1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 99 allowed = BTRFS_BLOCK_GROUP_RAID6; 100 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 101 allowed = BTRFS_BLOCK_GROUP_RAID5; 102 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 103 allowed = BTRFS_BLOCK_GROUP_RAID10; 104 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 105 allowed = BTRFS_BLOCK_GROUP_RAID1; 106 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 107 allowed = BTRFS_BLOCK_GROUP_RAID0; 108 109 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 110 111 return extended_to_chunk(flags | allowed); 112 } 113 114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 115 { 116 unsigned seq; 117 u64 flags; 118 119 do { 120 flags = orig_flags; 121 seq = read_seqbegin(&fs_info->profiles_lock); 122 123 if (flags & BTRFS_BLOCK_GROUP_DATA) 124 flags |= fs_info->avail_data_alloc_bits; 125 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 126 flags |= fs_info->avail_system_alloc_bits; 127 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 128 flags |= fs_info->avail_metadata_alloc_bits; 129 } while (read_seqretry(&fs_info->profiles_lock, seq)); 130 131 return btrfs_reduce_alloc_profile(fs_info, flags); 132 } 133 134 void btrfs_get_block_group(struct btrfs_block_group *cache) 135 { 136 refcount_inc(&cache->refs); 137 } 138 139 void btrfs_put_block_group(struct btrfs_block_group *cache) 140 { 141 if (refcount_dec_and_test(&cache->refs)) { 142 WARN_ON(cache->pinned > 0); 143 /* 144 * If there was a failure to cleanup a log tree, very likely due 145 * to an IO failure on a writeback attempt of one or more of its 146 * extent buffers, we could not do proper (and cheap) unaccounting 147 * of their reserved space, so don't warn on reserved > 0 in that 148 * case. 149 */ 150 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 151 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 152 WARN_ON(cache->reserved > 0); 153 154 /* 155 * A block_group shouldn't be on the discard_list anymore. 156 * Remove the block_group from the discard_list to prevent us 157 * from causing a panic due to NULL pointer dereference. 158 */ 159 if (WARN_ON(!list_empty(&cache->discard_list))) 160 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 161 cache); 162 163 kfree(cache->free_space_ctl); 164 kfree(cache->physical_map); 165 kfree(cache); 166 } 167 } 168 169 /* 170 * This adds the block group to the fs_info rb tree for the block group cache 171 */ 172 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 173 struct btrfs_block_group *block_group) 174 { 175 struct rb_node **p; 176 struct rb_node *parent = NULL; 177 struct btrfs_block_group *cache; 178 bool leftmost = true; 179 180 ASSERT(block_group->length != 0); 181 182 write_lock(&info->block_group_cache_lock); 183 p = &info->block_group_cache_tree.rb_root.rb_node; 184 185 while (*p) { 186 parent = *p; 187 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 188 if (block_group->start < cache->start) { 189 p = &(*p)->rb_left; 190 } else if (block_group->start > cache->start) { 191 p = &(*p)->rb_right; 192 leftmost = false; 193 } else { 194 write_unlock(&info->block_group_cache_lock); 195 return -EEXIST; 196 } 197 } 198 199 rb_link_node(&block_group->cache_node, parent, p); 200 rb_insert_color_cached(&block_group->cache_node, 201 &info->block_group_cache_tree, leftmost); 202 203 write_unlock(&info->block_group_cache_lock); 204 205 return 0; 206 } 207 208 /* 209 * This will return the block group at or after bytenr if contains is 0, else 210 * it will return the block group that contains the bytenr 211 */ 212 static struct btrfs_block_group *block_group_cache_tree_search( 213 struct btrfs_fs_info *info, u64 bytenr, int contains) 214 { 215 struct btrfs_block_group *cache, *ret = NULL; 216 struct rb_node *n; 217 u64 end, start; 218 219 read_lock(&info->block_group_cache_lock); 220 n = info->block_group_cache_tree.rb_root.rb_node; 221 222 while (n) { 223 cache = rb_entry(n, struct btrfs_block_group, cache_node); 224 end = cache->start + cache->length - 1; 225 start = cache->start; 226 227 if (bytenr < start) { 228 if (!contains && (!ret || start < ret->start)) 229 ret = cache; 230 n = n->rb_left; 231 } else if (bytenr > start) { 232 if (contains && bytenr <= end) { 233 ret = cache; 234 break; 235 } 236 n = n->rb_right; 237 } else { 238 ret = cache; 239 break; 240 } 241 } 242 if (ret) 243 btrfs_get_block_group(ret); 244 read_unlock(&info->block_group_cache_lock); 245 246 return ret; 247 } 248 249 /* 250 * Return the block group that starts at or after bytenr 251 */ 252 struct btrfs_block_group *btrfs_lookup_first_block_group( 253 struct btrfs_fs_info *info, u64 bytenr) 254 { 255 return block_group_cache_tree_search(info, bytenr, 0); 256 } 257 258 /* 259 * Return the block group that contains the given bytenr 260 */ 261 struct btrfs_block_group *btrfs_lookup_block_group( 262 struct btrfs_fs_info *info, u64 bytenr) 263 { 264 return block_group_cache_tree_search(info, bytenr, 1); 265 } 266 267 struct btrfs_block_group *btrfs_next_block_group( 268 struct btrfs_block_group *cache) 269 { 270 struct btrfs_fs_info *fs_info = cache->fs_info; 271 struct rb_node *node; 272 273 read_lock(&fs_info->block_group_cache_lock); 274 275 /* If our block group was removed, we need a full search. */ 276 if (RB_EMPTY_NODE(&cache->cache_node)) { 277 const u64 next_bytenr = cache->start + cache->length; 278 279 read_unlock(&fs_info->block_group_cache_lock); 280 btrfs_put_block_group(cache); 281 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 282 } 283 node = rb_next(&cache->cache_node); 284 btrfs_put_block_group(cache); 285 if (node) { 286 cache = rb_entry(node, struct btrfs_block_group, cache_node); 287 btrfs_get_block_group(cache); 288 } else 289 cache = NULL; 290 read_unlock(&fs_info->block_group_cache_lock); 291 return cache; 292 } 293 294 /* 295 * Check if we can do a NOCOW write for a given extent. 296 * 297 * @fs_info: The filesystem information object. 298 * @bytenr: Logical start address of the extent. 299 * 300 * Check if we can do a NOCOW write for the given extent, and increments the 301 * number of NOCOW writers in the block group that contains the extent, as long 302 * as the block group exists and it's currently not in read-only mode. 303 * 304 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 305 * is responsible for calling btrfs_dec_nocow_writers() later. 306 * 307 * Or NULL if we can not do a NOCOW write 308 */ 309 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 310 u64 bytenr) 311 { 312 struct btrfs_block_group *bg; 313 bool can_nocow = true; 314 315 bg = btrfs_lookup_block_group(fs_info, bytenr); 316 if (!bg) 317 return NULL; 318 319 spin_lock(&bg->lock); 320 if (bg->ro) 321 can_nocow = false; 322 else 323 atomic_inc(&bg->nocow_writers); 324 spin_unlock(&bg->lock); 325 326 if (!can_nocow) { 327 btrfs_put_block_group(bg); 328 return NULL; 329 } 330 331 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 332 return bg; 333 } 334 335 /* 336 * Decrement the number of NOCOW writers in a block group. 337 * 338 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 339 * and on the block group returned by that call. Typically this is called after 340 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 341 * relocation. 342 * 343 * After this call, the caller should not use the block group anymore. It it wants 344 * to use it, then it should get a reference on it before calling this function. 345 */ 346 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 347 { 348 if (atomic_dec_and_test(&bg->nocow_writers)) 349 wake_up_var(&bg->nocow_writers); 350 351 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 352 btrfs_put_block_group(bg); 353 } 354 355 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 356 { 357 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 358 } 359 360 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 361 const u64 start) 362 { 363 struct btrfs_block_group *bg; 364 365 bg = btrfs_lookup_block_group(fs_info, start); 366 ASSERT(bg); 367 if (atomic_dec_and_test(&bg->reservations)) 368 wake_up_var(&bg->reservations); 369 btrfs_put_block_group(bg); 370 } 371 372 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 373 { 374 struct btrfs_space_info *space_info = bg->space_info; 375 376 ASSERT(bg->ro); 377 378 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 379 return; 380 381 /* 382 * Our block group is read only but before we set it to read only, 383 * some task might have had allocated an extent from it already, but it 384 * has not yet created a respective ordered extent (and added it to a 385 * root's list of ordered extents). 386 * Therefore wait for any task currently allocating extents, since the 387 * block group's reservations counter is incremented while a read lock 388 * on the groups' semaphore is held and decremented after releasing 389 * the read access on that semaphore and creating the ordered extent. 390 */ 391 down_write(&space_info->groups_sem); 392 up_write(&space_info->groups_sem); 393 394 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 395 } 396 397 struct btrfs_caching_control *btrfs_get_caching_control( 398 struct btrfs_block_group *cache) 399 { 400 struct btrfs_caching_control *ctl; 401 402 spin_lock(&cache->lock); 403 if (!cache->caching_ctl) { 404 spin_unlock(&cache->lock); 405 return NULL; 406 } 407 408 ctl = cache->caching_ctl; 409 refcount_inc(&ctl->count); 410 spin_unlock(&cache->lock); 411 return ctl; 412 } 413 414 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 415 { 416 if (refcount_dec_and_test(&ctl->count)) 417 kfree(ctl); 418 } 419 420 /* 421 * When we wait for progress in the block group caching, its because our 422 * allocation attempt failed at least once. So, we must sleep and let some 423 * progress happen before we try again. 424 * 425 * This function will sleep at least once waiting for new free space to show 426 * up, and then it will check the block group free space numbers for our min 427 * num_bytes. Another option is to have it go ahead and look in the rbtree for 428 * a free extent of a given size, but this is a good start. 429 * 430 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 431 * any of the information in this block group. 432 */ 433 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 434 u64 num_bytes) 435 { 436 struct btrfs_caching_control *caching_ctl; 437 438 caching_ctl = btrfs_get_caching_control(cache); 439 if (!caching_ctl) 440 return; 441 442 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 443 (cache->free_space_ctl->free_space >= num_bytes)); 444 445 btrfs_put_caching_control(caching_ctl); 446 } 447 448 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 449 struct btrfs_caching_control *caching_ctl) 450 { 451 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 452 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 453 } 454 455 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 456 { 457 struct btrfs_caching_control *caching_ctl; 458 int ret; 459 460 caching_ctl = btrfs_get_caching_control(cache); 461 if (!caching_ctl) 462 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 463 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 464 btrfs_put_caching_control(caching_ctl); 465 return ret; 466 } 467 468 #ifdef CONFIG_BTRFS_DEBUG 469 static void fragment_free_space(struct btrfs_block_group *block_group) 470 { 471 struct btrfs_fs_info *fs_info = block_group->fs_info; 472 u64 start = block_group->start; 473 u64 len = block_group->length; 474 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 475 fs_info->nodesize : fs_info->sectorsize; 476 u64 step = chunk << 1; 477 478 while (len > chunk) { 479 btrfs_remove_free_space(block_group, start, chunk); 480 start += step; 481 if (len < step) 482 len = 0; 483 else 484 len -= step; 485 } 486 } 487 #endif 488 489 /* 490 * This is only called by btrfs_cache_block_group, since we could have freed 491 * extents we need to check the pinned_extents for any extents that can't be 492 * used yet since their free space will be released as soon as the transaction 493 * commits. 494 */ 495 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 496 { 497 struct btrfs_fs_info *info = block_group->fs_info; 498 u64 extent_start, extent_end, size, total_added = 0; 499 int ret; 500 501 while (start < end) { 502 ret = find_first_extent_bit(&info->excluded_extents, start, 503 &extent_start, &extent_end, 504 EXTENT_DIRTY | EXTENT_UPTODATE, 505 NULL); 506 if (ret) 507 break; 508 509 if (extent_start <= start) { 510 start = extent_end + 1; 511 } else if (extent_start > start && extent_start < end) { 512 size = extent_start - start; 513 total_added += size; 514 ret = btrfs_add_free_space_async_trimmed(block_group, 515 start, size); 516 BUG_ON(ret); /* -ENOMEM or logic error */ 517 start = extent_end + 1; 518 } else { 519 break; 520 } 521 } 522 523 if (start < end) { 524 size = end - start; 525 total_added += size; 526 ret = btrfs_add_free_space_async_trimmed(block_group, start, 527 size); 528 BUG_ON(ret); /* -ENOMEM or logic error */ 529 } 530 531 return total_added; 532 } 533 534 /* 535 * Get an arbitrary extent item index / max_index through the block group 536 * 537 * @block_group the block group to sample from 538 * @index: the integral step through the block group to grab from 539 * @max_index: the granularity of the sampling 540 * @key: return value parameter for the item we find 541 * 542 * Pre-conditions on indices: 543 * 0 <= index <= max_index 544 * 0 < max_index 545 * 546 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 547 * error code on error. 548 */ 549 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 550 struct btrfs_block_group *block_group, 551 int index, int max_index, 552 struct btrfs_key *found_key) 553 { 554 struct btrfs_fs_info *fs_info = block_group->fs_info; 555 struct btrfs_root *extent_root; 556 u64 search_offset; 557 u64 search_end = block_group->start + block_group->length; 558 struct btrfs_path *path; 559 struct btrfs_key search_key; 560 int ret = 0; 561 562 ASSERT(index >= 0); 563 ASSERT(index <= max_index); 564 ASSERT(max_index > 0); 565 lockdep_assert_held(&caching_ctl->mutex); 566 lockdep_assert_held_read(&fs_info->commit_root_sem); 567 568 path = btrfs_alloc_path(); 569 if (!path) 570 return -ENOMEM; 571 572 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 573 BTRFS_SUPER_INFO_OFFSET)); 574 575 path->skip_locking = 1; 576 path->search_commit_root = 1; 577 path->reada = READA_FORWARD; 578 579 search_offset = index * div_u64(block_group->length, max_index); 580 search_key.objectid = block_group->start + search_offset; 581 search_key.type = BTRFS_EXTENT_ITEM_KEY; 582 search_key.offset = 0; 583 584 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 585 /* Success; sampled an extent item in the block group */ 586 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 587 found_key->objectid >= block_group->start && 588 found_key->objectid + found_key->offset <= search_end) 589 break; 590 591 /* We can't possibly find a valid extent item anymore */ 592 if (found_key->objectid >= search_end) { 593 ret = 1; 594 break; 595 } 596 } 597 598 lockdep_assert_held(&caching_ctl->mutex); 599 lockdep_assert_held_read(&fs_info->commit_root_sem); 600 btrfs_free_path(path); 601 return ret; 602 } 603 604 /* 605 * Best effort attempt to compute a block group's size class while caching it. 606 * 607 * @block_group: the block group we are caching 608 * 609 * We cannot infer the size class while adding free space extents, because that 610 * logic doesn't care about contiguous file extents (it doesn't differentiate 611 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 612 * file extent items. Reading all of them is quite wasteful, because usually 613 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 614 * them at even steps through the block group and pick the smallest size class 615 * we see. Since size class is best effort, and not guaranteed in general, 616 * inaccuracy is acceptable. 617 * 618 * To be more explicit about why this algorithm makes sense: 619 * 620 * If we are caching in a block group from disk, then there are three major cases 621 * to consider: 622 * 1. the block group is well behaved and all extents in it are the same size 623 * class. 624 * 2. the block group is mostly one size class with rare exceptions for last 625 * ditch allocations 626 * 3. the block group was populated before size classes and can have a totally 627 * arbitrary mix of size classes. 628 * 629 * In case 1, looking at any extent in the block group will yield the correct 630 * result. For the mixed cases, taking the minimum size class seems like a good 631 * approximation, since gaps from frees will be usable to the size class. For 632 * 2., a small handful of file extents is likely to yield the right answer. For 633 * 3, we can either read every file extent, or admit that this is best effort 634 * anyway and try to stay fast. 635 * 636 * Returns: 0 on success, negative error code on error. 