1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "volumes.h" 11 #include "transaction.h" 12 #include "ref-verify.h" 13 #include "sysfs.h" 14 #include "tree-log.h" 15 #include "delalloc-space.h" 16 #include "discard.h" 17 #include "raid56.h" 18 19 /* 20 * Return target flags in extended format or 0 if restripe for this chunk_type 21 * is not in progress 22 * 23 * Should be called with balance_lock held 24 */ 25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 26 { 27 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 28 u64 target = 0; 29 30 if (!bctl) 31 return 0; 32 33 if (flags & BTRFS_BLOCK_GROUP_DATA && 34 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 35 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 36 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 37 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 38 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 39 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 40 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 41 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 42 } 43 44 return target; 45 } 46 47 /* 48 * @flags: available profiles in extended format (see ctree.h) 49 * 50 * Return reduced profile in chunk format. If profile changing is in progress 51 * (either running or paused) picks the target profile (if it's already 52 * available), otherwise falls back to plain reducing. 53 */ 54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 55 { 56 u64 num_devices = fs_info->fs_devices->rw_devices; 57 u64 target; 58 u64 raid_type; 59 u64 allowed = 0; 60 61 /* 62 * See if restripe for this chunk_type is in progress, if so try to 63 * reduce to the target profile 64 */ 65 spin_lock(&fs_info->balance_lock); 66 target = get_restripe_target(fs_info, flags); 67 if (target) { 68 spin_unlock(&fs_info->balance_lock); 69 return extended_to_chunk(target); 70 } 71 spin_unlock(&fs_info->balance_lock); 72 73 /* First, mask out the RAID levels which aren't possible */ 74 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 75 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 76 allowed |= btrfs_raid_array[raid_type].bg_flag; 77 } 78 allowed &= flags; 79 80 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 81 allowed = BTRFS_BLOCK_GROUP_RAID6; 82 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 83 allowed = BTRFS_BLOCK_GROUP_RAID5; 84 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 85 allowed = BTRFS_BLOCK_GROUP_RAID10; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 87 allowed = BTRFS_BLOCK_GROUP_RAID1; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 89 allowed = BTRFS_BLOCK_GROUP_RAID0; 90 91 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 92 93 return extended_to_chunk(flags | allowed); 94 } 95 96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 97 { 98 unsigned seq; 99 u64 flags; 100 101 do { 102 flags = orig_flags; 103 seq = read_seqbegin(&fs_info->profiles_lock); 104 105 if (flags & BTRFS_BLOCK_GROUP_DATA) 106 flags |= fs_info->avail_data_alloc_bits; 107 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 108 flags |= fs_info->avail_system_alloc_bits; 109 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 110 flags |= fs_info->avail_metadata_alloc_bits; 111 } while (read_seqretry(&fs_info->profiles_lock, seq)); 112 113 return btrfs_reduce_alloc_profile(fs_info, flags); 114 } 115 116 void btrfs_get_block_group(struct btrfs_block_group *cache) 117 { 118 refcount_inc(&cache->refs); 119 } 120 121 void btrfs_put_block_group(struct btrfs_block_group *cache) 122 { 123 if (refcount_dec_and_test(&cache->refs)) { 124 WARN_ON(cache->pinned > 0); 125 WARN_ON(cache->reserved > 0); 126 127 /* 128 * A block_group shouldn't be on the discard_list anymore. 129 * Remove the block_group from the discard_list to prevent us 130 * from causing a panic due to NULL pointer dereference. 131 */ 132 if (WARN_ON(!list_empty(&cache->discard_list))) 133 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 134 cache); 135 136 /* 137 * If not empty, someone is still holding mutex of 138 * full_stripe_lock, which can only be released by caller. 139 * And it will definitely cause use-after-free when caller 140 * tries to release full stripe lock. 141 * 142 * No better way to resolve, but only to warn. 143 */ 144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 145 kfree(cache->free_space_ctl); 146 kfree(cache); 147 } 148 } 149 150 /* 151 * This adds the block group to the fs_info rb tree for the block group cache 152 */ 153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 154 struct btrfs_block_group *block_group) 155 { 156 struct rb_node **p; 157 struct rb_node *parent = NULL; 158 struct btrfs_block_group *cache; 159 160 ASSERT(block_group->length != 0); 161 162 spin_lock(&info->block_group_cache_lock); 163 p = &info->block_group_cache_tree.rb_node; 164 165 while (*p) { 166 parent = *p; 167 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 168 if (block_group->start < cache->start) { 169 p = &(*p)->rb_left; 170 } else if (block_group->start > cache->start) { 171 p = &(*p)->rb_right; 172 } else { 173 spin_unlock(&info->block_group_cache_lock); 174 return -EEXIST; 175 } 176 } 177 178 rb_link_node(&block_group->cache_node, parent, p); 179 rb_insert_color(&block_group->cache_node, 180 &info->block_group_cache_tree); 181 182 if (info->first_logical_byte > block_group->start) 183 info->first_logical_byte = block_group->start; 184 185 spin_unlock(&info->block_group_cache_lock); 186 187 return 0; 188 } 189 190 /* 191 * This will return the block group at or after bytenr if contains is 0, else 192 * it will return the block group that contains the bytenr 193 */ 194 static struct btrfs_block_group *block_group_cache_tree_search( 195 struct btrfs_fs_info *info, u64 bytenr, int contains) 196 { 197 struct btrfs_block_group *cache, *ret = NULL; 198 struct rb_node *n; 199 u64 end, start; 200 201 spin_lock(&info->block_group_cache_lock); 202 n = info->block_group_cache_tree.rb_node; 203 204 while (n) { 205 cache = rb_entry(n, struct btrfs_block_group, cache_node); 206 end = cache->start + cache->length - 1; 207 start = cache->start; 208 209 if (bytenr < start) { 210 if (!contains && (!ret || start < ret->start)) 211 ret = cache; 212 n = n->rb_left; 213 } else if (bytenr > start) { 214 if (contains && bytenr <= end) { 215 ret = cache; 216 break; 217 } 218 n = n->rb_right; 219 } else { 220 ret = cache; 221 break; 222 } 223 } 224 if (ret) { 225 btrfs_get_block_group(ret); 226 if (bytenr == 0 && info->first_logical_byte > ret->start) 227 info->first_logical_byte = ret->start; 228 } 229 spin_unlock(&info->block_group_cache_lock); 230 231 return ret; 232 } 233 234 /* 235 * Return the block group that starts at or after bytenr 236 */ 237 struct btrfs_block_group *btrfs_lookup_first_block_group( 238 struct btrfs_fs_info *info, u64 bytenr) 239 { 240 return block_group_cache_tree_search(info, bytenr, 0); 241 } 242 243 /* 244 * Return the block group that contains the given bytenr 245 */ 246 struct btrfs_block_group *btrfs_lookup_block_group( 247 struct btrfs_fs_info *info, u64 bytenr) 248 { 249 return block_group_cache_tree_search(info, bytenr, 1); 250 } 251 252 struct btrfs_block_group *btrfs_next_block_group( 253 struct btrfs_block_group *cache) 254 { 255 struct btrfs_fs_info *fs_info = cache->fs_info; 256 struct rb_node *node; 257 258 spin_lock(&fs_info->block_group_cache_lock); 259 260 /* If our block group was removed, we need a full search. */ 261 if (RB_EMPTY_NODE(&cache->cache_node)) { 262 const u64 next_bytenr = cache->start + cache->length; 263 264 spin_unlock(&fs_info->block_group_cache_lock); 265 btrfs_put_block_group(cache); 266 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 267 } 268 node = rb_next(&cache->cache_node); 269 btrfs_put_block_group(cache); 270 if (node) { 271 cache = rb_entry(node, struct btrfs_block_group, cache_node); 272 btrfs_get_block_group(cache); 273 } else 274 cache = NULL; 275 spin_unlock(&fs_info->block_group_cache_lock); 276 return cache; 277 } 278 279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 280 { 281 struct btrfs_block_group *bg; 282 bool ret = true; 283 284 bg = btrfs_lookup_block_group(fs_info, bytenr); 285 if (!bg) 286 return false; 287 288 spin_lock(&bg->lock); 289 if (bg->ro) 290 ret = false; 291 else 292 atomic_inc(&bg->nocow_writers); 293 spin_unlock(&bg->lock); 294 295 /* No put on block group, done by btrfs_dec_nocow_writers */ 296 if (!ret) 297 btrfs_put_block_group(bg); 298 299 return ret; 300 } 301 302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 303 { 304 struct btrfs_block_group *bg; 305 306 bg = btrfs_lookup_block_group(fs_info, bytenr); 307 ASSERT(bg); 308 if (atomic_dec_and_test(&bg->nocow_writers)) 309 wake_up_var(&bg->nocow_writers); 310 /* 311 * Once for our lookup and once for the lookup done by a previous call 312 * to btrfs_inc_nocow_writers() 313 */ 314 btrfs_put_block_group(bg); 315 btrfs_put_block_group(bg); 316 } 317 318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 319 { 320 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 321 } 322 323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 324 const u64 start) 325 { 326 struct btrfs_block_group *bg; 327 328 bg = btrfs_lookup_block_group(fs_info, start); 329 ASSERT(bg); 330 if (atomic_dec_and_test(&bg->reservations)) 331 wake_up_var(&bg->reservations); 332 btrfs_put_block_group(bg); 333 } 334 335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 336 { 337 struct btrfs_space_info *space_info = bg->space_info; 338 339 ASSERT(bg->ro); 340 341 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 342 return; 343 344 /* 345 * Our block group is read only but before we set it to read only, 346 * some task might have had allocated an extent from it already, but it 347 * has not yet created a respective ordered extent (and added it to a 348 * root's list of ordered extents). 349 * Therefore wait for any task currently allocating extents, since the 350 * block group's reservations counter is incremented while a read lock 351 * on the groups' semaphore is held and decremented after releasing 352 * the read access on that semaphore and creating the ordered extent. 353 */ 354 down_write(&space_info->groups_sem); 355 up_write(&space_info->groups_sem); 356 357 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 358 } 359 360 struct btrfs_caching_control *btrfs_get_caching_control( 361 struct btrfs_block_group *cache) 362 { 363 struct btrfs_caching_control *ctl; 364 365 spin_lock(&cache->lock); 366 if (!cache->caching_ctl) { 367 spin_unlock(&cache->lock); 368 return NULL; 369 } 370 371 ctl = cache->caching_ctl; 372 refcount_inc(&ctl->count); 373 spin_unlock(&cache->lock); 374 return ctl; 375 } 376 377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 378 { 379 if (refcount_dec_and_test(&ctl->count)) 380 kfree(ctl); 381 } 382 383 /* 384 * When we wait for progress in the block group caching, its because our 385 * allocation attempt failed at least once. So, we must sleep and let some 386 * progress happen before we try again. 