1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "disk-io.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 18 /* 19 * Return target flags in extended format or 0 if restripe for this chunk_type 20 * is not in progress 21 * 22 * Should be called with balance_lock held 23 */ 24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 25 { 26 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 27 u64 target = 0; 28 29 if (!bctl) 30 return 0; 31 32 if (flags & BTRFS_BLOCK_GROUP_DATA && 33 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 34 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 35 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 36 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 37 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 38 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 39 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 40 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 41 } 42 43 return target; 44 } 45 46 /* 47 * @flags: available profiles in extended format (see ctree.h) 48 * 49 * Return reduced profile in chunk format. If profile changing is in progress 50 * (either running or paused) picks the target profile (if it's already 51 * available), otherwise falls back to plain reducing. 52 */ 53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 54 { 55 u64 num_devices = fs_info->fs_devices->rw_devices; 56 u64 target; 57 u64 raid_type; 58 u64 allowed = 0; 59 60 /* 61 * See if restripe for this chunk_type is in progress, if so try to 62 * reduce to the target profile 63 */ 64 spin_lock(&fs_info->balance_lock); 65 target = get_restripe_target(fs_info, flags); 66 if (target) { 67 /* Pick target profile only if it's already available */ 68 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 69 spin_unlock(&fs_info->balance_lock); 70 return extended_to_chunk(target); 71 } 72 } 73 spin_unlock(&fs_info->balance_lock); 74 75 /* First, mask out the RAID levels which aren't possible */ 76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 77 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 78 allowed |= btrfs_raid_array[raid_type].bg_flag; 79 } 80 allowed &= flags; 81 82 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 83 allowed = BTRFS_BLOCK_GROUP_RAID6; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 85 allowed = BTRFS_BLOCK_GROUP_RAID5; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 87 allowed = BTRFS_BLOCK_GROUP_RAID10; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 89 allowed = BTRFS_BLOCK_GROUP_RAID1; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 91 allowed = BTRFS_BLOCK_GROUP_RAID0; 92 93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 94 95 return extended_to_chunk(flags | allowed); 96 } 97 98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 99 { 100 unsigned seq; 101 u64 flags; 102 103 do { 104 flags = orig_flags; 105 seq = read_seqbegin(&fs_info->profiles_lock); 106 107 if (flags & BTRFS_BLOCK_GROUP_DATA) 108 flags |= fs_info->avail_data_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 110 flags |= fs_info->avail_system_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 112 flags |= fs_info->avail_metadata_alloc_bits; 113 } while (read_seqretry(&fs_info->profiles_lock, seq)); 114 115 return btrfs_reduce_alloc_profile(fs_info, flags); 116 } 117 118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 119 { 120 return get_alloc_profile(fs_info, orig_flags); 121 } 122 123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 124 { 125 atomic_inc(&cache->count); 126 } 127 128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 129 { 130 if (atomic_dec_and_test(&cache->count)) { 131 WARN_ON(cache->pinned > 0); 132 WARN_ON(cache->reserved > 0); 133 134 /* 135 * If not empty, someone is still holding mutex of 136 * full_stripe_lock, which can only be released by caller. 137 * And it will definitely cause use-after-free when caller 138 * tries to release full stripe lock. 139 * 140 * No better way to resolve, but only to warn. 141 */ 142 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 143 kfree(cache->free_space_ctl); 144 kfree(cache); 145 } 146 } 147 148 /* 149 * This adds the block group to the fs_info rb tree for the block group cache 150 */ 151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 152 struct btrfs_block_group_cache *block_group) 153 { 154 struct rb_node **p; 155 struct rb_node *parent = NULL; 156 struct btrfs_block_group_cache *cache; 157 158 spin_lock(&info->block_group_cache_lock); 159 p = &info->block_group_cache_tree.rb_node; 160 161 while (*p) { 162 parent = *p; 163 cache = rb_entry(parent, struct btrfs_block_group_cache, 164 cache_node); 165 if (block_group->key.objectid < cache->key.objectid) { 166 p = &(*p)->rb_left; 167 } else if (block_group->key.objectid > cache->key.objectid) { 168 p = &(*p)->rb_right; 169 } else { 170 spin_unlock(&info->block_group_cache_lock); 171 return -EEXIST; 172 } 173 } 174 175 rb_link_node(&block_group->cache_node, parent, p); 176 rb_insert_color(&block_group->cache_node, 177 &info->block_group_cache_tree); 178 179 if (info->first_logical_byte > block_group->key.objectid) 180 info->first_logical_byte = block_group->key.objectid; 181 182 spin_unlock(&info->block_group_cache_lock); 183 184 return 0; 185 } 186 187 /* 188 * This will return the block group at or after bytenr if contains is 0, else 189 * it will return the block group that contains the bytenr 190 */ 191 static struct btrfs_block_group_cache *block_group_cache_tree_search( 192 struct btrfs_fs_info *info, u64 bytenr, int contains) 193 { 194 struct btrfs_block_group_cache *cache, *ret = NULL; 195 struct rb_node *n; 196 u64 end, start; 197 198 spin_lock(&info->block_group_cache_lock); 199 n = info->block_group_cache_tree.rb_node; 200 201 while (n) { 202 cache = rb_entry(n, struct btrfs_block_group_cache, 203 cache_node); 204 end = cache->key.objectid + cache->key.offset - 1; 205 start = cache->key.objectid; 206 207 if (bytenr < start) { 208 if (!contains && (!ret || start < ret->key.objectid)) 209 ret = cache; 210 n = n->rb_left; 211 } else if (bytenr > start) { 212 if (contains && bytenr <= end) { 213 ret = cache; 214 break; 215 } 216 n = n->rb_right; 217 } else { 218 ret = cache; 219 break; 220 } 221 } 222 if (ret) { 223 btrfs_get_block_group(ret); 224 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 225 info->first_logical_byte = ret->key.objectid; 226 } 227 spin_unlock(&info->block_group_cache_lock); 228 229 return ret; 230 } 231 232 /* 233 * Return the block group that starts at or after bytenr 234 */ 235 struct btrfs_block_group_cache *btrfs_lookup_first_block_group( 236 struct btrfs_fs_info *info, u64 bytenr) 237 { 238 return block_group_cache_tree_search(info, bytenr, 0); 239 } 240 241 /* 242 * Return the block group that contains the given bytenr 243 */ 244 struct btrfs_block_group_cache *btrfs_lookup_block_group( 245 struct btrfs_fs_info *info, u64 bytenr) 246 { 247 return block_group_cache_tree_search(info, bytenr, 1); 248 } 249 250 struct btrfs_block_group_cache *btrfs_next_block_group( 251 struct btrfs_block_group_cache *cache) 252 { 253 struct btrfs_fs_info *fs_info = cache->fs_info; 254 struct rb_node *node; 255 256 spin_lock(&fs_info->block_group_cache_lock); 257 258 /* If our block group was removed, we need a full search. */ 259 if (RB_EMPTY_NODE(&cache->cache_node)) { 260 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 261 262 spin_unlock(&fs_info->block_group_cache_lock); 263 btrfs_put_block_group(cache); 264 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 265 } 266 node = rb_next(&cache->cache_node); 267 btrfs_put_block_group(cache); 268 if (node) { 269 cache = rb_entry(node, struct btrfs_block_group_cache, 270 cache_node); 271 btrfs_get_block_group(cache); 272 } else 273 cache = NULL; 274 spin_unlock(&fs_info->block_group_cache_lock); 275 return cache; 276 } 277 278 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 279 { 280 struct btrfs_block_group_cache *bg; 281 bool ret = true; 282 283 bg = btrfs_lookup_block_group(fs_info, bytenr); 284 if (!bg) 285 return false; 286 287 spin_lock(&bg->lock); 288 if (bg->ro) 289 ret = false; 290 else 291 atomic_inc(&bg->nocow_writers); 292 spin_unlock(&bg->lock); 293 294 /* No put on block group, done by btrfs_dec_nocow_writers */ 295 if (!ret) 296 btrfs_put_block_group(bg); 297 298 return ret; 299 } 300 301 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 302 { 303 struct btrfs_block_group_cache *bg; 304 305 bg = btrfs_lookup_block_group(fs_info, bytenr); 306 ASSERT(bg); 307 if (atomic_dec_and_test(&bg->nocow_writers)) 308 wake_up_var(&bg->nocow_writers); 309 /* 310 * Once for our lookup and once for the lookup done by a previous call 311 * to btrfs_inc_nocow_writers() 312 */ 313 btrfs_put_block_group(bg); 314 btrfs_put_block_group(bg); 315 } 316 317 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 318 { 319 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 320 } 321 322 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 323 const u64 start) 324 { 325 struct btrfs_block_group_cache *bg; 326 327 bg = btrfs_lookup_block_group(fs_info, start); 328 ASSERT(bg); 329 if (atomic_dec_and_test(&bg->reservations)) 330 wake_up_var(&bg->reservations); 331 btrfs_put_block_group(bg); 332 } 333 334 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 335 { 336 struct btrfs_space_info *space_info = bg->space_info; 337 338 ASSERT(bg->ro); 339 340 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 341 return; 342 343 /* 344 * Our block group is read only but before we set it to read only, 345 * some task might have had allocated an extent from it already, but it 346 * has not yet created a respective ordered extent (and added it to a 347 * root's list of ordered extents). 348 * Therefore wait for any task currently allocating extents, since the 349 * block group's reservations counter is incremented while a read lock 350 * on the groups' semaphore is held and decremented after releasing 351 * the read access on that semaphore and creating the ordered extent. 352 */ 353 down_write(&space_info->groups_sem); 354 up_write(&space_info->groups_sem); 355 356 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 357 } 358 359 struct btrfs_caching_control *btrfs_get_caching_control( 360 struct btrfs_block_group_cache *cache) 361 { 362 struct btrfs_caching_control *ctl; 363 364 spin_lock(&cache->lock); 365 if (!cache->caching_ctl) { 366 spin_unlock(&cache->lock); 367 return NULL; 368 } 369 370 ctl = cache->caching_ctl; 371 refcount_inc(&ctl->count); 372 spin_unlock(&cache->lock); 373 return ctl; 374 } 375 376 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 377 { 378 if (refcount_dec_and_test(&ctl->count)) 379 kfree(ctl); 380 } 381 382 /* 383 * When we wait for progress in the block group caching, its because our 384 * allocation attempt failed at least once. So, we must sleep and let some 385 * progress happen before we try again. 386 * 387 * This function will sleep at least once waiting for new free space to show 388 * up, and then it will check the block group free space numbers for our min 389 * num_bytes. Another option is to have it go ahead and look in the rbtree for 390 * a free extent of a given size, but this is a good start. 391 * 392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 393 * any of the information in this block group. 394 */ 395 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 396 u64 num_bytes) 397 { 398 struct btrfs_caching_control *caching_ctl; 399 400 caching_ctl = btrfs_get_caching_control(cache); 401 if (!caching_ctl) 402 return; 403 404 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) || 405 (cache->free_space_ctl->free_space >= num_bytes)); 406 407 btrfs_put_caching_control(caching_ctl); 408 } 409 410 int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 411 { 412 struct btrfs_caching_control *caching_ctl; 413 int ret = 0; 414 415 caching_ctl = btrfs_get_caching_control(cache); 416 if (!caching_ctl) 417 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 418 419 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache)); 420 if (cache->cached == BTRFS_CACHE_ERROR) 421 ret = -EIO; 422 btrfs_put_caching_control(caching_ctl); 423 return ret; 424 } 425 426 #ifdef CONFIG_BTRFS_DEBUG 427 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 428 { 429 struct btrfs_fs_info *fs_info = block_group->fs_info; 430 u64 start = block_group->key.objectid; 431 u64 len = block_group->key.offset; 432 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 433 fs_info->nodesize : fs_info->sectorsize; 434 u64 step = chunk << 1; 435 436 while (len > chunk) { 437 btrfs_remove_free_space(block_group, start, chunk); 438 start += step; 439 if (len < step) 440 len = 0; 441 else 442 len -= step; 443 } 444 } 445 #endif 446 447 /* 448 * This is only called by btrfs_cache_block_group, since we could have freed 449 * extents we need to check the pinned_extents for any extents that can't be 450 * used yet since their free space will be released as soon as the transaction 451 * commits. 