637 */ 638 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 639 struct btrfs_block_group *block_group) 640 { 641 struct btrfs_fs_info *fs_info = block_group->fs_info; 642 struct btrfs_key key; 643 int i; 644 u64 min_size = block_group->length; 645 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 646 int ret; 647 648 if (!btrfs_block_group_should_use_size_class(block_group)) 649 return 0; 650 651 lockdep_assert_held(&caching_ctl->mutex); 652 lockdep_assert_held_read(&fs_info->commit_root_sem); 653 for (i = 0; i < 5; ++i) { 654 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 655 if (ret < 0) 656 goto out; 657 if (ret > 0) 658 continue; 659 min_size = min_t(u64, min_size, key.offset); 660 size_class = btrfs_calc_block_group_size_class(min_size); 661 } 662 if (size_class != BTRFS_BG_SZ_NONE) { 663 spin_lock(&block_group->lock); 664 block_group->size_class = size_class; 665 spin_unlock(&block_group->lock); 666 } 667 out: 668 return ret; 669 } 670 671 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 672 { 673 struct btrfs_block_group *block_group = caching_ctl->block_group; 674 struct btrfs_fs_info *fs_info = block_group->fs_info; 675 struct btrfs_root *extent_root; 676 struct btrfs_path *path; 677 struct extent_buffer *leaf; 678 struct btrfs_key key; 679 u64 total_found = 0; 680 u64 last = 0; 681 u32 nritems; 682 int ret; 683 bool wakeup = true; 684 685 path = btrfs_alloc_path(); 686 if (!path) 687 return -ENOMEM; 688 689 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 690 extent_root = btrfs_extent_root(fs_info, last); 691 692 #ifdef CONFIG_BTRFS_DEBUG 693 /* 694 * If we're fragmenting we don't want to make anybody think we can 695 * allocate from this block group until we've had a chance to fragment 696 * the free space. 697 */ 698 if (btrfs_should_fragment_free_space(block_group)) 699 wakeup = false; 700 #endif 701 /* 702 * We don't want to deadlock with somebody trying to allocate a new 703 * extent for the extent root while also trying to search the extent 704 * root to add free space. So we skip locking and search the commit 705 * root, since its read-only 706 */ 707 path->skip_locking = 1; 708 path->search_commit_root = 1; 709 path->reada = READA_FORWARD; 710 711 key.objectid = last; 712 key.offset = 0; 713 key.type = BTRFS_EXTENT_ITEM_KEY; 714 715 next: 716 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 717 if (ret < 0) 718 goto out; 719 720 leaf = path->nodes[0]; 721 nritems = btrfs_header_nritems(leaf); 722 723 while (1) { 724 if (btrfs_fs_closing(fs_info) > 1) { 725 last = (u64)-1; 726 break; 727 } 728 729 if (path->slots[0] < nritems) { 730 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 731 } else { 732 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 733 if (ret) 734 break; 735 736 if (need_resched() || 737 rwsem_is_contended(&fs_info->commit_root_sem)) { 738 btrfs_release_path(path); 739 up_read(&fs_info->commit_root_sem); 740 mutex_unlock(&caching_ctl->mutex); 741 cond_resched(); 742 mutex_lock(&caching_ctl->mutex); 743 down_read(&fs_info->commit_root_sem); 744 goto next; 745 } 746 747 ret = btrfs_next_leaf(extent_root, path); 748 if (ret < 0) 749 goto out; 750 if (ret) 751 break; 752 leaf = path->nodes[0]; 753 nritems = btrfs_header_nritems(leaf); 754 continue; 755 } 756 757 if (key.objectid < last) { 758 key.objectid = last; 759 key.offset = 0; 760 key.type = BTRFS_EXTENT_ITEM_KEY; 761 btrfs_release_path(path); 762 goto next; 763 } 764 765 if (key.objectid < block_group->start) { 766 path->slots[0]++; 767 continue; 768 } 769 770 if (key.objectid >= block_group->start + block_group->length) 771 break; 772 773 if (key.type == BTRFS_EXTENT_ITEM_KEY || 774 key.type == BTRFS_METADATA_ITEM_KEY) { 775 total_found += add_new_free_space(block_group, last, 776 key.objectid); 777 if (key.type == BTRFS_METADATA_ITEM_KEY) 778 last = key.objectid + 779 fs_info->nodesize; 780 else 781 last = key.objectid + key.offset; 782 783 if (total_found > CACHING_CTL_WAKE_UP) { 784 total_found = 0; 785 if (wakeup) 786 wake_up(&caching_ctl->wait); 787 } 788 } 789 path->slots[0]++; 790 } 791 ret = 0; 792 793 total_found += add_new_free_space(block_group, last, 794 block_group->start + block_group->length); 795 796 out: 797 btrfs_free_path(path); 798 return ret; 799 } 800 801 static noinline void caching_thread(struct btrfs_work *work) 802 { 803 struct btrfs_block_group *block_group; 804 struct btrfs_fs_info *fs_info; 805 struct btrfs_caching_control *caching_ctl; 806 int ret; 807 808 caching_ctl = container_of(work, struct btrfs_caching_control, work); 809 block_group = caching_ctl->block_group; 810 fs_info = block_group->fs_info; 811 812 mutex_lock(&caching_ctl->mutex); 813 down_read(&fs_info->commit_root_sem); 814 815 load_block_group_size_class(caching_ctl, block_group); 816 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 817 ret = load_free_space_cache(block_group); 818 if (ret == 1) { 819 ret = 0; 820 goto done; 821 } 822 823 /* 824 * We failed to load the space cache, set ourselves to 825 * CACHE_STARTED and carry on. 826 */ 827 spin_lock(&block_group->lock); 828 block_group->cached = BTRFS_CACHE_STARTED; 829 spin_unlock(&block_group->lock); 830 wake_up(&caching_ctl->wait); 831 } 832 833 /* 834 * If we are in the transaction that populated the free space tree we 835 * can't actually cache from the free space tree as our commit root and 836 * real root are the same, so we could change the contents of the blocks 837 * while caching. Instead do the slow caching in this case, and after 838 * the transaction has committed we will be safe. 839 */ 840 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 841 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 842 ret = load_free_space_tree(caching_ctl); 843 else 844 ret = load_extent_tree_free(caching_ctl); 845 done: 846 spin_lock(&block_group->lock); 847 block_group->caching_ctl = NULL; 848 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 849 spin_unlock(&block_group->lock); 850 851 #ifdef CONFIG_BTRFS_DEBUG 852 if (btrfs_should_fragment_free_space(block_group)) { 853 u64 bytes_used; 854 855 spin_lock(&block_group->space_info->lock); 856 spin_lock(&block_group->lock); 857 bytes_used = block_group->length - block_group->used; 858 block_group->space_info->bytes_used += bytes_used >> 1; 859 spin_unlock(&block_group->lock); 860 spin_unlock(&block_group->space_info->lock); 861 fragment_free_space(block_group); 862 } 863 #endif 864 865 up_read(&fs_info->commit_root_sem); 866 btrfs_free_excluded_extents(block_group); 867 mutex_unlock(&caching_ctl->mutex); 868 869 wake_up(&caching_ctl->wait); 870 871 btrfs_put_caching_control(caching_ctl); 872 btrfs_put_block_group(block_group); 873 } 874 875 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 876 { 877 struct btrfs_fs_info *fs_info = cache->fs_info; 878 struct btrfs_caching_control *caching_ctl = NULL; 879 int ret = 0; 880 881 /* Allocator for zoned filesystems does not use the cache at all */ 882 if (btrfs_is_zoned(fs_info)) 883 return 0; 884 885 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 886 if (!caching_ctl) 887 return -ENOMEM; 888 889 INIT_LIST_HEAD(&caching_ctl->list); 890 mutex_init(&caching_ctl->mutex); 891 init_waitqueue_head(&caching_ctl->wait); 892 caching_ctl->block_group = cache; 893 refcount_set(&caching_ctl->count, 2); 894 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 895 896 spin_lock(&cache->lock); 897 if (cache->cached != BTRFS_CACHE_NO) { 898 kfree(caching_ctl); 899 900 caching_ctl = cache->caching_ctl; 901 if (caching_ctl) 902 refcount_inc(&caching_ctl->count); 903 spin_unlock(&cache->lock); 904 goto out; 905 } 906 WARN_ON(cache->caching_ctl); 907 cache->caching_ctl = caching_ctl; 908 cache->cached = BTRFS_CACHE_STARTED; 909 spin_unlock(&cache->lock); 910 911 write_lock(&fs_info->block_group_cache_lock); 912 refcount_inc(&caching_ctl->count); 913 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 914 write_unlock(&fs_info->block_group_cache_lock); 915 916 btrfs_get_block_group(cache); 917 918 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 919 out: 920 if (wait && caching_ctl) 921 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 922 if (caching_ctl) 923 btrfs_put_caching_control(caching_ctl); 924 925 return ret; 926 } 927 928 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 929 { 930 u64 extra_flags = chunk_to_extended(flags) & 931 BTRFS_EXTENDED_PROFILE_MASK; 932 933 write_seqlock(&fs_info->profiles_lock); 934 if (flags & BTRFS_BLOCK_GROUP_DATA) 935 fs_info->avail_data_alloc_bits &= ~extra_flags; 936 if (flags & BTRFS_BLOCK_GROUP_METADATA) 937 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 938 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 939 fs_info->avail_system_alloc_bits &= ~extra_flags; 940 write_sequnlock(&fs_info->profiles_lock); 941 } 942 943 /* 944 * Clear incompat bits for the following feature(s): 945 * 946 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 947 * in the whole filesystem 948 * 949 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 950 */ 951 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 952 { 953 bool found_raid56 = false; 954 bool found_raid1c34 = false; 955 956 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 957 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 958 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 959 struct list_head *head = &fs_info->space_info; 960 struct btrfs_space_info *sinfo; 961 962 list_for_each_entry_rcu(sinfo, head, list) { 963 down_read(&sinfo->groups_sem); 964 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 965 found_raid56 = true; 966 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 967 found_raid56 = true; 968 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 969 found_raid1c34 = true; 970 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 971 found_raid1c34 = true; 972 up_read(&sinfo->groups_sem); 973 } 974 if (!found_raid56) 975 btrfs_clear_fs_incompat(fs_info, RAID56); 976 if (!found_raid1c34) 977 btrfs_clear_fs_incompat(fs_info, RAID1C34); 978 } 979 } 980 981 static int remove_block_group_item(struct btrfs_trans_handle *trans, 982 struct btrfs_path *path, 983 struct btrfs_block_group *block_group) 984 { 985 struct btrfs_fs_info *fs_info = trans->fs_info; 986 struct btrfs_root *root; 987 struct btrfs_key key; 988 int ret; 989 990 root = btrfs_block_group_root(fs_info); 991 key.objectid = block_group->start; 992 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 993 key.offset = block_group->length; 994 995 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 996 if (ret > 0) 997 ret = -ENOENT; 998 if (ret < 0) 999 return ret; 1000 1001 ret = btrfs_del_item(trans, root, path); 1002 return ret; 1003 } 1004 1005 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1006 u64 group_start, struct extent_map *em) 1007 { 1008 struct btrfs_fs_info *fs_info = trans->fs_info; 1009 struct btrfs_path *path; 1010 struct btrfs_block_group *block_group; 1011 struct btrfs_free_cluster *cluster; 1012 struct inode *inode; 1013 struct kobject *kobj = NULL; 1014 int ret; 1015 int index; 1016 int factor; 1017 struct btrfs_caching_control *caching_ctl = NULL; 1018 bool remove_em; 1019 bool remove_rsv = false; 1020 1021 block_group = btrfs_lookup_block_group(fs_info, group_start); 1022 BUG_ON(!block_group); 1023 BUG_ON(!block_group->ro); 1024 1025 trace_btrfs_remove_block_group(block_group); 1026 /* 1027 * Free the reserved super bytes from this block group before 1028 * remove it. 1029 */ 1030 btrfs_free_excluded_extents(block_group); 1031 btrfs_free_ref_tree_range(fs_info, block_group->start, 1032 block_group->length); 1033 1034 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1035 factor = btrfs_bg_type_to_factor(block_group->flags); 1036 1037 /* make sure this block group isn't part of an allocation cluster */ 1038 cluster = &fs_info->data_alloc_cluster; 1039 spin_lock(&cluster->refill_lock); 1040 btrfs_return_cluster_to_free_space(block_group, cluster); 1041 spin_unlock(&cluster->refill_lock); 1042 1043 /* 1044 * make sure this block group isn't part of a metadata 1045 * allocation cluster 1046 */ 1047 cluster = &fs_info->meta_alloc_cluster; 1048 spin_lock(&cluster->refill_lock); 1049 btrfs_return_cluster_to_free_space(block_group, cluster); 1050 spin_unlock(&cluster->refill_lock); 1051 1052 btrfs_clear_treelog_bg(block_group); 1053 btrfs_clear_data_reloc_bg(block_group); 1054 1055 path = btrfs_alloc_path(); 1056 if (!path) { 1057 ret = -ENOMEM; 1058 goto out; 1059 } 1060 1061 /* 1062 * get the inode first so any iput calls done for the io_list 1063 * aren't the final iput (no unlinks allowed now) 1064 */ 1065 inode = lookup_free_space_inode(block_group, path); 1066 1067 mutex_lock(&trans->transaction->cache_write_mutex); 1068 /* 1069 * Make sure our free space cache IO is done before removing the 1070 * free space inode 1071 */ 1072 spin_lock(&trans->transaction->dirty_bgs_lock); 1073 if (!list_empty(&block_group->io_list)) { 1074 list_del_init(&block_group->io_list); 1075 1076 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1077 1078 spin_unlock(&trans->transaction->dirty_bgs_lock); 1079 btrfs_wait_cache_io(trans, block_group, path); 1080 btrfs_put_block_group(block_group); 1081 spin_lock(&trans->transaction->dirty_bgs_lock); 1082 } 1083 1084 if (!list_empty(&block_group->dirty_list)) { 1085 list_del_init(&block_group->dirty_list); 1086 remove_rsv = true; 1087 btrfs_put_block_group(block_group); 1088 } 1089 spin_unlock(&trans->transaction->dirty_bgs_lock); 1090 mutex_unlock(&trans->transaction->cache_write_mutex); 1091 1092 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1093 if (ret) 1094 goto out; 1095 1096 write_lock(&fs_info->block_group_cache_lock); 1097 rb_erase_cached(&block_group->cache_node, 1098 &fs_info->block_group_cache_tree); 1099 RB_CLEAR_NODE(&block_group->cache_node); 1100 1101 /* Once for the block groups rbtree */ 1102 btrfs_put_block_group(block_group); 1103 1104 write_unlock(&fs_info->block_group_cache_lock); 1105 1106 down_write(&block_group->space_info->groups_sem); 1107 /* 1108 * we must use list_del_init so people can check to see if they 1109 * are still on the list after taking the semaphore 1110 */ 1111 list_del_init(&block_group->list); 1112 if (list_empty(&block_group->space_info->block_groups[index])) { 1113 kobj = block_group->space_info->block_group_kobjs[index]; 1114 block_group->space_info->block_group_kobjs[index] = NULL; 1115 clear_avail_alloc_bits(fs_info, block_group->flags); 1116 } 1117 up_write(&block_group->space_info->groups_sem); 1118 clear_incompat_bg_bits(fs_info, block_group->flags); 1119 if (kobj) { 1120 kobject_del(kobj); 1121 kobject_put(kobj); 1122 } 1123 1124 if (block_group->cached == BTRFS_CACHE_STARTED) 1125 btrfs_wait_block_group_cache_done(block_group); 1126 1127 write_lock(&fs_info->block_group_cache_lock); 1128 caching_ctl = btrfs_get_caching_control(block_group); 1129 if (!caching_ctl) { 1130 struct btrfs_caching_control *ctl; 1131 1132 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1133 if (ctl->block_group == block_group) { 1134 caching_ctl = ctl; 1135 refcount_inc(&caching_ctl->count); 1136 break; 1137 } 1138 } 1139 } 1140 if (caching_ctl) 1141 list_del_init(&caching_ctl->list); 1142 write_unlock(&fs_info->block_group_cache_lock); 1143 1144 if (caching_ctl) { 1145 /* Once for the caching bgs list and once for us. */ 1146 btrfs_put_caching_control(caching_ctl); 1147 btrfs_put_caching_control(caching_ctl); 1148 } 1149 1150 spin_lock(&trans->transaction->dirty_bgs_lock); 1151 WARN_ON(!list_empty(&block_group->dirty_list)); 1152 WARN_ON(!list_empty(&block_group->io_list)); 1153 spin_unlock(&trans->transaction->dirty_bgs_lock); 1154 1155 btrfs_remove_free_space_cache(block_group); 1156 1157 spin_lock(&block_group->space_info->lock); 1158 list_del_init(&block_group->ro_list); 1159 1160 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1161 WARN_ON(block_group->space_info->total_bytes 1162 < block_group->length); 1163 WARN_ON(block_group->space_info->bytes_readonly 1164 < block_group->length - block_group->zone_unusable); 1165 WARN_ON(block_group->space_info->bytes_zone_unusable 1166 < block_group->zone_unusable); 1167 WARN_ON(block_group->space_info->disk_total 1168 < block_group->length * factor); 1169 } 1170 block_group->space_info->total_bytes -= block_group->length; 1171 block_group->space_info->bytes_readonly -= 1172 (block_group->length - block_group->zone_unusable); 1173 block_group->space_info->bytes_zone_unusable -= 1174 block_group->zone_unusable; 1175 block_group->space_info->disk_total -= block_group->length * factor; 1176 1177 spin_unlock(&block_group->space_info->lock); 1178 1179 /* 1180 * Remove the free space for the block group from the free space tree 1181 * and the block group's item from the extent tree before marking the 1182 * block group as removed. This is to prevent races with tasks that 1183 * freeze and unfreeze a block group, this task and another task 1184 * allocating a new block group - the unfreeze task ends up removing 1185 * the block group's extent map before the task calling this function 1186 * deletes the block group item from the extent tree, allowing for 1187 * another task to attempt to create another block group with the same 1188 * item key (and failing with -EEXIST and a transaction abort). 1189 */ 1190 ret = remove_block_group_free_space(trans, block_group); 1191 if (ret) 1192 goto out; 1193 1194 ret = remove_block_group_item(trans, path, block_group); 1195 if (ret < 0) 1196 goto out; 1197 1198 spin_lock(&block_group->lock); 1199 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1200 1201 /* 1202 * At this point trimming or scrub can't start on this block group, 1203 * because we removed the block group from the rbtree 1204 * fs_info->block_group_cache_tree so no one can't find it anymore and 1205 * even if someone already got this block group before we removed it 1206 * from the rbtree, they have already incremented block_group->frozen - 1207 * if they didn't, for the trimming case they won't find any free space 1208 * entries because we already removed them all when we called 1209 * btrfs_remove_free_space_cache(). 1210 * 1211 * And we must not remove the extent map from the fs_info->mapping_tree 1212 * to prevent the same logical address range and physical device space 1213 * ranges from being reused for a new block group. This is needed to 1214 * avoid races with trimming and scrub. 