1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 u64 group_start, struct extent_map *em) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_em; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, group_start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 block_group->space_info->bytes_zone_unusable -= 1218 block_group->zone_unusable; 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the extent map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_em = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_em) { 1275 struct extent_map_tree *em_tree; 1276 1277 em_tree = &fs_info->mapping_tree; 1278 write_lock(&em_tree->lock); 1279 remove_extent_mapping(em_tree, em); 1280 write_unlock(&em_tree->lock); 1281 /* once for the tree */ 1282 free_extent_map(em); 1283 } 1284 1285 out: 1286 /* Once for the lookup reference */ 1287 btrfs_put_block_group(block_group); 1288 if (remove_rsv) 1289 btrfs_delayed_refs_rsv_release(fs_info, 1); 1290 btrfs_free_path(path); 1291 return ret; 1292 } 1293 1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1296 { 1297 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1299 struct extent_map *em; 1300 struct map_lookup *map; 1301 unsigned int num_items; 1302 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1305 read_unlock(&em_tree->lock); 1306 ASSERT(em && em->start == chunk_offset); 1307 1308 /* 1309 * We need to reserve 3 + N units from the metadata space info in order 1310 * to remove a block group (done at btrfs_remove_chunk() and at 1311 * btrfs_remove_block_group()), which are used for: 1312 * 1313 * 1 unit for adding the free space inode's orphan (located in the tree 1314 * of tree roots). 1315 * 1 unit for deleting the block group item (located in the extent 1316 * tree). 1317 * 1 unit for deleting the free space item (located in tree of tree 1318 * roots). 1319 * N units for deleting N device extent items corresponding to each 1320 * stripe (located in the device tree). 1321 * 1322 * In order to remove a block group we also need to reserve units in the 1323 * system space info in order to update the chunk tree (update one or 1324 * more device items and remove one chunk item), but this is done at 1325 * btrfs_remove_chunk() through a call to check_system_chunk(). 1326 */ 1327 map = em->map_lookup; 1328 num_items = 3 + map->num_stripes; 1329 free_extent_map(em); 1330 1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1332 } 1333 1334 /* 1335 * Mark block group @cache read-only, so later write won't happen to block 1336 * group @cache. 1337 * 1338 * If @force is not set, this function will only mark the block group readonly 1339 * if we have enough free space (1M) in other metadata/system block groups. 1340 * If @force is not set, this function will mark the block group readonly 1341 * without checking free space. 1342 * 1343 * NOTE: This function doesn't care if other block groups can contain all the 1344 * data in this block group. That check should be done by relocation routine, 1345 * not this function. 1346 */ 1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1348 { 1349 struct btrfs_space_info *sinfo = cache->space_info; 1350 u64 num_bytes; 1351 int ret = -ENOSPC; 1352 1353 spin_lock(&sinfo->lock); 1354 spin_lock(&cache->lock); 1355 1356 if (cache->swap_extents) { 1357 ret = -ETXTBSY; 1358 goto out; 1359 } 1360 1361 if (cache->ro) { 1362 cache->ro++; 1363 ret = 0; 1364 goto out; 1365 } 1366 1367 num_bytes = cache->length - cache->reserved - cache->pinned - 1368 cache->bytes_super - cache->zone_unusable - cache->used; 1369 1370 /* 1371 * Data never overcommits, even in mixed mode, so do just the straight 1372 * check of left over space in how much we have allocated. 1373 */ 1374 if (force) { 1375 ret = 0; 1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1378 1379 /* 1380 * Here we make sure if we mark this bg RO, we still have enough 1381 * free space as buffer. 1382 */ 1383 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1384 ret = 0; 1385 } else { 1386 /* 1387 * We overcommit metadata, so we need to do the 1388 * btrfs_can_overcommit check here, and we need to pass in 1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1390 * leeway to allow us to mark this block group as read only. 1391 */ 1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1393 BTRFS_RESERVE_NO_FLUSH)) 1394 ret = 0; 1395 } 1396 1397 if (!ret) { 1398 sinfo->bytes_readonly += num_bytes; 1399 if (btrfs_is_zoned(cache->fs_info)) { 1400 /* Migrate zone_unusable bytes to readonly */ 1401 sinfo->bytes_readonly += cache->zone_unusable; 1402 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1403 cache->zone_unusable = 0; 1404 } 1405 cache->ro++; 1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1407 } 1408 out: 1409 spin_unlock(&cache->lock); 1410 spin_unlock(&sinfo->lock); 1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1412 btrfs_info(cache->fs_info, 1413 "unable to make block group %llu ro", cache->start); 1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1415 } 1416 return ret; 1417 } 1418 1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1420 struct btrfs_block_group *bg) 1421 { 1422 struct btrfs_fs_info *fs_info = bg->fs_info; 1423 struct btrfs_transaction *prev_trans = NULL; 1424 const u64 start = bg->start; 1425 const u64 end = start + bg->length - 1; 1426 int ret; 1427 1428 spin_lock(&fs_info->trans_lock); 1429 if (trans->transaction->list.prev != &fs_info->trans_list) { 1430 prev_trans = list_last_entry(&trans->transaction->list, 1431 struct btrfs_transaction, list); 1432 refcount_inc(&prev_trans->use_count); 1433 } 1434 spin_unlock(&fs_info->trans_lock); 1435 1436 /* 1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1438 * btrfs_finish_extent_commit(). If we are at transaction N, another 1439 * task might be running finish_extent_commit() for the previous 1440 * transaction N - 1, and have seen a range belonging to the block 1441 * group in pinned_extents before we were able to clear the whole block 1442 * group range from pinned_extents. This means that task can lookup for 1443 * the block group after we unpinned it from pinned_extents and removed 1444 * it, leading to a BUG_ON() at unpin_extent_range(). 1445 */ 1446 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1447 if (prev_trans) { 1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1449 EXTENT_DIRTY); 1450 if (ret) 1451 goto out; 1452 } 1453 1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1455 EXTENT_DIRTY); 1456 out: 1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1458 if (prev_trans) 1459 btrfs_put_transaction(prev_trans); 1460 1461 return ret == 0; 1462 } 1463 1464 /* 1465 * Process the unused_bgs list and remove any that don't have any allocated 1466 * space inside of them. 1467 */ 1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1469 { 1470 LIST_HEAD(retry_list); 1471 struct btrfs_block_group *block_group; 1472 struct btrfs_space_info *space_info; 1473 struct btrfs_trans_handle *trans; 1474 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1475 int ret = 0; 1476 1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1478 return; 1479 1480 if (btrfs_fs_closing(fs_info)) 1481 return; 1482 1483 /* 1484 * Long running balances can keep us blocked here for eternity, so 1485 * simply skip deletion if we're unable to get the mutex. 1486 */ 1487 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1488 return; 1489 1490 spin_lock(&fs_info->unused_bgs_lock); 1491 while (!list_empty(&fs_info->unused_bgs)) { 1492 u64 used; 1493 int trimming; 1494 1495 block_group = list_first_entry(&fs_info->unused_bgs, 1496 struct btrfs_block_group, 1497 bg_list); 1498 list_del_init(&block_group->bg_list); 1499 1500 space_info = block_group->space_info; 1501 1502 if (ret || btrfs_mixed_space_info(space_info)) { 1503 btrfs_put_block_group(block_group); 1504 continue; 1505 } 1506 spin_unlock(&fs_info->unused_bgs_lock); 1507 1508 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1509 1510 /* Don't want to race with allocators so take the groups_sem */ 1511 down_write(&space_info->groups_sem); 1512 1513 /* 1514 * Async discard moves the final block group discard to be prior 1515 * to the unused_bgs code path. Therefore, if it's not fully 1516 * trimmed, punt it back to the async discard lists. 1517 */ 1518 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1519 !btrfs_is_free_space_trimmed(block_group)) { 1520 trace_btrfs_skip_unused_block_group(block_group); 1521 up_write(&space_info->groups_sem); 1522 /* Requeue if we failed because of async discard */ 1523 btrfs_discard_queue_work(&fs_info->discard_ctl, 1524 block_group); 1525 goto next; 1526 } 1527 1528 spin_lock(&space_info->lock); 1529 spin_lock(&block_group->lock); 1530 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1531 list_is_singular(&block_group->list)) { 1532 /* 1533 * We want to bail if we made new allocations or have 1534 * outstanding allocations in this block group. We do 1535 * the ro check in case balance is currently acting on 1536 * this block group. 1537 */ 1538 trace_btrfs_skip_unused_block_group(block_group); 1539 spin_unlock(&block_group->lock); 1540 spin_unlock(&space_info->lock); 1541 up_write(&space_info->groups_sem); 1542 goto next; 1543 } 1544 1545 /* 1546 * The block group may be unused but there may be space reserved 1547 * accounting with the existence of that block group, that is, 1548 * space_info->bytes_may_use was incremented by a task but no 1549 * space was yet allocated from the block group by the task. 1550 * That space may or may not be allocated, as we are generally 1551 * pessimistic about space reservation for metadata as well as 1552 * for data when using compression (as we reserve space based on 1553 * the worst case, when data can't be compressed, and before 1554 * actually attempting compression, before starting writeback). 1555 * 1556 * So check if the total space of the space_info minus the size 1557 * of this block group is less than the used space of the 1558 * space_info - if that's the case, then it means we have tasks 1559 * that might be relying on the block group in order to allocate 1560 * extents, and add back the block group to the unused list when 1561 * we finish, so that we retry later in case no tasks ended up 1562 * needing to allocate extents from the block group. 1563 */ 1564 used = btrfs_space_info_used(space_info, true); 1565 if (space_info->total_bytes - block_group->length < used && 1566 block_group->zone_unusable < block_group->length) { 1567 /* 1568 * Add a reference for the list, compensate for the ref 1569 * drop under the "next" label for the 1570 * fs_info->unused_bgs list. 1571 */ 1572 btrfs_get_block_group(block_group); 1573 list_add_tail(&block_group->bg_list, &retry_list); 1574 1575 trace_btrfs_skip_unused_block_group(block_group); 1576 spin_unlock(&block_group->lock); 1577 spin_unlock(&space_info->lock); 1578 up_write(&space_info->groups_sem); 1579 goto next; 1580 } 1581 1582 spin_unlock(&block_group->lock); 1583 spin_unlock(&space_info->lock); 1584 1585 /* We don't want to force the issue, only flip if it's ok. */ 1586 ret = inc_block_group_ro(block_group, 0); 1587 up_write(&space_info->groups_sem); 1588 if (ret < 0) { 1589 ret = 0; 1590 goto next; 1591 } 1592 1593 ret = btrfs_zone_finish(block_group); 1594 if (ret < 0) { 1595 btrfs_dec_block_group_ro(block_group); 1596 if (ret == -EAGAIN) 1597 ret = 0; 1598 goto next; 1599 } 1600 1601 /* 1602 * Want to do this before we do anything else so we can recover 1603 * properly if we fail to join the transaction. 1604 */ 1605 trans = btrfs_start_trans_remove_block_group(fs_info, 1606 block_group->start); 1607 if (IS_ERR(trans)) { 1608 btrfs_dec_block_group_ro(block_group); 1609 ret = PTR_ERR(trans); 1610 goto next; 1611 } 1612 1613 /* 1614 * We could have pending pinned extents for this block group, 1615 * just delete them, we don't care about them anymore. 1616 */ 1617 if (!clean_pinned_extents(trans, block_group)) { 1618 btrfs_dec_block_group_ro(block_group); 1619 goto end_trans; 1620 } 1621 1622 /* 1623 * At this point, the block_group is read only and should fail 1624 * new allocations. However, btrfs_finish_extent_commit() can 1625 * cause this block_group to be placed back on the discard 1626 * lists because now the block_group isn't fully discarded. 1627 * Bail here and try again later after discarding everything. 1628 */ 1629 spin_lock(&fs_info->discard_ctl.lock); 1630 if (!list_empty(&block_group->discard_list)) { 1631 spin_unlock(&fs_info->discard_ctl.lock); 1632 btrfs_dec_block_group_ro(block_group); 1633 btrfs_discard_queue_work(&fs_info->discard_ctl, 1634 block_group); 1635 goto end_trans; 1636 } 1637 spin_unlock(&fs_info->discard_ctl.lock); 1638 1639 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1640 spin_lock(&space_info->lock); 1641 spin_lock(&block_group->lock); 1642 1643 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1644 -block_group->pinned); 1645 space_info->bytes_readonly += block_group->pinned; 1646 block_group->pinned = 0; 1647 1648 spin_unlock(&block_group->lock); 1649 spin_unlock(&space_info->lock); 1650 1651 /* 1652 * The normal path here is an unused block group is passed here, 1653 * then trimming is handled in the transaction commit path. 1654 * Async discard interposes before this to do the trimming 1655 * before coming down the unused block group path as trimming 1656 * will no longer be done later in the transaction commit path. 1657 */ 1658 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1659 goto flip_async; 1660 1661 /* 1662 * DISCARD can flip during remount. On zoned filesystems, we 1663 * need to reset sequential-required zones. 1664 */ 1665 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1666 btrfs_is_zoned(fs_info); 1667 1668 /* Implicit trim during transaction commit. */ 1669 if (trimming) 1670 btrfs_freeze_block_group(block_group); 1671 1672 /* 1673 * Btrfs_remove_chunk will abort the transaction if things go 1674 * horribly wrong. 