452 */ 453 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 454 u64 start, u64 end) 455 { 456 struct btrfs_fs_info *info = block_group->fs_info; 457 u64 extent_start, extent_end, size, total_added = 0; 458 int ret; 459 460 while (start < end) { 461 ret = find_first_extent_bit(info->pinned_extents, start, 462 &extent_start, &extent_end, 463 EXTENT_DIRTY | EXTENT_UPTODATE, 464 NULL); 465 if (ret) 466 break; 467 468 if (extent_start <= start) { 469 start = extent_end + 1; 470 } else if (extent_start > start && extent_start < end) { 471 size = extent_start - start; 472 total_added += size; 473 ret = btrfs_add_free_space(block_group, start, 474 size); 475 BUG_ON(ret); /* -ENOMEM or logic error */ 476 start = extent_end + 1; 477 } else { 478 break; 479 } 480 } 481 482 if (start < end) { 483 size = end - start; 484 total_added += size; 485 ret = btrfs_add_free_space(block_group, start, size); 486 BUG_ON(ret); /* -ENOMEM or logic error */ 487 } 488 489 return total_added; 490 } 491 492 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 493 { 494 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 495 struct btrfs_fs_info *fs_info = block_group->fs_info; 496 struct btrfs_root *extent_root = fs_info->extent_root; 497 struct btrfs_path *path; 498 struct extent_buffer *leaf; 499 struct btrfs_key key; 500 u64 total_found = 0; 501 u64 last = 0; 502 u32 nritems; 503 int ret; 504 bool wakeup = true; 505 506 path = btrfs_alloc_path(); 507 if (!path) 508 return -ENOMEM; 509 510 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 511 512 #ifdef CONFIG_BTRFS_DEBUG 513 /* 514 * If we're fragmenting we don't want to make anybody think we can 515 * allocate from this block group until we've had a chance to fragment 516 * the free space. 517 */ 518 if (btrfs_should_fragment_free_space(block_group)) 519 wakeup = false; 520 #endif 521 /* 522 * We don't want to deadlock with somebody trying to allocate a new 523 * extent for the extent root while also trying to search the extent 524 * root to add free space. So we skip locking and search the commit 525 * root, since its read-only 526 */ 527 path->skip_locking = 1; 528 path->search_commit_root = 1; 529 path->reada = READA_FORWARD; 530 531 key.objectid = last; 532 key.offset = 0; 533 key.type = BTRFS_EXTENT_ITEM_KEY; 534 535 next: 536 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 537 if (ret < 0) 538 goto out; 539 540 leaf = path->nodes[0]; 541 nritems = btrfs_header_nritems(leaf); 542 543 while (1) { 544 if (btrfs_fs_closing(fs_info) > 1) { 545 last = (u64)-1; 546 break; 547 } 548 549 if (path->slots[0] < nritems) { 550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 551 } else { 552 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 553 if (ret) 554 break; 555 556 if (need_resched() || 557 rwsem_is_contended(&fs_info->commit_root_sem)) { 558 if (wakeup) 559 caching_ctl->progress = last; 560 btrfs_release_path(path); 561 up_read(&fs_info->commit_root_sem); 562 mutex_unlock(&caching_ctl->mutex); 563 cond_resched(); 564 mutex_lock(&caching_ctl->mutex); 565 down_read(&fs_info->commit_root_sem); 566 goto next; 567 } 568 569 ret = btrfs_next_leaf(extent_root, path); 570 if (ret < 0) 571 goto out; 572 if (ret) 573 break; 574 leaf = path->nodes[0]; 575 nritems = btrfs_header_nritems(leaf); 576 continue; 577 } 578 579 if (key.objectid < last) { 580 key.objectid = last; 581 key.offset = 0; 582 key.type = BTRFS_EXTENT_ITEM_KEY; 583 584 if (wakeup) 585 caching_ctl->progress = last; 586 btrfs_release_path(path); 587 goto next; 588 } 589 590 if (key.objectid < block_group->key.objectid) { 591 path->slots[0]++; 592 continue; 593 } 594 595 if (key.objectid >= block_group->key.objectid + 596 block_group->key.offset) 597 break; 598 599 if (key.type == BTRFS_EXTENT_ITEM_KEY || 600 key.type == BTRFS_METADATA_ITEM_KEY) { 601 total_found += add_new_free_space(block_group, last, 602 key.objectid); 603 if (key.type == BTRFS_METADATA_ITEM_KEY) 604 last = key.objectid + 605 fs_info->nodesize; 606 else 607 last = key.objectid + key.offset; 608 609 if (total_found > CACHING_CTL_WAKE_UP) { 610 total_found = 0; 611 if (wakeup) 612 wake_up(&caching_ctl->wait); 613 } 614 } 615 path->slots[0]++; 616 } 617 ret = 0; 618 619 total_found += add_new_free_space(block_group, last, 620 block_group->key.objectid + 621 block_group->key.offset); 622 caching_ctl->progress = (u64)-1; 623 624 out: 625 btrfs_free_path(path); 626 return ret; 627 } 628 629 static noinline void caching_thread(struct btrfs_work *work) 630 { 631 struct btrfs_block_group_cache *block_group; 632 struct btrfs_fs_info *fs_info; 633 struct btrfs_caching_control *caching_ctl; 634 int ret; 635 636 caching_ctl = container_of(work, struct btrfs_caching_control, work); 637 block_group = caching_ctl->block_group; 638 fs_info = block_group->fs_info; 639 640 mutex_lock(&caching_ctl->mutex); 641 down_read(&fs_info->commit_root_sem); 642 643 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 644 ret = load_free_space_tree(caching_ctl); 645 else 646 ret = load_extent_tree_free(caching_ctl); 647 648 spin_lock(&block_group->lock); 649 block_group->caching_ctl = NULL; 650 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 651 spin_unlock(&block_group->lock); 652 653 #ifdef CONFIG_BTRFS_DEBUG 654 if (btrfs_should_fragment_free_space(block_group)) { 655 u64 bytes_used; 656 657 spin_lock(&block_group->space_info->lock); 658 spin_lock(&block_group->lock); 659 bytes_used = block_group->key.offset - 660 btrfs_block_group_used(&block_group->item); 661 block_group->space_info->bytes_used += bytes_used >> 1; 662 spin_unlock(&block_group->lock); 663 spin_unlock(&block_group->space_info->lock); 664 fragment_free_space(block_group); 665 } 666 #endif 667 668 caching_ctl->progress = (u64)-1; 669 670 up_read(&fs_info->commit_root_sem); 671 btrfs_free_excluded_extents(block_group); 672 mutex_unlock(&caching_ctl->mutex); 673 674 wake_up(&caching_ctl->wait); 675 676 btrfs_put_caching_control(caching_ctl); 677 btrfs_put_block_group(block_group); 678 } 679 680 int btrfs_cache_block_group(struct btrfs_block_group_cache *cache, 681 int load_cache_only) 682 { 683 DEFINE_WAIT(wait); 684 struct btrfs_fs_info *fs_info = cache->fs_info; 685 struct btrfs_caching_control *caching_ctl; 686 int ret = 0; 687 688 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 689 if (!caching_ctl) 690 return -ENOMEM; 691 692 INIT_LIST_HEAD(&caching_ctl->list); 693 mutex_init(&caching_ctl->mutex); 694 init_waitqueue_head(&caching_ctl->wait); 695 caching_ctl->block_group = cache; 696 caching_ctl->progress = cache->key.objectid; 697 refcount_set(&caching_ctl->count, 1); 698 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 699 caching_thread, NULL, NULL); 700 701 spin_lock(&cache->lock); 702 /* 703 * This should be a rare occasion, but this could happen I think in the 704 * case where one thread starts to load the space cache info, and then 705 * some other thread starts a transaction commit which tries to do an 706 * allocation while the other thread is still loading the space cache 707 * info. The previous loop should have kept us from choosing this block 708 * group, but if we've moved to the state where we will wait on caching 709 * block groups we need to first check if we're doing a fast load here, 710 * so we can wait for it to finish, otherwise we could end up allocating 711 * from a block group who's cache gets evicted for one reason or 712 * another. 713 */ 714 while (cache->cached == BTRFS_CACHE_FAST) { 715 struct btrfs_caching_control *ctl; 716 717 ctl = cache->caching_ctl; 718 refcount_inc(&ctl->count); 719 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 720 spin_unlock(&cache->lock); 721 722 schedule(); 723 724 finish_wait(&ctl->wait, &wait); 725 btrfs_put_caching_control(ctl); 726 spin_lock(&cache->lock); 727 } 728 729 if (cache->cached != BTRFS_CACHE_NO) { 730 spin_unlock(&cache->lock); 731 kfree(caching_ctl); 732 return 0; 733 } 734 WARN_ON(cache->caching_ctl); 735 cache->caching_ctl = caching_ctl; 736 cache->cached = BTRFS_CACHE_FAST; 737 spin_unlock(&cache->lock); 738 739 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 740 mutex_lock(&caching_ctl->mutex); 741 ret = load_free_space_cache(cache); 742 743 spin_lock(&cache->lock); 744 if (ret == 1) { 745 cache->caching_ctl = NULL; 746 cache->cached = BTRFS_CACHE_FINISHED; 747 cache->last_byte_to_unpin = (u64)-1; 748 caching_ctl->progress = (u64)-1; 749 } else { 750 if (load_cache_only) { 751 cache->caching_ctl = NULL; 752 cache->cached = BTRFS_CACHE_NO; 753 } else { 754 cache->cached = BTRFS_CACHE_STARTED; 755 cache->has_caching_ctl = 1; 756 } 757 } 758 spin_unlock(&cache->lock); 759 #ifdef CONFIG_BTRFS_DEBUG 760 if (ret == 1 && 761 btrfs_should_fragment_free_space(cache)) { 762 u64 bytes_used; 763 764 spin_lock(&cache->space_info->lock); 765 spin_lock(&cache->lock); 766 bytes_used = cache->key.offset - 767 btrfs_block_group_used(&cache->item); 768 cache->space_info->bytes_used += bytes_used >> 1; 769 spin_unlock(&cache->lock); 770 spin_unlock(&cache->space_info->lock); 771 fragment_free_space(cache); 772 } 773 #endif 774 mutex_unlock(&caching_ctl->mutex); 775 776 wake_up(&caching_ctl->wait); 777 if (ret == 1) { 778 btrfs_put_caching_control(caching_ctl); 779 btrfs_free_excluded_extents(cache); 780 return 0; 781 } 782 } else { 783 /* 784 * We're either using the free space tree or no caching at all. 785 * Set cached to the appropriate value and wakeup any waiters. 786 */ 787 spin_lock(&cache->lock); 788 if (load_cache_only) { 789 cache->caching_ctl = NULL; 790 cache->cached = BTRFS_CACHE_NO; 791 } else { 792 cache->cached = BTRFS_CACHE_STARTED; 793 cache->has_caching_ctl = 1; 794 } 795 spin_unlock(&cache->lock); 796 wake_up(&caching_ctl->wait); 797 } 798 799 if (load_cache_only) { 800 btrfs_put_caching_control(caching_ctl); 801 return 0; 802 } 803 804 down_write(&fs_info->commit_root_sem); 805 refcount_inc(&caching_ctl->count); 806 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 807 up_write(&fs_info->commit_root_sem); 808 809 btrfs_get_block_group(cache); 810 811 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 812 813 return ret; 814 } 815 816 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 817 { 818 u64 extra_flags = chunk_to_extended(flags) & 819 BTRFS_EXTENDED_PROFILE_MASK; 820 821 write_seqlock(&fs_info->profiles_lock); 822 if (flags & BTRFS_BLOCK_GROUP_DATA) 823 fs_info->avail_data_alloc_bits &= ~extra_flags; 824 if (flags & BTRFS_BLOCK_GROUP_METADATA) 825 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 826 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 827 fs_info->avail_system_alloc_bits &= ~extra_flags; 828 write_sequnlock(&fs_info->profiles_lock); 829 } 830 831 /* 832 * Clear incompat bits for the following feature(s): 833 * 834 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 835 * in the whole filesystem 836 */ 837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 838 { 839 if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) { 840 struct list_head *head = &fs_info->space_info; 841 struct btrfs_space_info *sinfo; 842 843 list_for_each_entry_rcu(sinfo, head, list) { 844 bool found = false; 845 846 down_read(&sinfo->groups_sem); 847 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 848 found = true; 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 850 found = true; 851 up_read(&sinfo->groups_sem); 852 853 if (found) 854 return; 855 } 856 btrfs_clear_fs_incompat(fs_info, RAID56); 857 } 858 } 859 860 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 861 u64 group_start, struct extent_map *em) 862 { 863 struct