1215 * 1216 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1217 * completely transactionless, so while it is trimming a range the 1218 * currently running transaction might finish and a new one start, 1219 * allowing for new block groups to be created that can reuse the same 1220 * physical device locations unless we take this special care. 1221 * 1222 * There may also be an implicit trim operation if the file system 1223 * is mounted with -odiscard. The same protections must remain 1224 * in place until the extents have been discarded completely when 1225 * the transaction commit has completed. 1226 */ 1227 remove_em = (atomic_read(&block_group->frozen) == 0); 1228 spin_unlock(&block_group->lock); 1229 1230 if (remove_em) { 1231 struct extent_map_tree *em_tree; 1232 1233 em_tree = &fs_info->mapping_tree; 1234 write_lock(&em_tree->lock); 1235 remove_extent_mapping(em_tree, em); 1236 write_unlock(&em_tree->lock); 1237 /* once for the tree */ 1238 free_extent_map(em); 1239 } 1240 1241 out: 1242 /* Once for the lookup reference */ 1243 btrfs_put_block_group(block_group); 1244 if (remove_rsv) 1245 btrfs_delayed_refs_rsv_release(fs_info, 1); 1246 btrfs_free_path(path); 1247 return ret; 1248 } 1249 1250 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1251 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1252 { 1253 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1254 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1255 struct extent_map *em; 1256 struct map_lookup *map; 1257 unsigned int num_items; 1258 1259 read_lock(&em_tree->lock); 1260 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1261 read_unlock(&em_tree->lock); 1262 ASSERT(em && em->start == chunk_offset); 1263 1264 /* 1265 * We need to reserve 3 + N units from the metadata space info in order 1266 * to remove a block group (done at btrfs_remove_chunk() and at 1267 * btrfs_remove_block_group()), which are used for: 1268 * 1269 * 1 unit for adding the free space inode's orphan (located in the tree 1270 * of tree roots). 1271 * 1 unit for deleting the block group item (located in the extent 1272 * tree). 1273 * 1 unit for deleting the free space item (located in tree of tree 1274 * roots). 1275 * N units for deleting N device extent items corresponding to each 1276 * stripe (located in the device tree). 1277 * 1278 * In order to remove a block group we also need to reserve units in the 1279 * system space info in order to update the chunk tree (update one or 1280 * more device items and remove one chunk item), but this is done at 1281 * btrfs_remove_chunk() through a call to check_system_chunk(). 1282 */ 1283 map = em->map_lookup; 1284 num_items = 3 + map->num_stripes; 1285 free_extent_map(em); 1286 1287 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1288 } 1289 1290 /* 1291 * Mark block group @cache read-only, so later write won't happen to block 1292 * group @cache. 1293 * 1294 * If @force is not set, this function will only mark the block group readonly 1295 * if we have enough free space (1M) in other metadata/system block groups. 1296 * If @force is not set, this function will mark the block group readonly 1297 * without checking free space. 1298 * 1299 * NOTE: This function doesn't care if other block groups can contain all the 1300 * data in this block group. That check should be done by relocation routine, 1301 * not this function. 1302 */ 1303 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1304 { 1305 struct btrfs_space_info *sinfo = cache->space_info; 1306 u64 num_bytes; 1307 int ret = -ENOSPC; 1308 1309 spin_lock(&sinfo->lock); 1310 spin_lock(&cache->lock); 1311 1312 if (cache->swap_extents) { 1313 ret = -ETXTBSY; 1314 goto out; 1315 } 1316 1317 if (cache->ro) { 1318 cache->ro++; 1319 ret = 0; 1320 goto out; 1321 } 1322 1323 num_bytes = cache->length - cache->reserved - cache->pinned - 1324 cache->bytes_super - cache->zone_unusable - cache->used; 1325 1326 /* 1327 * Data never overcommits, even in mixed mode, so do just the straight 1328 * check of left over space in how much we have allocated. 1329 */ 1330 if (force) { 1331 ret = 0; 1332 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1333 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1334 1335 /* 1336 * Here we make sure if we mark this bg RO, we still have enough 1337 * free space as buffer. 1338 */ 1339 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1340 ret = 0; 1341 } else { 1342 /* 1343 * We overcommit metadata, so we need to do the 1344 * btrfs_can_overcommit check here, and we need to pass in 1345 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1346 * leeway to allow us to mark this block group as read only. 1347 */ 1348 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1349 BTRFS_RESERVE_NO_FLUSH)) 1350 ret = 0; 1351 } 1352 1353 if (!ret) { 1354 sinfo->bytes_readonly += num_bytes; 1355 if (btrfs_is_zoned(cache->fs_info)) { 1356 /* Migrate zone_unusable bytes to readonly */ 1357 sinfo->bytes_readonly += cache->zone_unusable; 1358 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1359 cache->zone_unusable = 0; 1360 } 1361 cache->ro++; 1362 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1363 } 1364 out: 1365 spin_unlock(&cache->lock); 1366 spin_unlock(&sinfo->lock); 1367 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1368 btrfs_info(cache->fs_info, 1369 "unable to make block group %llu ro", cache->start); 1370 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1371 } 1372 return ret; 1373 } 1374 1375 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1376 struct btrfs_block_group *bg) 1377 { 1378 struct btrfs_fs_info *fs_info = bg->fs_info; 1379 struct btrfs_transaction *prev_trans = NULL; 1380 const u64 start = bg->start; 1381 const u64 end = start + bg->length - 1; 1382 int ret; 1383 1384 spin_lock(&fs_info->trans_lock); 1385 if (trans->transaction->list.prev != &fs_info->trans_list) { 1386 prev_trans = list_last_entry(&trans->transaction->list, 1387 struct btrfs_transaction, list); 1388 refcount_inc(&prev_trans->use_count); 1389 } 1390 spin_unlock(&fs_info->trans_lock); 1391 1392 /* 1393 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1394 * btrfs_finish_extent_commit(). If we are at transaction N, another 1395 * task might be running finish_extent_commit() for the previous 1396 * transaction N - 1, and have seen a range belonging to the block 1397 * group in pinned_extents before we were able to clear the whole block 1398 * group range from pinned_extents. This means that task can lookup for 1399 * the block group after we unpinned it from pinned_extents and removed 1400 * it, leading to a BUG_ON() at unpin_extent_range(). 1401 */ 1402 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1403 if (prev_trans) { 1404 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1405 EXTENT_DIRTY); 1406 if (ret) 1407 goto out; 1408 } 1409 1410 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1411 EXTENT_DIRTY); 1412 out: 1413 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1414 if (prev_trans) 1415 btrfs_put_transaction(prev_trans); 1416 1417 return ret == 0; 1418 } 1419 1420 /* 1421 * Process the unused_bgs list and remove any that don't have any allocated 1422 * space inside of them. 1423 */ 1424 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1425 { 1426 struct btrfs_block_group *block_group; 1427 struct btrfs_space_info *space_info; 1428 struct btrfs_trans_handle *trans; 1429 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1430 int ret = 0; 1431 1432 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1433 return; 1434 1435 if (btrfs_fs_closing(fs_info)) 1436 return; 1437 1438 /* 1439 * Long running balances can keep us blocked here for eternity, so 1440 * simply skip deletion if we're unable to get the mutex. 1441 */ 1442 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1443 return; 1444 1445 spin_lock(&fs_info->unused_bgs_lock); 1446 while (!list_empty(&fs_info->unused_bgs)) { 1447 int trimming; 1448 1449 block_group = list_first_entry(&fs_info->unused_bgs, 1450 struct btrfs_block_group, 1451 bg_list); 1452 list_del_init(&block_group->bg_list); 1453 1454 space_info = block_group->space_info; 1455 1456 if (ret || btrfs_mixed_space_info(space_info)) { 1457 btrfs_put_block_group(block_group); 1458 continue; 1459 } 1460 spin_unlock(&fs_info->unused_bgs_lock); 1461 1462 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1463 1464 /* Don't want to race with allocators so take the groups_sem */ 1465 down_write(&space_info->groups_sem); 1466 1467 /* 1468 * Async discard moves the final block group discard to be prior 1469 * to the unused_bgs code path. Therefore, if it's not fully 1470 * trimmed, punt it back to the async discard lists. 1471 */ 1472 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1473 !btrfs_is_free_space_trimmed(block_group)) { 1474 trace_btrfs_skip_unused_block_group(block_group); 1475 up_write(&space_info->groups_sem); 1476 /* Requeue if we failed because of async discard */ 1477 btrfs_discard_queue_work(&fs_info->discard_ctl, 1478 block_group); 1479 goto next; 1480 } 1481 1482 spin_lock(&block_group->lock); 1483 if (block_group->reserved || block_group->pinned || 1484 block_group->used || block_group->ro || 1485 list_is_singular(&block_group->list)) { 1486 /* 1487 * We want to bail if we made new allocations or have 1488 * outstanding allocations in this block group. We do 1489 * the ro check in case balance is currently acting on 1490 * this block group. 1491 */ 1492 trace_btrfs_skip_unused_block_group(block_group); 1493 spin_unlock(&block_group->lock); 1494 up_write(&space_info->groups_sem); 1495 goto next; 1496 } 1497 spin_unlock(&block_group->lock); 1498 1499 /* We don't want to force the issue, only flip if it's ok. */ 1500 ret = inc_block_group_ro(block_group, 0); 1501 up_write(&space_info->groups_sem); 1502 if (ret < 0) { 1503 ret = 0; 1504 goto next; 1505 } 1506 1507 ret = btrfs_zone_finish(block_group); 1508 if (ret < 0) { 1509 btrfs_dec_block_group_ro(block_group); 1510 if (ret == -EAGAIN) 1511 ret = 0; 1512 goto next; 1513 } 1514 1515 /* 1516 * Want to do this before we do anything else so we can recover 1517 * properly if we fail to join the transaction. 1518 */ 1519 trans = btrfs_start_trans_remove_block_group(fs_info, 1520 block_group->start); 1521 if (IS_ERR(trans)) { 1522 btrfs_dec_block_group_ro(block_group); 1523 ret = PTR_ERR(trans); 1524 goto next; 1525 } 1526 1527 /* 1528 * We could have pending pinned extents for this block group, 1529 * just delete them, we don't care about them anymore. 1530 */ 1531 if (!clean_pinned_extents(trans, block_group)) { 1532 btrfs_dec_block_group_ro(block_group); 1533 goto end_trans; 1534 } 1535 1536 /* 1537 * At this point, the block_group is read only and should fail 1538 * new allocations. However, btrfs_finish_extent_commit() can 1539 * cause this block_group to be placed back on the discard 1540 * lists because now the block_group isn't fully discarded. 1541 * Bail here and try again later after discarding everything. 1542 */ 1543 spin_lock(&fs_info->discard_ctl.lock); 1544 if (!list_empty(&block_group->discard_list)) { 1545 spin_unlock(&fs_info->discard_ctl.lock); 1546 btrfs_dec_block_group_ro(block_group); 1547 btrfs_discard_queue_work(&fs_info->discard_ctl, 1548 block_group); 1549 goto end_trans; 1550 } 1551 spin_unlock(&fs_info->discard_ctl.lock); 1552 1553 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1554 spin_lock(&space_info->lock); 1555 spin_lock(&block_group->lock); 1556 1557 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1558 -block_group->pinned); 1559 space_info->bytes_readonly += block_group->pinned; 1560 block_group->pinned = 0; 1561 1562 spin_unlock(&block_group->lock); 1563 spin_unlock(&space_info->lock); 1564 1565 /* 1566 * The normal path here is an unused block group is passed here, 1567 * then trimming is handled in the transaction commit path. 1568 * Async discard interposes before this to do the trimming 1569 * before coming down the unused block group path as trimming 1570 * will no longer be done later in the transaction commit path. 1571 */ 1572 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1573 goto flip_async; 1574 1575 /* 1576 * DISCARD can flip during remount. On zoned filesystems, we 1577 * need to reset sequential-required zones. 1578 */ 1579 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1580 btrfs_is_zoned(fs_info); 1581 1582 /* Implicit trim during transaction commit. */ 1583 if (trimming) 1584 btrfs_freeze_block_group(block_group); 1585 1586 /* 1587 * Btrfs_remove_chunk will abort the transaction if things go 1588 * horribly wrong. 1589 */ 1590 ret = btrfs_remove_chunk(trans, block_group->start); 1591 1592 if (ret) { 1593 if (trimming) 1594 btrfs_unfreeze_block_group(block_group); 1595 goto end_trans; 1596 } 1597 1598 /* 1599 * If we're not mounted with -odiscard, we can just forget 1600 * about this block group. Otherwise we'll need to wait 1601 * until transaction commit to do the actual discard. 1602 */ 1603 if (trimming) { 1604 spin_lock(&fs_info->unused_bgs_lock); 1605 /* 1606 * A concurrent scrub might have added us to the list 1607 * fs_info->unused_bgs, so use a list_move operation 1608 * to add the block group to the deleted_bgs list. 1609 */ 1610 list_move(&block_group->bg_list, 1611 &trans->transaction->deleted_bgs); 1612 spin_unlock(&fs_info->unused_bgs_lock); 1613 btrfs_get_block_group(block_group); 1614 } 1615 end_trans: 1616 btrfs_end_transaction(trans); 1617 next: 1618 btrfs_put_block_group(block_group); 1619 spin_lock(&fs_info->unused_bgs_lock); 1620 } 1621 spin_unlock(&fs_info->unused_bgs_lock); 1622 mutex_unlock(&fs_info->reclaim_bgs_lock); 1623 return; 1624 1625 flip_async: 1626 btrfs_end_transaction(trans); 1627 mutex_unlock(&fs_info->reclaim_bgs_lock); 1628 btrfs_put_block_group(block_group); 1629 btrfs_discard_punt_unused_bgs_list(fs_info); 1630 } 1631 1632 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1633 { 1634 struct btrfs_fs_info *fs_info = bg->fs_info; 1635 1636 spin_lock(&fs_info->unused_bgs_lock); 1637 if (list_empty(&bg->bg_list)) { 1638 btrfs_get_block_group(bg); 1639 trace_btrfs_add_unused_block_group(bg); 1640 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1641 } 1642 spin_unlock(&fs_info->unused_bgs_lock); 1643 } 1644 1645 /* 1646 * We want block groups with a low number of used bytes to be in the beginning 1647 * of the list, so they will get reclaimed first. 1648 */ 1649 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1650 const struct list_head *b) 1651 { 1652 const struct btrfs_block_group *bg1, *bg2; 1653 1654 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1655 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1656 1657 return bg1->used > bg2->used; 1658 } 1659 1660 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1661 { 1662 if (btrfs_is_zoned(fs_info)) 1663 return btrfs_zoned_should_reclaim(fs_info); 1664 return true; 1665 } 1666 1667 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1668 { 1669 const struct btrfs_space_info *space_info = bg->space_info; 1670 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1671 const u64 new_val = bg->used; 1672 const u64 old_val = new_val + bytes_freed; 1673 u64 thresh; 1674 1675 if (reclaim_thresh == 0) 1676 return false; 1677 1678 thresh = mult_perc(bg->length, reclaim_thresh); 1679 1680 /* 1681 * If we were below the threshold before don't reclaim, we are likely a 1682 * brand new block group and we don't want to relocate new block groups. 1683 */ 1684 if (old_val < thresh) 1685 return false; 1686 if (new_val >= thresh) 1687 return false; 1688 return true; 1689 } 1690 1691 void btrfs_reclaim_bgs_work(struct work_struct *work) 1692 { 1693 struct btrfs_fs_info *fs_info = 1694 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1695 struct btrfs_block_group *bg; 1696 struct btrfs_space_info *space_info; 1697 1698 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1699 return; 1700 1701 if (btrfs_fs_closing(fs_info)) 1702 return; 1703 1704 if (!btrfs_should_reclaim(fs_info)) 1705 return; 1706 1707 sb_start_write(fs_info->sb); 1708 1709 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1710 sb_end_write(fs_info->sb); 1711 return; 1712 } 1713 1714 /* 1715 * Long running balances can keep us blocked here for eternity, so 1716 * simply skip reclaim if we're unable to get the mutex. 1717 */ 1718 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1719 btrfs_exclop_finish(fs_info); 1720 sb_end_write(fs_info->sb); 1721 return; 1722 } 1723 1724 spin_lock(&fs_info->unused_bgs_lock); 1725 /* 1726 * Sort happens under lock because we can't simply splice it and sort. 1727 * The block groups might still be in use and reachable via bg_list, 1728 * and their presence in the reclaim_bgs list must be preserved. 1729 */ 1730 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1731 while (!list_empty(&fs_info->reclaim_bgs)) { 1732 u64 zone_unusable; 1733 int ret = 0; 1734 1735 bg = list_first_entry(&fs_info->reclaim_bgs, 1736 struct btrfs_block_group, 1737 bg_list); 1738 list_del_init(&bg->bg_list); 1739 1740 space_info = bg->space_info; 1741 spin_unlock(&fs_info->unused_bgs_lock); 1742 1743 /* Don't race with allocators so take the groups_sem */ 1744 down_write(&space_info->groups_sem); 1745 1746 spin_lock(&bg->lock); 1747 if (bg->reserved || bg->pinned || bg->ro) { 1748 /* 1749 * We want to bail if we made new allocations or have 1750 * outstanding allocations in this block group. We do 1751 * the ro check in case balance is currently acting on 1752 * this block group. 1753 */ 1754 spin_unlock(&bg->lock); 1755 up_write(&space_info->groups_sem); 1756 goto next; 1757 } 1758 if (bg->used == 0) { 1759 /* 1760 * It is possible that we trigger relocation on a block 1761 * group as its extents are deleted and it first goes 1762 * below the threshold, then shortly after goes empty. 