387 * 388 * This function will sleep at least once waiting for new free space to show 389 * up, and then it will check the block group free space numbers for our min 390 * num_bytes. Another option is to have it go ahead and look in the rbtree for 391 * a free extent of a given size, but this is a good start. 392 * 393 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 394 * any of the information in this block group. 395 */ 396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 397 u64 num_bytes) 398 { 399 struct btrfs_caching_control *caching_ctl; 400 401 caching_ctl = btrfs_get_caching_control(cache); 402 if (!caching_ctl) 403 return; 404 405 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 406 (cache->free_space_ctl->free_space >= num_bytes)); 407 408 btrfs_put_caching_control(caching_ctl); 409 } 410 411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 412 { 413 struct btrfs_caching_control *caching_ctl; 414 int ret = 0; 415 416 caching_ctl = btrfs_get_caching_control(cache); 417 if (!caching_ctl) 418 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 419 420 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 421 if (cache->cached == BTRFS_CACHE_ERROR) 422 ret = -EIO; 423 btrfs_put_caching_control(caching_ctl); 424 return ret; 425 } 426 427 #ifdef CONFIG_BTRFS_DEBUG 428 static void fragment_free_space(struct btrfs_block_group *block_group) 429 { 430 struct btrfs_fs_info *fs_info = block_group->fs_info; 431 u64 start = block_group->start; 432 u64 len = block_group->length; 433 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 434 fs_info->nodesize : fs_info->sectorsize; 435 u64 step = chunk << 1; 436 437 while (len > chunk) { 438 btrfs_remove_free_space(block_group, start, chunk); 439 start += step; 440 if (len < step) 441 len = 0; 442 else 443 len -= step; 444 } 445 } 446 #endif 447 448 /* 449 * This is only called by btrfs_cache_block_group, since we could have freed 450 * extents we need to check the pinned_extents for any extents that can't be 451 * used yet since their free space will be released as soon as the transaction 452 * commits. 453 */ 454 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 455 { 456 struct btrfs_fs_info *info = block_group->fs_info; 457 u64 extent_start, extent_end, size, total_added = 0; 458 int ret; 459 460 while (start < end) { 461 ret = find_first_extent_bit(&info->excluded_extents, start, 462 &extent_start, &extent_end, 463 EXTENT_DIRTY | EXTENT_UPTODATE, 464 NULL); 465 if (ret) 466 break; 467 468 if (extent_start <= start) { 469 start = extent_end + 1; 470 } else if (extent_start > start && extent_start < end) { 471 size = extent_start - start; 472 total_added += size; 473 ret = btrfs_add_free_space_async_trimmed(block_group, 474 start, size); 475 BUG_ON(ret); /* -ENOMEM or logic error */ 476 start = extent_end + 1; 477 } else { 478 break; 479 } 480 } 481 482 if (start < end) { 483 size = end - start; 484 total_added += size; 485 ret = btrfs_add_free_space_async_trimmed(block_group, start, 486 size); 487 BUG_ON(ret); /* -ENOMEM or logic error */ 488 } 489 490 return total_added; 491 } 492 493 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 494 { 495 struct btrfs_block_group *block_group = caching_ctl->block_group; 496 struct btrfs_fs_info *fs_info = block_group->fs_info; 497 struct btrfs_root *extent_root = fs_info->extent_root; 498 struct btrfs_path *path; 499 struct extent_buffer *leaf; 500 struct btrfs_key key; 501 u64 total_found = 0; 502 u64 last = 0; 503 u32 nritems; 504 int ret; 505 bool wakeup = true; 506 507 path = btrfs_alloc_path(); 508 if (!path) 509 return -ENOMEM; 510 511 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 512 513 #ifdef CONFIG_BTRFS_DEBUG 514 /* 515 * If we're fragmenting we don't want to make anybody think we can 516 * allocate from this block group until we've had a chance to fragment 517 * the free space. 518 */ 519 if (btrfs_should_fragment_free_space(block_group)) 520 wakeup = false; 521 #endif 522 /* 523 * We don't want to deadlock with somebody trying to allocate a new 524 * extent for the extent root while also trying to search the extent 525 * root to add free space. So we skip locking and search the commit 526 * root, since its read-only 527 */ 528 path->skip_locking = 1; 529 path->search_commit_root = 1; 530 path->reada = READA_FORWARD; 531 532 key.objectid = last; 533 key.offset = 0; 534 key.type = BTRFS_EXTENT_ITEM_KEY; 535 536 next: 537 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 538 if (ret < 0) 539 goto out; 540 541 leaf = path->nodes[0]; 542 nritems = btrfs_header_nritems(leaf); 543 544 while (1) { 545 if (btrfs_fs_closing(fs_info) > 1) { 546 last = (u64)-1; 547 break; 548 } 549 550 if (path->slots[0] < nritems) { 551 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 552 } else { 553 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 554 if (ret) 555 break; 556 557 if (need_resched() || 558 rwsem_is_contended(&fs_info->commit_root_sem)) { 559 if (wakeup) 560 caching_ctl->progress = last; 561 btrfs_release_path(path); 562 up_read(&fs_info->commit_root_sem); 563 mutex_unlock(&caching_ctl->mutex); 564 cond_resched(); 565 mutex_lock(&caching_ctl->mutex); 566 down_read(&fs_info->commit_root_sem); 567 goto next; 568 } 569 570 ret = btrfs_next_leaf(extent_root, path); 571 if (ret < 0) 572 goto out; 573 if (ret) 574 break; 575 leaf = path->nodes[0]; 576 nritems = btrfs_header_nritems(leaf); 577 continue; 578 } 579 580 if (key.objectid < last) { 581 key.objectid = last; 582 key.offset = 0; 583 key.type = BTRFS_EXTENT_ITEM_KEY; 584 585 if (wakeup) 586 caching_ctl->progress = last; 587 btrfs_release_path(path); 588 goto next; 589 } 590 591 if (key.objectid < block_group->start) { 592 path->slots[0]++; 593 continue; 594 } 595 596 if (key.objectid >= block_group->start + block_group->length) 597 break; 598 599 if (key.type == BTRFS_EXTENT_ITEM_KEY || 600 key.type == BTRFS_METADATA_ITEM_KEY) { 601 total_found += add_new_free_space(block_group, last, 602 key.objectid); 603 if (key.type == BTRFS_METADATA_ITEM_KEY) 604 last = key.objectid + 605 fs_info->nodesize; 606 else 607 last = key.objectid + key.offset; 608 609 if (total_found > CACHING_CTL_WAKE_UP) { 610 total_found = 0; 611 if (wakeup) 612 wake_up(&caching_ctl->wait); 613 } 614 } 615 path->slots[0]++; 616 } 617 ret = 0; 618 619 total_found += add_new_free_space(block_group, last, 620 block_group->start + block_group->length); 621 caching_ctl->progress = (u64)-1; 622 623 out: 624 btrfs_free_path(path); 625 return ret; 626 } 627 628 static noinline void caching_thread(struct btrfs_work *work) 629 { 630 struct btrfs_block_group *block_group; 631 struct btrfs_fs_info *fs_info; 632 struct btrfs_caching_control *caching_ctl; 633 int ret; 634 635 caching_ctl = container_of(work, struct btrfs_caching_control, work); 636 block_group = caching_ctl->block_group; 637 fs_info = block_group->fs_info; 638 639 mutex_lock(&caching_ctl->mutex); 640 down_read(&fs_info->commit_root_sem); 641 642 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 643 ret = load_free_space_tree(caching_ctl); 644 else 645 ret = load_extent_tree_free(caching_ctl); 646 647 spin_lock(&block_group->lock); 648 block_group->caching_ctl = NULL; 649 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 650 spin_unlock(&block_group->lock); 651 652 #ifdef CONFIG_BTRFS_DEBUG 653 if (btrfs_should_fragment_free_space(block_group)) { 654 u64 bytes_used; 655 656 spin_lock(&block_group->space_info->lock); 657 spin_lock(&block_group->lock); 658 bytes_used = block_group->length - block_group->used; 659 block_group->space_info->bytes_used += bytes_used >> 1; 660 spin_unlock(&block_group->lock); 661 spin_unlock(&block_group->space_info->lock); 662 fragment_free_space(block_group); 663 } 664 #endif 665 666 caching_ctl->progress = (u64)-1; 667 668 up_read(&fs_info->commit_root_sem); 669 btrfs_free_excluded_extents(block_group); 670 mutex_unlock(&caching_ctl->mutex); 671 672 wake_up(&caching_ctl->wait); 673 674 btrfs_put_caching_control(caching_ctl); 675 btrfs_put_block_group(block_group); 676 } 677 678 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 679 { 680 DEFINE_WAIT(wait); 681 struct btrfs_fs_info *fs_info = cache->fs_info; 682 struct btrfs_caching_control *caching_ctl; 683 int ret = 0; 684 685 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 686 if (!caching_ctl) 687 return -ENOMEM; 688 689 INIT_LIST_HEAD(&caching_ctl->list); 690 mutex_init(&caching_ctl->mutex); 691 init_waitqueue_head(&caching_ctl->wait); 692 caching_ctl->block_group = cache; 693 caching_ctl->progress = cache->start; 694 refcount_set(&caching_ctl->count, 1); 695 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 696 697 spin_lock(&cache->lock); 698 /* 699 * This should be a rare occasion, but this could happen I think in the 700 * case where one thread starts to load the space cache info, and then 701 * some other thread starts a transaction commit which tries to do an 702 * allocation while the other thread is still loading the space cache 703 * info. The previous loop should have kept us from choosing this block 704 * group, but if we've moved to the state where we will wait on caching 705 * block groups we need to first check if we're doing a fast load here, 706 * so we can wait for it to finish, otherwise we could end up allocating 707 * from a block group who's cache gets evicted for one reason or 708 * another. 