btrfs_fs_info *fs_info = trans->fs_info; 864 struct btrfs_root *root = fs_info->extent_root; 865 struct btrfs_path *path; 866 struct btrfs_block_group_cache *block_group; 867 struct btrfs_free_cluster *cluster; 868 struct btrfs_root *tree_root = fs_info->tree_root; 869 struct btrfs_key key; 870 struct inode *inode; 871 struct kobject *kobj = NULL; 872 int ret; 873 int index; 874 int factor; 875 struct btrfs_caching_control *caching_ctl = NULL; 876 bool remove_em; 877 bool remove_rsv = false; 878 879 block_group = btrfs_lookup_block_group(fs_info, group_start); 880 BUG_ON(!block_group); 881 BUG_ON(!block_group->ro); 882 883 trace_btrfs_remove_block_group(block_group); 884 /* 885 * Free the reserved super bytes from this block group before 886 * remove it. 887 */ 888 btrfs_free_excluded_extents(block_group); 889 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 890 block_group->key.offset); 891 892 memcpy(&key, &block_group->key, sizeof(key)); 893 index = btrfs_bg_flags_to_raid_index(block_group->flags); 894 factor = btrfs_bg_type_to_factor(block_group->flags); 895 896 /* make sure this block group isn't part of an allocation cluster */ 897 cluster = &fs_info->data_alloc_cluster; 898 spin_lock(&cluster->refill_lock); 899 btrfs_return_cluster_to_free_space(block_group, cluster); 900 spin_unlock(&cluster->refill_lock); 901 902 /* 903 * make sure this block group isn't part of a metadata 904 * allocation cluster 905 */ 906 cluster = &fs_info->meta_alloc_cluster; 907 spin_lock(&cluster->refill_lock); 908 btrfs_return_cluster_to_free_space(block_group, cluster); 909 spin_unlock(&cluster->refill_lock); 910 911 path = btrfs_alloc_path(); 912 if (!path) { 913 ret = -ENOMEM; 914 goto out; 915 } 916 917 /* 918 * get the inode first so any iput calls done for the io_list 919 * aren't the final iput (no unlinks allowed now) 920 */ 921 inode = lookup_free_space_inode(block_group, path); 922 923 mutex_lock(&trans->transaction->cache_write_mutex); 924 /* 925 * Make sure our free space cache IO is done before removing the 926 * free space inode 927 */ 928 spin_lock(&trans->transaction->dirty_bgs_lock); 929 if (!list_empty(&block_group->io_list)) { 930 list_del_init(&block_group->io_list); 931 932 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 933 934 spin_unlock(&trans->transaction->dirty_bgs_lock); 935 btrfs_wait_cache_io(trans, block_group, path); 936 btrfs_put_block_group(block_group); 937 spin_lock(&trans->transaction->dirty_bgs_lock); 938 } 939 940 if (!list_empty(&block_group->dirty_list)) { 941 list_del_init(&block_group->dirty_list); 942 remove_rsv = true; 943 btrfs_put_block_group(block_group); 944 } 945 spin_unlock(&trans->transaction->dirty_bgs_lock); 946 mutex_unlock(&trans->transaction->cache_write_mutex); 947 948 if (!IS_ERR(inode)) { 949 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 950 if (ret) { 951 btrfs_add_delayed_iput(inode); 952 goto out; 953 } 954 clear_nlink(inode); 955 /* One for the block groups ref */ 956 spin_lock(&block_group->lock); 957 if (block_group->iref) { 958 block_group->iref = 0; 959 block_group->inode = NULL; 960 spin_unlock(&block_group->lock); 961 iput(inode); 962 } else { 963 spin_unlock(&block_group->lock); 964 } 965 /* One for our lookup ref */ 966 btrfs_add_delayed_iput(inode); 967 } 968 969 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 970 key.offset = block_group->key.objectid; 971 key.type = 0; 972 973 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 974 if (ret < 0) 975 goto out; 976 if (ret > 0) 977 btrfs_release_path(path); 978 if (ret == 0) { 979 ret = btrfs_del_item(trans, tree_root, path); 980 if (ret) 981 goto out; 982 btrfs_release_path(path); 983 } 984 985 spin_lock(&fs_info->block_group_cache_lock); 986 rb_erase(&block_group->cache_node, 987 &fs_info->block_group_cache_tree); 988 RB_CLEAR_NODE(&block_group->cache_node); 989 990 if (fs_info->first_logical_byte == block_group->key.objectid) 991 fs_info->first_logical_byte = (u64)-1; 992 spin_unlock(&fs_info->block_group_cache_lock); 993 994 down_write(&block_group->space_info->groups_sem); 995 /* 996 * we must use list_del_init so people can check to see if they 997 * are still on the list after taking the semaphore 998 */ 999 list_del_init(&block_group->list); 1000 if (list_empty(&block_group->space_info->block_groups[index])) { 1001 kobj = block_group->space_info->block_group_kobjs[index]; 1002 block_group->space_info->block_group_kobjs[index] = NULL; 1003 clear_avail_alloc_bits(fs_info, block_group->flags); 1004 } 1005 up_write(&block_group->space_info->groups_sem); 1006 clear_incompat_bg_bits(fs_info, block_group->flags); 1007 if (kobj) { 1008 kobject_del(kobj); 1009 kobject_put(kobj); 1010 } 1011 1012 if (block_group->has_caching_ctl) 1013 caching_ctl = btrfs_get_caching_control(block_group); 1014 if (block_group->cached == BTRFS_CACHE_STARTED) 1015 btrfs_wait_block_group_cache_done(block_group); 1016 if (block_group->has_caching_ctl) { 1017 down_write(&fs_info->commit_root_sem); 1018 if (!caching_ctl) { 1019 struct btrfs_caching_control *ctl; 1020 1021 list_for_each_entry(ctl, 1022 &fs_info->caching_block_groups, list) 1023 if (ctl->block_group == block_group) { 1024 caching_ctl = ctl; 1025 refcount_inc(&caching_ctl->count); 1026 break; 1027 } 1028 } 1029 if (caching_ctl) 1030 list_del_init(&caching_ctl->list); 1031 up_write(&fs_info->commit_root_sem); 1032 if (caching_ctl) { 1033 /* Once for the caching bgs list and once for us. */ 1034 btrfs_put_caching_control(caching_ctl); 1035 btrfs_put_caching_control(caching_ctl); 1036 } 1037 } 1038 1039 spin_lock(&trans->transaction->dirty_bgs_lock); 1040 WARN_ON(!list_empty(&block_group->dirty_list)); 1041 WARN_ON(!list_empty(&block_group->io_list)); 1042 spin_unlock(&trans->transaction->dirty_bgs_lock); 1043 1044 btrfs_remove_free_space_cache(block_group); 1045 1046 spin_lock(&block_group->space_info->lock); 1047 list_del_init(&block_group->ro_list); 1048 1049 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1050 WARN_ON(block_group->space_info->total_bytes 1051 < block_group->key.offset); 1052 WARN_ON(block_group->space_info->bytes_readonly 1053 < block_group->key.offset); 1054 WARN_ON(block_group->space_info->disk_total 1055 < block_group->key.offset * factor); 1056 } 1057 block_group->space_info->total_bytes -= block_group->key.offset; 1058 block_group->space_info->bytes_readonly -= block_group->key.offset; 1059 block_group->space_info->disk_total -= block_group->key.offset * factor; 1060 1061 spin_unlock(&block_group->space_info->lock); 1062 1063 memcpy(&key, &block_group->key, sizeof(key)); 1064 1065 mutex_lock(&fs_info->chunk_mutex); 1066 spin_lock(&block_group->lock); 1067 block_group->removed = 1; 1068 /* 1069 * At this point trimming can't start on this block group, because we 1070 * removed the block group from the tree fs_info->block_group_cache_tree 1071 * so no one can't find it anymore and even if someone already got this 1072 * block group before we removed it from the rbtree, they have already 1073 * incremented block_group->trimming - if they didn't, they won't find 1074 * any free space entries because we already removed them all when we 1075 * called btrfs_remove_free_space_cache(). 1076 * 1077 * And we must not remove the extent map from the fs_info->mapping_tree 1078 * to prevent the same logical address range and physical device space 1079 * ranges from being reused for a new block group. This is because our 1080 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1081 * completely transactionless, so while it is trimming a range the 1082 * currently running transaction might finish and a new one start, 1083 * allowing for new block groups to be created that can reuse the same 1084 * physical device locations unless we take this special care. 1085 * 1086 * There may also be an implicit trim operation if the file system 1087 * is mounted with -odiscard. The same protections must remain 1088 * in place until the extents have been discarded completely when 1089 * the transaction commit has completed. 1090 */ 1091 remove_em = (atomic_read(&block_group->trimming) == 0); 1092 spin_unlock(&block_group->lock); 1093 1094 mutex_unlock(&fs_info->chunk_mutex); 1095 1096 ret = remove_block_group_free_space(trans, block_group); 1097 if (ret) 1098 goto out; 1099 1100 btrfs_put_block_group(block_group); 1101 btrfs_put_block_group(block_group); 1102 1103 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1104 if (ret > 0) 1105 ret = -EIO; 1106 if (ret < 0) 1107 goto out; 1108 1109 ret = btrfs_del_item(trans, root, path); 1110 if (ret) 1111 goto out; 1112 1113 if (remove_em) { 1114 struct extent_map_tree *em_tree; 1115 1116 em_tree = &fs_info->mapping_tree; 1117 write_lock(&em_tree->lock); 1118 remove_extent_mapping(em_tree, em); 1119 write_unlock(&em_tree->lock); 1120 /* once for the tree */ 1121 free_extent_map(em); 1122 } 1123 out: 1124 if (remove_rsv) 1125 btrfs_delayed_refs_rsv_release(fs_info, 1); 1126 btrfs_free_path(path); 1127 return ret; 1128 } 1129 1130 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1131 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1132 { 1133 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1134 struct extent_map *em; 1135 struct map_lookup *map; 1136 unsigned int num_items; 1137 1138 read_lock(&em_tree->lock); 1139 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1140 read_unlock(&em_tree->lock); 1141 ASSERT(em && em->start == chunk_offset); 1142 1143 /* 1144 * We need to reserve 3 + N units from the metadata space info in order 1145 * to remove a block group (done at btrfs_remove_chunk() and at 1146 * btrfs_remove_block_group()), which are used for: 1147 * 1148 * 1 unit for adding the free space inode's orphan (located in the tree 1149 * of tree roots). 1150 * 1 unit for deleting the block group item (located in the extent 1151 * tree). 1152 * 1 unit for deleting the free space item (located in tree of tree 1153 * roots). 1154 * N units for deleting N device extent items corresponding to each 1155 * stripe (located in the device tree). 1156 * 1157 * In order to remove a block group we also need to reserve units in the 1158 * system space info in order to update the chunk tree (update one or 1159 * more device items and remove one chunk item), but this is done at 1160 * btrfs_remove_chunk() through a call to check_system_chunk(). 1161 */ 1162 map = em->map_lookup; 1163 num_items = 3 + map->num_stripes; 1164 free_extent_map(em); 1165 1166 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1167 num_items, 1); 1168 } 1169 1170 /* 1171 * Mark block group @cache read-only, so later write won't happen to block 1172 * group @cache. 1173 * 1174 * If @force is not set, this function will only mark the block group readonly 1175 * if we have enough free space (1M) in other metadata/system block groups. 1176 * If @force is not set, this function will mark the block group readonly 1177 * without checking free space. 1178 * 1179 * NOTE: This function doesn't care if other block groups can contain all the 1180 * data in this block group. That check should be done by relocation routine, 1181 * not this function. 1182 */ 1183 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 1184 { 1185 struct btrfs_space_info *sinfo = cache->space_info; 1186 u64 num_bytes; 1187 u64 sinfo_used; 1188 u64 min_allocable_bytes; 1189 int ret = -ENOSPC; 1190 1191 /* 1192 * We need some metadata space and system metadata space for 1193 * allocating chunks in some corner cases until we force to set 1194 * it to be readonly. 1195 */ 1196 if ((sinfo->flags & 1197 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 1198 !force) 1199 min_allocable_bytes = SZ_1M; 1200 else 1201 min_allocable_bytes = 0; 1202 1203 spin_lock(&sinfo->lock); 1204 spin_lock(&cache->lock); 1205 1206 if (cache->ro) { 1207 cache->ro++; 1208 ret = 0; 1209 goto out; 1210 } 1211 1212 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 1213 cache->bytes_super - btrfs_block_group_used(&cache->item); 1214 sinfo_used = btrfs_space_info_used(sinfo, true); 1215 1216 /* 1217 * sinfo_used + num_bytes should always <= sinfo->total_bytes. 1218 * 1219 * Here we make sure if we mark this bg RO, we still have enough 1220 * free space as buffer (if min_allocable_bytes is not 0). 