1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 21 /* 22 * Return target flags in extended format or 0 if restripe for this chunk_type 23 * is not in progress 24 * 25 * Should be called with balance_lock held 26 */ 27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 28 { 29 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 30 u64 target = 0; 31 32 if (!bctl) 33 return 0; 34 35 if (flags & BTRFS_BLOCK_GROUP_DATA && 36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 44 } 45 46 return target; 47 } 48 49 /* 50 * @flags: available profiles in extended format (see ctree.h) 51 * 52 * Return reduced profile in chunk format. If profile changing is in progress 53 * (either running or paused) picks the target profile (if it's already 54 * available), otherwise falls back to plain reducing. 55 */ 56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 57 { 58 u64 num_devices = fs_info->fs_devices->rw_devices; 59 u64 target; 60 u64 raid_type; 61 u64 allowed = 0; 62 63 /* 64 * See if restripe for this chunk_type is in progress, if so try to 65 * reduce to the target profile 66 */ 67 spin_lock(&fs_info->balance_lock); 68 target = get_restripe_target(fs_info, flags); 69 if (target) { 70 spin_unlock(&fs_info->balance_lock); 71 return extended_to_chunk(target); 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 void btrfs_get_block_group(struct btrfs_block_group *cache) 119 { 120 refcount_inc(&cache->refs); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group *cache) 124 { 125 if (refcount_dec_and_test(&cache->refs)) { 126 WARN_ON(cache->pinned > 0); 127 /* 128 * If there was a failure to cleanup a log tree, very likely due 129 * to an IO failure on a writeback attempt of one or more of its 130 * extent buffers, we could not do proper (and cheap) unaccounting 131 * of their reserved space, so don't warn on reserved > 0 in that 132 * case. 133 */ 134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 136 WARN_ON(cache->reserved > 0); 137 138 /* 139 * A block_group shouldn't be on the discard_list anymore. 140 * Remove the block_group from the discard_list to prevent us 141 * from causing a panic due to NULL pointer dereference. 142 */ 143 if (WARN_ON(!list_empty(&cache->discard_list))) 144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 145 cache); 146 147 /* 148 * If not empty, someone is still holding mutex of 149 * full_stripe_lock, which can only be released by caller. 150 * And it will definitely cause use-after-free when caller 151 * tries to release full stripe lock. 152 * 153 * No better way to resolve, but only to warn. 154 */ 155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 156 kfree(cache->free_space_ctl); 157 kfree(cache->physical_map); 158 kfree(cache); 159 } 160 } 161 162 /* 163 * This adds the block group to the fs_info rb tree for the block group cache 164 */ 165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 166 struct btrfs_block_group *block_group) 167 { 168 struct rb_node **p; 169 struct rb_node *parent = NULL; 170 struct btrfs_block_group *cache; 171 bool leftmost = true; 172 173 ASSERT(block_group->length != 0); 174 175 write_lock(&info->block_group_cache_lock); 176 p = &info->block_group_cache_tree.rb_root.rb_node; 177 178 while (*p) { 179 parent = *p; 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 181 if (block_group->start < cache->start) { 182 p = &(*p)->rb_left; 183 } else if (block_group->start > cache->start) { 184 p = &(*p)->rb_right; 185 leftmost = false; 186 } else { 187 write_unlock(&info->block_group_cache_lock); 188 return -EEXIST; 189 } 190 } 191 192 rb_link_node(&block_group->cache_node, parent, p); 193 rb_insert_color_cached(&block_group->cache_node, 194 &info->block_group_cache_tree, leftmost); 195 196 write_unlock(&info->block_group_cache_lock); 197 198 return 0; 199 } 200 201 /* 202 * This will return the block group at or after bytenr if contains is 0, else 203 * it will return the block group that contains the bytenr 204 */ 205 static struct btrfs_block_group *block_group_cache_tree_search( 206 struct btrfs_fs_info *info, u64 bytenr, int contains) 207 { 208 struct btrfs_block_group *cache, *ret = NULL; 209 struct rb_node *n; 210 u64 end, start; 211 212 read_lock(&info->block_group_cache_lock); 213 n = info->block_group_cache_tree.rb_root.rb_node; 214 215 while (n) { 216 cache = rb_entry(n, struct btrfs_block_group, cache_node); 217 end = cache->start + cache->length - 1; 218 start = cache->start; 219 220 if (bytenr < start) { 221 if (!contains && (!ret || start < ret->start)) 222 ret = cache; 223 n = n->rb_left; 224 } else if (bytenr > start) { 225 if (contains && bytenr <= end) { 226 ret = cache; 227 break; 228 } 229 n = n->rb_right; 230 } else { 231 ret = cache; 232 break; 233 } 234 } 235 if (ret) 236 btrfs_get_block_group(ret); 237 read_unlock(&info->block_group_cache_lock); 238 239 return ret; 240 } 241 242 /* 243 * Return the block group that starts at or after bytenr 244 */ 245 struct btrfs_block_group *btrfs_lookup_first_block_group( 246 struct btrfs_fs_info *info, u64 bytenr) 247 { 248 return block_group_cache_tree_search(info, bytenr, 0); 249 } 250 251 /* 252 * Return the block group that contains the given bytenr 253 */ 254 struct btrfs_block_group *btrfs_lookup_block_group( 255 struct btrfs_fs_info *info, u64 bytenr) 256 { 257 return block_group_cache_tree_search(info, bytenr, 1); 258 } 259 260 struct btrfs_block_group *btrfs_next_block_group( 261 struct btrfs_block_group *cache) 262 { 263 struct btrfs_fs_info *fs_info = cache->fs_info; 264 struct rb_node *node; 265 266 read_lock(&fs_info->block_group_cache_lock); 267 268 /* If our block group was removed, we need a full search. */ 269 if (RB_EMPTY_NODE(&cache->cache_node)) { 270 const u64 next_bytenr = cache->start + cache->length; 271 272 read_unlock(&fs_info->block_group_cache_lock); 273 btrfs_put_block_group(cache); 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 275 } 276 node = rb_next(&cache->cache_node); 277 btrfs_put_block_group(cache); 278 if (node) { 279 cache = rb_entry(node, struct btrfs_block_group, cache_node); 280 btrfs_get_block_group(cache); 281 } else 282 cache = NULL; 283 read_unlock(&fs_info->block_group_cache_lock); 284 return cache; 285 } 286 287 /** 288 * Check if we can do a NOCOW write for a given extent. 289 * 290 * @fs_info: The filesystem information object. 291 * @bytenr: Logical start address of the extent. 292 * 293 * Check if we can do a NOCOW write for the given extent, and increments the 294 * number of NOCOW writers in the block group that contains the extent, as long 295 * as the block group exists and it's currently not in read-only mode. 296 * 297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 298 * is responsible for calling btrfs_dec_nocow_writers() later. 299 * 300 * Or NULL if we can not do a NOCOW write 301 */ 302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 303 u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 bool can_nocow = true; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 if (!bg) 310 return NULL; 311 312 spin_lock(&bg->lock); 313 if (bg->ro) 314 can_nocow = false; 315 else 316 atomic_inc(&bg->nocow_writers); 317 spin_unlock(&bg->lock); 318 319 if (!can_nocow) { 320 btrfs_put_block_group(bg); 321 return NULL; 322 } 323 324 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 325 return bg; 326 } 327 328 /** 329 * Decrement the number of NOCOW writers in a block group. 330 * 331 * @bg: The block group. 332 * 333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 334 * and on the block group returned by that call. Typically this is called after 335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 336 * relocation. 337 * 338 * After this call, the caller should not use the block group anymore. It it wants 339 * to use it, then it should get a reference on it before calling this function. 340 */ 341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 342 { 343 if (atomic_dec_and_test(&bg->nocow_writers)) 344 wake_up_var(&bg->nocow_writers); 345 346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 347 btrfs_put_block_group(bg); 348 } 349 350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 351 { 352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 353 } 354 355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 356 const u64 start) 357 { 358 struct btrfs_block_group *bg; 359 360 bg = btrfs_lookup_block_group(fs_info, start); 361 ASSERT(bg); 362 if (atomic_dec_and_test(&bg->reservations)) 363 wake_up_var(&bg->reservations); 364 btrfs_put_block_group(bg); 365 } 366 367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 368 { 369 struct btrfs_space_info *space_info = bg->space_info; 370 371 ASSERT(bg->ro); 372 373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 374 return; 375 376 /* 377 * Our block group is read only but before we set it to read only, 378 * some task might have had allocated an extent from it already, but it 379 * has not yet created a respective ordered extent (and added it to a 380 * root's list of ordered extents). 381 * Therefore wait for any task currently allocating extents, since the 382 * block group's reservations counter is incremented while a read lock 383 * on the groups' semaphore is held and decremented after releasing 384 * the read access on that semaphore and creating the ordered extent. 385 */ 386 down_write(&space_info->groups_sem); 387 up_write(&space_info->groups_sem); 388 389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 390 } 391 392 struct btrfs_caching_control *btrfs_get_caching_control( 393 struct btrfs_block_group *cache) 394 { 395 struct btrfs_caching_control *ctl; 396 397 spin_lock(&cache->lock); 398 if (!cache->caching_ctl) { 399 spin_unlock(&cache->lock); 400 return NULL; 401 } 402 403 ctl = cache->caching_ctl; 404 refcount_inc(&ctl->count); 405 spin_unlock(&cache->lock); 406 return ctl; 407 } 408 409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 410 { 411 if (refcount_dec_and_test(&ctl->count)) 412 kfree(ctl); 413 } 414 415 /* 416 * When we wait for progress in the block group caching, its because our 417 * allocation attempt failed at least once. So, we must sleep and let some 418 * progress happen before we try again. 419 * 420 * This function will sleep at least once waiting for new free space to show 421 * up, and then it will check the block group free space numbers for our min 422 * num_bytes. Another option is to have it go ahead and look in the rbtree for 423 * a free extent of a given size, but this is a good start. 424 * 425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 426 * any of the information in this block group. 427 */ 428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 429 u64 num_bytes) 430 { 431 struct btrfs_caching_control *caching_ctl; 432 433 caching_ctl = btrfs_get_caching_control(cache); 434 if (!caching_ctl) 435 return; 436 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 438 (cache->free_space_ctl->free_space >= num_bytes)); 439 440 btrfs_put_caching_control(caching_ctl); 441 } 442 443 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 444 { 445 struct btrfs_caching_control *caching_ctl; 446 int ret = 0; 447 448 caching_ctl = btrfs_get_caching_control(cache); 449 if (!caching_ctl) 450 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 451 452 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 453 if (cache->cached == BTRFS_CACHE_ERROR) 454 ret = -EIO; 455 btrfs_put_caching_control(caching_ctl); 456 return ret; 457 } 458 459 static bool space_cache_v1_done(struct btrfs_block_group *cache) 460 { 461 bool ret; 462 463 spin_lock(&cache->lock); 464 ret = cache->cached != BTRFS_CACHE_FAST; 465 spin_unlock(&cache->lock); 466 467 return ret; 468 } 469 470 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 471 struct btrfs_caching_control *caching_ctl) 472 { 473 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 474 } 475 476 #ifdef CONFIG_BTRFS_DEBUG 477 static void fragment_free_space(struct btrfs_block_group *block_group) 478 { 479 struct btrfs_fs_info *fs_info = block_group->fs_info; 480 u64 start = block_group->start; 481 u64 len = block_group->length; 482 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 483 fs_info->nodesize : fs_info->sectorsize; 484 u64 step = chunk << 1; 485 486 while (len > chunk) { 487 btrfs_remove_free_space(block_group, start, chunk); 488 start += step; 489 if (len < step) 490 len = 0; 491 else 492 len -= step; 493 } 494 } 495 #endif 496 497 /* 498 * This is only called by btrfs_cache_block_group, since we could have freed 499 * extents we need to check the pinned_extents for any extents that can't be 500 * used yet since their free space will be released as soon as the transaction 501 * commits. 502 */ 503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 504 { 505 struct btrfs_fs_info *info = block_group->fs_info; 506 u64 extent_start, extent_end, size, total_added = 0; 507 int ret; 508 509 while (start < end) { 510 ret = find_first_extent_bit(&info->excluded_extents, start, 511 &extent_start, &extent_end, 512 EXTENT_DIRTY | EXTENT_UPTODATE, 513 NULL); 514 if (ret) 515 break; 516 517 if (extent_start <= start) { 518 start = extent_end + 1; 519 } else if (extent_start > start && extent_start < end) { 520 size = extent_start - start; 521 total_added += size; 522 ret = btrfs_add_free_space_async_trimmed(block_group, 523 start, size); 524 BUG_ON(ret); /* -ENOMEM or logic error */ 525 start = extent_end + 1; 526 } else { 527 break; 528 } 529 } 530 531 if (start < end) { 532 size = end - start; 533 total_added += size; 534 ret = btrfs_add_free_space_async_trimmed(block_group, start, 535 size); 536 BUG_ON(ret); /* -ENOMEM or logic error */ 537 } 538 539 return total_added; 540 } 541 542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 543 { 544 struct btrfs_block_group *block_group = caching_ctl->block_group; 545 struct btrfs_fs_info *fs_info = block_group->fs_info; 546 struct btrfs_root *extent_root; 547 struct btrfs_path *path; 548 struct extent_buffer *leaf; 549 struct btrfs_key key; 550 u64 total_found = 0; 551 u64 last = 0; 552 u32 nritems; 553 int ret; 554 bool wakeup = true; 555 556 path = btrfs_alloc_path(); 557 if (!path) 558 return -ENOMEM; 559 560 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 561 extent_root = btrfs_extent_root(fs_info, last); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 /* 565 * If we're fragmenting we don't want to make anybody think we can 566 * allocate from this block group until we've had a chance to fragment 567 * the free space. 