1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "volumes.h" 11 #include "transaction.h" 12 #include "ref-verify.h" 13 #include "sysfs.h" 14 #include "tree-log.h" 15 #include "delalloc-space.h" 16 #include "discard.h" 17 #include "raid56.h" 18 19 /* 20 * Return target flags in extended format or 0 if restripe for this chunk_type 21 * is not in progress 22 * 23 * Should be called with balance_lock held 24 */ 25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 26 { 27 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 28 u64 target = 0; 29 30 if (!bctl) 31 return 0; 32 33 if (flags & BTRFS_BLOCK_GROUP_DATA && 34 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 35 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 36 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 37 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 38 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 39 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 40 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 41 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 42 } 43 44 return target; 45 } 46 47 /* 48 * @flags: available profiles in extended format (see ctree.h) 49 * 50 * Return reduced profile in chunk format. If profile changing is in progress 51 * (either running or paused) picks the target profile (if it's already 52 * available), otherwise falls back to plain reducing. 53 */ 54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 55 { 56 u64 num_devices = fs_info->fs_devices->rw_devices; 57 u64 target; 58 u64 raid_type; 59 u64 allowed = 0; 60 61 /* 62 * See if restripe for this chunk_type is in progress, if so try to 63 * reduce to the target profile 64 */ 65 spin_lock(&fs_info->balance_lock); 66 target = get_restripe_target(fs_info, flags); 67 if (target) { 68 /* Pick target profile only if it's already available */ 69 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 } 74 spin_unlock(&fs_info->balance_lock); 75 76 /* First, mask out the RAID levels which aren't possible */ 77 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 78 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 79 allowed |= btrfs_raid_array[raid_type].bg_flag; 80 } 81 allowed &= flags; 82 83 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 84 allowed = BTRFS_BLOCK_GROUP_RAID6; 85 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 86 allowed = BTRFS_BLOCK_GROUP_RAID5; 87 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 88 allowed = BTRFS_BLOCK_GROUP_RAID10; 89 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 90 allowed = BTRFS_BLOCK_GROUP_RAID1; 91 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 92 allowed = BTRFS_BLOCK_GROUP_RAID0; 93 94 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 95 96 return extended_to_chunk(flags | allowed); 97 } 98 99 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 100 { 101 unsigned seq; 102 u64 flags; 103 104 do { 105 flags = orig_flags; 106 seq = read_seqbegin(&fs_info->profiles_lock); 107 108 if (flags & BTRFS_BLOCK_GROUP_DATA) 109 flags |= fs_info->avail_data_alloc_bits; 110 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 111 flags |= fs_info->avail_system_alloc_bits; 112 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 113 flags |= fs_info->avail_metadata_alloc_bits; 114 } while (read_seqretry(&fs_info->profiles_lock, seq)); 115 116 return btrfs_reduce_alloc_profile(fs_info, flags); 117 } 118 119 void btrfs_get_block_group(struct btrfs_block_group *cache) 120 { 121 atomic_inc(&cache->count); 122 } 123 124 void btrfs_put_block_group(struct btrfs_block_group *cache) 125 { 126 if (atomic_dec_and_test(&cache->count)) { 127 WARN_ON(cache->pinned > 0); 128 WARN_ON(cache->reserved > 0); 129 130 /* 131 * A block_group shouldn't be on the discard_list anymore. 132 * Remove the block_group from the discard_list to prevent us 133 * from causing a panic due to NULL pointer dereference. 134 */ 135 if (WARN_ON(!list_empty(&cache->discard_list))) 136 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 137 cache); 138 139 /* 140 * If not empty, someone is still holding mutex of 141 * full_stripe_lock, which can only be released by caller. 142 * And it will definitely cause use-after-free when caller 143 * tries to release full stripe lock. 144 * 145 * No better way to resolve, but only to warn. 146 */ 147 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 148 kfree(cache->free_space_ctl); 149 kfree(cache); 150 } 151 } 152 153 /* 154 * This adds the block group to the fs_info rb tree for the block group cache 155 */ 156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 157 struct btrfs_block_group *block_group) 158 { 159 struct rb_node **p; 160 struct rb_node *parent = NULL; 161 struct btrfs_block_group *cache; 162 163 ASSERT(block_group->length != 0); 164 165 spin_lock(&info->block_group_cache_lock); 166 p = &info->block_group_cache_tree.rb_node; 167 168 while (*p) { 169 parent = *p; 170 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 171 if (block_group->start < cache->start) { 172 p = &(*p)->rb_left; 173 } else if (block_group->start > cache->start) { 174 p = &(*p)->rb_right; 175 } else { 176 spin_unlock(&info->block_group_cache_lock); 177 return -EEXIST; 178 } 179 } 180 181 rb_link_node(&block_group->cache_node, parent, p); 182 rb_insert_color(&block_group->cache_node, 183 &info->block_group_cache_tree); 184 185 if (info->first_logical_byte > block_group->start) 186 info->first_logical_byte = block_group->start; 187 188 spin_unlock(&info->block_group_cache_lock); 189 190 return 0; 191 } 192 193 /* 194 * This will return the block group at or after bytenr if contains is 0, else 195 * it will return the block group that contains the bytenr 196 */ 197 static struct btrfs_block_group *block_group_cache_tree_search( 198 struct btrfs_fs_info *info, u64 bytenr, int contains) 199 { 200 struct btrfs_block_group *cache, *ret = NULL; 201 struct rb_node *n; 202 u64 end, start; 203 204 spin_lock(&info->block_group_cache_lock); 205 n = info->block_group_cache_tree.rb_node; 206 207 while (n) { 208 cache = rb_entry(n, struct btrfs_block_group, cache_node); 209 end = cache->start + cache->length - 1; 210 start = cache->start; 211 212 if (bytenr < start) { 213 if (!contains && (!ret || start < ret->start)) 214 ret = cache; 215 n = n->rb_left; 216 } else if (bytenr > start) { 217 if (contains && bytenr <= end) { 218 ret = cache; 219 break; 220 } 221 n = n->rb_right; 222 } else { 223 ret = cache; 224 break; 225 } 226 } 227 if (ret) { 228 btrfs_get_block_group(ret); 229 if (bytenr == 0 && info->first_logical_byte > ret->start) 230 info->first_logical_byte = ret->start; 231 } 232 spin_unlock(&info->block_group_cache_lock); 233 234 return ret; 235 } 236 237 /* 238 * Return the block group that starts at or after bytenr 239 */ 240 struct btrfs_block_group *btrfs_lookup_first_block_group( 241 struct btrfs_fs_info *info, u64 bytenr) 242 { 243 return block_group_cache_tree_search(info, bytenr, 0); 244 } 245 246 /* 247 * Return the block group that contains the given bytenr 248 */ 249 struct btrfs_block_group *btrfs_lookup_block_group( 250 struct btrfs_fs_info *info, u64 bytenr) 251 { 252 return block_group_cache_tree_search(info, bytenr, 1); 253 } 254 255 struct btrfs_block_group *btrfs_next_block_group( 256 struct btrfs_block_group *cache) 257 { 258 struct btrfs_fs_info *fs_info = cache->fs_info; 259 struct rb_node *node; 260 261 spin_lock(&fs_info->block_group_cache_lock); 262 263 /* If our block group was removed, we need a full search. */ 264 if (RB_EMPTY_NODE(&cache->cache_node)) { 265 const u64 next_bytenr = cache->start + cache->length; 266 267 spin_unlock(&fs_info->block_group_cache_lock); 268 btrfs_put_block_group(cache); 269 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 270 } 271 node = rb_next(&cache->cache_node); 272 btrfs_put_block_group(cache); 273 if (node) { 274 cache = rb_entry(node, struct btrfs_block_group, cache_node); 275 btrfs_get_block_group(cache); 276 } else 277 cache = NULL; 278 spin_unlock(&fs_info->block_group_cache_lock); 279 return cache; 280 } 281 282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 283 { 284 struct btrfs_block_group *bg; 285 bool ret = true; 286 287 bg = btrfs_lookup_block_group(fs_info, bytenr); 288 if (!bg) 289 return false; 290 291 spin_lock(&bg->lock); 292 if (bg->ro) 293 ret = false; 294 else 295 atomic_inc(&bg->nocow_writers); 296 spin_unlock(&bg->lock); 297 298 /* No put on block group, done by btrfs_dec_nocow_writers */ 299 if (!ret) 300 btrfs_put_block_group(bg); 301 302 return ret; 303 } 304 305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 306 { 307 struct btrfs_block_group *bg; 308 309 bg = btrfs_lookup_block_group(fs_info, bytenr); 310 ASSERT(bg); 311 if (atomic_dec_and_test(&bg->nocow_writers)) 312 wake_up_var(&bg->nocow_writers); 313 /* 314 * Once for our lookup and once for the lookup done by a previous call 315 * to btrfs_inc_nocow_writers() 316 */ 317 btrfs_put_block_group(bg); 318 btrfs_put_block_group(bg); 319 } 320 321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 322 { 323 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 324 } 325 326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 327 const u64 start) 328 { 329 struct btrfs_block_group *bg; 330 331 bg = btrfs_lookup_block_group(fs_info, start); 332 ASSERT(bg); 333 if (atomic_dec_and_test(&bg->reservations)) 334 wake_up_var(&bg->reservations); 335 btrfs_put_block_group(bg); 336 } 337 338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 339 { 340 struct btrfs_space_info *space_info = bg->space_info; 341 342 ASSERT(bg->ro); 343 344 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 345 return; 346 347 /* 348 * Our block group is read only but before we set it to read only, 349 * some task might have had allocated an extent from it already, but it 350 * has not yet created a respective ordered extent (and added it to a 351 * root's list of ordered extents). 352 * Therefore wait for any task currently allocating extents, since the 353 * block group's reservations counter is incremented while a read lock 354 * on the groups' semaphore is held and decremented after releasing 355 * the read access on that semaphore and creating the ordered extent. 356 */ 357 down_write(&space_info->groups_sem); 358 up_write(&space_info->groups_sem); 359 360 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 361 } 362 363 struct btrfs_caching_control *btrfs_get_caching_control( 364 struct btrfs_block_group *cache) 365 { 366 struct btrfs_caching_control *ctl; 367 368 spin_lock(&cache->lock); 369 if (!cache->caching_ctl) { 370 spin_unlock(&cache->lock); 371 return NULL; 372 } 373 374 ctl = cache->caching_ctl; 375 refcount_inc(&ctl->count); 376 spin_unlock(&cache->lock); 377 return ctl; 378 } 379 380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 381 { 382 if (refcount_dec_and_test(&ctl->count)) 383 kfree(ctl); 384 } 385 386 /* 387 * When we wait for progress in the block group caching, its because our 388 * allocation attempt failed at least once. So, we must sleep and let some 389 * progress happen before we try again. 390 * 391 * This function will sleep at least once waiting for new free space to show 392 * up, and then it will check the block group free space numbers for our min 393 * num_bytes. Another option is to have it go ahead and look in the rbtree for 394 * a free extent of a given size, but this is a good start. 395 * 396 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 397 * any of the information in this block group. 398 */ 399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 400 u64 num_bytes) 401 { 402 struct btrfs_caching_control *caching_ctl; 403 404 caching_ctl = btrfs_get_caching_control(cache); 405 if (!caching_ctl) 406 return; 407 408 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 409 (cache->free_space_ctl->free_space >= num_bytes)); 410 411 btrfs_put_caching_control(caching_ctl); 412 } 413 414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 415 { 416 struct btrfs_caching_control *caching_ctl; 417 int ret = 0; 418 419 caching_ctl = btrfs_get_caching_control(cache); 420 if (!caching_ctl) 421 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 422 423 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 424 if (cache->cached == BTRFS_CACHE_ERROR) 425 ret = -EIO; 426 btrfs_put_caching_control(caching_ctl); 427 return ret; 428 } 429 430 #ifdef CONFIG_BTRFS_DEBUG 431 static void fragment_free_space(struct btrfs_block_group *block_group) 432 { 433 struct btrfs_fs_info *fs_info = block_group->fs_info; 434 u64 start = block_group->start; 435 u64 len = block_group->length; 436 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 437 fs_info->nodesize : fs_info->sectorsize; 438 u64 step = chunk << 1; 439 440 while (len > chunk) { 441 btrfs_remove_free_space(block_group, start, chunk); 442 start += step; 443 if (len < step) 444 len = 0; 445 else 446 len -= step; 447 } 448 } 449 #endif 450 451 /* 452 * This is only called by btrfs_cache_block_group, since we could have freed 453 * extents we need to check the pinned_extents for any extents that can't be 454 * used yet since their free space will be released as soon as the transaction 455 * commits. 