1221 */ 1222 if (sinfo_used + num_bytes + min_allocable_bytes <= 1223 sinfo->total_bytes) { 1224 sinfo->bytes_readonly += num_bytes; 1225 cache->ro++; 1226 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1227 ret = 0; 1228 } 1229 out: 1230 spin_unlock(&cache->lock); 1231 spin_unlock(&sinfo->lock); 1232 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1233 btrfs_info(cache->fs_info, 1234 "unable to make block group %llu ro", 1235 cache->key.objectid); 1236 btrfs_info(cache->fs_info, 1237 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu", 1238 sinfo_used, num_bytes, min_allocable_bytes); 1239 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1240 } 1241 return ret; 1242 } 1243 1244 /* 1245 * Process the unused_bgs list and remove any that don't have any allocated 1246 * space inside of them. 1247 */ 1248 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1249 { 1250 struct btrfs_block_group_cache *block_group; 1251 struct btrfs_space_info *space_info; 1252 struct btrfs_trans_handle *trans; 1253 int ret = 0; 1254 1255 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1256 return; 1257 1258 spin_lock(&fs_info->unused_bgs_lock); 1259 while (!list_empty(&fs_info->unused_bgs)) { 1260 u64 start, end; 1261 int trimming; 1262 1263 block_group = list_first_entry(&fs_info->unused_bgs, 1264 struct btrfs_block_group_cache, 1265 bg_list); 1266 list_del_init(&block_group->bg_list); 1267 1268 space_info = block_group->space_info; 1269 1270 if (ret || btrfs_mixed_space_info(space_info)) { 1271 btrfs_put_block_group(block_group); 1272 continue; 1273 } 1274 spin_unlock(&fs_info->unused_bgs_lock); 1275 1276 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1277 1278 /* Don't want to race with allocators so take the groups_sem */ 1279 down_write(&space_info->groups_sem); 1280 spin_lock(&block_group->lock); 1281 if (block_group->reserved || block_group->pinned || 1282 btrfs_block_group_used(&block_group->item) || 1283 block_group->ro || 1284 list_is_singular(&block_group->list)) { 1285 /* 1286 * We want to bail if we made new allocations or have 1287 * outstanding allocations in this block group. We do 1288 * the ro check in case balance is currently acting on 1289 * this block group. 1290 */ 1291 trace_btrfs_skip_unused_block_group(block_group); 1292 spin_unlock(&block_group->lock); 1293 up_write(&space_info->groups_sem); 1294 goto next; 1295 } 1296 spin_unlock(&block_group->lock); 1297 1298 /* We don't want to force the issue, only flip if it's ok. */ 1299 ret = inc_block_group_ro(block_group, 0); 1300 up_write(&space_info->groups_sem); 1301 if (ret < 0) { 1302 ret = 0; 1303 goto next; 1304 } 1305 1306 /* 1307 * Want to do this before we do anything else so we can recover 1308 * properly if we fail to join the transaction. 1309 */ 1310 trans = btrfs_start_trans_remove_block_group(fs_info, 1311 block_group->key.objectid); 1312 if (IS_ERR(trans)) { 1313 btrfs_dec_block_group_ro(block_group); 1314 ret = PTR_ERR(trans); 1315 goto next; 1316 } 1317 1318 /* 1319 * We could have pending pinned extents for this block group, 1320 * just delete them, we don't care about them anymore. 1321 */ 1322 start = block_group->key.objectid; 1323 end = start + block_group->key.offset - 1; 1324 /* 1325 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1326 * btrfs_finish_extent_commit(). If we are at transaction N, 1327 * another task might be running finish_extent_commit() for the 1328 * previous transaction N - 1, and have seen a range belonging 1329 * to the block group in freed_extents[] before we were able to 1330 * clear the whole block group range from freed_extents[]. This 1331 * means that task can lookup for the block group after we 1332 * unpinned it from freed_extents[] and removed it, leading to 1333 * a BUG_ON() at btrfs_unpin_extent_range(). 1334 */ 1335 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1336 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 1337 EXTENT_DIRTY); 1338 if (ret) { 1339 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1340 btrfs_dec_block_group_ro(block_group); 1341 goto end_trans; 1342 } 1343 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 1344 EXTENT_DIRTY); 1345 if (ret) { 1346 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1347 btrfs_dec_block_group_ro(block_group); 1348 goto end_trans; 1349 } 1350 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1351 1352 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1353 spin_lock(&space_info->lock); 1354 spin_lock(&block_group->lock); 1355 1356 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1357 -block_group->pinned); 1358 space_info->bytes_readonly += block_group->pinned; 1359 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1360 -block_group->pinned, 1361 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1362 block_group->pinned = 0; 1363 1364 spin_unlock(&block_group->lock); 1365 spin_unlock(&space_info->lock); 1366 1367 /* DISCARD can flip during remount */ 1368 trimming = btrfs_test_opt(fs_info, DISCARD); 1369 1370 /* Implicit trim during transaction commit. */ 1371 if (trimming) 1372 btrfs_get_block_group_trimming(block_group); 1373 1374 /* 1375 * Btrfs_remove_chunk will abort the transaction if things go 1376 * horribly wrong. 1377 */ 1378 ret = btrfs_remove_chunk(trans, block_group->key.objectid); 1379 1380 if (ret) { 1381 if (trimming) 1382 btrfs_put_block_group_trimming(block_group); 1383 goto end_trans; 1384 } 1385 1386 /* 1387 * If we're not mounted with -odiscard, we can just forget 1388 * about this block group. Otherwise we'll need to wait 1389 * until transaction commit to do the actual discard. 1390 */ 1391 if (trimming) { 1392 spin_lock(&fs_info->unused_bgs_lock); 1393 /* 1394 * A concurrent scrub might have added us to the list 1395 * fs_info->unused_bgs, so use a list_move operation 1396 * to add the block group to the deleted_bgs list. 1397 */ 1398 list_move(&block_group->bg_list, 1399 &trans->transaction->deleted_bgs); 1400 spin_unlock(&fs_info->unused_bgs_lock); 1401 btrfs_get_block_group(block_group); 1402 } 1403 end_trans: 1404 btrfs_end_transaction(trans); 1405 next: 1406 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1407 btrfs_put_block_group(block_group); 1408 spin_lock(&fs_info->unused_bgs_lock); 1409 } 1410 spin_unlock(&fs_info->unused_bgs_lock); 1411 } 1412 1413 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg) 1414 { 1415 struct btrfs_fs_info *fs_info = bg->fs_info; 1416 1417 spin_lock(&fs_info->unused_bgs_lock); 1418 if (list_empty(&bg->bg_list)) { 1419 btrfs_get_block_group(bg); 1420 trace_btrfs_add_unused_block_group(bg); 1421 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1422 } 1423 spin_unlock(&fs_info->unused_bgs_lock); 1424 } 1425 1426 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1427 struct btrfs_path *path, 1428 struct btrfs_key *key) 1429 { 1430 struct btrfs_root *root = fs_info->extent_root; 1431 int ret = 0; 1432 struct btrfs_key found_key; 1433 struct extent_buffer *leaf; 1434 struct btrfs_block_group_item bg; 1435 u64 flags; 1436 int slot; 1437 1438 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1439 if (ret < 0) 1440 goto out; 1441 1442 while (1) { 1443 slot = path->slots[0]; 1444 leaf = path->nodes[0]; 1445 if (slot >= btrfs_header_nritems(leaf)) { 1446 ret = btrfs_next_leaf(root, path); 1447 if (ret == 0) 1448 continue; 1449 if (ret < 0) 1450 goto out; 1451 break; 1452 } 1453 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1454 1455 if (found_key.objectid >= key->objectid && 1456 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1457 struct extent_map_tree *em_tree; 1458 struct extent_map *em; 1459 1460 em_tree = &root->fs_info->mapping_tree; 1461 read_lock(&em_tree->lock); 1462 em = lookup_extent_mapping(em_tree, found_key.objectid, 1463 found_key.offset); 1464 read_unlock(&em_tree->lock); 1465 if (!em) { 1466 btrfs_err(fs_info, 1467 "logical %llu len %llu found bg but no related chunk", 1468 found_key.objectid, found_key.offset); 1469 ret = -ENOENT; 1470 } else if (em->start != found_key.objectid || 1471 em->len != found_key.offset) { 1472 btrfs_err(fs_info, 1473 "block group %llu len %llu mismatch with chunk %llu len %llu", 1474 found_key.objectid, found_key.offset, 1475 em->start, em->len); 1476 ret = -EUCLEAN; 1477 } else { 1478 read_extent_buffer(leaf, &bg, 1479 btrfs_item_ptr_offset(leaf, slot), 1480 sizeof(bg)); 1481 flags = btrfs_block_group_flags(&bg) & 1482 BTRFS_BLOCK_GROUP_TYPE_MASK; 1483 1484 if (flags != (em->map_lookup->type & 1485 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1486 btrfs_err(fs_info, 1487 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1488 found_key.objectid, 1489 found_key.offset, flags, 1490 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1491 em->map_lookup->type)); 1492 ret = -EUCLEAN; 1493 } else { 1494 ret = 0; 1495 } 1496 } 1497 free_extent_map(em); 1498 goto out; 1499 } 1500 path->slots[0]++; 1501 } 1502 out: 1503 return ret; 1504 } 1505 1506 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1507 { 1508 u64 extra_flags = chunk_to_extended(flags) & 1509 BTRFS_EXTENDED_PROFILE_MASK; 1510 1511 write_seqlock(&fs_info->profiles_lock); 1512 if (flags & BTRFS_BLOCK_GROUP_DATA) 1513 fs_info->avail_data_alloc_bits |= extra_flags; 1514 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1515 fs_info->avail_metadata_alloc_bits |= extra_flags; 1516 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1517 fs_info->avail_system_alloc_bits |= extra_flags; 1518 write_sequnlock(&fs_info->profiles_lock); 1519 } 1520 1521 static int exclude_super_stripes(struct btrfs_block_group_cache *cache) 1522 { 1523 struct btrfs_fs_info *fs_info = cache->fs_info; 1524 u64 bytenr; 1525 u64 *logical; 1526 int stripe_len; 1527 int i, nr, ret; 1528 1529 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 1530 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 1531 cache->bytes_super += stripe_len; 1532 ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid, 1533 stripe_len); 1534 if (ret) 1535 return ret; 1536 } 1537 1538 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1539 bytenr = btrfs_sb_offset(i); 1540 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 1541 bytenr, &logical, &nr, &stripe_len); 1542 if (ret) 1543 return ret; 1544 1545 while (nr--) { 1546 u64 start, len; 1547 1548 if (logical[nr] > cache->key.objectid + 1549 cache->key.offset) 1550 continue; 1551 1552 if (logical[nr] + stripe_len <= cache->key.objectid) 1553 continue; 1554 1555 start = logical[nr]; 1556 if (start < cache->key.objectid) { 1557 start = cache->key.objectid; 1558 len = (logical[nr] + stripe_len) - start; 1559 } else { 1560 len = min_t(u64, stripe_len, 1561 cache->key.objectid + 1562 cache->key.offset - start); 1563 } 1564 1565 cache->bytes_super += len; 1566 ret = btrfs_add_excluded_extent(fs_info, start, len); 1567 if (ret) { 1568 kfree(logical); 1569 return ret; 1570 } 1571 } 1572 1573 kfree(logical); 1574 } 1575 return 0; 1576 } 1577 1578 static void link_block_group(struct btrfs_block_group_cache *cache) 1579 { 1580 struct btrfs_space_info *space_info = cache->space_info; 1581 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1582 bool first = false; 1583 1584 down_write(&space_info->groups_sem); 1585 if (list_empty(&space_info->block_groups[index])) 1586 first = true; 1587 list_add_tail(&cache->list, &space_info->block_groups[index]); 1588 up_write(&space_info->groups_sem); 1589 1590 if (first) 1591 btrfs_sysfs_add_block_group_type(cache); 1592 } 1593 1594 static struct btrfs_block_group_cache *btrfs_create_block_group_cache( 1595 struct btrfs_fs_info *fs_info, u64 start, u64 size) 1596 { 1597 struct btrfs_block_group_cache *cache; 1598 1599 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1600 if (!cache) 1601 return NULL; 1602 1603 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1604 GFP_NOFS); 1605 if (!cache->free_space_ctl) { 1606 kfree(cache); 1607 return NULL; 1608 } 1609 1610 cache->key.objectid = start; 1611 cache->key.offset = size; 1612 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1613 1614 cache->fs_info = fs_info; 1615 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1616 set_free_space_tree_thresholds(cache); 1617 1618 atomic_set(&cache->count, 1); 1619 spin_lock_init(&cache->lock); 1620 init_rwsem(&cache->data_rwsem); 1621 INIT_LIST_HEAD(&cache->list); 1622 INIT_LIST_HEAD(&cache->cluster_list); 1623 INIT_LIST_HEAD(&cache->bg_list); 1624 INIT_LIST_HEAD(&cache->ro_list); 1625 INIT_LIST_HEAD(&cache->dirty_list); 1626 INIT_LIST_HEAD(&cache->io_list); 1627 btrfs_init_free_space_ctl(cache); 1628 atomic_set(&cache->trimming, 0); 1629 mutex_init(&cache->free_space_lock); 1630 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1631 1632 return cache; 1633 } 1634 1635 /* 1636 * Iterate all chunks and verify that each of them has the corresponding block 1637 * group 1638 */ 1639 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1640 { 1641 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1642 struct extent_map *em; 1643 struct btrfs_block_group_cache *bg; 1644 u64 start = 0; 1645 int ret = 0; 1646 1647 while (1) { 1648 read_lock(&map_tree->lock); 1649 /* 1650 * lookup_extent_mapping will return the first extent map 1651 * intersecting the range, so setting @len to 1 is enough to 1652 * get the first chunk. 