568 */ 569 if (btrfs_should_fragment_free_space(block_group)) 570 wakeup = false; 571 #endif 572 /* 573 * We don't want to deadlock with somebody trying to allocate a new 574 * extent for the extent root while also trying to search the extent 575 * root to add free space. So we skip locking and search the commit 576 * root, since its read-only 577 */ 578 path->skip_locking = 1; 579 path->search_commit_root = 1; 580 path->reada = READA_FORWARD; 581 582 key.objectid = last; 583 key.offset = 0; 584 key.type = BTRFS_EXTENT_ITEM_KEY; 585 586 next: 587 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 588 if (ret < 0) 589 goto out; 590 591 leaf = path->nodes[0]; 592 nritems = btrfs_header_nritems(leaf); 593 594 while (1) { 595 if (btrfs_fs_closing(fs_info) > 1) { 596 last = (u64)-1; 597 break; 598 } 599 600 if (path->slots[0] < nritems) { 601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 602 } else { 603 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 604 if (ret) 605 break; 606 607 if (need_resched() || 608 rwsem_is_contended(&fs_info->commit_root_sem)) { 609 if (wakeup) 610 caching_ctl->progress = last; 611 btrfs_release_path(path); 612 up_read(&fs_info->commit_root_sem); 613 mutex_unlock(&caching_ctl->mutex); 614 cond_resched(); 615 mutex_lock(&caching_ctl->mutex); 616 down_read(&fs_info->commit_root_sem); 617 goto next; 618 } 619 620 ret = btrfs_next_leaf(extent_root, path); 621 if (ret < 0) 622 goto out; 623 if (ret) 624 break; 625 leaf = path->nodes[0]; 626 nritems = btrfs_header_nritems(leaf); 627 continue; 628 } 629 630 if (key.objectid < last) { 631 key.objectid = last; 632 key.offset = 0; 633 key.type = BTRFS_EXTENT_ITEM_KEY; 634 635 if (wakeup) 636 caching_ctl->progress = last; 637 btrfs_release_path(path); 638 goto next; 639 } 640 641 if (key.objectid < block_group->start) { 642 path->slots[0]++; 643 continue; 644 } 645 646 if (key.objectid >= block_group->start + block_group->length) 647 break; 648 649 if (key.type == BTRFS_EXTENT_ITEM_KEY || 650 key.type == BTRFS_METADATA_ITEM_KEY) { 651 total_found += add_new_free_space(block_group, last, 652 key.objectid); 653 if (key.type == BTRFS_METADATA_ITEM_KEY) 654 last = key.objectid + 655 fs_info->nodesize; 656 else 657 last = key.objectid + key.offset; 658 659 if (total_found > CACHING_CTL_WAKE_UP) { 660 total_found = 0; 661 if (wakeup) 662 wake_up(&caching_ctl->wait); 663 } 664 } 665 path->slots[0]++; 666 } 667 ret = 0; 668 669 total_found += add_new_free_space(block_group, last, 670 block_group->start + block_group->length); 671 caching_ctl->progress = (u64)-1; 672 673 out: 674 btrfs_free_path(path); 675 return ret; 676 } 677 678 static noinline void caching_thread(struct btrfs_work *work) 679 { 680 struct btrfs_block_group *block_group; 681 struct btrfs_fs_info *fs_info; 682 struct btrfs_caching_control *caching_ctl; 683 int ret; 684 685 caching_ctl = container_of(work, struct btrfs_caching_control, work); 686 block_group = caching_ctl->block_group; 687 fs_info = block_group->fs_info; 688 689 mutex_lock(&caching_ctl->mutex); 690 down_read(&fs_info->commit_root_sem); 691 692 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 693 ret = load_free_space_cache(block_group); 694 if (ret == 1) { 695 ret = 0; 696 goto done; 697 } 698 699 /* 700 * We failed to load the space cache, set ourselves to 701 * CACHE_STARTED and carry on. 702 */ 703 spin_lock(&block_group->lock); 704 block_group->cached = BTRFS_CACHE_STARTED; 705 spin_unlock(&block_group->lock); 706 wake_up(&caching_ctl->wait); 707 } 708 709 /* 710 * If we are in the transaction that populated the free space tree we 711 * can't actually cache from the free space tree as our commit root and 712 * real root are the same, so we could change the contents of the blocks 713 * while caching. Instead do the slow caching in this case, and after 714 * the transaction has committed we will be safe. 715 */ 716 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 717 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 718 ret = load_free_space_tree(caching_ctl); 719 else 720 ret = load_extent_tree_free(caching_ctl); 721 done: 722 spin_lock(&block_group->lock); 723 block_group->caching_ctl = NULL; 724 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 725 spin_unlock(&block_group->lock); 726 727 #ifdef CONFIG_BTRFS_DEBUG 728 if (btrfs_should_fragment_free_space(block_group)) { 729 u64 bytes_used; 730 731 spin_lock(&block_group->space_info->lock); 732 spin_lock(&block_group->lock); 733 bytes_used = block_group->length - block_group->used; 734 block_group->space_info->bytes_used += bytes_used >> 1; 735 spin_unlock(&block_group->lock); 736 spin_unlock(&block_group->space_info->lock); 737 fragment_free_space(block_group); 738 } 739 #endif 740 741 caching_ctl->progress = (u64)-1; 742 743 up_read(&fs_info->commit_root_sem); 744 btrfs_free_excluded_extents(block_group); 745 mutex_unlock(&caching_ctl->mutex); 746 747 wake_up(&caching_ctl->wait); 748 749 btrfs_put_caching_control(caching_ctl); 750 btrfs_put_block_group(block_group); 751 } 752 753 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 754 { 755 DEFINE_WAIT(wait); 756 struct btrfs_fs_info *fs_info = cache->fs_info; 757 struct btrfs_caching_control *caching_ctl = NULL; 758 int ret = 0; 759 760 /* Allocator for zoned filesystems does not use the cache at all */ 761 if (btrfs_is_zoned(fs_info)) 762 return 0; 763 764 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 765 if (!caching_ctl) 766 return -ENOMEM; 767 768 INIT_LIST_HEAD(&caching_ctl->list); 769 mutex_init(&caching_ctl->mutex); 770 init_waitqueue_head(&caching_ctl->wait); 771 caching_ctl->block_group = cache; 772 caching_ctl->progress = cache->start; 773 refcount_set(&caching_ctl->count, 2); 774 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 775 776 spin_lock(&cache->lock); 777 if (cache->cached != BTRFS_CACHE_NO) { 778 kfree(caching_ctl); 779 780 caching_ctl = cache->caching_ctl; 781 if (caching_ctl) 782 refcount_inc(&caching_ctl->count); 783 spin_unlock(&cache->lock); 784 goto out; 785 } 786 WARN_ON(cache->caching_ctl); 787 cache->caching_ctl = caching_ctl; 788 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 789 cache->cached = BTRFS_CACHE_FAST; 790 else 791 cache->cached = BTRFS_CACHE_STARTED; 792 cache->has_caching_ctl = 1; 793 spin_unlock(&cache->lock); 794 795 write_lock(&fs_info->block_group_cache_lock); 796 refcount_inc(&caching_ctl->count); 797 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 798 write_unlock(&fs_info->block_group_cache_lock); 799 800 btrfs_get_block_group(cache); 801 802 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 803 out: 804 if (load_cache_only && caching_ctl) 805 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 806 if (caching_ctl) 807 btrfs_put_caching_control(caching_ctl); 808 809 return ret; 810 } 811 812 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 813 { 814 u64 extra_flags = chunk_to_extended(flags) & 815 BTRFS_EXTENDED_PROFILE_MASK; 816 817 write_seqlock(&fs_info->profiles_lock); 818 if (flags & BTRFS_BLOCK_GROUP_DATA) 819 fs_info->avail_data_alloc_bits &= ~extra_flags; 820 if (flags & BTRFS_BLOCK_GROUP_METADATA) 821 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 822 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 823 fs_info->avail_system_alloc_bits &= ~extra_flags; 824 write_sequnlock(&fs_info->profiles_lock); 825 } 826 827 /* 828 * Clear incompat bits for the following feature(s): 829 * 830 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 831 * in the whole filesystem 832 * 833 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 834 */ 835 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 836 { 837 bool found_raid56 = false; 838 bool found_raid1c34 = false; 839 840 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 841 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 843 struct list_head *head = &fs_info->space_info; 844 struct btrfs_space_info *sinfo; 845 846 list_for_each_entry_rcu(sinfo, head, list) { 847 down_read(&sinfo->groups_sem); 848 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 849 found_raid56 = true; 850 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 851 found_raid56 = true; 852 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 853 found_raid1c34 = true; 854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 855 found_raid1c34 = true; 856 up_read(&sinfo->groups_sem); 857 } 858 if (!found_raid56) 859 btrfs_clear_fs_incompat(fs_info, RAID56); 860 if (!found_raid1c34) 861 btrfs_clear_fs_incompat(fs_info, RAID1C34); 862 } 863 } 864 865 static int remove_block_group_item(struct btrfs_trans_handle *trans, 866 struct btrfs_path *path, 867 struct btrfs_block_group *block_group) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root; 871 struct btrfs_key key; 872 int ret; 873 874 root = btrfs_block_group_root(fs_info); 875 key.objectid = block_group->start; 876 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 877 key.offset = block_group->length; 878 879 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 880 if (ret > 0) 881 ret = -ENOENT; 882 if (ret < 0) 883 return ret; 884 885 ret = btrfs_del_item(trans, root, path); 886 return ret; 887 } 888 889 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 890 u64 group_start, struct extent_map *em) 891 { 892 struct btrfs_fs_info *fs_info = trans->fs_info; 893 struct btrfs_path *path; 894 struct btrfs_block_group *block_group; 895 struct btrfs_free_cluster *cluster; 896 struct inode *inode; 897 struct kobject *kobj = NULL; 898 int ret; 899 int index; 900 int factor; 901 struct btrfs_caching_control *caching_ctl = NULL; 902 bool remove_em; 903 bool remove_rsv = false; 904 905 block_group = btrfs_lookup_block_group(fs_info, group_start); 906 BUG_ON(!block_group); 907 BUG_ON(!block_group->ro); 908 909 trace_btrfs_remove_block_group(block_group); 910 /* 911 * Free the reserved super bytes from this block group before 912 * remove it. 913 */ 914 btrfs_free_excluded_extents(block_group); 915 btrfs_free_ref_tree_range(fs_info, block_group->start, 916 block_group->length); 917 918 index = btrfs_bg_flags_to_raid_index(block_group->flags); 919 factor = btrfs_bg_type_to_factor(block_group->flags); 920 921 /* make sure this block group isn't part of an allocation cluster */ 922 cluster = &fs_info->data_alloc_cluster; 923 spin_lock(&cluster->refill_lock); 924 btrfs_return_cluster_to_free_space(block_group, cluster); 925 spin_unlock(&cluster->refill_lock); 926 927 /* 928 * make sure this block group isn't part of a metadata 929 * allocation cluster 930 */ 931 cluster = &fs_info->meta_alloc_cluster; 932 spin_lock(&cluster->refill_lock); 933 btrfs_return_cluster_to_free_space(block_group, cluster); 934 spin_unlock(&cluster->refill_lock); 935 936 btrfs_clear_treelog_bg(block_group); 937 btrfs_clear_data_reloc_bg(block_group); 938 939 path = btrfs_alloc_path(); 940 if (!path) { 941 ret = -ENOMEM; 942 goto out; 943 } 944 945 /* 946 * get the inode first so any iput calls done for the io_list 947 * aren't the final iput (no unlinks allowed now) 948 */ 949 inode = lookup_free_space_inode(block_group, path); 950 951 mutex_lock(&trans->transaction->cache_write_mutex); 952 /* 953 * Make sure our free space cache IO is done before removing the 954 * free space inode 955 */ 956 spin_lock(&trans->transaction->dirty_bgs_lock); 957 if (!list_empty(&block_group->io_list)) { 958 list_del_init(&block_group->io_list); 959 960 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 961 962 spin_unlock(&trans->transaction->dirty_bgs_lock); 963 btrfs_wait_cache_io(trans, block_group, path); 964 btrfs_put_block_group(block_group); 965 spin_lock(&trans->transaction->dirty_bgs_lock); 966 } 967 968 if (!list_empty(&block_group->dirty_list)) { 969 list_del_init(&block_group->dirty_list); 970 remove_rsv = true; 971 btrfs_put_block_group(block_group); 972 } 973 spin_unlock(&trans->transaction->dirty_bgs_lock); 974 mutex_unlock(&trans->transaction->cache_write_mutex); 975 976 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 977 if (ret) 978 goto out; 979 980 write_lock(&fs_info->block_group_cache_lock); 981 rb_erase_cached(&block_group->cache_node, 982 &fs_info->block_group_cache_tree); 983 RB_CLEAR_NODE(&block_group->cache_node); 984 985 /* Once for the block groups rbtree */ 986 btrfs_put_block_group(block_group); 987 988 write_unlock(&fs_info->block_group_cache_lock); 989 990 down_write(&block_group->space_info->groups_sem); 991 /* 992 * we must use list_del_init so people can check to see if they 993 * are still on the list after taking the semaphore 994 */ 995 list_del_init(&block_group->list); 996 if (list_empty(&block_group->space_info->block_groups[index])) { 997 kobj = block_group->space_info->block_group_kobjs[index]; 998 block_group->space_info->block_group_kobjs[index] = NULL; 999 clear_avail_alloc_bits(fs_info, block_group->flags); 1000 } 1001 up_write(&block_group->space_info->groups_sem); 1002 clear_incompat_bg_bits(fs_info, block_group->flags); 1003 if (kobj) { 1004 kobject_del(kobj); 1005 kobject_put(kobj); 1006 } 1007 1008 if (block_group->has_caching_ctl) 1009 caching_ctl = btrfs_get_caching_control(block_group); 1010 if (block_group->cached == BTRFS_CACHE_STARTED) 1011 btrfs_wait_block_group_cache_done(block_group); 1012 if (block_group->has_caching_ctl) { 1013 write_lock(&fs_info->block_group_cache_lock); 1014 if (!caching_ctl) { 1015 struct btrfs_caching_control *ctl; 1016 1017 list_for_each_entry(ctl, 1018 &fs_info->caching_block_groups, list) 1019 if (ctl->block_group == block_group) { 1020 caching_ctl = ctl; 1021 refcount_inc(&caching_ctl->count); 1022 break; 1023 } 1024 } 1025 if (caching_ctl) 1026 list_del_init(&caching_ctl->list); 1027 write_unlock(&fs_info->block_group_cache_lock); 1028 if (caching_ctl) { 1029 /* Once for the caching bgs list and once for us. */ 1030 btrfs_put_caching_control(caching_ctl); 1031 btrfs_put_caching_control(caching_ctl); 1032 } 1033 } 1034 1035 spin_lock(&trans->transaction->dirty_bgs_lock); 1036 WARN_ON(!list_empty(&block_group->dirty_list)); 1037 WARN_ON(!list_empty(&block_group->io_list)); 1038 spin_unlock(&trans->transaction->dirty_bgs_lock); 1039 1040 btrfs_remove_free_space_cache(block_group); 1041 1042 spin_lock(&block_group->space_info->lock); 1043 list_del_init(&block_group->ro_list); 1044 1045 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1046 WARN_ON(block_group->space_info->total_bytes 1047 < block_group->length); 1048 WARN_ON(block_group->space_info->bytes_readonly 1049 < block_group->length - block_group->zone_unusable); 1050 WARN_ON(block_group->space_info->bytes_zone_unusable 1051 < block_group->zone_unusable); 1052 WARN_ON(block_group->space_info->disk_total 1053 < block_group->length * factor); 1054 } 1055 block_group->space_info->total_bytes -= block_group->length; 1056 block_group->space_info->bytes_readonly -= 1057 (block_group->length - block_group->zone_unusable); 1058 block_group->space_info->bytes_zone_unusable -= 1059 block_group->zone_unusable; 1060 block_group->space_info->disk_total -= block_group->length * factor; 1061 1062 spin_unlock(&block_group->space_info->lock); 1063 1064 /* 1065 * Remove the free space for the block group from the free space tree 1066 * and the block group's item from the extent tree before marking the 1067 * block group as removed. This is to prevent races with tasks that 1068 * freeze and unfreeze a block group, this task and another task 1069 * allocating a new block group - the unfreeze task ends up removing 1070 * the block group's extent map before the task calling this function 1071 * deletes the block group item from the extent tree, allowing for 1072 * another task to attempt to create another block group with the same 1073 * item key (and failing with -EEXIST and a transaction abort). 1074 */ 1075 ret = remove_block_group_free_space(trans, block_group); 1076 if (ret) 1077 goto out; 1078 1079 ret = remove_block_group_item(trans, path, block_group); 1080 if (ret < 0) 1081 goto out; 1082 1083 spin_lock(&block_group->lock); 1084 block_group->removed = 1; 1085 /* 1086 * At this point trimming or scrub can't start on this block group, 1087 * because we removed the block group from the rbtree 1088 * fs_info->block_group_cache_tree so no one can't find it anymore and 1089 * even if someone already got this block group before we removed it 1090 * from the rbtree, they have already incremented block_group->frozen - 1091 * if they didn't, for the trimming case they won't find any free space 1092 * entries because we already removed them all when we called 1093 * btrfs_remove_free_space_cache(). 1094 * 1095 * And we must not remove the extent map from the fs_info->mapping_tree 1096 * to prevent the same logical address range and physical device space 1097 * ranges from being reused for a new block group. This is needed to 1098 * avoid races with trimming and scrub. 1099 * 1100 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1101 * completely transactionless, so while it is trimming a range the 1102 * currently running transaction might finish and a new one start, 1103 * allowing for new block groups to be created that can reuse the same 1104 * physical device locations unless we take this special care. 1105 * 1106 * There may also be an implicit trim operation if the file system 1107 * is mounted with -odiscard. The same protections must remain 1108 * in place until the extents have been discarded completely when 1109 * the transaction commit has completed. 1110 */ 1111 remove_em = (atomic_read(&block_group->frozen) == 0); 1112 spin_unlock(&block_group->lock); 1113 1114 if (remove_em) { 1115 struct extent_map_tree *em_tree; 1116 1117 em_tree = &fs_info->mapping_tree; 1118 write_lock(&em_tree->lock); 1119 remove_extent_mapping(em_tree, em); 1120 write_unlock(&em_tree->lock); 1121 /* once for the tree */ 1122 free_extent_map(em); 1123 } 1124 1125 out: 1126 /* Once for the lookup reference */ 1127 btrfs_put_block_group(block_group); 1128 if (remove_rsv) 1129 btrfs_delayed_refs_rsv_release(fs_info, 1); 1130 btrfs_free_path(path); 1131 return ret; 1132 } 1133 1134 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1135 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1136 { 1137 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1138 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1139 struct extent_map *em; 1140 struct map_lookup *map; 1141 unsigned int num_items; 1142 1143 read_lock(&em_tree->lock); 1144 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1145 read_unlock(&em_tree->lock); 1146 ASSERT(em && em->start == chunk_offset); 1147 1148 /* 1149 * We need to reserve 3 + N units from the metadata space info in order 1150 * to remove a block group (done at btrfs_remove_chunk() and at 1151 * btrfs_remove_block_group()), which are used for: 1152 * 1153 * 1 unit for adding the free space inode's orphan (located in the tree 1154 * of tree roots). 