1675 */ 1676 ret = btrfs_remove_chunk(trans, block_group->start); 1677 1678 if (ret) { 1679 if (trimming) 1680 btrfs_unfreeze_block_group(block_group); 1681 goto end_trans; 1682 } 1683 1684 /* 1685 * If we're not mounted with -odiscard, we can just forget 1686 * about this block group. Otherwise we'll need to wait 1687 * until transaction commit to do the actual discard. 1688 */ 1689 if (trimming) { 1690 spin_lock(&fs_info->unused_bgs_lock); 1691 /* 1692 * A concurrent scrub might have added us to the list 1693 * fs_info->unused_bgs, so use a list_move operation 1694 * to add the block group to the deleted_bgs list. 1695 */ 1696 list_move(&block_group->bg_list, 1697 &trans->transaction->deleted_bgs); 1698 spin_unlock(&fs_info->unused_bgs_lock); 1699 btrfs_get_block_group(block_group); 1700 } 1701 end_trans: 1702 btrfs_end_transaction(trans); 1703 next: 1704 btrfs_put_block_group(block_group); 1705 spin_lock(&fs_info->unused_bgs_lock); 1706 } 1707 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1708 spin_unlock(&fs_info->unused_bgs_lock); 1709 mutex_unlock(&fs_info->reclaim_bgs_lock); 1710 return; 1711 1712 flip_async: 1713 btrfs_end_transaction(trans); 1714 spin_lock(&fs_info->unused_bgs_lock); 1715 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1716 spin_unlock(&fs_info->unused_bgs_lock); 1717 mutex_unlock(&fs_info->reclaim_bgs_lock); 1718 btrfs_put_block_group(block_group); 1719 btrfs_discard_punt_unused_bgs_list(fs_info); 1720 } 1721 1722 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1723 { 1724 struct btrfs_fs_info *fs_info = bg->fs_info; 1725 1726 spin_lock(&fs_info->unused_bgs_lock); 1727 if (list_empty(&bg->bg_list)) { 1728 btrfs_get_block_group(bg); 1729 trace_btrfs_add_unused_block_group(bg); 1730 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1731 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1732 /* Pull out the block group from the reclaim_bgs list. */ 1733 trace_btrfs_add_unused_block_group(bg); 1734 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1735 } 1736 spin_unlock(&fs_info->unused_bgs_lock); 1737 } 1738 1739 /* 1740 * We want block groups with a low number of used bytes to be in the beginning 1741 * of the list, so they will get reclaimed first. 1742 */ 1743 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1744 const struct list_head *b) 1745 { 1746 const struct btrfs_block_group *bg1, *bg2; 1747 1748 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1749 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1750 1751 return bg1->used > bg2->used; 1752 } 1753 1754 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1755 { 1756 if (btrfs_is_zoned(fs_info)) 1757 return btrfs_zoned_should_reclaim(fs_info); 1758 return true; 1759 } 1760 1761 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1762 { 1763 const struct btrfs_space_info *space_info = bg->space_info; 1764 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1765 const u64 new_val = bg->used; 1766 const u64 old_val = new_val + bytes_freed; 1767 u64 thresh; 1768 1769 if (reclaim_thresh == 0) 1770 return false; 1771 1772 thresh = mult_perc(bg->length, reclaim_thresh); 1773 1774 /* 1775 * If we were below the threshold before don't reclaim, we are likely a 1776 * brand new block group and we don't want to relocate new block groups. 1777 */ 1778 if (old_val < thresh) 1779 return false; 1780 if (new_val >= thresh) 1781 return false; 1782 return true; 1783 } 1784 1785 void btrfs_reclaim_bgs_work(struct work_struct *work) 1786 { 1787 struct btrfs_fs_info *fs_info = 1788 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1789 struct btrfs_block_group *bg; 1790 struct btrfs_space_info *space_info; 1791 LIST_HEAD(retry_list); 1792 1793 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1794 return; 1795 1796 if (btrfs_fs_closing(fs_info)) 1797 return; 1798 1799 if (!btrfs_should_reclaim(fs_info)) 1800 return; 1801 1802 sb_start_write(fs_info->sb); 1803 1804 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1805 sb_end_write(fs_info->sb); 1806 return; 1807 } 1808 1809 /* 1810 * Long running balances can keep us blocked here for eternity, so 1811 * simply skip reclaim if we're unable to get the mutex. 1812 */ 1813 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1814 btrfs_exclop_finish(fs_info); 1815 sb_end_write(fs_info->sb); 1816 return; 1817 } 1818 1819 spin_lock(&fs_info->unused_bgs_lock); 1820 /* 1821 * Sort happens under lock because we can't simply splice it and sort. 1822 * The block groups might still be in use and reachable via bg_list, 1823 * and their presence in the reclaim_bgs list must be preserved. 1824 */ 1825 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1826 while (!list_empty(&fs_info->reclaim_bgs)) { 1827 u64 zone_unusable; 1828 int ret = 0; 1829 1830 bg = list_first_entry(&fs_info->reclaim_bgs, 1831 struct btrfs_block_group, 1832 bg_list); 1833 list_del_init(&bg->bg_list); 1834 1835 space_info = bg->space_info; 1836 spin_unlock(&fs_info->unused_bgs_lock); 1837 1838 /* Don't race with allocators so take the groups_sem */ 1839 down_write(&space_info->groups_sem); 1840 1841 spin_lock(&bg->lock); 1842 if (bg->reserved || bg->pinned || bg->ro) { 1843 /* 1844 * We want to bail if we made new allocations or have 1845 * outstanding allocations in this block group. We do 1846 * the ro check in case balance is currently acting on 1847 * this block group. 1848 */ 1849 spin_unlock(&bg->lock); 1850 up_write(&space_info->groups_sem); 1851 goto next; 1852 } 1853 if (bg->used == 0) { 1854 /* 1855 * It is possible that we trigger relocation on a block 1856 * group as its extents are deleted and it first goes 1857 * below the threshold, then shortly after goes empty. 1858 * 1859 * In this case, relocating it does delete it, but has 1860 * some overhead in relocation specific metadata, looking 1861 * for the non-existent extents and running some extra 1862 * transactions, which we can avoid by using one of the 1863 * other mechanisms for dealing with empty block groups. 1864 */ 1865 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1866 btrfs_mark_bg_unused(bg); 1867 spin_unlock(&bg->lock); 1868 up_write(&space_info->groups_sem); 1869 goto next; 1870 1871 } 1872 /* 1873 * The block group might no longer meet the reclaim condition by 1874 * the time we get around to reclaiming it, so to avoid 1875 * reclaiming overly full block_groups, skip reclaiming them. 1876 * 1877 * Since the decision making process also depends on the amount 1878 * being freed, pass in a fake giant value to skip that extra 1879 * check, which is more meaningful when adding to the list in 1880 * the first place. 1881 */ 1882 if (!should_reclaim_block_group(bg, bg->length)) { 1883 spin_unlock(&bg->lock); 1884 up_write(&space_info->groups_sem); 1885 goto next; 1886 } 1887 spin_unlock(&bg->lock); 1888 1889 /* 1890 * Get out fast, in case we're read-only or unmounting the 1891 * filesystem. It is OK to drop block groups from the list even 1892 * for the read-only case. As we did sb_start_write(), 1893 * "mount -o remount,ro" won't happen and read-only filesystem 1894 * means it is forced read-only due to a fatal error. So, it 1895 * never gets back to read-write to let us reclaim again. 1896 */ 1897 if (btrfs_need_cleaner_sleep(fs_info)) { 1898 up_write(&space_info->groups_sem); 1899 goto next; 1900 } 1901 1902 /* 1903 * Cache the zone_unusable value before turning the block group 1904 * to read only. As soon as the blog group is read only it's 1905 * zone_unusable value gets moved to the block group's read-only 1906 * bytes and isn't available for calculations anymore. 1907 */ 1908 zone_unusable = bg->zone_unusable; 1909 ret = inc_block_group_ro(bg, 0); 1910 up_write(&space_info->groups_sem); 1911 if (ret < 0) 1912 goto next; 1913 1914 btrfs_info(fs_info, 1915 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1916 bg->start, 1917 div64_u64(bg->used * 100, bg->length), 1918 div64_u64(zone_unusable * 100, bg->length)); 1919 trace_btrfs_reclaim_block_group(bg); 1920 ret = btrfs_relocate_chunk(fs_info, bg->start); 1921 if (ret) { 1922 btrfs_dec_block_group_ro(bg); 1923 btrfs_err(fs_info, "error relocating chunk %llu", 1924 bg->start); 1925 } 1926 1927 next: 1928 if (ret) { 1929 /* Refcount held by the reclaim_bgs list after splice. */ 1930 btrfs_get_block_group(bg); 1931 list_add_tail(&bg->bg_list, &retry_list); 1932 } 1933 btrfs_put_block_group(bg); 1934 1935 mutex_unlock(&fs_info->reclaim_bgs_lock); 1936 /* 1937 * Reclaiming all the block groups in the list can take really 1938 * long. Prioritize cleaning up unused block groups. 1939 */ 1940 btrfs_delete_unused_bgs(fs_info); 1941 /* 1942 * If we are interrupted by a balance, we can just bail out. The 1943 * cleaner thread restart again if necessary. 1944 */ 1945 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1946 goto end; 1947 spin_lock(&fs_info->unused_bgs_lock); 1948 } 1949 spin_unlock(&fs_info->unused_bgs_lock); 1950 mutex_unlock(&fs_info->reclaim_bgs_lock); 1951 end: 1952 spin_lock(&fs_info->unused_bgs_lock); 1953 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1954 spin_unlock(&fs_info->unused_bgs_lock); 1955 btrfs_exclop_finish(fs_info); 1956 sb_end_write(fs_info->sb); 1957 } 1958 1959 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1960 { 1961 spin_lock(&fs_info->unused_bgs_lock); 1962 if (!list_empty(&fs_info->reclaim_bgs)) 1963 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1964 spin_unlock(&fs_info->unused_bgs_lock); 1965 } 1966 1967 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1968 { 1969 struct btrfs_fs_info *fs_info = bg->fs_info; 1970 1971 spin_lock(&fs_info->unused_bgs_lock); 1972 if (list_empty(&bg->bg_list)) { 1973 btrfs_get_block_group(bg); 1974 trace_btrfs_add_reclaim_block_group(bg); 1975 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1976 } 1977 spin_unlock(&fs_info->unused_bgs_lock); 1978 } 1979 1980 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1981 struct btrfs_path *path) 1982 { 1983 struct extent_map_tree *em_tree; 1984 struct extent_map *em; 1985 struct btrfs_block_group_item bg; 1986 struct extent_buffer *leaf; 1987 int slot; 1988 u64 flags; 1989 int ret = 0; 1990 1991 slot = path->slots[0]; 1992 leaf = path->nodes[0]; 1993 1994 em_tree = &fs_info->mapping_tree; 1995 read_lock(&em_tree->lock); 1996 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1997 read_unlock(&em_tree->lock); 1998 if (!em) { 1999 btrfs_err(fs_info, 2000 "logical %llu len %llu found bg but no related chunk", 2001 key->objectid, key->offset); 2002 return -ENOENT; 2003 } 2004 2005 if (em->start != key->objectid || em->len != key->offset) { 2006 btrfs_err(fs_info, 2007 "block group %llu len %llu mismatch with chunk %llu len %llu", 2008 key->objectid, key->offset, em->start, em->len); 2009 ret = -EUCLEAN; 2010 goto out_free_em; 2011 } 2012 2013 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2014 sizeof(bg)); 2015 flags = btrfs_stack_block_group_flags(&bg) & 2016 BTRFS_BLOCK_GROUP_TYPE_MASK; 2017 2018 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2019 btrfs_err(fs_info, 2020 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2021 key->objectid, key->offset, flags, 2022 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 2023 ret = -EUCLEAN; 2024 } 2025 2026 out_free_em: 2027 free_extent_map(em); 2028 return ret; 2029 } 2030 2031 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2032 struct btrfs_path *path, 2033 struct btrfs_key *key) 2034 { 2035 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2036 int ret; 2037 struct btrfs_key found_key; 2038 2039 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2040 if (found_key.objectid >= key->objectid && 2041 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2042 return read_bg_from_eb(fs_info, &found_key, path); 2043 } 2044 } 2045 return ret; 2046 } 2047 2048 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2049 { 2050 u64 extra_flags = chunk_to_extended(flags) & 2051 BTRFS_EXTENDED_PROFILE_MASK; 2052 2053 write_seqlock(&fs_info->profiles_lock); 2054 if (flags & BTRFS_BLOCK_GROUP_DATA) 2055 fs_info->avail_data_alloc_bits |= extra_flags; 2056 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2057 fs_info->avail_metadata_alloc_bits |= extra_flags; 2058 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2059 fs_info->avail_system_alloc_bits |= extra_flags; 2060 write_sequnlock(&fs_info->profiles_lock); 2061 } 2062 2063 /* 2064 * Map a physical disk address to a list of logical addresses. 2065 * 2066 * @fs_info: the filesystem 2067 * @chunk_start: logical address of block group 2068 * @physical: physical address to map to logical addresses 2069 * @logical: return array of logical addresses which map to @physical 2070 * @naddrs: length of @logical 2071 * @stripe_len: size of IO stripe for the given block group 2072 * 2073 * Maps a particular @physical disk address to a list of @logical addresses. 2074 * Used primarily to exclude those portions of a block group that contain super 2075 * block copies. 