1653 */ 1654 em = lookup_extent_mapping(map_tree, start, 1); 1655 read_unlock(&map_tree->lock); 1656 if (!em) 1657 break; 1658 1659 bg = btrfs_lookup_block_group(fs_info, em->start); 1660 if (!bg) { 1661 btrfs_err(fs_info, 1662 "chunk start=%llu len=%llu doesn't have corresponding block group", 1663 em->start, em->len); 1664 ret = -EUCLEAN; 1665 free_extent_map(em); 1666 break; 1667 } 1668 if (bg->key.objectid != em->start || 1669 bg->key.offset != em->len || 1670 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1671 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1672 btrfs_err(fs_info, 1673 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1674 em->start, em->len, 1675 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1676 bg->key.objectid, bg->key.offset, 1677 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1678 ret = -EUCLEAN; 1679 free_extent_map(em); 1680 btrfs_put_block_group(bg); 1681 break; 1682 } 1683 start = em->start + em->len; 1684 free_extent_map(em); 1685 btrfs_put_block_group(bg); 1686 } 1687 return ret; 1688 } 1689 1690 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1691 { 1692 struct btrfs_path *path; 1693 int ret; 1694 struct btrfs_block_group_cache *cache; 1695 struct btrfs_space_info *space_info; 1696 struct btrfs_key key; 1697 struct btrfs_key found_key; 1698 struct extent_buffer *leaf; 1699 int need_clear = 0; 1700 u64 cache_gen; 1701 u64 feature; 1702 int mixed; 1703 1704 feature = btrfs_super_incompat_flags(info->super_copy); 1705 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 1706 1707 key.objectid = 0; 1708 key.offset = 0; 1709 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1710 path = btrfs_alloc_path(); 1711 if (!path) 1712 return -ENOMEM; 1713 path->reada = READA_FORWARD; 1714 1715 cache_gen = btrfs_super_cache_generation(info->super_copy); 1716 if (btrfs_test_opt(info, SPACE_CACHE) && 1717 btrfs_super_generation(info->super_copy) != cache_gen) 1718 need_clear = 1; 1719 if (btrfs_test_opt(info, CLEAR_CACHE)) 1720 need_clear = 1; 1721 1722 while (1) { 1723 ret = find_first_block_group(info, path, &key); 1724 if (ret > 0) 1725 break; 1726 if (ret != 0) 1727 goto error; 1728 1729 leaf = path->nodes[0]; 1730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1731 1732 cache = btrfs_create_block_group_cache(info, found_key.objectid, 1733 found_key.offset); 1734 if (!cache) { 1735 ret = -ENOMEM; 1736 goto error; 1737 } 1738 1739 if (need_clear) { 1740 /* 1741 * When we mount with old space cache, we need to 1742 * set BTRFS_DC_CLEAR and set dirty flag. 1743 * 1744 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1745 * truncate the old free space cache inode and 1746 * setup a new one. 1747 * b) Setting 'dirty flag' makes sure that we flush 1748 * the new space cache info onto disk. 1749 */ 1750 if (btrfs_test_opt(info, SPACE_CACHE)) 1751 cache->disk_cache_state = BTRFS_DC_CLEAR; 1752 } 1753 1754 read_extent_buffer(leaf, &cache->item, 1755 btrfs_item_ptr_offset(leaf, path->slots[0]), 1756 sizeof(cache->item)); 1757 cache->flags = btrfs_block_group_flags(&cache->item); 1758 if (!mixed && 1759 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1760 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1761 btrfs_err(info, 1762 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1763 cache->key.objectid); 1764 ret = -EINVAL; 1765 goto error; 1766 } 1767 1768 key.objectid = found_key.objectid + found_key.offset; 1769 btrfs_release_path(path); 1770 1771 /* 1772 * We need to exclude the super stripes now so that the space 1773 * info has super bytes accounted for, otherwise we'll think 1774 * we have more space than we actually do. 1775 */ 1776 ret = exclude_super_stripes(cache); 1777 if (ret) { 1778 /* 1779 * We may have excluded something, so call this just in 1780 * case. 1781 */ 1782 btrfs_free_excluded_extents(cache); 1783 btrfs_put_block_group(cache); 1784 goto error; 1785 } 1786 1787 /* 1788 * Check for two cases, either we are full, and therefore 1789 * don't need to bother with the caching work since we won't 1790 * find any space, or we are empty, and we can just add all 1791 * the space in and be done with it. This saves us _a_lot_ of 1792 * time, particularly in the full case. 1793 */ 1794 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 1795 cache->last_byte_to_unpin = (u64)-1; 1796 cache->cached = BTRFS_CACHE_FINISHED; 1797 btrfs_free_excluded_extents(cache); 1798 } else if (btrfs_block_group_used(&cache->item) == 0) { 1799 cache->last_byte_to_unpin = (u64)-1; 1800 cache->cached = BTRFS_CACHE_FINISHED; 1801 add_new_free_space(cache, found_key.objectid, 1802 found_key.objectid + 1803 found_key.offset); 1804 btrfs_free_excluded_extents(cache); 1805 } 1806 1807 ret = btrfs_add_block_group_cache(info, cache); 1808 if (ret) { 1809 btrfs_remove_free_space_cache(cache); 1810 btrfs_put_block_group(cache); 1811 goto error; 1812 } 1813 1814 trace_btrfs_add_block_group(info, cache, 0); 1815 btrfs_update_space_info(info, cache->flags, found_key.offset, 1816 btrfs_block_group_used(&cache->item), 1817 cache->bytes_super, &space_info); 1818 1819 cache->space_info = space_info; 1820 1821 link_block_group(cache); 1822 1823 set_avail_alloc_bits(info, cache->flags); 1824 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 1825 inc_block_group_ro(cache, 1); 1826 } else if (btrfs_block_group_used(&cache->item) == 0) { 1827 ASSERT(list_empty(&cache->bg_list)); 1828 btrfs_mark_bg_unused(cache); 1829 } 1830 } 1831 1832 list_for_each_entry_rcu(space_info, &info->space_info, list) { 1833 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 1834 (BTRFS_BLOCK_GROUP_RAID10 | 1835 BTRFS_BLOCK_GROUP_RAID1_MASK | 1836 BTRFS_BLOCK_GROUP_RAID56_MASK | 1837 BTRFS_BLOCK_GROUP_DUP))) 1838 continue; 1839 /* 1840 * Avoid allocating from un-mirrored block group if there are 1841 * mirrored block groups. 1842 */ 1843 list_for_each_entry(cache, 1844 &space_info->block_groups[BTRFS_RAID_RAID0], 1845 list) 1846 inc_block_group_ro(cache, 1); 1847 list_for_each_entry(cache, 1848 &space_info->block_groups[BTRFS_RAID_SINGLE], 1849 list) 1850 inc_block_group_ro(cache, 1); 1851 } 1852 1853 btrfs_init_global_block_rsv(info); 1854 ret = check_chunk_block_group_mappings(info); 1855 error: 1856 btrfs_free_path(path); 1857 return ret; 1858 } 1859 1860 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 1861 { 1862 struct btrfs_fs_info *fs_info = trans->fs_info; 1863 struct btrfs_block_group_cache *block_group; 1864 struct btrfs_root *extent_root = fs_info->extent_root; 1865 struct btrfs_block_group_item item; 1866 struct btrfs_key key; 1867 int ret = 0; 1868 1869 if (!trans->can_flush_pending_bgs) 1870 return; 1871 1872 while (!list_empty(&trans->new_bgs)) { 1873 block_group = list_first_entry(&trans->new_bgs, 1874 struct btrfs_block_group_cache, 1875 bg_list); 1876 if (ret) 1877 goto next; 1878 1879 spin_lock(&block_group->lock); 1880 memcpy(&item, &block_group->item, sizeof(item)); 1881 memcpy(&key, &block_group->key, sizeof(key)); 1882 spin_unlock(&block_group->lock); 1883 1884 ret = btrfs_insert_item(trans, extent_root, &key, &item, 1885 sizeof(item)); 1886 if (ret) 1887 btrfs_abort_transaction(trans, ret); 1888 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 1889 if (ret) 1890 btrfs_abort_transaction(trans, ret); 1891 add_block_group_free_space(trans, block_group); 1892 /* Already aborted the transaction if it failed. */ 1893 next: 1894 btrfs_delayed_refs_rsv_release(fs_info, 1); 1895 list_del_init(&block_group->bg_list); 1896 } 1897 btrfs_trans_release_chunk_metadata(trans); 1898 } 1899 1900 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 1901 u64 type, u64 chunk_offset, u64 size) 1902 { 1903 struct btrfs_fs_info *fs_info = trans->fs_info; 1904 struct btrfs_block_group_cache *cache; 1905 int ret; 1906 1907 btrfs_set_log_full_commit(trans); 1908 1909 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 1910 if (!cache) 1911 return -ENOMEM; 1912 1913 btrfs_set_block_group_used(&cache->item, bytes_used); 1914 btrfs_set_block_group_chunk_objectid(&cache->item, 1915 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1916 btrfs_set_block_group_flags(&cache->item, type); 1917 1918 cache->flags = type; 1919 cache->last_byte_to_unpin = (u64)-1; 1920 cache->cached = BTRFS_CACHE_FINISHED; 1921 cache->needs_free_space = 1; 1922 ret = exclude_super_stripes(cache); 1923 if (ret) { 1924 /* We may have excluded something, so call this just in case */ 1925 btrfs_free_excluded_extents(cache); 1926 btrfs_put_block_group(cache); 1927 return ret; 1928 } 1929 1930 add_new_free_space(cache, chunk_offset, chunk_offset + size); 1931 1932 btrfs_free_excluded_extents(cache); 1933 1934 #ifdef CONFIG_BTRFS_DEBUG 1935 if (btrfs_should_fragment_free_space(cache)) { 1936 u64 new_bytes_used = size - bytes_used; 1937 1938 bytes_used += new_bytes_used >> 1; 1939 fragment_free_space(cache); 1940 } 1941 #endif 1942 /* 1943 * Ensure the corresponding space_info object is created and 1944 * assigned to our block group. We want our bg to be added to the rbtree 1945 * with its ->space_info set. 1946 */ 1947 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 1948 ASSERT(cache->space_info); 1949 1950 ret = btrfs_add_block_group_cache(fs_info, cache); 1951 if (ret) { 1952 btrfs_remove_free_space_cache(cache); 1953 btrfs_put_block_group(cache); 1954 return ret; 1955 } 1956 1957 /* 1958 * Now that our block group has its ->space_info set and is inserted in 1959 * the rbtree, update the space info's counters. 1960 */ 1961 trace_btrfs_add_block_group(fs_info, cache, 1); 1962 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 1963 cache->bytes_super, &cache->space_info); 1964 btrfs_update_global_block_rsv(fs_info); 1965 1966 link_block_group(cache); 1967 1968 list_add_tail(&cache->bg_list, &trans->new_bgs); 1969 trans->delayed_ref_updates++; 1970 btrfs_update_delayed_refs_rsv(trans); 1971 1972 set_avail_alloc_bits(fs_info, type); 1973 return 0; 1974 } 1975 1976 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 1977 { 1978 u64 num_devices; 1979 u64 stripped; 1980 1981 /* 1982 * if restripe for this chunk_type is on pick target profile and 1983 * return, otherwise do the usual balance 1984 */ 1985 stripped = get_restripe_target(fs_info, flags); 1986 if (stripped) 1987 return extended_to_chunk(stripped); 1988 1989 num_devices = fs_info->fs_devices->rw_devices; 1990 1991 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 1992 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 1993 1994 if (num_devices == 1) { 1995 stripped |= BTRFS_BLOCK_GROUP_DUP; 1996 stripped = flags & ~stripped; 1997 1998 /* turn raid0 into single device chunks */ 1999 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2000 return stripped; 2001 2002 /* turn mirroring into duplication */ 2003 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2004 BTRFS_BLOCK_GROUP_RAID10)) 2005 return stripped | BTRFS_BLOCK_GROUP_DUP; 2006 } else { 2007 /* they already had raid on here, just return */ 2008 if (flags & stripped) 2009 return flags; 2010 2011 stripped |= BTRFS_BLOCK_GROUP_DUP; 2012 stripped = flags & ~stripped; 2013 2014 /* switch duplicated blocks with raid1 */ 2015 if (flags & BTRFS_BLOCK_GROUP_DUP) 2016 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2017 2018 /* this is drive concat, leave it alone */ 2019 } 2020 2021 return flags; 2022 } 2023 2024 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache) 2025 2026 { 2027 struct btrfs_fs_info *fs_info = cache->fs_info; 2028 struct btrfs_trans_handle *trans; 2029 u64 alloc_flags; 2030 int ret; 2031 2032 again: 2033 trans = btrfs_join_transaction(fs_info->extent_root); 2034 if (IS_ERR(trans)) 2035 return PTR_ERR(trans); 2036 2037 /* 2038 * we're not allowed to set block groups readonly after the dirty 2039 * block groups cache has started writing. If it already started, 2040 * back off and let this transaction commit 2041 */ 2042 mutex_lock(&fs_info->ro_block_group_mutex); 2043 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2044 u64 transid = trans->transid; 2045 2046 mutex_unlock(&fs_info->ro_block_group_mutex); 2047 btrfs_end_transaction(trans); 2048 2049 ret = btrfs_wait_for_commit(fs_info, transid); 2050 if (ret) 2051 return ret; 2052 goto again; 2053 } 2054 2055 /* 2056 * if we are changing raid levels, try to allocate a corresponding 2057 * block group with the new raid level. 