); 877 878 btrfs_put_caching_control(caching_ctl); 879 btrfs_put_block_group(block_group); 880 } 881 882 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 883 { 884 struct btrfs_fs_info *fs_info = cache->fs_info; 885 struct btrfs_caching_control *caching_ctl = NULL; 886 int ret = 0; 887 888 /* Allocator for zoned filesystems does not use the cache at all */ 889 if (btrfs_is_zoned(fs_info)) 890 return 0; 891 892 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 893 if (!caching_ctl) 894 return -ENOMEM; 895 896 INIT_LIST_HEAD(&caching_ctl->list); 897 mutex_init(&caching_ctl->mutex); 898 init_waitqueue_head(&caching_ctl->wait); 899 caching_ctl->block_group = cache; 900 refcount_set(&caching_ctl->count, 2); 901 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 902 903 spin_lock(&cache->lock); 904 if (cache->cached != BTRFS_CACHE_NO) { 905 kfree(caching_ctl); 906 907 caching_ctl = cache->caching_ctl; 908 if (caching_ctl) 909 refcount_inc(&caching_ctl->count); 910 spin_unlock(&cache->lock); 911 goto out; 912 } 913 WARN_ON(cache->caching_ctl); 914 cache->caching_ctl = caching_ctl; 915 cache->cached = BTRFS_CACHE_STARTED; 916 spin_unlock(&cache->lock); 917 918 write_lock(&fs_info->block_group_cache_lock); 919 refcount_inc(&caching_ctl->count); 920 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 921 write_unlock(&fs_info->block_group_cache_lock); 922 923 btrfs_get_block_group(cache); 924 925 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 926 out: 927 if (wait && caching_ctl) 928 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 929 if (caching_ctl) 930 btrfs_put_caching_control(caching_ctl); 931 932 return ret; 933 } 934 935 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 936 { 937 u64 extra_flags = chunk_to_extended(flags) & 938 BTRFS_EXTENDED_PROFILE_MASK; 939 940 write_seqlock(&fs_info->profiles_lock); 941 if (flags & BTRFS_BLOCK_GROUP_DATA) 942 fs_info->avail_data_alloc_bits &= ~extra_flags; 943 if (flags & BTRFS_BLOCK_GROUP_METADATA) 944 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 945 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 946 fs_info->avail_system_alloc_bits &= ~extra_flags; 947 write_sequnlock(&fs_info->profiles_lock); 948 } 949 950 /* 951 * Clear incompat bits for the following feature(s): 952 * 953 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 954 * in the whole filesystem 955 * 956 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 957 */ 958 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 959 { 960 bool found_raid56 = false; 961 bool found_raid1c34 = false; 962 963 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 964 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 965 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 966 struct list_head *head = &fs_info->space_info; 967 struct btrfs_space_info *sinfo; 968 969 list_for_each_entry_rcu(sinfo, head, list) { 970 down_read(&sinfo->groups_sem); 971 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 972 found_raid56 = true; 973 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 974 found_raid56 = true; 975 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 976 found_raid1c34 = true; 977 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 978 found_raid1c34 = true; 979 up_read(&sinfo->groups_sem); 980 } 981 if (!found_raid56) 982 btrfs_clear_fs_incompat(fs_info, RAID56); 983 if (!found_raid1c34) 984 btrfs_clear_fs_incompat(fs_info, RAID1C34); 985 } 986 } 987 988 static int remove_block_group_item(struct btrfs_trans_handle *trans, 989 struct btrfs_path *path, 990 struct btrfs_block_group *block_group) 991 { 992 struct btrfs_fs_info *fs_info = trans->fs_info; 993 struct btrfs_root *root; 994 struct btrfs_key key; 995 int ret; 996 997 root = btrfs_block_group_root(fs_info); 998 key.objectid = block_group->start; 999 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1000 key.offset = block_group->length; 1001 1002 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1003 if (ret > 0) 1004 ret = -ENOENT; 1005 if (ret < 0) 1006 return ret; 1007 1008 ret = btrfs_del_item(trans, root, path); 1009 return ret; 1010 } 1011 1012 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1013 u64 group_start, struct extent_map *em) 1014 { 1015 struct btrfs_fs_info *fs_info = trans->fs_info; 1016 struct btrfs_path *path; 1017 struct btrfs_block_group *block_group; 1018 struct btrfs_free_cluster *cluster; 1019 struct inode *inode; 1020 struct kobject *kobj = NULL; 1021 int ret; 1022 int index; 1023 int factor; 1024 struct btrfs_caching_control *caching_ctl = NULL; 1025 bool remove_em; 1026 bool remove_rsv = false; 1027 1028 block_group = btrfs_lookup_block_group(fs_info, group_start); 1029 BUG_ON(!block_group); 1030 BUG_ON(!block_group->ro); 1031 1032 trace_btrfs_remove_block_group(block_group); 1033 /* 1034 * Free the reserved super bytes from this block group before 1035 * remove it. 1036 */ 1037 btrfs_free_excluded_extents(block_group); 1038 btrfs_free_ref_tree_range(fs_info, block_group->start, 1039 block_group->length); 1040 1041 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1042 factor = btrfs_bg_type_to_factor(block_group->flags); 1043 1044 /* make sure this block group isn't part of an allocation cluster */ 1045 cluster = &fs_info->data_alloc_cluster; 1046 spin_lock(&cluster->refill_lock); 1047 btrfs_return_cluster_to_free_space(block_group, cluster); 1048 spin_unlock(&cluster->refill_lock); 1049 1050 /* 1051 * make sure this block group isn't part of a metadata 1052 * allocation cluster 1053 */ 1054 cluster = &fs_info->meta_alloc_cluster; 1055 spin_lock(&cluster->refill_lock); 1056 btrfs_return_cluster_to_free_space(block_group, cluster); 1057 spin_unlock(&cluster->refill_lock); 1058 1059 btrfs_clear_treelog_bg(block_group); 1060 btrfs_clear_data_reloc_bg(block_group); 1061 1062 path = btrfs_alloc_path(); 1063 if (!path) { 1064 ret = -ENOMEM; 1065 goto out; 1066 } 1067 1068 /* 1069 * get the inode first so any iput calls done for the io_list 1070 * aren't the final iput (no unlinks allowed now) 1071 */ 1072 inode = lookup_free_space_inode(block_group, path); 1073 1074 mutex_lock(&trans->transaction->cache_write_mutex); 1075 /* 1076 * Make sure our free space cache IO is done before removing the 1077 * free space inode 1078 */ 1079 spin_lock(&trans->transaction->dirty_bgs_lock); 1080 if (!list_empty(&block_group->io_list)) { 1081 list_del_init(&block_group->io_list); 1082 1083 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1084 1085 spin_unlock(&trans->transaction->dirty_bgs_lock); 1086 btrfs_wait_cache_io(trans, block_group, path); 1087 btrfs_put_block_group(block_group); 1088 spin_lock(&trans->transaction->dirty_bgs_lock); 1089 } 1090 1091 if (!list_empty(&block_group->dirty_list)) { 1092 list_del_init(&block_group->dirty_list); 1093 remove_rsv = true; 1094 btrfs_put_block_group(block_group); 1095 } 1096 spin_unlock(&trans->transaction->dirty_bgs_lock); 1097 mutex_unlock(&trans->transaction->cache_write_mutex); 1098 1099 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1100 if (ret) 1101 goto out; 1102 1103 write_lock(&fs_info->block_group_cache_lock); 1104 rb_erase_cached(&block_group->cache_node, 1105 &fs_info->block_group_cache_tree); 1106 RB_CLEAR_NODE(&block_group->cache_node); 1107 1108 /* Once for the block groups rbtree */ 1109 btrfs_put_block_group(block_group); 1110 1111 write_unlock(&fs_info->block_group_cache_lock); 1112 1113 down_write(&block_group->space_info->groups_sem); 1114 /* 1115 * we must use list_del_init so people can check to see if they 1116 * are still on the list after taking the semaphore 1117 */ 1118 list_del_init(&block_group->list); 1119 if (list_empty(&block_group->space_info->block_groups[index])) { 1120 kobj = block_group->space_info->block_group_kobjs[index]; 1121 block_group->space_info->block_group_kobjs[index] = NULL; 1122 clear_avail_alloc_bits(fs_info, block_group->flags); 1123 } 1124 up_write(&block_group->space_info->groups_sem); 1125 clear_incompat_bg_bits(fs_info, block_group->flags); 1126 if (kobj) { 1127 kobject_del(kobj); 1128 kobject_put(kobj); 1129 } 1130 1131 if (block_group->cached == BTRFS_CACHE_STARTED) 1132 btrfs_wait_block_group_cache_done(block_group); 1133 1134 write_lock(&fs_info->block_group_cache_lock); 1135 caching_ctl = btrfs_get_caching_control(block_group); 1136 if (!caching_ctl) { 1137 struct btrfs_caching_control *ctl; 1138 1139 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1140 if (ctl->block_group == block_group) { 1141 caching_ctl = ctl; 1142 refcount_inc(&caching_ctl->count); 1143 break; 1144 } 1145 } 1146 } 1147 if (caching_ctl) 1148 list_del_init(&caching_ctl->list); 1149 write_unlock(&fs_info->block_group_cache_lock); 1150 1151 if (caching_ctl) { 1152 /* Once for the caching bgs list and once for us. */ 1153 btrfs_put_caching_control(caching_ctl); 1154 btrfs_put_caching_control(caching_ctl); 1155 } 1156 1157 spin_lock(&trans->transaction->dirty_bgs_lock); 1158 WARN_ON(!list_empty(&block_group->dirty_list)); 1159 WARN_ON(!list_empty(&block_group->io_list)); 1160 spin_unlock(&trans->transaction->dirty_bgs_lock); 1161 1162 btrfs_remove_free_space_cache(block_group); 1163 1164 spin_lock(&block_group->space_info->lock); 1165 list_del_init(&block_group->ro_list); 1166 1167 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1168 WARN_ON(block_group->space_info->total_bytes 1169 < block_group->length); 1170 WARN_ON(block_group->space_info->bytes_readonly 1171 < block_group->length - block_group->zone_unusable); 1172 WARN_ON(block_group->space_info->bytes_zone_unusable 1173 < block_group->zone_unusable); 1174 WARN_ON(block_group->space_info->disk_total 1175 < block_group->length * factor); 1176 } 1177 block_group->space_info->total_bytes -= block_group->length; 1178 block_group->space_info->bytes_readonly -= 1179 (block_group->length - block_group->zone_unusable); 1180 block_group->space_info->bytes_zone_unusable -= 1181 block_group->zone_unusable; 1182 block_group->space_info->disk_total -= block_group->length * factor; 1183 1184 spin_unlock(&block_group->space_info->lock); 1185 1186 /* 1187 * Remove the free space for the block group from the free space tree 1188 * and the block group's item from the extent tree before marking the 1189 * block group as removed. This is to prevent races with tasks that 1190 * freeze and unfreeze a block group, this task and another task 1191 * allocating a new block group - the unfreeze task ends up removing 1192 * the block group's extent map before the task calling this function 1193 * deletes the block group item from the extent tree, allowing for 1194 * another task to attempt to create another block group with the same 1195 * item key (and failing with -EEXIST and a transaction abort). 1196 */ 1197 ret = remove_block_group_free_space(trans, block_group); 1198 if (ret) 1199 goto out; 1200 1201 ret = remove_block_group_item(trans, path, block_group); 1202 if (ret < 0) 1203 goto out; 1204 1205 spin_lock(&block_group->lock); 1206 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1207 1208 /* 1209 * At this point trimming or scrub can't start on this block group, 1210 * because we removed the block group from the rbtree 1211 * fs_info->block_group_cache_tree so no one can't find it anymore and 1212 * even if someone already got this block group before we removed it 1213 * from the rbtree, they have already incremented block_group->frozen - 1214 * if they didn't, for the trimming case they won't find any free space 1215 * entries because we already removed them all when we called 1216 * btrfs_remove_free_space_cache(). 1217 * 1218 * And we must not remove the extent map from the fs_info->mapping_tree 1219 * to prevent the same logical address range and physical device space 1220 * ranges from being reused for a new block group. This is needed to 1221 * avoid races with trimming and scrub. 1222 * 1223 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1224 * completely transactionless, so while it is trimming a range the 1225 * currently running transaction might finish and a new one start, 1226 * allowing for new block groups to be created that can reuse the same 1227 * physical device locations unless we take this special care. 1228 * 1229 * There may also be an implicit trim operation if the file system 1230 * is mounted with -odiscard. The same protections must remain 1231 * in place until the extents have been discarded completely when 1232 * the transaction commit has completed. 1233 */ 1234 remove_em = (atomic_read(&block_group->frozen) == 0); 1235 spin_unlock(&block_group->lock); 1236 1237 if (remove_em) { 1238 struct extent_map_tree *em_tree; 1239 1240 em_tree = &fs_info->mapping_tree; 1241 write_lock(&em_tree->lock); 1242 remove_extent_mapping(em_tree, em); 1243 write_unlock(&em_tree->lock); 1244 /* once for the tree */ 1245 free_extent_map(em); 1246 } 1247 1248 out: 1249 /* Once for the lookup reference */ 1250 btrfs_put_block_group(block_group); 1251 if (remove_rsv) 1252 btrfs_delayed_refs_rsv_release(fs_info, 1); 1253 btrfs_free_path(path); 1254 return ret; 1255 } 1256 1257 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1258 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1259 { 1260 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1261 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1262 struct extent_map *em; 1263 struct map_lookup *map; 1264 unsigned int num_items; 1265 1266 read_lock(&em_tree->lock); 1267 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1268 read_unlock(&em_tree->lock); 1269 ASSERT(em && em->start == chunk_offset); 1270 1271 /* 1272 * We need to reserve 3 + N units from the metadata space info in order 1273 * to remove a block group (done at btrfs_remove_chunk() and at 1274 * btrfs_remove_block_group()), which are used for: 1275 * 1276 * 1 unit for adding the free space inode's orphan (located in the tree 1277 * of tree roots). 1278 * 1 unit for deleting the block group item (located in the extent 1279 * tree). 1280 * 1 unit for deleting the free space item (located in tree of tree 1281 * roots). 1282 * N units for deleting N device extent items corresponding to each 1283 * stripe (located in the device tree). 1284 * 1285 * In order to remove a block group we also need to reserve units in the 1286 * system space info in order to update the chunk tree (update one or 1287 * more device items and remove one chunk item), but this is done at 1288 * btrfs_remove_chunk() through a call to check_system_chunk(). 1289 */ 1290 map = em->map_lookup; 1291 num_items = 3 + map->num_stripes; 1292 free_extent_map(em); 1293 1294 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1295 } 1296 1297 /* 1298 * Mark block group @cache read-only, so later write won't happen to block 1299 * group @cache. 1300 * 1301 * If @force is not set, this function will only mark the block group readonly 1302 * if we have enough free space (1M) in other metadata/system block groups. 