2076 */ 2077 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2078 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2079 { 2080 struct extent_map *em; 2081 struct map_lookup *map; 2082 u64 *buf; 2083 u64 bytenr; 2084 u64 data_stripe_length; 2085 u64 io_stripe_size; 2086 int i, nr = 0; 2087 int ret = 0; 2088 2089 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2090 if (IS_ERR(em)) 2091 return -EIO; 2092 2093 map = em->map_lookup; 2094 data_stripe_length = em->orig_block_len; 2095 io_stripe_size = BTRFS_STRIPE_LEN; 2096 chunk_start = em->start; 2097 2098 /* For RAID5/6 adjust to a full IO stripe length */ 2099 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2100 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2101 2102 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2103 if (!buf) { 2104 ret = -ENOMEM; 2105 goto out; 2106 } 2107 2108 for (i = 0; i < map->num_stripes; i++) { 2109 bool already_inserted = false; 2110 u32 stripe_nr; 2111 u32 offset; 2112 int j; 2113 2114 if (!in_range(physical, map->stripes[i].physical, 2115 data_stripe_length)) 2116 continue; 2117 2118 stripe_nr = (physical - map->stripes[i].physical) >> 2119 BTRFS_STRIPE_LEN_SHIFT; 2120 offset = (physical - map->stripes[i].physical) & 2121 BTRFS_STRIPE_LEN_MASK; 2122 2123 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2124 BTRFS_BLOCK_GROUP_RAID10)) 2125 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2126 map->sub_stripes); 2127 /* 2128 * The remaining case would be for RAID56, multiply by 2129 * nr_data_stripes(). Alternatively, just use rmap_len below 2130 * instead of map->stripe_len 2131 */ 2132 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2133 2134 /* Ensure we don't add duplicate addresses */ 2135 for (j = 0; j < nr; j++) { 2136 if (buf[j] == bytenr) { 2137 already_inserted = true; 2138 break; 2139 } 2140 } 2141 2142 if (!already_inserted) 2143 buf[nr++] = bytenr; 2144 } 2145 2146 *logical = buf; 2147 *naddrs = nr; 2148 *stripe_len = io_stripe_size; 2149 out: 2150 free_extent_map(em); 2151 return ret; 2152 } 2153 2154 static int exclude_super_stripes(struct btrfs_block_group *cache) 2155 { 2156 struct btrfs_fs_info *fs_info = cache->fs_info; 2157 const bool zoned = btrfs_is_zoned(fs_info); 2158 u64 bytenr; 2159 u64 *logical; 2160 int stripe_len; 2161 int i, nr, ret; 2162 2163 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2164 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2165 cache->bytes_super += stripe_len; 2166 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2167 cache->start + stripe_len - 1, 2168 EXTENT_UPTODATE, NULL); 2169 if (ret) 2170 return ret; 2171 } 2172 2173 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2174 bytenr = btrfs_sb_offset(i); 2175 ret = btrfs_rmap_block(fs_info, cache->start, 2176 bytenr, &logical, &nr, &stripe_len); 2177 if (ret) 2178 return ret; 2179 2180 /* Shouldn't have super stripes in sequential zones */ 2181 if (zoned && nr) { 2182 kfree(logical); 2183 btrfs_err(fs_info, 2184 "zoned: block group %llu must not contain super block", 2185 cache->start); 2186 return -EUCLEAN; 2187 } 2188 2189 while (nr--) { 2190 u64 len = min_t(u64, stripe_len, 2191 cache->start + cache->length - logical[nr]); 2192 2193 cache->bytes_super += len; 2194 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2195 logical[nr] + len - 1, 2196 EXTENT_UPTODATE, NULL); 2197 if (ret) { 2198 kfree(logical); 2199 return ret; 2200 } 2201 } 2202 2203 kfree(logical); 2204 } 2205 return 0; 2206 } 2207 2208 static struct btrfs_block_group *btrfs_create_block_group_cache( 2209 struct btrfs_fs_info *fs_info, u64 start) 2210 { 2211 struct btrfs_block_group *cache; 2212 2213 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2214 if (!cache) 2215 return NULL; 2216 2217 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2218 GFP_NOFS); 2219 if (!cache->free_space_ctl) { 2220 kfree(cache); 2221 return NULL; 2222 } 2223 2224 cache->start = start; 2225 2226 cache->fs_info = fs_info; 2227 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2228 2229 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2230 2231 refcount_set(&cache->refs, 1); 2232 spin_lock_init(&cache->lock); 2233 init_rwsem(&cache->data_rwsem); 2234 INIT_LIST_HEAD(&cache->list); 2235 INIT_LIST_HEAD(&cache->cluster_list); 2236 INIT_LIST_HEAD(&cache->bg_list); 2237 INIT_LIST_HEAD(&cache->ro_list); 2238 INIT_LIST_HEAD(&cache->discard_list); 2239 INIT_LIST_HEAD(&cache->dirty_list); 2240 INIT_LIST_HEAD(&cache->io_list); 2241 INIT_LIST_HEAD(&cache->active_bg_list); 2242 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2243 atomic_set(&cache->frozen, 0); 2244 mutex_init(&cache->free_space_lock); 2245 2246 return cache; 2247 } 2248 2249 /* 2250 * Iterate all chunks and verify that each of them has the corresponding block 2251 * group 2252 */ 2253 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2254 { 2255 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2256 struct extent_map *em; 2257 struct btrfs_block_group *bg; 2258 u64 start = 0; 2259 int ret = 0; 2260 2261 while (1) { 2262 read_lock(&map_tree->lock); 2263 /* 2264 * lookup_extent_mapping will return the first extent map 2265 * intersecting the range, so setting @len to 1 is enough to 2266 * get the first chunk. 2267 */ 2268 em = lookup_extent_mapping(map_tree, start, 1); 2269 read_unlock(&map_tree->lock); 2270 if (!em) 2271 break; 2272 2273 bg = btrfs_lookup_block_group(fs_info, em->start); 2274 if (!bg) { 2275 btrfs_err(fs_info, 2276 "chunk start=%llu len=%llu doesn't have corresponding block group", 2277 em->start, em->len); 2278 ret = -EUCLEAN; 2279 free_extent_map(em); 2280 break; 2281 } 2282 if (bg->start != em->start || bg->length != em->len || 2283 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2284 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2285 btrfs_err(fs_info, 2286 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2287 em->start, em->len, 2288 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2289 bg->start, bg->length, 2290 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2291 ret = -EUCLEAN; 2292 free_extent_map(em); 2293 btrfs_put_block_group(bg); 2294 break; 2295 } 2296 start = em->start + em->len; 2297 free_extent_map(em); 2298 btrfs_put_block_group(bg); 2299 } 2300 return ret; 2301 } 2302 2303 static int read_one_block_group(struct btrfs_fs_info *info, 2304 struct btrfs_block_group_item *bgi, 2305 const struct btrfs_key *key, 2306 int need_clear) 2307 { 2308 struct btrfs_block_group *cache; 2309 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2310 int ret; 2311 2312 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2313 2314 cache = btrfs_create_block_group_cache(info, key->objectid); 2315 if (!cache) 2316 return -ENOMEM; 2317 2318 cache->length = key->offset; 2319 cache->used = btrfs_stack_block_group_used(bgi); 2320 cache->commit_used = cache->used; 2321 cache->flags = btrfs_stack_block_group_flags(bgi); 2322 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2323 2324 set_free_space_tree_thresholds(cache); 2325 2326 if (need_clear) { 2327 /* 2328 * When we mount with old space cache, we need to 2329 * set BTRFS_DC_CLEAR and set dirty flag. 2330 * 2331 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2332 * truncate the old free space cache inode and 2333 * setup a new one. 2334 * b) Setting 'dirty flag' makes sure that we flush 2335 * the new space cache info onto disk. 2336 */ 2337 if (btrfs_test_opt(info, SPACE_CACHE)) 2338 cache->disk_cache_state = BTRFS_DC_CLEAR; 2339 } 2340 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2341 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2342 btrfs_err(info, 2343 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2344 cache->start); 2345 ret = -EINVAL; 2346 goto error; 2347 } 2348 2349 ret = btrfs_load_block_group_zone_info(cache, false); 2350 if (ret) { 2351 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2352 cache->start); 2353 goto error; 2354 } 2355 2356 /* 2357 * We need to exclude the super stripes now so that the space info has 2358 * super bytes accounted for, otherwise we'll think we have more space 2359 * than we actually do. 2360 */ 2361 ret = exclude_super_stripes(cache); 2362 if (ret) { 2363 /* We may have excluded something, so call this just in case. */ 2364 btrfs_free_excluded_extents(cache); 2365 goto error; 2366 } 2367 2368 /* 2369 * For zoned filesystem, space after the allocation offset is the only 2370 * free space for a block group. So, we don't need any caching work. 2371 * btrfs_calc_zone_unusable() will set the amount of free space and 2372 * zone_unusable space. 2373 * 2374 * For regular filesystem, check for two cases, either we are full, and 2375 * therefore don't need to bother with the caching work since we won't 2376 * find any space, or we are empty, and we can just add all the space 2377 * in and be done with it. This saves us _a_lot_ of time, particularly 2378 * in the full case. 2379 */ 2380 if (btrfs_is_zoned(info)) { 2381 btrfs_calc_zone_unusable(cache); 2382 /* Should not have any excluded extents. Just in case, though. */ 2383 btrfs_free_excluded_extents(cache); 2384 } else if (cache->length == cache->used) { 2385 cache->cached = BTRFS_CACHE_FINISHED; 2386 btrfs_free_excluded_extents(cache); 2387 } else if (cache->used == 0) { 2388 cache->cached = BTRFS_CACHE_FINISHED; 2389 ret = btrfs_add_new_free_space(cache, cache->start, 2390 cache->start + cache->length, NULL); 2391 btrfs_free_excluded_extents(cache); 2392 if (ret) 2393 goto error; 2394 } 2395 2396 ret = btrfs_add_block_group_cache(info, cache); 2397 if (ret) { 2398 btrfs_remove_free_space_cache(cache); 2399 goto error; 2400 } 2401 trace_btrfs_add_block_group(info, cache, 0); 2402 btrfs_add_bg_to_space_info(info, cache); 2403 2404 set_avail_alloc_bits(info, cache->flags); 2405 if (btrfs_chunk_writeable(info, cache->start)) { 2406 if (cache->used == 0) { 2407 ASSERT(list_empty(&cache->bg_list)); 2408 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2409 btrfs_discard_queue_work(&info->discard_ctl, cache); 2410 else 2411 btrfs_mark_bg_unused(cache); 2412 } 2413 } else { 2414 inc_block_group_ro(cache, 1); 2415 } 2416 2417 return 0; 2418 error: 2419 btrfs_put_block_group(cache); 2420 return ret; 2421 } 2422 2423 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2424 { 2425 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2426 struct rb_node *node; 2427 int ret = 0; 2428 2429 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2430 struct extent_map *em; 2431 struct map_lookup *map; 2432 struct btrfs_block_group *bg; 2433 2434 em = rb_entry(node, struct extent_map, rb_node); 2435 map = em->map_lookup; 2436 bg = btrfs_create_block_group_cache(fs_info, em->start); 2437 if (!bg) { 2438 ret = -ENOMEM; 2439 break; 2440 } 2441 2442 /* Fill dummy cache as FULL */ 2443 bg->length = em->len; 2444 bg->flags = map->type; 2445 bg->cached = BTRFS_CACHE_FINISHED; 2446 bg->used = em->len; 2447 bg->flags = map->type; 2448 ret = btrfs_add_block_group_cache(fs_info, bg); 2449 /* 2450 * We may have some valid block group cache added already, in 2451 * that case we skip to the next one. 2452 */ 2453 if (ret == -EEXIST) { 2454 ret = 0; 2455 btrfs_put_block_group(bg); 2456 continue; 2457 } 2458 2459 if (ret) { 2460 btrfs_remove_free_space_cache(bg); 2461 btrfs_put_block_group(bg); 2462 break; 2463 } 2464 2465 btrfs_add_bg_to_space_info(fs_info, bg); 2466 2467 set_avail_alloc_bits(fs_info, bg->flags); 2468 } 2469 if (!ret) 2470 btrfs_init_global_block_rsv(fs_info); 2471 return ret; 2472 } 2473 2474 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2475 { 2476 struct btrfs_root *root = btrfs_block_group_root(info); 2477 struct btrfs_path *path; 2478 int ret; 2479 struct btrfs_block_group *cache; 2480 struct btrfs_space_info *space_info; 2481 struct btrfs_key key; 2482 int need_clear = 0; 2483 u64 cache_gen; 2484 2485 /* 2486 * Either no extent root (with ibadroots rescue option) or we have 2487 * unsupported RO options. The fs can never be mounted read-write, so no 2488 * need to waste time searching block group items. 2489 * 2490 * This also allows new extent tree related changes to be RO compat, 2491 * no need for a full incompat flag. 2492 */ 2493 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2494 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2495 return fill_dummy_bgs(info); 2496 2497 key.objectid = 0; 2498 key.offset = 0; 2499 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2500 path = btrfs_alloc_path(); 2501 if (!path) 2502 return -ENOMEM; 2503 2504 cache_gen = btrfs_super_cache_generation(info->super_copy); 2505 if (btrfs_test_opt(info, SPACE_CACHE) && 2506 btrfs_super_generation(info->super_copy) != cache_gen) 2507 need_clear = 1; 2508 if (btrfs_test_opt(info, CLEAR_CACHE)) 2509 need_clear = 1; 2510 2511 while (1) { 2512 struct btrfs_block_group_item bgi; 2513 struct extent_buffer *leaf; 2514 int slot; 2515 2516 ret = find_first_block_group(info, path, &key); 2517 if (ret > 0) 2518 break; 2519 if (ret != 0) 2520 goto error; 2521 2522 leaf = path->nodes[0]; 2523 slot = path->slots[0]; 2524 2525 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2526 sizeof(bgi)); 2527 2528 btrfs_item_key_to_cpu(leaf, &key, slot); 2529 btrfs_release_path(path); 2530 ret = read_one_block_group(info, &bgi, &key, need_clear); 2531 if (ret < 0) 2532 goto error; 2533 key.objectid += key.offset; 2534 key.offset = 0; 2535 } 2536 btrfs_release_path(path); 2537 2538 list_for_each_entry(space_info, &info->space_info, list) { 2539 int i; 2540 2541 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2542 if (list_empty(&space_info->block_groups[i])) 2543 continue; 2544 cache = list_first_entry(&space_info->block_groups[i], 2545 struct btrfs_block_group, 2546 list); 2547 btrfs_sysfs_add_block_group_type(cache); 2548 } 2549 2550 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2551 (BTRFS_BLOCK_GROUP_RAID10 | 2552 BTRFS_BLOCK_GROUP_RAID1_MASK | 2553 BTRFS_BLOCK_GROUP_RAID56_MASK | 2554 BTRFS_BLOCK_GROUP_DUP))) 2555 continue; 2556 /* 2557 * Avoid allocating from un-mirrored block group if there are 2558 * mirrored block groups. 2559 */ 2560 list_for_each_entry(cache, 2561 &space_info->block_groups[BTRFS_RAID_RAID0], 2562 list) 2563 inc_block_group_ro(cache, 1); 2564 list_for_each_entry(cache, 2565 &space_info->block_groups[BTRFS_RAID_SINGLE], 2566 list) 2567 inc_block_group_ro(cache, 1); 2568 } 2569 2570 btrfs_init_global_block_rsv(info); 2571 ret = check_chunk_block_group_mappings(info); 2572 error: 2573 btrfs_free_path(path); 2574 /* 2575 * We've hit some error while reading the extent tree, and have 2576 * rescue=ibadroots mount option. 