456 */ 457 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 458 { 459 struct btrfs_fs_info *info = block_group->fs_info; 460 u64 extent_start, extent_end, size, total_added = 0; 461 int ret; 462 463 while (start < end) { 464 ret = find_first_extent_bit(&info->excluded_extents, start, 465 &extent_start, &extent_end, 466 EXTENT_DIRTY | EXTENT_UPTODATE, 467 NULL); 468 if (ret) 469 break; 470 471 if (extent_start <= start) { 472 start = extent_end + 1; 473 } else if (extent_start > start && extent_start < end) { 474 size = extent_start - start; 475 total_added += size; 476 ret = btrfs_add_free_space_async_trimmed(block_group, 477 start, size); 478 BUG_ON(ret); /* -ENOMEM or logic error */ 479 start = extent_end + 1; 480 } else { 481 break; 482 } 483 } 484 485 if (start < end) { 486 size = end - start; 487 total_added += size; 488 ret = btrfs_add_free_space_async_trimmed(block_group, start, 489 size); 490 BUG_ON(ret); /* -ENOMEM or logic error */ 491 } 492 493 return total_added; 494 } 495 496 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 497 { 498 struct btrfs_block_group *block_group = caching_ctl->block_group; 499 struct btrfs_fs_info *fs_info = block_group->fs_info; 500 struct btrfs_root *extent_root = fs_info->extent_root; 501 struct btrfs_path *path; 502 struct extent_buffer *leaf; 503 struct btrfs_key key; 504 u64 total_found = 0; 505 u64 last = 0; 506 u32 nritems; 507 int ret; 508 bool wakeup = true; 509 510 path = btrfs_alloc_path(); 511 if (!path) 512 return -ENOMEM; 513 514 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 515 516 #ifdef CONFIG_BTRFS_DEBUG 517 /* 518 * If we're fragmenting we don't want to make anybody think we can 519 * allocate from this block group until we've had a chance to fragment 520 * the free space. 521 */ 522 if (btrfs_should_fragment_free_space(block_group)) 523 wakeup = false; 524 #endif 525 /* 526 * We don't want to deadlock with somebody trying to allocate a new 527 * extent for the extent root while also trying to search the extent 528 * root to add free space. So we skip locking and search the commit 529 * root, since its read-only 530 */ 531 path->skip_locking = 1; 532 path->search_commit_root = 1; 533 path->reada = READA_FORWARD; 534 535 key.objectid = last; 536 key.offset = 0; 537 key.type = BTRFS_EXTENT_ITEM_KEY; 538 539 next: 540 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 541 if (ret < 0) 542 goto out; 543 544 leaf = path->nodes[0]; 545 nritems = btrfs_header_nritems(leaf); 546 547 while (1) { 548 if (btrfs_fs_closing(fs_info) > 1) { 549 last = (u64)-1; 550 break; 551 } 552 553 if (path->slots[0] < nritems) { 554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 555 } else { 556 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 557 if (ret) 558 break; 559 560 if (need_resched() || 561 rwsem_is_contended(&fs_info->commit_root_sem)) { 562 if (wakeup) 563 caching_ctl->progress = last; 564 btrfs_release_path(path); 565 up_read(&fs_info->commit_root_sem); 566 mutex_unlock(&caching_ctl->mutex); 567 cond_resched(); 568 mutex_lock(&caching_ctl->mutex); 569 down_read(&fs_info->commit_root_sem); 570 goto next; 571 } 572 573 ret = btrfs_next_leaf(extent_root, path); 574 if (ret < 0) 575 goto out; 576 if (ret) 577 break; 578 leaf = path->nodes[0]; 579 nritems = btrfs_header_nritems(leaf); 580 continue; 581 } 582 583 if (key.objectid < last) { 584 key.objectid = last; 585 key.offset = 0; 586 key.type = BTRFS_EXTENT_ITEM_KEY; 587 588 if (wakeup) 589 caching_ctl->progress = last; 590 btrfs_release_path(path); 591 goto next; 592 } 593 594 if (key.objectid < block_group->start) { 595 path->slots[0]++; 596 continue; 597 } 598 599 if (key.objectid >= block_group->start + block_group->length) 600 break; 601 602 if (key.type == BTRFS_EXTENT_ITEM_KEY || 603 key.type == BTRFS_METADATA_ITEM_KEY) { 604 total_found += add_new_free_space(block_group, last, 605 key.objectid); 606 if (key.type == BTRFS_METADATA_ITEM_KEY) 607 last = key.objectid + 608 fs_info->nodesize; 609 else 610 last = key.objectid + key.offset; 611 612 if (total_found > CACHING_CTL_WAKE_UP) { 613 total_found = 0; 614 if (wakeup) 615 wake_up(&caching_ctl->wait); 616 } 617 } 618 path->slots[0]++; 619 } 620 ret = 0; 621 622 total_found += add_new_free_space(block_group, last, 623 block_group->start + block_group->length); 624 caching_ctl->progress = (u64)-1; 625 626 out: 627 btrfs_free_path(path); 628 return ret; 629 } 630 631 static noinline void caching_thread(struct btrfs_work *work) 632 { 633 struct btrfs_block_group *block_group; 634 struct btrfs_fs_info *fs_info; 635 struct btrfs_caching_control *caching_ctl; 636 int ret; 637 638 caching_ctl = container_of(work, struct btrfs_caching_control, work); 639 block_group = caching_ctl->block_group; 640 fs_info = block_group->fs_info; 641 642 mutex_lock(&caching_ctl->mutex); 643 down_read(&fs_info->commit_root_sem); 644 645 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 646 ret = load_free_space_tree(caching_ctl); 647 else 648 ret = load_extent_tree_free(caching_ctl); 649 650 spin_lock(&block_group->lock); 651 block_group->caching_ctl = NULL; 652 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 653 spin_unlock(&block_group->lock); 654 655 #ifdef CONFIG_BTRFS_DEBUG 656 if (btrfs_should_fragment_free_space(block_group)) { 657 u64 bytes_used; 658 659 spin_lock(&block_group->space_info->lock); 660 spin_lock(&block_group->lock); 661 bytes_used = block_group->length - block_group->used; 662 block_group->space_info->bytes_used += bytes_used >> 1; 663 spin_unlock(&block_group->lock); 664 spin_unlock(&block_group->space_info->lock); 665 fragment_free_space(block_group); 666 } 667 #endif 668 669 caching_ctl->progress = (u64)-1; 670 671 up_read(&fs_info->commit_root_sem); 672 btrfs_free_excluded_extents(block_group); 673 mutex_unlock(&caching_ctl->mutex); 674 675 wake_up(&caching_ctl->wait); 676 677 btrfs_put_caching_control(caching_ctl); 678 btrfs_put_block_group(block_group); 679 } 680 681 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 682 { 683 DEFINE_WAIT(wait); 684 struct btrfs_fs_info *fs_info = cache->fs_info; 685 struct btrfs_caching_control *caching_ctl; 686 int ret = 0; 687 688 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 689 if (!caching_ctl) 690 return -ENOMEM; 691 692 INIT_LIST_HEAD(&caching_ctl->list); 693 mutex_init(&caching_ctl->mutex); 694 init_waitqueue_head(&caching_ctl->wait); 695 caching_ctl->block_group = cache; 696 caching_ctl->progress = cache->start; 697 refcount_set(&caching_ctl->count, 1); 698 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 699 700 spin_lock(&cache->lock); 701 /* 702 * This should be a rare occasion, but this could happen I think in the 703 * case where one thread starts to load the space cache info, and then 704 * some other thread starts a transaction commit which tries to do an 705 * allocation while the other thread is still loading the space cache 706 * info. The previous loop should have kept us from choosing this block 707 * group, but if we've moved to the state where we will wait on caching 708 * block groups we need to first check if we're doing a fast load here, 709 * so we can wait for it to finish, otherwise we could end up allocating 710 * from a block group who's cache gets evicted for one reason or 711 * another. 712 */ 713 while (cache->cached == BTRFS_CACHE_FAST) { 714 struct btrfs_caching_control *ctl; 715 716 ctl = cache->caching_ctl; 717 refcount_inc(&ctl->count); 718 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 719 spin_unlock(&cache->lock); 720 721 schedule(); 722 723 finish_wait(&ctl->wait, &wait); 724 btrfs_put_caching_control(ctl); 725 spin_lock(&cache->lock); 726 } 727 728 if (cache->cached != BTRFS_CACHE_NO) { 729 spin_unlock(&cache->lock); 730 kfree(caching_ctl); 731 return 0; 732 } 733 WARN_ON(cache->caching_ctl); 734 cache->caching_ctl = caching_ctl; 735 cache->cached = BTRFS_CACHE_FAST; 736 spin_unlock(&cache->lock); 737 738 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 739 mutex_lock(&caching_ctl->mutex); 740 ret = load_free_space_cache(cache); 741 742 spin_lock(&cache->lock); 743 if (ret == 1) { 744 cache->caching_ctl = NULL; 745 cache->cached = BTRFS_CACHE_FINISHED; 746 cache->last_byte_to_unpin = (u64)-1; 747 caching_ctl->progress = (u64)-1; 748 } else { 749 if (load_cache_only) { 750 cache->caching_ctl = NULL; 751 cache->cached = BTRFS_CACHE_NO; 752 } else { 753 cache->cached = BTRFS_CACHE_STARTED; 754 cache->has_caching_ctl = 1; 755 } 756 } 757 spin_unlock(&cache->lock); 758 #ifdef CONFIG_BTRFS_DEBUG 759 if (ret == 1 && 760 btrfs_should_fragment_free_space(cache)) { 761 u64 bytes_used; 762 763 spin_lock(&cache->space_info->lock); 764 spin_lock(&cache->lock); 765 bytes_used = cache->length - cache->used; 766 cache->space_info->bytes_used += bytes_used >> 1; 767 spin_unlock(&cache->lock); 768 spin_unlock(&cache->space_info->lock); 769 fragment_free_space(cache); 770 } 771 #endif 772 mutex_unlock(&caching_ctl->mutex); 773 774 wake_up(&caching_ctl->wait); 775 if (ret == 1) { 776 btrfs_put_caching_control(caching_ctl); 777 btrfs_free_excluded_extents(cache); 778 return 0; 779 } 780 } else { 781 /* 782 * We're either using the free space tree or no caching at all. 783 * Set cached to the appropriate value and wakeup any waiters. 784 */ 785 spin_lock(&cache->lock); 786 if (load_cache_only) { 787 cache->caching_ctl = NULL; 788 cache->cached = BTRFS_CACHE_NO; 789 } else { 790 cache->cached = BTRFS_CACHE_STARTED; 791 cache->has_caching_ctl = 1; 792 } 793 spin_unlock(&cache->lock); 794 wake_up(&caching_ctl->wait); 795 } 796 797 if (load_cache_only) { 798 btrfs_put_caching_control(caching_ctl); 799 return 0; 800 } 801 802 down_write(&fs_info->commit_root_sem); 803 refcount_inc(&caching_ctl->count); 804 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 805 up_write(&fs_info->commit_root_sem); 806 807 btrfs_get_block_group(cache); 808 809 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 810 811 return ret; 812 } 813 814 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 815 { 816 u64 extra_flags = chunk_to_extended(flags) & 817 BTRFS_EXTENDED_PROFILE_MASK; 818 819 write_seqlock(&fs_info->profiles_lock); 820 if (flags & BTRFS_BLOCK_GROUP_DATA) 821 fs_info->avail_data_alloc_bits &= ~extra_flags; 822 if (flags & BTRFS_BLOCK_GROUP_METADATA) 823 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 824 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 825 fs_info->avail_system_alloc_bits &= ~extra_flags; 826 write_sequnlock(&fs_info->profiles_lock); 827 } 828 829 /* 830 * Clear incompat bits for the following feature(s): 831 * 832 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 833 * in the whole filesystem 834 * 835 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 836 */ 837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 838 { 839 bool found_raid56 = false; 840 bool found_raid1c34 = false; 841 842 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 843 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 844 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 845 struct list_head *head = &fs_info->space_info; 846 struct btrfs_space_info *sinfo; 847 848 list_for_each_entry_rcu(sinfo, head, list) { 849 down_read(&sinfo->groups_sem); 850 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 851 found_raid56 = true; 852 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 853 found_raid56 = true; 854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 855 found_raid1c34 = true; 856 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 857 found_raid1c34 = true; 858 up_read(&sinfo->groups_sem); 859 } 860 if (!found_raid56) 861 btrfs_clear_fs_incompat(fs_info, RAID56); 862 if (!found_raid1c34) 863 btrfs_clear_fs_incompat(fs_info, RAID1C34); 864 } 865 } 866 867 static int remove_block_group_item(struct btrfs_trans_handle *trans, 868 struct btrfs_path *path, 869 struct btrfs_block_group *block_group) 870 { 871 struct btrfs_fs_info *fs_info = trans->fs_info; 872 struct btrfs_root *root; 873 struct btrfs_key key; 874 int ret; 875 876 root = fs_info->extent_root; 877 key.objectid = block_group->start; 878 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 879 key.offset = block_group->length; 880 881 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 882 if (ret > 0) 883 ret = -ENOENT; 884 if (ret < 0) 885 return ret; 886 887 ret = btrfs_del_item(trans, root, path); 888 return ret; 889 } 890 891 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 892 u64 group_start, struct extent_map *em) 893 { 894 struct btrfs_fs_info *fs_info = trans->fs_info; 895 struct btrfs_path *path; 896 struct btrfs_block_group *block_group; 897 struct btrfs_free_cluster *cluster; 898 struct btrfs_root *tree_root = fs_info->tree_root; 899 struct btrfs_key key; 900 struct inode *inode; 901 struct kobject *kobj = NULL; 902 int ret; 903 int index; 904 int factor; 905 struct btrfs_caching_control *caching_ctl = NULL; 906 bool remove_em; 907 bool remove_rsv = false; 908 909 block_group = btrfs_lookup_block_group(fs_info, group_start); 910 BUG_ON(!block_group); 911 BUG_ON(!block_group->ro); 912 913 trace_btrfs_remove_block_group(block_group); 914 /* 915 * Free the reserved super bytes from this block group before 916 * remove it. 917 */ 918 btrfs_free_excluded_extents(block_group); 919 btrfs_free_ref_tree_range(fs_info, block_group->start, 920 block_group->length); 921 922 index = btrfs_bg_flags_to_raid_index(block_group->flags); 923 factor = btrfs_bg_type_to_factor(block_group->flags); 924 925 /* make sure this block group isn't part of an allocation cluster */ 926 cluster = &fs_info->data_alloc_cluster; 927 spin_lock(&cluster->refill_lock); 928 btrfs_return_cluster_to_free_space(block_group, cluster); 929 spin_unlock(&cluster->refill_lock); 930 931 /* 932 * make sure this block group isn't