1155 * 1 unit for deleting the block group item (located in the extent 1156 * tree). 1157 * 1 unit for deleting the free space item (located in tree of tree 1158 * roots). 1159 * N units for deleting N device extent items corresponding to each 1160 * stripe (located in the device tree). 1161 * 1162 * In order to remove a block group we also need to reserve units in the 1163 * system space info in order to update the chunk tree (update one or 1164 * more device items and remove one chunk item), but this is done at 1165 * btrfs_remove_chunk() through a call to check_system_chunk(). 1166 */ 1167 map = em->map_lookup; 1168 num_items = 3 + map->num_stripes; 1169 free_extent_map(em); 1170 1171 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1172 } 1173 1174 /* 1175 * Mark block group @cache read-only, so later write won't happen to block 1176 * group @cache. 1177 * 1178 * If @force is not set, this function will only mark the block group readonly 1179 * if we have enough free space (1M) in other metadata/system block groups. 1180 * If @force is not set, this function will mark the block group readonly 1181 * without checking free space. 1182 * 1183 * NOTE: This function doesn't care if other block groups can contain all the 1184 * data in this block group. That check should be done by relocation routine, 1185 * not this function. 1186 */ 1187 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1188 { 1189 struct btrfs_space_info *sinfo = cache->space_info; 1190 u64 num_bytes; 1191 int ret = -ENOSPC; 1192 1193 spin_lock(&sinfo->lock); 1194 spin_lock(&cache->lock); 1195 1196 if (cache->swap_extents) { 1197 ret = -ETXTBSY; 1198 goto out; 1199 } 1200 1201 if (cache->ro) { 1202 cache->ro++; 1203 ret = 0; 1204 goto out; 1205 } 1206 1207 num_bytes = cache->length - cache->reserved - cache->pinned - 1208 cache->bytes_super - cache->zone_unusable - cache->used; 1209 1210 /* 1211 * Data never overcommits, even in mixed mode, so do just the straight 1212 * check of left over space in how much we have allocated. 1213 */ 1214 if (force) { 1215 ret = 0; 1216 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1217 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1218 1219 /* 1220 * Here we make sure if we mark this bg RO, we still have enough 1221 * free space as buffer. 1222 */ 1223 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1224 ret = 0; 1225 } else { 1226 /* 1227 * We overcommit metadata, so we need to do the 1228 * btrfs_can_overcommit check here, and we need to pass in 1229 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1230 * leeway to allow us to mark this block group as read only. 1231 */ 1232 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1233 BTRFS_RESERVE_NO_FLUSH)) 1234 ret = 0; 1235 } 1236 1237 if (!ret) { 1238 sinfo->bytes_readonly += num_bytes; 1239 if (btrfs_is_zoned(cache->fs_info)) { 1240 /* Migrate zone_unusable bytes to readonly */ 1241 sinfo->bytes_readonly += cache->zone_unusable; 1242 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1243 cache->zone_unusable = 0; 1244 } 1245 cache->ro++; 1246 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1247 } 1248 out: 1249 spin_unlock(&cache->lock); 1250 spin_unlock(&sinfo->lock); 1251 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1252 btrfs_info(cache->fs_info, 1253 "unable to make block group %llu ro", cache->start); 1254 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1255 } 1256 return ret; 1257 } 1258 1259 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1260 struct btrfs_block_group *bg) 1261 { 1262 struct btrfs_fs_info *fs_info = bg->fs_info; 1263 struct btrfs_transaction *prev_trans = NULL; 1264 const u64 start = bg->start; 1265 const u64 end = start + bg->length - 1; 1266 int ret; 1267 1268 spin_lock(&fs_info->trans_lock); 1269 if (trans->transaction->list.prev != &fs_info->trans_list) { 1270 prev_trans = list_last_entry(&trans->transaction->list, 1271 struct btrfs_transaction, list); 1272 refcount_inc(&prev_trans->use_count); 1273 } 1274 spin_unlock(&fs_info->trans_lock); 1275 1276 /* 1277 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1278 * btrfs_finish_extent_commit(). If we are at transaction N, another 1279 * task might be running finish_extent_commit() for the previous 1280 * transaction N - 1, and have seen a range belonging to the block 1281 * group in pinned_extents before we were able to clear the whole block 1282 * group range from pinned_extents. This means that task can lookup for 1283 * the block group after we unpinned it from pinned_extents and removed 1284 * it, leading to a BUG_ON() at unpin_extent_range(). 1285 */ 1286 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1287 if (prev_trans) { 1288 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1289 EXTENT_DIRTY); 1290 if (ret) 1291 goto out; 1292 } 1293 1294 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1295 EXTENT_DIRTY); 1296 out: 1297 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1298 if (prev_trans) 1299 btrfs_put_transaction(prev_trans); 1300 1301 return ret == 0; 1302 } 1303 1304 /* 1305 * Process the unused_bgs list and remove any that don't have any allocated 1306 * space inside of them. 1307 */ 1308 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1309 { 1310 struct btrfs_block_group *block_group; 1311 struct btrfs_space_info *space_info; 1312 struct btrfs_trans_handle *trans; 1313 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1314 int ret = 0; 1315 1316 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1317 return; 1318 1319 /* 1320 * Long running balances can keep us blocked here for eternity, so 1321 * simply skip deletion if we're unable to get the mutex. 1322 */ 1323 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1324 return; 1325 1326 spin_lock(&fs_info->unused_bgs_lock); 1327 while (!list_empty(&fs_info->unused_bgs)) { 1328 int trimming; 1329 1330 block_group = list_first_entry(&fs_info->unused_bgs, 1331 struct btrfs_block_group, 1332 bg_list); 1333 list_del_init(&block_group->bg_list); 1334 1335 space_info = block_group->space_info; 1336 1337 if (ret || btrfs_mixed_space_info(space_info)) { 1338 btrfs_put_block_group(block_group); 1339 continue; 1340 } 1341 spin_unlock(&fs_info->unused_bgs_lock); 1342 1343 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1344 1345 /* Don't want to race with allocators so take the groups_sem */ 1346 down_write(&space_info->groups_sem); 1347 1348 /* 1349 * Async discard moves the final block group discard to be prior 1350 * to the unused_bgs code path. Therefore, if it's not fully 1351 * trimmed, punt it back to the async discard lists. 1352 */ 1353 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1354 !btrfs_is_free_space_trimmed(block_group)) { 1355 trace_btrfs_skip_unused_block_group(block_group); 1356 up_write(&space_info->groups_sem); 1357 /* Requeue if we failed because of async discard */ 1358 btrfs_discard_queue_work(&fs_info->discard_ctl, 1359 block_group); 1360 goto next; 1361 } 1362 1363 spin_lock(&block_group->lock); 1364 if (block_group->reserved || block_group->pinned || 1365 block_group->used || block_group->ro || 1366 list_is_singular(&block_group->list)) { 1367 /* 1368 * We want to bail if we made new allocations or have 1369 * outstanding allocations in this block group. We do 1370 * the ro check in case balance is currently acting on 1371 * this block group. 1372 */ 1373 trace_btrfs_skip_unused_block_group(block_group); 1374 spin_unlock(&block_group->lock); 1375 up_write(&space_info->groups_sem); 1376 goto next; 1377 } 1378 spin_unlock(&block_group->lock); 1379 1380 /* We don't want to force the issue, only flip if it's ok. */ 1381 ret = inc_block_group_ro(block_group, 0); 1382 up_write(&space_info->groups_sem); 1383 if (ret < 0) { 1384 ret = 0; 1385 goto next; 1386 } 1387 1388 ret = btrfs_zone_finish(block_group); 1389 if (ret < 0) { 1390 btrfs_dec_block_group_ro(block_group); 1391 if (ret == -EAGAIN) 1392 ret = 0; 1393 goto next; 1394 } 1395 1396 /* 1397 * Want to do this before we do anything else so we can recover 1398 * properly if we fail to join the transaction. 1399 */ 1400 trans = btrfs_start_trans_remove_block_group(fs_info, 1401 block_group->start); 1402 if (IS_ERR(trans)) { 1403 btrfs_dec_block_group_ro(block_group); 1404 ret = PTR_ERR(trans); 1405 goto next; 1406 } 1407 1408 /* 1409 * We could have pending pinned extents for this block group, 1410 * just delete them, we don't care about them anymore. 1411 */ 1412 if (!clean_pinned_extents(trans, block_group)) { 1413 btrfs_dec_block_group_ro(block_group); 1414 goto end_trans; 1415 } 1416 1417 /* 1418 * At this point, the block_group is read only and should fail 1419 * new allocations. However, btrfs_finish_extent_commit() can 1420 * cause this block_group to be placed back on the discard 1421 * lists because now the block_group isn't fully discarded. 1422 * Bail here and try again later after discarding everything. 1423 */ 1424 spin_lock(&fs_info->discard_ctl.lock); 1425 if (!list_empty(&block_group->discard_list)) { 1426 spin_unlock(&fs_info->discard_ctl.lock); 1427 btrfs_dec_block_group_ro(block_group); 1428 btrfs_discard_queue_work(&fs_info->discard_ctl, 1429 block_group); 1430 goto end_trans; 1431 } 1432 spin_unlock(&fs_info->discard_ctl.lock); 1433 1434 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1435 spin_lock(&space_info->lock); 1436 spin_lock(&block_group->lock); 1437 1438 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1439 -block_group->pinned); 1440 space_info->bytes_readonly += block_group->pinned; 1441 block_group->pinned = 0; 1442 1443 spin_unlock(&block_group->lock); 1444 spin_unlock(&space_info->lock); 1445 1446 /* 1447 * The normal path here is an unused block group is passed here, 1448 * then trimming is handled in the transaction commit path. 1449 * Async discard interposes before this to do the trimming 1450 * before coming down the unused block group path as trimming 1451 * will no longer be done later in the transaction commit path. 1452 */ 1453 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1454 goto flip_async; 1455 1456 /* 1457 * DISCARD can flip during remount. On zoned filesystems, we 1458 * need to reset sequential-required zones. 1459 */ 1460 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1461 btrfs_is_zoned(fs_info); 1462 1463 /* Implicit trim during transaction commit. */ 1464 if (trimming) 1465 btrfs_freeze_block_group(block_group); 1466 1467 /* 1468 * Btrfs_remove_chunk will abort the transaction if things go 1469 * horribly wrong. 1470 */ 1471 ret = btrfs_remove_chunk(trans, block_group->start); 1472 1473 if (ret) { 1474 if (trimming) 1475 btrfs_unfreeze_block_group(block_group); 1476 goto end_trans; 1477 } 1478 1479 /* 1480 * If we're not mounted with -odiscard, we can just forget 1481 * about this block group. Otherwise we'll need to wait 1482 * until transaction commit to do the actual discard. 1483 */ 1484 if (trimming) { 1485 spin_lock(&fs_info->unused_bgs_lock); 1486 /* 1487 * A concurrent scrub might have added us to the list 1488 * fs_info->unused_bgs, so use a list_move operation 1489 * to add the block group to the deleted_bgs list. 1490 */ 1491 list_move(&block_group->bg_list, 1492 &trans->transaction->deleted_bgs); 1493 spin_unlock(&fs_info->unused_bgs_lock); 1494 btrfs_get_block_group(block_group); 1495 } 1496 end_trans: 1497 btrfs_end_transaction(trans); 1498 next: 1499 btrfs_put_block_group(block_group); 1500 spin_lock(&fs_info->unused_bgs_lock); 1501 } 1502 spin_unlock(&fs_info->unused_bgs_lock); 1503 mutex_unlock(&fs_info->reclaim_bgs_lock); 1504 return; 1505 1506 flip_async: 1507 btrfs_end_transaction(trans); 1508 mutex_unlock(&fs_info->reclaim_bgs_lock); 1509 btrfs_put_block_group(block_group); 1510 btrfs_discard_punt_unused_bgs_list(fs_info); 1511 } 1512 1513 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1514 { 1515 struct btrfs_fs_info *fs_info = bg->fs_info; 1516 1517 spin_lock(&fs_info->unused_bgs_lock); 1518 if (list_empty(&bg->bg_list)) { 1519 btrfs_get_block_group(bg); 1520 trace_btrfs_add_unused_block_group(bg); 1521 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1522 } 1523 spin_unlock(&fs_info->unused_bgs_lock); 1524 } 1525 1526 /* 1527 * We want block groups with a low number of used bytes to be in the beginning 1528 * of the list, so they will get reclaimed first. 1529 */ 1530 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1531 const struct list_head *b) 1532 { 1533 const struct btrfs_block_group *bg1, *bg2; 1534 1535 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1536 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1537 1538 return bg1->used > bg2->used; 1539 } 1540 1541 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1542 { 1543 if (btrfs_is_zoned(fs_info)) 1544 return btrfs_zoned_should_reclaim(fs_info); 1545 return true; 1546 } 1547 1548 void btrfs_reclaim_bgs_work(struct work_struct *work) 1549 { 1550 struct btrfs_fs_info *fs_info = 1551 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1552 struct btrfs_block_group *bg; 1553 struct btrfs_space_info *space_info; 1554 1555 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1556 return; 1557 1558 if (!btrfs_should_reclaim(fs_info)) 1559 return; 1560 1561 sb_start_write(fs_info->sb); 1562 1563 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1564 sb_end_write(fs_info->sb); 1565 return; 1566 } 1567 1568 /* 1569 * Long running balances can keep us blocked here for eternity, so 1570 * simply skip reclaim if we're unable to get the mutex. 1571 */ 1572 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1573 btrfs_exclop_finish(fs_info); 1574 sb_end_write(fs_info->sb); 1575 return; 1576 } 1577 1578 spin_lock(&fs_info->unused_bgs_lock); 1579 /* 1580 * Sort happens under lock because we can't simply splice it and sort. 1581 * The block groups might still be in use and reachable via bg_list, 1582 * and their presence in the reclaim_bgs list must be preserved. 1583 */ 1584 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1585 while (!list_empty(&fs_info->reclaim_bgs)) { 1586 u64 zone_unusable; 1587 int ret = 0; 1588 1589 bg = list_first_entry(&fs_info->reclaim_bgs, 1590 struct btrfs_block_group, 1591 bg_list); 1592 list_del_init(&bg->bg_list); 1593 1594 space_info = bg->space_info; 1595 spin_unlock(&fs_info->unused_bgs_lock); 1596 1597 /* Don't race with allocators so take the groups_sem */ 1598 down_write(&space_info->groups_sem); 1599 1600 spin_lock(&bg->lock); 1601 if (bg->reserved || bg->pinned || bg->ro) { 1602 /* 1603 * We want to bail if we made new allocations or have 1604 * outstanding allocations in this block group. We do 1605 * the ro check in case balance is currently acting on 1606 * this block group. 1607 */ 1608 spin_unlock(&bg->lock); 1609 up_write(&space_info->groups_sem); 1610 goto next; 1611 } 1612 spin_unlock(&bg->lock); 1613 1614 /* Get out fast, in case we're unmounting the filesystem */ 1615 if (btrfs_fs_closing(fs_info)) { 1616 up_write(&space_info->groups_sem); 1617 goto next; 1618 } 1619 1620 /* 1621 * Cache the zone_unusable value before turning the block group 1622 * to read only. As soon as the blog group is read only it's 1623 * zone_unusable value gets moved to the block group's read-only 1624 * bytes and isn't available for calculations anymore. 