1763 * 1764 * In this case, relocating it does delete it, but has 1765 * some overhead in relocation specific metadata, looking 1766 * for the non-existent extents and running some extra 1767 * transactions, which we can avoid by using one of the 1768 * other mechanisms for dealing with empty block groups. 1769 */ 1770 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1771 btrfs_mark_bg_unused(bg); 1772 spin_unlock(&bg->lock); 1773 up_write(&space_info->groups_sem); 1774 goto next; 1775 1776 } 1777 /* 1778 * The block group might no longer meet the reclaim condition by 1779 * the time we get around to reclaiming it, so to avoid 1780 * reclaiming overly full block_groups, skip reclaiming them. 1781 * 1782 * Since the decision making process also depends on the amount 1783 * being freed, pass in a fake giant value to skip that extra 1784 * check, which is more meaningful when adding to the list in 1785 * the first place. 1786 */ 1787 if (!should_reclaim_block_group(bg, bg->length)) { 1788 spin_unlock(&bg->lock); 1789 up_write(&space_info->groups_sem); 1790 goto next; 1791 } 1792 spin_unlock(&bg->lock); 1793 1794 /* Get out fast, in case we're unmounting the filesystem */ 1795 if (btrfs_fs_closing(fs_info)) { 1796 up_write(&space_info->groups_sem); 1797 goto next; 1798 } 1799 1800 /* 1801 * Cache the zone_unusable value before turning the block group 1802 * to read only. As soon as the blog group is read only it's 1803 * zone_unusable value gets moved to the block group's read-only 1804 * bytes and isn't available for calculations anymore. 1805 */ 1806 zone_unusable = bg->zone_unusable; 1807 ret = inc_block_group_ro(bg, 0); 1808 up_write(&space_info->groups_sem); 1809 if (ret < 0) 1810 goto next; 1811 1812 btrfs_info(fs_info, 1813 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1814 bg->start, 1815 div64_u64(bg->used * 100, bg->length), 1816 div64_u64(zone_unusable * 100, bg->length)); 1817 trace_btrfs_reclaim_block_group(bg); 1818 ret = btrfs_relocate_chunk(fs_info, bg->start); 1819 if (ret) { 1820 btrfs_dec_block_group_ro(bg); 1821 btrfs_err(fs_info, "error relocating chunk %llu", 1822 bg->start); 1823 } 1824 1825 next: 1826 btrfs_put_block_group(bg); 1827 spin_lock(&fs_info->unused_bgs_lock); 1828 } 1829 spin_unlock(&fs_info->unused_bgs_lock); 1830 mutex_unlock(&fs_info->reclaim_bgs_lock); 1831 btrfs_exclop_finish(fs_info); 1832 sb_end_write(fs_info->sb); 1833 } 1834 1835 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1836 { 1837 spin_lock(&fs_info->unused_bgs_lock); 1838 if (!list_empty(&fs_info->reclaim_bgs)) 1839 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1840 spin_unlock(&fs_info->unused_bgs_lock); 1841 } 1842 1843 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1844 { 1845 struct btrfs_fs_info *fs_info = bg->fs_info; 1846 1847 spin_lock(&fs_info->unused_bgs_lock); 1848 if (list_empty(&bg->bg_list)) { 1849 btrfs_get_block_group(bg); 1850 trace_btrfs_add_reclaim_block_group(bg); 1851 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1852 } 1853 spin_unlock(&fs_info->unused_bgs_lock); 1854 } 1855 1856 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1857 struct btrfs_path *path) 1858 { 1859 struct extent_map_tree *em_tree; 1860 struct extent_map *em; 1861 struct btrfs_block_group_item bg; 1862 struct extent_buffer *leaf; 1863 int slot; 1864 u64 flags; 1865 int ret = 0; 1866 1867 slot = path->slots[0]; 1868 leaf = path->nodes[0]; 1869 1870 em_tree = &fs_info->mapping_tree; 1871 read_lock(&em_tree->lock); 1872 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1873 read_unlock(&em_tree->lock); 1874 if (!em) { 1875 btrfs_err(fs_info, 1876 "logical %llu len %llu found bg but no related chunk", 1877 key->objectid, key->offset); 1878 return -ENOENT; 1879 } 1880 1881 if (em->start != key->objectid || em->len != key->offset) { 1882 btrfs_err(fs_info, 1883 "block group %llu len %llu mismatch with chunk %llu len %llu", 1884 key->objectid, key->offset, em->start, em->len); 1885 ret = -EUCLEAN; 1886 goto out_free_em; 1887 } 1888 1889 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1890 sizeof(bg)); 1891 flags = btrfs_stack_block_group_flags(&bg) & 1892 BTRFS_BLOCK_GROUP_TYPE_MASK; 1893 1894 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1895 btrfs_err(fs_info, 1896 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1897 key->objectid, key->offset, flags, 1898 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1899 ret = -EUCLEAN; 1900 } 1901 1902 out_free_em: 1903 free_extent_map(em); 1904 return ret; 1905 } 1906 1907 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1908 struct btrfs_path *path, 1909 struct btrfs_key *key) 1910 { 1911 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1912 int ret; 1913 struct btrfs_key found_key; 1914 1915 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1916 if (found_key.objectid >= key->objectid && 1917 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1918 return read_bg_from_eb(fs_info, &found_key, path); 1919 } 1920 } 1921 return ret; 1922 } 1923 1924 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1925 { 1926 u64 extra_flags = chunk_to_extended(flags) & 1927 BTRFS_EXTENDED_PROFILE_MASK; 1928 1929 write_seqlock(&fs_info->profiles_lock); 1930 if (flags & BTRFS_BLOCK_GROUP_DATA) 1931 fs_info->avail_data_alloc_bits |= extra_flags; 1932 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1933 fs_info->avail_metadata_alloc_bits |= extra_flags; 1934 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1935 fs_info->avail_system_alloc_bits |= extra_flags; 1936 write_sequnlock(&fs_info->profiles_lock); 1937 } 1938 1939 /* 1940 * Map a physical disk address to a list of logical addresses. 1941 * 1942 * @fs_info: the filesystem 1943 * @chunk_start: logical address of block group 1944 * @physical: physical address to map to logical addresses 1945 * @logical: return array of logical addresses which map to @physical 1946 * @naddrs: length of @logical 1947 * @stripe_len: size of IO stripe for the given block group 1948 * 1949 * Maps a particular @physical disk address to a list of @logical addresses. 1950 * Used primarily to exclude those portions of a block group that contain super 1951 * block copies. 1952 */ 1953 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1954 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1955 { 1956 struct extent_map *em; 1957 struct map_lookup *map; 1958 u64 *buf; 1959 u64 bytenr; 1960 u64 data_stripe_length; 1961 u64 io_stripe_size; 1962 int i, nr = 0; 1963 int ret = 0; 1964 1965 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1966 if (IS_ERR(em)) 1967 return -EIO; 1968 1969 map = em->map_lookup; 1970 data_stripe_length = em->orig_block_len; 1971 io_stripe_size = BTRFS_STRIPE_LEN; 1972 chunk_start = em->start; 1973 1974 /* For RAID5/6 adjust to a full IO stripe length */ 1975 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1976 io_stripe_size = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT; 1977 1978 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1979 if (!buf) { 1980 ret = -ENOMEM; 1981 goto out; 1982 } 1983 1984 for (i = 0; i < map->num_stripes; i++) { 1985 bool already_inserted = false; 1986 u32 stripe_nr; 1987 u32 offset; 1988 int j; 1989 1990 if (!in_range(physical, map->stripes[i].physical, 1991 data_stripe_length)) 1992 continue; 1993 1994 stripe_nr = (physical - map->stripes[i].physical) >> 1995 BTRFS_STRIPE_LEN_SHIFT; 1996 offset = (physical - map->stripes[i].physical) & 1997 BTRFS_STRIPE_LEN_MASK; 1998 1999 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2000 BTRFS_BLOCK_GROUP_RAID10)) 2001 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2002 map->sub_stripes); 2003 /* 2004 * The remaining case would be for RAID56, multiply by 2005 * nr_data_stripes(). Alternatively, just use rmap_len below 2006 * instead of map->stripe_len 2007 */ 2008 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2009 2010 /* Ensure we don't add duplicate addresses */ 2011 for (j = 0; j < nr; j++) { 2012 if (buf[j] == bytenr) { 2013 already_inserted = true; 2014 break; 2015 } 2016 } 2017 2018 if (!already_inserted) 2019 buf[nr++] = bytenr; 2020 } 2021 2022 *logical = buf; 2023 *naddrs = nr; 2024 *stripe_len = io_stripe_size; 2025 out: 2026 free_extent_map(em); 2027 return ret; 2028 } 2029 2030 static int exclude_super_stripes(struct btrfs_block_group *cache) 2031 { 2032 struct btrfs_fs_info *fs_info = cache->fs_info; 2033 const bool zoned = btrfs_is_zoned(fs_info); 2034 u64 bytenr; 2035 u64 *logical; 2036 int stripe_len; 2037 int i, nr, ret; 2038 2039 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2040 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2041 cache->bytes_super += stripe_len; 2042 ret = btrfs_add_excluded_extent(fs_info, cache->start, 2043 stripe_len); 2044 if (ret) 2045 return ret; 2046 } 2047 2048 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2049 bytenr = btrfs_sb_offset(i); 2050 ret = btrfs_rmap_block(fs_info, cache->start, 2051 bytenr, &logical, &nr, &stripe_len); 2052 if (ret) 2053 return ret; 2054 2055 /* Shouldn't have super stripes in sequential zones */ 2056 if (zoned && nr) { 2057 btrfs_err(fs_info, 2058 "zoned: block group %llu must not contain super block", 2059 cache->start); 2060 return -EUCLEAN; 2061 } 2062 2063 while (nr--) { 2064 u64 len = min_t(u64, stripe_len, 2065 cache->start + cache->length - logical[nr]); 2066 2067 cache->bytes_super += len; 2068 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 2069 len); 2070 if (ret) { 2071 kfree(logical); 2072 return ret; 2073 } 2074 } 2075 2076 kfree(logical); 2077 } 2078 return 0; 2079 } 2080 2081 static struct btrfs_block_group *btrfs_create_block_group_cache( 2082 struct btrfs_fs_info *fs_info, u64 start) 2083 { 2084 struct btrfs_block_group *cache; 2085 2086 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2087 if (!cache) 2088 return NULL; 2089 2090 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2091 GFP_NOFS); 2092 if (!cache->free_space_ctl) { 2093 kfree(cache); 2094 return NULL; 2095 } 2096 2097 cache->start = start; 2098 2099 cache->fs_info = fs_info; 2100 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2101 2102 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2103 2104 refcount_set(&cache->refs, 1); 2105 spin_lock_init(&cache->lock); 2106 init_rwsem(&cache->data_rwsem); 2107 INIT_LIST_HEAD(&cache->list); 2108 INIT_LIST_HEAD(&cache->cluster_list); 2109 INIT_LIST_HEAD(&cache->bg_list); 2110 INIT_LIST_HEAD(&cache->ro_list); 2111 INIT_LIST_HEAD(&cache->discard_list); 2112 INIT_LIST_HEAD(&cache->dirty_list); 2113 INIT_LIST_HEAD(&cache->io_list); 2114 INIT_LIST_HEAD(&cache->active_bg_list); 2115 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2116 atomic_set(&cache->frozen, 0); 2117 mutex_init(&cache->free_space_lock); 2118 2119 return cache; 2120 } 2121 2122 /* 2123 * Iterate all chunks and verify that each of them has the corresponding block 2124 * group 2125 */ 2126 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2127 { 2128 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2129 struct extent_map *em; 2130 struct btrfs_block_group *bg; 2131 u64 start = 0; 2132 int ret = 0; 2133 2134 while (1) { 2135 read_lock(&map_tree->lock); 2136 /* 2137 * lookup_extent_mapping will return the first extent map 2138 * intersecting the range, so setting @len to 1 is enough to 2139 * get the first chunk. 2140 */ 2141 em = lookup_extent_mapping(map_tree, start, 1); 2142 read_unlock(&map_tree->lock); 2143 if (!em) 2144 break; 2145 2146 bg = btrfs_lookup_block_group(fs_info, em->start); 2147 if (!bg) { 2148 btrfs_err(fs_info, 2149 "chunk start=%llu len=%llu doesn't have corresponding block group", 2150 em->start, em->len); 2151 ret = -EUCLEAN; 2152 free_extent_map(em); 2153 break; 2154 } 2155 if (bg->start != em->start || bg->length != em->len || 2156 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2157 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2158 btrfs_err(fs_info, 2159 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2160 em->start, em->len, 2161 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2162 bg->start, bg->length, 2163 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2164 ret = -EUCLEAN; 2165 free_extent_map(em); 2166 btrfs_put_block_group(bg); 2167 break; 2168 } 2169 start = em->start + em->len; 2170 free_extent_map(em); 2171 btrfs_put_block_group(bg); 2172 } 2173 return ret; 2174 } 2175 2176 static int read_one_block_group(struct btrfs_fs_info *info, 2177 struct btrfs_block_group_item *bgi, 2178 const struct btrfs_key *key, 2179 int need_clear) 2180 { 2181 struct btrfs_block_group *cache; 2182 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2183 int ret; 2184 2185 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2186 2187 cache = btrfs_create_block_group_cache(info, key->objectid); 2188 if (!cache) 2189 return -ENOMEM; 2190 2191 cache->length = key->offset; 2192 cache->used = btrfs_stack_block_group_used(bgi); 2193 cache->commit_used = cache->used; 2194 cache->flags = btrfs_stack_block_group_flags(bgi); 2195 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2196 2197 set_free_space_tree_thresholds(cache); 2198 2199 if (need_clear) { 2200 /* 2201 * When we mount with old space cache, we need to 2202 * set BTRFS_DC_CLEAR and set dirty flag. 2203 * 2204 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2205 * truncate the old free space cache inode and 2206 * setup a new one. 2207 * b) Setting 'dirty flag' makes sure that we flush 2208 * the new space cache info onto disk. 2209 */ 2210 if (btrfs_test_opt(info, SPACE_CACHE)) 2211 cache->disk_cache_state = BTRFS_DC_CLEAR; 2212 } 2213 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2214 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2215 btrfs_err(info, 2216 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2217 cache->start); 2218 ret = -EINVAL; 2219 goto error; 2220 } 2221 2222 ret = btrfs_load_block_group_zone_info(cache, false); 2223 if (ret) { 2224 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2225 cache->start); 2226 goto error; 2227 } 2228 2229 /* 2230 * We need to exclude the super stripes now so that the space info has 2231 * super bytes accounted for, otherwise we'll think we have more space 2232 * than we actually do. 2233 */ 2234 ret = exclude_super_stripes(cache); 2235 if (ret) { 2236 /* We may have excluded something, so call this just in case. */ 2237 btrfs_free_excluded_extents(cache); 2238 goto error; 2239 } 2240 2241 /* 2242 * For zoned filesystem, space after the allocation offset is the only 2243 * free space for a block group. So, we don't need any caching work. 2244 * btrfs_calc_zone_unusable() will set the amount of free space and 2245 * zone_unusable space. 2246 * 2247 * For regular filesystem, check for two cases, either we are full, and 2248 * therefore don't need to bother with the caching work since we won't 2249 * find any space, or we are empty, and we can just add all the space 2250 * in and be done with it. This saves us _a_lot_ of time, particularly 2251 * in the full case. 2252 */ 2253 if (btrfs_is_zoned(info)) { 2254 btrfs_calc_zone_unusable(cache); 2255 /* Should not have any excluded extents. Just in case, though. */ 2256 btrfs_free_excluded_extents(cache); 2257 } else if (cache->length == cache->used) { 2258 cache->cached = BTRFS_CACHE_FINISHED; 2259 btrfs_free_excluded_extents(cache); 2260 } else if (cache->used == 0) { 2261 cache->cached = BTRFS_CACHE_FINISHED; 2262 add_new_free_space(cache, cache->start, 2263 cache->start + cache->length); 2264 btrfs_free_excluded_extents(cache); 2265 } 2266 2267 ret = btrfs_add_block_group_cache(info, cache); 2268 if (ret) { 2269 btrfs_remove_free_space_cache(cache); 2270 goto error; 2271 } 2272 trace_btrfs_add_block_group(info, cache, 0); 2273 btrfs_add_bg_to_space_info(info, cache); 2274 2275 set_avail_alloc_bits(info, cache->flags); 2276 if (btrfs_chunk_writeable(info, cache->start)) { 2277 if (cache->used == 0) { 2278 ASSERT(list_empty(&cache->bg_list)); 2279 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2280 btrfs_discard_queue_work(&info->discard_ctl, cache); 2281 else 2282 btrfs_mark_bg_unused(cache); 2283 } 2284 } else { 2285 inc_block_group_ro(cache, 1); 2286 } 2287 2288 return 0; 2289 error: 2290 btrfs_put_block_group(cache); 2291 return ret; 2292 } 2293 2294 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2295 { 2296 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2297 struct rb_node *node; 2298 int ret = 0; 2299 2300 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2301 struct extent_map *em; 2302 struct map_lookup *map; 2303 struct btrfs_block_group *bg; 2304 2305 em = rb_entry(node, struct extent_map, rb_node); 2306 map = em->map_lookup; 2307 bg = btrfs_create_block_group_cache(fs_info, em->start); 2308 if (!bg) { 2309 ret = -ENOMEM; 2310 break; 2311 } 2312 2313 /* Fill dummy cache as FULL */ 2314 bg->length = em->len; 2315 bg->flags = map->type; 2316 bg->cached = BTRFS_CACHE_FINISHED; 2317 bg->used = em->len; 2318 bg->flags = map->type; 2319 ret = btrfs_add_block_group_cache(fs_info, bg); 2320 /* 2321 * We may have some valid block group cache added already, in 2322 * that case we skip to the next one. 2323 */ 2324 if (ret == -EEXIST) { 2325 ret = 0; 2326 btrfs_put_block_group(bg); 2327 continue; 2328 } 2329 2330 if (ret) { 2331 btrfs_remove_free_space_cache(bg); 2332 btrfs_put_block_group(bg); 2333 break; 2334 } 2335 2336 btrfs_add_bg_to_space_info(fs_info, bg); 2337 2338 set_avail_alloc_bits(fs_info, bg->flags); 2339 } 2340 if (!ret) 2341 btrfs_init_global_block_rsv(fs_info); 2342 return ret; 2343 } 2344 2345 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2346 { 2347 struct btrfs_root *root = btrfs_block_group_root(info); 2348 struct btrfs_path *path; 2349 int ret; 2350 struct btrfs_block_group *cache; 2351 struct btrfs_space_info *space_info; 2352 struct btrfs_key key; 2353 int need_clear = 0; 2354 u64 cache_gen; 2355 2356 /* 2357 * Either no extent root (with ibadroots rescue option) or we have 2358 * unsupported RO options. The fs can never be mounted read-write, so no 2359 * need to waste time searching block group items. 