part of a metadata 933 * allocation cluster 934 */ 935 cluster = &fs_info->meta_alloc_cluster; 936 spin_lock(&cluster->refill_lock); 937 btrfs_return_cluster_to_free_space(block_group, cluster); 938 spin_unlock(&cluster->refill_lock); 939 940 path = btrfs_alloc_path(); 941 if (!path) { 942 ret = -ENOMEM; 943 goto out; 944 } 945 946 /* 947 * get the inode first so any iput calls done for the io_list 948 * aren't the final iput (no unlinks allowed now) 949 */ 950 inode = lookup_free_space_inode(block_group, path); 951 952 mutex_lock(&trans->transaction->cache_write_mutex); 953 /* 954 * Make sure our free space cache IO is done before removing the 955 * free space inode 956 */ 957 spin_lock(&trans->transaction->dirty_bgs_lock); 958 if (!list_empty(&block_group->io_list)) { 959 list_del_init(&block_group->io_list); 960 961 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 962 963 spin_unlock(&trans->transaction->dirty_bgs_lock); 964 btrfs_wait_cache_io(trans, block_group, path); 965 btrfs_put_block_group(block_group); 966 spin_lock(&trans->transaction->dirty_bgs_lock); 967 } 968 969 if (!list_empty(&block_group->dirty_list)) { 970 list_del_init(&block_group->dirty_list); 971 remove_rsv = true; 972 btrfs_put_block_group(block_group); 973 } 974 spin_unlock(&trans->transaction->dirty_bgs_lock); 975 mutex_unlock(&trans->transaction->cache_write_mutex); 976 977 if (!IS_ERR(inode)) { 978 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 979 if (ret) { 980 btrfs_add_delayed_iput(inode); 981 goto out; 982 } 983 clear_nlink(inode); 984 /* One for the block groups ref */ 985 spin_lock(&block_group->lock); 986 if (block_group->iref) { 987 block_group->iref = 0; 988 block_group->inode = NULL; 989 spin_unlock(&block_group->lock); 990 iput(inode); 991 } else { 992 spin_unlock(&block_group->lock); 993 } 994 /* One for our lookup ref */ 995 btrfs_add_delayed_iput(inode); 996 } 997 998 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 999 key.type = 0; 1000 key.offset = block_group->start; 1001 1002 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 1003 if (ret < 0) 1004 goto out; 1005 if (ret > 0) 1006 btrfs_release_path(path); 1007 if (ret == 0) { 1008 ret = btrfs_del_item(trans, tree_root, path); 1009 if (ret) 1010 goto out; 1011 btrfs_release_path(path); 1012 } 1013 1014 spin_lock(&fs_info->block_group_cache_lock); 1015 rb_erase(&block_group->cache_node, 1016 &fs_info->block_group_cache_tree); 1017 RB_CLEAR_NODE(&block_group->cache_node); 1018 1019 /* Once for the block groups rbtree */ 1020 btrfs_put_block_group(block_group); 1021 1022 if (fs_info->first_logical_byte == block_group->start) 1023 fs_info->first_logical_byte = (u64)-1; 1024 spin_unlock(&fs_info->block_group_cache_lock); 1025 1026 down_write(&block_group->space_info->groups_sem); 1027 /* 1028 * we must use list_del_init so people can check to see if they 1029 * are still on the list after taking the semaphore 1030 */ 1031 list_del_init(&block_group->list); 1032 if (list_empty(&block_group->space_info->block_groups[index])) { 1033 kobj = block_group->space_info->block_group_kobjs[index]; 1034 block_group->space_info->block_group_kobjs[index] = NULL; 1035 clear_avail_alloc_bits(fs_info, block_group->flags); 1036 } 1037 up_write(&block_group->space_info->groups_sem); 1038 clear_incompat_bg_bits(fs_info, block_group->flags); 1039 if (kobj) { 1040 kobject_del(kobj); 1041 kobject_put(kobj); 1042 } 1043 1044 if (block_group->has_caching_ctl) 1045 caching_ctl = btrfs_get_caching_control(block_group); 1046 if (block_group->cached == BTRFS_CACHE_STARTED) 1047 btrfs_wait_block_group_cache_done(block_group); 1048 if (block_group->has_caching_ctl) { 1049 down_write(&fs_info->commit_root_sem); 1050 if (!caching_ctl) { 1051 struct btrfs_caching_control *ctl; 1052 1053 list_for_each_entry(ctl, 1054 &fs_info->caching_block_groups, list) 1055 if (ctl->block_group == block_group) { 1056 caching_ctl = ctl; 1057 refcount_inc(&caching_ctl->count); 1058 break; 1059 } 1060 } 1061 if (caching_ctl) 1062 list_del_init(&caching_ctl->list); 1063 up_write(&fs_info->commit_root_sem); 1064 if (caching_ctl) { 1065 /* Once for the caching bgs list and once for us. */ 1066 btrfs_put_caching_control(caching_ctl); 1067 btrfs_put_caching_control(caching_ctl); 1068 } 1069 } 1070 1071 spin_lock(&trans->transaction->dirty_bgs_lock); 1072 WARN_ON(!list_empty(&block_group->dirty_list)); 1073 WARN_ON(!list_empty(&block_group->io_list)); 1074 spin_unlock(&trans->transaction->dirty_bgs_lock); 1075 1076 btrfs_remove_free_space_cache(block_group); 1077 1078 spin_lock(&block_group->space_info->lock); 1079 list_del_init(&block_group->ro_list); 1080 1081 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1082 WARN_ON(block_group->space_info->total_bytes 1083 < block_group->length); 1084 WARN_ON(block_group->space_info->bytes_readonly 1085 < block_group->length); 1086 WARN_ON(block_group->space_info->disk_total 1087 < block_group->length * factor); 1088 } 1089 block_group->space_info->total_bytes -= block_group->length; 1090 block_group->space_info->bytes_readonly -= block_group->length; 1091 block_group->space_info->disk_total -= block_group->length * factor; 1092 1093 spin_unlock(&block_group->space_info->lock); 1094 1095 /* 1096 * Remove the free space for the block group from the free space tree 1097 * and the block group's item from the extent tree before marking the 1098 * block group as removed. This is to prevent races with tasks that 1099 * freeze and unfreeze a block group, this task and another task 1100 * allocating a new block group - the unfreeze task ends up removing 1101 * the block group's extent map before the task calling this function 1102 * deletes the block group item from the extent tree, allowing for 1103 * another task to attempt to create another block group with the same 1104 * item key (and failing with -EEXIST and a transaction abort). 1105 */ 1106 ret = remove_block_group_free_space(trans, block_group); 1107 if (ret) 1108 goto out; 1109 1110 ret = remove_block_group_item(trans, path, block_group); 1111 if (ret < 0) 1112 goto out; 1113 1114 mutex_lock(&fs_info->chunk_mutex); 1115 spin_lock(&block_group->lock); 1116 block_group->removed = 1; 1117 /* 1118 * At this point trimming or scrub can't start on this block group, 1119 * because we removed the block group from the rbtree 1120 * fs_info->block_group_cache_tree so no one can't find it anymore and 1121 * even if someone already got this block group before we removed it 1122 * from the rbtree, they have already incremented block_group->frozen - 1123 * if they didn't, for the trimming case they won't find any free space 1124 * entries because we already removed them all when we called 1125 * btrfs_remove_free_space_cache(). 1126 * 1127 * And we must not remove the extent map from the fs_info->mapping_tree 1128 * to prevent the same logical address range and physical device space 1129 * ranges from being reused for a new block group. This is needed to 1130 * avoid races with trimming and scrub. 1131 * 1132 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1133 * completely transactionless, so while it is trimming a range the 1134 * currently running transaction might finish and a new one start, 1135 * allowing for new block groups to be created that can reuse the same 1136 * physical device locations unless we take this special care. 1137 * 1138 * There may also be an implicit trim operation if the file system 1139 * is mounted with -odiscard. The same protections must remain 1140 * in place until the extents have been discarded completely when 1141 * the transaction commit has completed. 1142 */ 1143 remove_em = (atomic_read(&block_group->frozen) == 0); 1144 spin_unlock(&block_group->lock); 1145 1146 mutex_unlock(&fs_info->chunk_mutex); 1147 1148 if (remove_em) { 1149 struct extent_map_tree *em_tree; 1150 1151 em_tree = &fs_info->mapping_tree; 1152 write_lock(&em_tree->lock); 1153 remove_extent_mapping(em_tree, em); 1154 write_unlock(&em_tree->lock); 1155 /* once for the tree */ 1156 free_extent_map(em); 1157 } 1158 1159 out: 1160 /* Once for the lookup reference */ 1161 btrfs_put_block_group(block_group); 1162 if (remove_rsv) 1163 btrfs_delayed_refs_rsv_release(fs_info, 1); 1164 btrfs_free_path(path); 1165 return ret; 1166 } 1167 1168 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1169 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1170 { 1171 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1172 struct extent_map *em; 1173 struct map_lookup *map; 1174 unsigned int num_items; 1175 1176 read_lock(&em_tree->lock); 1177 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1178 read_unlock(&em_tree->lock); 1179 ASSERT(em && em->start == chunk_offset); 1180 1181 /* 1182 * We need to reserve 3 + N units from the metadata space info in order 1183 * to remove a block group (done at btrfs_remove_chunk() and at 1184 * btrfs_remove_block_group()), which are used for: 1185 * 1186 * 1 unit for adding the free space inode's orphan (located in the tree 1187 * of tree roots). 1188 * 1 unit for deleting the block group item (located in the extent 1189 * tree). 1190 * 1 unit for deleting the free space item (located in tree of tree 1191 * roots). 1192 * N units for deleting N device extent items corresponding to each 1193 * stripe (located in the device tree). 1194 * 1195 * In order to remove a block group we also need to reserve units in the 1196 * system space info in order to update the chunk tree (update one or 1197 * more device items and remove one chunk item), but this is done at 1198 * btrfs_remove_chunk() through a call to check_system_chunk(). 1199 */ 1200 map = em->map_lookup; 1201 num_items = 3 + map->num_stripes; 1202 free_extent_map(em); 1203 1204 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1205 num_items); 1206 } 1207 1208 /* 1209 * Mark block group @cache read-only, so later write won't happen to block 1210 * group @cache. 1211 * 1212 * If @force is not set, this function will only mark the block group readonly 1213 * if we have enough free space (1M) in other metadata/system block groups. 1214 * If @force is not set, this function will mark the block group readonly 1215 * without checking free space. 1216 * 1217 * NOTE: This function doesn't care if other block groups can contain all the 1218 * data in this block group. That check should be done by relocation routine, 1219 * not this function. 1220 */ 1221 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1222 { 1223 struct btrfs_space_info *sinfo = cache->space_info; 1224 u64 num_bytes; 1225 int ret = -ENOSPC; 1226 1227 spin_lock(&sinfo->lock); 1228 spin_lock(&cache->lock); 1229 1230 if (cache->ro) { 1231 cache->ro++; 1232 ret = 0; 1233 goto out; 1234 } 1235 1236 num_bytes = cache->length - cache->reserved - cache->pinned - 1237 cache->bytes_super - cache->used; 1238 1239 /* 1240 * Data never overcommits, even in mixed mode, so do just the straight 1241 * check of left over space in how much we have allocated. 1242 */ 1243 if (force) { 1244 ret = 0; 1245 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1246 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1247 1248 /* 1249 * Here we make sure if we mark this bg RO, we still have enough 1250 * free space as buffer. 1251 */ 1252 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1253 ret = 0; 1254 } else { 1255 /* 1256 * We overcommit metadata, so we need to do the 1257 * btrfs_can_overcommit check here, and we need to pass in 1258 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1259 * leeway to allow us to mark this block group as read only. 1260 */ 1261 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1262 BTRFS_RESERVE_NO_FLUSH)) 1263 ret = 0; 1264 } 1265 1266 if (!ret) { 1267 sinfo->bytes_readonly += num_bytes; 1268 cache->ro++; 1269 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1270 } 1271 out: 1272 spin_unlock(&cache->lock); 1273 spin_unlock(&sinfo->lock); 1274 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1275 btrfs_info(cache->fs_info, 1276 "unable to make block group %llu ro", cache->start); 1277 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1278 } 1279 return ret; 1280 } 1281 1282 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1283 struct btrfs_block_group *bg) 1284 { 1285 struct btrfs_fs_info *fs_info = bg->fs_info; 1286 struct btrfs_transaction *prev_trans = NULL; 1287 const u64 start = bg->start; 1288 const u64 end = start + bg->length - 1; 1289 int ret; 1290 1291 spin_lock(&fs_info->trans_lock); 1292 if (trans->transaction->list.prev != &fs_info->trans_list) { 1293 prev_trans = list_last_entry(&trans->transaction->list, 1294 struct btrfs_transaction, list); 1295 refcount_inc(&prev_trans->use_count); 1296 } 1297 spin_unlock(&fs_info->trans_lock); 1298 1299 /* 1300 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1301 * btrfs_finish_extent_commit(). If we are at transaction N, another 1302 * task might be running finish_extent_commit() for the previous 1303 * transaction N - 1, and have seen a range belonging to the block 1304 * group in pinned_extents before we were able to clear the whole block 1305 * group range from pinned_extents. This means that task can lookup for 1306 * the block group after we unpinned it from pinned_extents and removed 1307 * it, leading to a BUG_ON() at unpin_extent_range(). 