2577 * Try to fill the tree using dummy block groups so that the user can 2578 * continue to mount and grab their data. 2579 */ 2580 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2581 ret = fill_dummy_bgs(info); 2582 return ret; 2583 } 2584 2585 /* 2586 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2587 * allocation. 2588 * 2589 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2590 * phases. 2591 */ 2592 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2593 struct btrfs_block_group *block_group) 2594 { 2595 struct btrfs_fs_info *fs_info = trans->fs_info; 2596 struct btrfs_block_group_item bgi; 2597 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2598 struct btrfs_key key; 2599 u64 old_commit_used; 2600 int ret; 2601 2602 spin_lock(&block_group->lock); 2603 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2604 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2605 block_group->global_root_id); 2606 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2607 old_commit_used = block_group->commit_used; 2608 block_group->commit_used = block_group->used; 2609 key.objectid = block_group->start; 2610 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2611 key.offset = block_group->length; 2612 spin_unlock(&block_group->lock); 2613 2614 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2615 if (ret < 0) { 2616 spin_lock(&block_group->lock); 2617 block_group->commit_used = old_commit_used; 2618 spin_unlock(&block_group->lock); 2619 } 2620 2621 return ret; 2622 } 2623 2624 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2625 struct btrfs_device *device, u64 chunk_offset, 2626 u64 start, u64 num_bytes) 2627 { 2628 struct btrfs_fs_info *fs_info = device->fs_info; 2629 struct btrfs_root *root = fs_info->dev_root; 2630 struct btrfs_path *path; 2631 struct btrfs_dev_extent *extent; 2632 struct extent_buffer *leaf; 2633 struct btrfs_key key; 2634 int ret; 2635 2636 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2637 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return -ENOMEM; 2641 2642 key.objectid = device->devid; 2643 key.type = BTRFS_DEV_EXTENT_KEY; 2644 key.offset = start; 2645 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2646 if (ret) 2647 goto out; 2648 2649 leaf = path->nodes[0]; 2650 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2651 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2652 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2653 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2654 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2655 2656 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2657 btrfs_mark_buffer_dirty(trans, leaf); 2658 out: 2659 btrfs_free_path(path); 2660 return ret; 2661 } 2662 2663 /* 2664 * This function belongs to phase 2. 2665 * 2666 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2667 * phases. 2668 */ 2669 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2670 u64 chunk_offset, u64 chunk_size) 2671 { 2672 struct btrfs_fs_info *fs_info = trans->fs_info; 2673 struct btrfs_device *device; 2674 struct extent_map *em; 2675 struct map_lookup *map; 2676 u64 dev_offset; 2677 u64 stripe_size; 2678 int i; 2679 int ret = 0; 2680 2681 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2682 if (IS_ERR(em)) 2683 return PTR_ERR(em); 2684 2685 map = em->map_lookup; 2686 stripe_size = em->orig_block_len; 2687 2688 /* 2689 * Take the device list mutex to prevent races with the final phase of 2690 * a device replace operation that replaces the device object associated 2691 * with the map's stripes, because the device object's id can change 2692 * at any time during that final phase of the device replace operation 2693 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2694 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2695 * resulting in persisting a device extent item with such ID. 2696 */ 2697 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2698 for (i = 0; i < map->num_stripes; i++) { 2699 device = map->stripes[i].dev; 2700 dev_offset = map->stripes[i].physical; 2701 2702 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2703 stripe_size); 2704 if (ret) 2705 break; 2706 } 2707 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2708 2709 free_extent_map(em); 2710 return ret; 2711 } 2712 2713 /* 2714 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2715 * chunk allocation. 2716 * 2717 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2718 * phases. 2719 */ 2720 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2721 { 2722 struct btrfs_fs_info *fs_info = trans->fs_info; 2723 struct btrfs_block_group *block_group; 2724 int ret = 0; 2725 2726 while (!list_empty(&trans->new_bgs)) { 2727 int index; 2728 2729 block_group = list_first_entry(&trans->new_bgs, 2730 struct btrfs_block_group, 2731 bg_list); 2732 if (ret) 2733 goto next; 2734 2735 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2736 2737 ret = insert_block_group_item(trans, block_group); 2738 if (ret) 2739 btrfs_abort_transaction(trans, ret); 2740 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2741 &block_group->runtime_flags)) { 2742 mutex_lock(&fs_info->chunk_mutex); 2743 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2744 mutex_unlock(&fs_info->chunk_mutex); 2745 if (ret) 2746 btrfs_abort_transaction(trans, ret); 2747 } 2748 ret = insert_dev_extents(trans, block_group->start, 2749 block_group->length); 2750 if (ret) 2751 btrfs_abort_transaction(trans, ret); 2752 add_block_group_free_space(trans, block_group); 2753 2754 /* 2755 * If we restriped during balance, we may have added a new raid 2756 * type, so now add the sysfs entries when it is safe to do so. 2757 * We don't have to worry about locking here as it's handled in 2758 * btrfs_sysfs_add_block_group_type. 2759 */ 2760 if (block_group->space_info->block_group_kobjs[index] == NULL) 2761 btrfs_sysfs_add_block_group_type(block_group); 2762 2763 /* Already aborted the transaction if it failed. */ 2764 next: 2765 btrfs_delayed_refs_rsv_release(fs_info, 1); 2766 list_del_init(&block_group->bg_list); 2767 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2768 } 2769 btrfs_trans_release_chunk_metadata(trans); 2770 } 2771 2772 /* 2773 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2774 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2775 */ 2776 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2777 { 2778 u64 div = SZ_1G; 2779 u64 index; 2780 2781 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2782 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2783 2784 /* If we have a smaller fs index based on 128MiB. */ 2785 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2786 div = SZ_128M; 2787 2788 offset = div64_u64(offset, div); 2789 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2790 return index; 2791 } 2792 2793 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2794 u64 type, 2795 u64 chunk_offset, u64 size) 2796 { 2797 struct btrfs_fs_info *fs_info = trans->fs_info; 2798 struct btrfs_block_group *cache; 2799 int ret; 2800 2801 btrfs_set_log_full_commit(trans); 2802 2803 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2804 if (!cache) 2805 return ERR_PTR(-ENOMEM); 2806 2807 /* 2808 * Mark it as new before adding it to the rbtree of block groups or any 2809 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2810 * before the new flag is set. 2811 */ 2812 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2813 2814 cache->length = size; 2815 set_free_space_tree_thresholds(cache); 2816 cache->flags = type; 2817 cache->cached = BTRFS_CACHE_FINISHED; 2818 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2819 2820 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2821 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2822 2823 ret = btrfs_load_block_group_zone_info(cache, true); 2824 if (ret) { 2825 btrfs_put_block_group(cache); 2826 return ERR_PTR(ret); 2827 } 2828 2829 ret = exclude_super_stripes(cache); 2830 if (ret) { 2831 /* We may have excluded something, so call this just in case */ 2832 btrfs_free_excluded_extents(cache); 2833 btrfs_put_block_group(cache); 2834 return ERR_PTR(ret); 2835 } 2836 2837 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2838 btrfs_free_excluded_extents(cache); 2839 if (ret) { 2840 btrfs_put_block_group(cache); 2841 return ERR_PTR(ret); 2842 } 2843 2844 /* 2845 * Ensure the corresponding space_info object is created and 2846 * assigned to our block group. We want our bg to be added to the rbtree 2847 * with its ->space_info set. 2848 */ 2849 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2850 ASSERT(cache->space_info); 2851 2852 ret = btrfs_add_block_group_cache(fs_info, cache); 2853 if (ret) { 2854 btrfs_remove_free_space_cache(cache); 2855 btrfs_put_block_group(cache); 2856 return ERR_PTR(ret); 2857 } 2858 2859 /* 2860 * Now that our block group has its ->space_info set and is inserted in 2861 * the rbtree, update the space info's counters. 2862 */ 2863 trace_btrfs_add_block_group(fs_info, cache, 1); 2864 btrfs_add_bg_to_space_info(fs_info, cache); 2865 btrfs_update_global_block_rsv(fs_info); 2866 2867 #ifdef CONFIG_BTRFS_DEBUG 2868 if (btrfs_should_fragment_free_space(cache)) { 2869 cache->space_info->bytes_used += size >> 1; 2870 fragment_free_space(cache); 2871 } 2872 #endif 2873 2874 list_add_tail(&cache->bg_list, &trans->new_bgs); 2875 trans->delayed_ref_updates++; 2876 btrfs_update_delayed_refs_rsv(trans); 2877 2878 set_avail_alloc_bits(fs_info, type); 2879 return cache; 2880 } 2881 2882 /* 2883 * Mark one block group RO, can be called several times for the same block 2884 * group. 2885 * 2886 * @cache: the destination block group 2887 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2888 * ensure we still have some free space after marking this 2889 * block group RO. 2890 */ 2891 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2892 bool do_chunk_alloc) 2893 { 2894 struct btrfs_fs_info *fs_info = cache->fs_info; 2895 struct btrfs_trans_handle *trans; 2896 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2897 u64 alloc_flags; 2898 int ret; 2899 bool dirty_bg_running; 2900 2901 /* 2902 * This can only happen when we are doing read-only scrub on read-only 2903 * mount. 2904 * In that case we should not start a new transaction on read-only fs. 2905 * Thus here we skip all chunk allocations. 2906 */ 2907 if (sb_rdonly(fs_info->sb)) { 2908 mutex_lock(&fs_info->ro_block_group_mutex); 2909 ret = inc_block_group_ro(cache, 0); 2910 mutex_unlock(&fs_info->ro_block_group_mutex); 2911 return ret; 2912 } 2913 2914 do { 2915 trans = btrfs_join_transaction(root); 2916 if (IS_ERR(trans)) 2917 return PTR_ERR(trans); 2918 2919 dirty_bg_running = false; 2920 2921 /* 2922 * We're not allowed to set block groups readonly after the dirty 2923 * block group cache has started writing. If it already started, 2924 * back off and let this transaction commit. 2925 */ 2926 mutex_lock(&fs_info->ro_block_group_mutex); 2927 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2928 u64 transid = trans->transid; 2929 2930 mutex_unlock(&fs_info->ro_block_group_mutex); 2931 btrfs_end_transaction(trans); 2932 2933 ret = btrfs_wait_for_commit(fs_info, transid); 2934 if (ret) 2935 return ret; 2936 dirty_bg_running = true; 2937 } 2938 } while (dirty_bg_running); 2939 2940 if (do_chunk_alloc) { 2941 /* 2942 * If we are changing raid levels, try to allocate a 2943 * corresponding block group with the new raid level. 2944 */ 2945 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2946 if (alloc_flags != cache->flags) { 2947 ret = btrfs_chunk_alloc(trans, alloc_flags, 2948 CHUNK_ALLOC_FORCE); 2949 /* 2950 * ENOSPC is allowed here, we may have enough space 2951 * already allocated at the new raid level to carry on 2952 */ 2953 if (ret == -ENOSPC) 2954 ret = 0; 2955 if (ret < 0) 2956 goto out; 2957 } 2958 } 2959 2960 ret = inc_block_group_ro(cache, 0); 2961 if (!ret) 2962 goto out; 2963 if (ret == -ETXTBSY) 2964 goto unlock_out; 2965 2966 /* 2967 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2968 * chunk allocation storm to exhaust the system chunk array. Otherwise 2969 * we still want to try our best to mark the block group read-only. 2970 */ 2971 if (!do_chunk_alloc && ret == -ENOSPC && 2972 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2973 goto unlock_out; 2974 2975 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2976 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2977 if (ret < 0) 2978 goto out; 2979 /* 2980 * We have allocated a new chunk. We also need to activate that chunk to 2981 * grant metadata tickets for zoned filesystem. 2982 */ 2983 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2984 if (ret < 0) 2985 goto out; 2986 2987 ret = inc_block_group_ro(cache, 0); 2988 if (ret == -ETXTBSY) 2989 goto unlock_out; 2990 out: 2991 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2992 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2993 mutex_lock(&fs_info->chunk_mutex); 2994 check_system_chunk(trans, alloc_flags); 2995 mutex_unlock(&fs_info->chunk_mutex); 2996 } 2997 unlock_out: 2998 mutex_unlock(&fs_info->ro_block_group_mutex); 2999 3000 btrfs_end_transaction(trans); 3001 return ret; 3002 } 3003 3004 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3005 { 3006 struct btrfs_space_info *sinfo = cache->space_info; 3007 u64 num_bytes; 3008 3009 BUG_ON(!cache->ro); 3010 3011 spin_lock(&sinfo->lock); 3012 spin_lock(&cache->lock); 3013 if (!