709 */ 710 while (cache->cached == BTRFS_CACHE_FAST) { 711 struct btrfs_caching_control *ctl; 712 713 ctl = cache->caching_ctl; 714 refcount_inc(&ctl->count); 715 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 716 spin_unlock(&cache->lock); 717 718 schedule(); 719 720 finish_wait(&ctl->wait, &wait); 721 btrfs_put_caching_control(ctl); 722 spin_lock(&cache->lock); 723 } 724 725 if (cache->cached != BTRFS_CACHE_NO) { 726 spin_unlock(&cache->lock); 727 kfree(caching_ctl); 728 return 0; 729 } 730 WARN_ON(cache->caching_ctl); 731 cache->caching_ctl = caching_ctl; 732 cache->cached = BTRFS_CACHE_FAST; 733 spin_unlock(&cache->lock); 734 735 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 736 mutex_lock(&caching_ctl->mutex); 737 ret = load_free_space_cache(cache); 738 739 spin_lock(&cache->lock); 740 if (ret == 1) { 741 cache->caching_ctl = NULL; 742 cache->cached = BTRFS_CACHE_FINISHED; 743 cache->last_byte_to_unpin = (u64)-1; 744 caching_ctl->progress = (u64)-1; 745 } else { 746 if (load_cache_only) { 747 cache->caching_ctl = NULL; 748 cache->cached = BTRFS_CACHE_NO; 749 } else { 750 cache->cached = BTRFS_CACHE_STARTED; 751 cache->has_caching_ctl = 1; 752 } 753 } 754 spin_unlock(&cache->lock); 755 #ifdef CONFIG_BTRFS_DEBUG 756 if (ret == 1 && 757 btrfs_should_fragment_free_space(cache)) { 758 u64 bytes_used; 759 760 spin_lock(&cache->space_info->lock); 761 spin_lock(&cache->lock); 762 bytes_used = cache->length - cache->used; 763 cache->space_info->bytes_used += bytes_used >> 1; 764 spin_unlock(&cache->lock); 765 spin_unlock(&cache->space_info->lock); 766 fragment_free_space(cache); 767 } 768 #endif 769 mutex_unlock(&caching_ctl->mutex); 770 771 wake_up(&caching_ctl->wait); 772 if (ret == 1) { 773 btrfs_put_caching_control(caching_ctl); 774 btrfs_free_excluded_extents(cache); 775 return 0; 776 } 777 } else { 778 /* 779 * We're either using the free space tree or no caching at all. 780 * Set cached to the appropriate value and wakeup any waiters. 781 */ 782 spin_lock(&cache->lock); 783 if (load_cache_only) { 784 cache->caching_ctl = NULL; 785 cache->cached = BTRFS_CACHE_NO; 786 } else { 787 cache->cached = BTRFS_CACHE_STARTED; 788 cache->has_caching_ctl = 1; 789 } 790 spin_unlock(&cache->lock); 791 wake_up(&caching_ctl->wait); 792 } 793 794 if (load_cache_only) { 795 btrfs_put_caching_control(caching_ctl); 796 return 0; 797 } 798 799 down_write(&fs_info->commit_root_sem); 800 refcount_inc(&caching_ctl->count); 801 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 802 up_write(&fs_info->commit_root_sem); 803 804 btrfs_get_block_group(cache); 805 806 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 807 808 return ret; 809 } 810 811 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 812 { 813 u64 extra_flags = chunk_to_extended(flags) & 814 BTRFS_EXTENDED_PROFILE_MASK; 815 816 write_seqlock(&fs_info->profiles_lock); 817 if (flags & BTRFS_BLOCK_GROUP_DATA) 818 fs_info->avail_data_alloc_bits &= ~extra_flags; 819 if (flags & BTRFS_BLOCK_GROUP_METADATA) 820 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 821 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 822 fs_info->avail_system_alloc_bits &= ~extra_flags; 823 write_sequnlock(&fs_info->profiles_lock); 824 } 825 826 /* 827 * Clear incompat bits for the following feature(s): 828 * 829 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 830 * in the whole filesystem 831 * 832 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 833 */ 834 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 835 { 836 bool found_raid56 = false; 837 bool found_raid1c34 = false; 838 839 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 840 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 841 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 842 struct list_head *head = &fs_info->space_info; 843 struct btrfs_space_info *sinfo; 844 845 list_for_each_entry_rcu(sinfo, head, list) { 846 down_read(&sinfo->groups_sem); 847 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 848 found_raid56 = true; 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 850 found_raid56 = true; 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 852 found_raid1c34 = true; 853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 854 found_raid1c34 = true; 855 up_read(&sinfo->groups_sem); 856 } 857 if (!found_raid56) 858 btrfs_clear_fs_incompat(fs_info, RAID56); 859 if (!found_raid1c34) 860 btrfs_clear_fs_incompat(fs_info, RAID1C34); 861 } 862 } 863 864 static int remove_block_group_item(struct btrfs_trans_handle *trans, 865 struct btrfs_path *path, 866 struct btrfs_block_group *block_group) 867 { 868 struct btrfs_fs_info *fs_info = trans->fs_info; 869 struct btrfs_root *root; 870 struct btrfs_key key; 871 int ret; 872 873 root = fs_info->extent_root; 874 key.objectid = block_group->start; 875 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 876 key.offset = block_group->length; 877 878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 879 if (ret > 0) 880 ret = -ENOENT; 881 if (ret < 0) 882 return ret; 883 884 ret = btrfs_del_item(trans, root, path); 885 return ret; 886 } 887 888 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 889 u64 group_start, struct extent_map *em) 890 { 891 struct btrfs_fs_info *fs_info = trans->fs_info; 892 struct btrfs_path *path; 893 struct btrfs_block_group *block_group; 894 struct btrfs_free_cluster *cluster; 895 struct btrfs_root *tree_root = fs_info->tree_root; 896 struct btrfs_key key; 897 struct inode *inode; 898 struct kobject *kobj = NULL; 899 int ret; 900 int index; 901 int factor; 902 struct btrfs_caching_control *caching_ctl = NULL; 903 bool remove_em; 904 bool remove_rsv = false; 905 906 block_group = btrfs_lookup_block_group(fs_info, group_start); 907 BUG_ON(!block_group); 908 BUG_ON(!block_group->ro); 909 910 trace_btrfs_remove_block_group(block_group); 911 /* 912 * Free the reserved super bytes from this block group before 913 * remove it. 914 */ 915 btrfs_free_excluded_extents(block_group); 916 btrfs_free_ref_tree_range(fs_info, block_group->start, 917 block_group->length); 918 919 index = btrfs_bg_flags_to_raid_index(block_group->flags); 920 factor = btrfs_bg_type_to_factor(block_group->flags); 921 922 /* make sure this block group isn't part of an allocation cluster */ 923 cluster = &fs_info->data_alloc_cluster; 924 spin_lock(&cluster->refill_lock); 925 btrfs_return_cluster_to_free_space(block_group, cluster); 926 spin_unlock(&cluster->refill_lock); 927 928 /* 929 * make sure this block group isn't part of a metadata 930 * allocation cluster 931 */ 932 cluster = &fs_info->meta_alloc_cluster; 933 spin_lock(&cluster->refill_lock); 934 btrfs_return_cluster_to_free_space(block_group, cluster); 935 spin_unlock(&cluster->refill_lock); 936 937 path = btrfs_alloc_path(); 938 if (!path) { 939 ret = -ENOMEM; 940 goto out; 941 } 942 943 /* 944 * get the inode first so any iput calls done for the io_list 945 * aren't the final iput (no unlinks allowed now) 946 */ 947 inode = lookup_free_space_inode(block_group, path); 948 949 mutex_lock(&trans->transaction->cache_write_mutex); 950 /* 951 * Make sure our free space cache IO is done before removing the 952 * free space inode 953 */ 954 spin_lock(&trans->transaction->dirty_bgs_lock); 955 if (!list_empty(&block_group->io_list)) { 956 list_del_init(&block_group->io_list); 957 958 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 959 960 spin_unlock(&trans->transaction->dirty_bgs_lock); 961 btrfs_wait_cache_io(trans, block_group, path); 962 btrfs_put_block_group(block_group); 963 spin_lock(&trans->transaction->dirty_bgs_lock); 964 } 965 966 if (!list_empty(&block_group->dirty_list)) { 967 list_del_init(&block_group->dirty_list); 968 remove_rsv = true; 969 btrfs_put_block_group(block_group); 970 } 971 spin_unlock(&trans->transaction->dirty_bgs_lock); 972 mutex_unlock(&trans->transaction->cache_write_mutex); 973 974 if (!IS_ERR(inode)) { 975 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 976 if (ret) { 977 btrfs_add_delayed_iput(inode); 978 goto out; 979 } 980 clear_nlink(inode); 981 /* One for the block groups ref */ 982 spin_lock(&block_group->lock); 983 if (block_group->iref) { 984 block_group->iref = 0; 985 block_group->inode = NULL; 986 spin_unlock(&block_group->lock); 987 iput(inode); 988 } else { 989 spin_unlock(&block_group->lock); 990 } 991 /* One for our lookup ref */ 992 btrfs_add_delayed_iput(inode); 993 } 994 995 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 996 key.type = 0; 997 key.offset = block_group->start; 998 999 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 1000 if (ret < 0) 1001 goto out; 1002 if (ret > 0) 1003 btrfs_release_path(path); 1004 if (ret == 0) { 1005 ret = btrfs_del_item(trans, tree_root, path); 1006 if (ret) 1007 goto out; 1008 btrfs_release_path(path); 1009 } 1010 1011 spin_lock(&fs_info->block_group_cache_lock); 1012 rb_erase(&block_group->cache_node, 1013 &fs_info->block_group_cache_tree); 1014 RB_CLEAR_NODE(&block_group->cache_node); 1015 1016 /* Once for the block groups rbtree */ 1017 btrfs_put_block_group(block_group); 1018 1019 if (fs_info->first_logical_byte == block_group->start) 1020 fs_info->first_logical_byte = (u64)-1; 1021 spin_unlock(&fs_info->block_group_cache_lock); 1022 1023 down_write(&block_group->space_info->groups_sem); 1024 /* 1025 * we must use list_del_init so people can check to see if they 1026 * are still on the list after taking the semaphore 1027 */ 1028 list_del_init(&block_group->list); 1029 if (list_empty(&block_group->space_info->block_groups[index])) { 1030 kobj = block_group->space_info->block_group_kobjs[index]; 1031 block_group->space_info->block_group_kobjs[index] = NULL; 1032 clear_avail_alloc_bits(fs_info, block_group->flags); 1033 } 1034 up_write(&block_group->space_info->groups_sem); 1035 clear_incompat_bg_bits(fs_info, block_group->flags); 1036 if (kobj) { 1037 kobject_del(kobj); 1038 kobject_put(kobj); 1039 } 1040 1041 if (block_group->has_caching_ctl) 1042 caching_ctl = btrfs_get_caching_control(block_group); 1043 if (block_group->cached == BTRFS_CACHE_STARTED) 1044 btrfs_wait_block_group_cache_done(block_group); 1045 if (block_group->has_caching_ctl) { 1046 down_write(&fs_info->commit_root_sem); 1047 if (!caching_ctl) { 1048 struct btrfs_caching_control *ctl; 1049 1050 list_for_each_entry(ctl, 1051 &fs_info->caching_block_groups, list) 1052 if (ctl->block_group == block_group) { 1053 caching_ctl = ctl; 1054 refcount_inc(&caching_ctl->count); 1055 break; 1056 } 1057 } 1058 if (caching_ctl) 1059 list_del_init(&caching_ctl->list); 1060 up_write(&fs_info->commit_root_sem); 1061 if (caching_ctl) { 1062 /* Once for the caching bgs list and once for us. */ 1063 btrfs_put_caching_control(caching_ctl); 1064 btrfs_put_caching_control(caching_ctl); 1065 } 1066 } 1067 1068 spin_lock(&trans->transaction->dirty_bgs_lock); 1069 WARN_ON(!list_empty(&block_group->dirty_list)); 1070 WARN_ON(!list_empty(&block_group->io_list)); 1071 spin_unlock(&trans->transaction->dirty_bgs_lock); 1072 1073 btrfs_remove_free_space_cache(block_group); 1074 1075 spin_lock(&block_group->space_info->lock); 1076 list_del_init(&block_group->ro_list); 1077 1078 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1079 WARN_ON(block_group->space_info->total_bytes 1080 < block_group->length); 1081 WARN_ON(block_group->space_info->bytes_readonly 1082 < block_group->length); 1083 WARN_ON(block_group->space_info->disk_total 1084 < block_group->length * factor); 1085 } 1086 block_group->space_info->total_bytes -= block_group->length; 1087 block_group->space_info->bytes_readonly -= block_group->length; 1088 block_group->space_info->disk_total -= block_group->length * factor; 1089 1090 spin_unlock(&block_group->space_info->lock); 1091 1092 /* 1093 * Remove the free space for the block group from the free space tree 1094 * and the block group's item from the extent tree before marking the 1095 * block group as removed. This is to prevent races with tasks that 1096 * freeze and unfreeze a block group, this task and another task 1097 * allocating a new block group - the unfreeze task ends up removing 1098 * the block group's extent map before the task calling this function 1099 * deletes the block group item from the extent tree, allowing for 1100 * another task to attempt to create another block group with the same 1101 * item key (and failing with -EEXIST and a transaction abort). 