1308 */ 1309 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1310 if (prev_trans) { 1311 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1312 EXTENT_DIRTY); 1313 if (ret) 1314 goto out; 1315 } 1316 1317 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1318 EXTENT_DIRTY); 1319 out: 1320 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1321 if (prev_trans) 1322 btrfs_put_transaction(prev_trans); 1323 1324 return ret == 0; 1325 } 1326 1327 /* 1328 * Process the unused_bgs list and remove any that don't have any allocated 1329 * space inside of them. 1330 */ 1331 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1332 { 1333 struct btrfs_block_group *block_group; 1334 struct btrfs_space_info *space_info; 1335 struct btrfs_trans_handle *trans; 1336 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1337 int ret = 0; 1338 1339 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1340 return; 1341 1342 spin_lock(&fs_info->unused_bgs_lock); 1343 while (!list_empty(&fs_info->unused_bgs)) { 1344 int trimming; 1345 1346 block_group = list_first_entry(&fs_info->unused_bgs, 1347 struct btrfs_block_group, 1348 bg_list); 1349 list_del_init(&block_group->bg_list); 1350 1351 space_info = block_group->space_info; 1352 1353 if (ret || btrfs_mixed_space_info(space_info)) { 1354 btrfs_put_block_group(block_group); 1355 continue; 1356 } 1357 spin_unlock(&fs_info->unused_bgs_lock); 1358 1359 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1360 1361 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1362 1363 /* Don't want to race with allocators so take the groups_sem */ 1364 down_write(&space_info->groups_sem); 1365 1366 /* 1367 * Async discard moves the final block group discard to be prior 1368 * to the unused_bgs code path. Therefore, if it's not fully 1369 * trimmed, punt it back to the async discard lists. 1370 */ 1371 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1372 !btrfs_is_free_space_trimmed(block_group)) { 1373 trace_btrfs_skip_unused_block_group(block_group); 1374 up_write(&space_info->groups_sem); 1375 /* Requeue if we failed because of async discard */ 1376 btrfs_discard_queue_work(&fs_info->discard_ctl, 1377 block_group); 1378 goto next; 1379 } 1380 1381 spin_lock(&block_group->lock); 1382 if (block_group->reserved || block_group->pinned || 1383 block_group->used || block_group->ro || 1384 list_is_singular(&block_group->list)) { 1385 /* 1386 * We want to bail if we made new allocations or have 1387 * outstanding allocations in this block group. We do 1388 * the ro check in case balance is currently acting on 1389 * this block group. 1390 */ 1391 trace_btrfs_skip_unused_block_group(block_group); 1392 spin_unlock(&block_group->lock); 1393 up_write(&space_info->groups_sem); 1394 goto next; 1395 } 1396 spin_unlock(&block_group->lock); 1397 1398 /* We don't want to force the issue, only flip if it's ok. */ 1399 ret = inc_block_group_ro(block_group, 0); 1400 up_write(&space_info->groups_sem); 1401 if (ret < 0) { 1402 ret = 0; 1403 goto next; 1404 } 1405 1406 /* 1407 * Want to do this before we do anything else so we can recover 1408 * properly if we fail to join the transaction. 1409 */ 1410 trans = btrfs_start_trans_remove_block_group(fs_info, 1411 block_group->start); 1412 if (IS_ERR(trans)) { 1413 btrfs_dec_block_group_ro(block_group); 1414 ret = PTR_ERR(trans); 1415 goto next; 1416 } 1417 1418 /* 1419 * We could have pending pinned extents for this block group, 1420 * just delete them, we don't care about them anymore. 1421 */ 1422 if (!clean_pinned_extents(trans, block_group)) { 1423 btrfs_dec_block_group_ro(block_group); 1424 goto end_trans; 1425 } 1426 1427 /* 1428 * At this point, the block_group is read only and should fail 1429 * new allocations. However, btrfs_finish_extent_commit() can 1430 * cause this block_group to be placed back on the discard 1431 * lists because now the block_group isn't fully discarded. 1432 * Bail here and try again later after discarding everything. 1433 */ 1434 spin_lock(&fs_info->discard_ctl.lock); 1435 if (!list_empty(&block_group->discard_list)) { 1436 spin_unlock(&fs_info->discard_ctl.lock); 1437 btrfs_dec_block_group_ro(block_group); 1438 btrfs_discard_queue_work(&fs_info->discard_ctl, 1439 block_group); 1440 goto end_trans; 1441 } 1442 spin_unlock(&fs_info->discard_ctl.lock); 1443 1444 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1445 spin_lock(&space_info->lock); 1446 spin_lock(&block_group->lock); 1447 1448 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1449 -block_group->pinned); 1450 space_info->bytes_readonly += block_group->pinned; 1451 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1452 -block_group->pinned, 1453 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1454 block_group->pinned = 0; 1455 1456 spin_unlock(&block_group->lock); 1457 spin_unlock(&space_info->lock); 1458 1459 /* 1460 * The normal path here is an unused block group is passed here, 1461 * then trimming is handled in the transaction commit path. 1462 * Async discard interposes before this to do the trimming 1463 * before coming down the unused block group path as trimming 1464 * will no longer be done later in the transaction commit path. 1465 */ 1466 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1467 goto flip_async; 1468 1469 /* DISCARD can flip during remount */ 1470 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1471 1472 /* Implicit trim during transaction commit. */ 1473 if (trimming) 1474 btrfs_freeze_block_group(block_group); 1475 1476 /* 1477 * Btrfs_remove_chunk will abort the transaction if things go 1478 * horribly wrong. 1479 */ 1480 ret = btrfs_remove_chunk(trans, block_group->start); 1481 1482 if (ret) { 1483 if (trimming) 1484 btrfs_unfreeze_block_group(block_group); 1485 goto end_trans; 1486 } 1487 1488 /* 1489 * If we're not mounted with -odiscard, we can just forget 1490 * about this block group. Otherwise we'll need to wait 1491 * until transaction commit to do the actual discard. 1492 */ 1493 if (trimming) { 1494 spin_lock(&fs_info->unused_bgs_lock); 1495 /* 1496 * A concurrent scrub might have added us to the list 1497 * fs_info->unused_bgs, so use a list_move operation 1498 * to add the block group to the deleted_bgs list. 1499 */ 1500 list_move(&block_group->bg_list, 1501 &trans->transaction->deleted_bgs); 1502 spin_unlock(&fs_info->unused_bgs_lock); 1503 btrfs_get_block_group(block_group); 1504 } 1505 end_trans: 1506 btrfs_end_transaction(trans); 1507 next: 1508 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1509 btrfs_put_block_group(block_group); 1510 spin_lock(&fs_info->unused_bgs_lock); 1511 } 1512 spin_unlock(&fs_info->unused_bgs_lock); 1513 return; 1514 1515 flip_async: 1516 btrfs_end_transaction(trans); 1517 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1518 btrfs_put_block_group(block_group); 1519 btrfs_discard_punt_unused_bgs_list(fs_info); 1520 } 1521 1522 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1523 { 1524 struct btrfs_fs_info *fs_info = bg->fs_info; 1525 1526 spin_lock(&fs_info->unused_bgs_lock); 1527 if (list_empty(&bg->bg_list)) { 1528 btrfs_get_block_group(bg); 1529 trace_btrfs_add_unused_block_group(bg); 1530 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1531 } 1532 spin_unlock(&fs_info->unused_bgs_lock); 1533 } 1534 1535 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1536 struct btrfs_path *path, 1537 struct btrfs_key *key) 1538 { 1539 struct btrfs_root *root = fs_info->extent_root; 1540 int ret = 0; 1541 struct btrfs_key found_key; 1542 struct extent_buffer *leaf; 1543 struct btrfs_block_group_item bg; 1544 u64 flags; 1545 int slot; 1546 1547 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1548 if (ret < 0) 1549 goto out; 1550 1551 while (1) { 1552 slot = path->slots[0]; 1553 leaf = path->nodes[0]; 1554 if (slot >= btrfs_header_nritems(leaf)) { 1555 ret = btrfs_next_leaf(root, path); 1556 if (ret == 0) 1557 continue; 1558 if (ret < 0) 1559 goto out; 1560 break; 1561 } 1562 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1563 1564 if (found_key.objectid >= key->objectid && 1565 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1566 struct extent_map_tree *em_tree; 1567 struct extent_map *em; 1568 1569 em_tree = &root->fs_info->mapping_tree; 1570 read_lock(&em_tree->lock); 1571 em = lookup_extent_mapping(em_tree, found_key.objectid, 1572 found_key.offset); 1573 read_unlock(&em_tree->lock); 1574 if (!em) { 1575 btrfs_err(fs_info, 1576 "logical %llu len %llu found bg but no related chunk", 1577 found_key.objectid, found_key.offset); 1578 ret = -ENOENT; 1579 } else if (em->start != found_key.objectid || 1580 em->len != found_key.offset) { 1581 btrfs_err(fs_info, 1582 "block group %llu len %llu mismatch with chunk %llu len %llu", 1583 found_key.objectid, found_key.offset, 1584 em->start, em->len); 1585 ret = -EUCLEAN; 1586 } else { 1587 read_extent_buffer(leaf, &bg, 1588 btrfs_item_ptr_offset(leaf, slot), 1589 sizeof(bg)); 1590 flags = btrfs_stack_block_group_flags(&bg) & 1591 BTRFS_BLOCK_GROUP_TYPE_MASK; 1592 1593 if (flags != (em->map_lookup->type & 1594 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1595 btrfs_err(fs_info, 1596 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1597 found_key.objectid, 1598 found_key.offset, flags, 1599 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1600 em->map_lookup->type)); 1601 ret = -EUCLEAN; 1602 } else { 1603 ret = 0; 1604 } 1605 } 1606 free_extent_map(em); 1607 goto out; 1608 } 1609 path->slots[0]++; 1610 } 1611 out: 1612 return ret; 1613 } 1614 1615 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1616 { 1617 u64 extra_flags = chunk_to_extended(flags) & 1618 BTRFS_EXTENDED_PROFILE_MASK; 1619 1620 write_seqlock(&fs_info->profiles_lock); 1621 if (flags & BTRFS_BLOCK_GROUP_DATA) 1622 fs_info->avail_data_alloc_bits |= extra_flags; 1623 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1624 fs_info->avail_metadata_alloc_bits |= extra_flags; 1625 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1626 fs_info->avail_system_alloc_bits |= extra_flags; 1627 write_sequnlock(&fs_info->profiles_lock); 1628 } 1629 1630 /** 1631 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1632 * @chunk_start: logical address of block group 1633 * @physical: physical address to map to logical addresses 1634 * @logical: return array of logical addresses which map to @physical 1635 * @naddrs: length of @logical 1636 * @stripe_len: size of IO stripe for the given block group 1637 * 1638 * Maps a particular @physical disk address to a list of @logical addresses. 1639 * Used primarily to exclude those portions of a block group that contain super 1640 * block copies. 1641 */ 1642 EXPORT_FOR_TESTS 1643 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1644 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1645 { 1646 struct extent_map *em; 1647 struct map_lookup *map; 1648 u64 *buf; 1649 u64 bytenr; 1650 u64 data_stripe_length; 1651 u64 io_stripe_size; 1652 int i, nr = 0; 1653 int ret = 0; 1654 1655 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1656 if (IS_ERR(em)) 1657 return -EIO; 1658 1659 map = em->map_lookup; 1660 data_stripe_length = em->len; 1661 io_stripe_size = map->stripe_len; 1662 1663 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 1664 data_stripe_length = div_u64(data_stripe_length, 1665 map->num_stripes / map->sub_stripes); 1666 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 1667 data_stripe_length = div_u64(data_stripe_length, map->num_stripes); 1668 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1669 data_stripe_length = div_u64(data_stripe_length, 1670 nr_data_stripes(map)); 1671 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1672 } 1673 1674 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1675 if (!buf) { 1676 ret = -ENOMEM; 1677 goto out; 1678 } 1679 1680 for (i = 0; i < map->num_stripes; i++) { 1681 bool already_inserted = false; 1682 u64 stripe_nr; 1683 int j; 1684 1685 if (!in_range(physical, map->stripes[i].physical, 1686 data_stripe_length)) 1687 continue; 1688 1689 stripe_nr = physical - map->stripes[i].physical; 1690 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1691 1692 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1693 stripe_nr = stripe_nr * map->num_stripes + i; 1694 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1695 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1696 stripe_nr = stripe_nr * map->num_stripes + i; 1697 } 1698 /* 1699 * The remaining case would be for RAID56, multiply by 1700 * nr_data_stripes(). Alternatively, just use rmap_len below 1701 * instead of map->stripe_len 1702 */ 1703 1704 bytenr = chunk_start + stripe_nr * io_stripe_size; 1705 1706 /* Ensure we don't add duplicate addresses */ 1707 for (j = 0; j < nr; j++) { 1708 if (buf[j] == bytenr) { 1709 already_inserted = true; 1710 break; 1711 } 1712 } 1713 1714 if (!already_inserted) 1715 buf[nr++] = bytenr; 1716 } 1717 1718 *logical = buf; 1719 *naddrs = nr; 1720 *stripe_len = io_stripe_size; 1721 out: 1722 free_extent_map(em); 1723 return ret; 1724 } 1725 1726 static int exclude_super_stripes(struct btrfs_block_group *cache) 1727 { 1728 struct btrfs_fs_info *fs_info = cache->fs_info; 1729 u64 bytenr; 1730 u64 *logical; 1731 int stripe_len; 1732 int i, nr, ret; 1733 1734 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1735 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1736 cache->bytes_super += stripe_len; 1737 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1738 stripe_len); 1739 if (ret) 1740 return ret; 1741 } 1742 1743 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1744 bytenr = btrfs_sb_offset(i); 1745 ret = btrfs_rmap_block(fs_info, cache->start, 1746 