--cache->ro) { 3014 if (btrfs_is_zoned(cache->fs_info)) { 3015 /* Migrate zone_unusable bytes back */ 3016 cache->zone_unusable = 3017 (cache->alloc_offset - cache->used) + 3018 (cache->length - cache->zone_capacity); 3019 sinfo->bytes_zone_unusable += cache->zone_unusable; 3020 sinfo->bytes_readonly -= cache->zone_unusable; 3021 } 3022 num_bytes = cache->length - cache->reserved - 3023 cache->pinned - cache->bytes_super - 3024 cache->zone_unusable - cache->used; 3025 sinfo->bytes_readonly -= num_bytes; 3026 list_del_init(&cache->ro_list); 3027 } 3028 spin_unlock(&cache->lock); 3029 spin_unlock(&sinfo->lock); 3030 } 3031 3032 static int update_block_group_item(struct btrfs_trans_handle *trans, 3033 struct btrfs_path *path, 3034 struct btrfs_block_group *cache) 3035 { 3036 struct btrfs_fs_info *fs_info = trans->fs_info; 3037 int ret; 3038 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3039 unsigned long bi; 3040 struct extent_buffer *leaf; 3041 struct btrfs_block_group_item bgi; 3042 struct btrfs_key key; 3043 u64 old_commit_used; 3044 u64 used; 3045 3046 /* 3047 * Block group items update can be triggered out of commit transaction 3048 * critical section, thus we need a consistent view of used bytes. 3049 * We cannot use cache->used directly outside of the spin lock, as it 3050 * may be changed. 3051 */ 3052 spin_lock(&cache->lock); 3053 old_commit_used = cache->commit_used; 3054 used = cache->used; 3055 /* No change in used bytes, can safely skip it. */ 3056 if (cache->commit_used == used) { 3057 spin_unlock(&cache->lock); 3058 return 0; 3059 } 3060 cache->commit_used = used; 3061 spin_unlock(&cache->lock); 3062 3063 key.objectid = cache->start; 3064 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3065 key.offset = cache->length; 3066 3067 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3068 if (ret) { 3069 if (ret > 0) 3070 ret = -ENOENT; 3071 goto fail; 3072 } 3073 3074 leaf = path->nodes[0]; 3075 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3076 btrfs_set_stack_block_group_used(&bgi, used); 3077 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3078 cache->global_root_id); 3079 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3080 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3081 btrfs_mark_buffer_dirty(trans, leaf); 3082 fail: 3083 btrfs_release_path(path); 3084 /* 3085 * We didn't update the block group item, need to revert commit_used 3086 * unless the block group item didn't exist yet - this is to prevent a 3087 * race with a concurrent insertion of the block group item, with 3088 * insert_block_group_item(), that happened just after we attempted to 3089 * update. In that case we would reset commit_used to 0 just after the 3090 * insertion set it to a value greater than 0 - if the block group later 3091 * becomes with 0 used bytes, we would incorrectly skip its update. 3092 */ 3093 if (ret < 0 && ret != -ENOENT) { 3094 spin_lock(&cache->lock); 3095 cache->commit_used = old_commit_used; 3096 spin_unlock(&cache->lock); 3097 } 3098 return ret; 3099 3100 } 3101 3102 static int cache_save_setup(struct btrfs_block_group *block_group, 3103 struct btrfs_trans_handle *trans, 3104 struct btrfs_path *path) 3105 { 3106 struct btrfs_fs_info *fs_info = block_group->fs_info; 3107 struct btrfs_root *root = fs_info->tree_root; 3108 struct inode *inode = NULL; 3109 struct extent_changeset *data_reserved = NULL; 3110 u64 alloc_hint = 0; 3111 int dcs = BTRFS_DC_ERROR; 3112 u64 cache_size = 0; 3113 int retries = 0; 3114 int ret = 0; 3115 3116 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3117 return 0; 3118 3119 /* 3120 * If this block group is smaller than 100 megs don't bother caching the 3121 * block group. 3122 */ 3123 if (block_group->length < (100 * SZ_1M)) { 3124 spin_lock(&block_group->lock); 3125 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3126 spin_unlock(&block_group->lock); 3127 return 0; 3128 } 3129 3130 if (TRANS_ABORTED(trans)) 3131 return 0; 3132 again: 3133 inode = lookup_free_space_inode(block_group, path); 3134 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3135 ret = PTR_ERR(inode); 3136 btrfs_release_path(path); 3137 goto out; 3138 } 3139 3140 if (IS_ERR(inode)) { 3141 BUG_ON(retries); 3142 retries++; 3143 3144 if (block_group->ro) 3145 goto out_free; 3146 3147 ret = create_free_space_inode(trans, block_group, path); 3148 if (ret) 3149 goto out_free; 3150 goto again; 3151 } 3152 3153 /* 3154 * We want to set the generation to 0, that way if anything goes wrong 3155 * from here on out we know not to trust this cache when we load up next 3156 * time. 3157 */ 3158 BTRFS_I(inode)->generation = 0; 3159 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3160 if (ret) { 3161 /* 3162 * So theoretically we could recover from this, simply set the 3163 * super cache generation to 0 so we know to invalidate the 3164 * cache, but then we'd have to keep track of the block groups 3165 * that fail this way so we know we _have_ to reset this cache 3166 * before the next commit or risk reading stale cache. So to 3167 * limit our exposure to horrible edge cases lets just abort the 3168 * transaction, this only happens in really bad situations 3169 * anyway. 3170 */ 3171 btrfs_abort_transaction(trans, ret); 3172 goto out_put; 3173 } 3174 WARN_ON(ret); 3175 3176 /* We've already setup this transaction, go ahead and exit */ 3177 if (block_group->cache_generation == trans->transid && 3178 i_size_read(inode)) { 3179 dcs = BTRFS_DC_SETUP; 3180 goto out_put; 3181 } 3182 3183 if (i_size_read(inode) > 0) { 3184 ret = btrfs_check_trunc_cache_free_space(fs_info, 3185 &fs_info->global_block_rsv); 3186 if (ret) 3187 goto out_put; 3188 3189 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3190 if (ret) 3191 goto out_put; 3192 } 3193 3194 spin_lock(&block_group->lock); 3195 if (block_group->cached != BTRFS_CACHE_FINISHED || 3196 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3197 /* 3198 * don't bother trying to write stuff out _if_ 3199 * a) we're not cached, 3200 * b) we're with nospace_cache mount option, 3201 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3202 */ 3203 dcs = BTRFS_DC_WRITTEN; 3204 spin_unlock(&block_group->lock); 3205 goto out_put; 3206 } 3207 spin_unlock(&block_group->lock); 3208 3209 /* 3210 * We hit an ENOSPC when setting up the cache in this transaction, just 3211 * skip doing the setup, we've already cleared the cache so we're safe. 3212 */ 3213 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3214 ret = -ENOSPC; 3215 goto out_put; 3216 } 3217 3218 /* 3219 * Try to preallocate enough space based on how big the block group is. 3220 * Keep in mind this has to include any pinned space which could end up 3221 * taking up quite a bit since it's not folded into the other space 3222 * cache. 3223 */ 3224 cache_size = div_u64(block_group->length, SZ_256M); 3225 if (!cache_size) 3226 cache_size = 1; 3227 3228 cache_size *= 16; 3229 cache_size *= fs_info->sectorsize; 3230 3231 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3232 cache_size, false); 3233 if (ret) 3234 goto out_put; 3235 3236 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3237 cache_size, cache_size, 3238 &alloc_hint); 3239 /* 3240 * Our cache requires contiguous chunks so that we don't modify a bunch 3241 * of metadata or split extents when writing the cache out, which means 3242 * we can enospc if we are heavily fragmented in addition to just normal 3243 * out of space conditions. So if we hit this just skip setting up any 3244 * other block groups for this transaction, maybe we'll unpin enough 3245 * space the next time around. 3246 */ 3247 if (!ret) 3248 dcs = BTRFS_DC_SETUP; 3249 else if (ret == -ENOSPC) 3250 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3251 3252 out_put: 3253 iput(inode); 3254 out_free: 3255 btrfs_release_path(path); 3256 out: 3257 spin_lock(&block_group->lock); 3258 if (!ret && dcs == BTRFS_DC_SETUP) 3259 block_group->cache_generation = trans->transid; 3260 block_group->disk_cache_state = dcs; 3261 spin_unlock(&block_group->lock); 3262 3263 extent_changeset_free(data_reserved); 3264 return ret; 3265 } 3266 3267 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3268 { 3269 struct btrfs_fs_info *fs_info = trans->fs_info; 3270 struct btrfs_block_group *cache, *tmp; 3271 struct btrfs_transaction *cur_trans = trans->transaction; 3272 struct btrfs_path *path; 3273 3274 if (list_empty(&cur_trans->dirty_bgs) || 3275 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3276 return 0; 3277 3278 path = btrfs_alloc_path(); 3279 if (!path) 3280 return -ENOMEM; 3281 3282 /* Could add new block groups, use _safe just in case */ 3283 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3284 dirty_list) { 3285 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3286 cache_save_setup(cache, trans, path); 3287 } 3288 3289 btrfs_free_path(path); 3290 return 0; 3291 } 3292 3293 /* 3294 * Transaction commit does final block group cache writeback during a critical 3295 * section where nothing is allowed to change the FS. This is required in 3296 * order for the cache to actually match the block group, but can introduce a 3297 * lot of latency into the commit. 3298 * 3299 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3300 * There's a chance we'll have to redo some of it if the block group changes 3301 * again during the commit, but it greatly reduces the commit latency by 3302 * getting rid of the easy block groups while we're still allowing others to 3303 * join the commit. 3304 */ 3305 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3306 { 3307 struct btrfs_fs_info *fs_info = trans->fs_info; 3308 struct btrfs_block_group *cache; 3309 struct btrfs_transaction *cur_trans = trans->transaction; 3310 int ret = 0; 3311 int should_put; 3312 struct btrfs_path *path = NULL; 3313 LIST_HEAD(dirty); 3314 struct list_head *io = &cur_trans->io_bgs; 3315 int loops = 0; 3316 3317 spin_lock(&cur_trans->dirty_bgs_lock); 3318 if (list_empty(&cur_trans->dirty_bgs)) { 3319 spin_unlock(&cur_trans->dirty_bgs_lock); 3320 return 0; 3321 } 3322 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3323 spin_unlock(&cur_trans->dirty_bgs_lock); 3324 3325 again: 3326 /* Make sure all the block groups on our dirty list actually exist */ 3327 btrfs_create_pending_block_groups(trans); 3328 3329 if (!path) { 3330 path = btrfs_alloc_path(); 3331 if (!path) { 3332 ret = -ENOMEM; 3333 goto out; 3334 } 3335 } 3336 3337 /* 3338 * cache_write_mutex is here only to save us from balance or automatic 3339 * removal of empty block groups deleting this block group while we are 3340 * writing out the cache 3341 */ 3342 mutex_lock(&trans->transaction->cache_write_mutex); 3343 while (!list_empty(&dirty)) { 3344 bool drop_reserve = true; 3345 3346 cache = list_first_entry(&dirty, struct btrfs_block_group, 3347 dirty_list); 3348 /* 3349 * This can happen if something re-dirties a block group that 3350 * is already under IO. Just wait for it to finish and then do 3351 * it all again 3352 */ 3353 if (!list_empty(&cache->io_list)) { 3354 list_del_init(&cache->io_list); 3355 btrfs_wait_cache_io(trans, cache, path); 3356 btrfs_put_block_group(cache); 3357 } 3358 3359 3360 /* 3361 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3362 * it should update the cache_state. Don't delete until after 3363 * we wait. 3364 * 3365 * Since we're not running in the commit critical section 3366 * we need the dirty_bgs_lock to protect from update_block_group 3367 */ 3368 spin_lock(&cur_trans->dirty_bgs_lock); 3369 list_del_init(&cache->dirty_list); 3370 spin_unlock(&cur_trans->dirty_bgs_lock); 3371 3372 should_put = 1; 3373 3374 cache_save_setup(cache, trans, path); 3375 3376 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3377 cache->io_ctl.inode = NULL; 3378 ret = btrfs_write_out_cache(trans, cache, path); 3379 if (ret == 0 && cache->io_ctl.inode) { 3380 should_put = 0; 3381 3382 /* 3383 * The cache_write_mutex is protecting the 3384 * io_list, also refer to the definition of 3385 * btrfs_transaction::io_bgs for more details 3386 */ 3387 list_add_tail(&cache->io_list, io); 3388 } else { 3389 /* 3390 * If we failed to write the cache, the 3391 * generation will be bad and life goes on 3392 */ 3393 ret = 0; 3394 } 3395 } 3396 if (!ret) { 3397 ret = update_block_group_item(trans, path, cache); 3398 /* 3399 * Our block group might still be attached to the list 3400 * of new block groups in the transaction handle of some 3401 * other task (struct btrfs_trans_handle->new_bgs). This 3402 * means its block group item isn't yet in the extent 3403 * tree. If this happens ignore the error, as we will 3404 * try again later in the critical section of the 3405 * transaction commit. 3406 */ 3407 if (ret == -ENOENT) { 3408 ret = 0; 3409 spin_lock(&cur_trans->dirty_bgs_lock); 3410 if (list_empty(&cache->dirty_list)) { 3411 list_add_tail(&cache->dirty_list, 3412 &cur_trans->dirty_bgs); 3413 btrfs_get_block_group(cache); 3414 drop_reserve = false; 3415 } 3416 spin_unlock(&cur_trans->dirty_bgs_lock); 3417 } else if (ret) { 3418 btrfs_abort_transaction(trans, ret); 3419 } 3420 } 3421 3422 /* If it's not on the io list, we need to put the block group */ 3423 if (should_put) 3424 btrfs_put_block_group(cache); 3425 if (drop_reserve) 3426 btrfs_delayed_refs_rsv_release(fs_info, 1); 3427 /* 3428 * Avoid blocking other tasks for too long. It might even save 3429 * us from writing caches for block groups that are going to be 3430 * removed. 3431 */ 3432 mutex_unlock(&trans->transaction->cache_write_mutex); 3433 if (ret) 3434 goto out; 3435 mutex_lock(&trans->transaction->cache_write_mutex); 3436 } 3437 mutex_unlock(&trans->transaction->cache_write_mutex); 3438 3439 /* 3440 * Go through delayed refs for all the stuff we've just kicked off 3441 * and then loop back (just once) 3442 */ 3443 if (!ret) 3444 ret = btrfs_run_delayed_refs(trans, 0); 3445 if (!ret && loops == 0) { 3446 loops++; 3447 spin_lock(&cur_trans->dirty_bgs_lock); 3448 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3449 /* 3450 * dirty_bgs_lock protects us from concurrent block group 3451 * deletes too (not just cache_write_mutex). 