1102 */ 1103 ret = remove_block_group_free_space(trans, block_group); 1104 if (ret) 1105 goto out; 1106 1107 ret = remove_block_group_item(trans, path, block_group); 1108 if (ret < 0) 1109 goto out; 1110 1111 spin_lock(&block_group->lock); 1112 block_group->removed = 1; 1113 /* 1114 * At this point trimming or scrub can't start on this block group, 1115 * because we removed the block group from the rbtree 1116 * fs_info->block_group_cache_tree so no one can't find it anymore and 1117 * even if someone already got this block group before we removed it 1118 * from the rbtree, they have already incremented block_group->frozen - 1119 * if they didn't, for the trimming case they won't find any free space 1120 * entries because we already removed them all when we called 1121 * btrfs_remove_free_space_cache(). 1122 * 1123 * And we must not remove the extent map from the fs_info->mapping_tree 1124 * to prevent the same logical address range and physical device space 1125 * ranges from being reused for a new block group. This is needed to 1126 * avoid races with trimming and scrub. 1127 * 1128 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1129 * completely transactionless, so while it is trimming a range the 1130 * currently running transaction might finish and a new one start, 1131 * allowing for new block groups to be created that can reuse the same 1132 * physical device locations unless we take this special care. 1133 * 1134 * There may also be an implicit trim operation if the file system 1135 * is mounted with -odiscard. The same protections must remain 1136 * in place until the extents have been discarded completely when 1137 * the transaction commit has completed. 1138 */ 1139 remove_em = (atomic_read(&block_group->frozen) == 0); 1140 spin_unlock(&block_group->lock); 1141 1142 if (remove_em) { 1143 struct extent_map_tree *em_tree; 1144 1145 em_tree = &fs_info->mapping_tree; 1146 write_lock(&em_tree->lock); 1147 remove_extent_mapping(em_tree, em); 1148 write_unlock(&em_tree->lock); 1149 /* once for the tree */ 1150 free_extent_map(em); 1151 } 1152 1153 out: 1154 /* Once for the lookup reference */ 1155 btrfs_put_block_group(block_group); 1156 if (remove_rsv) 1157 btrfs_delayed_refs_rsv_release(fs_info, 1); 1158 btrfs_free_path(path); 1159 return ret; 1160 } 1161 1162 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1163 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1164 { 1165 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1166 struct extent_map *em; 1167 struct map_lookup *map; 1168 unsigned int num_items; 1169 1170 read_lock(&em_tree->lock); 1171 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1172 read_unlock(&em_tree->lock); 1173 ASSERT(em && em->start == chunk_offset); 1174 1175 /* 1176 * We need to reserve 3 + N units from the metadata space info in order 1177 * to remove a block group (done at btrfs_remove_chunk() and at 1178 * btrfs_remove_block_group()), which are used for: 1179 * 1180 * 1 unit for adding the free space inode's orphan (located in the tree 1181 * of tree roots). 1182 * 1 unit for deleting the block group item (located in the extent 1183 * tree). 1184 * 1 unit for deleting the free space item (located in tree of tree 1185 * roots). 1186 * N units for deleting N device extent items corresponding to each 1187 * stripe (located in the device tree). 1188 * 1189 * In order to remove a block group we also need to reserve units in the 1190 * system space info in order to update the chunk tree (update one or 1191 * more device items and remove one chunk item), but this is done at 1192 * btrfs_remove_chunk() through a call to check_system_chunk(). 1193 */ 1194 map = em->map_lookup; 1195 num_items = 3 + map->num_stripes; 1196 free_extent_map(em); 1197 1198 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1199 num_items); 1200 } 1201 1202 /* 1203 * Mark block group @cache read-only, so later write won't happen to block 1204 * group @cache. 1205 * 1206 * If @force is not set, this function will only mark the block group readonly 1207 * if we have enough free space (1M) in other metadata/system block groups. 1208 * If @force is not set, this function will mark the block group readonly 1209 * without checking free space. 1210 * 1211 * NOTE: This function doesn't care if other block groups can contain all the 1212 * data in this block group. That check should be done by relocation routine, 1213 * not this function. 1214 */ 1215 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1216 { 1217 struct btrfs_space_info *sinfo = cache->space_info; 1218 u64 num_bytes; 1219 int ret = -ENOSPC; 1220 1221 spin_lock(&sinfo->lock); 1222 spin_lock(&cache->lock); 1223 1224 if (cache->ro) { 1225 cache->ro++; 1226 ret = 0; 1227 goto out; 1228 } 1229 1230 num_bytes = cache->length - cache->reserved - cache->pinned - 1231 cache->bytes_super - cache->used; 1232 1233 /* 1234 * Data never overcommits, even in mixed mode, so do just the straight 1235 * check of left over space in how much we have allocated. 1236 */ 1237 if (force) { 1238 ret = 0; 1239 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1240 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1241 1242 /* 1243 * Here we make sure if we mark this bg RO, we still have enough 1244 * free space as buffer. 1245 */ 1246 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1247 ret = 0; 1248 } else { 1249 /* 1250 * We overcommit metadata, so we need to do the 1251 * btrfs_can_overcommit check here, and we need to pass in 1252 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1253 * leeway to allow us to mark this block group as read only. 1254 */ 1255 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1256 BTRFS_RESERVE_NO_FLUSH)) 1257 ret = 0; 1258 } 1259 1260 if (!ret) { 1261 sinfo->bytes_readonly += num_bytes; 1262 cache->ro++; 1263 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1264 } 1265 out: 1266 spin_unlock(&cache->lock); 1267 spin_unlock(&sinfo->lock); 1268 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1269 btrfs_info(cache->fs_info, 1270 "unable to make block group %llu ro", cache->start); 1271 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1272 } 1273 return ret; 1274 } 1275 1276 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1277 struct btrfs_block_group *bg) 1278 { 1279 struct btrfs_fs_info *fs_info = bg->fs_info; 1280 struct btrfs_transaction *prev_trans = NULL; 1281 const u64 start = bg->start; 1282 const u64 end = start + bg->length - 1; 1283 int ret; 1284 1285 spin_lock(&fs_info->trans_lock); 1286 if (trans->transaction->list.prev != &fs_info->trans_list) { 1287 prev_trans = list_last_entry(&trans->transaction->list, 1288 struct btrfs_transaction, list); 1289 refcount_inc(&prev_trans->use_count); 1290 } 1291 spin_unlock(&fs_info->trans_lock); 1292 1293 /* 1294 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1295 * btrfs_finish_extent_commit(). If we are at transaction N, another 1296 * task might be running finish_extent_commit() for the previous 1297 * transaction N - 1, and have seen a range belonging to the block 1298 * group in pinned_extents before we were able to clear the whole block 1299 * group range from pinned_extents. This means that task can lookup for 1300 * the block group after we unpinned it from pinned_extents and removed 1301 * it, leading to a BUG_ON() at unpin_extent_range(). 1302 */ 1303 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1304 if (prev_trans) { 1305 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1306 EXTENT_DIRTY); 1307 if (ret) 1308 goto out; 1309 } 1310 1311 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1312 EXTENT_DIRTY); 1313 out: 1314 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1315 if (prev_trans) 1316 btrfs_put_transaction(prev_trans); 1317 1318 return ret == 0; 1319 } 1320 1321 /* 1322 * Process the unused_bgs list and remove any that don't have any allocated 1323 * space inside of them. 1324 */ 1325 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1326 { 1327 struct btrfs_block_group *block_group; 1328 struct btrfs_space_info *space_info; 1329 struct btrfs_trans_handle *trans; 1330 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1331 int ret = 0; 1332 1333 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1334 return; 1335 1336 spin_lock(&fs_info->unused_bgs_lock); 1337 while (!list_empty(&fs_info->unused_bgs)) { 1338 int trimming; 1339 1340 block_group = list_first_entry(&fs_info->unused_bgs, 1341 struct btrfs_block_group, 1342 bg_list); 1343 list_del_init(&block_group->bg_list); 1344 1345 space_info = block_group->space_info; 1346 1347 if (ret || btrfs_mixed_space_info(space_info)) { 1348 btrfs_put_block_group(block_group); 1349 continue; 1350 } 1351 spin_unlock(&fs_info->unused_bgs_lock); 1352 1353 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1354 1355 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1356 1357 /* Don't want to race with allocators so take the groups_sem */ 1358 down_write(&space_info->groups_sem); 1359 1360 /* 1361 * Async discard moves the final block group discard to be prior 1362 * to the unused_bgs code path. Therefore, if it's not fully 1363 * trimmed, punt it back to the async discard lists. 1364 */ 1365 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1366 !btrfs_is_free_space_trimmed(block_group)) { 1367 trace_btrfs_skip_unused_block_group(block_group); 1368 up_write(&space_info->groups_sem); 1369 /* Requeue if we failed because of async discard */ 1370 btrfs_discard_queue_work(&fs_info->discard_ctl, 1371 block_group); 1372 goto next; 1373 } 1374 1375 spin_lock(&block_group->lock); 1376 if (block_group->reserved || block_group->pinned || 1377 block_group->used || block_group->ro || 1378 list_is_singular(&block_group->list)) { 1379 /* 1380 * We want to bail if we made new allocations or have 1381 * outstanding allocations in this block group. We do 1382 * the ro check in case balance is currently acting on 1383 * this block group. 