bytenr, &logical, &nr, &stripe_len); 1747 if (ret) 1748 return ret; 1749 1750 while (nr--) { 1751 u64 start, len; 1752 1753 if (logical[nr] > cache->start + cache->length) 1754 continue; 1755 1756 if (logical[nr] + stripe_len <= cache->start) 1757 continue; 1758 1759 start = logical[nr]; 1760 if (start < cache->start) { 1761 start = cache->start; 1762 len = (logical[nr] + stripe_len) - start; 1763 } else { 1764 len = min_t(u64, stripe_len, 1765 cache->start + cache->length - start); 1766 } 1767 1768 cache->bytes_super += len; 1769 ret = btrfs_add_excluded_extent(fs_info, start, len); 1770 if (ret) { 1771 kfree(logical); 1772 return ret; 1773 } 1774 } 1775 1776 kfree(logical); 1777 } 1778 return 0; 1779 } 1780 1781 static void link_block_group(struct btrfs_block_group *cache) 1782 { 1783 struct btrfs_space_info *space_info = cache->space_info; 1784 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1785 bool first = false; 1786 1787 down_write(&space_info->groups_sem); 1788 if (list_empty(&space_info->block_groups[index])) 1789 first = true; 1790 list_add_tail(&cache->list, &space_info->block_groups[index]); 1791 up_write(&space_info->groups_sem); 1792 1793 if (first) 1794 btrfs_sysfs_add_block_group_type(cache); 1795 } 1796 1797 static struct btrfs_block_group *btrfs_create_block_group_cache( 1798 struct btrfs_fs_info *fs_info, u64 start) 1799 { 1800 struct btrfs_block_group *cache; 1801 1802 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1803 if (!cache) 1804 return NULL; 1805 1806 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1807 GFP_NOFS); 1808 if (!cache->free_space_ctl) { 1809 kfree(cache); 1810 return NULL; 1811 } 1812 1813 cache->start = start; 1814 1815 cache->fs_info = fs_info; 1816 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1817 set_free_space_tree_thresholds(cache); 1818 1819 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1820 1821 atomic_set(&cache->count, 1); 1822 spin_lock_init(&cache->lock); 1823 init_rwsem(&cache->data_rwsem); 1824 INIT_LIST_HEAD(&cache->list); 1825 INIT_LIST_HEAD(&cache->cluster_list); 1826 INIT_LIST_HEAD(&cache->bg_list); 1827 INIT_LIST_HEAD(&cache->ro_list); 1828 INIT_LIST_HEAD(&cache->discard_list); 1829 INIT_LIST_HEAD(&cache->dirty_list); 1830 INIT_LIST_HEAD(&cache->io_list); 1831 btrfs_init_free_space_ctl(cache); 1832 atomic_set(&cache->frozen, 0); 1833 mutex_init(&cache->free_space_lock); 1834 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1835 1836 return cache; 1837 } 1838 1839 /* 1840 * Iterate all chunks and verify that each of them has the corresponding block 1841 * group 1842 */ 1843 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1844 { 1845 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1846 struct extent_map *em; 1847 struct btrfs_block_group *bg; 1848 u64 start = 0; 1849 int ret = 0; 1850 1851 while (1) { 1852 read_lock(&map_tree->lock); 1853 /* 1854 * lookup_extent_mapping will return the first extent map 1855 * intersecting the range, so setting @len to 1 is enough to 1856 * get the first chunk. 1857 */ 1858 em = lookup_extent_mapping(map_tree, start, 1); 1859 read_unlock(&map_tree->lock); 1860 if (!em) 1861 break; 1862 1863 bg = btrfs_lookup_block_group(fs_info, em->start); 1864 if (!bg) { 1865 btrfs_err(fs_info, 1866 "chunk start=%llu len=%llu doesn't have corresponding block group", 1867 em->start, em->len); 1868 ret = -EUCLEAN; 1869 free_extent_map(em); 1870 break; 1871 } 1872 if (bg->start != em->start || bg->length != em->len || 1873 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1874 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1875 btrfs_err(fs_info, 1876 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1877 em->start, em->len, 1878 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1879 bg->start, bg->length, 1880 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1881 ret = -EUCLEAN; 1882 free_extent_map(em); 1883 btrfs_put_block_group(bg); 1884 break; 1885 } 1886 start = em->start + em->len; 1887 free_extent_map(em); 1888 btrfs_put_block_group(bg); 1889 } 1890 return ret; 1891 } 1892 1893 static int read_block_group_item(struct btrfs_block_group *cache, 1894 struct btrfs_path *path, 1895 const struct btrfs_key *key) 1896 { 1897 struct extent_buffer *leaf = path->nodes[0]; 1898 struct btrfs_block_group_item bgi; 1899 int slot = path->slots[0]; 1900 1901 cache->length = key->offset; 1902 1903 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1904 sizeof(bgi)); 1905 cache->used = btrfs_stack_block_group_used(&bgi); 1906 cache->flags = btrfs_stack_block_group_flags(&bgi); 1907 1908 return 0; 1909 } 1910 1911 static int read_one_block_group(struct btrfs_fs_info *info, 1912 struct btrfs_path *path, 1913 const struct btrfs_key *key, 1914 int need_clear) 1915 { 1916 struct btrfs_block_group *cache; 1917 struct btrfs_space_info *space_info; 1918 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1919 int ret; 1920 1921 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1922 1923 cache = btrfs_create_block_group_cache(info, key->objectid); 1924 if (!cache) 1925 return -ENOMEM; 1926 1927 ret = read_block_group_item(cache, path, key); 1928 if (ret < 0) 1929 goto error; 1930 1931 if (need_clear) { 1932 /* 1933 * When we mount with old space cache, we need to 1934 * set BTRFS_DC_CLEAR and set dirty flag. 1935 * 1936 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1937 * truncate the old free space cache inode and 1938 * setup a new one. 1939 * b) Setting 'dirty flag' makes sure that we flush 1940 * the new space cache info onto disk. 1941 */ 1942 if (btrfs_test_opt(info, SPACE_CACHE)) 1943 cache->disk_cache_state = BTRFS_DC_CLEAR; 1944 } 1945 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1946 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1947 btrfs_err(info, 1948 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1949 cache->start); 1950 ret = -EINVAL; 1951 goto error; 1952 } 1953 1954 /* 1955 * We need to exclude the super stripes now so that the space info has 1956 * super bytes accounted for, otherwise we'll think we have more space 1957 * than we actually do. 1958 */ 1959 ret = exclude_super_stripes(cache); 1960 if (ret) { 1961 /* We may have excluded something, so call this just in case. */ 1962 btrfs_free_excluded_extents(cache); 1963 goto error; 1964 } 1965 1966 /* 1967 * Check for two cases, either we are full, and therefore don't need 1968 * to bother with the caching work since we won't find any space, or we 1969 * are empty, and we can just add all the space in and be done with it. 1970 * This saves us _a_lot_ of time, particularly in the full case. 1971 */ 1972 if (cache->length == cache->used) { 1973 cache->last_byte_to_unpin = (u64)-1; 1974 cache->cached = BTRFS_CACHE_FINISHED; 1975 btrfs_free_excluded_extents(cache); 1976 } else if (cache->used == 0) { 1977 cache->last_byte_to_unpin = (u64)-1; 1978 cache->cached = BTRFS_CACHE_FINISHED; 1979 add_new_free_space(cache, cache->start, 1980 cache->start + cache->length); 1981 btrfs_free_excluded_extents(cache); 1982 } 1983 1984 ret = btrfs_add_block_group_cache(info, cache); 1985 if (ret) { 1986 btrfs_remove_free_space_cache(cache); 1987 goto error; 1988 } 1989 trace_btrfs_add_block_group(info, cache, 0); 1990 btrfs_update_space_info(info, cache->flags, cache->length, 1991 cache->used, cache->bytes_super, &space_info); 1992 1993 cache->space_info = space_info; 1994 1995 link_block_group(cache); 1996 1997 set_avail_alloc_bits(info, cache->flags); 1998 if (btrfs_chunk_readonly(info, cache->start)) { 1999 inc_block_group_ro(cache, 1); 2000 } else if (cache->used == 0) { 2001 ASSERT(list_empty(&cache->bg_list)); 2002 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2003 btrfs_discard_queue_work(&info->discard_ctl, cache); 2004 else 2005 btrfs_mark_bg_unused(cache); 2006 } 2007 return 0; 2008 error: 2009 btrfs_put_block_group(cache); 2010 return ret; 2011 } 2012 2013 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2014 { 2015 struct btrfs_path *path; 2016 int ret; 2017 struct btrfs_block_group *cache; 2018 struct btrfs_space_info *space_info; 2019 struct btrfs_key key; 2020 int need_clear = 0; 2021 u64 cache_gen; 2022 2023 key.objectid = 0; 2024 key.offset = 0; 2025 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2026 path = btrfs_alloc_path(); 2027 if (!path) 2028 return -ENOMEM; 2029 2030 cache_gen = btrfs_super_cache_generation(info->super_copy); 2031 if (btrfs_test_opt(info, SPACE_CACHE) && 2032 btrfs_super_generation(info->super_copy) != cache_gen) 2033 need_clear = 1; 2034 if (btrfs_test_opt(info, CLEAR_CACHE)) 2035 need_clear = 1; 2036 2037 while (1) { 2038 ret = find_first_block_group(info, path, &key); 2039 if (ret > 0) 2040 break; 2041 if (ret != 0) 2042 goto error; 2043 2044 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2045 ret = read_one_block_group(info, path, &key, need_clear); 2046 if (ret < 0) 2047 goto error; 2048 key.objectid += key.offset; 2049 key.offset = 0; 2050 btrfs_release_path(path); 2051 } 2052 2053 rcu_read_lock(); 2054 list_for_each_entry_rcu(space_info, &info->space_info, list) { 2055 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2056 (BTRFS_BLOCK_GROUP_RAID10 | 2057 BTRFS_BLOCK_GROUP_RAID1_MASK | 2058 BTRFS_BLOCK_GROUP_RAID56_MASK | 2059 BTRFS_BLOCK_GROUP_DUP))) 2060 continue; 2061 /* 2062 * Avoid allocating from un-mirrored block group if there are 2063 * mirrored block groups. 2064 */ 2065 list_for_each_entry(cache, 2066 &space_info->block_groups[BTRFS_RAID_RAID0], 2067 list) 2068 inc_block_group_ro(cache, 1); 2069 list_for_each_entry(cache, 2070 &space_info->block_groups[BTRFS_RAID_SINGLE], 2071 list) 2072 inc_block_group_ro(cache, 1); 2073 } 2074 rcu_read_unlock(); 2075 2076 btrfs_init_global_block_rsv(info); 2077 ret = check_chunk_block_group_mappings(info); 2078 error: 2079 btrfs_free_path(path); 2080 return ret; 2081 } 2082 2083 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2084 struct btrfs_block_group *block_group) 2085 { 2086 struct btrfs_fs_info *fs_info = trans->fs_info; 2087 struct btrfs_block_group_item bgi; 2088 struct btrfs_root *root; 2089 struct btrfs_key key; 2090 2091 spin_lock(&block_group->lock); 2092 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2093 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2094 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2095 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2096 key.objectid = block_group->start; 2097 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2098 key.offset = block_group->length; 2099 spin_unlock(&block_group->lock); 2100 2101 root = fs_info->extent_root; 2102 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2103 } 2104 2105 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2106 { 2107 struct btrfs_fs_info *fs_info = trans->fs_info; 2108 struct btrfs_block_group *block_group; 2109 int ret = 0; 2110 2111 if (!trans->can_flush_pending_bgs) 2112 return; 2113 2114 while (!list_empty(&trans->new_bgs)) { 2115 block_group = list_first_entry(&trans->new_bgs, 2116 struct btrfs_block_group, 2117 bg_list); 2118 if (ret) 2119 goto next; 2120 2121 ret = insert_block_group_item(trans, block_group); 2122 if (ret) 2123 btrfs_abort_transaction(trans, ret); 2124 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2125 block_group->length); 2126 if (ret) 2127 btrfs_abort_transaction(trans, ret); 2128 add_block_group_free_space(trans, block_group); 2129 /* Already aborted the transaction if it failed. */ 2130 next: 2131 btrfs_delayed_refs_rsv_release(fs_info, 1); 2132 list_del_init(&block_group->bg_list); 2133 } 2134 btrfs_trans_release_chunk_metadata(trans); 2135 } 2136 2137 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2138 u64 type, u64 chunk_offset, u64 size) 2139 { 2140 struct btrfs_fs_info *fs_info = trans->fs_info; 2141 struct btrfs_block_group *cache; 2142 int ret; 2143 2144 btrfs_set_log_full_commit(trans); 2145 2146 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2147 if (!cache) 2148 return -ENOMEM; 2149 2150 cache->length = size; 2151 cache->used = bytes_used; 2152 cache->flags = type; 2153 cache->last_byte_to_unpin = (u64)-1; 2154 cache->cached = BTRFS_CACHE_FINISHED; 2155 cache->needs_free_space = 1; 2156 ret = exclude_super_stripes(cache); 2157 if (ret) { 2158 /* We may have excluded something, so call this just in case */ 2159 btrfs_free_excluded_extents(cache); 2160 btrfs_put_block_group(cache); 2161 return ret; 2162 } 2163 2164 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2165 2166 btrfs_free_excluded_extents(cache); 2167 2168 #ifdef CONFIG_BTRFS_DEBUG 2169 if (btrfs_should_fragment_free_space(cache)) { 2170 u64 new_bytes_used = size - bytes_used; 2171 2172 bytes_used += new_bytes_used >> 1; 2173 fragment_free_space(cache); 2174 } 2175 #endif 2176 /* 2177 * Ensure the corresponding space_info object is created and 2178 * assigned to our block group. We want our bg to be added to the rbtree 2179 * with its ->space_info set. 2180 */ 2181 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2182 ASSERT(cache->space_info); 2183 2184 ret = btrfs_add_block_group_cache(fs_info, cache); 2185 if (ret) { 2186 btrfs_remove_free_space_cache(cache); 2187 btrfs_put_block_group(cache); 2188 return ret; 2189 } 2190 2191 /* 2192 * Now that our block group has its ->space_info set and is inserted in 2193 * the rbtree, update the space info's counters. 