3452 */ 3453 if (!list_empty(&dirty)) { 3454 spin_unlock(&cur_trans->dirty_bgs_lock); 3455 goto again; 3456 } 3457 spin_unlock(&cur_trans->dirty_bgs_lock); 3458 } 3459 out: 3460 if (ret < 0) { 3461 spin_lock(&cur_trans->dirty_bgs_lock); 3462 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3463 spin_unlock(&cur_trans->dirty_bgs_lock); 3464 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3465 } 3466 3467 btrfs_free_path(path); 3468 return ret; 3469 } 3470 3471 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3472 { 3473 struct btrfs_fs_info *fs_info = trans->fs_info; 3474 struct btrfs_block_group *cache; 3475 struct btrfs_transaction *cur_trans = trans->transaction; 3476 int ret = 0; 3477 int should_put; 3478 struct btrfs_path *path; 3479 struct list_head *io = &cur_trans->io_bgs; 3480 3481 path = btrfs_alloc_path(); 3482 if (!path) 3483 return -ENOMEM; 3484 3485 /* 3486 * Even though we are in the critical section of the transaction commit, 3487 * we can still have concurrent tasks adding elements to this 3488 * transaction's list of dirty block groups. These tasks correspond to 3489 * endio free space workers started when writeback finishes for a 3490 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3491 * allocate new block groups as a result of COWing nodes of the root 3492 * tree when updating the free space inode. The writeback for the space 3493 * caches is triggered by an earlier call to 3494 * btrfs_start_dirty_block_groups() and iterations of the following 3495 * loop. 3496 * Also we want to do the cache_save_setup first and then run the 3497 * delayed refs to make sure we have the best chance at doing this all 3498 * in one shot. 3499 */ 3500 spin_lock(&cur_trans->dirty_bgs_lock); 3501 while (!list_empty(&cur_trans->dirty_bgs)) { 3502 cache = list_first_entry(&cur_trans->dirty_bgs, 3503 struct btrfs_block_group, 3504 dirty_list); 3505 3506 /* 3507 * This can happen if cache_save_setup re-dirties a block group 3508 * that is already under IO. Just wait for it to finish and 3509 * then do it all again 3510 */ 3511 if (!list_empty(&cache->io_list)) { 3512 spin_unlock(&cur_trans->dirty_bgs_lock); 3513 list_del_init(&cache->io_list); 3514 btrfs_wait_cache_io(trans, cache, path); 3515 btrfs_put_block_group(cache); 3516 spin_lock(&cur_trans->dirty_bgs_lock); 3517 } 3518 3519 /* 3520 * Don't remove from the dirty list until after we've waited on 3521 * any pending IO 3522 */ 3523 list_del_init(&cache->dirty_list); 3524 spin_unlock(&cur_trans->dirty_bgs_lock); 3525 should_put = 1; 3526 3527 cache_save_setup(cache, trans, path); 3528 3529 if (!ret) 3530 ret = btrfs_run_delayed_refs(trans, 3531 (unsigned long) -1); 3532 3533 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3534 cache->io_ctl.inode = NULL; 3535 ret = btrfs_write_out_cache(trans, cache, path); 3536 if (ret == 0 && cache->io_ctl.inode) { 3537 should_put = 0; 3538 list_add_tail(&cache->io_list, io); 3539 } else { 3540 /* 3541 * If we failed to write the cache, the 3542 * generation will be bad and life goes on 3543 */ 3544 ret = 0; 3545 } 3546 } 3547 if (!ret) { 3548 ret = update_block_group_item(trans, path, cache); 3549 /* 3550 * One of the free space endio workers might have 3551 * created a new block group while updating a free space 3552 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3553 * and hasn't released its transaction handle yet, in 3554 * which case the new block group is still attached to 3555 * its transaction handle and its creation has not 3556 * finished yet (no block group item in the extent tree 3557 * yet, etc). If this is the case, wait for all free 3558 * space endio workers to finish and retry. This is a 3559 * very rare case so no need for a more efficient and 3560 * complex approach. 3561 */ 3562 if (ret == -ENOENT) { 3563 wait_event(cur_trans->writer_wait, 3564 atomic_read(&cur_trans->num_writers) == 1); 3565 ret = update_block_group_item(trans, path, cache); 3566 } 3567 if (ret) 3568 btrfs_abort_transaction(trans, ret); 3569 } 3570 3571 /* If its not on the io list, we need to put the block group */ 3572 if (should_put) 3573 btrfs_put_block_group(cache); 3574 btrfs_delayed_refs_rsv_release(fs_info, 1); 3575 spin_lock(&cur_trans->dirty_bgs_lock); 3576 } 3577 spin_unlock(&cur_trans->dirty_bgs_lock); 3578 3579 /* 3580 * Refer to the definition of io_bgs member for details why it's safe 3581 * to use it without any locking 3582 */ 3583 while (!list_empty(io)) { 3584 cache = list_first_entry(io, struct btrfs_block_group, 3585 io_list); 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(trans, cache, path); 3588 btrfs_put_block_group(cache); 3589 } 3590 3591 btrfs_free_path(path); 3592 return ret; 3593 } 3594 3595 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3596 u64 bytenr, u64 num_bytes, bool alloc) 3597 { 3598 struct btrfs_fs_info *info = trans->fs_info; 3599 struct btrfs_block_group *cache = NULL; 3600 u64 total = num_bytes; 3601 u64 old_val; 3602 u64 byte_in_group; 3603 int factor; 3604 int ret = 0; 3605 3606 /* Block accounting for super block */ 3607 spin_lock(&info->delalloc_root_lock); 3608 old_val = btrfs_super_bytes_used(info->super_copy); 3609 if (alloc) 3610 old_val += num_bytes; 3611 else 3612 old_val -= num_bytes; 3613 btrfs_set_super_bytes_used(info->super_copy, old_val); 3614 spin_unlock(&info->delalloc_root_lock); 3615 3616 while (total) { 3617 struct btrfs_space_info *space_info; 3618 bool reclaim = false; 3619 3620 cache = btrfs_lookup_block_group(info, bytenr); 3621 if (!cache) { 3622 ret = -ENOENT; 3623 break; 3624 } 3625 space_info = cache->space_info; 3626 factor = btrfs_bg_type_to_factor(cache->flags); 3627 3628 /* 3629 * If this block group has free space cache written out, we 3630 * need to make sure to load it if we are removing space. This 3631 * is because we need the unpinning stage to actually add the 3632 * space back to the block group, otherwise we will leak space. 3633 */ 3634 if (!alloc && !btrfs_block_group_done(cache)) 3635 btrfs_cache_block_group(cache, true); 3636 3637 byte_in_group = bytenr - cache->start; 3638 WARN_ON(byte_in_group > cache->length); 3639 3640 spin_lock(&space_info->lock); 3641 spin_lock(&cache->lock); 3642 3643 if (btrfs_test_opt(info, SPACE_CACHE) && 3644 cache->disk_cache_state < BTRFS_DC_CLEAR) 3645 cache->disk_cache_state = BTRFS_DC_CLEAR; 3646 3647 old_val = cache->used; 3648 num_bytes = min(total, cache->length - byte_in_group); 3649 if (alloc) { 3650 old_val += num_bytes; 3651 cache->used = old_val; 3652 cache->reserved -= num_bytes; 3653 space_info->bytes_reserved -= num_bytes; 3654 space_info->bytes_used += num_bytes; 3655 space_info->disk_used += num_bytes * factor; 3656 spin_unlock(&cache->lock); 3657 spin_unlock(&space_info->lock); 3658 } else { 3659 old_val -= num_bytes; 3660 cache->used = old_val; 3661 cache->pinned += num_bytes; 3662 btrfs_space_info_update_bytes_pinned(info, space_info, 3663 num_bytes); 3664 space_info->bytes_used -= num_bytes; 3665 space_info->disk_used -= num_bytes * factor; 3666 3667 reclaim = should_reclaim_block_group(cache, num_bytes); 3668 3669 spin_unlock(&cache->lock); 3670 spin_unlock(&space_info->lock); 3671 3672 set_extent_bit(&trans->transaction->pinned_extents, 3673 bytenr, bytenr + num_bytes - 1, 3674 EXTENT_DIRTY, NULL); 3675 } 3676 3677 spin_lock(&trans->transaction->dirty_bgs_lock); 3678 if (list_empty(&cache->dirty_list)) { 3679 list_add_tail(&cache->dirty_list, 3680 &trans->transaction->dirty_bgs); 3681 trans->delayed_ref_updates++; 3682 btrfs_get_block_group(cache); 3683 } 3684 spin_unlock(&trans->transaction->dirty_bgs_lock); 3685 3686 /* 3687 * No longer have used bytes in this block group, queue it for 3688 * deletion. We do this after adding the block group to the 3689 * dirty list to avoid races between cleaner kthread and space 3690 * cache writeout. 3691 */ 3692 if (!alloc && old_val == 0) { 3693 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3694 btrfs_mark_bg_unused(cache); 3695 } else if (!alloc && reclaim) { 3696 btrfs_mark_bg_to_reclaim(cache); 3697 } 3698 3699 btrfs_put_block_group(cache); 3700 total -= num_bytes; 3701 bytenr += num_bytes; 3702 } 3703 3704 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3705 btrfs_update_delayed_refs_rsv(trans); 3706 return ret; 3707 } 3708 3709 /* 3710 * Update the block_group and space info counters. 3711 * 3712 * @cache: The cache we are manipulating 3713 * @ram_bytes: The number of bytes of file content, and will be same to 3714 * @num_bytes except for the compress path. 3715 * @num_bytes: The number of bytes in question 3716 * @delalloc: The blocks are allocated for the delalloc write 3717 * 3718 * This is called by the allocator when it reserves space. If this is a 3719 * reservation and the block group has become read only we cannot make the 3720 * reservation and return -EAGAIN, otherwise this function always succeeds. 3721 */ 3722 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3723 u64 ram_bytes, u64 num_bytes, int delalloc, 3724 bool force_wrong_size_class) 3725 { 3726 struct btrfs_space_info *space_info = cache->space_info; 3727 enum btrfs_block_group_size_class size_class; 3728 int ret = 0; 3729 3730 spin_lock(&space_info->lock); 3731 spin_lock(&cache->lock); 3732 if (cache->ro) { 3733 ret = -EAGAIN; 3734 goto out; 3735 } 3736 3737 if (btrfs_block_group_should_use_size_class(cache)) { 3738 size_class = btrfs_calc_block_group_size_class(num_bytes); 3739 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3740 if (ret) 3741 goto out; 3742 } 3743 cache->reserved += num_bytes; 3744 space_info->bytes_reserved += num_bytes; 3745 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3746 space_info->flags, num_bytes, 1); 3747 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3748 space_info, -ram_bytes); 3749 if (delalloc) 3750 cache->delalloc_bytes += num_bytes; 3751 3752 /* 3753 * Compression can use less space than we reserved, so wake tickets if 3754 * that happens. 3755 */ 3756 if (num_bytes < ram_bytes) 3757 btrfs_try_granting_tickets(cache->fs_info, space_info); 3758 out: 3759 spin_unlock(&cache->lock); 3760 spin_unlock(&space_info->lock); 3761 return ret; 3762 } 3763 3764 /* 3765 * Update the block_group and space info counters. 3766 * 3767 * @cache: The cache we are manipulating 3768 * @num_bytes: The number of bytes in question 3769 * @delalloc: The blocks are allocated for the delalloc write 3770 * 3771 * This is called by somebody who is freeing space that was never actually used 3772 * on disk. For example if you reserve some space for a new leaf in transaction 3773 * A and before transaction A commits you free that leaf, you call this with 3774 * reserve set to 0 in order to clear the reservation. 3775 */ 3776 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3777 u64 num_bytes, int delalloc) 3778 { 3779 struct btrfs_space_info *space_info = cache->space_info; 3780 3781 spin_lock(&space_info->lock); 3782 spin_lock(&cache->lock); 3783 if (cache->ro) 3784 space_info->bytes_readonly += num_bytes; 3785 cache->reserved -= num_bytes; 3786 space_info->bytes_reserved -= num_bytes; 3787 space_info->max_extent_size = 0; 3788 3789 if (delalloc) 3790 cache->delalloc_bytes -= num_bytes; 3791 spin_unlock(&cache->lock); 3792 3793 btrfs_try_granting_tickets(cache->fs_info, space_info); 3794 spin_unlock(&space_info->lock); 3795 } 3796 3797 static void force_metadata_allocation(struct btrfs_fs_info *info) 3798 { 3799 struct list_head *head = &info->space_info; 3800 struct btrfs_space_info *found; 3801 3802 list_for_each_entry(found, head, list) { 3803 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3804 found->force_alloc = CHUNK_ALLOC_FORCE; 3805 } 3806 } 3807 3808 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3809 struct btrfs_space_info *sinfo, int force) 3810 { 3811 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3812 u64 thresh; 3813 3814 if (force == CHUNK_ALLOC_FORCE) 3815 return 1; 3816 3817 /* 3818 * in limited mode, we want to have some free space up to 3819 * about 1% of the FS size. 3820 */ 3821 if (force == CHUNK_ALLOC_LIMITED) { 3822 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3823 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3824 3825 if (sinfo->total_bytes - bytes_used < thresh) 3826 return 1; 3827 } 3828 3829 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3830 return 0; 3831 return 1; 3832 } 3833 3834 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3835 { 3836 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3837 3838 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3839 } 3840 3841 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3842 { 3843 struct btrfs_block_group *bg; 3844 int ret; 3845 3846 /* 3847 * Check if we have enough space in the system space info because we 3848 * will need to update device items in the chunk btree and insert a new 3849 * chunk item in the chunk btree as well. This will allocate a new 3850 * system block group if needed. 3851 */ 3852 check_system_chunk(trans, flags); 3853 3854 bg = btrfs_create_chunk(trans, flags); 3855 if (IS_ERR(bg)) { 3856 ret = PTR_ERR(bg); 3857 goto out; 3858 } 3859 3860 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3861 /* 3862 * Normally we are not expected to fail with -ENOSPC here, since we have 3863 * previously reserved space in the system space_info and allocated one 3864 * new system chunk if necessary. However there are three exceptions: 3865 * 3866 * 1) We may have enough free space in the system space_info but all the 3867 * existing system block groups have a profile which can not be used 3868 * for extent allocation. 