2360 * 2361 * This also allows new extent tree related changes to be RO compat, 2362 * no need for a full incompat flag. 2363 */ 2364 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2365 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2366 return fill_dummy_bgs(info); 2367 2368 key.objectid = 0; 2369 key.offset = 0; 2370 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2371 path = btrfs_alloc_path(); 2372 if (!path) 2373 return -ENOMEM; 2374 2375 cache_gen = btrfs_super_cache_generation(info->super_copy); 2376 if (btrfs_test_opt(info, SPACE_CACHE) && 2377 btrfs_super_generation(info->super_copy) != cache_gen) 2378 need_clear = 1; 2379 if (btrfs_test_opt(info, CLEAR_CACHE)) 2380 need_clear = 1; 2381 2382 while (1) { 2383 struct btrfs_block_group_item bgi; 2384 struct extent_buffer *leaf; 2385 int slot; 2386 2387 ret = find_first_block_group(info, path, &key); 2388 if (ret > 0) 2389 break; 2390 if (ret != 0) 2391 goto error; 2392 2393 leaf = path->nodes[0]; 2394 slot = path->slots[0]; 2395 2396 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2397 sizeof(bgi)); 2398 2399 btrfs_item_key_to_cpu(leaf, &key, slot); 2400 btrfs_release_path(path); 2401 ret = read_one_block_group(info, &bgi, &key, need_clear); 2402 if (ret < 0) 2403 goto error; 2404 key.objectid += key.offset; 2405 key.offset = 0; 2406 } 2407 btrfs_release_path(path); 2408 2409 list_for_each_entry(space_info, &info->space_info, list) { 2410 int i; 2411 2412 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2413 if (list_empty(&space_info->block_groups[i])) 2414 continue; 2415 cache = list_first_entry(&space_info->block_groups[i], 2416 struct btrfs_block_group, 2417 list); 2418 btrfs_sysfs_add_block_group_type(cache); 2419 } 2420 2421 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2422 (BTRFS_BLOCK_GROUP_RAID10 | 2423 BTRFS_BLOCK_GROUP_RAID1_MASK | 2424 BTRFS_BLOCK_GROUP_RAID56_MASK | 2425 BTRFS_BLOCK_GROUP_DUP))) 2426 continue; 2427 /* 2428 * Avoid allocating from un-mirrored block group if there are 2429 * mirrored block groups. 2430 */ 2431 list_for_each_entry(cache, 2432 &space_info->block_groups[BTRFS_RAID_RAID0], 2433 list) 2434 inc_block_group_ro(cache, 1); 2435 list_for_each_entry(cache, 2436 &space_info->block_groups[BTRFS_RAID_SINGLE], 2437 list) 2438 inc_block_group_ro(cache, 1); 2439 } 2440 2441 btrfs_init_global_block_rsv(info); 2442 ret = check_chunk_block_group_mappings(info); 2443 error: 2444 btrfs_free_path(path); 2445 /* 2446 * We've hit some error while reading the extent tree, and have 2447 * rescue=ibadroots mount option. 2448 * Try to fill the tree using dummy block groups so that the user can 2449 * continue to mount and grab their data. 2450 */ 2451 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2452 ret = fill_dummy_bgs(info); 2453 return ret; 2454 } 2455 2456 /* 2457 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2458 * allocation. 2459 * 2460 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2461 * phases. 2462 */ 2463 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2464 struct btrfs_block_group *block_group) 2465 { 2466 struct btrfs_fs_info *fs_info = trans->fs_info; 2467 struct btrfs_block_group_item bgi; 2468 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2469 struct btrfs_key key; 2470 u64 old_commit_used; 2471 int ret; 2472 2473 spin_lock(&block_group->lock); 2474 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2475 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2476 block_group->global_root_id); 2477 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2478 old_commit_used = block_group->commit_used; 2479 block_group->commit_used = block_group->used; 2480 key.objectid = block_group->start; 2481 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2482 key.offset = block_group->length; 2483 spin_unlock(&block_group->lock); 2484 2485 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2486 if (ret < 0) { 2487 spin_lock(&block_group->lock); 2488 block_group->commit_used = old_commit_used; 2489 spin_unlock(&block_group->lock); 2490 } 2491 2492 return ret; 2493 } 2494 2495 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2496 struct btrfs_device *device, u64 chunk_offset, 2497 u64 start, u64 num_bytes) 2498 { 2499 struct btrfs_fs_info *fs_info = device->fs_info; 2500 struct btrfs_root *root = fs_info->dev_root; 2501 struct btrfs_path *path; 2502 struct btrfs_dev_extent *extent; 2503 struct extent_buffer *leaf; 2504 struct btrfs_key key; 2505 int ret; 2506 2507 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2508 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2509 path = btrfs_alloc_path(); 2510 if (!path) 2511 return -ENOMEM; 2512 2513 key.objectid = device->devid; 2514 key.type = BTRFS_DEV_EXTENT_KEY; 2515 key.offset = start; 2516 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2517 if (ret) 2518 goto out; 2519 2520 leaf = path->nodes[0]; 2521 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2522 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2523 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2524 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2525 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2526 2527 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2528 btrfs_mark_buffer_dirty(leaf); 2529 out: 2530 btrfs_free_path(path); 2531 return ret; 2532 } 2533 2534 /* 2535 * This function belongs to phase 2. 2536 * 2537 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2538 * phases. 2539 */ 2540 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2541 u64 chunk_offset, u64 chunk_size) 2542 { 2543 struct btrfs_fs_info *fs_info = trans->fs_info; 2544 struct btrfs_device *device; 2545 struct extent_map *em; 2546 struct map_lookup *map; 2547 u64 dev_offset; 2548 u64 stripe_size; 2549 int i; 2550 int ret = 0; 2551 2552 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2553 if (IS_ERR(em)) 2554 return PTR_ERR(em); 2555 2556 map = em->map_lookup; 2557 stripe_size = em->orig_block_len; 2558 2559 /* 2560 * Take the device list mutex to prevent races with the final phase of 2561 * a device replace operation that replaces the device object associated 2562 * with the map's stripes, because the device object's id can change 2563 * at any time during that final phase of the device replace operation 2564 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2565 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2566 * resulting in persisting a device extent item with such ID. 2567 */ 2568 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2569 for (i = 0; i < map->num_stripes; i++) { 2570 device = map->stripes[i].dev; 2571 dev_offset = map->stripes[i].physical; 2572 2573 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2574 stripe_size); 2575 if (ret) 2576 break; 2577 } 2578 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2579 2580 free_extent_map(em); 2581 return ret; 2582 } 2583 2584 /* 2585 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2586 * chunk allocation. 2587 * 2588 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2589 * phases. 2590 */ 2591 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2592 { 2593 struct btrfs_fs_info *fs_info = trans->fs_info; 2594 struct btrfs_block_group *block_group; 2595 int ret = 0; 2596 2597 while (!list_empty(&trans->new_bgs)) { 2598 int index; 2599 2600 block_group = list_first_entry(&trans->new_bgs, 2601 struct btrfs_block_group, 2602 bg_list); 2603 if (ret) 2604 goto next; 2605 2606 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2607 2608 ret = insert_block_group_item(trans, block_group); 2609 if (ret) 2610 btrfs_abort_transaction(trans, ret); 2611 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2612 &block_group->runtime_flags)) { 2613 mutex_lock(&fs_info->chunk_mutex); 2614 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2615 mutex_unlock(&fs_info->chunk_mutex); 2616 if (ret) 2617 btrfs_abort_transaction(trans, ret); 2618 } 2619 ret = insert_dev_extents(trans, block_group->start, 2620 block_group->length); 2621 if (ret) 2622 btrfs_abort_transaction(trans, ret); 2623 add_block_group_free_space(trans, block_group); 2624 2625 /* 2626 * If we restriped during balance, we may have added a new raid 2627 * type, so now add the sysfs entries when it is safe to do so. 2628 * We don't have to worry about locking here as it's handled in 2629 * btrfs_sysfs_add_block_group_type. 2630 */ 2631 if (block_group->space_info->block_group_kobjs[index] == NULL) 2632 btrfs_sysfs_add_block_group_type(block_group); 2633 2634 /* Already aborted the transaction if it failed. */ 2635 next: 2636 btrfs_delayed_refs_rsv_release(fs_info, 1); 2637 list_del_init(&block_group->bg_list); 2638 } 2639 btrfs_trans_release_chunk_metadata(trans); 2640 } 2641 2642 /* 2643 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2644 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2645 */ 2646 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2647 { 2648 u64 div = SZ_1G; 2649 u64 index; 2650 2651 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2652 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2653 2654 /* If we have a smaller fs index based on 128MiB. */ 2655 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2656 div = SZ_128M; 2657 2658 offset = div64_u64(offset, div); 2659 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2660 return index; 2661 } 2662 2663 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2664 u64 type, 2665 u64 chunk_offset, u64 size) 2666 { 2667 struct btrfs_fs_info *fs_info = trans->fs_info; 2668 struct btrfs_block_group *cache; 2669 int ret; 2670 2671 btrfs_set_log_full_commit(trans); 2672 2673 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2674 if (!cache) 2675 return ERR_PTR(-ENOMEM); 2676 2677 cache->length = size; 2678 set_free_space_tree_thresholds(cache); 2679 cache->flags = type; 2680 cache->cached = BTRFS_CACHE_FINISHED; 2681 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2682 2683 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2684 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2685 2686 ret = btrfs_load_block_group_zone_info(cache, true); 2687 if (ret) { 2688 btrfs_put_block_group(cache); 2689 return ERR_PTR(ret); 2690 } 2691 2692 ret = exclude_super_stripes(cache); 2693 if (ret) { 2694 /* We may have excluded something, so call this just in case */ 2695 btrfs_free_excluded_extents(cache); 2696 btrfs_put_block_group(cache); 2697 return ERR_PTR(ret); 2698 } 2699 2700 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2701 2702 btrfs_free_excluded_extents(cache); 2703 2704 /* 2705 * Ensure the corresponding space_info object is created and 2706 * assigned to our block group. We want our bg to be added to the rbtree 2707 * with its ->space_info set. 2708 */ 2709 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2710 ASSERT(cache->space_info); 2711 2712 ret = btrfs_add_block_group_cache(fs_info, cache); 2713 if (ret) { 2714 btrfs_remove_free_space_cache(cache); 2715 btrfs_put_block_group(cache); 2716 return ERR_PTR(ret); 2717 } 2718 2719 /* 2720 * Now that our block group has its ->space_info set and is inserted in 2721 * the rbtree, update the space info's counters. 2722 */ 2723 trace_btrfs_add_block_group(fs_info, cache, 1); 2724 btrfs_add_bg_to_space_info(fs_info, cache); 2725 btrfs_update_global_block_rsv(fs_info); 2726 2727 #ifdef CONFIG_BTRFS_DEBUG 2728 if (btrfs_should_fragment_free_space(cache)) { 2729 cache->space_info->bytes_used += size >> 1; 2730 fragment_free_space(cache); 2731 } 2732 #endif 2733 2734 list_add_tail(&cache->bg_list, &trans->new_bgs); 2735 trans->delayed_ref_updates++; 2736 btrfs_update_delayed_refs_rsv(trans); 2737 2738 set_avail_alloc_bits(fs_info, type); 2739 return cache; 2740 } 2741 2742 /* 2743 * Mark one block group RO, can be called several times for the same block 2744 * group. 2745 * 2746 * @cache: the destination block group 2747 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2748 * ensure we still have some free space after marking this 2749 * block group RO. 2750 */ 2751 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2752 bool do_chunk_alloc) 2753 { 2754 struct btrfs_fs_info *fs_info = cache->fs_info; 2755 struct btrfs_trans_handle *trans; 2756 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2757 u64 alloc_flags; 2758 int ret; 2759 bool dirty_bg_running; 2760 2761 /* 2762 * This can only happen when we are doing read-only scrub on read-only 2763 * mount. 2764 * In that case we should not start a new transaction on read-only fs. 2765 * Thus here we skip all chunk allocations. 2766 */ 2767 if (sb_rdonly(fs_info->sb)) { 2768 mutex_lock(&fs_info->ro_block_group_mutex); 2769 ret = inc_block_group_ro(cache, 0); 2770 mutex_unlock(&fs_info->ro_block_group_mutex); 2771 return ret; 2772 } 2773 2774 do { 2775 trans = btrfs_join_transaction(root); 2776 if (IS_ERR(trans)) 2777 return PTR_ERR(trans); 2778 2779 dirty_bg_running = false; 2780 2781 /* 2782 * We're not allowed to set block groups readonly after the dirty 2783 * block group cache has started writing. If it already started, 2784 * back off and let this transaction commit. 2785 */ 2786 mutex_lock(&fs_info->ro_block_group_mutex); 2787 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2788 u64 transid = trans->transid; 2789 2790 mutex_unlock(&fs_info->ro_block_group_mutex); 2791 btrfs_end_transaction(trans); 2792 2793 ret = btrfs_wait_for_commit(fs_info, transid); 2794 if (ret) 2795 return ret; 2796 dirty_bg_running = true; 2797 } 2798 } while (dirty_bg_running); 2799 2800 if (do_chunk_alloc) { 2801 /* 2802 * If we are changing raid levels, try to allocate a 2803 * corresponding block group with the new raid level. 2804 */ 2805 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2806 if (alloc_flags != cache->flags) { 2807 ret = btrfs_chunk_alloc(trans, alloc_flags, 2808 CHUNK_ALLOC_FORCE); 2809 /* 2810 * ENOSPC is allowed here, we may have enough space 2811 * already allocated at the new raid level to carry on 2812 */ 2813 if (ret == -ENOSPC) 2814 ret = 0; 2815 if (ret < 0) 2816 goto out; 2817 } 2818 } 2819 2820 ret = inc_block_group_ro(cache, 0); 2821 if (!ret) 2822 goto out; 2823 if (ret == -ETXTBSY) 2824 goto unlock_out; 2825 2826 /* 2827 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2828 * chunk allocation storm to exhaust the system chunk array. Otherwise 2829 * we still want to try our best to mark the block group read-only. 2830 */ 2831 if (!do_chunk_alloc && ret == -ENOSPC && 2832 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2833 goto unlock_out; 2834 2835 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2836 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2837 if (ret < 0) 2838 goto out; 2839 /* 2840 * We have allocated a new chunk. We also need to activate that chunk to 2841 * grant metadata tickets for zoned filesystem. 2842 */ 2843 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2844 if (ret < 0) 2845 goto out; 2846 2847 ret = inc_block_group_ro(cache, 0); 2848 if (ret == -ETXTBSY) 2849 goto unlock_out; 2850 out: 2851 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2852 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2853 mutex_lock(&fs_info->chunk_mutex); 2854 check_system_chunk(trans, alloc_flags); 2855 mutex_unlock(&fs_info->chunk_mutex); 2856 } 2857 unlock_out: 2858 mutex_unlock(&fs_info->ro_block_group_mutex); 2859 2860 btrfs_end_transaction(trans); 2861 return ret; 2862 } 2863 2864 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2865 { 2866 struct btrfs_space_info *sinfo = cache->space_info; 2867 u64 num_bytes; 2868 2869 BUG_ON(!cache->ro); 2870 2871 spin_lock(&sinfo->lock); 2872 spin_lock(&cache->lock); 2873 if (!--cache->ro) { 2874 if (btrfs_is_zoned(cache->fs_info)) { 2875 /* Migrate zone_unusable bytes back */ 2876 cache->zone_unusable = 2877 (cache->alloc_offset - cache->used) + 2878 (cache->length - cache->zone_capacity); 2879 sinfo->bytes_zone_unusable += cache->zone_unusable; 2880 sinfo->bytes_readonly -= cache->zone_unusable; 2881 } 2882 num_bytes = cache->length - cache->reserved - 2883 cache->pinned - cache->bytes_super - 2884 cache->zone_unusable - cache->used; 2885 sinfo->bytes_readonly -= num_bytes; 2886 list_del_init(&cache->ro_list); 2887 } 2888 spin_unlock(&cache->lock); 2889 spin_unlock(&sinfo->lock); 2890 } 2891 2892 static int update_block_group_item(struct btrfs_trans_handle *trans, 2893 struct btrfs_path *path, 2894 struct btrfs_block_group *cache) 2895 { 2896 struct btrfs_fs_info *fs_info = trans->fs_info; 2897 int ret; 2898 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2899 unsigned long bi; 2900 struct extent_buffer *leaf; 2901 struct btrfs_block_group_item bgi; 2902 struct btrfs_key key; 2903 u64 old_commit_used; 2904 u64 used; 2905 2906 /* 2907 * Block group items update can be triggered out of commit transaction 2908 * critical section, thus we need a consistent view of used bytes. 2909 * We cannot use cache->used directly outside of the spin lock, as it 2910 * may be changed. 