2194 */ 2195 trace_btrfs_add_block_group(fs_info, cache, 1); 2196 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2197 cache->bytes_super, &cache->space_info); 2198 btrfs_update_global_block_rsv(fs_info); 2199 2200 link_block_group(cache); 2201 2202 list_add_tail(&cache->bg_list, &trans->new_bgs); 2203 trans->delayed_ref_updates++; 2204 btrfs_update_delayed_refs_rsv(trans); 2205 2206 set_avail_alloc_bits(fs_info, type); 2207 return 0; 2208 } 2209 2210 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 2211 { 2212 u64 num_devices; 2213 u64 stripped; 2214 2215 /* 2216 * if restripe for this chunk_type is on pick target profile and 2217 * return, otherwise do the usual balance 2218 */ 2219 stripped = get_restripe_target(fs_info, flags); 2220 if (stripped) 2221 return extended_to_chunk(stripped); 2222 2223 num_devices = fs_info->fs_devices->rw_devices; 2224 2225 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 2226 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 2227 2228 if (num_devices == 1) { 2229 stripped |= BTRFS_BLOCK_GROUP_DUP; 2230 stripped = flags & ~stripped; 2231 2232 /* turn raid0 into single device chunks */ 2233 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2234 return stripped; 2235 2236 /* turn mirroring into duplication */ 2237 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2238 BTRFS_BLOCK_GROUP_RAID10)) 2239 return stripped | BTRFS_BLOCK_GROUP_DUP; 2240 } else { 2241 /* they already had raid on here, just return */ 2242 if (flags & stripped) 2243 return flags; 2244 2245 stripped |= BTRFS_BLOCK_GROUP_DUP; 2246 stripped = flags & ~stripped; 2247 2248 /* switch duplicated blocks with raid1 */ 2249 if (flags & BTRFS_BLOCK_GROUP_DUP) 2250 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2251 2252 /* this is drive concat, leave it alone */ 2253 } 2254 2255 return flags; 2256 } 2257 2258 /* 2259 * Mark one block group RO, can be called several times for the same block 2260 * group. 2261 * 2262 * @cache: the destination block group 2263 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2264 * ensure we still have some free space after marking this 2265 * block group RO. 2266 */ 2267 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2268 bool do_chunk_alloc) 2269 { 2270 struct btrfs_fs_info *fs_info = cache->fs_info; 2271 struct btrfs_trans_handle *trans; 2272 u64 alloc_flags; 2273 int ret; 2274 2275 again: 2276 trans = btrfs_join_transaction(fs_info->extent_root); 2277 if (IS_ERR(trans)) 2278 return PTR_ERR(trans); 2279 2280 /* 2281 * we're not allowed to set block groups readonly after the dirty 2282 * block groups cache has started writing. If it already started, 2283 * back off and let this transaction commit 2284 */ 2285 mutex_lock(&fs_info->ro_block_group_mutex); 2286 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2287 u64 transid = trans->transid; 2288 2289 mutex_unlock(&fs_info->ro_block_group_mutex); 2290 btrfs_end_transaction(trans); 2291 2292 ret = btrfs_wait_for_commit(fs_info, transid); 2293 if (ret) 2294 return ret; 2295 goto again; 2296 } 2297 2298 if (do_chunk_alloc) { 2299 /* 2300 * If we are changing raid levels, try to allocate a 2301 * corresponding block group with the new raid level. 2302 */ 2303 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2304 if (alloc_flags != cache->flags) { 2305 ret = btrfs_chunk_alloc(trans, alloc_flags, 2306 CHUNK_ALLOC_FORCE); 2307 /* 2308 * ENOSPC is allowed here, we may have enough space 2309 * already allocated at the new raid level to carry on 2310 */ 2311 if (ret == -ENOSPC) 2312 ret = 0; 2313 if (ret < 0) 2314 goto out; 2315 } 2316 } 2317 2318 ret = inc_block_group_ro(cache, 0); 2319 if (!do_chunk_alloc) 2320 goto unlock_out; 2321 if (!ret) 2322 goto out; 2323 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2324 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2325 if (ret < 0) 2326 goto out; 2327 ret = inc_block_group_ro(cache, 0); 2328 out: 2329 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2330 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2331 mutex_lock(&fs_info->chunk_mutex); 2332 check_system_chunk(trans, alloc_flags); 2333 mutex_unlock(&fs_info->chunk_mutex); 2334 } 2335 unlock_out: 2336 mutex_unlock(&fs_info->ro_block_group_mutex); 2337 2338 btrfs_end_transaction(trans); 2339 return ret; 2340 } 2341 2342 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2343 { 2344 struct btrfs_space_info *sinfo = cache->space_info; 2345 u64 num_bytes; 2346 2347 BUG_ON(!cache->ro); 2348 2349 spin_lock(&sinfo->lock); 2350 spin_lock(&cache->lock); 2351 if (!--cache->ro) { 2352 num_bytes = cache->length - cache->reserved - 2353 cache->pinned - cache->bytes_super - cache->used; 2354 sinfo->bytes_readonly -= num_bytes; 2355 list_del_init(&cache->ro_list); 2356 } 2357 spin_unlock(&cache->lock); 2358 spin_unlock(&sinfo->lock); 2359 } 2360 2361 static int update_block_group_item(struct btrfs_trans_handle *trans, 2362 struct btrfs_path *path, 2363 struct btrfs_block_group *cache) 2364 { 2365 struct btrfs_fs_info *fs_info = trans->fs_info; 2366 int ret; 2367 struct btrfs_root *root = fs_info->extent_root; 2368 unsigned long bi; 2369 struct extent_buffer *leaf; 2370 struct btrfs_block_group_item bgi; 2371 struct btrfs_key key; 2372 2373 key.objectid = cache->start; 2374 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2375 key.offset = cache->length; 2376 2377 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2378 if (ret) { 2379 if (ret > 0) 2380 ret = -ENOENT; 2381 goto fail; 2382 } 2383 2384 leaf = path->nodes[0]; 2385 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2386 btrfs_set_stack_block_group_used(&bgi, cache->used); 2387 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2388 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2389 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2390 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2391 btrfs_mark_buffer_dirty(leaf); 2392 fail: 2393 btrfs_release_path(path); 2394 return ret; 2395 2396 } 2397 2398 static int cache_save_setup(struct btrfs_block_group *block_group, 2399 struct btrfs_trans_handle *trans, 2400 struct btrfs_path *path) 2401 { 2402 struct btrfs_fs_info *fs_info = block_group->fs_info; 2403 struct btrfs_root *root = fs_info->tree_root; 2404 struct inode *inode = NULL; 2405 struct extent_changeset *data_reserved = NULL; 2406 u64 alloc_hint = 0; 2407 int dcs = BTRFS_DC_ERROR; 2408 u64 num_pages = 0; 2409 int retries = 0; 2410 int ret = 0; 2411 2412 /* 2413 * If this block group is smaller than 100 megs don't bother caching the 2414 * block group. 2415 */ 2416 if (block_group->length < (100 * SZ_1M)) { 2417 spin_lock(&block_group->lock); 2418 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2419 spin_unlock(&block_group->lock); 2420 return 0; 2421 } 2422 2423 if (TRANS_ABORTED(trans)) 2424 return 0; 2425 again: 2426 inode = lookup_free_space_inode(block_group, path); 2427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2428 ret = PTR_ERR(inode); 2429 btrfs_release_path(path); 2430 goto out; 2431 } 2432 2433 if (IS_ERR(inode)) { 2434 BUG_ON(retries); 2435 retries++; 2436 2437 if (block_group->ro) 2438 goto out_free; 2439 2440 ret = create_free_space_inode(trans, block_group, path); 2441 if (ret) 2442 goto out_free; 2443 goto again; 2444 } 2445 2446 /* 2447 * We want to set the generation to 0, that way if anything goes wrong 2448 * from here on out we know not to trust this cache when we load up next 2449 * time. 2450 */ 2451 BTRFS_I(inode)->generation = 0; 2452 ret = btrfs_update_inode(trans, root, inode); 2453 if (ret) { 2454 /* 2455 * So theoretically we could recover from this, simply set the 2456 * super cache generation to 0 so we know to invalidate the 2457 * cache, but then we'd have to keep track of the block groups 2458 * that fail this way so we know we _have_ to reset this cache 2459 * before the next commit or risk reading stale cache. So to 2460 * limit our exposure to horrible edge cases lets just abort the 2461 * transaction, this only happens in really bad situations 2462 * anyway. 2463 */ 2464 btrfs_abort_transaction(trans, ret); 2465 goto out_put; 2466 } 2467 WARN_ON(ret); 2468 2469 /* We've already setup this transaction, go ahead and exit */ 2470 if (block_group->cache_generation == trans->transid && 2471 i_size_read(inode)) { 2472 dcs = BTRFS_DC_SETUP; 2473 goto out_put; 2474 } 2475 2476 if (i_size_read(inode) > 0) { 2477 ret = btrfs_check_trunc_cache_free_space(fs_info, 2478 &fs_info->global_block_rsv); 2479 if (ret) 2480 goto out_put; 2481 2482 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2483 if (ret) 2484 goto out_put; 2485 } 2486 2487 spin_lock(&block_group->lock); 2488 if (block_group->cached != BTRFS_CACHE_FINISHED || 2489 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2490 /* 2491 * don't bother trying to write stuff out _if_ 2492 * a) we're not cached, 2493 * b) we're with nospace_cache mount option, 2494 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2495 */ 2496 dcs = BTRFS_DC_WRITTEN; 2497 spin_unlock(&block_group->lock); 2498 goto out_put; 2499 } 2500 spin_unlock(&block_group->lock); 2501 2502 /* 2503 * We hit an ENOSPC when setting up the cache in this transaction, just 2504 * skip doing the setup, we've already cleared the cache so we're safe. 2505 */ 2506 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2507 ret = -ENOSPC; 2508 goto out_put; 2509 } 2510 2511 /* 2512 * Try to preallocate enough space based on how big the block group is. 2513 * Keep in mind this has to include any pinned space which could end up 2514 * taking up quite a bit since it's not folded into the other space 2515 * cache. 2516 */ 2517 num_pages = div_u64(block_group->length, SZ_256M); 2518 if (!num_pages) 2519 num_pages = 1; 2520 2521 num_pages *= 16; 2522 num_pages *= PAGE_SIZE; 2523 2524 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2525 if (ret) 2526 goto out_put; 2527 2528 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2529 num_pages, num_pages, 2530 &alloc_hint); 2531 /* 2532 * Our cache requires contiguous chunks so that we don't modify a bunch 2533 * of metadata or split extents when writing the cache out, which means 2534 * we can enospc if we are heavily fragmented in addition to just normal 2535 * out of space conditions. So if we hit this just skip setting up any 2536 * other block groups for this transaction, maybe we'll unpin enough 2537 * space the next time around. 2538 */ 2539 if (!ret) 2540 dcs = BTRFS_DC_SETUP; 2541 else if (ret == -ENOSPC) 2542 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2543 2544 out_put: 2545 iput(inode); 2546 out_free: 2547 btrfs_release_path(path); 2548 out: 2549 spin_lock(&block_group->lock); 2550 if (!ret && dcs == BTRFS_DC_SETUP) 2551 block_group->cache_generation = trans->transid; 2552 block_group->disk_cache_state = dcs; 2553 spin_unlock(&block_group->lock); 2554 2555 extent_changeset_free(data_reserved); 2556 return ret; 2557 } 2558 2559 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2560 { 2561 struct btrfs_fs_info *fs_info = trans->fs_info; 2562 struct btrfs_block_group *cache, *tmp; 2563 struct btrfs_transaction *cur_trans = trans->transaction; 2564 struct btrfs_path *path; 2565 2566 if (list_empty(&cur_trans->dirty_bgs) || 2567 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2568 return 0; 2569 2570 path = btrfs_alloc_path(); 2571 if (!path) 2572 return -ENOMEM; 2573 2574 /* Could add new block groups, use _safe just in case */ 2575 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2576 dirty_list) { 2577 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2578 cache_save_setup(cache, trans, path); 2579 } 2580 2581 btrfs_free_path(path); 2582 return 0; 2583 } 2584 2585 /* 2586 * Transaction commit does final block group cache writeback during a critical 2587 * section where nothing is allowed to change the FS. This is required in 2588 * order for the cache to actually match the block group, but can introduce a 2589 * lot of latency into the commit. 2590 * 2591 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2592 * There's a chance we'll have to redo some of it if the block group changes 2593 * again during the commit, but it greatly reduces the commit latency by 2594 * getting rid of the easy block groups while we're still allowing others to 2595 * join the commit. 