1384 */ 1385 trace_btrfs_skip_unused_block_group(block_group); 1386 spin_unlock(&block_group->lock); 1387 up_write(&space_info->groups_sem); 1388 goto next; 1389 } 1390 spin_unlock(&block_group->lock); 1391 1392 /* We don't want to force the issue, only flip if it's ok. */ 1393 ret = inc_block_group_ro(block_group, 0); 1394 up_write(&space_info->groups_sem); 1395 if (ret < 0) { 1396 ret = 0; 1397 goto next; 1398 } 1399 1400 /* 1401 * Want to do this before we do anything else so we can recover 1402 * properly if we fail to join the transaction. 1403 */ 1404 trans = btrfs_start_trans_remove_block_group(fs_info, 1405 block_group->start); 1406 if (IS_ERR(trans)) { 1407 btrfs_dec_block_group_ro(block_group); 1408 ret = PTR_ERR(trans); 1409 goto next; 1410 } 1411 1412 /* 1413 * We could have pending pinned extents for this block group, 1414 * just delete them, we don't care about them anymore. 1415 */ 1416 if (!clean_pinned_extents(trans, block_group)) { 1417 btrfs_dec_block_group_ro(block_group); 1418 goto end_trans; 1419 } 1420 1421 /* 1422 * At this point, the block_group is read only and should fail 1423 * new allocations. However, btrfs_finish_extent_commit() can 1424 * cause this block_group to be placed back on the discard 1425 * lists because now the block_group isn't fully discarded. 1426 * Bail here and try again later after discarding everything. 1427 */ 1428 spin_lock(&fs_info->discard_ctl.lock); 1429 if (!list_empty(&block_group->discard_list)) { 1430 spin_unlock(&fs_info->discard_ctl.lock); 1431 btrfs_dec_block_group_ro(block_group); 1432 btrfs_discard_queue_work(&fs_info->discard_ctl, 1433 block_group); 1434 goto end_trans; 1435 } 1436 spin_unlock(&fs_info->discard_ctl.lock); 1437 1438 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1439 spin_lock(&space_info->lock); 1440 spin_lock(&block_group->lock); 1441 1442 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1443 -block_group->pinned); 1444 space_info->bytes_readonly += block_group->pinned; 1445 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1446 -block_group->pinned, 1447 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1448 block_group->pinned = 0; 1449 1450 spin_unlock(&block_group->lock); 1451 spin_unlock(&space_info->lock); 1452 1453 /* 1454 * The normal path here is an unused block group is passed here, 1455 * then trimming is handled in the transaction commit path. 1456 * Async discard interposes before this to do the trimming 1457 * before coming down the unused block group path as trimming 1458 * will no longer be done later in the transaction commit path. 1459 */ 1460 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1461 goto flip_async; 1462 1463 /* DISCARD can flip during remount */ 1464 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1465 1466 /* Implicit trim during transaction commit. */ 1467 if (trimming) 1468 btrfs_freeze_block_group(block_group); 1469 1470 /* 1471 * Btrfs_remove_chunk will abort the transaction if things go 1472 * horribly wrong. 1473 */ 1474 ret = btrfs_remove_chunk(trans, block_group->start); 1475 1476 if (ret) { 1477 if (trimming) 1478 btrfs_unfreeze_block_group(block_group); 1479 goto end_trans; 1480 } 1481 1482 /* 1483 * If we're not mounted with -odiscard, we can just forget 1484 * about this block group. Otherwise we'll need to wait 1485 * until transaction commit to do the actual discard. 1486 */ 1487 if (trimming) { 1488 spin_lock(&fs_info->unused_bgs_lock); 1489 /* 1490 * A concurrent scrub might have added us to the list 1491 * fs_info->unused_bgs, so use a list_move operation 1492 * to add the block group to the deleted_bgs list. 1493 */ 1494 list_move(&block_group->bg_list, 1495 &trans->transaction->deleted_bgs); 1496 spin_unlock(&fs_info->unused_bgs_lock); 1497 btrfs_get_block_group(block_group); 1498 } 1499 end_trans: 1500 btrfs_end_transaction(trans); 1501 next: 1502 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1503 btrfs_put_block_group(block_group); 1504 spin_lock(&fs_info->unused_bgs_lock); 1505 } 1506 spin_unlock(&fs_info->unused_bgs_lock); 1507 return; 1508 1509 flip_async: 1510 btrfs_end_transaction(trans); 1511 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1512 btrfs_put_block_group(block_group); 1513 btrfs_discard_punt_unused_bgs_list(fs_info); 1514 } 1515 1516 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1517 { 1518 struct btrfs_fs_info *fs_info = bg->fs_info; 1519 1520 spin_lock(&fs_info->unused_bgs_lock); 1521 if (list_empty(&bg->bg_list)) { 1522 btrfs_get_block_group(bg); 1523 trace_btrfs_add_unused_block_group(bg); 1524 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1525 } 1526 spin_unlock(&fs_info->unused_bgs_lock); 1527 } 1528 1529 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1530 struct btrfs_path *path) 1531 { 1532 struct extent_map_tree *em_tree; 1533 struct extent_map *em; 1534 struct btrfs_block_group_item bg; 1535 struct extent_buffer *leaf; 1536 int slot; 1537 u64 flags; 1538 int ret = 0; 1539 1540 slot = path->slots[0]; 1541 leaf = path->nodes[0]; 1542 1543 em_tree = &fs_info->mapping_tree; 1544 read_lock(&em_tree->lock); 1545 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1546 read_unlock(&em_tree->lock); 1547 if (!em) { 1548 btrfs_err(fs_info, 1549 "logical %llu len %llu found bg but no related chunk", 1550 key->objectid, key->offset); 1551 return -ENOENT; 1552 } 1553 1554 if (em->start != key->objectid || em->len != key->offset) { 1555 btrfs_err(fs_info, 1556 "block group %llu len %llu mismatch with chunk %llu len %llu", 1557 key->objectid, key->offset, em->start, em->len); 1558 ret = -EUCLEAN; 1559 goto out_free_em; 1560 } 1561 1562 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1563 sizeof(bg)); 1564 flags = btrfs_stack_block_group_flags(&bg) & 1565 BTRFS_BLOCK_GROUP_TYPE_MASK; 1566 1567 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1568 btrfs_err(fs_info, 1569 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1570 key->objectid, key->offset, flags, 1571 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1572 ret = -EUCLEAN; 1573 } 1574 1575 out_free_em: 1576 free_extent_map(em); 1577 return ret; 1578 } 1579 1580 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1581 struct btrfs_path *path, 1582 struct btrfs_key *key) 1583 { 1584 struct btrfs_root *root = fs_info->extent_root; 1585 int ret; 1586 struct btrfs_key found_key; 1587 struct extent_buffer *leaf; 1588 int slot; 1589 1590 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1591 if (ret < 0) 1592 return ret; 1593 1594 while (1) { 1595 slot = path->slots[0]; 1596 leaf = path->nodes[0]; 1597 if (slot >= btrfs_header_nritems(leaf)) { 1598 ret = btrfs_next_leaf(root, path); 1599 if (ret == 0) 1600 continue; 1601 if (ret < 0) 1602 goto out; 1603 break; 1604 } 1605 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1606 1607 if (found_key.objectid >= key->objectid && 1608 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1609 ret = read_bg_from_eb(fs_info, &found_key, path); 1610 break; 1611 } 1612 1613 path->slots[0]++; 1614 } 1615 out: 1616 return ret; 1617 } 1618 1619 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1620 { 1621 u64 extra_flags = chunk_to_extended(flags) & 1622 BTRFS_EXTENDED_PROFILE_MASK; 1623 1624 write_seqlock(&fs_info->profiles_lock); 1625 if (flags & BTRFS_BLOCK_GROUP_DATA) 1626 fs_info->avail_data_alloc_bits |= extra_flags; 1627 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1628 fs_info->avail_metadata_alloc_bits |= extra_flags; 1629 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1630 fs_info->avail_system_alloc_bits |= extra_flags; 1631 write_sequnlock(&fs_info->profiles_lock); 1632 } 1633 1634 /** 1635 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1636 * @chunk_start: logical address of block group 1637 * @physical: physical address to map to logical addresses 1638 * @logical: return array of logical addresses which map to @physical 1639 * @naddrs: length of @logical 1640 * @stripe_len: size of IO stripe for the given block group 1641 * 1642 * Maps a particular @physical disk address to a list of @logical addresses. 1643 * Used primarily to exclude those portions of a block group that contain super 1644 * block copies. 1645 */ 1646 EXPORT_FOR_TESTS 1647 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1648 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1649 { 1650 struct extent_map *em; 1651 struct map_lookup *map; 1652 u64 *buf; 1653 u64 bytenr; 1654 u64 data_stripe_length; 1655 u64 io_stripe_size; 1656 int i, nr = 0; 1657 int ret = 0; 1658 1659 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1660 if (IS_ERR(em)) 1661 return -EIO; 1662 1663 map = em->map_lookup; 1664 data_stripe_length = em->orig_block_len; 1665 io_stripe_size = map->stripe_len; 1666 1667 /* For RAID5/6 adjust to a full IO stripe length */ 1668 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1669 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1670 1671 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1672 if (!buf) { 1673 ret = -ENOMEM; 1674 goto out; 1675 } 1676 1677 for (i = 0; i < map->num_stripes; i++) { 1678 bool already_inserted = false; 1679 u64 stripe_nr; 1680 int j; 1681 1682 if (!in_range(physical, map->stripes[i].physical, 1683 data_stripe_length)) 1684 continue; 1685 1686 stripe_nr = physical - map->stripes[i].physical; 1687 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1688 1689 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1690 stripe_nr = stripe_nr * map->num_stripes + i; 1691 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1692 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1693 stripe_nr = stripe_nr * map->num_stripes + i; 1694 } 1695 /* 1696 * The remaining case would be for RAID56, multiply by 1697 * nr_data_stripes(). Alternatively, just use rmap_len below 1698 * instead of map->stripe_len 1699 */ 1700 1701 bytenr = chunk_start + stripe_nr * io_stripe_size; 1702 1703 /* Ensure we don't add duplicate addresses */ 1704 for (j = 0; j < nr; j++) { 1705 if (buf[j] == bytenr) { 1706 already_inserted = true; 1707 break; 1708 } 1709 } 1710 1711 if (!already_inserted) 1712 buf[nr++] = bytenr; 1713 } 1714 1715 *logical = buf; 1716 *naddrs = nr; 1717 *stripe_len = io_stripe_size; 1718 out: 1719 free_extent_map(em); 1720 return ret; 1721 } 1722 1723 static int exclude_super_stripes(struct btrfs_block_group *cache) 1724 { 1725 struct btrfs_fs_info *fs_info = cache->fs_info; 1726 u64 bytenr; 1727 u64 *logical; 1728 int stripe_len; 1729 int i, nr, ret; 1730 1731 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1732 