2911 */ 2912 spin_lock(&cache->lock); 2913 old_commit_used = cache->commit_used; 2914 used = cache->used; 2915 /* No change in used bytes, can safely skip it. */ 2916 if (cache->commit_used == used) { 2917 spin_unlock(&cache->lock); 2918 return 0; 2919 } 2920 cache->commit_used = used; 2921 spin_unlock(&cache->lock); 2922 2923 key.objectid = cache->start; 2924 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2925 key.offset = cache->length; 2926 2927 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2928 if (ret) { 2929 if (ret > 0) 2930 ret = -ENOENT; 2931 goto fail; 2932 } 2933 2934 leaf = path->nodes[0]; 2935 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2936 btrfs_set_stack_block_group_used(&bgi, used); 2937 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2938 cache->global_root_id); 2939 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2940 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2941 btrfs_mark_buffer_dirty(leaf); 2942 fail: 2943 btrfs_release_path(path); 2944 /* We didn't update the block group item, need to revert @commit_used. */ 2945 if (ret < 0) { 2946 spin_lock(&cache->lock); 2947 cache->commit_used = old_commit_used; 2948 spin_unlock(&cache->lock); 2949 } 2950 return ret; 2951 2952 } 2953 2954 static int cache_save_setup(struct btrfs_block_group *block_group, 2955 struct btrfs_trans_handle *trans, 2956 struct btrfs_path *path) 2957 { 2958 struct btrfs_fs_info *fs_info = block_group->fs_info; 2959 struct btrfs_root *root = fs_info->tree_root; 2960 struct inode *inode = NULL; 2961 struct extent_changeset *data_reserved = NULL; 2962 u64 alloc_hint = 0; 2963 int dcs = BTRFS_DC_ERROR; 2964 u64 cache_size = 0; 2965 int retries = 0; 2966 int ret = 0; 2967 2968 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2969 return 0; 2970 2971 /* 2972 * If this block group is smaller than 100 megs don't bother caching the 2973 * block group. 2974 */ 2975 if (block_group->length < (100 * SZ_1M)) { 2976 spin_lock(&block_group->lock); 2977 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2978 spin_unlock(&block_group->lock); 2979 return 0; 2980 } 2981 2982 if (TRANS_ABORTED(trans)) 2983 return 0; 2984 again: 2985 inode = lookup_free_space_inode(block_group, path); 2986 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2987 ret = PTR_ERR(inode); 2988 btrfs_release_path(path); 2989 goto out; 2990 } 2991 2992 if (IS_ERR(inode)) { 2993 BUG_ON(retries); 2994 retries++; 2995 2996 if (block_group->ro) 2997 goto out_free; 2998 2999 ret = create_free_space_inode(trans, block_group, path); 3000 if (ret) 3001 goto out_free; 3002 goto again; 3003 } 3004 3005 /* 3006 * We want to set the generation to 0, that way if anything goes wrong 3007 * from here on out we know not to trust this cache when we load up next 3008 * time. 3009 */ 3010 BTRFS_I(inode)->generation = 0; 3011 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3012 if (ret) { 3013 /* 3014 * So theoretically we could recover from this, simply set the 3015 * super cache generation to 0 so we know to invalidate the 3016 * cache, but then we'd have to keep track of the block groups 3017 * that fail this way so we know we _have_ to reset this cache 3018 * before the next commit or risk reading stale cache. So to 3019 * limit our exposure to horrible edge cases lets just abort the 3020 * transaction, this only happens in really bad situations 3021 * anyway. 3022 */ 3023 btrfs_abort_transaction(trans, ret); 3024 goto out_put; 3025 } 3026 WARN_ON(ret); 3027 3028 /* We've already setup this transaction, go ahead and exit */ 3029 if (block_group->cache_generation == trans->transid && 3030 i_size_read(inode)) { 3031 dcs = BTRFS_DC_SETUP; 3032 goto out_put; 3033 } 3034 3035 if (i_size_read(inode) > 0) { 3036 ret = btrfs_check_trunc_cache_free_space(fs_info, 3037 &fs_info->global_block_rsv); 3038 if (ret) 3039 goto out_put; 3040 3041 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3042 if (ret) 3043 goto out_put; 3044 } 3045 3046 spin_lock(&block_group->lock); 3047 if (block_group->cached != BTRFS_CACHE_FINISHED || 3048 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3049 /* 3050 * don't bother trying to write stuff out _if_ 3051 * a) we're not cached, 3052 * b) we're with nospace_cache mount option, 3053 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3054 */ 3055 dcs = BTRFS_DC_WRITTEN; 3056 spin_unlock(&block_group->lock); 3057 goto out_put; 3058 } 3059 spin_unlock(&block_group->lock); 3060 3061 /* 3062 * We hit an ENOSPC when setting up the cache in this transaction, just 3063 * skip doing the setup, we've already cleared the cache so we're safe. 3064 */ 3065 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3066 ret = -ENOSPC; 3067 goto out_put; 3068 } 3069 3070 /* 3071 * Try to preallocate enough space based on how big the block group is. 3072 * Keep in mind this has to include any pinned space which could end up 3073 * taking up quite a bit since it's not folded into the other space 3074 * cache. 3075 */ 3076 cache_size = div_u64(block_group->length, SZ_256M); 3077 if (!cache_size) 3078 cache_size = 1; 3079 3080 cache_size *= 16; 3081 cache_size *= fs_info->sectorsize; 3082 3083 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3084 cache_size, false); 3085 if (ret) 3086 goto out_put; 3087 3088 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3089 cache_size, cache_size, 3090 &alloc_hint); 3091 /* 3092 * Our cache requires contiguous chunks so that we don't modify a bunch 3093 * of metadata or split extents when writing the cache out, which means 3094 * we can enospc if we are heavily fragmented in addition to just normal 3095 * out of space conditions. So if we hit this just skip setting up any 3096 * other block groups for this transaction, maybe we'll unpin enough 3097 * space the next time around. 3098 */ 3099 if (!ret) 3100 dcs = BTRFS_DC_SETUP; 3101 else if (ret == -ENOSPC) 3102 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3103 3104 out_put: 3105 iput(inode); 3106 out_free: 3107 btrfs_release_path(path); 3108 out: 3109 spin_lock(&block_group->lock); 3110 if (!ret && dcs == BTRFS_DC_SETUP) 3111 block_group->cache_generation = trans->transid; 3112 block_group->disk_cache_state = dcs; 3113 spin_unlock(&block_group->lock); 3114 3115 extent_changeset_free(data_reserved); 3116 return ret; 3117 } 3118 3119 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3120 { 3121 struct btrfs_fs_info *fs_info = trans->fs_info; 3122 struct btrfs_block_group *cache, *tmp; 3123 struct btrfs_transaction *cur_trans = trans->transaction; 3124 struct btrfs_path *path; 3125 3126 if (list_empty(&cur_trans->dirty_bgs) || 3127 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3128 return 0; 3129 3130 path = btrfs_alloc_path(); 3131 if (!path) 3132 return -ENOMEM; 3133 3134 /* Could add new block groups, use _safe just in case */ 3135 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3136 dirty_list) { 3137 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3138 cache_save_setup(cache, trans, path); 3139 } 3140 3141 btrfs_free_path(path); 3142 return 0; 3143 } 3144 3145 /* 3146 * Transaction commit does final block group cache writeback during a critical 3147 * section where nothing is allowed to change the FS. This is required in 3148 * order for the cache to actually match the block group, but can introduce a 3149 * lot of latency into the commit. 3150 * 3151 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3152 * There's a chance we'll have to redo some of it if the block group changes 3153 * again during the commit, but it greatly reduces the commit latency by 3154 * getting rid of the easy block groups while we're still allowing others to 3155 * join the commit. 3156 */ 3157 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3158 { 3159 struct btrfs_fs_info *fs_info = trans->fs_info; 3160 struct btrfs_block_group *cache; 3161 struct btrfs_transaction *cur_trans = trans->transaction; 3162 int ret = 0; 3163 int should_put; 3164 struct btrfs_path *path = NULL; 3165 LIST_HEAD(dirty); 3166 struct list_head *io = &cur_trans->io_bgs; 3167 int loops = 0; 3168 3169 spin_lock(&cur_trans->dirty_bgs_lock); 3170 if (list_empty(&cur_trans->dirty_bgs)) { 3171 spin_unlock(&cur_trans->dirty_bgs_lock); 3172 return 0; 3173 } 3174 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3175 spin_unlock(&cur_trans->dirty_bgs_lock); 3176 3177 again: 3178 /* Make sure all the block groups on our dirty list actually exist */ 3179 btrfs_create_pending_block_groups(trans); 3180 3181 if (!path) { 3182 path = btrfs_alloc_path(); 3183 if (!path) { 3184 ret = -ENOMEM; 3185 goto out; 3186 } 3187 } 3188 3189 /* 3190 * cache_write_mutex is here only to save us from balance or automatic 3191 * removal of empty block groups deleting this block group while we are 3192 * writing out the cache 3193 */ 3194 mutex_lock(&trans->transaction->cache_write_mutex); 3195 while (!list_empty(&dirty)) { 3196 bool drop_reserve = true; 3197 3198 cache = list_first_entry(&dirty, struct btrfs_block_group, 3199 dirty_list); 3200 /* 3201 * This can happen if something re-dirties a block group that 3202 * is already under IO. Just wait for it to finish and then do 3203 * it all again 3204 */ 3205 if (!list_empty(&cache->io_list)) { 3206 list_del_init(&cache->io_list); 3207 btrfs_wait_cache_io(trans, cache, path); 3208 btrfs_put_block_group(cache); 3209 } 3210 3211 3212 /* 3213 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3214 * it should update the cache_state. Don't delete until after 3215 * we wait. 3216 * 3217 * Since we're not running in the commit critical section 3218 * we need the dirty_bgs_lock to protect from update_block_group 3219 */ 3220 spin_lock(&cur_trans->dirty_bgs_lock); 3221 list_del_init(&cache->dirty_list); 3222 spin_unlock(&cur_trans->dirty_bgs_lock); 3223 3224 should_put = 1; 3225 3226 cache_save_setup(cache, trans, path); 3227 3228 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3229 cache->io_ctl.inode = NULL; 3230 ret = btrfs_write_out_cache(trans, cache, path); 3231 if (ret == 0 && cache->io_ctl.inode) { 3232 should_put = 0; 3233 3234 /* 3235 * The cache_write_mutex is protecting the 3236 * io_list, also refer to the definition of 3237 * btrfs_transaction::io_bgs for more details 3238 */ 3239 list_add_tail(&cache->io_list, io); 3240 } else { 3241 /* 3242 * If we failed to write the cache, the 3243 * generation will be bad and life goes on 3244 */ 3245 ret = 0; 3246 } 3247 } 3248 if (!ret) { 3249 ret = update_block_group_item(trans, path, cache); 3250 /* 3251 * Our block group might still be attached to the list 3252 * of new block groups in the transaction handle of some 3253 * other task (struct btrfs_trans_handle->new_bgs). This 3254 * means its block group item isn't yet in the extent 3255 * tree. If this happens ignore the error, as we will 3256 * try again later in the critical section of the 3257 * transaction commit. 3258 */ 3259 if (ret == -ENOENT) { 3260 ret = 0; 3261 spin_lock(&cur_trans->dirty_bgs_lock); 3262 if (list_empty(&cache->dirty_list)) { 3263 list_add_tail(&cache->dirty_list, 3264 &cur_trans->dirty_bgs); 3265 btrfs_get_block_group(cache); 3266 drop_reserve = false; 3267 } 3268 spin_unlock(&cur_trans->dirty_bgs_lock); 3269 } else if (ret) { 3270 btrfs_abort_transaction(trans, ret); 3271 } 3272 } 3273 3274 /* If it's not on the io list, we need to put the block group */ 3275 if (should_put) 3276 btrfs_put_block_group(cache); 3277 if (drop_reserve) 3278 btrfs_delayed_refs_rsv_release(fs_info, 1); 3279 /* 3280 * Avoid blocking other tasks for too long. It might even save 3281 * us from writing caches for block groups that are going to be 3282 * removed. 3283 */ 3284 mutex_unlock(&trans->transaction->cache_write_mutex); 3285 if (ret) 3286 goto out; 3287 mutex_lock(&trans->transaction->cache_write_mutex); 3288 } 3289 mutex_unlock(&trans->transaction->cache_write_mutex); 3290 3291 /* 3292 * Go through delayed refs for all the stuff we've just kicked off 3293 * and then loop back (just once) 3294 */ 3295 if (!ret) 3296 ret = btrfs_run_delayed_refs(trans, 0); 3297 if (!ret && loops == 0) { 3298 loops++; 3299 spin_lock(&cur_trans->dirty_bgs_lock); 3300 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3301 /* 3302 * dirty_bgs_lock protects us from concurrent block group 3303 * deletes too (not just cache_write_mutex). 3304 */ 3305 if (!list_empty(&dirty)) { 3306 spin_unlock(&cur_trans->dirty_bgs_lock); 3307 goto again; 3308 } 3309 spin_unlock(&cur_trans->dirty_bgs_lock); 3310 } 3311 out: 3312 if (ret < 0) { 3313 spin_lock(&cur_trans->dirty_bgs_lock); 3314 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3315 spin_unlock(&cur_trans->dirty_bgs_lock); 3316 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3317 } 3318 3319 btrfs_free_path(path); 3320 return ret; 3321 } 3322 3323 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3324 { 3325 struct btrfs_fs_info *fs_info = trans->fs_info; 3326 struct btrfs_block_group *cache; 3327 struct btrfs_transaction *cur_trans = trans->transaction; 3328 int ret = 0; 3329 int should_put; 3330 struct btrfs_path *path; 3331 struct list_head *io = &cur_trans->io_bgs; 3332 3333 path = btrfs_alloc_path(); 3334 if (!path) 3335 return -ENOMEM; 3336 3337 /* 3338 * Even though we are in the critical section of the transaction commit, 3339 * we can still have concurrent tasks adding elements to this 3340 * transaction's list of dirty block groups. These tasks correspond to 3341 * endio free space workers started when writeback finishes for a 3342 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3343 * allocate new block groups as a result of COWing nodes of the root 3344 * tree when updating the free space inode. The writeback for the space 3345 * caches is triggered by an earlier call to 3346 * btrfs_start_dirty_block_groups() and iterations of the following 3347 * loop. 3348 * Also we want to do the cache_save_setup first and then run the 3349 * delayed refs to make sure we have the best chance at doing this all 3350 * in one shot. 3351 */ 3352 spin_lock(&cur_trans->dirty_bgs_lock); 3353 while (!list_empty(&cur_trans->dirty_bgs)) { 3354 cache = list_first_entry(&cur_trans->dirty_bgs, 3355 struct btrfs_block_group, 3356 dirty_list); 3357 3358 /* 3359 * This can happen if cache_save_setup re-dirties a block group 3360 * that is already under IO. Just wait for it to finish and 3361 * then do it all again 3362 */ 3363 if (!list_empty(&cache->io_list)) { 3364 spin_unlock(&cur_trans->dirty_bgs_lock); 3365 list_del_init(&cache->io_list); 3366 btrfs_wait_cache_io(trans, cache, path); 3367 btrfs_put_block_group(cache); 3368 spin_lock(&cur_trans->dirty_bgs_lock); 3369 } 3370 3371 /* 3372 * Don't remove from the dirty list until after we've waited on 3373 * any pending IO 3374 */ 3375 list_del_init(&cache->dirty_list); 3376 spin_unlock(&cur_trans->dirty_bgs_lock); 3377 should_put = 1; 3378 3379 cache_save_setup(cache, trans, path); 3380 3381 if (!ret) 3382 ret = btrfs_run_delayed_refs(trans, 3383 (unsigned long) -1); 3384 3385 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3386 cache->io_ctl.inode = NULL; 3387 ret = btrfs_write_out_cache(trans, cache, path); 3388 if (ret == 0 && cache->io_ctl.inode) { 3389 should_put = 0; 3390 list_add_tail(&cache->io_list, io); 3391 } else { 3392 /* 3393 * If we failed to write the cache, the 3394 * generation will be bad and life goes on 3395 */ 3396 ret = 0; 3397 } 3398 } 3399 if (!ret) { 3400 ret = update_block_group_item(trans, path, cache); 3401 /* 3402 * One of the free space endio workers might have 3403 * created a new block group while updating a free space 3404 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3405 * and hasn't released its transaction handle yet, in 3406 * which case the new block group is still attached to 3407 * its transaction handle and its creation has not 3408 * finished yet (no block group item in the extent tree 3409 * yet, etc). If this is the case, wait for all free 3410 * space endio workers to finish and retry. This is a 3411 * very rare case so no need for a more efficient and 3412 * complex approach. 3413 */ 3414 if (ret == -ENOENT) { 3415 wait_event(cur_trans->writer_wait, 3416 atomic_read(&cur_trans->num_writers) == 1); 3417 ret = update_block_group_item(trans, path, cache); 3418 } 3419 if (ret) 3420 btrfs_abort_transaction(trans, ret); 3421 } 3422 3423 /* If its not on the io list, we need to put the block group */ 3424 if (should_put) 3425 btrfs_put_block_group(cache); 3426 btrfs_delayed_refs_rsv_release(fs_info, 1); 3427 spin_lock(&cur_trans->dirty_bgs_lock); 3428 } 3429 spin_unlock(&cur_trans->dirty_bgs_lock); 3430 3431 /* 3432 * Refer to the definition of io_bgs member for details why it's safe 3433 * to use it without any locking 3434 */ 3435 while (!list_empty(io)) { 3436 cache = list_first_entry(io, struct btrfs_block_group, 3437 io_list); 3438 list_del_init(&cache->io_list); 3439 btrfs_wait_cache_io(trans, cache, path); 3440 btrfs_put_block_group(cache); 3441 } 3442 3443 btrfs_free_path(path); 3444 return ret; 3445 } 3446 3447 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3448 u64 bytenr, u64 num_bytes, bool alloc) 3449 { 3450 struct btrfs_fs_info *info = trans->fs_info; 3451 struct btrfs_block_group *cache = NULL; 3452 u64 total = num_bytes; 3453 u64 old_val; 3454 u64 byte_in_group; 3455 int factor; 3456 int ret = 0; 3457 3458 /* Block accounting for super block */ 3459 spin_lock(&info->delalloc_root_lock); 3460 old_val = btrfs_super_bytes_used(info->super_copy); 3461 if (alloc) 3462 old_val += num_bytes; 3463 else 3464 old_val -= num_bytes; 3465 btrfs_set_super_bytes_used(info->super_copy, old_val); 3466 spin_unlock(&info->delalloc_root_lock); 3467 3468 while (total) { 3469 struct btrfs_space_info *space_info; 3470 bool reclaim = false; 3471 3472 cache = btrfs_lookup_block_group(info, bytenr); 3473 if (!cache) { 3474 ret = -ENOENT; 3475 break; 3476 } 3477 space_info = cache->space_info; 3478 factor = btrfs_bg_type_to_factor(cache->flags); 3479 3480 /* 3481 * If this block group has free space cache written out, we 3482 * need to make sure to load it if we are removing space. This 3483 * is because we need the unpinning stage to actually add the 3484 * space back to the block group, otherwise we will leak space. 