2596 */ 2597 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2598 { 2599 struct btrfs_fs_info *fs_info = trans->fs_info; 2600 struct btrfs_block_group *cache; 2601 struct btrfs_transaction *cur_trans = trans->transaction; 2602 int ret = 0; 2603 int should_put; 2604 struct btrfs_path *path = NULL; 2605 LIST_HEAD(dirty); 2606 struct list_head *io = &cur_trans->io_bgs; 2607 int num_started = 0; 2608 int loops = 0; 2609 2610 spin_lock(&cur_trans->dirty_bgs_lock); 2611 if (list_empty(&cur_trans->dirty_bgs)) { 2612 spin_unlock(&cur_trans->dirty_bgs_lock); 2613 return 0; 2614 } 2615 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2616 spin_unlock(&cur_trans->dirty_bgs_lock); 2617 2618 again: 2619 /* Make sure all the block groups on our dirty list actually exist */ 2620 btrfs_create_pending_block_groups(trans); 2621 2622 if (!path) { 2623 path = btrfs_alloc_path(); 2624 if (!path) 2625 return -ENOMEM; 2626 } 2627 2628 /* 2629 * cache_write_mutex is here only to save us from balance or automatic 2630 * removal of empty block groups deleting this block group while we are 2631 * writing out the cache 2632 */ 2633 mutex_lock(&trans->transaction->cache_write_mutex); 2634 while (!list_empty(&dirty)) { 2635 bool drop_reserve = true; 2636 2637 cache = list_first_entry(&dirty, struct btrfs_block_group, 2638 dirty_list); 2639 /* 2640 * This can happen if something re-dirties a block group that 2641 * is already under IO. Just wait for it to finish and then do 2642 * it all again 2643 */ 2644 if (!list_empty(&cache->io_list)) { 2645 list_del_init(&cache->io_list); 2646 btrfs_wait_cache_io(trans, cache, path); 2647 btrfs_put_block_group(cache); 2648 } 2649 2650 2651 /* 2652 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2653 * it should update the cache_state. Don't delete until after 2654 * we wait. 2655 * 2656 * Since we're not running in the commit critical section 2657 * we need the dirty_bgs_lock to protect from update_block_group 2658 */ 2659 spin_lock(&cur_trans->dirty_bgs_lock); 2660 list_del_init(&cache->dirty_list); 2661 spin_unlock(&cur_trans->dirty_bgs_lock); 2662 2663 should_put = 1; 2664 2665 cache_save_setup(cache, trans, path); 2666 2667 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2668 cache->io_ctl.inode = NULL; 2669 ret = btrfs_write_out_cache(trans, cache, path); 2670 if (ret == 0 && cache->io_ctl.inode) { 2671 num_started++; 2672 should_put = 0; 2673 2674 /* 2675 * The cache_write_mutex is protecting the 2676 * io_list, also refer to the definition of 2677 * btrfs_transaction::io_bgs for more details 2678 */ 2679 list_add_tail(&cache->io_list, io); 2680 } else { 2681 /* 2682 * If we failed to write the cache, the 2683 * generation will be bad and life goes on 2684 */ 2685 ret = 0; 2686 } 2687 } 2688 if (!ret) { 2689 ret = update_block_group_item(trans, path, cache); 2690 /* 2691 * Our block group might still be attached to the list 2692 * of new block groups in the transaction handle of some 2693 * other task (struct btrfs_trans_handle->new_bgs). This 2694 * means its block group item isn't yet in the extent 2695 * tree. If this happens ignore the error, as we will 2696 * try again later in the critical section of the 2697 * transaction commit. 2698 */ 2699 if (ret == -ENOENT) { 2700 ret = 0; 2701 spin_lock(&cur_trans->dirty_bgs_lock); 2702 if (list_empty(&cache->dirty_list)) { 2703 list_add_tail(&cache->dirty_list, 2704 &cur_trans->dirty_bgs); 2705 btrfs_get_block_group(cache); 2706 drop_reserve = false; 2707 } 2708 spin_unlock(&cur_trans->dirty_bgs_lock); 2709 } else if (ret) { 2710 btrfs_abort_transaction(trans, ret); 2711 } 2712 } 2713 2714 /* If it's not on the io list, we need to put the block group */ 2715 if (should_put) 2716 btrfs_put_block_group(cache); 2717 if (drop_reserve) 2718 btrfs_delayed_refs_rsv_release(fs_info, 1); 2719 2720 if (ret) 2721 break; 2722 2723 /* 2724 * Avoid blocking other tasks for too long. It might even save 2725 * us from writing caches for block groups that are going to be 2726 * removed. 2727 */ 2728 mutex_unlock(&trans->transaction->cache_write_mutex); 2729 mutex_lock(&trans->transaction->cache_write_mutex); 2730 } 2731 mutex_unlock(&trans->transaction->cache_write_mutex); 2732 2733 /* 2734 * Go through delayed refs for all the stuff we've just kicked off 2735 * and then loop back (just once) 2736 */ 2737 ret = btrfs_run_delayed_refs(trans, 0); 2738 if (!ret && loops == 0) { 2739 loops++; 2740 spin_lock(&cur_trans->dirty_bgs_lock); 2741 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2742 /* 2743 * dirty_bgs_lock protects us from concurrent block group 2744 * deletes too (not just cache_write_mutex). 2745 */ 2746 if (!list_empty(&dirty)) { 2747 spin_unlock(&cur_trans->dirty_bgs_lock); 2748 goto again; 2749 } 2750 spin_unlock(&cur_trans->dirty_bgs_lock); 2751 } else if (ret < 0) { 2752 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2753 } 2754 2755 btrfs_free_path(path); 2756 return ret; 2757 } 2758 2759 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2760 { 2761 struct btrfs_fs_info *fs_info = trans->fs_info; 2762 struct btrfs_block_group *cache; 2763 struct btrfs_transaction *cur_trans = trans->transaction; 2764 int ret = 0; 2765 int should_put; 2766 struct btrfs_path *path; 2767 struct list_head *io = &cur_trans->io_bgs; 2768 int num_started = 0; 2769 2770 path = btrfs_alloc_path(); 2771 if (!path) 2772 return -ENOMEM; 2773 2774 /* 2775 * Even though we are in the critical section of the transaction commit, 2776 * we can still have concurrent tasks adding elements to this 2777 * transaction's list of dirty block groups. These tasks correspond to 2778 * endio free space workers started when writeback finishes for a 2779 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2780 * allocate new block groups as a result of COWing nodes of the root 2781 * tree when updating the free space inode. The writeback for the space 2782 * caches is triggered by an earlier call to 2783 * btrfs_start_dirty_block_groups() and iterations of the following 2784 * loop. 2785 * Also we want to do the cache_save_setup first and then run the 2786 * delayed refs to make sure we have the best chance at doing this all 2787 * in one shot. 2788 */ 2789 spin_lock(&cur_trans->dirty_bgs_lock); 2790 while (!list_empty(&cur_trans->dirty_bgs)) { 2791 cache = list_first_entry(&cur_trans->dirty_bgs, 2792 struct btrfs_block_group, 2793 dirty_list); 2794 2795 /* 2796 * This can happen if cache_save_setup re-dirties a block group 2797 * that is already under IO. Just wait for it to finish and 2798 * then do it all again 2799 */ 2800 if (!list_empty(&cache->io_list)) { 2801 spin_unlock(&cur_trans->dirty_bgs_lock); 2802 list_del_init(&cache->io_list); 2803 btrfs_wait_cache_io(trans, cache, path); 2804 btrfs_put_block_group(cache); 2805 spin_lock(&cur_trans->dirty_bgs_lock); 2806 } 2807 2808 /* 2809 * Don't remove from the dirty list until after we've waited on 2810 * any pending IO 2811 */ 2812 list_del_init(&cache->dirty_list); 2813 spin_unlock(&cur_trans->dirty_bgs_lock); 2814 should_put = 1; 2815 2816 cache_save_setup(cache, trans, path); 2817 2818 if (!ret) 2819 ret = btrfs_run_delayed_refs(trans, 2820 (unsigned long) -1); 2821 2822 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2823 cache->io_ctl.inode = NULL; 2824 ret = btrfs_write_out_cache(trans, cache, path); 2825 if (ret == 0 && cache->io_ctl.inode) { 2826 num_started++; 2827 should_put = 0; 2828 list_add_tail(&cache->io_list, io); 2829 } else { 2830 /* 2831 * If we failed to write the cache, the 2832 * generation will be bad and life goes on 2833 */ 2834 ret = 0; 2835 } 2836 } 2837 if (!ret) { 2838 ret = update_block_group_item(trans, path, cache); 2839 /* 2840 * One of the free space endio workers might have 2841 * created a new block group while updating a free space 2842 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2843 * and hasn't released its transaction handle yet, in 2844 * which case the new block group is still attached to 2845 * its transaction handle and its creation has not 2846 * finished yet (no block group item in the extent tree 2847 * yet, etc). If this is the case, wait for all free 2848 * space endio workers to finish and retry. This is a 2849 * a very rare case so no need for a more efficient and 2850 * complex approach. 2851 */ 2852 if (ret == -ENOENT) { 2853 wait_event(cur_trans->writer_wait, 2854 atomic_read(&cur_trans->num_writers) == 1); 2855 ret = update_block_group_item(trans, path, cache); 2856 } 2857 if (ret) 2858 btrfs_abort_transaction(trans, ret); 2859 } 2860 2861 /* If its not on the io list, we need to put the block group */ 2862 if (should_put) 2863 btrfs_put_block_group(cache); 2864 btrfs_delayed_refs_rsv_release(fs_info, 1); 2865 spin_lock(&cur_trans->dirty_bgs_lock); 2866 } 2867 spin_unlock(&cur_trans->dirty_bgs_lock); 2868 2869 /* 2870 * Refer to the definition of io_bgs member for details why it's safe 2871 * to use it without any locking 2872 */ 2873 while (!list_empty(io)) { 2874 cache = list_first_entry(io, struct btrfs_block_group, 2875 io_list); 2876 list_del_init(&cache->io_list); 2877 btrfs_wait_cache_io(trans, cache, path); 2878 btrfs_put_block_group(cache); 2879 } 2880 2881 btrfs_free_path(path); 2882 return ret; 2883 } 2884 2885 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2886 u64 bytenr, u64 num_bytes, int alloc) 2887 { 2888 struct btrfs_fs_info *info = trans->fs_info; 2889 struct btrfs_block_group *cache = NULL; 2890 u64 total = num_bytes; 2891 u64 old_val; 2892 u64 byte_in_group; 2893 int factor; 2894 int ret = 0; 2895 2896 /* Block accounting for super block */ 2897 spin_lock(&info->delalloc_root_lock); 2898 old_val = btrfs_super_bytes_used(info->super_copy); 2899 if (alloc) 2900 old_val += num_bytes; 2901 else 2902 old_val -= num_bytes; 2903 btrfs_set_super_bytes_used(info->super_copy, old_val); 2904 spin_unlock(&info->delalloc_root_lock); 2905 2906 while (total) { 2907 cache = btrfs_lookup_block_group(info, bytenr); 2908 if (!cache) { 2909 ret = -ENOENT; 2910 break; 2911 } 2912 factor = btrfs_bg_type_to_factor(cache->flags); 2913 2914 /* 2915 * If this block group has free space cache written out, we 2916 * need to make sure to load it if we are removing space. This 2917 * is because we need the unpinning stage to actually add the 2918 * space back to the block group, otherwise we will leak space. 2919 */ 2920 if (!alloc && !btrfs_block_group_done(cache)) 2921 btrfs_cache_block_group(cache, 1); 2922 2923 byte_in_group = bytenr - cache->start; 2924 WARN_ON(byte_in_group > cache->length); 2925 2926 spin_lock(&cache->space_info->lock); 2927 spin_lock(&cache->lock); 2928 2929 if (btrfs_test_opt(info, SPACE_CACHE) && 2930 cache->disk_cache_state < BTRFS_DC_CLEAR) 2931 cache->disk_cache_state = BTRFS_DC_CLEAR; 2932 2933 old_val = cache->used; 2934 num_bytes = min(total, cache->length - byte_in_group); 2935 if (alloc) { 2936 old_val += num_bytes; 2937 cache->used = old_val; 2938 cache->reserved -= num_bytes; 2939 cache->space_info->bytes_reserved -= num_bytes; 2940 cache->space_info->bytes_used += num_bytes; 2941 cache->space_info->disk_used += num_bytes * factor; 2942 spin_unlock(&cache->lock); 2943 spin_unlock(&cache->space_info->lock); 2944 } else { 2945 old_val -= num_bytes; 2946 cache->used = old_val; 2947 cache->pinned += num_bytes; 2948 btrfs_space_info_update_bytes_pinned(info, 2949 cache->space_info, num_bytes); 2950 cache->space_info->bytes_used -= num_bytes; 2951 cache->space_info->disk_used -= num_bytes * factor; 2952 spin_unlock(&cache->lock); 2953 spin_unlock(&cache->space_info->lock); 2954 2955 percpu_counter_add_batch( 2956 &cache->space_info->total_bytes_pinned, 2957 num_bytes, 2958 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2959 set_extent_dirty(&trans->transaction->pinned_extents, 2960 bytenr, bytenr + num_bytes - 1, 2961 GFP_NOFS | __GFP_NOFAIL); 2962 } 2963 2964 spin_lock(&trans->transaction->dirty_bgs_lock); 2965 if (list_empty(&cache->dirty_list)) { 2966 list_add_tail(&cache->dirty_list, 2967 &trans->transaction->dirty_bgs); 2968 trans->delayed_ref_updates++; 2969 btrfs_get_block_group(cache); 2970 } 2971 spin_unlock(&trans->transaction->dirty_bgs_lock); 2972 2973 /* 2974 * No longer have used bytes in this block group, queue it for 2975 * deletion. We do this after adding the block group to the 2976 * dirty list to avoid races between cleaner kthread and space 2977 * cache writeout. 2978 */ 2979 if (!alloc && old_val == 0) { 2980 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2981 btrfs_mark_bg_unused(cache); 2982 } 2983 2984 btrfs_put_block_group(cache); 2985 total -= num_bytes; 2986 bytenr += num_bytes; 2987 } 2988 2989 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2990 btrfs_update_delayed_refs_rsv(trans); 2991 return ret; 2992 } 2993 2994 /** 2995 * btrfs_add_reserved_bytes - update the block_group and space info counters 2996 * @cache: The cache we are manipulating 2997 * @ram_bytes: The number of bytes of file content, and will be same to 2998 * @num_bytes except for the compress path. 2999 * @num_bytes: The number of bytes in question 3000 * @delalloc: The blocks are allocated for the delalloc write 3001 * 3002 * This is called by the allocator when it reserves space. If this is a 3003 * reservation and the block group has become read only we cannot make the 3004 * reservation and return -EAGAIN, otherwise this function always succeeds. 3005 */ 3006 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3007 u64 ram_bytes, u64 num_bytes, int delalloc) 3008 { 3009 struct btrfs_space_info *space_info = cache->space_info; 3010 int ret = 0; 3011 3012 spin_lock(&space_info->lock); 3013 spin_lock(&cache->lock); 3014 if (cache->ro) { 3015 ret = -EAGAIN; 3016 } else { 3017 cache->reserved += num_bytes; 3018 space_info->bytes_reserved += num_bytes; 3019 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3020 space_info->flags, num_bytes, 1); 3021 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3022 space_info, -ram_bytes); 3023 if (delalloc) 3024 cache->delalloc_bytes += num_bytes; 3025 } 3026 spin_unlock(&cache->lock); 3027 spin_unlock(&space_info->lock); 3028 return ret; 3029 } 3030 3031 /** 3032 * btrfs_free_reserved_bytes - update the block_group and space info counters 3033 * @cache: The cache we are manipulating 3034 * @num_bytes: The number of bytes in question 3035 * @delalloc: The blocks are allocated for the delalloc write 3036 * 3037 * This is called by somebody who is freeing space that was never actually used 3038 * on disk. For example if you reserve some space for a new leaf in transaction 3039 * A and before transaction A commits you free that leaf, you call this with 3040 * reserve set to 0 in order to clear the reservation. 