1303 * If @force is not set, this function will mark the block group readonly 1304 * without checking free space. 1305 * 1306 * NOTE: This function doesn't care if other block groups can contain all the 1307 * data in this block group. That check should be done by relocation routine, 1308 * not this function. 1309 */ 1310 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1311 { 1312 struct btrfs_space_info *sinfo = cache->space_info; 1313 u64 num_bytes; 1314 int ret = -ENOSPC; 1315 1316 spin_lock(&sinfo->lock); 1317 spin_lock(&cache->lock); 1318 1319 if (cache->swap_extents) { 1320 ret = -ETXTBSY; 1321 goto out; 1322 } 1323 1324 if (cache->ro) { 1325 cache->ro++; 1326 ret = 0; 1327 goto out; 1328 } 1329 1330 num_bytes = cache->length - cache->reserved - cache->pinned - 1331 cache->bytes_super - cache->zone_unusable - cache->used; 1332 1333 /* 1334 * Data never overcommits, even in mixed mode, so do just the straight 1335 * check of left over space in how much we have allocated. 1336 */ 1337 if (force) { 1338 ret = 0; 1339 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1340 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1341 1342 /* 1343 * Here we make sure if we mark this bg RO, we still have enough 1344 * free space as buffer. 1345 */ 1346 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1347 ret = 0; 1348 } else { 1349 /* 1350 * We overcommit metadata, so we need to do the 1351 * btrfs_can_overcommit check here, and we need to pass in 1352 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1353 * leeway to allow us to mark this block group as read only. 1354 */ 1355 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1356 BTRFS_RESERVE_NO_FLUSH)) 1357 ret = 0; 1358 } 1359 1360 if (!ret) { 1361 sinfo->bytes_readonly += num_bytes; 1362 if (btrfs_is_zoned(cache->fs_info)) { 1363 /* Migrate zone_unusable bytes to readonly */ 1364 sinfo->bytes_readonly += cache->zone_unusable; 1365 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1366 cache->zone_unusable = 0; 1367 } 1368 cache->ro++; 1369 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1370 } 1371 out: 1372 spin_unlock(&cache->lock); 1373 spin_unlock(&sinfo->lock); 1374 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1375 btrfs_info(cache->fs_info, 1376 "unable to make block group %llu ro", cache->start); 1377 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1378 } 1379 return ret; 1380 } 1381 1382 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1383 struct btrfs_block_group *bg) 1384 { 1385 struct btrfs_fs_info *fs_info = bg->fs_info; 1386 struct btrfs_transaction *prev_trans = NULL; 1387 const u64 start = bg->start; 1388 const u64 end = start + bg->length - 1; 1389 int ret; 1390 1391 spin_lock(&fs_info->trans_lock); 1392 if (trans->transaction->list.prev != &fs_info->trans_list) { 1393 prev_trans = list_last_entry(&trans->transaction->list, 1394 struct btrfs_transaction, list); 1395 refcount_inc(&prev_trans->use_count); 1396 } 1397 spin_unlock(&fs_info->trans_lock); 1398 1399 /* 1400 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1401 * btrfs_finish_extent_commit(). If we are at transaction N, another 1402 * task might be running finish_extent_commit() for the previous 1403 * transaction N - 1, and have seen a range belonging to the block 1404 * group in pinned_extents before we were able to clear the whole block 1405 * group range from pinned_extents. This means that task can lookup for 1406 * the block group after we unpinned it from pinned_extents and removed 1407 * it, leading to a BUG_ON() at unpin_extent_range(). 1408 */ 1409 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1410 if (prev_trans) { 1411 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1412 EXTENT_DIRTY); 1413 if (ret) 1414 goto out; 1415 } 1416 1417 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1418 EXTENT_DIRTY); 1419 out: 1420 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1421 if (prev_trans) 1422 btrfs_put_transaction(prev_trans); 1423 1424 return ret == 0; 1425 } 1426 1427 /* 1428 * Process the unused_bgs list and remove any that don't have any allocated 1429 * space inside of them. 1430 */ 1431 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1432 { 1433 struct btrfs_block_group *block_group; 1434 struct btrfs_space_info *space_info; 1435 struct btrfs_trans_handle *trans; 1436 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1437 int ret = 0; 1438 1439 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1440 return; 1441 1442 if (btrfs_fs_closing(fs_info)) 1443 return; 1444 1445 /* 1446 * Long running balances can keep us blocked here for eternity, so 1447 * simply skip deletion if we're unable to get the mutex. 1448 */ 1449 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1450 return; 1451 1452 spin_lock(&fs_info->unused_bgs_lock); 1453 while (!list_empty(&fs_info->unused_bgs)) { 1454 int trimming; 1455 1456 block_group = list_first_entry(&fs_info->unused_bgs, 1457 struct btrfs_block_group, 1458 bg_list); 1459 list_del_init(&block_group->bg_list); 1460 1461 space_info = block_group->space_info; 1462 1463 if (ret || btrfs_mixed_space_info(space_info)) { 1464 btrfs_put_block_group(block_group); 1465 continue; 1466 } 1467 spin_unlock(&fs_info->unused_bgs_lock); 1468 1469 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1470 1471 /* Don't want to race with allocators so take the groups_sem */ 1472 down_write(&space_info->groups_sem); 1473 1474 /* 1475 * Async discard moves the final block group discard to be prior 1476 * to the unused_bgs code path. Therefore, if it's not fully 1477 * trimmed, punt it back to the async discard lists. 1478 */ 1479 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1480 !btrfs_is_free_space_trimmed(block_group)) { 1481 trace_btrfs_skip_unused_block_group(block_group); 1482 up_write(&space_info->groups_sem); 1483 /* Requeue if we failed because of async discard */ 1484 btrfs_discard_queue_work(&fs_info->discard_ctl, 1485 block_group); 1486 goto next; 1487 } 1488 1489 spin_lock(&block_group->lock); 1490 if (block_group->reserved || block_group->pinned || 1491 block_group->used || block_group->ro || 1492 list_is_singular(&block_group->list)) { 1493 /* 1494 * We want to bail if we made new allocations or have 1495 * outstanding allocations in this block group. We do 1496 * the ro check in case balance is currently acting on 1497 * this block group. 1498 */ 1499 trace_btrfs_skip_unused_block_group(block_group); 1500 spin_unlock(&block_group->lock); 1501 up_write(&space_info->groups_sem); 1502 goto next; 1503 } 1504 spin_unlock(&block_group->lock); 1505 1506 /* We don't want to force the issue, only flip if it's ok. */ 1507 ret = inc_block_group_ro(block_group, 0); 1508 up_write(&space_info->groups_sem); 1509 if (ret < 0) { 1510 ret = 0; 1511 goto next; 1512 } 1513 1514 ret = btrfs_zone_finish(block_group); 1515 if (ret < 0) { 1516 btrfs_dec_block_group_ro(block_group); 1517 if (ret == -EAGAIN) 1518 ret = 0; 1519 goto next; 1520 } 1521 1522 /* 1523 * Want to do this before we do anything else so we can recover 1524 * properly if we fail to join the transaction. 1525 */ 1526 trans = btrfs_start_trans_remove_block_group(fs_info, 1527 block_group->start); 1528 if (IS_ERR(trans)) { 1529 btrfs_dec_block_group_ro(block_group); 1530 ret = PTR_ERR(trans); 1531 goto next; 1532 } 1533 1534 /* 1535 * We could have pending pinned extents for this block group, 1536 * just delete them, we don't care about them anymore. 1537 */ 1538 if (!clean_pinned_extents(trans, block_group)) { 1539 btrfs_dec_block_group_ro(block_group); 1540 goto end_trans; 1541 } 1542 1543 /* 1544 * At this point, the block_group is read only and should fail 1545 * new allocations. However, btrfs_finish_extent_commit() can 1546 * cause this block_group to be placed back on the discard 1547 * lists because now the block_group isn't fully discarded. 1548 * Bail here and try again later after discarding everything. 1549 */ 1550 spin_lock(&fs_info->discard_ctl.lock); 1551 if (!list_empty(&block_group->discard_list)) { 1552 spin_unlock(&fs_info->discard_ctl.lock); 1553 btrfs_dec_block_group_ro(block_group); 1554 btrfs_discard_queue_work(&fs_info->discard_ctl, 1555 block_group); 1556 goto end_trans; 1557 } 1558 spin_unlock(&fs_info->discard_ctl.lock); 1559 1560 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1561 spin_lock(&space_info->lock); 1562 spin_lock(&block_group->lock); 1563 1564 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1565 -block_group->pinned); 1566 space_info->bytes_readonly += block_group->pinned; 1567 block_group->pinned = 0; 1568 1569 spin_unlock(&block_group->lock); 1570 spin_unlock(&space_info->lock); 1571 1572 /* 1573 * The normal path here is an unused block group is passed here, 1574 * then trimming is handled in the transaction commit path. 1575 * Async discard interposes before this to do the trimming 1576 * before coming down the unused block group path as trimming 1577 * will no longer be done later in the transaction commit path. 1578 */ 1579 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1580 goto flip_async; 1581 1582 /* 1583 * DISCARD can flip during remount. On zoned filesystems, we 1584 * need to reset sequential-required zones. 1585 */ 1586 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1587 btrfs_is_zoned(fs_info); 1588 1589 /* Implicit trim during transaction commit. */ 1590 if (trimming) 1591 btrfs_freeze_block_group(block_group); 1592 1593 /* 1594 * Btrfs_remove_chunk will abort the transaction if things go 1595 * horribly wrong. 1596 */ 1597 ret = btrfs_remove_chunk(trans, block_group->start); 1598 1599 if (ret) { 1600 if (trimming) 1601 btrfs_unfreeze_block_group(block_group); 1602 goto end_trans; 1603 } 1604 1605 /* 1606 * If we're not mounted with -odiscard, we can just forget 1607 * about this block group. Otherwise we'll need to wait 1608 * until transaction commit to do the actual discard. 1609 */ 1610 if (trimming) { 1611 spin_lock(&fs_info->unused_bgs_lock); 1612 /* 1613 * A concurrent scrub might have added us to the list 1614 * fs_info->unused_bgs, so use a list_move operation 1615 * to add the block group to the deleted_bgs list. 1616 */ 1617 list_move(&block_group->bg_list, 1618 &trans->transaction->deleted_bgs); 1619 spin_unlock(&fs_info->unused_bgs_lock); 1620 btrfs_get_block_group(block_group); 1621 } 1622 end_trans: 1623 btrfs_end_transaction(trans); 1624 next: 1625 btrfs_put_block_group(block_group); 1626 spin_lock(&fs_info->unused_bgs_lock); 1627 } 1628 spin_unlock(&fs_info->unused_bgs_lock); 1629 mutex_unlock(&fs_info->reclaim_bgs_lock); 1630 return; 1631 1632 flip_async: 1633 btrfs_end_transaction(trans); 1634 mutex_unlock(&fs_info->reclaim_bgs_lock); 1635 btrfs_put_block_group(block_group); 1636 btrfs_discard_punt_unused_bgs_list(fs_info); 1637 } 1638 1639 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1640 { 1641 struct btrfs_fs_info *fs_info = bg->fs_info; 1642 1643 spin_lock(&fs_info->unused_bgs_lock); 1644 if (list_empty(&bg->bg_list)) { 1645 btrfs_get_block_group(bg); 1646 trace_btrfs_add_unused_block_group(bg); 1647 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1648 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1649 /* Pull out the block group from the reclaim_bgs list. */ 1650 trace_btrfs_add_unused_block_group(bg); 1651 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1652 } 1653 spin_unlock(&fs_info->unused_bgs_lock); 1654 } 1655 1656 /* 1657 * We want block groups with a low number of used bytes to be in the beginning 1658 * of the list, so they will get reclaimed first. 1659 */ 1660 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1661 const struct list_head *b) 1662 { 1663 const struct btrfs_block_group *bg1, *bg2; 1664 1665 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1666 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1667 1668 return bg1->used > bg2->used; 1669 } 1670 1671 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1672 { 1673 if (btrfs_is_zoned(fs_info)) 1674 return btrfs_zoned_should_reclaim(fs_info); 1675 return true; 1676 } 1677 1678 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1679 { 1680 const struct btrfs_space_info *space_info = bg->space_info; 1681 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1682 const u64 new_val = bg->used; 1683 const u64 old_val = new_val + bytes_freed; 1684 u64 thresh; 1685 1686 if (reclaim_thresh == 0) 1687 return false; 1688 1689 thresh = mult_perc(bg->length, reclaim_thresh); 1690 1691 /* 1692 * If we were below the threshold before don't reclaim, we are likely a 1693 * brand new block group and we don't want to relocate new block groups. 1694 */ 1695 if (old_val < thresh) 1696 return false; 1697 if (new_val >= thresh) 1698 return false; 1699 return true; 1700 } 1701 1702 void btrfs_reclaim_bgs_work(struct work_struct *work) 1703 { 1704 struct btrfs_fs_info *fs_info = 1705 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1706 struct btrfs_block_group *bg; 1707 struct btrfs_space_info *space_info; 1708 1709 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1710 return; 1711 1712 if (btrfs_fs_closing(fs_info)) 1713 return; 1714 1715 if (!btrfs_should_reclaim(fs_info)) 1716 return; 1717 1718 sb_start_write(fs_info->sb); 1719 1720 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1721 sb_end_write(fs_info->sb); 1722 return; 1723 } 1724 1725 /* 1726 * Long running balances can keep us blocked here for eternity, so 1727 * simply skip reclaim if we're unable to get the mutex. 1728 */ 1729 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1730 btrfs_exclop_finish(fs_info); 1731 sb_end_write(fs_info->sb); 1732 return; 1733 } 1734 1735 spin_lock(&fs_info->unused_bgs_lock); 1736 /* 1737 * Sort happens under lock because we can't simply splice it and sort. 1738 * The block groups might still be in use and reachable via bg_list, 1739 * and their presence in the reclaim_bgs list must be preserved. 1740 */ 1741 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1742 while (!list_empty(&fs_info->reclaim_bgs)) { 1743 u64 zone_unusable; 1744 int ret = 0; 1745 1746 bg = list_first_entry(&fs_info->reclaim_bgs, 1747 struct btrfs_block_group, 1748 bg_list); 1749 list_del_init(&bg->bg_list); 1750 1751 space_info = bg->space_info; 1752 spin_unlock(&fs_info->unused_bgs_lock); 1753 1754 /* Don't race with allocators so take the groups_sem */ 1755 down_write(&space_info->groups_sem); 1756 1757 spin_lock(&bg->lock); 1758 if (bg->reserved || bg->pinned || bg->ro) { 1759 /* 1760 * We want to bail if we made new allocations or have 1761 * outstanding allocations in this block group. We do 1762 * the ro check in case balance is currently acting on 1763 * this block group. 1764 */ 1765 spin_unlock(&bg->lock); 1766 up_write(&space_info->groups_sem); 1767 goto next; 1768 } 1769 if (bg->used == 0) { 1770 /* 1771 * It is possible that we trigger relocation on a block 1772 * group as its extents are deleted and it first goes 1773 * below the threshold, then shortly after goes empty. 