1625 */ 1626 zone_unusable = bg->zone_unusable; 1627 ret = inc_block_group_ro(bg, 0); 1628 up_write(&space_info->groups_sem); 1629 if (ret < 0) 1630 goto next; 1631 1632 btrfs_info(fs_info, 1633 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1634 bg->start, div_u64(bg->used * 100, bg->length), 1635 div64_u64(zone_unusable * 100, bg->length)); 1636 trace_btrfs_reclaim_block_group(bg); 1637 ret = btrfs_relocate_chunk(fs_info, bg->start); 1638 if (ret) 1639 btrfs_err(fs_info, "error relocating chunk %llu", 1640 bg->start); 1641 1642 next: 1643 btrfs_put_block_group(bg); 1644 spin_lock(&fs_info->unused_bgs_lock); 1645 } 1646 spin_unlock(&fs_info->unused_bgs_lock); 1647 mutex_unlock(&fs_info->reclaim_bgs_lock); 1648 btrfs_exclop_finish(fs_info); 1649 sb_end_write(fs_info->sb); 1650 } 1651 1652 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1653 { 1654 spin_lock(&fs_info->unused_bgs_lock); 1655 if (!list_empty(&fs_info->reclaim_bgs)) 1656 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1657 spin_unlock(&fs_info->unused_bgs_lock); 1658 } 1659 1660 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1661 { 1662 struct btrfs_fs_info *fs_info = bg->fs_info; 1663 1664 spin_lock(&fs_info->unused_bgs_lock); 1665 if (list_empty(&bg->bg_list)) { 1666 btrfs_get_block_group(bg); 1667 trace_btrfs_add_reclaim_block_group(bg); 1668 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1669 } 1670 spin_unlock(&fs_info->unused_bgs_lock); 1671 } 1672 1673 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1674 struct btrfs_path *path) 1675 { 1676 struct extent_map_tree *em_tree; 1677 struct extent_map *em; 1678 struct btrfs_block_group_item bg; 1679 struct extent_buffer *leaf; 1680 int slot; 1681 u64 flags; 1682 int ret = 0; 1683 1684 slot = path->slots[0]; 1685 leaf = path->nodes[0]; 1686 1687 em_tree = &fs_info->mapping_tree; 1688 read_lock(&em_tree->lock); 1689 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1690 read_unlock(&em_tree->lock); 1691 if (!em) { 1692 btrfs_err(fs_info, 1693 "logical %llu len %llu found bg but no related chunk", 1694 key->objectid, key->offset); 1695 return -ENOENT; 1696 } 1697 1698 if (em->start != key->objectid || em->len != key->offset) { 1699 btrfs_err(fs_info, 1700 "block group %llu len %llu mismatch with chunk %llu len %llu", 1701 key->objectid, key->offset, em->start, em->len); 1702 ret = -EUCLEAN; 1703 goto out_free_em; 1704 } 1705 1706 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1707 sizeof(bg)); 1708 flags = btrfs_stack_block_group_flags(&bg) & 1709 BTRFS_BLOCK_GROUP_TYPE_MASK; 1710 1711 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1712 btrfs_err(fs_info, 1713 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1714 key->objectid, key->offset, flags, 1715 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1716 ret = -EUCLEAN; 1717 } 1718 1719 out_free_em: 1720 free_extent_map(em); 1721 return ret; 1722 } 1723 1724 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1725 struct btrfs_path *path, 1726 struct btrfs_key *key) 1727 { 1728 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1729 int ret; 1730 struct btrfs_key found_key; 1731 1732 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1733 if (found_key.objectid >= key->objectid && 1734 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1735 return read_bg_from_eb(fs_info, &found_key, path); 1736 } 1737 } 1738 return ret; 1739 } 1740 1741 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1742 { 1743 u64 extra_flags = chunk_to_extended(flags) & 1744 BTRFS_EXTENDED_PROFILE_MASK; 1745 1746 write_seqlock(&fs_info->profiles_lock); 1747 if (flags & BTRFS_BLOCK_GROUP_DATA) 1748 fs_info->avail_data_alloc_bits |= extra_flags; 1749 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1750 fs_info->avail_metadata_alloc_bits |= extra_flags; 1751 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1752 fs_info->avail_system_alloc_bits |= extra_flags; 1753 write_sequnlock(&fs_info->profiles_lock); 1754 } 1755 1756 /** 1757 * Map a physical disk address to a list of logical addresses 1758 * 1759 * @fs_info: the filesystem 1760 * @chunk_start: logical address of block group 1761 * @bdev: physical device to resolve, can be NULL to indicate any device 1762 * @physical: physical address to map to logical addresses 1763 * @logical: return array of logical addresses which map to @physical 1764 * @naddrs: length of @logical 1765 * @stripe_len: size of IO stripe for the given block group 1766 * 1767 * Maps a particular @physical disk address to a list of @logical addresses. 1768 * Used primarily to exclude those portions of a block group that contain super 1769 * block copies. 1770 */ 1771 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1772 struct block_device *bdev, u64 physical, u64 **logical, 1773 int *naddrs, int *stripe_len) 1774 { 1775 struct extent_map *em; 1776 struct map_lookup *map; 1777 u64 *buf; 1778 u64 bytenr; 1779 u64 data_stripe_length; 1780 u64 io_stripe_size; 1781 int i, nr = 0; 1782 int ret = 0; 1783 1784 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1785 if (IS_ERR(em)) 1786 return -EIO; 1787 1788 map = em->map_lookup; 1789 data_stripe_length = em->orig_block_len; 1790 io_stripe_size = map->stripe_len; 1791 chunk_start = em->start; 1792 1793 /* For RAID5/6 adjust to a full IO stripe length */ 1794 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1795 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1796 1797 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1798 if (!buf) { 1799 ret = -ENOMEM; 1800 goto out; 1801 } 1802 1803 for (i = 0; i < map->num_stripes; i++) { 1804 bool already_inserted = false; 1805 u64 stripe_nr; 1806 u64 offset; 1807 int j; 1808 1809 if (!in_range(physical, map->stripes[i].physical, 1810 data_stripe_length)) 1811 continue; 1812 1813 if (bdev && map->stripes[i].dev->bdev != bdev) 1814 continue; 1815 1816 stripe_nr = physical - map->stripes[i].physical; 1817 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1818 1819 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1820 stripe_nr = stripe_nr * map->num_stripes + i; 1821 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1822 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1823 stripe_nr = stripe_nr * map->num_stripes + i; 1824 } 1825 /* 1826 * The remaining case would be for RAID56, multiply by 1827 * nr_data_stripes(). Alternatively, just use rmap_len below 1828 * instead of map->stripe_len 1829 */ 1830 1831 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1832 1833 /* Ensure we don't add duplicate addresses */ 1834 for (j = 0; j < nr; j++) { 1835 if (buf[j] == bytenr) { 1836 already_inserted = true; 1837 break; 1838 } 1839 } 1840 1841 if (!already_inserted) 1842 buf[nr++] = bytenr; 1843 } 1844 1845 *logical = buf; 1846 *naddrs = nr; 1847 *stripe_len = io_stripe_size; 1848 out: 1849 free_extent_map(em); 1850 return ret; 1851 } 1852 1853 static int exclude_super_stripes(struct btrfs_block_group *cache) 1854 { 1855 struct btrfs_fs_info *fs_info = cache->fs_info; 1856 const bool zoned = btrfs_is_zoned(fs_info); 1857 u64 bytenr; 1858 u64 *logical; 1859 int stripe_len; 1860 int i, nr, ret; 1861 1862 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1863 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1864 cache->bytes_super += stripe_len; 1865 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1866 stripe_len); 1867 if (ret) 1868 return ret; 1869 } 1870 1871 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1872 bytenr = btrfs_sb_offset(i); 1873 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1874 bytenr, &logical, &nr, &stripe_len); 1875 if (ret) 1876 return ret; 1877 1878 /* Shouldn't have super stripes in sequential zones */ 1879 if (zoned && nr) { 1880 btrfs_err(fs_info, 1881 "zoned: block group %llu must not contain super block", 1882 cache->start); 1883 return -EUCLEAN; 1884 } 1885 1886 while (nr--) { 1887 u64 len = min_t(u64, stripe_len, 1888 cache->start + cache->length - logical[nr]); 1889 1890 cache->bytes_super += len; 1891 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1892 len); 1893 if (ret) { 1894 kfree(logical); 1895 return ret; 1896 } 1897 } 1898 1899 kfree(logical); 1900 } 1901 return 0; 1902 } 1903 1904 static void link_block_group(struct btrfs_block_group *cache) 1905 { 1906 struct btrfs_space_info *space_info = cache->space_info; 1907 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1908 1909 down_write(&space_info->groups_sem); 1910 list_add_tail(&cache->list, &space_info->block_groups[index]); 1911 up_write(&space_info->groups_sem); 1912 } 1913 1914 static struct btrfs_block_group *btrfs_create_block_group_cache( 1915 struct btrfs_fs_info *fs_info, u64 start) 1916 { 1917 struct btrfs_block_group *cache; 1918 1919 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1920 if (!cache) 1921 return NULL; 1922 1923 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1924 GFP_NOFS); 1925 if (!cache->free_space_ctl) { 1926 kfree(cache); 1927 return NULL; 1928 } 1929 1930 cache->start = start; 1931 1932 cache->fs_info = fs_info; 1933 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1934 1935 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1936 1937 refcount_set(&cache->refs, 1); 1938 spin_lock_init(&cache->lock); 1939 init_rwsem(&cache->data_rwsem); 1940 INIT_LIST_HEAD(&cache->list); 1941 INIT_LIST_HEAD(&cache->cluster_list); 1942 INIT_LIST_HEAD(&cache->bg_list); 1943 INIT_LIST_HEAD(&cache->ro_list); 1944 INIT_LIST_HEAD(&cache->discard_list); 1945 INIT_LIST_HEAD(&cache->dirty_list); 1946 INIT_LIST_HEAD(&cache->io_list); 1947 INIT_LIST_HEAD(&cache->active_bg_list); 1948 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1949 atomic_set(&cache->frozen, 0); 1950 mutex_init(&cache->free_space_lock); 1951 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1952 1953 return cache; 1954 } 1955 1956 /* 1957 * Iterate all chunks and verify that each of them has the corresponding block 1958 * group 1959 */ 1960 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1961 { 1962 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1963 struct extent_map *em; 1964 struct btrfs_block_group *bg; 1965 u64 start = 0; 1966 int ret = 0; 1967 1968 while (1) { 1969 read_lock(&map_tree->lock); 1970 /* 1971 * lookup_extent_mapping will return the first extent map 1972 * intersecting the range, so setting @len to 1 is enough to 1973 * get the first chunk. 1974 */ 1975 em = lookup_extent_mapping(map_tree, start, 1); 1976 read_unlock(&map_tree->lock); 1977 if (!em) 1978 break; 1979 1980 bg = btrfs_lookup_block_group(fs_info, em->start); 1981 if (!bg) { 1982 btrfs_err(fs_info, 1983 "chunk start=%llu len=%llu doesn't have corresponding block group", 1984 em->start, em->len); 1985 ret = -EUCLEAN; 1986 free_extent_map(em); 1987 break; 1988 } 1989 if (bg->start != em->start || bg->length != em->len || 1990 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1991 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1992 btrfs_err(fs_info, 1993 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1994 em->start, em->len, 1995 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1996 bg->start, bg->length, 1997 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1998 ret = -EUCLEAN; 1999 free_extent_map(em); 2000 btrfs_put_block_group(bg); 2001 break; 2002 } 2003 start = em->start + em->len; 2004 free_extent_map(em); 2005 btrfs_put_block_group(bg); 2006 } 2007 return ret; 2008 } 2009 2010 static int read_one_block_group(struct btrfs_fs_info *info, 2011 struct btrfs_block_group_item *bgi, 2012 const struct btrfs_key *key, 2013 int need_clear) 2014 { 2015 struct btrfs_block_group *cache; 2016 struct btrfs_space_info *space_info; 2017 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2018 int ret; 2019 2020 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2021 2022 cache = btrfs_create_block_group_cache(info, key->objectid); 2023 if (!cache) 2024 return -ENOMEM; 2025 2026 cache->length = key->offset; 2027 cache->used = btrfs_stack_block_group_used(bgi); 2028 cache->flags = btrfs_stack_block_group_flags(bgi); 2029 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2030 2031 set_free_space_tree_thresholds(cache); 2032 2033 if (need_clear) { 2034 /* 2035 * When we mount with old space cache, we need to 2036 * set BTRFS_DC_CLEAR and set dirty flag. 2037 * 2038 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2039 * truncate the old free space cache inode and 2040 * setup a new one. 2041 * b) Setting 'dirty flag' makes sure that we flush 2042 * the new space cache info onto disk. 2043 */ 2044 if (btrfs_test_opt(info, SPACE_CACHE)) 2045 cache->disk_cache_state = BTRFS_DC_CLEAR; 2046 } 2047 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2048 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2049 btrfs_err(info, 2050 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2051 cache->start); 2052 ret = -EINVAL; 2053 goto error; 2054 } 2055 2056 ret = btrfs_load_block_group_zone_info(cache, false); 2057 if (ret) { 2058 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2059 cache->start); 2060 goto error; 2061 } 2062 2063 /* 2064 * We need to exclude the super stripes now so that the space info has 2065 * super bytes accounted for, otherwise we'll think we have more space 2066 * than we actually do. 2067 */ 2068 ret = exclude_super_stripes(cache); 2069 if (ret) { 2070 /* We may have excluded something, so call this just in case. */ 2071 btrfs_free_excluded_extents(cache); 2072 goto error; 2073 } 2074 2075 /* 2076 * For zoned filesystem, space after the allocation offset is the only 2077 * free space for a block group. So, we don't need any caching work. 2078 * btrfs_calc_zone_unusable() will set the amount of free space and 2079 * zone_unusable space. 2080 * 2081 * For regular filesystem, check for two cases, either we are full, and 2082 * therefore don't need to bother with the caching work since we won't 2083 * find any space, or we are empty, and we can just add all the space 2084 * in and be done with it. This saves us _a_lot_ of time, particularly 2085 * in the full case. 2086 */ 2087 if (btrfs_is_zoned(info)) { 2088 btrfs_calc_zone_unusable(cache); 2089 /* Should not have any excluded extents. Just in case, though. */ 2090 btrfs_free_excluded_extents(cache); 2091 } else if (cache->length == cache->used) { 2092 cache->last_byte_to_unpin = (u64)-1; 2093 cache->cached = BTRFS_CACHE_FINISHED; 2094 btrfs_free_excluded_extents(cache); 2095 } else if (cache->used == 0) { 2096 cache->last_byte_to_unpin = (u64)-1; 2097 cache->cached = BTRFS_CACHE_FINISHED; 2098 add_new_free_space(cache, cache->start, 2099 cache->start + cache->length); 2100 btrfs_free_excluded_extents(cache); 2101 } 2102 2103 ret = btrfs_add_block_group_cache(info, cache); 2104 if (ret) { 2105 btrfs_remove_free_space_cache(cache); 2106 goto error; 2107 } 2108 trace_btrfs_add_block_group(info, cache, 0); 2109 btrfs_update_space_info(info, cache->flags, cache->length, 2110 cache->used, cache->bytes_super, 2111 cache->zone_unusable, &space_info); 2112 2113 cache->space_info = space_info; 2114 2115 link_block_group(cache); 2116 2117 set_avail_alloc_bits(info, cache->flags); 2118 if (btrfs_chunk_writeable(info, cache->start)) { 2119 if (cache->used == 0) { 2120 ASSERT(list_empty(&cache->bg_list)); 2121 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2122 btrfs_discard_queue_work(&info->discard_ctl, cache); 2123 else 2124 btrfs_mark_bg_unused(cache); 2125 } 2126 } else { 2127 inc_block_group_ro(cache, 1); 2128 } 2129 2130 return 0; 2131 error: 2132 btrfs_put_block_group(cache); 2133 return ret; 2134 } 2135 2136 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2137 { 2138 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2139 struct btrfs_space_info *space_info; 2140 struct rb_node *node; 2141 int ret = 0; 2142 2143 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2144 struct extent_map *em; 2145 struct map_lookup *map; 2146 struct btrfs_block_group *bg; 2147 2148 em = rb_entry(node, struct extent_map, rb_node); 2149 map = em->map_lookup; 2150 bg = btrfs_create_block_group_cache(fs_info, em->start); 2151 if (!bg) { 2152 ret = -ENOMEM; 2153 break; 2154 } 2155 2156 /* Fill dummy cache as FULL */ 2157 bg->length = em->len; 2158 bg->flags = map->type; 2159 bg->last_byte_to_unpin = (u64)-1; 2160 bg->cached = BTRFS_CACHE_FINISHED; 2161 bg->used = em->len; 2162 bg->flags = map->type; 2163 ret = btrfs_add_block_group_cache(fs_info, bg); 2164 /* 2165 * We may have some valid block group cache added already, in 2166 * that case we skip to the next one. 2167 */ 2168 if (ret == -EEXIST) { 2169 ret = 0; 2170 btrfs_put_block_group(bg); 2171 continue; 2172 } 2173 2174 if (ret) { 2175 btrfs_remove_free_space_cache(bg); 2176 btrfs_put_block_group(bg); 2177 break; 2178 } 2179 2180 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2181 0, 0, &space_info); 2182 bg->space_info = space_info; 2183 link_block_group(bg); 2184 2185 set_avail_alloc_bits(fs_info, bg->flags); 2186 } 2187 if (!ret) 2188 btrfs_init_global_block_rsv(fs_info); 2189 return ret; 2190 } 2191 2192 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2193 { 2194 struct btrfs_root *root = btrfs_block_group_root(info); 2195 struct btrfs_path *path; 2196 int ret; 2197 struct btrfs_block_group *cache; 2198 struct btrfs_space_info *space_info; 2199 struct btrfs_key key; 2200 int need_clear = 0; 2201 u64 cache_gen; 2202 2203 if (!root) 2204 return fill_dummy_bgs(info); 2205 2206 key.objectid = 0; 2207 key.offset = 0; 2208 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2209 path = btrfs_alloc_path(); 2210 if (!path) 2211 return -ENOMEM; 2212 2213 cache_gen = btrfs_super_cache_generation(info->super_copy); 2214 if (btrfs_test_opt(info, SPACE_CACHE) && 2215 btrfs_super_generation(info->super_copy) != cache_gen) 2216 need_clear = 1; 2217 if (btrfs_test_opt(info, CLEAR_CACHE)) 2218 need_clear = 1; 2219 2220 while (1) { 2221 struct btrfs_block_group_item bgi; 2222 struct extent_buffer *leaf; 2223 int slot; 2224 2225 ret = find_first_block_group(info, path, &key); 2226 if (ret > 0) 2227 break; 2228 if (ret != 0) 2229 goto error; 2230 2231 leaf = path->nodes[0]; 2232 slot = path->slots[0]; 2233 2234 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2235 sizeof(bgi)); 2236 2237 btrfs_item_key_to_cpu(leaf, &key, slot); 2238 btrfs_release_path(path); 2239 ret = read_one_block_group(info, &bgi, &key, need_clear); 2240 if (ret < 0) 2241 goto error; 2242 key.objectid += key.offset; 2243 key.offset = 0; 2244 } 2245 btrfs_release_path(path); 2246 2247 list_for_each_entry(space_info, &info->space_info, list) { 2248 int i; 2249 2250 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2251 if (list_empty(&space_info->block_groups[i])) 2252 continue; 2253 cache = list_first_entry(&space_info->block_groups[i], 2254 struct btrfs_block_group, 2255 list); 2256 btrfs_sysfs_add_block_group_type(cache); 2257 } 2258 2259 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2260 (BTRFS_BLOCK_GROUP_RAID10 | 2261 BTRFS_BLOCK_GROUP_RAID1_MASK | 2262 BTRFS_BLOCK_GROUP_RAID56_MASK | 2263 BTRFS_BLOCK_GROUP_DUP))) 2264 continue; 2265 /* 2266 * Avoid allocating from un-mirrored block group if there are 2267 * mirrored block groups. 