3485 */ 3486 if (!alloc && !btrfs_block_group_done(cache)) 3487 btrfs_cache_block_group(cache, true); 3488 3489 byte_in_group = bytenr - cache->start; 3490 WARN_ON(byte_in_group > cache->length); 3491 3492 spin_lock(&space_info->lock); 3493 spin_lock(&cache->lock); 3494 3495 if (btrfs_test_opt(info, SPACE_CACHE) && 3496 cache->disk_cache_state < BTRFS_DC_CLEAR) 3497 cache->disk_cache_state = BTRFS_DC_CLEAR; 3498 3499 old_val = cache->used; 3500 num_bytes = min(total, cache->length - byte_in_group); 3501 if (alloc) { 3502 old_val += num_bytes; 3503 cache->used = old_val; 3504 cache->reserved -= num_bytes; 3505 space_info->bytes_reserved -= num_bytes; 3506 space_info->bytes_used += num_bytes; 3507 space_info->disk_used += num_bytes * factor; 3508 spin_unlock(&cache->lock); 3509 spin_unlock(&space_info->lock); 3510 } else { 3511 old_val -= num_bytes; 3512 cache->used = old_val; 3513 cache->pinned += num_bytes; 3514 btrfs_space_info_update_bytes_pinned(info, space_info, 3515 num_bytes); 3516 space_info->bytes_used -= num_bytes; 3517 space_info->disk_used -= num_bytes * factor; 3518 3519 reclaim = should_reclaim_block_group(cache, num_bytes); 3520 3521 spin_unlock(&cache->lock); 3522 spin_unlock(&space_info->lock); 3523 3524 set_extent_dirty(&trans->transaction->pinned_extents, 3525 bytenr, bytenr + num_bytes - 1, 3526 GFP_NOFS | __GFP_NOFAIL); 3527 } 3528 3529 spin_lock(&trans->transaction->dirty_bgs_lock); 3530 if (list_empty(&cache->dirty_list)) { 3531 list_add_tail(&cache->dirty_list, 3532 &trans->transaction->dirty_bgs); 3533 trans->delayed_ref_updates++; 3534 btrfs_get_block_group(cache); 3535 } 3536 spin_unlock(&trans->transaction->dirty_bgs_lock); 3537 3538 /* 3539 * No longer have used bytes in this block group, queue it for 3540 * deletion. We do this after adding the block group to the 3541 * dirty list to avoid races between cleaner kthread and space 3542 * cache writeout. 3543 */ 3544 if (!alloc && old_val == 0) { 3545 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3546 btrfs_mark_bg_unused(cache); 3547 } else if (!alloc && reclaim) { 3548 btrfs_mark_bg_to_reclaim(cache); 3549 } 3550 3551 btrfs_put_block_group(cache); 3552 total -= num_bytes; 3553 bytenr += num_bytes; 3554 } 3555 3556 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3557 btrfs_update_delayed_refs_rsv(trans); 3558 return ret; 3559 } 3560 3561 /* 3562 * Update the block_group and space info counters. 3563 * 3564 * @cache: The cache we are manipulating 3565 * @ram_bytes: The number of bytes of file content, and will be same to 3566 * @num_bytes except for the compress path. 3567 * @num_bytes: The number of bytes in question 3568 * @delalloc: The blocks are allocated for the delalloc write 3569 * 3570 * This is called by the allocator when it reserves space. If this is a 3571 * reservation and the block group has become read only we cannot make the 3572 * reservation and return -EAGAIN, otherwise this function always succeeds. 3573 */ 3574 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3575 u64 ram_bytes, u64 num_bytes, int delalloc, 3576 bool force_wrong_size_class) 3577 { 3578 struct btrfs_space_info *space_info = cache->space_info; 3579 enum btrfs_block_group_size_class size_class; 3580 int ret = 0; 3581 3582 spin_lock(&space_info->lock); 3583 spin_lock(&cache->lock); 3584 if (cache->ro) { 3585 ret = -EAGAIN; 3586 goto out; 3587 } 3588 3589 if (btrfs_block_group_should_use_size_class(cache)) { 3590 size_class = btrfs_calc_block_group_size_class(num_bytes); 3591 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3592 if (ret) 3593 goto out; 3594 } 3595 cache->reserved += num_bytes; 3596 space_info->bytes_reserved += num_bytes; 3597 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3598 space_info->flags, num_bytes, 1); 3599 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3600 space_info, -ram_bytes); 3601 if (delalloc) 3602 cache->delalloc_bytes += num_bytes; 3603 3604 /* 3605 * Compression can use less space than we reserved, so wake tickets if 3606 * that happens. 3607 */ 3608 if (num_bytes < ram_bytes) 3609 btrfs_try_granting_tickets(cache->fs_info, space_info); 3610 out: 3611 spin_unlock(&cache->lock); 3612 spin_unlock(&space_info->lock); 3613 return ret; 3614 } 3615 3616 /* 3617 * Update the block_group and space info counters. 3618 * 3619 * @cache: The cache we are manipulating 3620 * @num_bytes: The number of bytes in question 3621 * @delalloc: The blocks are allocated for the delalloc write 3622 * 3623 * This is called by somebody who is freeing space that was never actually used 3624 * on disk. For example if you reserve some space for a new leaf in transaction 3625 * A and before transaction A commits you free that leaf, you call this with 3626 * reserve set to 0 in order to clear the reservation. 3627 */ 3628 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3629 u64 num_bytes, int delalloc) 3630 { 3631 struct btrfs_space_info *space_info = cache->space_info; 3632 3633 spin_lock(&space_info->lock); 3634 spin_lock(&cache->lock); 3635 if (cache->ro) 3636 space_info->bytes_readonly += num_bytes; 3637 cache->reserved -= num_bytes; 3638 space_info->bytes_reserved -= num_bytes; 3639 space_info->max_extent_size = 0; 3640 3641 if (delalloc) 3642 cache->delalloc_bytes -= num_bytes; 3643 spin_unlock(&cache->lock); 3644 3645 btrfs_try_granting_tickets(cache->fs_info, space_info); 3646 spin_unlock(&space_info->lock); 3647 } 3648 3649 static void force_metadata_allocation(struct btrfs_fs_info *info) 3650 { 3651 struct list_head *head = &info->space_info; 3652 struct btrfs_space_info *found; 3653 3654 list_for_each_entry(found, head, list) { 3655 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3656 found->force_alloc = CHUNK_ALLOC_FORCE; 3657 } 3658 } 3659 3660 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3661 struct btrfs_space_info *sinfo, int force) 3662 { 3663 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3664 u64 thresh; 3665 3666 if (force == CHUNK_ALLOC_FORCE) 3667 return 1; 3668 3669 /* 3670 * in limited mode, we want to have some free space up to 3671 * about 1% of the FS size. 3672 */ 3673 if (force == CHUNK_ALLOC_LIMITED) { 3674 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3675 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3676 3677 if (sinfo->total_bytes - bytes_used < thresh) 3678 return 1; 3679 } 3680 3681 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3682 return 0; 3683 return 1; 3684 } 3685 3686 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3687 { 3688 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3689 3690 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3691 } 3692 3693 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3694 { 3695 struct btrfs_block_group *bg; 3696 int ret; 3697 3698 /* 3699 * Check if we have enough space in the system space info because we 3700 * will need to update device items in the chunk btree and insert a new 3701 * chunk item in the chunk btree as well. This will allocate a new 3702 * system block group if needed. 3703 */ 3704 check_system_chunk(trans, flags); 3705 3706 bg = btrfs_create_chunk(trans, flags); 3707 if (IS_ERR(bg)) { 3708 ret = PTR_ERR(bg); 3709 goto out; 3710 } 3711 3712 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3713 /* 3714 * Normally we are not expected to fail with -ENOSPC here, since we have 3715 * previously reserved space in the system space_info and allocated one 3716 * new system chunk if necessary. However there are three exceptions: 3717 * 3718 * 1) We may have enough free space in the system space_info but all the 3719 * existing system block groups have a profile which can not be used 3720 * for extent allocation. 3721 * 3722 * This happens when mounting in degraded mode. For example we have a 3723 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3724 * using the other device in degraded mode. If we then allocate a chunk, 3725 * we may have enough free space in the existing system space_info, but 3726 * none of the block groups can be used for extent allocation since they 3727 * have a RAID1 profile, and because we are in degraded mode with a 3728 * single device, we are forced to allocate a new system chunk with a 3729 * SINGLE profile. Making check_system_chunk() iterate over all system 3730 * block groups and check if they have a usable profile and enough space 3731 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3732 * try again after forcing allocation of a new system chunk. Like this 3733 * we avoid paying the cost of that search in normal circumstances, when 3734 * we were not mounted in degraded mode; 3735 * 3736 * 2) We had enough free space info the system space_info, and one suitable 3737 * block group to allocate from when we called check_system_chunk() 3738 * above. However right after we called it, the only system block group 3739 * with enough free space got turned into RO mode by a running scrub, 3740 * and in this case we have to allocate a new one and retry. We only 3741 * need do this allocate and retry once, since we have a transaction 3742 * handle and scrub uses the commit root to search for block groups; 3743 * 3744 * 3) We had one system block group with enough free space when we called 3745 * check_system_chunk(), but after that, right before we tried to 3746 * allocate the last extent buffer we needed, a discard operation came 3747 * in and it temporarily removed the last free space entry from the 3748 * block group (discard removes a free space entry, discards it, and 3749 * then adds back the entry to the block group cache). 3750 */ 3751 if (ret == -ENOSPC) { 3752 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3753 struct btrfs_block_group *sys_bg; 3754 3755 sys_bg = btrfs_create_chunk(trans, sys_flags); 3756 if (IS_ERR(sys_bg)) { 3757 ret = PTR_ERR(sys_bg); 3758 btrfs_abort_transaction(trans, ret); 3759 goto out; 3760 } 3761 3762 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3763 if (ret) { 3764 btrfs_abort_transaction(trans, ret); 3765 goto out; 3766 } 3767 3768 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3769 if (ret) { 3770 btrfs_abort_transaction(trans, ret); 3771 goto out; 3772 } 3773 } else if (ret) { 3774 btrfs_abort_transaction(trans, ret); 3775 goto out; 3776 } 3777 out: 3778 btrfs_trans_release_chunk_metadata(trans); 3779 3780 if (ret) 3781 return ERR_PTR(ret); 3782 3783 btrfs_get_block_group(bg); 3784 return bg; 3785 } 3786 3787 /* 3788 * Chunk allocation is done in 2 phases: 3789 * 3790 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3791 * the chunk, the chunk mapping, create its block group and add the items 3792 * that belong in the chunk btree to it - more specifically, we need to 3793 * update device items in the chunk btree and add a new chunk item to it. 3794 * 3795 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3796 * group item to the extent btree and the device extent items to the devices 3797 * btree. 3798 * 3799 * This is done to prevent deadlocks. For example when COWing a node from the 3800 * extent btree we are holding a write lock on the node's parent and if we 3801 * trigger chunk allocation and attempted to insert the new block group item 3802 * in the extent btree right way, we could deadlock because the path for the 3803 * insertion can include that parent node. At first glance it seems impossible 3804 * to trigger chunk allocation after starting a transaction since tasks should 3805 * reserve enough transaction units (metadata space), however while that is true 3806 * most of the time, chunk allocation may still be triggered for several reasons: 3807 * 3808 * 1) When reserving metadata, we check if there is enough free space in the 3809 * metadata space_info and therefore don't trigger allocation of a new chunk. 3810 * However later when the task actually tries to COW an extent buffer from 3811 * the extent btree or from the device btree for example, it is forced to 3812 * allocate a new block group (chunk) because the only one that had enough 3813 * free space was just turned to RO mode by a running scrub for example (or 3814 * device replace, block group reclaim thread, etc), so we can not use it 3815 * for allocating an extent and end up being forced to allocate a new one; 3816 * 3817 * 2) Because we only check that the metadata space_info has enough free bytes, 3818 * we end up not allocating a new metadata chunk in that case. However if 3819 * the filesystem was mounted in degraded mode, none of the existing block 3820 * groups might be suitable for extent allocation due to their incompatible 3821 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3822 * use a RAID1 profile, in degraded mode using a single device). In this case 3823 * when the task attempts to COW some extent buffer of the extent btree for 3824 * example, it will trigger allocation of a new metadata block group with a 3825 * suitable profile (SINGLE profile in the example of the degraded mount of 3826 * the RAID1 filesystem); 3827 * 3828 * 3) The task has reserved enough transaction units / metadata space, but when 3829 * it attempts to COW an extent buffer from the extent or device btree for 3830 * example, it does not find any free extent in any metadata block group, 3831 * therefore forced to try to allocate a new metadata block group. 3832 * This is because some other task allocated all available extents in the 3833 * meanwhile - this typically happens with tasks that don't reserve space 3834 * properly, either intentionally or as a bug. One example where this is 3835 * done intentionally is fsync, as it does not reserve any transaction units 3836 * and ends up allocating a variable number of metadata extents for log 3837 * tree extent buffers; 3838 * 3839 * 4) The task has reserved enough transaction units / metadata space, but right 3840 * before it tries to allocate the last extent buffer it needs, a discard 3841 * operation comes in and, temporarily, removes the last free space entry from 3842 * the only metadata block group that had free space (discard starts by 3843 * removing a free space entry from a block group, then does the discard 3844 * operation and, once it's done, it adds back the free space entry to the 3845 * block group). 3846 * 3847 * We also need this 2 phases setup when adding a device to a filesystem with 3848 * a seed device - we must create new metadata and system chunks without adding 3849 * any of the block group items to the chunk, extent and device btrees. If we 3850 * did not do it this way, we would get ENOSPC when attempting to update those 3851 * btrees, since all the chunks from the seed device are read-only. 3852 * 3853 * Phase 1 does the updates and insertions to the chunk btree because if we had 3854 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3855 * parallel, we risk having too many system chunks allocated by many tasks if 3856 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3857 * extreme case this leads to exhaustion of the system chunk array in the 3858 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3859 * and with RAID filesystems (so we have more device items in the chunk btree). 3860 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3861 * the system chunk array due to concurrent allocations") provides more details. 3862 * 3863 * Allocation of system chunks does not happen through this function. A task that 3864 * needs to update the chunk btree (the only btree that uses system chunks), must 3865 * preallocate chunk space by calling either check_system_chunk() or 3866 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3867 * metadata chunk or when removing a chunk, while the later is used before doing 3868 * a modification to the chunk btree - use cases for the later are adding, 3869 * removing and resizing a device as well as relocation of a system chunk. 3870 * See the comment below for more details. 3871 * 3872 * The reservation of system space, done through check_system_chunk(), as well 3873 * as all the updates and insertions into the chunk btree must be done while 3874 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3875 * an extent buffer from the chunks btree we never trigger allocation of a new 3876 * system chunk, which would result in a deadlock (trying to lock twice an 3877 * extent buffer of the chunk btree, first time before triggering the chunk 3878 * allocation and the second time during chunk allocation while attempting to 3879 * update the chunks btree). The system chunk array is also updated while holding 3880 * that mutex. The same logic applies to removing chunks - we must reserve system 3881 * space, update the chunk btree and the system chunk array in the superblock 3882 * while holding fs_info->chunk_mutex. 3883 * 3884 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3885 * 3886 * If @force is CHUNK_ALLOC_FORCE: 3887 * - return 1 if it successfully allocates a chunk, 3888 * - return errors including -ENOSPC otherwise. 3889 * If @force is NOT CHUNK_ALLOC_FORCE: 3890 * - return 0 if it doesn't need to allocate a new chunk, 3891 * - return 1 if it successfully allocates a chunk, 3892 * - return errors including -ENOSPC otherwise. 