1774 * 1775 * In this case, relocating it does delete it, but has 1776 * some overhead in relocation specific metadata, looking 1777 * for the non-existent extents and running some extra 1778 * transactions, which we can avoid by using one of the 1779 * other mechanisms for dealing with empty block groups. 1780 */ 1781 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1782 btrfs_mark_bg_unused(bg); 1783 spin_unlock(&bg->lock); 1784 up_write(&space_info->groups_sem); 1785 goto next; 1786 1787 } 1788 /* 1789 * The block group might no longer meet the reclaim condition by 1790 * the time we get around to reclaiming it, so to avoid 1791 * reclaiming overly full block_groups, skip reclaiming them. 1792 * 1793 * Since the decision making process also depends on the amount 1794 * being freed, pass in a fake giant value to skip that extra 1795 * check, which is more meaningful when adding to the list in 1796 * the first place. 1797 */ 1798 if (!should_reclaim_block_group(bg, bg->length)) { 1799 spin_unlock(&bg->lock); 1800 up_write(&space_info->groups_sem); 1801 goto next; 1802 } 1803 spin_unlock(&bg->lock); 1804 1805 /* 1806 * Get out fast, in case we're read-only or unmounting the 1807 * filesystem. It is OK to drop block groups from the list even 1808 * for the read-only case. As we did sb_start_write(), 1809 * "mount -o remount,ro" won't happen and read-only filesystem 1810 * means it is forced read-only due to a fatal error. So, it 1811 * never gets back to read-write to let us reclaim again. 1812 */ 1813 if (btrfs_need_cleaner_sleep(fs_info)) { 1814 up_write(&space_info->groups_sem); 1815 goto next; 1816 } 1817 1818 /* 1819 * Cache the zone_unusable value before turning the block group 1820 * to read only. As soon as the blog group is read only it's 1821 * zone_unusable value gets moved to the block group's read-only 1822 * bytes and isn't available for calculations anymore. 1823 */ 1824 zone_unusable = bg->zone_unusable; 1825 ret = inc_block_group_ro(bg, 0); 1826 up_write(&space_info->groups_sem); 1827 if (ret < 0) 1828 goto next; 1829 1830 btrfs_info(fs_info, 1831 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1832 bg->start, 1833 div64_u64(bg->used * 100, bg->length), 1834 div64_u64(zone_unusable * 100, bg->length)); 1835 trace_btrfs_reclaim_block_group(bg); 1836 ret = btrfs_relocate_chunk(fs_info, bg->start); 1837 if (ret) { 1838 btrfs_dec_block_group_ro(bg); 1839 btrfs_err(fs_info, "error relocating chunk %llu", 1840 bg->start); 1841 } 1842 1843 next: 1844 if (ret) 1845 btrfs_mark_bg_to_reclaim(bg); 1846 btrfs_put_block_group(bg); 1847 1848 mutex_unlock(&fs_info->reclaim_bgs_lock); 1849 /* 1850 * Reclaiming all the block groups in the list can take really 1851 * long. Prioritize cleaning up unused block groups. 1852 */ 1853 btrfs_delete_unused_bgs(fs_info); 1854 /* 1855 * If we are interrupted by a balance, we can just bail out. The 1856 * cleaner thread restart again if necessary. 1857 */ 1858 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1859 goto end; 1860 spin_lock(&fs_info->unused_bgs_lock); 1861 } 1862 spin_unlock(&fs_info->unused_bgs_lock); 1863 mutex_unlock(&fs_info->reclaim_bgs_lock); 1864 end: 1865 btrfs_exclop_finish(fs_info); 1866 sb_end_write(fs_info->sb); 1867 } 1868 1869 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1870 { 1871 spin_lock(&fs_info->unused_bgs_lock); 1872 if (!list_empty(&fs_info->reclaim_bgs)) 1873 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1874 spin_unlock(&fs_info->unused_bgs_lock); 1875 } 1876 1877 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1878 { 1879 struct btrfs_fs_info *fs_info = bg->fs_info; 1880 1881 spin_lock(&fs_info->unused_bgs_lock); 1882 if (list_empty(&bg->bg_list)) { 1883 btrfs_get_block_group(bg); 1884 trace_btrfs_add_reclaim_block_group(bg); 1885 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1886 } 1887 spin_unlock(&fs_info->unused_bgs_lock); 1888 } 1889 1890 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1891 struct btrfs_path *path) 1892 { 1893 struct extent_map_tree *em_tree; 1894 struct extent_map *em; 1895 struct btrfs_block_group_item bg; 1896 struct extent_buffer *leaf; 1897 int slot; 1898 u64 flags; 1899 int ret = 0; 1900 1901 slot = path->slots[0]; 1902 leaf = path->nodes[0]; 1903 1904 em_tree = &fs_info->mapping_tree; 1905 read_lock(&em_tree->lock); 1906 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1907 read_unlock(&em_tree->lock); 1908 if (!em) { 1909 btrfs_err(fs_info, 1910 "logical %llu len %llu found bg but no related chunk", 1911 key->objectid, key->offset); 1912 return -ENOENT; 1913 } 1914 1915 if (em->start != key->objectid || em->len != key->offset) { 1916 btrfs_err(fs_info, 1917 "block group %llu len %llu mismatch with chunk %llu len %llu", 1918 key->objectid, key->offset, em->start, em->len); 1919 ret = -EUCLEAN; 1920 goto out_free_em; 1921 } 1922 1923 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1924 sizeof(bg)); 1925 flags = btrfs_stack_block_group_flags(&bg) & 1926 BTRFS_BLOCK_GROUP_TYPE_MASK; 1927 1928 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1929 btrfs_err(fs_info, 1930 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1931 key->objectid, key->offset, flags, 1932 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1933 ret = -EUCLEAN; 1934 } 1935 1936 out_free_em: 1937 free_extent_map(em); 1938 return ret; 1939 } 1940 1941 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1942 struct btrfs_path *path, 1943 struct btrfs_key *key) 1944 { 1945 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1946 int ret; 1947 struct btrfs_key found_key; 1948 1949 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1950 if (found_key.objectid >= key->objectid && 1951 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1952 return read_bg_from_eb(fs_info, &found_key, path); 1953 } 1954 } 1955 return ret; 1956 } 1957 1958 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1959 { 1960 u64 extra_flags = chunk_to_extended(flags) & 1961 BTRFS_EXTENDED_PROFILE_MASK; 1962 1963 write_seqlock(&fs_info->profiles_lock); 1964 if (flags & BTRFS_BLOCK_GROUP_DATA) 1965 fs_info->avail_data_alloc_bits |= extra_flags; 1966 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1967 fs_info->avail_metadata_alloc_bits |= extra_flags; 1968 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1969 fs_info->avail_system_alloc_bits |= extra_flags; 1970 write_sequnlock(&fs_info->profiles_lock); 1971 } 1972 1973 /* 1974 * Map a physical disk address to a list of logical addresses. 1975 * 1976 * @fs_info: the filesystem 1977 * @chunk_start: logical address of block group 1978 * @physical: physical address to map to logical addresses 1979 * @logical: return array of logical addresses which map to @physical 1980 * @naddrs: length of @logical 1981 * @stripe_len: size of IO stripe for the given block group 1982 * 1983 * Maps a particular @physical disk address to a list of @logical addresses. 1984 * Used primarily to exclude those portions of a block group that contain super 1985 * block copies. 1986 */ 1987 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1988 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1989 { 1990 struct extent_map *em; 1991 struct map_lookup *map; 1992 u64 *buf; 1993 u64 bytenr; 1994 u64 data_stripe_length; 1995 u64 io_stripe_size; 1996 int i, nr = 0; 1997 int ret = 0; 1998 1999 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2000 if (IS_ERR(em)) 2001 return -EIO; 2002 2003 map = em->map_lookup; 2004 data_stripe_length = em->orig_block_len; 2005 io_stripe_size = BTRFS_STRIPE_LEN; 2006 chunk_start = em->start; 2007 2008 /* For RAID5/6 adjust to a full IO stripe length */ 2009 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2010 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2011 2012 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2013 if (!buf) { 2014 ret = -ENOMEM; 2015 goto out; 2016 } 2017 2018 for (i = 0; i < map->num_stripes; i++) { 2019 bool already_inserted = false; 2020 u32 stripe_nr; 2021 u32 offset; 2022 int j; 2023 2024 if (!in_range(physical, map->stripes[i].physical, 2025 data_stripe_length)) 2026 continue; 2027 2028 stripe_nr = (physical - map->stripes[i].physical) >> 2029 BTRFS_STRIPE_LEN_SHIFT; 2030 offset = (physical - map->stripes[i].physical) & 2031 BTRFS_STRIPE_LEN_MASK; 2032 2033 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2034 BTRFS_BLOCK_GROUP_RAID10)) 2035 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2036 map->sub_stripes); 2037 /* 2038 * The remaining case would be for RAID56, multiply by 2039 * nr_data_stripes(). Alternatively, just use rmap_len below 2040 * instead of map->stripe_len 2041 */ 2042 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2043 2044 /* Ensure we don't add duplicate addresses */ 2045 for (j = 0; j < nr; j++) { 2046 if (buf[j] == bytenr) { 2047 already_inserted = true; 2048 break; 2049 } 2050 } 2051 2052 if (!already_inserted) 2053 buf[nr++] = bytenr; 2054 } 2055 2056 *logical = buf; 2057 *naddrs = nr; 2058 *stripe_len = io_stripe_size; 2059 out: 2060 free_extent_map(em); 2061 return ret; 2062 } 2063 2064 static int exclude_super_stripes(struct btrfs_block_group *cache) 2065 { 2066 struct btrfs_fs_info *fs_info = cache->fs_info; 2067 const bool zoned = btrfs_is_zoned(fs_info); 2068 u64 bytenr; 2069 u64 *logical; 2070 int stripe_len; 2071 int i, nr, ret; 2072 2073 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2074 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2075 cache->bytes_super += stripe_len; 2076 ret = btrfs_add_excluded_extent(fs_info, cache->start, 2077 stripe_len); 2078 if (ret) 2079 return ret; 2080 } 2081 2082 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2083 bytenr = btrfs_sb_offset(i); 2084 ret = btrfs_rmap_block(fs_info, cache->start, 2085 bytenr, &logical, &nr, &stripe_len); 2086 if (ret) 2087 return ret; 2088 2089 /* Shouldn't have super stripes in sequential zones */ 2090 if (zoned && nr) { 2091 kfree(logical); 2092 btrfs_err(fs_info, 2093 "zoned: block group %llu must not contain super block", 2094 cache->start); 2095 return -EUCLEAN; 2096 } 2097 2098 while (nr--) { 2099 u64 len = min_t(u64, stripe_len, 2100 cache->start + cache->length - logical[nr]); 2101 2102 cache->bytes_super += len; 2103 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 2104 len); 2105 if (ret) { 2106 kfree(logical); 2107 return ret; 2108 } 2109 } 2110 2111 kfree(logical); 2112 } 2113 return 0; 2114 } 2115 2116 static struct btrfs_block_group *btrfs_create_block_group_cache( 2117 struct btrfs_fs_info *fs_info, u64 start) 2118 { 2119 struct btrfs_block_group *cache; 2120 2121 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2122 if (!cache) 2123 return NULL; 2124 2125 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2126 GFP_NOFS); 2127 if (!cache->free_space_ctl) { 2128 kfree(cache); 2129 return NULL; 2130 } 2131 2132 cache->start = start; 2133 2134 cache->fs_info = fs_info; 2135 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2136 2137 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2138 2139 refcount_set(&cache->refs, 1); 2140 spin_lock_init(&cache->lock); 2141 init_rwsem(&cache->data_rwsem); 2142 INIT_LIST_HEAD(&cache->list); 2143 INIT_LIST_HEAD(&cache->cluster_list); 2144 INIT_LIST_HEAD(&cache->bg_list); 2145 INIT_LIST_HEAD(&cache->ro_list); 2146 INIT_LIST_HEAD(&cache->discard_list); 2147 INIT_LIST_HEAD(&cache->dirty_list); 2148 INIT_LIST_HEAD(&cache->io_list); 2149 INIT_LIST_HEAD(&cache->active_bg_list); 2150 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2151 atomic_set(&cache->frozen, 0); 2152 mutex_init(&cache->free_space_lock); 2153 2154 return cache; 2155 } 2156 2157 /* 2158 * Iterate all chunks and verify that each of them has the corresponding block 2159 * group 2160 */ 2161 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2162 { 2163 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2164 struct extent_map *em; 2165 struct btrfs_block_group *bg; 2166 u64 start = 0; 2167 int ret = 0; 2168 2169 while (1) { 2170 read_lock(&map_tree->lock); 2171 /* 2172 * lookup_extent_mapping will return the first extent map 2173 * intersecting the range, so setting @len to 1 is enough to 2174 * get the first chunk. 2175 */ 2176 em = lookup_extent_mapping(map_tree, start, 1); 2177 read_unlock(&map_tree->lock); 2178 if (!em) 2179 break; 2180 2181 bg = btrfs_lookup_block_group(fs_info, em->start); 2182 if (!bg) { 2183 btrfs_err(fs_info, 2184 "chunk start=%llu len=%llu doesn't have corresponding block group", 2185 em->start, em->len); 2186 ret = -EUCLEAN; 2187 free_extent_map(em); 2188 break; 2189 } 2190 if (bg->start != em->start || bg->length != em->len || 2191 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2192 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2193 btrfs_err(fs_info, 2194 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2195 em->start, em->len, 2196 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2197 bg->start, bg->length, 2198 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2199 ret = -EUCLEAN; 2200 free_extent_map(em); 2201 btrfs_put_block_group(bg); 2202 break; 2203 } 2204 start = em->start + em->len; 2205 free_extent_map(em); 2206 btrfs_put_block_group(bg); 2207 } 2208 return ret; 2209 } 2210 2211 static int read_one_block_group(struct btrfs_fs_info *info, 2212 struct btrfs_block_group_item *bgi, 2213 const struct btrfs_key *key, 2214 int need_clear) 2215 { 2216 struct btrfs_block_group *cache; 2217 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2218 int ret; 2219 2220 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2221 2222 cache = btrfs_create_block_group_cache(info, key->objectid); 2223 if (!cache) 2224 return -ENOMEM; 2225 2226 cache->length = key->offset; 2227 cache->used = btrfs_stack_block_group_used(bgi); 2228 cache->commit_used = cache->used; 2229 cache->flags = btrfs_stack_block_group_flags(bgi); 2230 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2231 2232 set_free_space_tree_thresholds(cache); 2233 2234 if (need_clear) { 2235 /* 2236 * When we mount with old space cache, we need to 2237 * set BTRFS_DC_CLEAR and set dirty flag. 2238 * 2239 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2240 * truncate the old free space cache inode and 2241 * setup a new one. 2242 * b) Setting 'dirty flag' makes sure that we flush 2243 * the new space cache info onto disk. 2244 */ 2245 if (btrfs_test_opt(info, SPACE_CACHE)) 2246 cache->disk_cache_state = BTRFS_DC_CLEAR; 2247 } 2248 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2249 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2250 btrfs_err(info, 2251 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2252 cache->start); 2253 ret = -EINVAL; 2254 goto error; 2255 } 2256 2257 ret = btrfs_load_block_group_zone_info(cache, false); 2258 if (ret) { 2259 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2260 cache->start); 2261 goto error; 2262 } 2263 2264 /* 2265 * We need to exclude the super stripes now so that the space info has 2266 * super bytes accounted for, otherwise we'll think we have more space 2267 * than we actually do. 2268 */ 2269 ret = exclude_super_stripes(cache); 2270 if (ret) { 2271 /* We may have excluded something, so call this just in case. */ 2272 btrfs_free_excluded_extents(cache); 2273 goto error; 2274 } 2275 2276 /* 2277 * For zoned filesystem, space after the allocation offset is the only 2278 * free space for a block group. So, we don't need any caching work. 2279 * btrfs_calc_zone_unusable() will set the amount of free space and 2280 * zone_unusable space. 