2058 */ 2059 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2060 if (alloc_flags != cache->flags) { 2061 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2062 /* 2063 * ENOSPC is allowed here, we may have enough space 2064 * already allocated at the new raid level to 2065 * carry on 2066 */ 2067 if (ret == -ENOSPC) 2068 ret = 0; 2069 if (ret < 0) 2070 goto out; 2071 } 2072 2073 ret = inc_block_group_ro(cache, 0); 2074 if (!ret) 2075 goto out; 2076 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2077 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2078 if (ret < 0) 2079 goto out; 2080 ret = inc_block_group_ro(cache, 0); 2081 out: 2082 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2083 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2084 mutex_lock(&fs_info->chunk_mutex); 2085 check_system_chunk(trans, alloc_flags); 2086 mutex_unlock(&fs_info->chunk_mutex); 2087 } 2088 mutex_unlock(&fs_info->ro_block_group_mutex); 2089 2090 btrfs_end_transaction(trans); 2091 return ret; 2092 } 2093 2094 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 2095 { 2096 struct btrfs_space_info *sinfo = cache->space_info; 2097 u64 num_bytes; 2098 2099 BUG_ON(!cache->ro); 2100 2101 spin_lock(&sinfo->lock); 2102 spin_lock(&cache->lock); 2103 if (!--cache->ro) { 2104 num_bytes = cache->key.offset - cache->reserved - 2105 cache->pinned - cache->bytes_super - 2106 btrfs_block_group_used(&cache->item); 2107 sinfo->bytes_readonly -= num_bytes; 2108 list_del_init(&cache->ro_list); 2109 } 2110 spin_unlock(&cache->lock); 2111 spin_unlock(&sinfo->lock); 2112 } 2113 2114 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2115 struct btrfs_path *path, 2116 struct btrfs_block_group_cache *cache) 2117 { 2118 struct btrfs_fs_info *fs_info = trans->fs_info; 2119 int ret; 2120 struct btrfs_root *extent_root = fs_info->extent_root; 2121 unsigned long bi; 2122 struct extent_buffer *leaf; 2123 2124 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2125 if (ret) { 2126 if (ret > 0) 2127 ret = -ENOENT; 2128 goto fail; 2129 } 2130 2131 leaf = path->nodes[0]; 2132 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2133 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2134 btrfs_mark_buffer_dirty(leaf); 2135 fail: 2136 btrfs_release_path(path); 2137 return ret; 2138 2139 } 2140 2141 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2142 struct btrfs_trans_handle *trans, 2143 struct btrfs_path *path) 2144 { 2145 struct btrfs_fs_info *fs_info = block_group->fs_info; 2146 struct btrfs_root *root = fs_info->tree_root; 2147 struct inode *inode = NULL; 2148 struct extent_changeset *data_reserved = NULL; 2149 u64 alloc_hint = 0; 2150 int dcs = BTRFS_DC_ERROR; 2151 u64 num_pages = 0; 2152 int retries = 0; 2153 int ret = 0; 2154 2155 /* 2156 * If this block group is smaller than 100 megs don't bother caching the 2157 * block group. 2158 */ 2159 if (block_group->key.offset < (100 * SZ_1M)) { 2160 spin_lock(&block_group->lock); 2161 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2162 spin_unlock(&block_group->lock); 2163 return 0; 2164 } 2165 2166 if (trans->aborted) 2167 return 0; 2168 again: 2169 inode = lookup_free_space_inode(block_group, path); 2170 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2171 ret = PTR_ERR(inode); 2172 btrfs_release_path(path); 2173 goto out; 2174 } 2175 2176 if (IS_ERR(inode)) { 2177 BUG_ON(retries); 2178 retries++; 2179 2180 if (block_group->ro) 2181 goto out_free; 2182 2183 ret = create_free_space_inode(trans, block_group, path); 2184 if (ret) 2185 goto out_free; 2186 goto again; 2187 } 2188 2189 /* 2190 * We want to set the generation to 0, that way if anything goes wrong 2191 * from here on out we know not to trust this cache when we load up next 2192 * time. 2193 */ 2194 BTRFS_I(inode)->generation = 0; 2195 ret = btrfs_update_inode(trans, root, inode); 2196 if (ret) { 2197 /* 2198 * So theoretically we could recover from this, simply set the 2199 * super cache generation to 0 so we know to invalidate the 2200 * cache, but then we'd have to keep track of the block groups 2201 * that fail this way so we know we _have_ to reset this cache 2202 * before the next commit or risk reading stale cache. So to 2203 * limit our exposure to horrible edge cases lets just abort the 2204 * transaction, this only happens in really bad situations 2205 * anyway. 2206 */ 2207 btrfs_abort_transaction(trans, ret); 2208 goto out_put; 2209 } 2210 WARN_ON(ret); 2211 2212 /* We've already setup this transaction, go ahead and exit */ 2213 if (block_group->cache_generation == trans->transid && 2214 i_size_read(inode)) { 2215 dcs = BTRFS_DC_SETUP; 2216 goto out_put; 2217 } 2218 2219 if (i_size_read(inode) > 0) { 2220 ret = btrfs_check_trunc_cache_free_space(fs_info, 2221 &fs_info->global_block_rsv); 2222 if (ret) 2223 goto out_put; 2224 2225 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2226 if (ret) 2227 goto out_put; 2228 } 2229 2230 spin_lock(&block_group->lock); 2231 if (block_group->cached != BTRFS_CACHE_FINISHED || 2232 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2233 /* 2234 * don't bother trying to write stuff out _if_ 2235 * a) we're not cached, 2236 * b) we're with nospace_cache mount option, 2237 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2238 */ 2239 dcs = BTRFS_DC_WRITTEN; 2240 spin_unlock(&block_group->lock); 2241 goto out_put; 2242 } 2243 spin_unlock(&block_group->lock); 2244 2245 /* 2246 * We hit an ENOSPC when setting up the cache in this transaction, just 2247 * skip doing the setup, we've already cleared the cache so we're safe. 2248 */ 2249 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2250 ret = -ENOSPC; 2251 goto out_put; 2252 } 2253 2254 /* 2255 * Try to preallocate enough space based on how big the block group is. 2256 * Keep in mind this has to include any pinned space which could end up 2257 * taking up quite a bit since it's not folded into the other space 2258 * cache. 2259 */ 2260 num_pages = div_u64(block_group->key.offset, SZ_256M); 2261 if (!num_pages) 2262 num_pages = 1; 2263 2264 num_pages *= 16; 2265 num_pages *= PAGE_SIZE; 2266 2267 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2268 if (ret) 2269 goto out_put; 2270 2271 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2272 num_pages, num_pages, 2273 &alloc_hint); 2274 /* 2275 * Our cache requires contiguous chunks so that we don't modify a bunch 2276 * of metadata or split extents when writing the cache out, which means 2277 * we can enospc if we are heavily fragmented in addition to just normal 2278 * out of space conditions. So if we hit this just skip setting up any 2279 * other block groups for this transaction, maybe we'll unpin enough 2280 * space the next time around. 2281 */ 2282 if (!ret) 2283 dcs = BTRFS_DC_SETUP; 2284 else if (ret == -ENOSPC) 2285 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2286 2287 out_put: 2288 iput(inode); 2289 out_free: 2290 btrfs_release_path(path); 2291 out: 2292 spin_lock(&block_group->lock); 2293 if (!ret && dcs == BTRFS_DC_SETUP) 2294 block_group->cache_generation = trans->transid; 2295 block_group->disk_cache_state = dcs; 2296 spin_unlock(&block_group->lock); 2297 2298 extent_changeset_free(data_reserved); 2299 return ret; 2300 } 2301 2302 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2303 { 2304 struct btrfs_fs_info *fs_info = trans->fs_info; 2305 struct btrfs_block_group_cache *cache, *tmp; 2306 struct btrfs_transaction *cur_trans = trans->transaction; 2307 struct btrfs_path *path; 2308 2309 if (list_empty(&cur_trans->dirty_bgs) || 2310 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2311 return 0; 2312 2313 path = btrfs_alloc_path(); 2314 if (!path) 2315 return -ENOMEM; 2316 2317 /* Could add new block groups, use _safe just in case */ 2318 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2319 dirty_list) { 2320 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2321 cache_save_setup(cache, trans, path); 2322 } 2323 2324 btrfs_free_path(path); 2325 return 0; 2326 } 2327 2328 /* 2329 * Transaction commit does final block group cache writeback during a critical 2330 * section where nothing is allowed to change the FS. This is required in 2331 * order for the cache to actually match the block group, but can introduce a 2332 * lot of latency into the commit. 2333 * 2334 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2335 * There's a chance we'll have to redo some of it if the block group changes 2336 * again during the commit, but it greatly reduces the commit latency by 2337 * getting rid of the easy block groups while we're still allowing others to 2338 * join the commit. 2339 */ 2340 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2341 { 2342 struct btrfs_fs_info *fs_info = trans->fs_info; 2343 struct btrfs_block_group_cache *cache; 2344 struct btrfs_transaction *cur_trans = trans->transaction; 2345 int ret = 0; 2346 int should_put; 2347 struct btrfs_path *path = NULL; 2348 LIST_HEAD(dirty); 2349 struct list_head *io = &cur_trans->io_bgs; 2350 int num_started = 0; 2351 int loops = 0; 2352 2353 spin_lock(&cur_trans->dirty_bgs_lock); 2354 if (list_empty(&cur_trans->dirty_bgs)) { 2355 spin_unlock(&cur_trans->dirty_bgs_lock); 2356 return 0; 2357 } 2358 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2359 spin_unlock(&cur_trans->dirty_bgs_lock); 2360 2361 again: 2362 /* Make sure all the block groups on our dirty list actually exist */ 2363 btrfs_create_pending_block_groups(trans); 2364 2365 if (!path) { 2366 path = btrfs_alloc_path(); 2367 if (!path) 2368 return -ENOMEM; 2369 } 2370 2371 /* 2372 * cache_write_mutex is here only to save us from balance or automatic 2373 * removal of empty block groups deleting this block group while we are 2374 * writing out the cache 2375 */ 2376 mutex_lock(&trans->transaction->cache_write_mutex); 2377 while (!list_empty(&dirty)) { 2378 bool drop_reserve = true; 2379 2380 cache = list_first_entry(&dirty, 2381 struct btrfs_block_group_cache, 2382 dirty_list); 2383 /* 2384 * This can happen if something re-dirties a block group that 2385 * is already under IO. Just wait for it to finish and then do 2386 * it all again 2387 */ 2388 if (!list_empty(&cache->io_list)) { 2389 list_del_init(&cache->io_list); 2390 btrfs_wait_cache_io(trans, cache, path); 2391 btrfs_put_block_group(cache); 2392 } 2393 2394 2395 /* 2396 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2397 * it should update the cache_state. Don't delete until after 2398 * we wait. 2399 * 2400 * Since we're not running in the commit critical section 2401 * we need the dirty_bgs_lock to protect from update_block_group 2402 */ 2403 spin_lock(&cur_trans->dirty_bgs_lock); 2404 list_del_init(&cache->dirty_list); 2405 spin_unlock(&cur_trans->dirty_bgs_lock); 2406 2407 should_put = 1; 2408 2409 cache_save_setup(cache, trans, path); 2410 2411 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2412 cache->io_ctl.inode = NULL; 2413 ret = btrfs_write_out_cache(trans, cache, path); 2414 if (ret == 0 && cache->io_ctl.inode) { 2415 num_started++; 2416 should_put = 0; 2417 2418 /* 2419 * The cache_write_mutex is protecting the 2420 * io_list, also refer to the definition of 2421 * btrfs_transaction::io_bgs for more details 2422 */ 2423 list_add_tail(&cache->io_list, io); 2424 } else { 2425 /* 2426 * If we failed to write the cache, the 2427 * generation will be bad and life goes on 2428 */ 2429 ret = 0; 2430 } 2431 } 2432 if (!ret) { 2433 ret = write_one_cache_group(trans, path, cache); 2434 /* 2435 * Our block group might still be attached to the list 2436 * of new block groups in the transaction handle of some 2437 * other task (struct btrfs_trans_handle->new_bgs). This 2438 * means its block group item isn't yet in the extent 2439 * tree. If this happens ignore the error, as we will 2440 * try again later in the critical section of the 2441 * transaction commit. 