3869 * 3870 * This happens when mounting in degraded mode. For example we have a 3871 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3872 * using the other device in degraded mode. If we then allocate a chunk, 3873 * we may have enough free space in the existing system space_info, but 3874 * none of the block groups can be used for extent allocation since they 3875 * have a RAID1 profile, and because we are in degraded mode with a 3876 * single device, we are forced to allocate a new system chunk with a 3877 * SINGLE profile. Making check_system_chunk() iterate over all system 3878 * block groups and check if they have a usable profile and enough space 3879 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3880 * try again after forcing allocation of a new system chunk. Like this 3881 * we avoid paying the cost of that search in normal circumstances, when 3882 * we were not mounted in degraded mode; 3883 * 3884 * 2) We had enough free space info the system space_info, and one suitable 3885 * block group to allocate from when we called check_system_chunk() 3886 * above. However right after we called it, the only system block group 3887 * with enough free space got turned into RO mode by a running scrub, 3888 * and in this case we have to allocate a new one and retry. We only 3889 * need do this allocate and retry once, since we have a transaction 3890 * handle and scrub uses the commit root to search for block groups; 3891 * 3892 * 3) We had one system block group with enough free space when we called 3893 * check_system_chunk(), but after that, right before we tried to 3894 * allocate the last extent buffer we needed, a discard operation came 3895 * in and it temporarily removed the last free space entry from the 3896 * block group (discard removes a free space entry, discards it, and 3897 * then adds back the entry to the block group cache). 3898 */ 3899 if (ret == -ENOSPC) { 3900 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3901 struct btrfs_block_group *sys_bg; 3902 3903 sys_bg = btrfs_create_chunk(trans, sys_flags); 3904 if (IS_ERR(sys_bg)) { 3905 ret = PTR_ERR(sys_bg); 3906 btrfs_abort_transaction(trans, ret); 3907 goto out; 3908 } 3909 3910 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3911 if (ret) { 3912 btrfs_abort_transaction(trans, ret); 3913 goto out; 3914 } 3915 3916 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3917 if (ret) { 3918 btrfs_abort_transaction(trans, ret); 3919 goto out; 3920 } 3921 } else if (ret) { 3922 btrfs_abort_transaction(trans, ret); 3923 goto out; 3924 } 3925 out: 3926 btrfs_trans_release_chunk_metadata(trans); 3927 3928 if (ret) 3929 return ERR_PTR(ret); 3930 3931 btrfs_get_block_group(bg); 3932 return bg; 3933 } 3934 3935 /* 3936 * Chunk allocation is done in 2 phases: 3937 * 3938 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3939 * the chunk, the chunk mapping, create its block group and add the items 3940 * that belong in the chunk btree to it - more specifically, we need to 3941 * update device items in the chunk btree and add a new chunk item to it. 3942 * 3943 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3944 * group item to the extent btree and the device extent items to the devices 3945 * btree. 3946 * 3947 * This is done to prevent deadlocks. For example when COWing a node from the 3948 * extent btree we are holding a write lock on the node's parent and if we 3949 * trigger chunk allocation and attempted to insert the new block group item 3950 * in the extent btree right way, we could deadlock because the path for the 3951 * insertion can include that parent node. At first glance it seems impossible 3952 * to trigger chunk allocation after starting a transaction since tasks should 3953 * reserve enough transaction units (metadata space), however while that is true 3954 * most of the time, chunk allocation may still be triggered for several reasons: 3955 * 3956 * 1) When reserving metadata, we check if there is enough free space in the 3957 * metadata space_info and therefore don't trigger allocation of a new chunk. 3958 * However later when the task actually tries to COW an extent buffer from 3959 * the extent btree or from the device btree for example, it is forced to 3960 * allocate a new block group (chunk) because the only one that had enough 3961 * free space was just turned to RO mode by a running scrub for example (or 3962 * device replace, block group reclaim thread, etc), so we can not use it 3963 * for allocating an extent and end up being forced to allocate a new one; 3964 * 3965 * 2) Because we only check that the metadata space_info has enough free bytes, 3966 * we end up not allocating a new metadata chunk in that case. However if 3967 * the filesystem was mounted in degraded mode, none of the existing block 3968 * groups might be suitable for extent allocation due to their incompatible 3969 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3970 * use a RAID1 profile, in degraded mode using a single device). In this case 3971 * when the task attempts to COW some extent buffer of the extent btree for 3972 * example, it will trigger allocation of a new metadata block group with a 3973 * suitable profile (SINGLE profile in the example of the degraded mount of 3974 * the RAID1 filesystem); 3975 * 3976 * 3) The task has reserved enough transaction units / metadata space, but when 3977 * it attempts to COW an extent buffer from the extent or device btree for 3978 * example, it does not find any free extent in any metadata block group, 3979 * therefore forced to try to allocate a new metadata block group. 3980 * This is because some other task allocated all available extents in the 3981 * meanwhile - this typically happens with tasks that don't reserve space 3982 * properly, either intentionally or as a bug. One example where this is 3983 * done intentionally is fsync, as it does not reserve any transaction units 3984 * and ends up allocating a variable number of metadata extents for log 3985 * tree extent buffers; 3986 * 3987 * 4) The task has reserved enough transaction units / metadata space, but right 3988 * before it tries to allocate the last extent buffer it needs, a discard 3989 * operation comes in and, temporarily, removes the last free space entry from 3990 * the only metadata block group that had free space (discard starts by 3991 * removing a free space entry from a block group, then does the discard 3992 * operation and, once it's done, it adds back the free space entry to the 3993 * block group). 3994 * 3995 * We also need this 2 phases setup when adding a device to a filesystem with 3996 * a seed device - we must create new metadata and system chunks without adding 3997 * any of the block group items to the chunk, extent and device btrees. If we 3998 * did not do it this way, we would get ENOSPC when attempting to update those 3999 * btrees, since all the chunks from the seed device are read-only. 4000 * 4001 * Phase 1 does the updates and insertions to the chunk btree because if we had 4002 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4003 * parallel, we risk having too many system chunks allocated by many tasks if 4004 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4005 * extreme case this leads to exhaustion of the system chunk array in the 4006 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4007 * and with RAID filesystems (so we have more device items in the chunk btree). 4008 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4009 * the system chunk array due to concurrent allocations") provides more details. 4010 * 4011 * Allocation of system chunks does not happen through this function. A task that 4012 * needs to update the chunk btree (the only btree that uses system chunks), must 4013 * preallocate chunk space by calling either check_system_chunk() or 4014 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4015 * metadata chunk or when removing a chunk, while the later is used before doing 4016 * a modification to the chunk btree - use cases for the later are adding, 4017 * removing and resizing a device as well as relocation of a system chunk. 4018 * See the comment below for more details. 4019 * 4020 * The reservation of system space, done through check_system_chunk(), as well 4021 * as all the updates and insertions into the chunk btree must be done while 4022 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4023 * an extent buffer from the chunks btree we never trigger allocation of a new 4024 * system chunk, which would result in a deadlock (trying to lock twice an 4025 * extent buffer of the chunk btree, first time before triggering the chunk 4026 * allocation and the second time during chunk allocation while attempting to 4027 * update the chunks btree). The system chunk array is also updated while holding 4028 * that mutex. The same logic applies to removing chunks - we must reserve system 4029 * space, update the chunk btree and the system chunk array in the superblock 4030 * while holding fs_info->chunk_mutex. 4031 * 4032 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4033 * 4034 * If @force is CHUNK_ALLOC_FORCE: 4035 * - return 1 if it successfully allocates a chunk, 4036 * - return errors including -ENOSPC otherwise. 4037 * If @force is NOT CHUNK_ALLOC_FORCE: 4038 * - return 0 if it doesn't need to allocate a new chunk, 4039 * - return 1 if it successfully allocates a chunk, 4040 * - return errors including -ENOSPC otherwise. 4041 */ 4042 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4043 enum btrfs_chunk_alloc_enum force) 4044 { 4045 struct btrfs_fs_info *fs_info = trans->fs_info; 4046 struct btrfs_space_info *space_info; 4047 struct btrfs_block_group *ret_bg; 4048 bool wait_for_alloc = false; 4049 bool should_alloc = false; 4050 bool from_extent_allocation = false; 4051 int ret = 0; 4052 4053 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4054 from_extent_allocation = true; 4055 force = CHUNK_ALLOC_FORCE; 4056 } 4057 4058 /* Don't re-enter if we're already allocating a chunk */ 4059 if (trans->allocating_chunk) 4060 return -ENOSPC; 4061 /* 4062 * Allocation of system chunks can not happen through this path, as we 4063 * could end up in a deadlock if we are allocating a data or metadata 4064 * chunk and there is another task modifying the chunk btree. 4065 * 4066 * This is because while we are holding the chunk mutex, we will attempt 4067 * to add the new chunk item to the chunk btree or update an existing 4068 * device item in the chunk btree, while the other task that is modifying 4069 * the chunk btree is attempting to COW an extent buffer while holding a 4070 * lock on it and on its parent - if the COW operation triggers a system 4071 * chunk allocation, then we can deadlock because we are holding the 4072 * chunk mutex and we may need to access that extent buffer or its parent 4073 * in order to add the chunk item or update a device item. 4074 * 4075 * Tasks that want to modify the chunk tree should reserve system space 4076 * before updating the chunk btree, by calling either 4077 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4078 * It's possible that after a task reserves the space, it still ends up 4079 * here - this happens in the cases described above at do_chunk_alloc(). 4080 * The task will have to either retry or fail. 4081 */ 4082 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4083 return -ENOSPC; 4084 4085 space_info = btrfs_find_space_info(fs_info, flags); 4086 ASSERT(space_info); 4087 4088 do { 4089 spin_lock(&space_info->lock); 4090 if (force < space_info->force_alloc) 4091 force = space_info->force_alloc; 4092 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4093 if (space_info->full) { 4094 /* No more free physical space */ 4095 if (should_alloc) 4096 ret = -ENOSPC; 4097 else 4098 ret = 0; 4099 spin_unlock(&space_info->lock); 4100 return ret; 4101 } else if (!should_alloc) { 4102 spin_unlock(&space_info->lock); 4103 return 0; 4104 } else if (space_info->chunk_alloc) { 4105 /* 4106 * Someone is already allocating, so we need to block 4107 * until this someone is finished and then loop to 4108 * recheck if we should continue with our allocation 4109 * attempt. 4110 */ 4111 wait_for_alloc = true; 4112 force = CHUNK_ALLOC_NO_FORCE; 4113 spin_unlock(&space_info->lock); 4114 mutex_lock(&fs_info->chunk_mutex); 4115 mutex_unlock(&fs_info->chunk_mutex); 4116 } else { 4117 /* Proceed with allocation */ 4118 space_info->chunk_alloc = 1; 4119 wait_for_alloc = false; 4120 spin_unlock(&space_info->lock); 4121 } 4122 4123 cond_resched(); 4124 } while (wait_for_alloc); 4125 4126 mutex_lock(&fs_info->chunk_mutex); 4127 trans->allocating_chunk = true; 4128 4129 /* 4130 * If we have mixed data/metadata chunks we want to make sure we keep 4131 * allocating mixed chunks instead of individual chunks. 4132 */ 4133 if (btrfs_mixed_space_info(space_info)) 4134 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4135 4136 /* 4137 * if we're doing a data chunk, go ahead and make sure that 4138 * we keep a reasonable number of metadata chunks allocated in the 4139 * FS as well. 4140 */ 4141 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4142 fs_info->data_chunk_allocations++; 4143 if (!