2281 * 2282 * For regular filesystem, check for two cases, either we are full, and 2283 * therefore don't need to bother with the caching work since we won't 2284 * find any space, or we are empty, and we can just add all the space 2285 * in and be done with it. This saves us _a_lot_ of time, particularly 2286 * in the full case. 2287 */ 2288 if (btrfs_is_zoned(info)) { 2289 btrfs_calc_zone_unusable(cache); 2290 /* Should not have any excluded extents. Just in case, though. */ 2291 btrfs_free_excluded_extents(cache); 2292 } else if (cache->length == cache->used) { 2293 cache->cached = BTRFS_CACHE_FINISHED; 2294 btrfs_free_excluded_extents(cache); 2295 } else if (cache->used == 0) { 2296 cache->cached = BTRFS_CACHE_FINISHED; 2297 add_new_free_space(cache, cache->start, 2298 cache->start + cache->length); 2299 btrfs_free_excluded_extents(cache); 2300 } 2301 2302 ret = btrfs_add_block_group_cache(info, cache); 2303 if (ret) { 2304 btrfs_remove_free_space_cache(cache); 2305 goto error; 2306 } 2307 trace_btrfs_add_block_group(info, cache, 0); 2308 btrfs_add_bg_to_space_info(info, cache); 2309 2310 set_avail_alloc_bits(info, cache->flags); 2311 if (btrfs_chunk_writeable(info, cache->start)) { 2312 if (cache->used == 0) { 2313 ASSERT(list_empty(&cache->bg_list)); 2314 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2315 btrfs_discard_queue_work(&info->discard_ctl, cache); 2316 else 2317 btrfs_mark_bg_unused(cache); 2318 } 2319 } else { 2320 inc_block_group_ro(cache, 1); 2321 } 2322 2323 return 0; 2324 error: 2325 btrfs_put_block_group(cache); 2326 return ret; 2327 } 2328 2329 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2330 { 2331 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2332 struct rb_node *node; 2333 int ret = 0; 2334 2335 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2336 struct extent_map *em; 2337 struct map_lookup *map; 2338 struct btrfs_block_group *bg; 2339 2340 em = rb_entry(node, struct extent_map, rb_node); 2341 map = em->map_lookup; 2342 bg = btrfs_create_block_group_cache(fs_info, em->start); 2343 if (!bg) { 2344 ret = -ENOMEM; 2345 break; 2346 } 2347 2348 /* Fill dummy cache as FULL */ 2349 bg->length = em->len; 2350 bg->flags = map->type; 2351 bg->cached = BTRFS_CACHE_FINISHED; 2352 bg->used = em->len; 2353 bg->flags = map->type; 2354 ret = btrfs_add_block_group_cache(fs_info, bg); 2355 /* 2356 * We may have some valid block group cache added already, in 2357 * that case we skip to the next one. 2358 */ 2359 if (ret == -EEXIST) { 2360 ret = 0; 2361 btrfs_put_block_group(bg); 2362 continue; 2363 } 2364 2365 if (ret) { 2366 btrfs_remove_free_space_cache(bg); 2367 btrfs_put_block_group(bg); 2368 break; 2369 } 2370 2371 btrfs_add_bg_to_space_info(fs_info, bg); 2372 2373 set_avail_alloc_bits(fs_info, bg->flags); 2374 } 2375 if (!ret) 2376 btrfs_init_global_block_rsv(fs_info); 2377 return ret; 2378 } 2379 2380 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2381 { 2382 struct btrfs_root *root = btrfs_block_group_root(info); 2383 struct btrfs_path *path; 2384 int ret; 2385 struct btrfs_block_group *cache; 2386 struct btrfs_space_info *space_info; 2387 struct btrfs_key key; 2388 int need_clear = 0; 2389 u64 cache_gen; 2390 2391 /* 2392 * Either no extent root (with ibadroots rescue option) or we have 2393 * unsupported RO options. The fs can never be mounted read-write, so no 2394 * need to waste time searching block group items. 2395 * 2396 * This also allows new extent tree related changes to be RO compat, 2397 * no need for a full incompat flag. 2398 */ 2399 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2400 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2401 return fill_dummy_bgs(info); 2402 2403 key.objectid = 0; 2404 key.offset = 0; 2405 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2406 path = btrfs_alloc_path(); 2407 if (!path) 2408 return -ENOMEM; 2409 2410 cache_gen = btrfs_super_cache_generation(info->super_copy); 2411 if (btrfs_test_opt(info, SPACE_CACHE) && 2412 btrfs_super_generation(info->super_copy) != cache_gen) 2413 need_clear = 1; 2414 if (btrfs_test_opt(info, CLEAR_CACHE)) 2415 need_clear = 1; 2416 2417 while (1) { 2418 struct btrfs_block_group_item bgi; 2419 struct extent_buffer *leaf; 2420 int slot; 2421 2422 ret = find_first_block_group(info, path, &key); 2423 if (ret > 0) 2424 break; 2425 if (ret != 0) 2426 goto error; 2427 2428 leaf = path->nodes[0]; 2429 slot = path->slots[0]; 2430 2431 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2432 sizeof(bgi)); 2433 2434 btrfs_item_key_to_cpu(leaf, &key, slot); 2435 btrfs_release_path(path); 2436 ret = read_one_block_group(info, &bgi, &key, need_clear); 2437 if (ret < 0) 2438 goto error; 2439 key.objectid += key.offset; 2440 key.offset = 0; 2441 } 2442 btrfs_release_path(path); 2443 2444 list_for_each_entry(space_info, &info->space_info, list) { 2445 int i; 2446 2447 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2448 if (list_empty(&space_info->block_groups[i])) 2449 continue; 2450 cache = list_first_entry(&space_info->block_groups[i], 2451 struct btrfs_block_group, 2452 list); 2453 btrfs_sysfs_add_block_group_type(cache); 2454 } 2455 2456 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2457 (BTRFS_BLOCK_GROUP_RAID10 | 2458 BTRFS_BLOCK_GROUP_RAID1_MASK | 2459 BTRFS_BLOCK_GROUP_RAID56_MASK | 2460 BTRFS_BLOCK_GROUP_DUP))) 2461 continue; 2462 /* 2463 * Avoid allocating from un-mirrored block group if there are 2464 * mirrored block groups. 2465 */ 2466 list_for_each_entry(cache, 2467 &space_info->block_groups[BTRFS_RAID_RAID0], 2468 list) 2469 inc_block_group_ro(cache, 1); 2470 list_for_each_entry(cache, 2471 &space_info->block_groups[BTRFS_RAID_SINGLE], 2472 list) 2473 inc_block_group_ro(cache, 1); 2474 } 2475 2476 btrfs_init_global_block_rsv(info); 2477 ret = check_chunk_block_group_mappings(info); 2478 error: 2479 btrfs_free_path(path); 2480 /* 2481 * We've hit some error while reading the extent tree, and have 2482 * rescue=ibadroots mount option. 2483 * Try to fill the tree using dummy block groups so that the user can 2484 * continue to mount and grab their data. 2485 */ 2486 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2487 ret = fill_dummy_bgs(info); 2488 return ret; 2489 } 2490 2491 /* 2492 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2493 * allocation. 2494 * 2495 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2496 * phases. 2497 */ 2498 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2499 struct btrfs_block_group *block_group) 2500 { 2501 struct btrfs_fs_info *fs_info = trans->fs_info; 2502 struct btrfs_block_group_item bgi; 2503 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2504 struct btrfs_key key; 2505 u64 old_commit_used; 2506 int ret; 2507 2508 spin_lock(&block_group->lock); 2509 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2510 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2511 block_group->global_root_id); 2512 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2513 old_commit_used = block_group->commit_used; 2514 block_group->commit_used = block_group->used; 2515 key.objectid = block_group->start; 2516 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2517 key.offset = block_group->length; 2518 spin_unlock(&block_group->lock); 2519 2520 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2521 if (ret < 0) { 2522 spin_lock(&block_group->lock); 2523 block_group->commit_used = old_commit_used; 2524 spin_unlock(&block_group->lock); 2525 } 2526 2527 return ret; 2528 } 2529 2530 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2531 struct btrfs_device *device, u64 chunk_offset, 2532 u64 start, u64 num_bytes) 2533 { 2534 struct btrfs_fs_info *fs_info = device->fs_info; 2535 struct btrfs_root *root = fs_info->dev_root; 2536 struct btrfs_path *path; 2537 struct btrfs_dev_extent *extent; 2538 struct extent_buffer *leaf; 2539 struct btrfs_key key; 2540 int ret; 2541 2542 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2543 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2544 path = btrfs_alloc_path(); 2545 if (!path) 2546 return -ENOMEM; 2547 2548 key.objectid = device->devid; 2549 key.type = BTRFS_DEV_EXTENT_KEY; 2550 key.offset = start; 2551 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2552 if (ret) 2553 goto out; 2554 2555 leaf = path->nodes[0]; 2556 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2557 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2558 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2559 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2560 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2561 2562 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2563 btrfs_mark_buffer_dirty(leaf); 2564 out: 2565 btrfs_free_path(path); 2566 return ret; 2567 } 2568 2569 /* 2570 * This function belongs to phase 2. 2571 * 2572 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2573 * phases. 2574 */ 2575 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2576 u64 chunk_offset, u64 chunk_size) 2577 { 2578 struct btrfs_fs_info *fs_info = trans->fs_info; 2579 struct btrfs_device *device; 2580 struct extent_map *em; 2581 struct map_lookup *map; 2582 u64 dev_offset; 2583 u64 stripe_size; 2584 int i; 2585 int ret = 0; 2586 2587 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2588 if (IS_ERR(em)) 2589 return PTR_ERR(em); 2590 2591 map = em->map_lookup; 2592 stripe_size = em->orig_block_len; 2593 2594 /* 2595 * Take the device list mutex to prevent races with the final phase of 2596 * a device replace operation that replaces the device object associated 2597 * with the map's stripes, because the device object's id can change 2598 * at any time during that final phase of the device replace operation 2599 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2600 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2601 * resulting in persisting a device extent item with such ID. 2602 */ 2603 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2604 for (i = 0; i < map->num_stripes; i++) { 2605 device = map->stripes[i].dev; 2606 dev_offset = map->stripes[i].physical; 2607 2608 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2609 stripe_size); 2610 if (ret) 2611 break; 2612 } 2613 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2614 2615 free_extent_map(em); 2616 return ret; 2617 } 2618 2619 /* 2620 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2621 * chunk allocation. 2622 * 2623 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2624 * phases. 2625 */ 2626 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2627 { 2628 struct btrfs_fs_info *fs_info = trans->fs_info; 2629 struct btrfs_block_group *block_group; 2630 int ret = 0; 2631 2632 while (!list_empty(&trans->new_bgs)) { 2633 int index; 2634 2635 block_group = list_first_entry(&trans->new_bgs, 2636 struct btrfs_block_group, 2637 bg_list); 2638 if (ret) 2639 goto next; 2640 2641 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2642 2643 ret = insert_block_group_item(trans, block_group); 2644 if (ret) 2645 btrfs_abort_transaction(trans, ret); 2646 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2647 &block_group->runtime_flags)) { 2648 mutex_lock(&fs_info->chunk_mutex); 2649 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2650 mutex_unlock(&fs_info->chunk_mutex); 2651 if (ret) 2652 btrfs_abort_transaction(trans, ret); 2653 } 2654 ret = insert_dev_extents(trans, block_group->start, 2655 block_group->length); 2656 if (ret) 2657 btrfs_abort_transaction(trans, ret); 2658 add_block_group_free_space(trans, block_group); 2659 2660 /* 2661 * If we restriped during balance, we may have added a new raid 2662 * type, so now add the sysfs entries when it is safe to do so. 2663 * We don't have to worry about locking here as it's handled in 2664 * btrfs_sysfs_add_block_group_type. 2665 */ 2666 if (block_group->space_info->block_group_kobjs[index] == NULL) 2667 btrfs_sysfs_add_block_group_type(block_group); 2668 2669 /* Already aborted the transaction if it failed. */ 2670 next: 2671 btrfs_delayed_refs_rsv_release(fs_info, 1); 2672 list_del_init(&block_group->bg_list); 2673 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2674 } 2675 btrfs_trans_release_chunk_metadata(trans); 2676 } 2677 2678 /* 2679 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2680 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2681 */ 2682 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2683 { 2684 u64 div = SZ_1G; 2685 u64 index; 2686 2687 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2688 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2689 2690 /* If we have a smaller fs index based on 128MiB. */ 2691 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2692 div = SZ_128M; 2693 2694 offset = div64_u64(offset, div); 2695 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2696 return index; 2697 } 2698 2699 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2700 u64 type, 2701 u64 chunk_offset, u64 size) 2702 { 2703 struct btrfs_fs_info *fs_info = trans->fs_info; 2704 struct btrfs_block_group *cache; 2705 int ret; 2706 2707 btrfs_set_log_full_commit(trans); 2708 2709 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2710 if (!cache) 2711 return ERR_PTR(-ENOMEM); 2712 2713 /* 2714 * Mark it as new before adding it to the rbtree of block groups or any 2715 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2716 * before the new flag is set. 2717 */ 2718 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2719 2720 cache->length = size; 2721 set_free_space_tree_thresholds(cache); 2722 cache->flags = type; 2723 cache->cached = BTRFS_CACHE_FINISHED; 2724 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2725 2726 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2727 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2728 2729 ret = btrfs_load_block_group_zone_info(cache, true); 2730 if (ret) { 2731 btrfs_put_block_group(cache); 2732 return ERR_PTR(ret); 2733 } 2734 2735 ret = exclude_super_stripes(cache); 2736 if (ret) { 2737 /* We may have excluded something, so call this just in case */ 2738 btrfs_free_excluded_extents(cache); 2739 btrfs_put_block_group(cache); 2740 return ERR_PTR(ret); 2741 } 2742 2743 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2744 2745 btrfs_free_excluded_extents(cache); 2746 2747 /* 2748 * Ensure the corresponding space_info object is created and 2749 * assigned to our block group. We want our bg to be added to the rbtree 2750 * with its ->space_info set. 2751 */ 2752 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2753 ASSERT(cache->space_info); 2754 2755 ret = btrfs_add_block_group_cache(fs_info, cache); 2756 if (ret) { 2757 btrfs_remove_free_space_cache(cache); 2758 btrfs_put_block_group(cache); 2759 return ERR_PTR(ret); 2760 } 2761 2762 /* 2763 * Now that our block group has its ->space_info set and is inserted in 2764 * the rbtree, update the space info's counters. 