2442 */ 2443 if (ret == -ENOENT) { 2444 ret = 0; 2445 spin_lock(&cur_trans->dirty_bgs_lock); 2446 if (list_empty(&cache->dirty_list)) { 2447 list_add_tail(&cache->dirty_list, 2448 &cur_trans->dirty_bgs); 2449 btrfs_get_block_group(cache); 2450 drop_reserve = false; 2451 } 2452 spin_unlock(&cur_trans->dirty_bgs_lock); 2453 } else if (ret) { 2454 btrfs_abort_transaction(trans, ret); 2455 } 2456 } 2457 2458 /* If it's not on the io list, we need to put the block group */ 2459 if (should_put) 2460 btrfs_put_block_group(cache); 2461 if (drop_reserve) 2462 btrfs_delayed_refs_rsv_release(fs_info, 1); 2463 2464 if (ret) 2465 break; 2466 2467 /* 2468 * Avoid blocking other tasks for too long. It might even save 2469 * us from writing caches for block groups that are going to be 2470 * removed. 2471 */ 2472 mutex_unlock(&trans->transaction->cache_write_mutex); 2473 mutex_lock(&trans->transaction->cache_write_mutex); 2474 } 2475 mutex_unlock(&trans->transaction->cache_write_mutex); 2476 2477 /* 2478 * Go through delayed refs for all the stuff we've just kicked off 2479 * and then loop back (just once) 2480 */ 2481 ret = btrfs_run_delayed_refs(trans, 0); 2482 if (!ret && loops == 0) { 2483 loops++; 2484 spin_lock(&cur_trans->dirty_bgs_lock); 2485 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2486 /* 2487 * dirty_bgs_lock protects us from concurrent block group 2488 * deletes too (not just cache_write_mutex). 2489 */ 2490 if (!list_empty(&dirty)) { 2491 spin_unlock(&cur_trans->dirty_bgs_lock); 2492 goto again; 2493 } 2494 spin_unlock(&cur_trans->dirty_bgs_lock); 2495 } else if (ret < 0) { 2496 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2497 } 2498 2499 btrfs_free_path(path); 2500 return ret; 2501 } 2502 2503 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2504 { 2505 struct btrfs_fs_info *fs_info = trans->fs_info; 2506 struct btrfs_block_group_cache *cache; 2507 struct btrfs_transaction *cur_trans = trans->transaction; 2508 int ret = 0; 2509 int should_put; 2510 struct btrfs_path *path; 2511 struct list_head *io = &cur_trans->io_bgs; 2512 int num_started = 0; 2513 2514 path = btrfs_alloc_path(); 2515 if (!path) 2516 return -ENOMEM; 2517 2518 /* 2519 * Even though we are in the critical section of the transaction commit, 2520 * we can still have concurrent tasks adding elements to this 2521 * transaction's list of dirty block groups. These tasks correspond to 2522 * endio free space workers started when writeback finishes for a 2523 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2524 * allocate new block groups as a result of COWing nodes of the root 2525 * tree when updating the free space inode. The writeback for the space 2526 * caches is triggered by an earlier call to 2527 * btrfs_start_dirty_block_groups() and iterations of the following 2528 * loop. 2529 * Also we want to do the cache_save_setup first and then run the 2530 * delayed refs to make sure we have the best chance at doing this all 2531 * in one shot. 2532 */ 2533 spin_lock(&cur_trans->dirty_bgs_lock); 2534 while (!list_empty(&cur_trans->dirty_bgs)) { 2535 cache = list_first_entry(&cur_trans->dirty_bgs, 2536 struct btrfs_block_group_cache, 2537 dirty_list); 2538 2539 /* 2540 * This can happen if cache_save_setup re-dirties a block group 2541 * that is already under IO. Just wait for it to finish and 2542 * then do it all again 2543 */ 2544 if (!list_empty(&cache->io_list)) { 2545 spin_unlock(&cur_trans->dirty_bgs_lock); 2546 list_del_init(&cache->io_list); 2547 btrfs_wait_cache_io(trans, cache, path); 2548 btrfs_put_block_group(cache); 2549 spin_lock(&cur_trans->dirty_bgs_lock); 2550 } 2551 2552 /* 2553 * Don't remove from the dirty list until after we've waited on 2554 * any pending IO 2555 */ 2556 list_del_init(&cache->dirty_list); 2557 spin_unlock(&cur_trans->dirty_bgs_lock); 2558 should_put = 1; 2559 2560 cache_save_setup(cache, trans, path); 2561 2562 if (!ret) 2563 ret = btrfs_run_delayed_refs(trans, 2564 (unsigned long) -1); 2565 2566 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2567 cache->io_ctl.inode = NULL; 2568 ret = btrfs_write_out_cache(trans, cache, path); 2569 if (ret == 0 && cache->io_ctl.inode) { 2570 num_started++; 2571 should_put = 0; 2572 list_add_tail(&cache->io_list, io); 2573 } else { 2574 /* 2575 * If we failed to write the cache, the 2576 * generation will be bad and life goes on 2577 */ 2578 ret = 0; 2579 } 2580 } 2581 if (!ret) { 2582 ret = write_one_cache_group(trans, path, cache); 2583 /* 2584 * One of the free space endio workers might have 2585 * created a new block group while updating a free space 2586 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2587 * and hasn't released its transaction handle yet, in 2588 * which case the new block group is still attached to 2589 * its transaction handle and its creation has not 2590 * finished yet (no block group item in the extent tree 2591 * yet, etc). If this is the case, wait for all free 2592 * space endio workers to finish and retry. This is a 2593 * a very rare case so no need for a more efficient and 2594 * complex approach. 2595 */ 2596 if (ret == -ENOENT) { 2597 wait_event(cur_trans->writer_wait, 2598 atomic_read(&cur_trans->num_writers) == 1); 2599 ret = write_one_cache_group(trans, path, cache); 2600 } 2601 if (ret) 2602 btrfs_abort_transaction(trans, ret); 2603 } 2604 2605 /* If its not on the io list, we need to put the block group */ 2606 if (should_put) 2607 btrfs_put_block_group(cache); 2608 btrfs_delayed_refs_rsv_release(fs_info, 1); 2609 spin_lock(&cur_trans->dirty_bgs_lock); 2610 } 2611 spin_unlock(&cur_trans->dirty_bgs_lock); 2612 2613 /* 2614 * Refer to the definition of io_bgs member for details why it's safe 2615 * to use it without any locking 2616 */ 2617 while (!list_empty(io)) { 2618 cache = list_first_entry(io, struct btrfs_block_group_cache, 2619 io_list); 2620 list_del_init(&cache->io_list); 2621 btrfs_wait_cache_io(trans, cache, path); 2622 btrfs_put_block_group(cache); 2623 } 2624 2625 btrfs_free_path(path); 2626 return ret; 2627 } 2628 2629 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2630 u64 bytenr, u64 num_bytes, int alloc) 2631 { 2632 struct btrfs_fs_info *info = trans->fs_info; 2633 struct btrfs_block_group_cache *cache = NULL; 2634 u64 total = num_bytes; 2635 u64 old_val; 2636 u64 byte_in_group; 2637 int factor; 2638 int ret = 0; 2639 2640 /* Block accounting for super block */ 2641 spin_lock(&info->delalloc_root_lock); 2642 old_val = btrfs_super_bytes_used(info->super_copy); 2643 if (alloc) 2644 old_val += num_bytes; 2645 else 2646 old_val -= num_bytes; 2647 btrfs_set_super_bytes_used(info->super_copy, old_val); 2648 spin_unlock(&info->delalloc_root_lock); 2649 2650 while (total) { 2651 cache = btrfs_lookup_block_group(info, bytenr); 2652 if (!cache) { 2653 ret = -ENOENT; 2654 break; 2655 } 2656 factor = btrfs_bg_type_to_factor(cache->flags); 2657 2658 /* 2659 * If this block group has free space cache written out, we 2660 * need to make sure to load it if we are removing space. This 2661 * is because we need the unpinning stage to actually add the 2662 * space back to the block group, otherwise we will leak space. 2663 */ 2664 if (!alloc && cache->cached == BTRFS_CACHE_NO) 2665 btrfs_cache_block_group(cache, 1); 2666 2667 byte_in_group = bytenr - cache->key.objectid; 2668 WARN_ON(byte_in_group > cache->key.offset); 2669 2670 spin_lock(&cache->space_info->lock); 2671 spin_lock(&cache->lock); 2672 2673 if (btrfs_test_opt(info, SPACE_CACHE) && 2674 cache->disk_cache_state < BTRFS_DC_CLEAR) 2675 cache->disk_cache_state = BTRFS_DC_CLEAR; 2676 2677 old_val = btrfs_block_group_used(&cache->item); 2678 num_bytes = min(total, cache->key.offset - byte_in_group); 2679 if (alloc) { 2680 old_val += num_bytes; 2681 btrfs_set_block_group_used(&cache->item, old_val); 2682 cache->reserved -= num_bytes; 2683 cache->space_info->bytes_reserved -= num_bytes; 2684 cache->space_info->bytes_used += num_bytes; 2685 cache->space_info->disk_used += num_bytes * factor; 2686 spin_unlock(&cache->lock); 2687 spin_unlock(&cache->space_info->lock); 2688 } else { 2689 old_val -= num_bytes; 2690 btrfs_set_block_group_used(&cache->item, old_val); 2691 cache->pinned += num_bytes; 2692 btrfs_space_info_update_bytes_pinned(info, 2693 cache->space_info, num_bytes); 2694 cache->space_info->bytes_used -= num_bytes; 2695 cache->space_info->disk_used -= num_bytes * factor; 2696 spin_unlock(&cache->lock); 2697 spin_unlock(&cache->space_info->lock); 2698 2699 percpu_counter_add_batch( 2700 &cache->space_info->total_bytes_pinned, 2701 num_bytes, 2702 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2703 set_extent_dirty(info->pinned_extents, 2704 bytenr, bytenr + num_bytes - 1, 2705 GFP_NOFS | __GFP_NOFAIL); 2706 } 2707 2708 spin_lock(&trans->transaction->dirty_bgs_lock); 2709 if (list_empty(&cache->dirty_list)) { 2710 list_add_tail(&cache->dirty_list, 2711 &trans->transaction->dirty_bgs); 2712 trans->delayed_ref_updates++; 2713 btrfs_get_block_group(cache); 2714 } 2715 spin_unlock(&trans->transaction->dirty_bgs_lock); 2716 2717 /* 2718 * No longer have used bytes in this block group, queue it for 2719 * deletion. We do this after adding the block group to the 2720 * dirty list to avoid races between cleaner kthread and space 2721 * cache writeout. 2722 */ 2723 if (!alloc && old_val == 0) 2724 btrfs_mark_bg_unused(cache); 2725 2726 btrfs_put_block_group(cache); 2727 total -= num_bytes; 2728 bytenr += num_bytes; 2729 } 2730 2731 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2732 btrfs_update_delayed_refs_rsv(trans); 2733 return ret; 2734 } 2735 2736 /** 2737 * btrfs_add_reserved_bytes - update the block_group and space info counters 2738 * @cache: The cache we are manipulating 2739 * @ram_bytes: The number of bytes of file content, and will be same to 2740 * @num_bytes except for the compress path. 2741 * @num_bytes: The number of bytes in question 2742 * @delalloc: The blocks are allocated for the delalloc write 2743 * 2744 * This is called by the allocator when it reserves space. If this is a 2745 * reservation and the block group has become read only we cannot make the 2746 * reservation and return -EAGAIN, otherwise this function always succeeds. 2747 */ 2748 int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 2749 u64 ram_bytes, u64 num_bytes, int delalloc) 2750 { 2751 struct btrfs_space_info *space_info = cache->space_info; 2752 int ret = 0; 2753 2754 spin_lock(&space_info->lock); 2755 spin_lock(&cache->lock); 2756 if (cache->ro) { 2757 ret = -EAGAIN; 2758 } else { 2759 cache->reserved += num_bytes; 2760 space_info->bytes_reserved += num_bytes; 2761 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2762 space_info->flags, num_bytes, 1); 2763 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2764 space_info, -ram_bytes); 2765 if (delalloc) 2766 cache->delalloc_bytes += num_bytes; 2767 } 2768 spin_unlock(&cache->lock); 2769 spin_unlock(&space_info->lock); 2770 return ret; 2771 } 2772 2773 /** 2774 * btrfs_free_reserved_bytes - update the block_group and space info counters 2775 * @cache: The cache we are manipulating 2776 * @num_bytes: The number of bytes in question 2777 * @delalloc: The blocks are allocated for the delalloc write 2778 * 2779 * This is called by somebody who is freeing space that was never actually used 2780 * on disk. For example if you reserve some space for a new leaf in transaction 2781 * A and before transaction A commits you free that leaf, you call this with 2782 * reserve set to 0 in order to clear the reservation. 