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1733 cache->bytes_super += stripe_len; 1734 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1735 stripe_len); 1736 if (ret) 1737 return ret; 1738 } 1739 1740 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1741 bytenr = btrfs_sb_offset(i); 1742 ret = btrfs_rmap_block(fs_info, cache->start, 1743 bytenr, &logical, &nr, &stripe_len); 1744 if (ret) 1745 return ret; 1746 1747 while (nr--) { 1748 u64 len = min_t(u64, stripe_len, 1749 cache->start + cache->length - logical[nr]); 1750 1751 cache->bytes_super += len; 1752 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1753 len); 1754 if (ret) { 1755 kfree(logical); 1756 return ret; 1757 } 1758 } 1759 1760 kfree(logical); 1761 } 1762 return 0; 1763 } 1764 1765 static void link_block_group(struct btrfs_block_group *cache) 1766 { 1767 struct btrfs_space_info *space_info = cache->space_info; 1768 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1769 bool first = false; 1770 1771 down_write(&space_info->groups_sem); 1772 if (list_empty(&space_info->block_groups[index])) 1773 first = true; 1774 list_add_tail(&cache->list, &space_info->block_groups[index]); 1775 up_write(&space_info->groups_sem); 1776 1777 if (first) 1778 btrfs_sysfs_add_block_group_type(cache); 1779 } 1780 1781 static struct btrfs_block_group *btrfs_create_block_group_cache( 1782 struct btrfs_fs_info *fs_info, u64 start) 1783 { 1784 struct btrfs_block_group *cache; 1785 1786 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1787 if (!cache) 1788 return NULL; 1789 1790 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1791 GFP_NOFS); 1792 if (!cache->free_space_ctl) { 1793 kfree(cache); 1794 return NULL; 1795 } 1796 1797 cache->start = start; 1798 1799 cache->fs_info = fs_info; 1800 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1801 1802 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1803 1804 refcount_set(&cache->refs, 1); 1805 spin_lock_init(&cache->lock); 1806 init_rwsem(&cache->data_rwsem); 1807 INIT_LIST_HEAD(&cache->list); 1808 INIT_LIST_HEAD(&cache->cluster_list); 1809 INIT_LIST_HEAD(&cache->bg_list); 1810 INIT_LIST_HEAD(&cache->ro_list); 1811 INIT_LIST_HEAD(&cache->discard_list); 1812 INIT_LIST_HEAD(&cache->dirty_list); 1813 INIT_LIST_HEAD(&cache->io_list); 1814 btrfs_init_free_space_ctl(cache); 1815 atomic_set(&cache->frozen, 0); 1816 mutex_init(&cache->free_space_lock); 1817 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1818 1819 return cache; 1820 } 1821 1822 /* 1823 * Iterate all chunks and verify that each of them has the corresponding block 1824 * group 1825 */ 1826 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1827 { 1828 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1829 struct extent_map *em; 1830 struct btrfs_block_group *bg; 1831 u64 start = 0; 1832 int ret = 0; 1833 1834 while (1) { 1835 read_lock(&map_tree->lock); 1836 /* 1837 * lookup_extent_mapping will return the first extent map 1838 * intersecting the range, so setting @len to 1 is enough to 1839 * get the first chunk. 1840 */ 1841 em = lookup_extent_mapping(map_tree, start, 1); 1842 read_unlock(&map_tree->lock); 1843 if (!em) 1844 break; 1845 1846 bg = btrfs_lookup_block_group(fs_info, em->start); 1847 if (!bg) { 1848 btrfs_err(fs_info, 1849 "chunk start=%llu len=%llu doesn't have corresponding block group", 1850 em->start, em->len); 1851 ret = -EUCLEAN; 1852 free_extent_map(em); 1853 break; 1854 } 1855 if (bg->start != em->start || bg->length != em->len || 1856 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1857 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1858 btrfs_err(fs_info, 1859 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1860 em->start, em->len, 1861 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1862 bg->start, bg->length, 1863 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1864 ret = -EUCLEAN; 1865 free_extent_map(em); 1866 btrfs_put_block_group(bg); 1867 break; 1868 } 1869 start = em->start + em->len; 1870 free_extent_map(em); 1871 btrfs_put_block_group(bg); 1872 } 1873 return ret; 1874 } 1875 1876 static int read_block_group_item(struct btrfs_block_group *cache, 1877 struct btrfs_path *path, 1878 const struct btrfs_key *key) 1879 { 1880 struct extent_buffer *leaf = path->nodes[0]; 1881 struct btrfs_block_group_item bgi; 1882 int slot = path->slots[0]; 1883 1884 cache->length = key->offset; 1885 1886 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1887 sizeof(bgi)); 1888 cache->used = btrfs_stack_block_group_used(&bgi); 1889 cache->flags = btrfs_stack_block_group_flags(&bgi); 1890 1891 return 0; 1892 } 1893 1894 static int read_one_block_group(struct btrfs_fs_info *info, 1895 struct btrfs_path *path, 1896 const struct btrfs_key *key, 1897 int need_clear) 1898 { 1899 struct btrfs_block_group *cache; 1900 struct btrfs_space_info *space_info; 1901 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1902 int ret; 1903 1904 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1905 1906 cache = btrfs_create_block_group_cache(info, key->objectid); 1907 if (!cache) 1908 return -ENOMEM; 1909 1910 ret = read_block_group_item(cache, path, key); 1911 if (ret < 0) 1912 goto error; 1913 1914 set_free_space_tree_thresholds(cache); 1915 1916 if (need_clear) { 1917 /* 1918 * When we mount with old space cache, we need to 1919 * set BTRFS_DC_CLEAR and set dirty flag. 1920 * 1921 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1922 * truncate the old free space cache inode and 1923 * setup a new one. 1924 * b) Setting 'dirty flag' makes sure that we flush 1925 * the new space cache info onto disk. 1926 */ 1927 if (btrfs_test_opt(info, SPACE_CACHE)) 1928 cache->disk_cache_state = BTRFS_DC_CLEAR; 1929 } 1930 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1931 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1932 btrfs_err(info, 1933 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1934 cache->start); 1935 ret = -EINVAL; 1936 goto error; 1937 } 1938 1939 /* 1940 * We need to exclude the super stripes now so that the space info has 1941 * super bytes accounted for, otherwise we'll think we have more space 1942 * than we actually do. 1943 */ 1944 ret = exclude_super_stripes(cache); 1945 if (ret) { 1946 /* We may have excluded something, so call this just in case. */ 1947 btrfs_free_excluded_extents(cache); 1948 goto error; 1949 } 1950 1951 /* 1952 * Check for two cases, either we are full, and therefore don't need 1953 * to bother with the caching work since we won't find any space, or we 1954 * are empty, and we can just add all the space in and be done with it. 1955 * This saves us _a_lot_ of time, particularly in the full case. 1956 */ 1957 if (cache->length == cache->used) { 1958 cache->last_byte_to_unpin = (u64)-1; 1959 cache->cached = BTRFS_CACHE_FINISHED; 1960 btrfs_free_excluded_extents(cache); 1961 } else if (cache->used == 0) { 1962 cache->last_byte_to_unpin = (u64)-1; 1963 cache->cached = BTRFS_CACHE_FINISHED; 1964 add_new_free_space(cache, cache->start, 1965 cache->start + cache->length); 1966 btrfs_free_excluded_extents(cache); 1967 } 1968 1969 ret = btrfs_add_block_group_cache(info, cache); 1970 if (ret) { 1971 btrfs_remove_free_space_cache(cache); 1972 goto error; 1973 } 1974 trace_btrfs_add_block_group(info, cache, 0); 1975 btrfs_update_space_info(info, cache->flags, cache->length, 1976 cache->used, cache->bytes_super, &space_info); 1977 1978 cache->space_info = space_info; 1979 1980 link_block_group(cache); 1981 1982 set_avail_alloc_bits(info, cache->flags); 1983 if (btrfs_chunk_readonly(info, cache->start)) { 1984 inc_block_group_ro(cache, 1); 1985 } else if (cache->used == 0) { 1986 ASSERT(list_empty(&cache->bg_list)); 1987 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1988 btrfs_discard_queue_work(&info->discard_ctl, cache); 1989 else 1990 btrfs_mark_bg_unused(cache); 1991 } 1992 return 0; 1993 error: 1994 btrfs_put_block_group(cache); 1995 return ret; 1996 } 1997 1998 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1999 { 2000 struct btrfs_path *path; 2001 int ret; 2002 struct btrfs_block_group *cache; 2003 struct btrfs_space_info *space_info; 2004 struct btrfs_key key; 2005 int need_clear = 0; 2006 u64 cache_gen; 2007 2008 key.objectid = 0; 2009 key.offset = 0; 2010 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2011 path = btrfs_alloc_path(); 2012 if (!path) 2013 return -ENOMEM; 2014 2015 cache_gen = btrfs_super_cache_generation(info->super_copy); 2016 if (btrfs_test_opt(info, SPACE_CACHE) && 2017 btrfs_super_generation(info->super_copy) != cache_gen) 2018 need_clear = 1; 2019 if (btrfs_test_opt(info, CLEAR_CACHE)) 2020 need_clear = 1; 2021 2022 while (1) { 2023 ret = find_first_block_group(info, path, &key); 2024 if (ret > 0) 2025 break; 2026 if (ret != 0) 2027 goto error; 2028 2029 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2030 ret = read_one_block_group(info, path, &key, need_clear); 2031 if (ret < 0) 2032 goto error; 2033 key.objectid += key.offset; 2034 key.offset = 0; 2035 btrfs_release_path(path); 2036 } 2037 2038 rcu_read_lock(); 2039 list_for_each_entry_rcu(space_info, &info->space_info, list) { 2040 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2041 (BTRFS_BLOCK_GROUP_RAID10 | 2042 BTRFS_BLOCK_GROUP_RAID1_MASK | 2043 BTRFS_BLOCK_GROUP_RAID56_MASK | 2044 BTRFS_BLOCK_GROUP_DUP))) 2045 continue; 2046 /* 2047 * Avoid allocating from un-mirrored block group if there are 2048 * mirrored block groups. 