2268 */ 2269 list_for_each_entry(cache, 2270 &space_info->block_groups[BTRFS_RAID_RAID0], 2271 list) 2272 inc_block_group_ro(cache, 1); 2273 list_for_each_entry(cache, 2274 &space_info->block_groups[BTRFS_RAID_SINGLE], 2275 list) 2276 inc_block_group_ro(cache, 1); 2277 } 2278 2279 btrfs_init_global_block_rsv(info); 2280 ret = check_chunk_block_group_mappings(info); 2281 error: 2282 btrfs_free_path(path); 2283 /* 2284 * We've hit some error while reading the extent tree, and have 2285 * rescue=ibadroots mount option. 2286 * Try to fill the tree using dummy block groups so that the user can 2287 * continue to mount and grab their data. 2288 */ 2289 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2290 ret = fill_dummy_bgs(info); 2291 return ret; 2292 } 2293 2294 /* 2295 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2296 * allocation. 2297 * 2298 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2299 * phases. 2300 */ 2301 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2302 struct btrfs_block_group *block_group) 2303 { 2304 struct btrfs_fs_info *fs_info = trans->fs_info; 2305 struct btrfs_block_group_item bgi; 2306 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2307 struct btrfs_key key; 2308 2309 spin_lock(&block_group->lock); 2310 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2311 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2312 block_group->global_root_id); 2313 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2314 key.objectid = block_group->start; 2315 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2316 key.offset = block_group->length; 2317 spin_unlock(&block_group->lock); 2318 2319 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2320 } 2321 2322 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2323 struct btrfs_device *device, u64 chunk_offset, 2324 u64 start, u64 num_bytes) 2325 { 2326 struct btrfs_fs_info *fs_info = device->fs_info; 2327 struct btrfs_root *root = fs_info->dev_root; 2328 struct btrfs_path *path; 2329 struct btrfs_dev_extent *extent; 2330 struct extent_buffer *leaf; 2331 struct btrfs_key key; 2332 int ret; 2333 2334 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2335 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2336 path = btrfs_alloc_path(); 2337 if (!path) 2338 return -ENOMEM; 2339 2340 key.objectid = device->devid; 2341 key.type = BTRFS_DEV_EXTENT_KEY; 2342 key.offset = start; 2343 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2344 if (ret) 2345 goto out; 2346 2347 leaf = path->nodes[0]; 2348 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2349 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2350 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2351 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2352 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2353 2354 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2355 btrfs_mark_buffer_dirty(leaf); 2356 out: 2357 btrfs_free_path(path); 2358 return ret; 2359 } 2360 2361 /* 2362 * This function belongs to phase 2. 2363 * 2364 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2365 * phases. 2366 */ 2367 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2368 u64 chunk_offset, u64 chunk_size) 2369 { 2370 struct btrfs_fs_info *fs_info = trans->fs_info; 2371 struct btrfs_device *device; 2372 struct extent_map *em; 2373 struct map_lookup *map; 2374 u64 dev_offset; 2375 u64 stripe_size; 2376 int i; 2377 int ret = 0; 2378 2379 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2380 if (IS_ERR(em)) 2381 return PTR_ERR(em); 2382 2383 map = em->map_lookup; 2384 stripe_size = em->orig_block_len; 2385 2386 /* 2387 * Take the device list mutex to prevent races with the final phase of 2388 * a device replace operation that replaces the device object associated 2389 * with the map's stripes, because the device object's id can change 2390 * at any time during that final phase of the device replace operation 2391 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2392 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2393 * resulting in persisting a device extent item with such ID. 2394 */ 2395 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2396 for (i = 0; i < map->num_stripes; i++) { 2397 device = map->stripes[i].dev; 2398 dev_offset = map->stripes[i].physical; 2399 2400 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2401 stripe_size); 2402 if (ret) 2403 break; 2404 } 2405 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2406 2407 free_extent_map(em); 2408 return ret; 2409 } 2410 2411 /* 2412 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2413 * chunk allocation. 2414 * 2415 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2416 * phases. 2417 */ 2418 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2419 { 2420 struct btrfs_fs_info *fs_info = trans->fs_info; 2421 struct btrfs_block_group *block_group; 2422 int ret = 0; 2423 2424 while (!list_empty(&trans->new_bgs)) { 2425 int index; 2426 2427 block_group = list_first_entry(&trans->new_bgs, 2428 struct btrfs_block_group, 2429 bg_list); 2430 if (ret) 2431 goto next; 2432 2433 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2434 2435 ret = insert_block_group_item(trans, block_group); 2436 if (ret) 2437 btrfs_abort_transaction(trans, ret); 2438 if (!block_group->chunk_item_inserted) { 2439 mutex_lock(&fs_info->chunk_mutex); 2440 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2441 mutex_unlock(&fs_info->chunk_mutex); 2442 if (ret) 2443 btrfs_abort_transaction(trans, ret); 2444 } 2445 ret = insert_dev_extents(trans, block_group->start, 2446 block_group->length); 2447 if (ret) 2448 btrfs_abort_transaction(trans, ret); 2449 add_block_group_free_space(trans, block_group); 2450 2451 /* 2452 * If we restriped during balance, we may have added a new raid 2453 * type, so now add the sysfs entries when it is safe to do so. 2454 * We don't have to worry about locking here as it's handled in 2455 * btrfs_sysfs_add_block_group_type. 2456 */ 2457 if (block_group->space_info->block_group_kobjs[index] == NULL) 2458 btrfs_sysfs_add_block_group_type(block_group); 2459 2460 /* Already aborted the transaction if it failed. */ 2461 next: 2462 btrfs_delayed_refs_rsv_release(fs_info, 1); 2463 list_del_init(&block_group->bg_list); 2464 } 2465 btrfs_trans_release_chunk_metadata(trans); 2466 } 2467 2468 /* 2469 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2470 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2471 */ 2472 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2473 { 2474 u64 div = SZ_1G; 2475 u64 index; 2476 2477 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2478 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2479 2480 /* If we have a smaller fs index based on 128MiB. */ 2481 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2482 div = SZ_128M; 2483 2484 offset = div64_u64(offset, div); 2485 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2486 return index; 2487 } 2488 2489 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2490 u64 bytes_used, u64 type, 2491 u64 chunk_offset, u64 size) 2492 { 2493 struct btrfs_fs_info *fs_info = trans->fs_info; 2494 struct btrfs_block_group *cache; 2495 int ret; 2496 2497 btrfs_set_log_full_commit(trans); 2498 2499 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2500 if (!cache) 2501 return ERR_PTR(-ENOMEM); 2502 2503 cache->length = size; 2504 set_free_space_tree_thresholds(cache); 2505 cache->used = bytes_used; 2506 cache->flags = type; 2507 cache->last_byte_to_unpin = (u64)-1; 2508 cache->cached = BTRFS_CACHE_FINISHED; 2509 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2510 2511 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2512 cache->needs_free_space = 1; 2513 2514 ret = btrfs_load_block_group_zone_info(cache, true); 2515 if (ret) { 2516 btrfs_put_block_group(cache); 2517 return ERR_PTR(ret); 2518 } 2519 2520 ret = exclude_super_stripes(cache); 2521 if (ret) { 2522 /* We may have excluded something, so call this just in case */ 2523 btrfs_free_excluded_extents(cache); 2524 btrfs_put_block_group(cache); 2525 return ERR_PTR(ret); 2526 } 2527 2528 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2529 2530 btrfs_free_excluded_extents(cache); 2531 2532 #ifdef CONFIG_BTRFS_DEBUG 2533 if (btrfs_should_fragment_free_space(cache)) { 2534 u64 new_bytes_used = size - bytes_used; 2535 2536 bytes_used += new_bytes_used >> 1; 2537 fragment_free_space(cache); 2538 } 2539 #endif 2540 /* 2541 * Ensure the corresponding space_info object is created and 2542 * assigned to our block group. We want our bg to be added to the rbtree 2543 * with its ->space_info set. 2544 */ 2545 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2546 ASSERT(cache->space_info); 2547 2548 ret = btrfs_add_block_group_cache(fs_info, cache); 2549 if (ret) { 2550 btrfs_remove_free_space_cache(cache); 2551 btrfs_put_block_group(cache); 2552 return ERR_PTR(ret); 2553 } 2554 2555 /* 2556 * Now that our block group has its ->space_info set and is inserted in 2557 * the rbtree, update the space info's counters. 2558 */ 2559 trace_btrfs_add_block_group(fs_info, cache, 1); 2560 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2561 cache->bytes_super, cache->zone_unusable, 2562 &cache->space_info); 2563 btrfs_update_global_block_rsv(fs_info); 2564 2565 link_block_group(cache); 2566 2567 list_add_tail(&cache->bg_list, &trans->new_bgs); 2568 trans->delayed_ref_updates++; 2569 btrfs_update_delayed_refs_rsv(trans); 2570 2571 set_avail_alloc_bits(fs_info, type); 2572 return cache; 2573 } 2574 2575 /* 2576 * Mark one block group RO, can be called several times for the same block 2577 * group. 2578 * 2579 * @cache: the destination block group 2580 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2581 * ensure we still have some free space after marking this 2582 * block group RO. 2583 */ 2584 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2585 bool do_chunk_alloc) 2586 { 2587 struct btrfs_fs_info *fs_info = cache->fs_info; 2588 struct btrfs_trans_handle *trans; 2589 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2590 u64 alloc_flags; 2591 int ret; 2592 bool dirty_bg_running; 2593 2594 /* 2595 * This can only happen when we are doing read-only scrub on read-only 2596 * mount. 2597 * In that case we should not start a new transaction on read-only fs. 2598 * Thus here we skip all chunk allocations. 2599 */ 2600 if (sb_rdonly(fs_info->sb)) { 2601 mutex_lock(&fs_info->ro_block_group_mutex); 2602 ret = inc_block_group_ro(cache, 0); 2603 mutex_unlock(&fs_info->ro_block_group_mutex); 2604 return ret; 2605 } 2606 2607 do { 2608 trans = btrfs_join_transaction(root); 2609 if (IS_ERR(trans)) 2610 return PTR_ERR(trans); 2611 2612 dirty_bg_running = false; 2613 2614 /* 2615 * We're not allowed to set block groups readonly after the dirty 2616 * block group cache has started writing. If it already started, 2617 * back off and let this transaction commit. 2618 */ 2619 mutex_lock(&fs_info->ro_block_group_mutex); 2620 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2621 u64 transid = trans->transid; 2622 2623 mutex_unlock(&fs_info->ro_block_group_mutex); 2624 btrfs_end_transaction(trans); 2625 2626 ret = btrfs_wait_for_commit(fs_info, transid); 2627 if (ret) 2628 return ret; 2629 dirty_bg_running = true; 2630 } 2631 } while (dirty_bg_running); 2632 2633 if (do_chunk_alloc) { 2634 /* 2635 * If we are changing raid levels, try to allocate a 2636 * corresponding block group with the new raid level. 2637 */ 2638 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2639 if (alloc_flags != cache->flags) { 2640 ret = btrfs_chunk_alloc(trans, alloc_flags, 2641 CHUNK_ALLOC_FORCE); 2642 /* 2643 * ENOSPC is allowed here, we may have enough space 2644 * already allocated at the new raid level to carry on 2645 */ 2646 if (ret == -ENOSPC) 2647 ret = 0; 2648 if (ret < 0) 2649 goto out; 2650 } 2651 } 2652 2653 ret = inc_block_group_ro(cache, 0); 2654 if (!do_chunk_alloc || ret == -ETXTBSY) 2655 goto unlock_out; 2656 if (!ret) 2657 goto out; 2658 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2659 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2660 if (ret < 0) 2661 goto out; 2662 ret = inc_block_group_ro(cache, 0); 2663 if (ret == -ETXTBSY) 2664 goto unlock_out; 2665 out: 2666 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2667 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2668 mutex_lock(&fs_info->chunk_mutex); 2669 check_system_chunk(trans, alloc_flags); 2670 mutex_unlock(&fs_info->chunk_mutex); 2671 } 2672 unlock_out: 2673 mutex_unlock(&fs_info->ro_block_group_mutex); 2674 2675 btrfs_end_transaction(trans); 2676 return ret; 2677 } 2678 2679 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2680 { 2681 struct btrfs_space_info *sinfo = cache->space_info; 2682 u64 num_bytes; 2683 2684 BUG_ON(!cache->ro); 2685 2686 spin_lock(&sinfo->lock); 2687 spin_lock(&cache->lock); 2688 if (!--cache->ro) { 2689 if (btrfs_is_zoned(cache->fs_info)) { 2690 /* Migrate zone_unusable bytes back */ 2691 cache->zone_unusable = 2692 (cache->alloc_offset - cache->used) + 2693 (cache->length - cache->zone_capacity); 2694 sinfo->bytes_zone_unusable += cache->zone_unusable; 2695 sinfo->bytes_readonly -= cache->zone_unusable; 2696 } 2697 num_bytes = cache->length - cache->reserved - 2698 cache->pinned - cache->bytes_super - 2699 cache->zone_unusable - cache->used; 2700 sinfo->bytes_readonly -= num_bytes; 2701 list_del_init(&cache->ro_list); 2702 } 2703 spin_unlock(&cache->lock); 2704 spin_unlock(&sinfo->lock); 2705 } 2706 2707 static int update_block_group_item(struct btrfs_trans_handle *trans, 2708 struct btrfs_path *path, 2709 struct btrfs_block_group *cache) 2710 { 2711 struct btrfs_fs_info *fs_info = trans->fs_info; 2712 int ret; 2713 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2714 unsigned long bi; 2715 struct extent_buffer *leaf; 2716 struct btrfs_block_group_item bgi; 2717 struct btrfs_key key; 2718 2719 key.objectid = cache->start; 2720 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2721 key.offset = cache->length; 2722 2723 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2724 if (ret) { 2725 if (ret > 0) 2726 ret = -ENOENT; 2727 goto fail; 2728 } 2729 2730 leaf = path->nodes[0]; 2731 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2732 btrfs_set_stack_block_group_used(&bgi, cache->used); 2733 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2734 cache->global_root_id); 2735 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2736 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2737 btrfs_mark_buffer_dirty(leaf); 2738 fail: 2739 btrfs_release_path(path); 2740 return ret; 2741 2742 } 2743 2744 static int cache_save_setup(struct btrfs_block_group *block_group, 2745 struct btrfs_trans_handle *trans, 2746 struct btrfs_path *path) 2747 { 2748 struct btrfs_fs_info *fs_info = block_group->fs_info; 2749 struct btrfs_root *root = fs_info->tree_root; 2750 struct inode *inode = NULL; 2751 struct extent_changeset *data_reserved = NULL; 2752 u64 alloc_hint = 0; 2753 int dcs = BTRFS_DC_ERROR; 2754 u64 cache_size = 0; 2755 int retries = 0; 2756 int ret = 0; 2757 2758 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2759 return 0; 2760 2761 /* 2762 * If this block group is smaller than 100 megs don't bother caching the 2763 * block group. 