2765 */ 2766 trace_btrfs_add_block_group(fs_info, cache, 1); 2767 btrfs_add_bg_to_space_info(fs_info, cache); 2768 btrfs_update_global_block_rsv(fs_info); 2769 2770 #ifdef CONFIG_BTRFS_DEBUG 2771 if (btrfs_should_fragment_free_space(cache)) { 2772 cache->space_info->bytes_used += size >> 1; 2773 fragment_free_space(cache); 2774 } 2775 #endif 2776 2777 list_add_tail(&cache->bg_list, &trans->new_bgs); 2778 trans->delayed_ref_updates++; 2779 btrfs_update_delayed_refs_rsv(trans); 2780 2781 set_avail_alloc_bits(fs_info, type); 2782 return cache; 2783 } 2784 2785 /* 2786 * Mark one block group RO, can be called several times for the same block 2787 * group. 2788 * 2789 * @cache: the destination block group 2790 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2791 * ensure we still have some free space after marking this 2792 * block group RO. 2793 */ 2794 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2795 bool do_chunk_alloc) 2796 { 2797 struct btrfs_fs_info *fs_info = cache->fs_info; 2798 struct btrfs_trans_handle *trans; 2799 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2800 u64 alloc_flags; 2801 int ret; 2802 bool dirty_bg_running; 2803 2804 /* 2805 * This can only happen when we are doing read-only scrub on read-only 2806 * mount. 2807 * In that case we should not start a new transaction on read-only fs. 2808 * Thus here we skip all chunk allocations. 2809 */ 2810 if (sb_rdonly(fs_info->sb)) { 2811 mutex_lock(&fs_info->ro_block_group_mutex); 2812 ret = inc_block_group_ro(cache, 0); 2813 mutex_unlock(&fs_info->ro_block_group_mutex); 2814 return ret; 2815 } 2816 2817 do { 2818 trans = btrfs_join_transaction(root); 2819 if (IS_ERR(trans)) 2820 return PTR_ERR(trans); 2821 2822 dirty_bg_running = false; 2823 2824 /* 2825 * We're not allowed to set block groups readonly after the dirty 2826 * block group cache has started writing. If it already started, 2827 * back off and let this transaction commit. 2828 */ 2829 mutex_lock(&fs_info->ro_block_group_mutex); 2830 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2831 u64 transid = trans->transid; 2832 2833 mutex_unlock(&fs_info->ro_block_group_mutex); 2834 btrfs_end_transaction(trans); 2835 2836 ret = btrfs_wait_for_commit(fs_info, transid); 2837 if (ret) 2838 return ret; 2839 dirty_bg_running = true; 2840 } 2841 } while (dirty_bg_running); 2842 2843 if (do_chunk_alloc) { 2844 /* 2845 * If we are changing raid levels, try to allocate a 2846 * corresponding block group with the new raid level. 2847 */ 2848 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2849 if (alloc_flags != cache->flags) { 2850 ret = btrfs_chunk_alloc(trans, alloc_flags, 2851 CHUNK_ALLOC_FORCE); 2852 /* 2853 * ENOSPC is allowed here, we may have enough space 2854 * already allocated at the new raid level to carry on 2855 */ 2856 if (ret == -ENOSPC) 2857 ret = 0; 2858 if (ret < 0) 2859 goto out; 2860 } 2861 } 2862 2863 ret = inc_block_group_ro(cache, 0); 2864 if (!ret) 2865 goto out; 2866 if (ret == -ETXTBSY) 2867 goto unlock_out; 2868 2869 /* 2870 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2871 * chunk allocation storm to exhaust the system chunk array. Otherwise 2872 * we still want to try our best to mark the block group read-only. 2873 */ 2874 if (!do_chunk_alloc && ret == -ENOSPC && 2875 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2876 goto unlock_out; 2877 2878 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2879 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2880 if (ret < 0) 2881 goto out; 2882 /* 2883 * We have allocated a new chunk. We also need to activate that chunk to 2884 * grant metadata tickets for zoned filesystem. 2885 */ 2886 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2887 if (ret < 0) 2888 goto out; 2889 2890 ret = inc_block_group_ro(cache, 0); 2891 if (ret == -ETXTBSY) 2892 goto unlock_out; 2893 out: 2894 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2895 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2896 mutex_lock(&fs_info->chunk_mutex); 2897 check_system_chunk(trans, alloc_flags); 2898 mutex_unlock(&fs_info->chunk_mutex); 2899 } 2900 unlock_out: 2901 mutex_unlock(&fs_info->ro_block_group_mutex); 2902 2903 btrfs_end_transaction(trans); 2904 return ret; 2905 } 2906 2907 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2908 { 2909 struct btrfs_space_info *sinfo = cache->space_info; 2910 u64 num_bytes; 2911 2912 BUG_ON(!cache->ro); 2913 2914 spin_lock(&sinfo->lock); 2915 spin_lock(&cache->lock); 2916 if (!--cache->ro) { 2917 if (btrfs_is_zoned(cache->fs_info)) { 2918 /* Migrate zone_unusable bytes back */ 2919 cache->zone_unusable = 2920 (cache->alloc_offset - cache->used) + 2921 (cache->length - cache->zone_capacity); 2922 sinfo->bytes_zone_unusable += cache->zone_unusable; 2923 sinfo->bytes_readonly -= cache->zone_unusable; 2924 } 2925 num_bytes = cache->length - cache->reserved - 2926 cache->pinned - cache->bytes_super - 2927 cache->zone_unusable - cache->used; 2928 sinfo->bytes_readonly -= num_bytes; 2929 list_del_init(&cache->ro_list); 2930 } 2931 spin_unlock(&cache->lock); 2932 spin_unlock(&sinfo->lock); 2933 } 2934 2935 static int update_block_group_item(struct btrfs_trans_handle *trans, 2936 struct btrfs_path *path, 2937 struct btrfs_block_group *cache) 2938 { 2939 struct btrfs_fs_info *fs_info = trans->fs_info; 2940 int ret; 2941 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2942 unsigned long bi; 2943 struct extent_buffer *leaf; 2944 struct btrfs_block_group_item bgi; 2945 struct btrfs_key key; 2946 u64 old_commit_used; 2947 u64 used; 2948 2949 /* 2950 * Block group items update can be triggered out of commit transaction 2951 * critical section, thus we need a consistent view of used bytes. 2952 * We cannot use cache->used directly outside of the spin lock, as it 2953 * may be changed. 2954 */ 2955 spin_lock(&cache->lock); 2956 old_commit_used = cache->commit_used; 2957 used = cache->used; 2958 /* No change in used bytes, can safely skip it. */ 2959 if (cache->commit_used == used) { 2960 spin_unlock(&cache->lock); 2961 return 0; 2962 } 2963 cache->commit_used = used; 2964 spin_unlock(&cache->lock); 2965 2966 key.objectid = cache->start; 2967 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2968 key.offset = cache->length; 2969 2970 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2971 if (ret) { 2972 if (ret > 0) 2973 ret = -ENOENT; 2974 goto fail; 2975 } 2976 2977 leaf = path->nodes[0]; 2978 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2979 btrfs_set_stack_block_group_used(&bgi, used); 2980 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2981 cache->global_root_id); 2982 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2983 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2984 btrfs_mark_buffer_dirty(leaf); 2985 fail: 2986 btrfs_release_path(path); 2987 /* We didn't update the block group item, need to revert @commit_used. */ 2988 if (ret < 0) { 2989 spin_lock(&cache->lock); 2990 cache->commit_used = old_commit_used; 2991 spin_unlock(&cache->lock); 2992 } 2993 return ret; 2994 2995 } 2996 2997 static int cache_save_setup(struct btrfs_block_group *block_group, 2998 struct btrfs_trans_handle *trans, 2999 struct btrfs_path *path) 3000 { 3001 struct btrfs_fs_info *fs_info = block_group->fs_info; 3002 struct btrfs_root *root = fs_info->tree_root; 3003 struct inode *inode = NULL; 3004 struct extent_changeset *data_reserved = NULL; 3005 u64 alloc_hint = 0; 3006 int dcs = BTRFS_DC_ERROR; 3007 u64 cache_size = 0; 3008 int retries = 0; 3009 int ret = 0; 3010 3011 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3012 return 0; 3013 3014 /* 3015 * If this block group is smaller than 100 megs don't bother caching the 3016 * block group. 3017 */ 3018 if (block_group->length < (100 * SZ_1M)) { 3019 spin_lock(&block_group->lock); 3020 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3021 spin_unlock(&block_group->lock); 3022 return 0; 3023 } 3024 3025 if (TRANS_ABORTED(trans)) 3026 return 0; 3027 again: 3028 inode = lookup_free_space_inode(block_group, path); 3029 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3030 ret = PTR_ERR(inode); 3031 btrfs_release_path(path); 3032 goto out; 3033 } 3034 3035 if (IS_ERR(inode)) { 3036 BUG_ON(retries); 3037 retries++; 3038 3039 if (block_group->ro) 3040 goto out_free; 3041 3042 ret = create_free_space_inode(trans, block_group, path); 3043 if (ret) 3044 goto out_free; 3045 goto again; 3046 } 3047 3048 /* 3049 * We want to set the generation to 0, that way if anything goes wrong 3050 * from here on out we know not to trust this cache when we load up next 3051 * time. 3052 */ 3053 BTRFS_I(inode)->generation = 0; 3054 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3055 if (ret) { 3056 /* 3057 * So theoretically we could recover from this, simply set the 3058 * super cache generation to 0 so we know to invalidate the 3059 * cache, but then we'd have to keep track of the block groups 3060 * that fail this way so we know we _have_ to reset this cache 3061 * before the next commit or risk reading stale cache. So to 3062 * limit our exposure to horrible edge cases lets just abort the 3063 * transaction, this only happens in really bad situations 3064 * anyway. 3065 */ 3066 btrfs_abort_transaction(trans, ret); 3067 goto out_put; 3068 } 3069 WARN_ON(ret); 3070 3071 /* We've already setup this transaction, go ahead and exit */ 3072 if (block_group->cache_generation == trans->transid && 3073 i_size_read(inode)) { 3074 dcs = BTRFS_DC_SETUP; 3075 goto out_put; 3076 } 3077 3078 if (i_size_read(inode) > 0) { 3079 ret = btrfs_check_trunc_cache_free_space(fs_info, 3080 &fs_info->global_block_rsv); 3081 if (ret) 3082 goto out_put; 3083 3084 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3085 if (ret) 3086 goto out_put; 3087 } 3088 3089 spin_lock(&block_group->lock); 3090 if (block_group->cached != BTRFS_CACHE_FINISHED || 3091 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3092 /* 3093 * don't bother trying to write stuff out _if_ 3094 * a) we're not cached, 3095 * b) we're with nospace_cache mount option, 3096 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3097 */ 3098 dcs = BTRFS_DC_WRITTEN; 3099 spin_unlock(&block_group->lock); 3100 goto out_put; 3101 } 3102 spin_unlock(&block_group->lock); 3103 3104 /* 3105 * We hit an ENOSPC when setting up the cache in this transaction, just 3106 * skip doing the setup, we've already cleared the cache so we're safe. 3107 */ 3108 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3109 ret = -ENOSPC; 3110 goto out_put; 3111 } 3112 3113 /* 3114 * Try to preallocate enough space based on how big the block group is. 3115 * Keep in mind this has to include any pinned space which could end up 3116 * taking up quite a bit since it's not folded into the other space 3117 * cache. 3118 */ 3119 cache_size = div_u64(block_group->length, SZ_256M); 3120 if (!cache_size) 3121 cache_size = 1; 3122 3123 cache_size *= 16; 3124 cache_size *= fs_info->sectorsize; 3125 3126 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3127 cache_size, false); 3128 if (ret) 3129 goto out_put; 3130 3131 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3132 cache_size, cache_size, 3133 &alloc_hint); 3134 /* 3135 * Our cache requires contiguous chunks so that we don't modify a bunch 3136 * of metadata or split extents when writing the cache out, which means 3137 * we can enospc if we are heavily fragmented in addition to just normal 3138 * out of space conditions. So if we hit this just skip setting up any 3139 * other block groups for this transaction, maybe we'll unpin enough 3140 * space the next time around. 3141 */ 3142 if (!ret) 3143 dcs = BTRFS_DC_SETUP; 3144 else if (ret == -ENOSPC) 3145 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3146 3147 out_put: 3148 iput(inode); 3149 out_free: 3150 btrfs_release_path(path); 3151 out: 3152 spin_lock(&block_group->lock); 3153 if (!ret && dcs == BTRFS_DC_SETUP) 3154 block_group->cache_generation = trans->transid; 3155 block_group->disk_cache_state = dcs; 3156 spin_unlock(&block_group->lock); 3157 3158 extent_changeset_free(data_reserved); 3159 return ret; 3160 } 3161 3162 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3163 { 3164 struct btrfs_fs_info *fs_info = trans->fs_info; 3165 struct btrfs_block_group *cache, *tmp; 3166 struct btrfs_transaction *cur_trans = trans->transaction; 3167 struct btrfs_path *path; 3168 3169 if (list_empty(&cur_trans->dirty_bgs) || 3170 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3171 return 0; 3172 3173 path = btrfs_alloc_path(); 3174 if (!path) 3175 return -ENOMEM; 3176 3177 /* Could add new block groups, use _safe just in case */ 3178 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3179 dirty_list) { 3180 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3181 cache_save_setup(cache, trans, path); 3182 } 3183 3184 btrfs_free_path(path); 3185 return 0; 3186 } 3187 3188 /* 3189 * Transaction commit does final block group cache writeback during a critical 3190 * section where nothing is allowed to change the FS. This is required in 3191 * order for the cache to actually match the block group, but can introduce a 3192 * lot of latency into the commit. 3193 * 3194 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3195 * There's a chance we'll have to redo some of it if the block group changes 3196 * again during the commit, but it greatly reduces the commit latency by 3197 * getting rid of the easy block groups while we're still allowing others to 3198 * join the commit. 