2049 */ 2050 list_for_each_entry(cache, 2051 &space_info->block_groups[BTRFS_RAID_RAID0], 2052 list) 2053 inc_block_group_ro(cache, 1); 2054 list_for_each_entry(cache, 2055 &space_info->block_groups[BTRFS_RAID_SINGLE], 2056 list) 2057 inc_block_group_ro(cache, 1); 2058 } 2059 rcu_read_unlock(); 2060 2061 btrfs_init_global_block_rsv(info); 2062 ret = check_chunk_block_group_mappings(info); 2063 error: 2064 btrfs_free_path(path); 2065 return ret; 2066 } 2067 2068 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2069 struct btrfs_block_group *block_group) 2070 { 2071 struct btrfs_fs_info *fs_info = trans->fs_info; 2072 struct btrfs_block_group_item bgi; 2073 struct btrfs_root *root; 2074 struct btrfs_key key; 2075 2076 spin_lock(&block_group->lock); 2077 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2078 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2079 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2080 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2081 key.objectid = block_group->start; 2082 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2083 key.offset = block_group->length; 2084 spin_unlock(&block_group->lock); 2085 2086 root = fs_info->extent_root; 2087 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2088 } 2089 2090 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2091 { 2092 struct btrfs_fs_info *fs_info = trans->fs_info; 2093 struct btrfs_block_group *block_group; 2094 int ret = 0; 2095 2096 if (!trans->can_flush_pending_bgs) 2097 return; 2098 2099 while (!list_empty(&trans->new_bgs)) { 2100 block_group = list_first_entry(&trans->new_bgs, 2101 struct btrfs_block_group, 2102 bg_list); 2103 if (ret) 2104 goto next; 2105 2106 ret = insert_block_group_item(trans, block_group); 2107 if (ret) 2108 btrfs_abort_transaction(trans, ret); 2109 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2110 block_group->length); 2111 if (ret) 2112 btrfs_abort_transaction(trans, ret); 2113 add_block_group_free_space(trans, block_group); 2114 /* Already aborted the transaction if it failed. */ 2115 next: 2116 btrfs_delayed_refs_rsv_release(fs_info, 1); 2117 list_del_init(&block_group->bg_list); 2118 } 2119 btrfs_trans_release_chunk_metadata(trans); 2120 } 2121 2122 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2123 u64 type, u64 chunk_offset, u64 size) 2124 { 2125 struct btrfs_fs_info *fs_info = trans->fs_info; 2126 struct btrfs_block_group *cache; 2127 int ret; 2128 2129 btrfs_set_log_full_commit(trans); 2130 2131 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2132 if (!cache) 2133 return -ENOMEM; 2134 2135 cache->length = size; 2136 set_free_space_tree_thresholds(cache); 2137 cache->used = bytes_used; 2138 cache->flags = type; 2139 cache->last_byte_to_unpin = (u64)-1; 2140 cache->cached = BTRFS_CACHE_FINISHED; 2141 cache->needs_free_space = 1; 2142 ret = exclude_super_stripes(cache); 2143 if (ret) { 2144 /* We may have excluded something, so call this just in case */ 2145 btrfs_free_excluded_extents(cache); 2146 btrfs_put_block_group(cache); 2147 return ret; 2148 } 2149 2150 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2151 2152 btrfs_free_excluded_extents(cache); 2153 2154 #ifdef CONFIG_BTRFS_DEBUG 2155 if (btrfs_should_fragment_free_space(cache)) { 2156 u64 new_bytes_used = size - bytes_used; 2157 2158 bytes_used += new_bytes_used >> 1; 2159 fragment_free_space(cache); 2160 } 2161 #endif 2162 /* 2163 * Ensure the corresponding space_info object is created and 2164 * assigned to our block group. We want our bg to be added to the rbtree 2165 * with its ->space_info set. 2166 */ 2167 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2168 ASSERT(cache->space_info); 2169 2170 ret = btrfs_add_block_group_cache(fs_info, cache); 2171 if (ret) { 2172 btrfs_remove_free_space_cache(cache); 2173 btrfs_put_block_group(cache); 2174 return ret; 2175 } 2176 2177 /* 2178 * Now that our block group has its ->space_info set and is inserted in 2179 * the rbtree, update the space info's counters. 2180 */ 2181 trace_btrfs_add_block_group(fs_info, cache, 1); 2182 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2183 cache->bytes_super, &cache->space_info); 2184 btrfs_update_global_block_rsv(fs_info); 2185 2186 link_block_group(cache); 2187 2188 list_add_tail(&cache->bg_list, &trans->new_bgs); 2189 trans->delayed_ref_updates++; 2190 btrfs_update_delayed_refs_rsv(trans); 2191 2192 set_avail_alloc_bits(fs_info, type); 2193 return 0; 2194 } 2195 2196 /* 2197 * Mark one block group RO, can be called several times for the same block 2198 * group. 2199 * 2200 * @cache: the destination block group 2201 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2202 * ensure we still have some free space after marking this 2203 * block group RO. 2204 */ 2205 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2206 bool do_chunk_alloc) 2207 { 2208 struct btrfs_fs_info *fs_info = cache->fs_info; 2209 struct btrfs_trans_handle *trans; 2210 u64 alloc_flags; 2211 int ret; 2212 2213 again: 2214 trans = btrfs_join_transaction(fs_info->extent_root); 2215 if (IS_ERR(trans)) 2216 return PTR_ERR(trans); 2217 2218 /* 2219 * we're not allowed to set block groups readonly after the dirty 2220 * block groups cache has started writing. If it already started, 2221 * back off and let this transaction commit 2222 */ 2223 mutex_lock(&fs_info->ro_block_group_mutex); 2224 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2225 u64 transid = trans->transid; 2226 2227 mutex_unlock(&fs_info->ro_block_group_mutex); 2228 btrfs_end_transaction(trans); 2229 2230 ret = btrfs_wait_for_commit(fs_info, transid); 2231 if (ret) 2232 return ret; 2233 goto again; 2234 } 2235 2236 if (do_chunk_alloc) { 2237 /* 2238 * If we are changing raid levels, try to allocate a 2239 * corresponding block group with the new raid level. 2240 */ 2241 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2242 if (alloc_flags != cache->flags) { 2243 ret = btrfs_chunk_alloc(trans, alloc_flags, 2244 CHUNK_ALLOC_FORCE); 2245 /* 2246 * ENOSPC is allowed here, we may have enough space 2247 * already allocated at the new raid level to carry on 2248 */ 2249 if (ret == -ENOSPC) 2250 ret = 0; 2251 if (ret < 0) 2252 goto out; 2253 } 2254 } 2255 2256 ret = inc_block_group_ro(cache, 0); 2257 if (!do_chunk_alloc) 2258 goto unlock_out; 2259 if (!ret) 2260 goto out; 2261 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2262 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2263 if (ret < 0) 2264 goto out; 2265 ret = inc_block_group_ro(cache, 0); 2266 out: 2267 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2268 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2269 mutex_lock(&fs_info->chunk_mutex); 2270 check_system_chunk(trans, alloc_flags); 2271 mutex_unlock(&fs_info->chunk_mutex); 2272 } 2273 unlock_out: 2274 mutex_unlock(&fs_info->ro_block_group_mutex); 2275 2276 btrfs_end_transaction(trans); 2277 return ret; 2278 } 2279 2280 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2281 { 2282 struct btrfs_space_info *sinfo = cache->space_info; 2283 u64 num_bytes; 2284 2285 BUG_ON(!cache->ro); 2286 2287 spin_lock(&sinfo->lock); 2288 spin_lock(&cache->lock); 2289 if (!--cache->ro) { 2290 num_bytes = cache->length - cache->reserved - 2291 cache->pinned - cache->bytes_super - cache->used; 2292 sinfo->bytes_readonly -= num_bytes; 2293 list_del_init(&cache->ro_list); 2294 } 2295 spin_unlock(&cache->lock); 2296 spin_unlock(&sinfo->lock); 2297 } 2298 2299 static int update_block_group_item(struct btrfs_trans_handle *trans, 2300 struct btrfs_path *path, 2301 struct btrfs_block_group *cache) 2302 { 2303 struct btrfs_fs_info *fs_info = trans->fs_info; 2304 int ret; 2305 struct btrfs_root *root = fs_info->extent_root; 2306 unsigned long bi; 2307 struct extent_buffer *leaf; 2308 struct btrfs_block_group_item bgi; 2309 struct btrfs_key key; 2310 2311 key.objectid = cache->start; 2312 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2313 key.offset = cache->length; 2314 2315 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2316 if (ret) { 2317 if (ret > 0) 2318 ret = -ENOENT; 2319 goto fail; 2320 } 2321 2322 leaf = path->nodes[0]; 2323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2324 btrfs_set_stack_block_group_used(&bgi, cache->used); 2325 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2326 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2327 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2328 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2329 btrfs_mark_buffer_dirty(leaf); 2330 fail: 2331 btrfs_release_path(path); 2332 return ret; 2333 2334 } 2335 2336 static int cache_save_setup(struct btrfs_block_group *block_group, 2337 struct btrfs_trans_handle *trans, 2338 struct btrfs_path *path) 2339 { 2340 struct btrfs_fs_info *fs_info = block_group->fs_info; 2341 struct btrfs_root *root = fs_info->tree_root; 2342 struct inode *inode = NULL; 2343 struct extent_changeset *data_reserved = NULL; 2344 u64 alloc_hint = 0; 2345 int dcs = BTRFS_DC_ERROR; 2346 u64 num_pages = 0; 2347 int retries = 0; 2348 int ret = 0; 2349 2350 /* 2351 * If this block group is smaller than 100 megs don't bother caching the 2352 * block group. 2353 */ 2354 if (block_group->length < (100 * SZ_1M)) { 2355 spin_lock(&block_group->lock); 2356 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2357 spin_unlock(&block_group->lock); 2358 return 0; 2359 } 2360 2361 if (TRANS_ABORTED(trans)) 2362 return 0; 2363 again: 2364 inode = lookup_free_space_inode(block_group, path); 2365 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2366 ret = PTR_ERR(inode); 2367 btrfs_release_path(path); 2368 goto out; 2369 } 2370 2371 if (IS_ERR(inode)) { 2372 BUG_ON(retries); 2373 retries++; 2374 2375 if (block_group->ro) 2376 goto out_free; 2377 2378 ret = create_free_space_inode(trans, block_group, path); 2379 if (ret) 2380 goto out_free; 2381 goto again; 2382 } 2383 2384 /* 2385 * We want to set the generation to 0, that way if anything goes wrong 2386 * from here on out we know not to trust this cache when we load up next 2387 * time. 2388 */ 2389 BTRFS_I(inode)->generation = 0; 2390 ret = btrfs_update_inode(trans, root, inode); 2391 if (ret) { 2392 /* 2393 * So theoretically we could recover from this, simply set the 2394 * super cache generation to 0 so we know to invalidate the 2395 * cache, but then we'd have to keep track of the block groups 2396 * that fail this way so we know we _have_ to reset this cache 2397 * before the next commit or risk reading stale cache. So to 2398 * limit our exposure to horrible edge cases lets just abort the 2399 * transaction, this only happens in really bad situations 2400 * anyway. 2401 */ 2402 btrfs_abort_transaction(trans, ret); 2403 goto out_put; 2404 } 2405 WARN_ON(ret); 2406 2407 /* We've already setup this transaction, go ahead and exit */ 2408 if (block_group->cache_generation == trans->transid && 2409 i_size_read(inode)) { 2410 dcs = BTRFS_DC_SETUP; 2411 goto out_put; 2412 } 2413 2414 if (i_size_read(inode) > 0) { 2415 ret = btrfs_check_trunc_cache_free_space(fs_info, 2416 &fs_info->global_block_rsv); 2417 if (ret) 2418 goto out_put; 2419 2420 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2421 if (ret) 2422 goto out_put; 2423 } 2424 2425 spin_lock(&block_group->lock); 2426 if (block_group->cached != BTRFS_CACHE_FINISHED || 2427 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2428 /* 2429 * don't bother trying to write stuff out _if_ 2430 * a) we're not cached, 2431 * b) we're with nospace_cache mount option, 2432 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2433 */ 2434 dcs = BTRFS_DC_WRITTEN; 2435 spin_unlock(&block_group->lock); 2436 goto out_put; 2437 } 2438 spin_unlock(&block_group->lock); 2439 2440 /* 2441 * We hit an ENOSPC when setting up the cache in this transaction, just 2442 * skip doing the setup, we've already cleared the cache so we're safe. 2443 */ 2444 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2445 ret = -ENOSPC; 2446 goto out_put; 2447 } 2448 2449 /* 2450 * Try to preallocate enough space based on how big the block group is. 2451 * Keep in mind this has to include any pinned space which could end up 2452 * taking up quite a bit since it's not folded into the other space 2453 * cache. 