2764 */ 2765 if (block_group->length < (100 * SZ_1M)) { 2766 spin_lock(&block_group->lock); 2767 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2768 spin_unlock(&block_group->lock); 2769 return 0; 2770 } 2771 2772 if (TRANS_ABORTED(trans)) 2773 return 0; 2774 again: 2775 inode = lookup_free_space_inode(block_group, path); 2776 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2777 ret = PTR_ERR(inode); 2778 btrfs_release_path(path); 2779 goto out; 2780 } 2781 2782 if (IS_ERR(inode)) { 2783 BUG_ON(retries); 2784 retries++; 2785 2786 if (block_group->ro) 2787 goto out_free; 2788 2789 ret = create_free_space_inode(trans, block_group, path); 2790 if (ret) 2791 goto out_free; 2792 goto again; 2793 } 2794 2795 /* 2796 * We want to set the generation to 0, that way if anything goes wrong 2797 * from here on out we know not to trust this cache when we load up next 2798 * time. 2799 */ 2800 BTRFS_I(inode)->generation = 0; 2801 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2802 if (ret) { 2803 /* 2804 * So theoretically we could recover from this, simply set the 2805 * super cache generation to 0 so we know to invalidate the 2806 * cache, but then we'd have to keep track of the block groups 2807 * that fail this way so we know we _have_ to reset this cache 2808 * before the next commit or risk reading stale cache. So to 2809 * limit our exposure to horrible edge cases lets just abort the 2810 * transaction, this only happens in really bad situations 2811 * anyway. 2812 */ 2813 btrfs_abort_transaction(trans, ret); 2814 goto out_put; 2815 } 2816 WARN_ON(ret); 2817 2818 /* We've already setup this transaction, go ahead and exit */ 2819 if (block_group->cache_generation == trans->transid && 2820 i_size_read(inode)) { 2821 dcs = BTRFS_DC_SETUP; 2822 goto out_put; 2823 } 2824 2825 if (i_size_read(inode) > 0) { 2826 ret = btrfs_check_trunc_cache_free_space(fs_info, 2827 &fs_info->global_block_rsv); 2828 if (ret) 2829 goto out_put; 2830 2831 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2832 if (ret) 2833 goto out_put; 2834 } 2835 2836 spin_lock(&block_group->lock); 2837 if (block_group->cached != BTRFS_CACHE_FINISHED || 2838 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2839 /* 2840 * don't bother trying to write stuff out _if_ 2841 * a) we're not cached, 2842 * b) we're with nospace_cache mount option, 2843 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2844 */ 2845 dcs = BTRFS_DC_WRITTEN; 2846 spin_unlock(&block_group->lock); 2847 goto out_put; 2848 } 2849 spin_unlock(&block_group->lock); 2850 2851 /* 2852 * We hit an ENOSPC when setting up the cache in this transaction, just 2853 * skip doing the setup, we've already cleared the cache so we're safe. 2854 */ 2855 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2856 ret = -ENOSPC; 2857 goto out_put; 2858 } 2859 2860 /* 2861 * Try to preallocate enough space based on how big the block group is. 2862 * Keep in mind this has to include any pinned space which could end up 2863 * taking up quite a bit since it's not folded into the other space 2864 * cache. 2865 */ 2866 cache_size = div_u64(block_group->length, SZ_256M); 2867 if (!cache_size) 2868 cache_size = 1; 2869 2870 cache_size *= 16; 2871 cache_size *= fs_info->sectorsize; 2872 2873 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2874 cache_size); 2875 if (ret) 2876 goto out_put; 2877 2878 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2879 cache_size, cache_size, 2880 &alloc_hint); 2881 /* 2882 * Our cache requires contiguous chunks so that we don't modify a bunch 2883 * of metadata or split extents when writing the cache out, which means 2884 * we can enospc if we are heavily fragmented in addition to just normal 2885 * out of space conditions. So if we hit this just skip setting up any 2886 * other block groups for this transaction, maybe we'll unpin enough 2887 * space the next time around. 2888 */ 2889 if (!ret) 2890 dcs = BTRFS_DC_SETUP; 2891 else if (ret == -ENOSPC) 2892 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2893 2894 out_put: 2895 iput(inode); 2896 out_free: 2897 btrfs_release_path(path); 2898 out: 2899 spin_lock(&block_group->lock); 2900 if (!ret && dcs == BTRFS_DC_SETUP) 2901 block_group->cache_generation = trans->transid; 2902 block_group->disk_cache_state = dcs; 2903 spin_unlock(&block_group->lock); 2904 2905 extent_changeset_free(data_reserved); 2906 return ret; 2907 } 2908 2909 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2910 { 2911 struct btrfs_fs_info *fs_info = trans->fs_info; 2912 struct btrfs_block_group *cache, *tmp; 2913 struct btrfs_transaction *cur_trans = trans->transaction; 2914 struct btrfs_path *path; 2915 2916 if (list_empty(&cur_trans->dirty_bgs) || 2917 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2918 return 0; 2919 2920 path = btrfs_alloc_path(); 2921 if (!path) 2922 return -ENOMEM; 2923 2924 /* Could add new block groups, use _safe just in case */ 2925 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2926 dirty_list) { 2927 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2928 cache_save_setup(cache, trans, path); 2929 } 2930 2931 btrfs_free_path(path); 2932 return 0; 2933 } 2934 2935 /* 2936 * Transaction commit does final block group cache writeback during a critical 2937 * section where nothing is allowed to change the FS. This is required in 2938 * order for the cache to actually match the block group, but can introduce a 2939 * lot of latency into the commit. 2940 * 2941 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2942 * There's a chance we'll have to redo some of it if the block group changes 2943 * again during the commit, but it greatly reduces the commit latency by 2944 * getting rid of the easy block groups while we're still allowing others to 2945 * join the commit. 2946 */ 2947 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2948 { 2949 struct btrfs_fs_info *fs_info = trans->fs_info; 2950 struct btrfs_block_group *cache; 2951 struct btrfs_transaction *cur_trans = trans->transaction; 2952 int ret = 0; 2953 int should_put; 2954 struct btrfs_path *path = NULL; 2955 LIST_HEAD(dirty); 2956 struct list_head *io = &cur_trans->io_bgs; 2957 int loops = 0; 2958 2959 spin_lock(&cur_trans->dirty_bgs_lock); 2960 if (list_empty(&cur_trans->dirty_bgs)) { 2961 spin_unlock(&cur_trans->dirty_bgs_lock); 2962 return 0; 2963 } 2964 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2965 spin_unlock(&cur_trans->dirty_bgs_lock); 2966 2967 again: 2968 /* Make sure all the block groups on our dirty list actually exist */ 2969 btrfs_create_pending_block_groups(trans); 2970 2971 if (!path) { 2972 path = btrfs_alloc_path(); 2973 if (!path) { 2974 ret = -ENOMEM; 2975 goto out; 2976 } 2977 } 2978 2979 /* 2980 * cache_write_mutex is here only to save us from balance or automatic 2981 * removal of empty block groups deleting this block group while we are 2982 * writing out the cache 2983 */ 2984 mutex_lock(&trans->transaction->cache_write_mutex); 2985 while (!list_empty(&dirty)) { 2986 bool drop_reserve = true; 2987 2988 cache = list_first_entry(&dirty, struct btrfs_block_group, 2989 dirty_list); 2990 /* 2991 * This can happen if something re-dirties a block group that 2992 * is already under IO. Just wait for it to finish and then do 2993 * it all again 2994 */ 2995 if (!list_empty(&cache->io_list)) { 2996 list_del_init(&cache->io_list); 2997 btrfs_wait_cache_io(trans, cache, path); 2998 btrfs_put_block_group(cache); 2999 } 3000 3001 3002 /* 3003 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3004 * it should update the cache_state. Don't delete until after 3005 * we wait. 3006 * 3007 * Since we're not running in the commit critical section 3008 * we need the dirty_bgs_lock to protect from update_block_group 3009 */ 3010 spin_lock(&cur_trans->dirty_bgs_lock); 3011 list_del_init(&cache->dirty_list); 3012 spin_unlock(&cur_trans->dirty_bgs_lock); 3013 3014 should_put = 1; 3015 3016 cache_save_setup(cache, trans, path); 3017 3018 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3019 cache->io_ctl.inode = NULL; 3020 ret = btrfs_write_out_cache(trans, cache, path); 3021 if (ret == 0 && cache->io_ctl.inode) { 3022 should_put = 0; 3023 3024 /* 3025 * The cache_write_mutex is protecting the 3026 * io_list, also refer to the definition of 3027 * btrfs_transaction::io_bgs for more details 3028 */ 3029 list_add_tail(&cache->io_list, io); 3030 } else { 3031 /* 3032 * If we failed to write the cache, the 3033 * generation will be bad and life goes on 3034 */ 3035 ret = 0; 3036 } 3037 } 3038 if (!ret) { 3039 ret = update_block_group_item(trans, path, cache); 3040 /* 3041 * Our block group might still be attached to the list 3042 * of new block groups in the transaction handle of some 3043 * other task (struct btrfs_trans_handle->new_bgs). This 3044 * means its block group item isn't yet in the extent 3045 * tree. If this happens ignore the error, as we will 3046 * try again later in the critical section of the 3047 * transaction commit. 3048 */ 3049 if (ret == -ENOENT) { 3050 ret = 0; 3051 spin_lock(&cur_trans->dirty_bgs_lock); 3052 if (list_empty(&cache->dirty_list)) { 3053 list_add_tail(&cache->dirty_list, 3054 &cur_trans->dirty_bgs); 3055 btrfs_get_block_group(cache); 3056 drop_reserve = false; 3057 } 3058 spin_unlock(&cur_trans->dirty_bgs_lock); 3059 } else if (ret) { 3060 btrfs_abort_transaction(trans, ret); 3061 } 3062 } 3063 3064 /* If it's not on the io list, we need to put the block group */ 3065 if (should_put) 3066 btrfs_put_block_group(cache); 3067 if (drop_reserve) 3068 btrfs_delayed_refs_rsv_release(fs_info, 1); 3069 /* 3070 * Avoid blocking other tasks for too long. It might even save 3071 * us from writing caches for block groups that are going to be 3072 * removed. 3073 */ 3074 mutex_unlock(&trans->transaction->cache_write_mutex); 3075 if (ret) 3076 goto out; 3077 mutex_lock(&trans->transaction->cache_write_mutex); 3078 } 3079 mutex_unlock(&trans->transaction->cache_write_mutex); 3080 3081 /* 3082 * Go through delayed refs for all the stuff we've just kicked off 3083 * and then loop back (just once) 3084 */ 3085 if (!ret) 3086 ret = btrfs_run_delayed_refs(trans, 0); 3087 if (!ret && loops == 0) { 3088 loops++; 3089 spin_lock(&cur_trans->dirty_bgs_lock); 3090 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3091 /* 3092 * dirty_bgs_lock protects us from concurrent block group 3093 * deletes too (not just cache_write_mutex). 3094 */ 3095 if (!list_empty(&dirty)) { 3096 spin_unlock(&cur_trans->dirty_bgs_lock); 3097 goto again; 3098 } 3099 spin_unlock(&cur_trans->dirty_bgs_lock); 3100 } 3101 out: 3102 if (ret < 0) { 3103 spin_lock(&cur_trans->dirty_bgs_lock); 3104 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3105 spin_unlock(&cur_trans->dirty_bgs_lock); 3106 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3107 } 3108 3109 btrfs_free_path(path); 3110 return ret; 3111 } 3112 3113 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3114 { 3115 struct btrfs_fs_info *fs_info = trans->fs_info; 3116 struct btrfs_block_group *cache; 3117 struct btrfs_transaction *cur_trans = trans->transaction; 3118 int ret = 0; 3119 int should_put; 3120 struct btrfs_path *path; 3121 struct list_head *io = &cur_trans->io_bgs; 3122 3123 path = btrfs_alloc_path(); 3124 if (!path) 3125 return -ENOMEM; 3126 3127 /* 3128 * Even though we are in the critical section of the transaction commit, 3129 * we can still have concurrent tasks adding elements to this 3130 * transaction's list of dirty block groups. These tasks correspond to 3131 * endio free space workers started when writeback finishes for a 3132 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3133 * allocate new block groups as a result of COWing nodes of the root 3134 * tree when updating the free space inode. The writeback for the space 3135 * caches is triggered by an earlier call to 3136 * btrfs_start_dirty_block_groups() and iterations of the following 3137 * loop. 3138 * Also we want to do the cache_save_setup first and then run the 3139 * delayed refs to make sure we have the best chance at doing this all 3140 * in one shot. 3141 */ 3142 spin_lock(&cur_trans->dirty_bgs_lock); 3143 while (!list_empty(&cur_trans->dirty_bgs)) { 3144 cache = list_first_entry(&cur_trans->dirty_bgs, 3145 struct btrfs_block_group, 3146 dirty_list); 3147 3148 /* 3149 * This can happen if cache_save_setup re-dirties a block group 3150 * that is already under IO. Just wait for it to finish and 3151 * then do it all again 3152 */ 3153 if (!list_empty(&cache->io_list)) { 3154 spin_unlock(&cur_trans->dirty_bgs_lock); 3155 list_del_init(&cache->io_list); 3156 btrfs_wait_cache_io(trans, cache, path); 3157 btrfs_put_block_group(cache); 3158 spin_lock(&cur_trans->dirty_bgs_lock); 3159 } 3160 3161 /* 3162 * Don't remove from the dirty list until after we've waited on 3163 * any pending IO 3164 */ 3165 list_del_init(&cache->dirty_list); 3166 spin_unlock(&cur_trans->dirty_bgs_lock); 3167 should_put = 1; 3168 3169 cache_save_setup(cache, trans, path); 3170 3171 if (!ret) 3172 ret = btrfs_run_delayed_refs(trans, 3173 (unsigned long) -1); 3174 3175 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3176 cache->io_ctl.inode = NULL; 3177 ret = btrfs_write_out_cache(trans, cache, path); 3178 if (ret == 0 && cache->io_ctl.inode) { 3179 should_put = 0; 3180 list_add_tail(&cache->io_list, io); 3181 } else { 3182 /* 3183 * If we failed to write the cache, the 3184 * generation will be bad and life goes on 3185 */ 3186 ret = 0; 3187 } 3188 } 3189 if (!ret) { 3190 ret = update_block_group_item(trans, path, cache); 3191 /* 3192 * One of the free space endio workers might have 3193 * created a new block group while updating a free space 3194 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3195 * and hasn't released its transaction handle yet, in 3196 * which case the new block group is still attached to 3197 * its transaction handle and its creation has not 3198 * finished yet (no block group item in the extent tree 3199 * yet, etc). If this is the case, wait for all free 3200 * space endio workers to finish and retry. This is a 3201 * very rare case so no need for a more efficient and 3202 * complex approach. 3203 */ 3204 if (ret == -ENOENT) { 3205 wait_event(cur_trans->writer_wait, 3206 atomic_read(&cur_trans->num_writers) == 1); 3207 ret = update_block_group_item(trans, path, cache); 3208 } 3209 if (ret) 3210 btrfs_abort_transaction(trans, ret); 3211 } 3212 3213 /* If its not on the io list, we need to put the block group */ 3214 if (should_put) 3215 btrfs_put_block_group(cache); 3216 btrfs_delayed_refs_rsv_release(fs_info, 1); 3217 spin_lock(&cur_trans->dirty_bgs_lock); 3218 } 3219 spin_unlock(&cur_trans->dirty_bgs_lock); 3220 3221 /* 3222 * Refer to the definition of io_bgs member for details why it's safe 3223 * to use it without any locking 3224 */ 3225 while (!list_empty(io)) { 3226 cache = list_first_entry(io, struct btrfs_block_group, 3227 io_list); 3228 list_del_init(&cache->io_list); 3229 btrfs_wait_cache_io(trans, cache, path); 3230 btrfs_put_block_group(cache); 3231 } 3232 3233 btrfs_free_path(path); 3234 return ret; 3235 } 3236 3237 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg, 3238 u64 bytes_freed) 3239 { 3240 const struct btrfs_space_info *space_info = bg->space_info; 3241 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 3242 const u64 new_val = bg->used; 3243 const u64 old_val = new_val + bytes_freed; 3244 u64 thresh; 3245 3246 if (reclaim_thresh == 0) 3247 return false; 3248 3249 thresh = div_factor_fine(bg->length, reclaim_thresh); 3250 3251 /* 3252 * If we were below the threshold before don't reclaim, we are likely a 3253 * brand new block group and we don't want to relocate new block groups. 