(fs_info->data_chunk_allocations % 4144 fs_info->metadata_ratio)) 4145 force_metadata_allocation(fs_info); 4146 } 4147 4148 ret_bg = do_chunk_alloc(trans, flags); 4149 trans->allocating_chunk = false; 4150 4151 if (IS_ERR(ret_bg)) { 4152 ret = PTR_ERR(ret_bg); 4153 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4154 /* 4155 * New block group is likely to be used soon. Try to activate 4156 * it now. Failure is OK for now. 4157 */ 4158 btrfs_zone_activate(ret_bg); 4159 } 4160 4161 if (!ret) 4162 btrfs_put_block_group(ret_bg); 4163 4164 spin_lock(&space_info->lock); 4165 if (ret < 0) { 4166 if (ret == -ENOSPC) 4167 space_info->full = 1; 4168 else 4169 goto out; 4170 } else { 4171 ret = 1; 4172 space_info->max_extent_size = 0; 4173 } 4174 4175 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4176 out: 4177 space_info->chunk_alloc = 0; 4178 spin_unlock(&space_info->lock); 4179 mutex_unlock(&fs_info->chunk_mutex); 4180 4181 return ret; 4182 } 4183 4184 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4185 { 4186 u64 num_dev; 4187 4188 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4189 if (!num_dev) 4190 num_dev = fs_info->fs_devices->rw_devices; 4191 4192 return num_dev; 4193 } 4194 4195 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4196 u64 bytes, 4197 u64 type) 4198 { 4199 struct btrfs_fs_info *fs_info = trans->fs_info; 4200 struct btrfs_space_info *info; 4201 u64 left; 4202 int ret = 0; 4203 4204 /* 4205 * Needed because we can end up allocating a system chunk and for an 4206 * atomic and race free space reservation in the chunk block reserve. 4207 */ 4208 lockdep_assert_held(&fs_info->chunk_mutex); 4209 4210 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4211 spin_lock(&info->lock); 4212 left = info->total_bytes - btrfs_space_info_used(info, true); 4213 spin_unlock(&info->lock); 4214 4215 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4216 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4217 left, bytes, type); 4218 btrfs_dump_space_info(fs_info, info, 0, 0); 4219 } 4220 4221 if (left < bytes) { 4222 u64 flags = btrfs_system_alloc_profile(fs_info); 4223 struct btrfs_block_group *bg; 4224 4225 /* 4226 * Ignore failure to create system chunk. We might end up not 4227 * needing it, as we might not need to COW all nodes/leafs from 4228 * the paths we visit in the chunk tree (they were already COWed 4229 * or created in the current transaction for example). 4230 */ 4231 bg = btrfs_create_chunk(trans, flags); 4232 if (IS_ERR(bg)) { 4233 ret = PTR_ERR(bg); 4234 } else { 4235 /* 4236 * We have a new chunk. We also need to activate it for 4237 * zoned filesystem. 4238 */ 4239 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4240 if (ret < 0) 4241 return; 4242 4243 /* 4244 * If we fail to add the chunk item here, we end up 4245 * trying again at phase 2 of chunk allocation, at 4246 * btrfs_create_pending_block_groups(). So ignore 4247 * any error here. An ENOSPC here could happen, due to 4248 * the cases described at do_chunk_alloc() - the system 4249 * block group we just created was just turned into RO 4250 * mode by a scrub for example, or a running discard 4251 * temporarily removed its free space entries, etc. 4252 */ 4253 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4254 } 4255 } 4256 4257 if (!ret) { 4258 ret = btrfs_block_rsv_add(fs_info, 4259 &fs_info->chunk_block_rsv, 4260 bytes, BTRFS_RESERVE_NO_FLUSH); 4261 if (!ret) 4262 trans->chunk_bytes_reserved += bytes; 4263 } 4264 } 4265 4266 /* 4267 * Reserve space in the system space for allocating or removing a chunk. 4268 * The caller must be holding fs_info->chunk_mutex. 4269 */ 4270 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4271 { 4272 struct btrfs_fs_info *fs_info = trans->fs_info; 4273 const u64 num_devs = get_profile_num_devs(fs_info, type); 4274 u64 bytes; 4275 4276 /* num_devs device items to update and 1 chunk item to add or remove. */ 4277 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4278 btrfs_calc_insert_metadata_size(fs_info, 1); 4279 4280 reserve_chunk_space(trans, bytes, type); 4281 } 4282 4283 /* 4284 * Reserve space in the system space, if needed, for doing a modification to the 4285 * chunk btree. 4286 * 4287 * @trans: A transaction handle. 4288 * @is_item_insertion: Indicate if the modification is for inserting a new item 4289 * in the chunk btree or if it's for the deletion or update 4290 * of an existing item. 4291 * 4292 * This is used in a context where we need to update the chunk btree outside 4293 * block group allocation and removal, to avoid a deadlock with a concurrent 4294 * task that is allocating a metadata or data block group and therefore needs to 4295 * update the chunk btree while holding the chunk mutex. After the update to the 4296 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4297 * 4298 */ 4299 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4300 bool is_item_insertion) 4301 { 4302 struct btrfs_fs_info *fs_info = trans->fs_info; 4303 u64 bytes; 4304 4305 if (is_item_insertion) 4306 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4307 else 4308 bytes = btrfs_calc_metadata_size(fs_info, 1); 4309 4310 mutex_lock(&fs_info->chunk_mutex); 4311 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4312 mutex_unlock(&fs_info->chunk_mutex); 4313 } 4314 4315 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4316 { 4317 struct btrfs_block_group *block_group; 4318 4319 block_group = btrfs_lookup_first_block_group(info, 0); 4320 while (block_group) { 4321 btrfs_wait_block_group_cache_done(block_group); 4322 spin_lock(&block_group->lock); 4323 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4324 &block_group->runtime_flags)) { 4325 struct inode *inode = block_group->inode; 4326 4327 block_group->inode = NULL; 4328 spin_unlock(&block_group->lock); 4329 4330 ASSERT(block_group->io_ctl.inode == NULL); 4331 iput(inode); 4332 } else { 4333 spin_unlock(&block_group->lock); 4334 } 4335 block_group = btrfs_next_block_group(block_group); 4336 } 4337 } 4338 4339 /* 4340 * Must be called only after stopping all workers, since we could have block 4341 * group caching kthreads running, and therefore they could race with us if we 4342 * freed the block groups before stopping them. 4343 */ 4344 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4345 { 4346 struct btrfs_block_group *block_group; 4347 struct btrfs_space_info *space_info; 4348 struct btrfs_caching_control *caching_ctl; 4349 struct rb_node *n; 4350 4351 if (btrfs_is_zoned(info)) { 4352 if (info->active_meta_bg) { 4353 btrfs_put_block_group(info->active_meta_bg); 4354 info->active_meta_bg = NULL; 4355 } 4356 if (info->active_system_bg) { 4357 btrfs_put_block_group(info->active_system_bg); 4358 info->active_system_bg = NULL; 4359 } 4360 } 4361 4362 write_lock(&info->block_group_cache_lock); 4363 while (!list_empty(&info->caching_block_groups)) { 4364 caching_ctl = list_entry(info->caching_block_groups.next, 4365 struct btrfs_caching_control, list); 4366 list_del(&caching_ctl->list); 4367 btrfs_put_caching_control(caching_ctl); 4368 } 4369 write_unlock(&info->block_group_cache_lock); 4370 4371 spin_lock(&info->unused_bgs_lock); 4372 while (!list_empty(&info->unused_bgs)) { 4373 block_group = list_first_entry(&info->unused_bgs, 4374 struct btrfs_block_group, 4375 bg_list); 4376 list_del_init(&block_group->bg_list); 4377 btrfs_put_block_group(block_group); 4378 } 4379 4380 while (!list_empty(&info->reclaim_bgs)) { 4381 block_group = list_first_entry(&info->reclaim_bgs, 4382 struct btrfs_block_group, 4383 bg_list); 4384 list_del_init(&block_group->bg_list); 4385 btrfs_put_block_group(block_group); 4386 } 4387 spin_unlock(&info->unused_bgs_lock); 4388 4389 spin_lock(&info->zone_active_bgs_lock); 4390 while (!list_empty(&info->zone_active_bgs)) { 4391 block_group = list_first_entry(&info->zone_active_bgs, 4392 struct btrfs_block_group, 4393 active_bg_list); 4394 list_del_init(&block_group->active_bg_list); 4395 btrfs_put_block_group(block_group); 4396 } 4397 spin_unlock(&info->zone_active_bgs_lock); 4398 4399 write_lock(&info->block_group_cache_lock); 4400 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4401 block_group = rb_entry(n, struct btrfs_block_group, 4402 cache_node); 4403 rb_erase_cached(&block_group->cache_node, 4404 &info->block_group_cache_tree); 4405 RB_CLEAR_NODE(&block_group->cache_node); 4406 write_unlock(&info->block_group_cache_lock); 4407 4408 down_write(&block_group->space_info->groups_sem); 4409 list_del(&block_group->list); 4410 up_write(&block_group->space_info->groups_sem); 4411 4412 /* 4413 * We haven't cached this block group, which means we could 4414 * possibly have excluded extents on this block group. 4415 */ 4416 if (block_group->cached == BTRFS_CACHE_NO || 4417 block_group->cached == BTRFS_CACHE_ERROR) 4418 btrfs_free_excluded_extents(block_group); 4419 4420 btrfs_remove_free_space_cache(block_group); 4421 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4422 ASSERT(list_empty(&block_group->dirty_list)); 4423 ASSERT(list_empty(&block_group->io_list)); 4424 ASSERT(list_empty(&block_group->bg_list)); 4425 ASSERT(refcount_read(&block_group->refs) == 1); 4426 ASSERT(block_group->swap_extents == 0); 4427 btrfs_put_block_group(block_group); 4428 4429 write_lock(&info->block_group_cache_lock); 4430 } 4431 write_unlock(&info->block_group_cache_lock); 4432 4433 btrfs_release_global_block_rsv(info); 4434 4435 while (!list_empty(&info->space_info)) { 4436 space_info = list_entry(info->space_info.next, 4437 struct btrfs_space_info, 4438 list); 4439 4440 /* 4441 * Do not hide this behind enospc_debug, this is actually 4442 * important and indicates a real bug if this happens. 4443 */ 4444 if (WARN_ON(space_info->bytes_pinned > 0 || 4445 space_info->bytes_may_use > 0)) 4446 btrfs_dump_space_info(info, space_info, 0, 0); 4447 4448 /* 4449 * If there was a failure to cleanup a log tree, very likely due 4450 * to an IO failure on a writeback attempt of one or more of its 4451 * extent buffers, we could not do proper (and cheap) unaccounting 4452 * of their reserved space, so don't warn on bytes_reserved > 0 in 4453 * that case. 4454 */ 4455 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4456 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4457 if (WARN_ON(space_info->bytes_reserved > 0)) 4458 btrfs_dump_space_info(info, space_info, 0, 0); 4459 } 4460 4461 WARN_ON(space_info->reclaim_size > 0); 4462 list_del(&space_info->list); 4463 btrfs_sysfs_remove_space_info(space_info); 4464 } 4465 return 0; 4466 } 4467 4468 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4469 { 4470 atomic_inc(&cache->frozen); 4471 } 4472 4473 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4474 { 4475 struct btrfs_fs_info *fs_info = block_group->fs_info; 4476 struct extent_map_tree *em_tree; 4477 struct extent_map *em; 4478 bool cleanup; 4479 4480 spin_lock(&block_group->lock); 4481 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4482 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4483 spin_unlock(&block_group->lock); 4484 4485 if (cleanup) { 4486 em_tree = &fs_info->mapping_tree; 4487 write_lock(&em_tree->lock); 4488 em = lookup_extent_mapping(em_tree, block_group->start, 4489 1); 4490 BUG_ON(!em); /* logic error, can't happen */ 4491 remove_extent_mapping(em_tree, em); 4492 write_unlock(&em_tree->lock); 4493 4494 /* once for us and once for the tree */ 4495 free_extent_map(em); 4496 free_extent_map(em); 4497 4498 /* 4499 * We may have left one free space entry and other possible 4500 * tasks trimming this block group have left 1 entry each one. 4501 * Free them if any. 4502 */ 4503 btrfs_remove_free_space_cache(block_group); 4504 } 4505 } 4506 4507 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4508 { 4509 bool ret = true; 4510 4511 spin_lock(&bg->lock); 4512 if (bg->ro) 4513 ret = false; 4514 else 4515 bg->swap_extents++; 4516 spin_unlock(&bg->lock); 4517 4518 return ret; 4519 } 4520 4521 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4522 { 4523 spin_lock(&bg->lock); 4524 ASSERT(!bg->ro); 4525 ASSERT(bg->swap_extents >= amount); 4526 bg->swap_extents -= amount; 4527 spin_unlock(&bg->lock); 4528 } 4529 4530 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4531 { 4532 if (size <= SZ_128K) 4533 return BTRFS_BG_SZ_SMALL; 4534 if (size <= SZ_8M) 4535 return BTRFS_BG_SZ_MEDIUM; 4536 return BTRFS_BG_SZ_LARGE; 4537 } 4538 4539 /* 4540 * Handle a block group allocating an extent in a size class 4541 * 4542 * @bg: The block group we allocated in. 4543 * @size_class: The size class of the allocation. 4544 * @force_wrong_size_class: Whether we are desperate enough to allow 4545 * mismatched size classes. 4546 * 4547 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4548 * case of a race that leads to the wrong size class without 4549 * force_wrong_size_class set. 4550 * 4551 * find_free_extent will skip block groups with a mismatched size class until 4552 * it really needs to avoid ENOSPC. In that case it will set 4553 * force_wrong_size_class. However, if a block group is newly allocated and 4554 * doesn't yet have a size class, then it is possible for two allocations of 4555 * different sizes to race and both try to use it. The loser is caught here and 4556 * has to retry. 4557 */ 4558 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4559 enum btrfs_block_group_size_class size_class, 4560 bool force_wrong_size_class) 4561 { 4562 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4563 4564 /* The new allocation is in the right size class, do nothing */ 4565 if (bg->size_class == size_class) 4566 return 0; 4567 /* 4568 * The new allocation is in a mismatched size class. 4569 * This means one of two things: 4570 * 4571 * 1. Two tasks in find_free_extent for different size_classes raced 4572 * and hit the same empty block_group. Make the loser try again. 4573 * 2. A call to find_free_extent got desperate enough to set 4574 * 'force_wrong_slab'. Don't change the size_class, but allow the 4575 * allocation. 4576 */ 4577 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4578 if (force_wrong_size_class) 4579 return 0; 4580 return -EAGAIN; 4581 } 4582 /* 4583 * The happy new block group case: the new allocation is the first 4584 * one in the block_group so we set size_class. 4585 */ 4586 bg->size_class = size_class; 4587 4588 return 0; 4589 } 4590 4591 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4592 { 4593 if (btrfs_is_zoned(bg->fs_info)) 4594 return false; 4595 if (!btrfs_is_block_group_data_only(bg)) 4596 return false; 4597 return true; 4598 } 4599