3199 */ 3200 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3201 { 3202 struct btrfs_fs_info *fs_info = trans->fs_info; 3203 struct btrfs_block_group *cache; 3204 struct btrfs_transaction *cur_trans = trans->transaction; 3205 int ret = 0; 3206 int should_put; 3207 struct btrfs_path *path = NULL; 3208 LIST_HEAD(dirty); 3209 struct list_head *io = &cur_trans->io_bgs; 3210 int loops = 0; 3211 3212 spin_lock(&cur_trans->dirty_bgs_lock); 3213 if (list_empty(&cur_trans->dirty_bgs)) { 3214 spin_unlock(&cur_trans->dirty_bgs_lock); 3215 return 0; 3216 } 3217 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3218 spin_unlock(&cur_trans->dirty_bgs_lock); 3219 3220 again: 3221 /* Make sure all the block groups on our dirty list actually exist */ 3222 btrfs_create_pending_block_groups(trans); 3223 3224 if (!path) { 3225 path = btrfs_alloc_path(); 3226 if (!path) { 3227 ret = -ENOMEM; 3228 goto out; 3229 } 3230 } 3231 3232 /* 3233 * cache_write_mutex is here only to save us from balance or automatic 3234 * removal of empty block groups deleting this block group while we are 3235 * writing out the cache 3236 */ 3237 mutex_lock(&trans->transaction->cache_write_mutex); 3238 while (!list_empty(&dirty)) { 3239 bool drop_reserve = true; 3240 3241 cache = list_first_entry(&dirty, struct btrfs_block_group, 3242 dirty_list); 3243 /* 3244 * This can happen if something re-dirties a block group that 3245 * is already under IO. Just wait for it to finish and then do 3246 * it all again 3247 */ 3248 if (!list_empty(&cache->io_list)) { 3249 list_del_init(&cache->io_list); 3250 btrfs_wait_cache_io(trans, cache, path); 3251 btrfs_put_block_group(cache); 3252 } 3253 3254 3255 /* 3256 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3257 * it should update the cache_state. Don't delete until after 3258 * we wait. 3259 * 3260 * Since we're not running in the commit critical section 3261 * we need the dirty_bgs_lock to protect from update_block_group 3262 */ 3263 spin_lock(&cur_trans->dirty_bgs_lock); 3264 list_del_init(&cache->dirty_list); 3265 spin_unlock(&cur_trans->dirty_bgs_lock); 3266 3267 should_put = 1; 3268 3269 cache_save_setup(cache, trans, path); 3270 3271 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3272 cache->io_ctl.inode = NULL; 3273 ret = btrfs_write_out_cache(trans, cache, path); 3274 if (ret == 0 && cache->io_ctl.inode) { 3275 should_put = 0; 3276 3277 /* 3278 * The cache_write_mutex is protecting the 3279 * io_list, also refer to the definition of 3280 * btrfs_transaction::io_bgs for more details 3281 */ 3282 list_add_tail(&cache->io_list, io); 3283 } else { 3284 /* 3285 * If we failed to write the cache, the 3286 * generation will be bad and life goes on 3287 */ 3288 ret = 0; 3289 } 3290 } 3291 if (!ret) { 3292 ret = update_block_group_item(trans, path, cache); 3293 /* 3294 * Our block group might still be attached to the list 3295 * of new block groups in the transaction handle of some 3296 * other task (struct btrfs_trans_handle->new_bgs). This 3297 * means its block group item isn't yet in the extent 3298 * tree. If this happens ignore the error, as we will 3299 * try again later in the critical section of the 3300 * transaction commit. 3301 */ 3302 if (ret == -ENOENT) { 3303 ret = 0; 3304 spin_lock(&cur_trans->dirty_bgs_lock); 3305 if (list_empty(&cache->dirty_list)) { 3306 list_add_tail(&cache->dirty_list, 3307 &cur_trans->dirty_bgs); 3308 btrfs_get_block_group(cache); 3309 drop_reserve = false; 3310 } 3311 spin_unlock(&cur_trans->dirty_bgs_lock); 3312 } else if (ret) { 3313 btrfs_abort_transaction(trans, ret); 3314 } 3315 } 3316 3317 /* If it's not on the io list, we need to put the block group */ 3318 if (should_put) 3319 btrfs_put_block_group(cache); 3320 if (drop_reserve) 3321 btrfs_delayed_refs_rsv_release(fs_info, 1); 3322 /* 3323 * Avoid blocking other tasks for too long. It might even save 3324 * us from writing caches for block groups that are going to be 3325 * removed. 3326 */ 3327 mutex_unlock(&trans->transaction->cache_write_mutex); 3328 if (ret) 3329 goto out; 3330 mutex_lock(&trans->transaction->cache_write_mutex); 3331 } 3332 mutex_unlock(&trans->transaction->cache_write_mutex); 3333 3334 /* 3335 * Go through delayed refs for all the stuff we've just kicked off 3336 * and then loop back (just once) 3337 */ 3338 if (!ret) 3339 ret = btrfs_run_delayed_refs(trans, 0); 3340 if (!ret && loops == 0) { 3341 loops++; 3342 spin_lock(&cur_trans->dirty_bgs_lock); 3343 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3344 /* 3345 * dirty_bgs_lock protects us from concurrent block group 3346 * deletes too (not just cache_write_mutex). 3347 */ 3348 if (!list_empty(&dirty)) { 3349 spin_unlock(&cur_trans->dirty_bgs_lock); 3350 goto again; 3351 } 3352 spin_unlock(&cur_trans->dirty_bgs_lock); 3353 } 3354 out: 3355 if (ret < 0) { 3356 spin_lock(&cur_trans->dirty_bgs_lock); 3357 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3358 spin_unlock(&cur_trans->dirty_bgs_lock); 3359 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3360 } 3361 3362 btrfs_free_path(path); 3363 return ret; 3364 } 3365 3366 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3367 { 3368 struct btrfs_fs_info *fs_info = trans->fs_info; 3369 struct btrfs_block_group *cache; 3370 struct btrfs_transaction *cur_trans = trans->transaction; 3371 int ret = 0; 3372 int should_put; 3373 struct btrfs_path *path; 3374 struct list_head *io = &cur_trans->io_bgs; 3375 3376 path = btrfs_alloc_path(); 3377 if (!path) 3378 return -ENOMEM; 3379 3380 /* 3381 * Even though we are in the critical section of the transaction commit, 3382 * we can still have concurrent tasks adding elements to this 3383 * transaction's list of dirty block groups. These tasks correspond to 3384 * endio free space workers started when writeback finishes for a 3385 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3386 * allocate new block groups as a result of COWing nodes of the root 3387 * tree when updating the free space inode. The writeback for the space 3388 * caches is triggered by an earlier call to 3389 * btrfs_start_dirty_block_groups() and iterations of the following 3390 * loop. 3391 * Also we want to do the cache_save_setup first and then run the 3392 * delayed refs to make sure we have the best chance at doing this all 3393 * in one shot. 3394 */ 3395 spin_lock(&cur_trans->dirty_bgs_lock); 3396 while (!list_empty(&cur_trans->dirty_bgs)) { 3397 cache = list_first_entry(&cur_trans->dirty_bgs, 3398 struct btrfs_block_group, 3399 dirty_list); 3400 3401 /* 3402 * This can happen if cache_save_setup re-dirties a block group 3403 * that is already under IO. Just wait for it to finish and 3404 * then do it all again 3405 */ 3406 if (!list_empty(&cache->io_list)) { 3407 spin_unlock(&cur_trans->dirty_bgs_lock); 3408 list_del_init(&cache->io_list); 3409 btrfs_wait_cache_io(trans, cache, path); 3410 btrfs_put_block_group(cache); 3411 spin_lock(&cur_trans->dirty_bgs_lock); 3412 } 3413 3414 /* 3415 * Don't remove from the dirty list until after we've waited on 3416 * any pending IO 3417 */ 3418 list_del_init(&cache->dirty_list); 3419 spin_unlock(&cur_trans->dirty_bgs_lock); 3420 should_put = 1; 3421 3422 cache_save_setup(cache, trans, path); 3423 3424 if (!ret) 3425 ret = btrfs_run_delayed_refs(trans, 3426 (unsigned long) -1); 3427 3428 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3429 cache->io_ctl.inode = NULL; 3430 ret = btrfs_write_out_cache(trans, cache, path); 3431 if (ret == 0 && cache->io_ctl.inode) { 3432 should_put = 0; 3433 list_add_tail(&cache->io_list, io); 3434 } else { 3435 /* 3436 * If we failed to write the cache, the 3437 * generation will be bad and life goes on 3438 */ 3439 ret = 0; 3440 } 3441 } 3442 if (!ret) { 3443 ret = update_block_group_item(trans, path, cache); 3444 /* 3445 * One of the free space endio workers might have 3446 * created a new block group while updating a free space 3447 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3448 * and hasn't released its transaction handle yet, in 3449 * which case the new block group is still attached to 3450 * its transaction handle and its creation has not 3451 * finished yet (no block group item in the extent tree 3452 * yet, etc). If this is the case, wait for all free 3453 * space endio workers to finish and retry. This is a 3454 * very rare case so no need for a more efficient and 3455 * complex approach. 3456 */ 3457 if (ret == -ENOENT) { 3458 wait_event(cur_trans->writer_wait, 3459 atomic_read(&cur_trans->num_writers) == 1); 3460 ret = update_block_group_item(trans, path, cache); 3461 } 3462 if (ret) 3463 btrfs_abort_transaction(trans, ret); 3464 } 3465 3466 /* If its not on the io list, we need to put the block group */ 3467 if (should_put) 3468 btrfs_put_block_group(cache); 3469 btrfs_delayed_refs_rsv_release(fs_info, 1); 3470 spin_lock(&cur_trans->dirty_bgs_lock); 3471 } 3472 spin_unlock(&cur_trans->dirty_bgs_lock); 3473 3474 /* 3475 * Refer to the definition of io_bgs member for details why it's safe 3476 * to use it without any locking 3477 */ 3478 while (!list_empty(io)) { 3479 cache = list_first_entry(io, struct btrfs_block_group, 3480 io_list); 3481 list_del_init(&cache->io_list); 3482 btrfs_wait_cache_io(trans, cache, path); 3483 btrfs_put_block_group(cache); 3484 } 3485 3486 btrfs_free_path(path); 3487 return ret; 3488 } 3489 3490 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3491 u64 bytenr, u64 num_bytes, bool alloc) 3492 { 3493 struct btrfs_fs_info *info = trans->fs_info; 3494 struct btrfs_block_group *cache = NULL; 3495 u64 total = num_bytes; 3496 u64 old_val; 3497 u64 byte_in_group; 3498 int factor; 3499 int ret = 0; 3500 3501 /* Block accounting for super block */ 3502 spin_lock(&info->delalloc_root_lock); 3503 old_val = btrfs_super_bytes_used(info->super_copy); 3504 if (alloc) 3505 old_val += num_bytes; 3506 else 3507 old_val -= num_bytes; 3508 btrfs_set_super_bytes_used(info->super_copy, old_val); 3509 spin_unlock(&info->delalloc_root_lock); 3510 3511 while (total) { 3512 struct btrfs_space_info *space_info; 3513 bool reclaim = false; 3514 3515 cache = btrfs_lookup_block_group(info, bytenr); 3516 if (!cache) { 3517 ret = -ENOENT; 3518 break; 3519 } 3520 space_info = cache->space_info; 3521 factor = btrfs_bg_type_to_factor(cache->flags); 3522 3523 /* 3524 * If this block group has free space cache written out, we 3525 * need to make sure to load it if we are removing space. This 3526 * is because we need the unpinning stage to actually add the 3527 * space back to the block group, otherwise we will leak space. 3528 */ 3529 if (!alloc && !btrfs_block_group_done(cache)) 3530 btrfs_cache_block_group(cache, true); 3531 3532 byte_in_group = bytenr - cache->start; 3533 WARN_ON(byte_in_group > cache->length); 3534 3535 spin_lock(&space_info->lock); 3536 spin_lock(&cache->lock); 3537 3538 if (btrfs_test_opt(info, SPACE_CACHE) && 3539 cache->disk_cache_state < BTRFS_DC_CLEAR) 3540 cache->disk_cache_state = BTRFS_DC_CLEAR; 3541 3542 old_val = cache->used; 3543 num_bytes = min(total, cache->length - byte_in_group); 3544 if (alloc) { 3545 old_val += num_bytes; 3546 cache->used = old_val; 3547 cache->reserved -= num_bytes; 3548 space_info->bytes_reserved -= num_bytes; 3549 space_info->bytes_used += num_bytes; 3550 space_info->disk_used += num_bytes * factor; 3551 spin_unlock(&cache->lock); 3552 spin_unlock(&space_info->lock); 3553 } else { 3554 old_val -= num_bytes; 3555 cache->used = old_val; 3556 cache->pinned += num_bytes; 3557 btrfs_space_info_update_bytes_pinned(info, space_info, 3558 num_bytes); 3559 space_info->bytes_used -= num_bytes; 3560 space_info->disk_used -= num_bytes * factor; 3561 3562 reclaim = should_reclaim_block_group(cache, num_bytes); 3563 3564 spin_unlock(&cache->lock); 3565 spin_unlock(&space_info->lock); 3566 3567 set_extent_bit(&trans->transaction->pinned_extents, 3568 bytenr, bytenr + num_bytes - 1, 3569 EXTENT_DIRTY, NULL); 3570 } 3571 3572 spin_lock(&trans->transaction->dirty_bgs_lock); 3573 if (list_empty(&cache->dirty_list)) { 3574 list_add_tail(&cache->dirty_list, 3575 &trans->transaction->dirty_bgs); 3576 trans->delayed_ref_updates++; 3577 btrfs_get_block_group(cache); 3578 } 3579 spin_unlock(&trans->transaction->dirty_bgs_lock); 3580 3581 /* 3582 * No longer have used bytes in this block group, queue it for 3583 * deletion. We do this after adding the block group to the 3584 * dirty list to avoid races between cleaner kthread and space 3585 * cache writeout. 3586 */ 3587 if (!alloc && old_val == 0) { 3588 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3589 btrfs_mark_bg_unused(cache); 3590 } else if (!alloc && reclaim) { 3591 btrfs_mark_bg_to_reclaim(cache); 3592 } 3593 3594 btrfs_put_block_group(cache); 3595 total -= num_bytes; 3596 bytenr += num_bytes; 3597 } 3598 3599 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3600 btrfs_update_delayed_refs_rsv(trans); 3601 return ret; 3602 } 3603 3604 /* 3605 * Update the block_group and space info counters. 3606 * 3607 * @cache: The cache we are manipulating 3608 * @ram_bytes: The number of bytes of file content, and will be same to 3609 * @num_bytes except for the compress path. 3610 * @num_bytes: The number of bytes in question 3611 * @delalloc: The blocks are allocated for the delalloc write 3612 * 3613 * This is called by the allocator when it reserves space. If this is a 3614 * reservation and the block group has become read only we cannot make the 3615 * reservation and return -EAGAIN, otherwise this function always succeeds. 3616 */ 3617 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3618 u64 ram_bytes, u64 num_bytes, int delalloc, 3619 bool force_wrong_size_class) 3620 { 3621 struct btrfs_space_info *space_info = cache->space_info; 3622 enum btrfs_block_group_size_class size_class; 3623 int ret = 0; 3624 3625 spin_lock(&space_info->lock); 3626 spin_lock(&cache->lock); 3627 if (cache->ro) { 3628 ret = -EAGAIN; 3629 goto out; 3630 } 3631 3632 if (btrfs_block_group_should_use_size_class(cache)) { 3633 size_class = btrfs_calc_block_group_size_class(num_bytes); 3634 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3635 if (ret) 3636 goto out; 3637 } 3638 cache->reserved += num_bytes; 3639 space_info->bytes_reserved += num_bytes; 3640 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3641 space_info->flags, num_bytes, 1); 3642 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3643 space_info, -ram_bytes); 3644 if (delalloc) 3645 cache->delalloc_bytes += num_bytes; 3646 3647 /* 3648 * Compression can use less space than we reserved, so wake tickets if 3649 * that happens. 3650 */ 3651 if (num_bytes < ram_bytes) 3652 btrfs_try_granting_tickets(cache->fs_info, space_info); 3653 out: 3654 spin_unlock(&cache->lock); 3655 spin_unlock(&space_info->lock); 3656 return ret; 3657 } 3658 3659 /* 3660 * Update the block_group and space info counters. 3661 * 3662 * @cache: The cache we are manipulating 3663 * @num_bytes: The number of bytes in question 3664 * @delalloc: The blocks are allocated for the delalloc write 3665 * 3666 * This is called by somebody who is freeing space that was never actually used 3667 * on disk. For example if you reserve some space for a new leaf in transaction 3668 * A and before transaction A commits you free that leaf, you call this with 3669 * reserve set to 0 in order to clear the reservation. 