3254 */ 3255 if (old_val < thresh) 3256 return false; 3257 if (new_val >= thresh) 3258 return false; 3259 return true; 3260 } 3261 3262 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3263 u64 bytenr, u64 num_bytes, bool alloc) 3264 { 3265 struct btrfs_fs_info *info = trans->fs_info; 3266 struct btrfs_block_group *cache = NULL; 3267 u64 total = num_bytes; 3268 u64 old_val; 3269 u64 byte_in_group; 3270 int factor; 3271 int ret = 0; 3272 3273 /* Block accounting for super block */ 3274 spin_lock(&info->delalloc_root_lock); 3275 old_val = btrfs_super_bytes_used(info->super_copy); 3276 if (alloc) 3277 old_val += num_bytes; 3278 else 3279 old_val -= num_bytes; 3280 btrfs_set_super_bytes_used(info->super_copy, old_val); 3281 spin_unlock(&info->delalloc_root_lock); 3282 3283 while (total) { 3284 bool reclaim; 3285 3286 cache = btrfs_lookup_block_group(info, bytenr); 3287 if (!cache) { 3288 ret = -ENOENT; 3289 break; 3290 } 3291 factor = btrfs_bg_type_to_factor(cache->flags); 3292 3293 /* 3294 * If this block group has free space cache written out, we 3295 * need to make sure to load it if we are removing space. This 3296 * is because we need the unpinning stage to actually add the 3297 * space back to the block group, otherwise we will leak space. 3298 */ 3299 if (!alloc && !btrfs_block_group_done(cache)) 3300 btrfs_cache_block_group(cache, 1); 3301 3302 byte_in_group = bytenr - cache->start; 3303 WARN_ON(byte_in_group > cache->length); 3304 3305 spin_lock(&cache->space_info->lock); 3306 spin_lock(&cache->lock); 3307 3308 if (btrfs_test_opt(info, SPACE_CACHE) && 3309 cache->disk_cache_state < BTRFS_DC_CLEAR) 3310 cache->disk_cache_state = BTRFS_DC_CLEAR; 3311 3312 old_val = cache->used; 3313 num_bytes = min(total, cache->length - byte_in_group); 3314 if (alloc) { 3315 old_val += num_bytes; 3316 cache->used = old_val; 3317 cache->reserved -= num_bytes; 3318 cache->space_info->bytes_reserved -= num_bytes; 3319 cache->space_info->bytes_used += num_bytes; 3320 cache->space_info->disk_used += num_bytes * factor; 3321 spin_unlock(&cache->lock); 3322 spin_unlock(&cache->space_info->lock); 3323 } else { 3324 old_val -= num_bytes; 3325 cache->used = old_val; 3326 cache->pinned += num_bytes; 3327 btrfs_space_info_update_bytes_pinned(info, 3328 cache->space_info, num_bytes); 3329 cache->space_info->bytes_used -= num_bytes; 3330 cache->space_info->disk_used -= num_bytes * factor; 3331 3332 reclaim = should_reclaim_block_group(cache, num_bytes); 3333 spin_unlock(&cache->lock); 3334 spin_unlock(&cache->space_info->lock); 3335 3336 set_extent_dirty(&trans->transaction->pinned_extents, 3337 bytenr, bytenr + num_bytes - 1, 3338 GFP_NOFS | __GFP_NOFAIL); 3339 } 3340 3341 spin_lock(&trans->transaction->dirty_bgs_lock); 3342 if (list_empty(&cache->dirty_list)) { 3343 list_add_tail(&cache->dirty_list, 3344 &trans->transaction->dirty_bgs); 3345 trans->delayed_ref_updates++; 3346 btrfs_get_block_group(cache); 3347 } 3348 spin_unlock(&trans->transaction->dirty_bgs_lock); 3349 3350 /* 3351 * No longer have used bytes in this block group, queue it for 3352 * deletion. We do this after adding the block group to the 3353 * dirty list to avoid races between cleaner kthread and space 3354 * cache writeout. 3355 */ 3356 if (!alloc && old_val == 0) { 3357 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3358 btrfs_mark_bg_unused(cache); 3359 } else if (!alloc && reclaim) { 3360 btrfs_mark_bg_to_reclaim(cache); 3361 } 3362 3363 btrfs_put_block_group(cache); 3364 total -= num_bytes; 3365 bytenr += num_bytes; 3366 } 3367 3368 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3369 btrfs_update_delayed_refs_rsv(trans); 3370 return ret; 3371 } 3372 3373 /** 3374 * btrfs_add_reserved_bytes - update the block_group and space info counters 3375 * @cache: The cache we are manipulating 3376 * @ram_bytes: The number of bytes of file content, and will be same to 3377 * @num_bytes except for the compress path. 3378 * @num_bytes: The number of bytes in question 3379 * @delalloc: The blocks are allocated for the delalloc write 3380 * 3381 * This is called by the allocator when it reserves space. If this is a 3382 * reservation and the block group has become read only we cannot make the 3383 * reservation and return -EAGAIN, otherwise this function always succeeds. 3384 */ 3385 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3386 u64 ram_bytes, u64 num_bytes, int delalloc) 3387 { 3388 struct btrfs_space_info *space_info = cache->space_info; 3389 int ret = 0; 3390 3391 spin_lock(&space_info->lock); 3392 spin_lock(&cache->lock); 3393 if (cache->ro) { 3394 ret = -EAGAIN; 3395 } else { 3396 cache->reserved += num_bytes; 3397 space_info->bytes_reserved += num_bytes; 3398 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3399 space_info->flags, num_bytes, 1); 3400 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3401 space_info, -ram_bytes); 3402 if (delalloc) 3403 cache->delalloc_bytes += num_bytes; 3404 3405 /* 3406 * Compression can use less space than we reserved, so wake 3407 * tickets if that happens 3408 */ 3409 if (num_bytes < ram_bytes) 3410 btrfs_try_granting_tickets(cache->fs_info, space_info); 3411 } 3412 spin_unlock(&cache->lock); 3413 spin_unlock(&space_info->lock); 3414 return ret; 3415 } 3416 3417 /** 3418 * btrfs_free_reserved_bytes - update the block_group and space info counters 3419 * @cache: The cache we are manipulating 3420 * @num_bytes: The number of bytes in question 3421 * @delalloc: The blocks are allocated for the delalloc write 3422 * 3423 * This is called by somebody who is freeing space that was never actually used 3424 * on disk. For example if you reserve some space for a new leaf in transaction 3425 * A and before transaction A commits you free that leaf, you call this with 3426 * reserve set to 0 in order to clear the reservation. 3427 */ 3428 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3429 u64 num_bytes, int delalloc) 3430 { 3431 struct btrfs_space_info *space_info = cache->space_info; 3432 3433 spin_lock(&space_info->lock); 3434 spin_lock(&cache->lock); 3435 if (cache->ro) 3436 space_info->bytes_readonly += num_bytes; 3437 cache->reserved -= num_bytes; 3438 space_info->bytes_reserved -= num_bytes; 3439 space_info->max_extent_size = 0; 3440 3441 if (delalloc) 3442 cache->delalloc_bytes -= num_bytes; 3443 spin_unlock(&cache->lock); 3444 3445 btrfs_try_granting_tickets(cache->fs_info, space_info); 3446 spin_unlock(&space_info->lock); 3447 } 3448 3449 static void force_metadata_allocation(struct btrfs_fs_info *info) 3450 { 3451 struct list_head *head = &info->space_info; 3452 struct btrfs_space_info *found; 3453 3454 list_for_each_entry(found, head, list) { 3455 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3456 found->force_alloc = CHUNK_ALLOC_FORCE; 3457 } 3458 } 3459 3460 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3461 struct btrfs_space_info *sinfo, int force) 3462 { 3463 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3464 u64 thresh; 3465 3466 if (force == CHUNK_ALLOC_FORCE) 3467 return 1; 3468 3469 /* 3470 * in limited mode, we want to have some free space up to 3471 * about 1% of the FS size. 3472 */ 3473 if (force == CHUNK_ALLOC_LIMITED) { 3474 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3475 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3476 3477 if (sinfo->total_bytes - bytes_used < thresh) 3478 return 1; 3479 } 3480 3481 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3482 return 0; 3483 return 1; 3484 } 3485 3486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3487 { 3488 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3489 3490 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3491 } 3492 3493 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3494 { 3495 struct btrfs_block_group *bg; 3496 int ret; 3497 3498 /* 3499 * Check if we have enough space in the system space info because we 3500 * will need to update device items in the chunk btree and insert a new 3501 * chunk item in the chunk btree as well. This will allocate a new 3502 * system block group if needed. 3503 */ 3504 check_system_chunk(trans, flags); 3505 3506 bg = btrfs_create_chunk(trans, flags); 3507 if (IS_ERR(bg)) { 3508 ret = PTR_ERR(bg); 3509 goto out; 3510 } 3511 3512 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3513 /* 3514 * Normally we are not expected to fail with -ENOSPC here, since we have 3515 * previously reserved space in the system space_info and allocated one 3516 * new system chunk if necessary. However there are three exceptions: 3517 * 3518 * 1) We may have enough free space in the system space_info but all the 3519 * existing system block groups have a profile which can not be used 3520 * for extent allocation. 3521 * 3522 * This happens when mounting in degraded mode. For example we have a 3523 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3524 * using the other device in degraded mode. If we then allocate a chunk, 3525 * we may have enough free space in the existing system space_info, but 3526 * none of the block groups can be used for extent allocation since they 3527 * have a RAID1 profile, and because we are in degraded mode with a 3528 * single device, we are forced to allocate a new system chunk with a 3529 * SINGLE profile. Making check_system_chunk() iterate over all system 3530 * block groups and check if they have a usable profile and enough space 3531 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3532 * try again after forcing allocation of a new system chunk. Like this 3533 * we avoid paying the cost of that search in normal circumstances, when 3534 * we were not mounted in degraded mode; 3535 * 3536 * 2) We had enough free space info the system space_info, and one suitable 3537 * block group to allocate from when we called check_system_chunk() 3538 * above. However right after we called it, the only system block group 3539 * with enough free space got turned into RO mode by a running scrub, 3540 * and in this case we have to allocate a new one and retry. We only 3541 * need do this allocate and retry once, since we have a transaction 3542 * handle and scrub uses the commit root to search for block groups; 3543 * 3544 * 3) We had one system block group with enough free space when we called 3545 * check_system_chunk(), but after that, right before we tried to 3546 * allocate the last extent buffer we needed, a discard operation came 3547 * in and it temporarily removed the last free space entry from the 3548 * block group (discard removes a free space entry, discards it, and 3549 * then adds back the entry to the block group cache). 3550 */ 3551 if (ret == -ENOSPC) { 3552 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3553 struct btrfs_block_group *sys_bg; 3554 3555 sys_bg = btrfs_create_chunk(trans, sys_flags); 3556 if (IS_ERR(sys_bg)) { 3557 ret = PTR_ERR(sys_bg); 3558 btrfs_abort_transaction(trans, ret); 3559 goto out; 3560 } 3561 3562 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3563 if (ret) { 3564 btrfs_abort_transaction(trans, ret); 3565 goto out; 3566 } 3567 3568 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3569 if (ret) { 3570 btrfs_abort_transaction(trans, ret); 3571 goto out; 3572 } 3573 } else if (ret) { 3574 btrfs_abort_transaction(trans, ret); 3575 goto out; 3576 } 3577 out: 3578 btrfs_trans_release_chunk_metadata(trans); 3579 3580 if (ret) 3581 return ERR_PTR(ret); 3582 3583 btrfs_get_block_group(bg); 3584 return bg; 3585 } 3586 3587 /* 3588 * Chunk allocation is done in 2 phases: 3589 * 3590 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3591 * the chunk, the chunk mapping, create its block group and add the items 3592 * that belong in the chunk btree to it - more specifically, we need to 3593 * update device items in the chunk btree and add a new chunk item to it. 3594 * 3595 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3596 * group item to the extent btree and the device extent items to the devices 3597 * btree. 3598 * 3599 * This is done to prevent deadlocks. For example when COWing a node from the 3600 * extent btree we are holding a write lock on the node's parent and if we 3601 * trigger chunk allocation and attempted to insert the new block group item 3602 * in the extent btree right way, we could deadlock because the path for the 3603 * insertion can include that parent node. At first glance it seems impossible 3604 * to trigger chunk allocation after starting a transaction since tasks should 3605 * reserve enough transaction units (metadata space), however while that is true 3606 * most of the time, chunk allocation may still be triggered for several reasons: 3607 * 3608 * 1) When reserving metadata, we check if there is enough free space in the 3609 * metadata space_info and therefore don't trigger allocation of a new chunk. 3610 * However later when the task actually tries to COW an extent buffer from 3611 * the extent btree or from the device btree for example, it is forced to 3612 * allocate a new block group (chunk) because the only one that had enough 3613 * free space was just turned to RO mode by a running scrub for example (or 3614 * device replace, block group reclaim thread, etc), so we can not use it 3615 * for allocating an extent and end up being forced to allocate a new one; 3616 * 3617 * 2) Because we only check that the metadata space_info has enough free bytes, 3618 * we end up not allocating a new metadata chunk in that case. However if 3619 * the filesystem was mounted in degraded mode, none of the existing block 3620 * groups might be suitable for extent allocation due to their incompatible 3621 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3622 * use a RAID1 profile, in degraded mode using a single device). In this case 3623 * when the task attempts to COW some extent buffer of the extent btree for 3624 * example, it will trigger allocation of a new metadata block group with a 3625 * suitable profile (SINGLE profile in the example of the degraded mount of 3626 * the RAID1 filesystem); 3627 * 3628 * 3) The task has reserved enough transaction units / metadata space, but when 3629 * it attempts to COW an extent buffer from the extent or device btree for 3630 * example, it does not find any free extent in any metadata block group, 3631 * therefore forced to try to allocate a new metadata block group. 3632 * This is because some other task allocated all available extents in the 3633 * meanwhile - this typically happens with tasks that don't reserve space 3634 * properly, either intentionally or as a bug. One example where this is 3635 * done intentionally is fsync, as it does not reserve any transaction units 3636 * and ends up allocating a variable number of metadata extents for log 3637 * tree extent buffers; 3638 * 3639 * 4) The task has reserved enough transaction units / metadata space, but right 3640 * before it tries to allocate the last extent buffer it needs, a discard 3641 * operation comes in and, temporarily, removes the last free space entry from 3642 * the only metadata block group that had free space (discard starts by 3643 * removing a free space entry from a block group, then does the discard 3644 * operation and, once it's done, it adds back the free space entry to the 3645 * block group). 3646 * 3647 * We also need this 2 phases setup when adding a device to a filesystem with 3648 * a seed device - we must create new metadata and system chunks without adding 3649 * any of the block group items to the chunk, extent and device btrees. If we 3650 * did not do it this way, we would get ENOSPC when attempting to update those 3651 * btrees, since all the chunks from the seed device are read-only. 3652 * 3653 * Phase 1 does the updates and insertions to the chunk btree because if we had 3654 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3655 * parallel, we risk having too many system chunks allocated by many tasks if 3656 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3657 * extreme case this leads to exhaustion of the system chunk array in the 3658 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3659 * and with RAID filesystems (so we have more device items in the chunk btree). 3660 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3661 * the system chunk array due to concurrent allocations") provides more details. 3662 * 3663 * Allocation of system chunks does not happen through this function. A task that 3664 * needs to update the chunk btree (the only btree that uses system chunks), must 3665 * preallocate chunk space by calling either check_system_chunk() or 3666 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3667 * metadata chunk or when removing a chunk, while the later is used before doing 3668 * a modification to the chunk btree - use cases for the later are adding, 3669 * removing and resizing a device as well as relocation of a system chunk. 3670 * See the comment below for more details. 