3041 */ 3042 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3043 u64 num_bytes, int delalloc) 3044 { 3045 struct btrfs_space_info *space_info = cache->space_info; 3046 3047 spin_lock(&space_info->lock); 3048 spin_lock(&cache->lock); 3049 if (cache->ro) 3050 space_info->bytes_readonly += num_bytes; 3051 cache->reserved -= num_bytes; 3052 space_info->bytes_reserved -= num_bytes; 3053 space_info->max_extent_size = 0; 3054 3055 if (delalloc) 3056 cache->delalloc_bytes -= num_bytes; 3057 spin_unlock(&cache->lock); 3058 spin_unlock(&space_info->lock); 3059 } 3060 3061 static void force_metadata_allocation(struct btrfs_fs_info *info) 3062 { 3063 struct list_head *head = &info->space_info; 3064 struct btrfs_space_info *found; 3065 3066 rcu_read_lock(); 3067 list_for_each_entry_rcu(found, head, list) { 3068 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3069 found->force_alloc = CHUNK_ALLOC_FORCE; 3070 } 3071 rcu_read_unlock(); 3072 } 3073 3074 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3075 struct btrfs_space_info *sinfo, int force) 3076 { 3077 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3078 u64 thresh; 3079 3080 if (force == CHUNK_ALLOC_FORCE) 3081 return 1; 3082 3083 /* 3084 * in limited mode, we want to have some free space up to 3085 * about 1% of the FS size. 3086 */ 3087 if (force == CHUNK_ALLOC_LIMITED) { 3088 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3089 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3090 3091 if (sinfo->total_bytes - bytes_used < thresh) 3092 return 1; 3093 } 3094 3095 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3096 return 0; 3097 return 1; 3098 } 3099 3100 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3101 { 3102 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3103 3104 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3105 } 3106 3107 /* 3108 * If force is CHUNK_ALLOC_FORCE: 3109 * - return 1 if it successfully allocates a chunk, 3110 * - return errors including -ENOSPC otherwise. 3111 * If force is NOT CHUNK_ALLOC_FORCE: 3112 * - return 0 if it doesn't need to allocate a new chunk, 3113 * - return 1 if it successfully allocates a chunk, 3114 * - return errors including -ENOSPC otherwise. 3115 */ 3116 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3117 enum btrfs_chunk_alloc_enum force) 3118 { 3119 struct btrfs_fs_info *fs_info = trans->fs_info; 3120 struct btrfs_space_info *space_info; 3121 bool wait_for_alloc = false; 3122 bool should_alloc = false; 3123 int ret = 0; 3124 3125 /* Don't re-enter if we're already allocating a chunk */ 3126 if (trans->allocating_chunk) 3127 return -ENOSPC; 3128 3129 space_info = btrfs_find_space_info(fs_info, flags); 3130 ASSERT(space_info); 3131 3132 do { 3133 spin_lock(&space_info->lock); 3134 if (force < space_info->force_alloc) 3135 force = space_info->force_alloc; 3136 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3137 if (space_info->full) { 3138 /* No more free physical space */ 3139 if (should_alloc) 3140 ret = -ENOSPC; 3141 else 3142 ret = 0; 3143 spin_unlock(&space_info->lock); 3144 return ret; 3145 } else if (!should_alloc) { 3146 spin_unlock(&space_info->lock); 3147 return 0; 3148 } else if (space_info->chunk_alloc) { 3149 /* 3150 * Someone is already allocating, so we need to block 3151 * until this someone is finished and then loop to 3152 * recheck if we should continue with our allocation 3153 * attempt. 3154 */ 3155 wait_for_alloc = true; 3156 spin_unlock(&space_info->lock); 3157 mutex_lock(&fs_info->chunk_mutex); 3158 mutex_unlock(&fs_info->chunk_mutex); 3159 } else { 3160 /* Proceed with allocation */ 3161 space_info->chunk_alloc = 1; 3162 wait_for_alloc = false; 3163 spin_unlock(&space_info->lock); 3164 } 3165 3166 cond_resched(); 3167 } while (wait_for_alloc); 3168 3169 mutex_lock(&fs_info->chunk_mutex); 3170 trans->allocating_chunk = true; 3171 3172 /* 3173 * If we have mixed data/metadata chunks we want to make sure we keep 3174 * allocating mixed chunks instead of individual chunks. 3175 */ 3176 if (btrfs_mixed_space_info(space_info)) 3177 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3178 3179 /* 3180 * if we're doing a data chunk, go ahead and make sure that 3181 * we keep a reasonable number of metadata chunks allocated in the 3182 * FS as well. 3183 */ 3184 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3185 fs_info->data_chunk_allocations++; 3186 if (!(fs_info->data_chunk_allocations % 3187 fs_info->metadata_ratio)) 3188 force_metadata_allocation(fs_info); 3189 } 3190 3191 /* 3192 * Check if we have enough space in SYSTEM chunk because we may need 3193 * to update devices. 3194 */ 3195 check_system_chunk(trans, flags); 3196 3197 ret = btrfs_alloc_chunk(trans, flags); 3198 trans->allocating_chunk = false; 3199 3200 spin_lock(&space_info->lock); 3201 if (ret < 0) { 3202 if (ret == -ENOSPC) 3203 space_info->full = 1; 3204 else 3205 goto out; 3206 } else { 3207 ret = 1; 3208 space_info->max_extent_size = 0; 3209 } 3210 3211 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3212 out: 3213 space_info->chunk_alloc = 0; 3214 spin_unlock(&space_info->lock); 3215 mutex_unlock(&fs_info->chunk_mutex); 3216 /* 3217 * When we allocate a new chunk we reserve space in the chunk block 3218 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3219 * add new nodes/leafs to it if we end up needing to do it when 3220 * inserting the chunk item and updating device items as part of the 3221 * second phase of chunk allocation, performed by 3222 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3223 * large number of new block groups to create in our transaction 3224 * handle's new_bgs list to avoid exhausting the chunk block reserve 3225 * in extreme cases - like having a single transaction create many new 3226 * block groups when starting to write out the free space caches of all 3227 * the block groups that were made dirty during the lifetime of the 3228 * transaction. 3229 */ 3230 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3231 btrfs_create_pending_block_groups(trans); 3232 3233 return ret; 3234 } 3235 3236 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3237 { 3238 u64 num_dev; 3239 3240 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3241 if (!num_dev) 3242 num_dev = fs_info->fs_devices->rw_devices; 3243 3244 return num_dev; 3245 } 3246 3247 /* 3248 * Reserve space in the system space for allocating or removing a chunk 3249 */ 3250 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3251 { 3252 struct btrfs_fs_info *fs_info = trans->fs_info; 3253 struct btrfs_space_info *info; 3254 u64 left; 3255 u64 thresh; 3256 int ret = 0; 3257 u64 num_devs; 3258 3259 /* 3260 * Needed because we can end up allocating a system chunk and for an 3261 * atomic and race free space reservation in the chunk block reserve. 3262 */ 3263 lockdep_assert_held(&fs_info->chunk_mutex); 3264 3265 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3266 spin_lock(&info->lock); 3267 left = info->total_bytes - btrfs_space_info_used(info, true); 3268 spin_unlock(&info->lock); 3269 3270 num_devs = get_profile_num_devs(fs_info, type); 3271 3272 /* num_devs device items to update and 1 chunk item to add or remove */ 3273 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3274 btrfs_calc_insert_metadata_size(fs_info, 1); 3275 3276 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3277 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3278 left, thresh, type); 3279 btrfs_dump_space_info(fs_info, info, 0, 0); 3280 } 3281 3282 if (left < thresh) { 3283 u64 flags = btrfs_system_alloc_profile(fs_info); 3284 3285 /* 3286 * Ignore failure to create system chunk. We might end up not 3287 * needing it, as we might not need to COW all nodes/leafs from 3288 * the paths we visit in the chunk tree (they were already COWed 3289 * or created in the current transaction for example). 3290 */ 3291 ret = btrfs_alloc_chunk(trans, flags); 3292 } 3293 3294 if (!ret) { 3295 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3296 &fs_info->chunk_block_rsv, 3297 thresh, BTRFS_RESERVE_NO_FLUSH); 3298 if (!ret) 3299 trans->chunk_bytes_reserved += thresh; 3300 } 3301 } 3302 3303 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3304 { 3305 struct btrfs_block_group *block_group; 3306 u64 last = 0; 3307 3308 while (1) { 3309 struct inode *inode; 3310 3311 block_group = btrfs_lookup_first_block_group(info, last); 3312 while (block_group) { 3313 btrfs_wait_block_group_cache_done(block_group); 3314 spin_lock(&block_group->lock); 3315 if (block_group->iref) 3316 break; 3317 spin_unlock(&block_group->lock); 3318 block_group = btrfs_next_block_group(block_group); 3319 } 3320 if (!block_group) { 3321 if (last == 0) 3322 break; 3323 last = 0; 3324 continue; 3325 } 3326 3327 inode = block_group->inode; 3328 block_group->iref = 0; 3329 block_group->inode = NULL; 3330 spin_unlock(&block_group->lock); 3331 ASSERT(block_group->io_ctl.inode == NULL); 3332 iput(inode); 3333 last = block_group->start + block_group->length; 3334 btrfs_put_block_group(block_group); 3335 } 3336 } 3337 3338 /* 3339 * Must be called only after stopping all workers, since we could have block 3340 * group caching kthreads running, and therefore they could race with us if we 3341 * freed the block groups before stopping them. 3342 */ 3343 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3344 { 3345 struct btrfs_block_group *block_group; 3346 struct btrfs_space_info *space_info; 3347 struct btrfs_caching_control *caching_ctl; 3348 struct rb_node *n; 3349 3350 down_write(&info->commit_root_sem); 3351 while (!list_empty(&info->caching_block_groups)) { 3352 caching_ctl = list_entry(info->caching_block_groups.next, 3353 struct btrfs_caching_control, list); 3354 list_del(&caching_ctl->list); 3355 btrfs_put_caching_control(caching_ctl); 3356 } 3357 up_write(&info->commit_root_sem); 3358 3359 spin_lock(&info->unused_bgs_lock); 3360 while (!list_empty(&info->unused_bgs)) { 3361 block_group = list_first_entry(&info->unused_bgs, 3362 struct btrfs_block_group, 3363 bg_list); 3364 list_del_init(&block_group->bg_list); 3365 btrfs_put_block_group(block_group); 3366 } 3367 spin_unlock(&info->unused_bgs_lock); 3368 3369 spin_lock(&info->block_group_cache_lock); 3370 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3371 block_group = rb_entry(n, struct btrfs_block_group, 3372 cache_node); 3373 rb_erase(&block_group->cache_node, 3374 &info->block_group_cache_tree); 3375 RB_CLEAR_NODE(&block_group->cache_node); 3376 spin_unlock(&info->block_group_cache_lock); 3377 3378 down_write(&block_group->space_info->groups_sem); 3379 list_del(&block_group->list); 3380 up_write(&block_group->space_info->groups_sem); 3381 3382 /* 3383 * We haven't cached this block group, which means we could 3384 * possibly have excluded extents on this block group. 3385 */ 3386 if (block_group->cached == BTRFS_CACHE_NO || 3387 block_group->cached == BTRFS_CACHE_ERROR) 3388 btrfs_free_excluded_extents(block_group); 3389 3390 btrfs_remove_free_space_cache(block_group); 3391 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3392 ASSERT(list_empty(&block_group->dirty_list)); 3393 ASSERT(list_empty(&block_group->io_list)); 3394 ASSERT(list_empty(&block_group->bg_list)); 3395 ASSERT(atomic_read(&block_group->count) == 1); 3396 btrfs_put_block_group(block_group); 3397 3398 spin_lock(&info->block_group_cache_lock); 3399 } 3400 spin_unlock(&info->block_group_cache_lock); 3401 3402 /* 3403 * Now that all the block groups are freed, go through and free all the 3404 * space_info structs. This is only called during the final stages of 3405 * unmount, and so we know nobody is using them. We call 3406 * synchronize_rcu() once before we start, just to be on the safe side. 3407 */ 3408 synchronize_rcu(); 3409 3410 btrfs_release_global_block_rsv(info); 3411 3412 while (!list_empty(&info->space_info)) { 3413 space_info = list_entry(info->space_info.next, 3414 struct btrfs_space_info, 3415 list); 3416 3417 /* 3418 * Do not hide this behind enospc_debug, this is actually 3419 * important and indicates a real bug if this happens. 3420 */ 3421 if (WARN_ON(space_info->bytes_pinned > 0 || 3422 space_info->bytes_reserved > 0 || 3423 space_info->bytes_may_use > 0)) 3424 btrfs_dump_space_info(info, space_info, 0, 0); 3425 WARN_ON(space_info->reclaim_size > 0); 3426 list_del(&space_info->list); 3427 btrfs_sysfs_remove_space_info(space_info); 3428 } 3429 return 0; 3430 } 3431 3432 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3433 { 3434 atomic_inc(&cache->frozen); 3435 } 3436 3437 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3438 { 3439 struct btrfs_fs_info *fs_info = block_group->fs_info; 3440 struct extent_map_tree *em_tree; 3441 struct extent_map *em; 3442 bool cleanup; 3443 3444 spin_lock(&block_group->lock); 3445 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3446 block_group->removed); 3447 spin_unlock(&block_group->lock); 3448 3449 if (cleanup) { 3450 mutex_lock(&fs_info->chunk_mutex); 3451 em_tree = &fs_info->mapping_tree; 3452 write_lock(&em_tree->lock); 3453 em = lookup_extent_mapping(em_tree, block_group->start, 3454 1); 3455 BUG_ON(!em); /* logic error, can't happen */ 3456 remove_extent_mapping(em_tree, em); 3457 write_unlock(&em_tree->lock); 3458 mutex_unlock(&fs_info->chunk_mutex); 3459 3460 /* once for us and once for the tree */ 3461 free_extent_map(em); 3462 free_extent_map(em); 3463 3464 /* 3465 * We may have left one free space entry and other possible 3466 * tasks trimming this block group have left 1 entry each one. 3467 * Free them if any. 3468 */ 3469 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3470 } 3471 } 3472