2783 */ 2784 void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 2785 u64 num_bytes, int delalloc) 2786 { 2787 struct btrfs_space_info *space_info = cache->space_info; 2788 2789 spin_lock(&space_info->lock); 2790 spin_lock(&cache->lock); 2791 if (cache->ro) 2792 space_info->bytes_readonly += num_bytes; 2793 cache->reserved -= num_bytes; 2794 space_info->bytes_reserved -= num_bytes; 2795 space_info->max_extent_size = 0; 2796 2797 if (delalloc) 2798 cache->delalloc_bytes -= num_bytes; 2799 spin_unlock(&cache->lock); 2800 spin_unlock(&space_info->lock); 2801 } 2802 2803 static void force_metadata_allocation(struct btrfs_fs_info *info) 2804 { 2805 struct list_head *head = &info->space_info; 2806 struct btrfs_space_info *found; 2807 2808 rcu_read_lock(); 2809 list_for_each_entry_rcu(found, head, list) { 2810 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 2811 found->force_alloc = CHUNK_ALLOC_FORCE; 2812 } 2813 rcu_read_unlock(); 2814 } 2815 2816 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 2817 struct btrfs_space_info *sinfo, int force) 2818 { 2819 u64 bytes_used = btrfs_space_info_used(sinfo, false); 2820 u64 thresh; 2821 2822 if (force == CHUNK_ALLOC_FORCE) 2823 return 1; 2824 2825 /* 2826 * in limited mode, we want to have some free space up to 2827 * about 1% of the FS size. 2828 */ 2829 if (force == CHUNK_ALLOC_LIMITED) { 2830 thresh = btrfs_super_total_bytes(fs_info->super_copy); 2831 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 2832 2833 if (sinfo->total_bytes - bytes_used < thresh) 2834 return 1; 2835 } 2836 2837 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 2838 return 0; 2839 return 1; 2840 } 2841 2842 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 2843 { 2844 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 2845 2846 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2847 } 2848 2849 /* 2850 * If force is CHUNK_ALLOC_FORCE: 2851 * - return 1 if it successfully allocates a chunk, 2852 * - return errors including -ENOSPC otherwise. 2853 * If force is NOT CHUNK_ALLOC_FORCE: 2854 * - return 0 if it doesn't need to allocate a new chunk, 2855 * - return 1 if it successfully allocates a chunk, 2856 * - return errors including -ENOSPC otherwise. 2857 */ 2858 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 2859 enum btrfs_chunk_alloc_enum force) 2860 { 2861 struct btrfs_fs_info *fs_info = trans->fs_info; 2862 struct btrfs_space_info *space_info; 2863 bool wait_for_alloc = false; 2864 bool should_alloc = false; 2865 int ret = 0; 2866 2867 /* Don't re-enter if we're already allocating a chunk */ 2868 if (trans->allocating_chunk) 2869 return -ENOSPC; 2870 2871 space_info = btrfs_find_space_info(fs_info, flags); 2872 ASSERT(space_info); 2873 2874 do { 2875 spin_lock(&space_info->lock); 2876 if (force < space_info->force_alloc) 2877 force = space_info->force_alloc; 2878 should_alloc = should_alloc_chunk(fs_info, space_info, force); 2879 if (space_info->full) { 2880 /* No more free physical space */ 2881 if (should_alloc) 2882 ret = -ENOSPC; 2883 else 2884 ret = 0; 2885 spin_unlock(&space_info->lock); 2886 return ret; 2887 } else if (!should_alloc) { 2888 spin_unlock(&space_info->lock); 2889 return 0; 2890 } else if (space_info->chunk_alloc) { 2891 /* 2892 * Someone is already allocating, so we need to block 2893 * until this someone is finished and then loop to 2894 * recheck if we should continue with our allocation 2895 * attempt. 2896 */ 2897 wait_for_alloc = true; 2898 spin_unlock(&space_info->lock); 2899 mutex_lock(&fs_info->chunk_mutex); 2900 mutex_unlock(&fs_info->chunk_mutex); 2901 } else { 2902 /* Proceed with allocation */ 2903 space_info->chunk_alloc = 1; 2904 wait_for_alloc = false; 2905 spin_unlock(&space_info->lock); 2906 } 2907 2908 cond_resched(); 2909 } while (wait_for_alloc); 2910 2911 mutex_lock(&fs_info->chunk_mutex); 2912 trans->allocating_chunk = true; 2913 2914 /* 2915 * If we have mixed data/metadata chunks we want to make sure we keep 2916 * allocating mixed chunks instead of individual chunks. 2917 */ 2918 if (btrfs_mixed_space_info(space_info)) 2919 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 2920 2921 /* 2922 * if we're doing a data chunk, go ahead and make sure that 2923 * we keep a reasonable number of metadata chunks allocated in the 2924 * FS as well. 2925 */ 2926 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 2927 fs_info->data_chunk_allocations++; 2928 if (!(fs_info->data_chunk_allocations % 2929 fs_info->metadata_ratio)) 2930 force_metadata_allocation(fs_info); 2931 } 2932 2933 /* 2934 * Check if we have enough space in SYSTEM chunk because we may need 2935 * to update devices. 2936 */ 2937 check_system_chunk(trans, flags); 2938 2939 ret = btrfs_alloc_chunk(trans, flags); 2940 trans->allocating_chunk = false; 2941 2942 spin_lock(&space_info->lock); 2943 if (ret < 0) { 2944 if (ret == -ENOSPC) 2945 space_info->full = 1; 2946 else 2947 goto out; 2948 } else { 2949 ret = 1; 2950 space_info->max_extent_size = 0; 2951 } 2952 2953 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 2954 out: 2955 space_info->chunk_alloc = 0; 2956 spin_unlock(&space_info->lock); 2957 mutex_unlock(&fs_info->chunk_mutex); 2958 /* 2959 * When we allocate a new chunk we reserve space in the chunk block 2960 * reserve to make sure we can COW nodes/leafs in the chunk tree or 2961 * add new nodes/leafs to it if we end up needing to do it when 2962 * inserting the chunk item and updating device items as part of the 2963 * second phase of chunk allocation, performed by 2964 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 2965 * large number of new block groups to create in our transaction 2966 * handle's new_bgs list to avoid exhausting the chunk block reserve 2967 * in extreme cases - like having a single transaction create many new 2968 * block groups when starting to write out the free space caches of all 2969 * the block groups that were made dirty during the lifetime of the 2970 * transaction. 2971 */ 2972 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 2973 btrfs_create_pending_block_groups(trans); 2974 2975 return ret; 2976 } 2977 2978 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 2979 { 2980 u64 num_dev; 2981 2982 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 2983 if (!num_dev) 2984 num_dev = fs_info->fs_devices->rw_devices; 2985 2986 return num_dev; 2987 } 2988 2989 /* 2990 * If @is_allocation is true, reserve space in the system space info necessary 2991 * for allocating a chunk, otherwise if it's false, reserve space necessary for 2992 * removing a chunk. 2993 */ 2994 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 2995 { 2996 struct btrfs_fs_info *fs_info = trans->fs_info; 2997 struct btrfs_space_info *info; 2998 u64 left; 2999 u64 thresh; 3000 int ret = 0; 3001 u64 num_devs; 3002 3003 /* 3004 * Needed because we can end up allocating a system chunk and for an 3005 * atomic and race free space reservation in the chunk block reserve. 3006 */ 3007 lockdep_assert_held(&fs_info->chunk_mutex); 3008 3009 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3010 spin_lock(&info->lock); 3011 left = info->total_bytes - btrfs_space_info_used(info, true); 3012 spin_unlock(&info->lock); 3013 3014 num_devs = get_profile_num_devs(fs_info, type); 3015 3016 /* num_devs device items to update and 1 chunk item to add or remove */ 3017 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3018 btrfs_calc_insert_metadata_size(fs_info, 1); 3019 3020 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3021 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3022 left, thresh, type); 3023 btrfs_dump_space_info(fs_info, info, 0, 0); 3024 } 3025 3026 if (left < thresh) { 3027 u64 flags = btrfs_system_alloc_profile(fs_info); 3028 3029 /* 3030 * Ignore failure to create system chunk. We might end up not 3031 * needing it, as we might not need to COW all nodes/leafs from 3032 * the paths we visit in the chunk tree (they were already COWed 3033 * or created in the current transaction for example). 3034 */ 3035 ret = btrfs_alloc_chunk(trans, flags); 3036 } 3037 3038 if (!ret) { 3039 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3040 &fs_info->chunk_block_rsv, 3041 thresh, BTRFS_RESERVE_NO_FLUSH); 3042 if (!ret) 3043 trans->chunk_bytes_reserved += thresh; 3044 } 3045 } 3046 3047 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3048 { 3049 struct btrfs_block_group_cache *block_group; 3050 u64 last = 0; 3051 3052 while (1) { 3053 struct inode *inode; 3054 3055 block_group = btrfs_lookup_first_block_group(info, last); 3056 while (block_group) { 3057 btrfs_wait_block_group_cache_done(block_group); 3058 spin_lock(&block_group->lock); 3059 if (block_group->iref) 3060 break; 3061 spin_unlock(&block_group->lock); 3062 block_group = btrfs_next_block_group(block_group); 3063 } 3064 if (!block_group) { 3065 if (last == 0) 3066 break; 3067 last = 0; 3068 continue; 3069 } 3070 3071 inode = block_group->inode; 3072 block_group->iref = 0; 3073 block_group->inode = NULL; 3074 spin_unlock(&block_group->lock); 3075 ASSERT(block_group->io_ctl.inode == NULL); 3076 iput(inode); 3077 last = block_group->key.objectid + block_group->key.offset; 3078 btrfs_put_block_group(block_group); 3079 } 3080 } 3081 3082 /* 3083 * Must be called only after stopping all workers, since we could have block 3084 * group caching kthreads running, and therefore they could race with us if we 3085 * freed the block groups before stopping them. 3086 */ 3087 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3088 { 3089 struct btrfs_block_group_cache *block_group; 3090 struct btrfs_space_info *space_info; 3091 struct btrfs_caching_control *caching_ctl; 3092 struct rb_node *n; 3093 3094 down_write(&info->commit_root_sem); 3095 while (!list_empty(&info->caching_block_groups)) { 3096 caching_ctl = list_entry(info->caching_block_groups.next, 3097 struct btrfs_caching_control, list); 3098 list_del(&caching_ctl->list); 3099 btrfs_put_caching_control(caching_ctl); 3100 } 3101 up_write(&info->commit_root_sem); 3102 3103 spin_lock(&info->unused_bgs_lock); 3104 while (!list_empty(&info->unused_bgs)) { 3105 block_group = list_first_entry(&info->unused_bgs, 3106 struct btrfs_block_group_cache, 3107 bg_list); 3108 list_del_init(&block_group->bg_list); 3109 btrfs_put_block_group(block_group); 3110 } 3111 spin_unlock(&info->unused_bgs_lock); 3112 3113 spin_lock(&info->block_group_cache_lock); 3114 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3115 block_group = rb_entry(n, struct btrfs_block_group_cache, 3116 cache_node); 3117 rb_erase(&block_group->cache_node, 3118 &info->block_group_cache_tree); 3119 RB_CLEAR_NODE(&block_group->cache_node); 3120 spin_unlock(&info->block_group_cache_lock); 3121 3122 down_write(&block_group->space_info->groups_sem); 3123 list_del(&block_group->list); 3124 up_write(&block_group->space_info->groups_sem); 3125 3126 /* 3127 * We haven't cached this block group, which means we could 3128 * possibly have excluded extents on this block group. 3129 */ 3130 if (block_group->cached == BTRFS_CACHE_NO || 3131 block_group->cached == BTRFS_CACHE_ERROR) 3132 btrfs_free_excluded_extents(block_group); 3133 3134 btrfs_remove_free_space_cache(block_group); 3135 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3136 ASSERT(list_empty(&block_group->dirty_list)); 3137 ASSERT(list_empty(&block_group->io_list)); 3138 ASSERT(list_empty(&block_group->bg_list)); 3139 ASSERT(atomic_read(&block_group->count) == 1); 3140 btrfs_put_block_group(block_group); 3141 3142 spin_lock(&info->block_group_cache_lock); 3143 } 3144 spin_unlock(&info->block_group_cache_lock); 3145 3146 /* 3147 * Now that all the block groups are freed, go through and free all the 3148 * space_info structs. This is only called during the final stages of 3149 * unmount, and so we know nobody is using them. We call 3150 * synchronize_rcu() once before we start, just to be on the safe side. 3151 */ 3152 synchronize_rcu(); 3153 3154 btrfs_release_global_block_rsv(info); 3155 3156 while (!list_empty(&info->space_info)) { 3157 space_info = list_entry(info->space_info.next, 3158 struct btrfs_space_info, 3159 list); 3160 3161 /* 3162 * Do not hide this behind enospc_debug, this is actually 3163 * important and indicates a real bug if this happens. 3164 */ 3165 if (WARN_ON(space_info->bytes_pinned > 0 || 3166 space_info->bytes_reserved > 0 || 3167 space_info->bytes_may_use > 0)) 3168 btrfs_dump_space_info(info, space_info, 0, 0); 3169 list_del(&space_info->list); 3170 btrfs_sysfs_remove_space_info(space_info); 3171 } 3172 return 0; 3173 } 3174