3671 * 3672 * The reservation of system space, done through check_system_chunk(), as well 3673 * as all the updates and insertions into the chunk btree must be done while 3674 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3675 * an extent buffer from the chunks btree we never trigger allocation of a new 3676 * system chunk, which would result in a deadlock (trying to lock twice an 3677 * extent buffer of the chunk btree, first time before triggering the chunk 3678 * allocation and the second time during chunk allocation while attempting to 3679 * update the chunks btree). The system chunk array is also updated while holding 3680 * that mutex. The same logic applies to removing chunks - we must reserve system 3681 * space, update the chunk btree and the system chunk array in the superblock 3682 * while holding fs_info->chunk_mutex. 3683 * 3684 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3685 * 3686 * If @force is CHUNK_ALLOC_FORCE: 3687 * - return 1 if it successfully allocates a chunk, 3688 * - return errors including -ENOSPC otherwise. 3689 * If @force is NOT CHUNK_ALLOC_FORCE: 3690 * - return 0 if it doesn't need to allocate a new chunk, 3691 * - return 1 if it successfully allocates a chunk, 3692 * - return errors including -ENOSPC otherwise. 3693 */ 3694 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3695 enum btrfs_chunk_alloc_enum force) 3696 { 3697 struct btrfs_fs_info *fs_info = trans->fs_info; 3698 struct btrfs_space_info *space_info; 3699 struct btrfs_block_group *ret_bg; 3700 bool wait_for_alloc = false; 3701 bool should_alloc = false; 3702 bool from_extent_allocation = false; 3703 int ret = 0; 3704 3705 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3706 from_extent_allocation = true; 3707 force = CHUNK_ALLOC_FORCE; 3708 } 3709 3710 /* Don't re-enter if we're already allocating a chunk */ 3711 if (trans->allocating_chunk) 3712 return -ENOSPC; 3713 /* 3714 * Allocation of system chunks can not happen through this path, as we 3715 * could end up in a deadlock if we are allocating a data or metadata 3716 * chunk and there is another task modifying the chunk btree. 3717 * 3718 * This is because while we are holding the chunk mutex, we will attempt 3719 * to add the new chunk item to the chunk btree or update an existing 3720 * device item in the chunk btree, while the other task that is modifying 3721 * the chunk btree is attempting to COW an extent buffer while holding a 3722 * lock on it and on its parent - if the COW operation triggers a system 3723 * chunk allocation, then we can deadlock because we are holding the 3724 * chunk mutex and we may need to access that extent buffer or its parent 3725 * in order to add the chunk item or update a device item. 3726 * 3727 * Tasks that want to modify the chunk tree should reserve system space 3728 * before updating the chunk btree, by calling either 3729 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3730 * It's possible that after a task reserves the space, it still ends up 3731 * here - this happens in the cases described above at do_chunk_alloc(). 3732 * The task will have to either retry or fail. 3733 */ 3734 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3735 return -ENOSPC; 3736 3737 space_info = btrfs_find_space_info(fs_info, flags); 3738 ASSERT(space_info); 3739 3740 do { 3741 spin_lock(&space_info->lock); 3742 if (force < space_info->force_alloc) 3743 force = space_info->force_alloc; 3744 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3745 if (space_info->full) { 3746 /* No more free physical space */ 3747 if (should_alloc) 3748 ret = -ENOSPC; 3749 else 3750 ret = 0; 3751 spin_unlock(&space_info->lock); 3752 return ret; 3753 } else if (!should_alloc) { 3754 spin_unlock(&space_info->lock); 3755 return 0; 3756 } else if (space_info->chunk_alloc) { 3757 /* 3758 * Someone is already allocating, so we need to block 3759 * until this someone is finished and then loop to 3760 * recheck if we should continue with our allocation 3761 * attempt. 3762 */ 3763 wait_for_alloc = true; 3764 spin_unlock(&space_info->lock); 3765 mutex_lock(&fs_info->chunk_mutex); 3766 mutex_unlock(&fs_info->chunk_mutex); 3767 } else { 3768 /* Proceed with allocation */ 3769 space_info->chunk_alloc = 1; 3770 wait_for_alloc = false; 3771 spin_unlock(&space_info->lock); 3772 } 3773 3774 cond_resched(); 3775 } while (wait_for_alloc); 3776 3777 mutex_lock(&fs_info->chunk_mutex); 3778 trans->allocating_chunk = true; 3779 3780 /* 3781 * If we have mixed data/metadata chunks we want to make sure we keep 3782 * allocating mixed chunks instead of individual chunks. 3783 */ 3784 if (btrfs_mixed_space_info(space_info)) 3785 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3786 3787 /* 3788 * if we're doing a data chunk, go ahead and make sure that 3789 * we keep a reasonable number of metadata chunks allocated in the 3790 * FS as well. 3791 */ 3792 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3793 fs_info->data_chunk_allocations++; 3794 if (!(fs_info->data_chunk_allocations % 3795 fs_info->metadata_ratio)) 3796 force_metadata_allocation(fs_info); 3797 } 3798 3799 ret_bg = do_chunk_alloc(trans, flags); 3800 trans->allocating_chunk = false; 3801 3802 if (IS_ERR(ret_bg)) { 3803 ret = PTR_ERR(ret_bg); 3804 } else if (from_extent_allocation) { 3805 /* 3806 * New block group is likely to be used soon. Try to activate 3807 * it now. Failure is OK for now. 3808 */ 3809 btrfs_zone_activate(ret_bg); 3810 } 3811 3812 if (!ret) 3813 btrfs_put_block_group(ret_bg); 3814 3815 spin_lock(&space_info->lock); 3816 if (ret < 0) { 3817 if (ret == -ENOSPC) 3818 space_info->full = 1; 3819 else 3820 goto out; 3821 } else { 3822 ret = 1; 3823 space_info->max_extent_size = 0; 3824 } 3825 3826 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3827 out: 3828 space_info->chunk_alloc = 0; 3829 spin_unlock(&space_info->lock); 3830 mutex_unlock(&fs_info->chunk_mutex); 3831 3832 return ret; 3833 } 3834 3835 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3836 { 3837 u64 num_dev; 3838 3839 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3840 if (!num_dev) 3841 num_dev = fs_info->fs_devices->rw_devices; 3842 3843 return num_dev; 3844 } 3845 3846 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3847 u64 bytes, 3848 u64 type) 3849 { 3850 struct btrfs_fs_info *fs_info = trans->fs_info; 3851 struct btrfs_space_info *info; 3852 u64 left; 3853 int ret = 0; 3854 3855 /* 3856 * Needed because we can end up allocating a system chunk and for an 3857 * atomic and race free space reservation in the chunk block reserve. 3858 */ 3859 lockdep_assert_held(&fs_info->chunk_mutex); 3860 3861 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3862 spin_lock(&info->lock); 3863 left = info->total_bytes - btrfs_space_info_used(info, true); 3864 spin_unlock(&info->lock); 3865 3866 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3867 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3868 left, bytes, type); 3869 btrfs_dump_space_info(fs_info, info, 0, 0); 3870 } 3871 3872 if (left < bytes) { 3873 u64 flags = btrfs_system_alloc_profile(fs_info); 3874 struct btrfs_block_group *bg; 3875 3876 /* 3877 * Ignore failure to create system chunk. We might end up not 3878 * needing it, as we might not need to COW all nodes/leafs from 3879 * the paths we visit in the chunk tree (they were already COWed 3880 * or created in the current transaction for example). 3881 */ 3882 bg = btrfs_create_chunk(trans, flags); 3883 if (IS_ERR(bg)) { 3884 ret = PTR_ERR(bg); 3885 } else { 3886 /* 3887 * If we fail to add the chunk item here, we end up 3888 * trying again at phase 2 of chunk allocation, at 3889 * btrfs_create_pending_block_groups(). So ignore 3890 * any error here. An ENOSPC here could happen, due to 3891 * the cases described at do_chunk_alloc() - the system 3892 * block group we just created was just turned into RO 3893 * mode by a scrub for example, or a running discard 3894 * temporarily removed its free space entries, etc. 3895 */ 3896 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3897 } 3898 } 3899 3900 if (!ret) { 3901 ret = btrfs_block_rsv_add(fs_info, 3902 &fs_info->chunk_block_rsv, 3903 bytes, BTRFS_RESERVE_NO_FLUSH); 3904 if (!ret) 3905 trans->chunk_bytes_reserved += bytes; 3906 } 3907 } 3908 3909 /* 3910 * Reserve space in the system space for allocating or removing a chunk. 3911 * The caller must be holding fs_info->chunk_mutex. 3912 */ 3913 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3914 { 3915 struct btrfs_fs_info *fs_info = trans->fs_info; 3916 const u64 num_devs = get_profile_num_devs(fs_info, type); 3917 u64 bytes; 3918 3919 /* num_devs device items to update and 1 chunk item to add or remove. */ 3920 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3921 btrfs_calc_insert_metadata_size(fs_info, 1); 3922 3923 reserve_chunk_space(trans, bytes, type); 3924 } 3925 3926 /* 3927 * Reserve space in the system space, if needed, for doing a modification to the 3928 * chunk btree. 3929 * 3930 * @trans: A transaction handle. 3931 * @is_item_insertion: Indicate if the modification is for inserting a new item 3932 * in the chunk btree or if it's for the deletion or update 3933 * of an existing item. 3934 * 3935 * This is used in a context where we need to update the chunk btree outside 3936 * block group allocation and removal, to avoid a deadlock with a concurrent 3937 * task that is allocating a metadata or data block group and therefore needs to 3938 * update the chunk btree while holding the chunk mutex. After the update to the 3939 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 3940 * 3941 */ 3942 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 3943 bool is_item_insertion) 3944 { 3945 struct btrfs_fs_info *fs_info = trans->fs_info; 3946 u64 bytes; 3947 3948 if (is_item_insertion) 3949 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 3950 else 3951 bytes = btrfs_calc_metadata_size(fs_info, 1); 3952 3953 mutex_lock(&fs_info->chunk_mutex); 3954 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 3955 mutex_unlock(&fs_info->chunk_mutex); 3956 } 3957 3958 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3959 { 3960 struct btrfs_block_group *block_group; 3961 u64 last = 0; 3962 3963 while (1) { 3964 struct inode *inode; 3965 3966 block_group = btrfs_lookup_first_block_group(info, last); 3967 while (block_group) { 3968 btrfs_wait_block_group_cache_done(block_group); 3969 spin_lock(&block_group->lock); 3970 if (block_group->iref) 3971 break; 3972 spin_unlock(&block_group->lock); 3973 block_group = btrfs_next_block_group(block_group); 3974 } 3975 if (!block_group) { 3976 if (last == 0) 3977 break; 3978 last = 0; 3979 continue; 3980 } 3981 3982 inode = block_group->inode; 3983 block_group->iref = 0; 3984 block_group->inode = NULL; 3985 spin_unlock(&block_group->lock); 3986 ASSERT(block_group->io_ctl.inode == NULL); 3987 iput(inode); 3988 last = block_group->start + block_group->length; 3989 btrfs_put_block_group(block_group); 3990 } 3991 } 3992 3993 /* 3994 * Must be called only after stopping all workers, since we could have block 3995 * group caching kthreads running, and therefore they could race with us if we 3996 * freed the block groups before stopping them. 3997 */ 3998 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3999 { 4000 struct btrfs_block_group *block_group; 4001 struct btrfs_space_info *space_info; 4002 struct btrfs_caching_control *caching_ctl; 4003 struct rb_node *n; 4004 4005 write_lock(&info->block_group_cache_lock); 4006 while (!list_empty(&info->caching_block_groups)) { 4007 caching_ctl = list_entry(info->caching_block_groups.next, 4008 struct btrfs_caching_control, list); 4009 list_del(&caching_ctl->list); 4010 btrfs_put_caching_control(caching_ctl); 4011 } 4012 write_unlock(&info->block_group_cache_lock); 4013 4014 spin_lock(&info->unused_bgs_lock); 4015 while (!list_empty(&info->unused_bgs)) { 4016 block_group = list_first_entry(&info->unused_bgs, 4017 struct btrfs_block_group, 4018 bg_list); 4019 list_del_init(&block_group->bg_list); 4020 btrfs_put_block_group(block_group); 4021 } 4022 4023 while (!list_empty(&info->reclaim_bgs)) { 4024 block_group = list_first_entry(&info->reclaim_bgs, 4025 struct btrfs_block_group, 4026 bg_list); 4027 list_del_init(&block_group->bg_list); 4028 btrfs_put_block_group(block_group); 4029 } 4030 spin_unlock(&info->unused_bgs_lock); 4031 4032 spin_lock(&info->zone_active_bgs_lock); 4033 while (!list_empty(&info->zone_active_bgs)) { 4034 block_group = list_first_entry(&info->zone_active_bgs, 4035 struct btrfs_block_group, 4036 active_bg_list); 4037 list_del_init(&block_group->active_bg_list); 4038 btrfs_put_block_group(block_group); 4039 } 4040 spin_unlock(&info->zone_active_bgs_lock); 4041 4042 write_lock(&info->block_group_cache_lock); 4043 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4044 block_group = rb_entry(n, struct btrfs_block_group, 4045 cache_node); 4046 rb_erase_cached(&block_group->cache_node, 4047 &info->block_group_cache_tree); 4048 RB_CLEAR_NODE(&block_group->cache_node); 4049 write_unlock(&info->block_group_cache_lock); 4050 4051 down_write(&block_group->space_info->groups_sem); 4052 list_del(&block_group->list); 4053 up_write(&block_group->space_info->groups_sem); 4054 4055 /* 4056 * We haven't cached this block group, which means we could 4057 * possibly have excluded extents on this block group. 4058 */ 4059 if (block_group->cached == BTRFS_CACHE_NO || 4060 block_group->cached == BTRFS_CACHE_ERROR) 4061 btrfs_free_excluded_extents(block_group); 4062 4063 btrfs_remove_free_space_cache(block_group); 4064 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4065 ASSERT(list_empty(&block_group->dirty_list)); 4066 ASSERT(list_empty(&block_group->io_list)); 4067 ASSERT(list_empty(&block_group->bg_list)); 4068 ASSERT(refcount_read(&block_group->refs) == 1); 4069 ASSERT(block_group->swap_extents == 0); 4070 btrfs_put_block_group(block_group); 4071 4072 write_lock(&info->block_group_cache_lock); 4073 } 4074 write_unlock(&info->block_group_cache_lock); 4075 4076 btrfs_release_global_block_rsv(info); 4077 4078 while (!list_empty(&info->space_info)) { 4079 space_info = list_entry(info->space_info.next, 4080 struct btrfs_space_info, 4081 list); 4082 4083 /* 4084 * Do not hide this behind enospc_debug, this is actually 4085 * important and indicates a real bug if this happens. 4086 */ 4087 if (WARN_ON(space_info->bytes_pinned > 0 || 4088 space_info->bytes_may_use > 0)) 4089 btrfs_dump_space_info(info, space_info, 0, 0); 4090 4091 /* 4092 * If there was a failure to cleanup a log tree, very likely due 4093 * to an IO failure on a writeback attempt of one or more of its 4094 * extent buffers, we could not do proper (and cheap) unaccounting 4095 * of their reserved space, so don't warn on bytes_reserved > 0 in 4096 * that case. 4097 */ 4098 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4099 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4100 if (WARN_ON(space_info->bytes_reserved > 0)) 4101 btrfs_dump_space_info(info, space_info, 0, 0); 4102 } 4103 4104 WARN_ON(space_info->reclaim_size > 0); 4105 list_del(&space_info->list); 4106 btrfs_sysfs_remove_space_info(space_info); 4107 } 4108 return 0; 4109 } 4110 4111 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4112 { 4113 atomic_inc(&cache->frozen); 4114 } 4115 4116 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4117 { 4118 struct btrfs_fs_info *fs_info = block_group->fs_info; 4119 struct extent_map_tree *em_tree; 4120 struct extent_map *em; 4121 bool cleanup; 4122 4123 spin_lock(&block_group->lock); 4124 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4125 block_group->removed); 4126 spin_unlock(&block_group->lock); 4127 4128 if (cleanup) { 4129 em_tree = &fs_info->mapping_tree; 4130 write_lock(&em_tree->lock); 4131 em = lookup_extent_mapping(em_tree, block_group->start, 4132 1); 4133 BUG_ON(!em); /* logic error, can't happen */ 4134 remove_extent_mapping(em_tree, em); 4135 write_unlock(&em_tree->lock); 4136 4137 /* once for us and once for the tree */ 4138 free_extent_map(em); 4139 free_extent_map(em); 4140 4141 /* 4142 * We may have left one free space entry and other possible 4143 * tasks trimming this block group have left 1 entry each one. 4144 * Free them if any. 4145 */ 4146 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 4147 } 4148 } 4149 4150 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4151 { 4152 bool ret = true; 4153 4154 spin_lock(&bg->lock); 4155 if (bg->ro) 4156 ret = false; 4157 else 4158 bg->swap_extents++; 4159 spin_unlock(&bg->lock); 4160 4161 return ret; 4162 } 4163 4164 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4165 { 4166 spin_lock(&bg->lock); 4167 ASSERT(!bg->ro); 4168 ASSERT(bg->swap_extents >= amount); 4169 bg->swap_extents -= amount; 4170 spin_unlock(&bg->lock); 4171 } 4172