3893 */ 3894 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3895 enum btrfs_chunk_alloc_enum force) 3896 { 3897 struct btrfs_fs_info *fs_info = trans->fs_info; 3898 struct btrfs_space_info *space_info; 3899 struct btrfs_block_group *ret_bg; 3900 bool wait_for_alloc = false; 3901 bool should_alloc = false; 3902 bool from_extent_allocation = false; 3903 int ret = 0; 3904 3905 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3906 from_extent_allocation = true; 3907 force = CHUNK_ALLOC_FORCE; 3908 } 3909 3910 /* Don't re-enter if we're already allocating a chunk */ 3911 if (trans->allocating_chunk) 3912 return -ENOSPC; 3913 /* 3914 * Allocation of system chunks can not happen through this path, as we 3915 * could end up in a deadlock if we are allocating a data or metadata 3916 * chunk and there is another task modifying the chunk btree. 3917 * 3918 * This is because while we are holding the chunk mutex, we will attempt 3919 * to add the new chunk item to the chunk btree or update an existing 3920 * device item in the chunk btree, while the other task that is modifying 3921 * the chunk btree is attempting to COW an extent buffer while holding a 3922 * lock on it and on its parent - if the COW operation triggers a system 3923 * chunk allocation, then we can deadlock because we are holding the 3924 * chunk mutex and we may need to access that extent buffer or its parent 3925 * in order to add the chunk item or update a device item. 3926 * 3927 * Tasks that want to modify the chunk tree should reserve system space 3928 * before updating the chunk btree, by calling either 3929 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3930 * It's possible that after a task reserves the space, it still ends up 3931 * here - this happens in the cases described above at do_chunk_alloc(). 3932 * The task will have to either retry or fail. 3933 */ 3934 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3935 return -ENOSPC; 3936 3937 space_info = btrfs_find_space_info(fs_info, flags); 3938 ASSERT(space_info); 3939 3940 do { 3941 spin_lock(&space_info->lock); 3942 if (force < space_info->force_alloc) 3943 force = space_info->force_alloc; 3944 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3945 if (space_info->full) { 3946 /* No more free physical space */ 3947 if (should_alloc) 3948 ret = -ENOSPC; 3949 else 3950 ret = 0; 3951 spin_unlock(&space_info->lock); 3952 return ret; 3953 } else if (!should_alloc) { 3954 spin_unlock(&space_info->lock); 3955 return 0; 3956 } else if (space_info->chunk_alloc) { 3957 /* 3958 * Someone is already allocating, so we need to block 3959 * until this someone is finished and then loop to 3960 * recheck if we should continue with our allocation 3961 * attempt. 3962 */ 3963 wait_for_alloc = true; 3964 force = CHUNK_ALLOC_NO_FORCE; 3965 spin_unlock(&space_info->lock); 3966 mutex_lock(&fs_info->chunk_mutex); 3967 mutex_unlock(&fs_info->chunk_mutex); 3968 } else { 3969 /* Proceed with allocation */ 3970 space_info->chunk_alloc = 1; 3971 wait_for_alloc = false; 3972 spin_unlock(&space_info->lock); 3973 } 3974 3975 cond_resched(); 3976 } while (wait_for_alloc); 3977 3978 mutex_lock(&fs_info->chunk_mutex); 3979 trans->allocating_chunk = true; 3980 3981 /* 3982 * If we have mixed data/metadata chunks we want to make sure we keep 3983 * allocating mixed chunks instead of individual chunks. 3984 */ 3985 if (btrfs_mixed_space_info(space_info)) 3986 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3987 3988 /* 3989 * if we're doing a data chunk, go ahead and make sure that 3990 * we keep a reasonable number of metadata chunks allocated in the 3991 * FS as well. 3992 */ 3993 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3994 fs_info->data_chunk_allocations++; 3995 if (!(fs_info->data_chunk_allocations % 3996 fs_info->metadata_ratio)) 3997 force_metadata_allocation(fs_info); 3998 } 3999 4000 ret_bg = do_chunk_alloc(trans, flags); 4001 trans->allocating_chunk = false; 4002 4003 if (IS_ERR(ret_bg)) { 4004 ret = PTR_ERR(ret_bg); 4005 } else if (from_extent_allocation) { 4006 /* 4007 * New block group is likely to be used soon. Try to activate 4008 * it now. Failure is OK for now. 4009 */ 4010 btrfs_zone_activate(ret_bg); 4011 } 4012 4013 if (!ret) 4014 btrfs_put_block_group(ret_bg); 4015 4016 spin_lock(&space_info->lock); 4017 if (ret < 0) { 4018 if (ret == -ENOSPC) 4019 space_info->full = 1; 4020 else 4021 goto out; 4022 } else { 4023 ret = 1; 4024 space_info->max_extent_size = 0; 4025 } 4026 4027 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4028 out: 4029 space_info->chunk_alloc = 0; 4030 spin_unlock(&space_info->lock); 4031 mutex_unlock(&fs_info->chunk_mutex); 4032 4033 return ret; 4034 } 4035 4036 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4037 { 4038 u64 num_dev; 4039 4040 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4041 if (!num_dev) 4042 num_dev = fs_info->fs_devices->rw_devices; 4043 4044 return num_dev; 4045 } 4046 4047 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4048 u64 bytes, 4049 u64 type) 4050 { 4051 struct btrfs_fs_info *fs_info = trans->fs_info; 4052 struct btrfs_space_info *info; 4053 u64 left; 4054 int ret = 0; 4055 4056 /* 4057 * Needed because we can end up allocating a system chunk and for an 4058 * atomic and race free space reservation in the chunk block reserve. 4059 */ 4060 lockdep_assert_held(&fs_info->chunk_mutex); 4061 4062 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4063 spin_lock(&info->lock); 4064 left = info->total_bytes - btrfs_space_info_used(info, true); 4065 spin_unlock(&info->lock); 4066 4067 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4068 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4069 left, bytes, type); 4070 btrfs_dump_space_info(fs_info, info, 0, 0); 4071 } 4072 4073 if (left < bytes) { 4074 u64 flags = btrfs_system_alloc_profile(fs_info); 4075 struct btrfs_block_group *bg; 4076 4077 /* 4078 * Ignore failure to create system chunk. We might end up not 4079 * needing it, as we might not need to COW all nodes/leafs from 4080 * the paths we visit in the chunk tree (they were already COWed 4081 * or created in the current transaction for example). 4082 */ 4083 bg = btrfs_create_chunk(trans, flags); 4084 if (IS_ERR(bg)) { 4085 ret = PTR_ERR(bg); 4086 } else { 4087 /* 4088 * We have a new chunk. We also need to activate it for 4089 * zoned filesystem. 4090 */ 4091 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4092 if (ret < 0) 4093 return; 4094 4095 /* 4096 * If we fail to add the chunk item here, we end up 4097 * trying again at phase 2 of chunk allocation, at 4098 * btrfs_create_pending_block_groups(). So ignore 4099 * any error here. An ENOSPC here could happen, due to 4100 * the cases described at do_chunk_alloc() - the system 4101 * block group we just created was just turned into RO 4102 * mode by a scrub for example, or a running discard 4103 * temporarily removed its free space entries, etc. 4104 */ 4105 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4106 } 4107 } 4108 4109 if (!ret) { 4110 ret = btrfs_block_rsv_add(fs_info, 4111 &fs_info->chunk_block_rsv, 4112 bytes, BTRFS_RESERVE_NO_FLUSH); 4113 if (!ret) 4114 trans->chunk_bytes_reserved += bytes; 4115 } 4116 } 4117 4118 /* 4119 * Reserve space in the system space for allocating or removing a chunk. 4120 * The caller must be holding fs_info->chunk_mutex. 4121 */ 4122 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4123 { 4124 struct btrfs_fs_info *fs_info = trans->fs_info; 4125 const u64 num_devs = get_profile_num_devs(fs_info, type); 4126 u64 bytes; 4127 4128 /* num_devs device items to update and 1 chunk item to add or remove. */ 4129 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4130 btrfs_calc_insert_metadata_size(fs_info, 1); 4131 4132 reserve_chunk_space(trans, bytes, type); 4133 } 4134 4135 /* 4136 * Reserve space in the system space, if needed, for doing a modification to the 4137 * chunk btree. 4138 * 4139 * @trans: A transaction handle. 4140 * @is_item_insertion: Indicate if the modification is for inserting a new item 4141 * in the chunk btree or if it's for the deletion or update 4142 * of an existing item. 4143 * 4144 * This is used in a context where we need to update the chunk btree outside 4145 * block group allocation and removal, to avoid a deadlock with a concurrent 4146 * task that is allocating a metadata or data block group and therefore needs to 4147 * update the chunk btree while holding the chunk mutex. After the update to the 4148 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4149 * 4150 */ 4151 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4152 bool is_item_insertion) 4153 { 4154 struct btrfs_fs_info *fs_info = trans->fs_info; 4155 u64 bytes; 4156 4157 if (is_item_insertion) 4158 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4159 else 4160 bytes = btrfs_calc_metadata_size(fs_info, 1); 4161 4162 mutex_lock(&fs_info->chunk_mutex); 4163 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4164 mutex_unlock(&fs_info->chunk_mutex); 4165 } 4166 4167 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4168 { 4169 struct btrfs_block_group *block_group; 4170 4171 block_group = btrfs_lookup_first_block_group(info, 0); 4172 while (block_group) { 4173 btrfs_wait_block_group_cache_done(block_group); 4174 spin_lock(&block_group->lock); 4175 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4176 &block_group->runtime_flags)) { 4177 struct inode *inode = block_group->inode; 4178 4179 block_group->inode = NULL; 4180 spin_unlock(&block_group->lock); 4181 4182 ASSERT(block_group->io_ctl.inode == NULL); 4183 iput(inode); 4184 } else { 4185 spin_unlock(&block_group->lock); 4186 } 4187 block_group = btrfs_next_block_group(block_group); 4188 } 4189 } 4190 4191 /* 4192 * Must be called only after stopping all workers, since we could have block 4193 * group caching kthreads running, and therefore they could race with us if we 4194 * freed the block groups before stopping them. 4195 */ 4196 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4197 { 4198 struct btrfs_block_group *block_group; 4199 struct btrfs_space_info *space_info; 4200 struct btrfs_caching_control *caching_ctl; 4201 struct rb_node *n; 4202 4203 write_lock(&info->block_group_cache_lock); 4204 while (!list_empty(&info->caching_block_groups)) { 4205 caching_ctl = list_entry(info->caching_block_groups.next, 4206 struct btrfs_caching_control, list); 4207 list_del(&caching_ctl->list); 4208 btrfs_put_caching_control(caching_ctl); 4209 } 4210 write_unlock(&info->block_group_cache_lock); 4211 4212 spin_lock(&info->unused_bgs_lock); 4213 while (!list_empty(&info->unused_bgs)) { 4214 block_group = list_first_entry(&info->unused_bgs, 4215 struct btrfs_block_group, 4216 bg_list); 4217 list_del_init(&block_group->bg_list); 4218 btrfs_put_block_group(block_group); 4219 } 4220 4221 while (!list_empty(&info->reclaim_bgs)) { 4222 block_group = list_first_entry(&info->reclaim_bgs, 4223 struct btrfs_block_group, 4224 bg_list); 4225 list_del_init(&block_group->bg_list); 4226 btrfs_put_block_group(block_group); 4227 } 4228 spin_unlock(&info->unused_bgs_lock); 4229 4230 spin_lock(&info->zone_active_bgs_lock); 4231 while (!list_empty(&info->zone_active_bgs)) { 4232 block_group = list_first_entry(&info->zone_active_bgs, 4233 struct btrfs_block_group, 4234 active_bg_list); 4235 list_del_init(&block_group->active_bg_list); 4236 btrfs_put_block_group(block_group); 4237 } 4238 spin_unlock(&info->zone_active_bgs_lock); 4239 4240 write_lock(&info->block_group_cache_lock); 4241 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4242 block_group = rb_entry(n, struct btrfs_block_group, 4243 cache_node); 4244 rb_erase_cached(&block_group->cache_node, 4245 &info->block_group_cache_tree); 4246 RB_CLEAR_NODE(&block_group->cache_node); 4247 write_unlock(&info->block_group_cache_lock); 4248 4249 down_write(&block_group->space_info->groups_sem); 4250 list_del(&block_group->list); 4251 up_write(&block_group->space_info->groups_sem); 4252 4253 /* 4254 * We haven't cached this block group, which means we could 4255 * possibly have excluded extents on this block group. 4256 */ 4257 if (block_group->cached == BTRFS_CACHE_NO || 4258 block_group->cached == BTRFS_CACHE_ERROR) 4259 btrfs_free_excluded_extents(block_group); 4260 4261 btrfs_remove_free_space_cache(block_group); 4262 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4263 ASSERT(list_empty(&block_group->dirty_list)); 4264 ASSERT(list_empty(&block_group->io_list)); 4265 ASSERT(list_empty(&block_group->bg_list)); 4266 ASSERT(refcount_read(&block_group->refs) == 1); 4267 ASSERT(block_group->swap_extents == 0); 4268 btrfs_put_block_group(block_group); 4269 4270 write_lock(&info->block_group_cache_lock); 4271 } 4272 write_unlock(&info->block_group_cache_lock); 4273 4274 btrfs_release_global_block_rsv(info); 4275 4276 while (!list_empty(&info->space_info)) { 4277 space_info = list_entry(info->space_info.next, 4278 struct btrfs_space_info, 4279 list); 4280 4281 /* 4282 * Do not hide this behind enospc_debug, this is actually 4283 * important and indicates a real bug if this happens. 4284 */ 4285 if (WARN_ON(space_info->bytes_pinned > 0 || 4286 space_info->bytes_may_use > 0)) 4287 btrfs_dump_space_info(info, space_info, 0, 0); 4288 4289 /* 4290 * If there was a failure to cleanup a log tree, very likely due 4291 * to an IO failure on a writeback attempt of one or more of its 4292 * extent buffers, we could not do proper (and cheap) unaccounting 4293 * of their reserved space, so don't warn on bytes_reserved > 0 in 4294 * that case. 4295 */ 4296 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4297 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4298 if (WARN_ON(space_info->bytes_reserved > 0)) 4299 btrfs_dump_space_info(info, space_info, 0, 0); 4300 } 4301 4302 WARN_ON(space_info->reclaim_size > 0); 4303 list_del(&space_info->list); 4304 btrfs_sysfs_remove_space_info(space_info); 4305 } 4306 return 0; 4307 } 4308 4309 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4310 { 4311 atomic_inc(&cache->frozen); 4312 } 4313 4314 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4315 { 4316 struct btrfs_fs_info *fs_info = block_group->fs_info; 4317 struct extent_map_tree *em_tree; 4318 struct extent_map *em; 4319 bool cleanup; 4320 4321 spin_lock(&block_group->lock); 4322 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4323 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4324 spin_unlock(&block_group->lock); 4325 4326 if (cleanup) { 4327 em_tree = &fs_info->mapping_tree; 4328 write_lock(&em_tree->lock); 4329 em = lookup_extent_mapping(em_tree, block_group->start, 4330 1); 4331 BUG_ON(!em); /* logic error, can't happen */ 4332 remove_extent_mapping(em_tree, em); 4333 write_unlock(&em_tree->lock); 4334 4335 /* once for us and once for the tree */ 4336 free_extent_map(em); 4337 free_extent_map(em); 4338 4339 /* 4340 * We may have left one free space entry and other possible 4341 * tasks trimming this block group have left 1 entry each one. 4342 * Free them if any. 4343 */ 4344 btrfs_remove_free_space_cache(block_group); 4345 } 4346 } 4347 4348 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4349 { 4350 bool ret = true; 4351 4352 spin_lock(&bg->lock); 4353 if (bg->ro) 4354 ret = false; 4355 else 4356 bg->swap_extents++; 4357 spin_unlock(&bg->lock); 4358 4359 return ret; 4360 } 4361 4362 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4363 { 4364 spin_lock(&bg->lock); 4365 ASSERT(!bg->ro); 4366 ASSERT(bg->swap_extents >= amount); 4367 bg->swap_extents -= amount; 4368 spin_unlock(&bg->lock); 4369 } 4370 4371 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4372 { 4373 if (size <= SZ_128K) 4374 return BTRFS_BG_SZ_SMALL; 4375 if (size <= SZ_8M) 4376 return BTRFS_BG_SZ_MEDIUM; 4377 return BTRFS_BG_SZ_LARGE; 4378 } 4379 4380 /* 4381 * Handle a block group allocating an extent in a size class 4382 * 4383 * @bg: The block group we allocated in. 4384 * @size_class: The size class of the allocation. 4385 * @force_wrong_size_class: Whether we are desperate enough to allow 4386 * mismatched size classes. 4387 * 4388 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4389 * case of a race that leads to the wrong size class without 4390 * force_wrong_size_class set. 4391 * 4392 * find_free_extent will skip block groups with a mismatched size class until 4393 * it really needs to avoid ENOSPC. In that case it will set 4394 * force_wrong_size_class. However, if a block group is newly allocated and 4395 * doesn't yet have a size class, then it is possible for two allocations of 4396 * different sizes to race and both try to use it. The loser is caught here and 4397 * has to retry. 4398 */ 4399 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4400 enum btrfs_block_group_size_class size_class, 4401 bool force_wrong_size_class) 4402 { 4403 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4404 4405 /* The new allocation is in the right size class, do nothing */ 4406 if (bg->size_class == size_class) 4407 return 0; 4408 /* 4409 * The new allocation is in a mismatched size class. 4410 * This means one of two things: 4411 * 4412 * 1. Two tasks in find_free_extent for different size_classes raced 4413 * and hit the same empty block_group. Make the loser try again. 4414 * 2. A call to find_free_extent got desperate enough to set 4415 * 'force_wrong_slab'. Don't change the size_class, but allow the 4416 * allocation. 4417 */ 4418 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4419 if (force_wrong_size_class) 4420 return 0; 4421 return -EAGAIN; 4422 } 4423 /* 4424 * The happy new block group case: the new allocation is the first 4425 * one in the block_group so we set size_class. 4426 */ 4427 bg->size_class = size_class; 4428 4429 return 0; 4430 } 4431 4432 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4433 { 4434 if (btrfs_is_zoned(bg->fs_info)) 4435 return false; 4436 if (!btrfs_is_block_group_data_only(bg)) 4437 return false; 4438 return true; 4439 } 4440