3670 */ 3671 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3672 u64 num_bytes, int delalloc) 3673 { 3674 struct btrfs_space_info *space_info = cache->space_info; 3675 3676 spin_lock(&space_info->lock); 3677 spin_lock(&cache->lock); 3678 if (cache->ro) 3679 space_info->bytes_readonly += num_bytes; 3680 cache->reserved -= num_bytes; 3681 space_info->bytes_reserved -= num_bytes; 3682 space_info->max_extent_size = 0; 3683 3684 if (delalloc) 3685 cache->delalloc_bytes -= num_bytes; 3686 spin_unlock(&cache->lock); 3687 3688 btrfs_try_granting_tickets(cache->fs_info, space_info); 3689 spin_unlock(&space_info->lock); 3690 } 3691 3692 static void force_metadata_allocation(struct btrfs_fs_info *info) 3693 { 3694 struct list_head *head = &info->space_info; 3695 struct btrfs_space_info *found; 3696 3697 list_for_each_entry(found, head, list) { 3698 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3699 found->force_alloc = CHUNK_ALLOC_FORCE; 3700 } 3701 } 3702 3703 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3704 struct btrfs_space_info *sinfo, int force) 3705 { 3706 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3707 u64 thresh; 3708 3709 if (force == CHUNK_ALLOC_FORCE) 3710 return 1; 3711 3712 /* 3713 * in limited mode, we want to have some free space up to 3714 * about 1% of the FS size. 3715 */ 3716 if (force == CHUNK_ALLOC_LIMITED) { 3717 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3718 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3719 3720 if (sinfo->total_bytes - bytes_used < thresh) 3721 return 1; 3722 } 3723 3724 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3725 return 0; 3726 return 1; 3727 } 3728 3729 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3730 { 3731 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3732 3733 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3734 } 3735 3736 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3737 { 3738 struct btrfs_block_group *bg; 3739 int ret; 3740 3741 /* 3742 * Check if we have enough space in the system space info because we 3743 * will need to update device items in the chunk btree and insert a new 3744 * chunk item in the chunk btree as well. This will allocate a new 3745 * system block group if needed. 3746 */ 3747 check_system_chunk(trans, flags); 3748 3749 bg = btrfs_create_chunk(trans, flags); 3750 if (IS_ERR(bg)) { 3751 ret = PTR_ERR(bg); 3752 goto out; 3753 } 3754 3755 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3756 /* 3757 * Normally we are not expected to fail with -ENOSPC here, since we have 3758 * previously reserved space in the system space_info and allocated one 3759 * new system chunk if necessary. However there are three exceptions: 3760 * 3761 * 1) We may have enough free space in the system space_info but all the 3762 * existing system block groups have a profile which can not be used 3763 * for extent allocation. 3764 * 3765 * This happens when mounting in degraded mode. For example we have a 3766 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3767 * using the other device in degraded mode. If we then allocate a chunk, 3768 * we may have enough free space in the existing system space_info, but 3769 * none of the block groups can be used for extent allocation since they 3770 * have a RAID1 profile, and because we are in degraded mode with a 3771 * single device, we are forced to allocate a new system chunk with a 3772 * SINGLE profile. Making check_system_chunk() iterate over all system 3773 * block groups and check if they have a usable profile and enough space 3774 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3775 * try again after forcing allocation of a new system chunk. Like this 3776 * we avoid paying the cost of that search in normal circumstances, when 3777 * we were not mounted in degraded mode; 3778 * 3779 * 2) We had enough free space info the system space_info, and one suitable 3780 * block group to allocate from when we called check_system_chunk() 3781 * above. However right after we called it, the only system block group 3782 * with enough free space got turned into RO mode by a running scrub, 3783 * and in this case we have to allocate a new one and retry. We only 3784 * need do this allocate and retry once, since we have a transaction 3785 * handle and scrub uses the commit root to search for block groups; 3786 * 3787 * 3) We had one system block group with enough free space when we called 3788 * check_system_chunk(), but after that, right before we tried to 3789 * allocate the last extent buffer we needed, a discard operation came 3790 * in and it temporarily removed the last free space entry from the 3791 * block group (discard removes a free space entry, discards it, and 3792 * then adds back the entry to the block group cache). 3793 */ 3794 if (ret == -ENOSPC) { 3795 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3796 struct btrfs_block_group *sys_bg; 3797 3798 sys_bg = btrfs_create_chunk(trans, sys_flags); 3799 if (IS_ERR(sys_bg)) { 3800 ret = PTR_ERR(sys_bg); 3801 btrfs_abort_transaction(trans, ret); 3802 goto out; 3803 } 3804 3805 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3806 if (ret) { 3807 btrfs_abort_transaction(trans, ret); 3808 goto out; 3809 } 3810 3811 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3812 if (ret) { 3813 btrfs_abort_transaction(trans, ret); 3814 goto out; 3815 } 3816 } else if (ret) { 3817 btrfs_abort_transaction(trans, ret); 3818 goto out; 3819 } 3820 out: 3821 btrfs_trans_release_chunk_metadata(trans); 3822 3823 if (ret) 3824 return ERR_PTR(ret); 3825 3826 btrfs_get_block_group(bg); 3827 return bg; 3828 } 3829 3830 /* 3831 * Chunk allocation is done in 2 phases: 3832 * 3833 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3834 * the chunk, the chunk mapping, create its block group and add the items 3835 * that belong in the chunk btree to it - more specifically, we need to 3836 * update device items in the chunk btree and add a new chunk item to it. 3837 * 3838 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3839 * group item to the extent btree and the device extent items to the devices 3840 * btree. 3841 * 3842 * This is done to prevent deadlocks. For example when COWing a node from the 3843 * extent btree we are holding a write lock on the node's parent and if we 3844 * trigger chunk allocation and attempted to insert the new block group item 3845 * in the extent btree right way, we could deadlock because the path for the 3846 * insertion can include that parent node. At first glance it seems impossible 3847 * to trigger chunk allocation after starting a transaction since tasks should 3848 * reserve enough transaction units (metadata space), however while that is true 3849 * most of the time, chunk allocation may still be triggered for several reasons: 3850 * 3851 * 1) When reserving metadata, we check if there is enough free space in the 3852 * metadata space_info and therefore don't trigger allocation of a new chunk. 3853 * However later when the task actually tries to COW an extent buffer from 3854 * the extent btree or from the device btree for example, it is forced to 3855 * allocate a new block group (chunk) because the only one that had enough 3856 * free space was just turned to RO mode by a running scrub for example (or 3857 * device replace, block group reclaim thread, etc), so we can not use it 3858 * for allocating an extent and end up being forced to allocate a new one; 3859 * 3860 * 2) Because we only check that the metadata space_info has enough free bytes, 3861 * we end up not allocating a new metadata chunk in that case. However if 3862 * the filesystem was mounted in degraded mode, none of the existing block 3863 * groups might be suitable for extent allocation due to their incompatible 3864 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3865 * use a RAID1 profile, in degraded mode using a single device). In this case 3866 * when the task attempts to COW some extent buffer of the extent btree for 3867 * example, it will trigger allocation of a new metadata block group with a 3868 * suitable profile (SINGLE profile in the example of the degraded mount of 3869 * the RAID1 filesystem); 3870 * 3871 * 3) The task has reserved enough transaction units / metadata space, but when 3872 * it attempts to COW an extent buffer from the extent or device btree for 3873 * example, it does not find any free extent in any metadata block group, 3874 * therefore forced to try to allocate a new metadata block group. 3875 * This is because some other task allocated all available extents in the 3876 * meanwhile - this typically happens with tasks that don't reserve space 3877 * properly, either intentionally or as a bug. One example where this is 3878 * done intentionally is fsync, as it does not reserve any transaction units 3879 * and ends up allocating a variable number of metadata extents for log 3880 * tree extent buffers; 3881 * 3882 * 4) The task has reserved enough transaction units / metadata space, but right 3883 * before it tries to allocate the last extent buffer it needs, a discard 3884 * operation comes in and, temporarily, removes the last free space entry from 3885 * the only metadata block group that had free space (discard starts by 3886 * removing a free space entry from a block group, then does the discard 3887 * operation and, once it's done, it adds back the free space entry to the 3888 * block group). 3889 * 3890 * We also need this 2 phases setup when adding a device to a filesystem with 3891 * a seed device - we must create new metadata and system chunks without adding 3892 * any of the block group items to the chunk, extent and device btrees. If we 3893 * did not do it this way, we would get ENOSPC when attempting to update those 3894 * btrees, since all the chunks from the seed device are read-only. 3895 * 3896 * Phase 1 does the updates and insertions to the chunk btree because if we had 3897 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3898 * parallel, we risk having too many system chunks allocated by many tasks if 3899 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3900 * extreme case this leads to exhaustion of the system chunk array in the 3901 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3902 * and with RAID filesystems (so we have more device items in the chunk btree). 3903 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3904 * the system chunk array due to concurrent allocations") provides more details. 3905 * 3906 * Allocation of system chunks does not happen through this function. A task that 3907 * needs to update the chunk btree (the only btree that uses system chunks), must 3908 * preallocate chunk space by calling either check_system_chunk() or 3909 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3910 * metadata chunk or when removing a chunk, while the later is used before doing 3911 * a modification to the chunk btree - use cases for the later are adding, 3912 * removing and resizing a device as well as relocation of a system chunk. 3913 * See the comment below for more details. 3914 * 3915 * The reservation of system space, done through check_system_chunk(), as well 3916 * as all the updates and insertions into the chunk btree must be done while 3917 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3918 * an extent buffer from the chunks btree we never trigger allocation of a new 3919 * system chunk, which would result in a deadlock (trying to lock twice an 3920 * extent buffer of the chunk btree, first time before triggering the chunk 3921 * allocation and the second time during chunk allocation while attempting to 3922 * update the chunks btree). The system chunk array is also updated while holding 3923 * that mutex. The same logic applies to removing chunks - we must reserve system 3924 * space, update the chunk btree and the system chunk array in the superblock 3925 * while holding fs_info->chunk_mutex. 3926 * 3927 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3928 * 3929 * If @force is CHUNK_ALLOC_FORCE: 3930 * - return 1 if it successfully allocates a chunk, 3931 * - return errors including -ENOSPC otherwise. 3932 * If @force is NOT CHUNK_ALLOC_FORCE: 3933 * - return 0 if it doesn't need to allocate a new chunk, 3934 * - return 1 if it successfully allocates a chunk, 3935 * - return errors including -ENOSPC otherwise. 3936 */ 3937 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3938 enum btrfs_chunk_alloc_enum force) 3939 { 3940 struct btrfs_fs_info *fs_info = trans->fs_info; 3941 struct btrfs_space_info *space_info; 3942 struct btrfs_block_group *ret_bg; 3943 bool wait_for_alloc = false; 3944 bool should_alloc = false; 3945 bool from_extent_allocation = false; 3946 int ret = 0; 3947 3948 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3949 from_extent_allocation = true; 3950 force = CHUNK_ALLOC_FORCE; 3951 } 3952 3953 /* Don't re-enter if we're already allocating a chunk */ 3954 if (trans->allocating_chunk) 3955 return -ENOSPC; 3956 /* 3957 * Allocation of system chunks can not happen through this path, as we 3958 * could end up in a deadlock if we are allocating a data or metadata 3959 * chunk and there is another task modifying the chunk btree. 3960 * 3961 * This is because while we are holding the chunk mutex, we will attempt 3962 * to add the new chunk item to the chunk btree or update an existing 3963 * device item in the chunk btree, while the other task that is modifying 3964 * the chunk btree is attempting to COW an extent buffer while holding a 3965 * lock on it and on its parent - if the COW operation triggers a system 3966 * chunk allocation, then we can deadlock because we are holding the 3967 * chunk mutex and we may need to access that extent buffer or its parent 3968 * in order to add the chunk item or update a device item. 3969 * 3970 * Tasks that want to modify the chunk tree should reserve system space 3971 * before updating the chunk btree, by calling either 3972 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3973 * It's possible that after a task reserves the space, it still ends up 3974 * here - this happens in the cases described above at do_chunk_alloc(). 3975 * The task will have to either retry or fail. 3976 */ 3977 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3978 return -ENOSPC; 3979 3980 space_info = btrfs_find_space_info(fs_info, flags); 3981 ASSERT(space_info); 3982 3983 do { 3984 spin_lock(&space_info->lock); 3985 if (force < space_info->force_alloc) 3986 force = space_info->force_alloc; 3987 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3988 if (space_info->full) { 3989 /* No more free physical space */ 3990 if (should_alloc) 3991 ret = -ENOSPC; 3992 else 3993 ret = 0; 3994 spin_unlock(&space_info->lock); 3995 return ret; 3996 } else if (!should_alloc) { 3997 spin_unlock(&space_info->lock); 3998 return 0; 3999 } else if (space_info->chunk_alloc) { 4000 /* 4001 * Someone is already allocating, so we need to block 4002 * until this someone is finished and then loop to 4003 * recheck if we should continue with our allocation 4004 * attempt. 4005 */ 4006 wait_for_alloc = true; 4007 force = CHUNK_ALLOC_NO_FORCE; 4008 spin_unlock(&space_info->lock); 4009 mutex_lock(&fs_info->chunk_mutex); 4010 mutex_unlock(&fs_info->chunk_mutex); 4011 } else { 4012 /* Proceed with allocation */ 4013 space_info->chunk_alloc = 1; 4014 wait_for_alloc = false; 4015 spin_unlock(&space_info->lock); 4016 } 4017 4018 cond_resched(); 4019 } while (wait_for_alloc); 4020 4021 mutex_lock(&fs_info->chunk_mutex); 4022 trans->allocating_chunk = true; 4023 4024 /* 4025 * If we have mixed data/metadata chunks we want to make sure we keep 4026 * allocating mixed chunks instead of individual chunks. 4027 */ 4028 if (btrfs_mixed_space_info(space_info)) 4029 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4030 4031 /* 4032 * if we're doing a data chunk, go ahead and make sure that 4033 * we keep a reasonable number of metadata chunks allocated in the 4034 * FS as well. 4035 */ 4036 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4037 fs_info->data_chunk_allocations++; 4038 if (!(fs_info->data_chunk_allocations % 4039 fs_info->metadata_ratio)) 4040 force_metadata_allocation(fs_info); 4041 } 4042 4043 ret_bg = do_chunk_alloc(trans, flags); 4044 trans->allocating_chunk = false; 4045 4046 if (IS_ERR(ret_bg)) { 4047 ret = PTR_ERR(ret_bg); 4048 } else if (from_extent_allocation) { 4049 /* 4050 * New block group is likely to be used soon. Try to activate 4051 * it now. Failure is OK for now. 4052 */ 4053 btrfs_zone_activate(ret_bg); 4054 } 4055 4056 if (!ret) 4057 btrfs_put_block_group(ret_bg); 4058 4059 spin_lock(&space_info->lock); 4060 if (ret < 0) { 4061 if (ret == -ENOSPC) 4062 space_info->full = 1; 4063 else 4064 goto out; 4065 } else { 4066 ret = 1; 4067 space_info->max_extent_size = 0; 4068 } 4069 4070 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4071 out: 4072 space_info->chunk_alloc = 0; 4073 spin_unlock(&space_info->lock); 4074 mutex_unlock(&fs_info->chunk_mutex); 4075 4076 return ret; 4077 } 4078 4079 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4080 { 4081 u64 num_dev; 4082 4083 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4084 if (!num_dev) 4085 num_dev = fs_info->fs_devices->rw_devices; 4086 4087 return num_dev; 4088 } 4089 4090 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4091 u64 bytes, 4092 u64 type) 4093 { 4094 struct btrfs_fs_info *fs_info = trans->fs_info; 4095 struct btrfs_space_info *info; 4096 u64 left; 4097 int ret = 0; 4098 4099 /* 4100 * Needed because we can end up allocating a system chunk and for an 4101 * atomic and race free space reservation in the chunk block reserve. 4102 */ 4103 lockdep_assert_held(&fs_info->chunk_mutex); 4104 4105 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4106 spin_lock(&info->lock); 4107 left = info->total_bytes - btrfs_space_info_used(info, true); 4108 spin_unlock(&info->lock); 4109 4110 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4111 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4112 left, bytes, type); 4113 btrfs_dump_space_info(fs_info, info, 0, 0); 4114 } 4115 4116 if (left < bytes) { 4117 u64 flags = btrfs_system_alloc_profile(fs_info); 4118 struct btrfs_block_group *bg; 4119 4120 /* 4121 * Ignore failure to create system chunk. We might end up not 4122 * needing it, as we might not need to COW all nodes/leafs from 4123 * the paths we visit in the chunk tree (they were already COWed 4124 * or created in the current transaction for example). 4125 */ 4126 bg = btrfs_create_chunk(trans, flags); 4127 if (IS_ERR(bg)) { 4128 ret = PTR_ERR(bg); 4129 } else { 4130 /* 4131 * We have a new chunk. We also need to activate it for 4132 * zoned filesystem. 4133 */ 4134 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4135 if (ret < 0) 4136 return; 4137 4138 /* 4139 * If we fail to add the chunk item here, we end up 4140 * trying again at phase 2 of chunk allocation, at 4141 * btrfs_create_pending_block_groups(). So ignore 4142 * any error here. An ENOSPC here could happen, due to 4143 * the cases described at do_chunk_alloc() - the system 4144 * block group we just created was just turned into RO 4145 * mode by a scrub for example, or a running discard 4146 * temporarily removed its free space entries, etc. 4147 */ 4148 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4149 } 4150 } 4151 4152 if (!ret) { 4153 ret = btrfs_block_rsv_add(fs_info, 4154 &fs_info->chunk_block_rsv, 4155 bytes, BTRFS_RESERVE_NO_FLUSH); 4156 if (!ret) 4157 trans->chunk_bytes_reserved += bytes; 4158 } 4159 } 4160 4161 /* 4162 * Reserve space in the system space for allocating or removing a chunk. 4163 * The caller must be holding fs_info->chunk_mutex. 4164 */ 4165 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4166 { 4167 struct btrfs_fs_info *fs_info = trans->fs_info; 4168 const u64 num_devs = get_profile_num_devs(fs_info, type); 4169 u64 bytes; 4170 4171 /* num_devs device items to update and 1 chunk item to add or remove. */ 4172 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4173 btrfs_calc_insert_metadata_size(fs_info, 1); 4174 4175 reserve_chunk_space(trans, bytes, type); 4176 } 4177 4178 /* 4179 * Reserve space in the system space, if needed, for doing a modification to the 4180 * chunk btree. 4181 * 4182 * @trans: A transaction handle. 4183 * @is_item_insertion: Indicate if the modification is for inserting a new item 4184 * in the chunk btree or if it's for the deletion or update 4185 * of an existing item. 4186 * 4187 * This is used in a context where we need to update the chunk btree outside 4188 * block group allocation and removal, to avoid a deadlock with a concurrent 4189 * task that is allocating a metadata or data block group and therefore needs to 4190 * update the chunk btree while holding the chunk mutex. After the update to the 4191 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4192 * 4193 */ 4194 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4195 bool is_item_insertion) 4196 { 4197 struct btrfs_fs_info *fs_info = trans->fs_info; 4198 u64 bytes; 4199 4200 if (is_item_insertion) 4201 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4202 else 4203 bytes = btrfs_calc_metadata_size(fs_info, 1); 4204 4205 mutex_lock(&fs_info->chunk_mutex); 4206 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4207 mutex_unlock(&fs_info->chunk_mutex); 4208 } 4209 4210 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4211 { 4212 struct btrfs_block_group *block_group; 4213 4214 block_group = btrfs_lookup_first_block_group(info, 0); 4215 while (block_group) { 4216 btrfs_wait_block_group_cache_done(block_group); 4217 spin_lock(&block_group->lock); 4218 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4219 &block_group->runtime_flags)) { 4220 struct inode *inode = block_group->inode; 4221 4222 block_group->inode = NULL; 4223 spin_unlock(&block_group->lock); 4224 4225 ASSERT(block_group->io_ctl.inode == NULL); 4226 iput(inode); 4227 } else { 4228 spin_unlock(&block_group->lock); 4229 } 4230 block_group = btrfs_next_block_group(block_group); 4231 } 4232 } 4233 4234 /* 4235 * Must be called only after stopping all workers, since we could have block 4236 * group caching kthreads running, and therefore they could race with us if we 4237 * freed the block groups before stopping them. 4238 */ 4239 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4240 { 4241 struct btrfs_block_group *block_group; 4242 struct btrfs_space_info *space_info; 4243 struct btrfs_caching_control *caching_ctl; 4244 struct rb_node *n; 4245 4246 write_lock(&info->block_group_cache_lock); 4247 while (!list_empty(&info->caching_block_groups)) { 4248 caching_ctl = list_entry(info->caching_block_groups.next, 4249 struct btrfs_caching_control, list); 4250 list_del(&caching_ctl->list); 4251 btrfs_put_caching_control(caching_ctl); 4252 } 4253 write_unlock(&info->block_group_cache_lock); 4254 4255 spin_lock(&info->unused_bgs_lock); 4256 while (!list_empty(&info->unused_bgs)) { 4257 block_group = list_first_entry(&info->unused_bgs, 4258 struct btrfs_block_group, 4259 bg_list); 4260 list_del_init(&block_group->bg_list); 4261 btrfs_put_block_group(block_group); 4262 } 4263 4264 while (!list_empty(&info->reclaim_bgs)) { 4265 block_group = list_first_entry(&info->reclaim_bgs, 4266 struct btrfs_block_group, 4267 bg_list); 4268 list_del_init(&block_group->bg_list); 4269 btrfs_put_block_group(block_group); 4270 } 4271 spin_unlock(&info->unused_bgs_lock); 4272 4273 spin_lock(&info->zone_active_bgs_lock); 4274 while (!list_empty(&info->zone_active_bgs)) { 4275 block_group = list_first_entry(&info->zone_active_bgs, 4276 struct btrfs_block_group, 4277 active_bg_list); 4278 list_del_init(&block_group->active_bg_list); 4279 btrfs_put_block_group(block_group); 4280 } 4281 spin_unlock(&info->zone_active_bgs_lock); 4282 4283 write_lock(&info->block_group_cache_lock); 4284 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4285 block_group = rb_entry(n, struct btrfs_block_group, 4286 cache_node); 4287 rb_erase_cached(&block_group->cache_node, 4288 &info->block_group_cache_tree); 4289 RB_CLEAR_NODE(&block_group->cache_node); 4290 write_unlock(&info->block_group_cache_lock); 4291 4292 down_write(&block_group->space_info->groups_sem); 4293 list_del(&block_group->list); 4294 up_write(&block_group->space_info->groups_sem); 4295 4296 /* 4297 * We haven't cached this block group, which means we could 4298 * possibly have excluded extents on this block group. 4299 */ 4300 if (block_group->cached == BTRFS_CACHE_NO || 4301 block_group->cached == BTRFS_CACHE_ERROR) 4302 btrfs_free_excluded_extents(block_group); 4303 4304 btrfs_remove_free_space_cache(block_group); 4305 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4306 ASSERT(list_empty(&block_group->dirty_list)); 4307 ASSERT(list_empty(&block_group->io_list)); 4308 ASSERT(list_empty(&block_group->bg_list)); 4309 ASSERT(refcount_read(&block_group->refs) == 1); 4310 ASSERT(block_group->swap_extents == 0); 4311 btrfs_put_block_group(block_group); 4312 4313 write_lock(&info->block_group_cache_lock); 4314 } 4315 write_unlock(&info->block_group_cache_lock); 4316 4317 btrfs_release_global_block_rsv(info); 4318 4319 while (!list_empty(&info->space_info)) { 4320 space_info = list_entry(info->space_info.next, 4321 struct btrfs_space_info, 4322 list); 4323 4324 /* 4325 * Do not hide this behind enospc_debug, this is actually 4326 * important and indicates a real bug if this happens. 4327 */ 4328 if (WARN_ON(space_info->bytes_pinned > 0 || 4329 space_info->bytes_may_use > 0)) 4330 btrfs_dump_space_info(info, space_info, 0, 0); 4331 4332 /* 4333 * If there was a failure to cleanup a log tree, very likely due 4334 * to an IO failure on a writeback attempt of one or more of its 4335 * extent buffers, we could not do proper (and cheap) unaccounting 4336 * of their reserved space, so don't warn on bytes_reserved > 0 in 4337 * that case. 4338 */ 4339 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4340 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4341 if (WARN_ON(space_info->bytes_reserved > 0)) 4342 btrfs_dump_space_info(info, space_info, 0, 0); 4343 } 4344 4345 WARN_ON(space_info->reclaim_size > 0); 4346 list_del(&space_info->list); 4347 btrfs_sysfs_remove_space_info(space_info); 4348 } 4349 return 0; 4350 } 4351 4352 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4353 { 4354 atomic_inc(&cache->frozen); 4355 } 4356 4357 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4358 { 4359 struct btrfs_fs_info *fs_info = block_group->fs_info; 4360 struct extent_map_tree *em_tree; 4361 struct extent_map *em; 4362 bool cleanup; 4363 4364 spin_lock(&block_group->lock); 4365 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4366 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4367 spin_unlock(&block_group->lock); 4368 4369 if (cleanup) { 4370 em_tree = &fs_info->mapping_tree; 4371 write_lock(&em_tree->lock); 4372 em = lookup_extent_mapping(em_tree, block_group->start, 4373 1); 4374 BUG_ON(!em); /* logic error, can't happen */ 4375 remove_extent_mapping(em_tree, em); 4376 write_unlock(&em_tree->lock); 4377 4378 /* once for us and once for the tree */ 4379 free_extent_map(em); 4380 free_extent_map(em); 4381 4382 /* 4383 * We may have left one free space entry and other possible 4384 * tasks trimming this block group have left 1 entry each one. 4385 * Free them if any. 4386 */ 4387 btrfs_remove_free_space_cache(block_group); 4388 } 4389 } 4390 4391 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4392 { 4393 bool ret = true; 4394 4395 spin_lock(&bg->lock); 4396 if (bg->ro) 4397 ret = false; 4398 else 4399 bg->swap_extents++; 4400 spin_unlock(&bg->lock); 4401 4402 return ret; 4403 } 4404 4405 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4406 { 4407 spin_lock(&bg->lock); 4408 ASSERT(!bg->ro); 4409 ASSERT(bg->swap_extents >= amount); 4410 bg->swap_extents -= amount; 4411 spin_unlock(&bg->lock); 4412 } 4413 4414 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4415 { 4416 if (size <= SZ_128K) 4417 return BTRFS_BG_SZ_SMALL; 4418 if (size <= SZ_8M) 4419 return BTRFS_BG_SZ_MEDIUM; 4420 return BTRFS_BG_SZ_LARGE; 4421 } 4422 4423 /* 4424 * Handle a block group allocating an extent in a size class 4425 * 4426 * @bg: The block group we allocated in. 4427 * @size_class: The size class of the allocation. 4428 * @force_wrong_size_class: Whether we are desperate enough to allow 4429 * mismatched size classes. 4430 * 4431 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4432 * case of a race that leads to the wrong size class without 4433 * force_wrong_size_class set. 4434 * 4435 * find_free_extent will skip block groups with a mismatched size class until 4436 * it really needs to avoid ENOSPC. In that case it will set 4437 * force_wrong_size_class. However, if a block group is newly allocated and 4438 * doesn't yet have a size class, then it is possible for two allocations of 4439 * different sizes to race and both try to use it. The loser is caught here and 4440 * has to retry. 4441 */ 4442 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4443 enum btrfs_block_group_size_class size_class, 4444 bool force_wrong_size_class) 4445 { 4446 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4447 4448 /* The new allocation is in the right size class, do nothing */ 4449 if (bg->size_class == size_class) 4450 return 0; 4451 /* 4452 * The new allocation is in a mismatched size class. 4453 * This means one of two things: 4454 * 4455 * 1. Two tasks in find_free_extent for different size_classes raced 4456 * and hit the same empty block_group. Make the loser try again. 4457 * 2. A call to find_free_extent got desperate enough to set 4458 * 'force_wrong_slab'. Don't change the size_class, but allow the 4459 * allocation. 4460 */ 4461 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4462 if (force_wrong_size_class) 4463 return 0; 4464 return -EAGAIN; 4465 } 4466 /* 4467 * The happy new block group case: the new allocation is the first 4468 * one in the block_group so we set size_class. 4469 */ 4470 bg->size_class = size_class; 4471 4472 return 0; 4473 } 4474 4475 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4476 { 4477 if (btrfs_is_zoned(bg->fs_info)) 4478 return false; 4479 if (!btrfs_is_block_group_data_only(bg)) 4480 return false; 4481 return true; 4482 } 4483