2454 */ 2455 num_pages = div_u64(block_group->length, SZ_256M); 2456 if (!num_pages) 2457 num_pages = 1; 2458 2459 num_pages *= 16; 2460 num_pages *= PAGE_SIZE; 2461 2462 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2463 num_pages); 2464 if (ret) 2465 goto out_put; 2466 2467 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2468 num_pages, num_pages, 2469 &alloc_hint); 2470 /* 2471 * Our cache requires contiguous chunks so that we don't modify a bunch 2472 * of metadata or split extents when writing the cache out, which means 2473 * we can enospc if we are heavily fragmented in addition to just normal 2474 * out of space conditions. So if we hit this just skip setting up any 2475 * other block groups for this transaction, maybe we'll unpin enough 2476 * space the next time around. 2477 */ 2478 if (!ret) 2479 dcs = BTRFS_DC_SETUP; 2480 else if (ret == -ENOSPC) 2481 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2482 2483 out_put: 2484 iput(inode); 2485 out_free: 2486 btrfs_release_path(path); 2487 out: 2488 spin_lock(&block_group->lock); 2489 if (!ret && dcs == BTRFS_DC_SETUP) 2490 block_group->cache_generation = trans->transid; 2491 block_group->disk_cache_state = dcs; 2492 spin_unlock(&block_group->lock); 2493 2494 extent_changeset_free(data_reserved); 2495 return ret; 2496 } 2497 2498 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2499 { 2500 struct btrfs_fs_info *fs_info = trans->fs_info; 2501 struct btrfs_block_group *cache, *tmp; 2502 struct btrfs_transaction *cur_trans = trans->transaction; 2503 struct btrfs_path *path; 2504 2505 if (list_empty(&cur_trans->dirty_bgs) || 2506 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2507 return 0; 2508 2509 path = btrfs_alloc_path(); 2510 if (!path) 2511 return -ENOMEM; 2512 2513 /* Could add new block groups, use _safe just in case */ 2514 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2515 dirty_list) { 2516 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2517 cache_save_setup(cache, trans, path); 2518 } 2519 2520 btrfs_free_path(path); 2521 return 0; 2522 } 2523 2524 /* 2525 * Transaction commit does final block group cache writeback during a critical 2526 * section where nothing is allowed to change the FS. This is required in 2527 * order for the cache to actually match the block group, but can introduce a 2528 * lot of latency into the commit. 2529 * 2530 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2531 * There's a chance we'll have to redo some of it if the block group changes 2532 * again during the commit, but it greatly reduces the commit latency by 2533 * getting rid of the easy block groups while we're still allowing others to 2534 * join the commit. 2535 */ 2536 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2537 { 2538 struct btrfs_fs_info *fs_info = trans->fs_info; 2539 struct btrfs_block_group *cache; 2540 struct btrfs_transaction *cur_trans = trans->transaction; 2541 int ret = 0; 2542 int should_put; 2543 struct btrfs_path *path = NULL; 2544 LIST_HEAD(dirty); 2545 struct list_head *io = &cur_trans->io_bgs; 2546 int num_started = 0; 2547 int loops = 0; 2548 2549 spin_lock(&cur_trans->dirty_bgs_lock); 2550 if (list_empty(&cur_trans->dirty_bgs)) { 2551 spin_unlock(&cur_trans->dirty_bgs_lock); 2552 return 0; 2553 } 2554 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2555 spin_unlock(&cur_trans->dirty_bgs_lock); 2556 2557 again: 2558 /* Make sure all the block groups on our dirty list actually exist */ 2559 btrfs_create_pending_block_groups(trans); 2560 2561 if (!path) { 2562 path = btrfs_alloc_path(); 2563 if (!path) 2564 return -ENOMEM; 2565 } 2566 2567 /* 2568 * cache_write_mutex is here only to save us from balance or automatic 2569 * removal of empty block groups deleting this block group while we are 2570 * writing out the cache 2571 */ 2572 mutex_lock(&trans->transaction->cache_write_mutex); 2573 while (!list_empty(&dirty)) { 2574 bool drop_reserve = true; 2575 2576 cache = list_first_entry(&dirty, struct btrfs_block_group, 2577 dirty_list); 2578 /* 2579 * This can happen if something re-dirties a block group that 2580 * is already under IO. Just wait for it to finish and then do 2581 * it all again 2582 */ 2583 if (!list_empty(&cache->io_list)) { 2584 list_del_init(&cache->io_list); 2585 btrfs_wait_cache_io(trans, cache, path); 2586 btrfs_put_block_group(cache); 2587 } 2588 2589 2590 /* 2591 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2592 * it should update the cache_state. Don't delete until after 2593 * we wait. 2594 * 2595 * Since we're not running in the commit critical section 2596 * we need the dirty_bgs_lock to protect from update_block_group 2597 */ 2598 spin_lock(&cur_trans->dirty_bgs_lock); 2599 list_del_init(&cache->dirty_list); 2600 spin_unlock(&cur_trans->dirty_bgs_lock); 2601 2602 should_put = 1; 2603 2604 cache_save_setup(cache, trans, path); 2605 2606 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2607 cache->io_ctl.inode = NULL; 2608 ret = btrfs_write_out_cache(trans, cache, path); 2609 if (ret == 0 && cache->io_ctl.inode) { 2610 num_started++; 2611 should_put = 0; 2612 2613 /* 2614 * The cache_write_mutex is protecting the 2615 * io_list, also refer to the definition of 2616 * btrfs_transaction::io_bgs for more details 2617 */ 2618 list_add_tail(&cache->io_list, io); 2619 } else { 2620 /* 2621 * If we failed to write the cache, the 2622 * generation will be bad and life goes on 2623 */ 2624 ret = 0; 2625 } 2626 } 2627 if (!ret) { 2628 ret = update_block_group_item(trans, path, cache); 2629 /* 2630 * Our block group might still be attached to the list 2631 * of new block groups in the transaction handle of some 2632 * other task (struct btrfs_trans_handle->new_bgs). This 2633 * means its block group item isn't yet in the extent 2634 * tree. If this happens ignore the error, as we will 2635 * try again later in the critical section of the 2636 * transaction commit. 2637 */ 2638 if (ret == -ENOENT) { 2639 ret = 0; 2640 spin_lock(&cur_trans->dirty_bgs_lock); 2641 if (list_empty(&cache->dirty_list)) { 2642 list_add_tail(&cache->dirty_list, 2643 &cur_trans->dirty_bgs); 2644 btrfs_get_block_group(cache); 2645 drop_reserve = false; 2646 } 2647 spin_unlock(&cur_trans->dirty_bgs_lock); 2648 } else if (ret) { 2649 btrfs_abort_transaction(trans, ret); 2650 } 2651 } 2652 2653 /* If it's not on the io list, we need to put the block group */ 2654 if (should_put) 2655 btrfs_put_block_group(cache); 2656 if (drop_reserve) 2657 btrfs_delayed_refs_rsv_release(fs_info, 1); 2658 2659 if (ret) 2660 break; 2661 2662 /* 2663 * Avoid blocking other tasks for too long. It might even save 2664 * us from writing caches for block groups that are going to be 2665 * removed. 2666 */ 2667 mutex_unlock(&trans->transaction->cache_write_mutex); 2668 mutex_lock(&trans->transaction->cache_write_mutex); 2669 } 2670 mutex_unlock(&trans->transaction->cache_write_mutex); 2671 2672 /* 2673 * Go through delayed refs for all the stuff we've just kicked off 2674 * and then loop back (just once) 2675 */ 2676 ret = btrfs_run_delayed_refs(trans, 0); 2677 if (!ret && loops == 0) { 2678 loops++; 2679 spin_lock(&cur_trans->dirty_bgs_lock); 2680 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2681 /* 2682 * dirty_bgs_lock protects us from concurrent block group 2683 * deletes too (not just cache_write_mutex). 2684 */ 2685 if (!list_empty(&dirty)) { 2686 spin_unlock(&cur_trans->dirty_bgs_lock); 2687 goto again; 2688 } 2689 spin_unlock(&cur_trans->dirty_bgs_lock); 2690 } else if (ret < 0) { 2691 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2692 } 2693 2694 btrfs_free_path(path); 2695 return ret; 2696 } 2697 2698 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2699 { 2700 struct btrfs_fs_info *fs_info = trans->fs_info; 2701 struct btrfs_block_group *cache; 2702 struct btrfs_transaction *cur_trans = trans->transaction; 2703 int ret = 0; 2704 int should_put; 2705 struct btrfs_path *path; 2706 struct list_head *io = &cur_trans->io_bgs; 2707 int num_started = 0; 2708 2709 path = btrfs_alloc_path(); 2710 if (!path) 2711 return -ENOMEM; 2712 2713 /* 2714 * Even though we are in the critical section of the transaction commit, 2715 * we can still have concurrent tasks adding elements to this 2716 * transaction's list of dirty block groups. These tasks correspond to 2717 * endio free space workers started when writeback finishes for a 2718 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2719 * allocate new block groups as a result of COWing nodes of the root 2720 * tree when updating the free space inode. The writeback for the space 2721 * caches is triggered by an earlier call to 2722 * btrfs_start_dirty_block_groups() and iterations of the following 2723 * loop. 2724 * Also we want to do the cache_save_setup first and then run the 2725 * delayed refs to make sure we have the best chance at doing this all 2726 * in one shot. 2727 */ 2728 spin_lock(&cur_trans->dirty_bgs_lock); 2729 while (!list_empty(&cur_trans->dirty_bgs)) { 2730 cache = list_first_entry(&cur_trans->dirty_bgs, 2731 struct btrfs_block_group, 2732 dirty_list); 2733 2734 /* 2735 * This can happen if cache_save_setup re-dirties a block group 2736 * that is already under IO. Just wait for it to finish and 2737 * then do it all again 2738 */ 2739 if (!list_empty(&cache->io_list)) { 2740 spin_unlock(&cur_trans->dirty_bgs_lock); 2741 list_del_init(&cache->io_list); 2742 btrfs_wait_cache_io(trans, cache, path); 2743 btrfs_put_block_group(cache); 2744 spin_lock(&cur_trans->dirty_bgs_lock); 2745 } 2746 2747 /* 2748 * Don't remove from the dirty list until after we've waited on 2749 * any pending IO 2750 */ 2751 list_del_init(&cache->dirty_list); 2752 spin_unlock(&cur_trans->dirty_bgs_lock); 2753 should_put = 1; 2754 2755 cache_save_setup(cache, trans, path); 2756 2757 if (!ret) 2758 ret = btrfs_run_delayed_refs(trans, 2759 (unsigned long) -1); 2760 2761 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2762 cache->io_ctl.inode = NULL; 2763 ret = btrfs_write_out_cache(trans, cache, path); 2764 if (ret == 0 && cache->io_ctl.inode) { 2765 num_started++; 2766 should_put = 0; 2767 list_add_tail(&cache->io_list, io); 2768 } else { 2769 /* 2770 * If we failed to write the cache, the 2771 * generation will be bad and life goes on 2772 */ 2773 ret = 0; 2774 } 2775 } 2776 if (!ret) { 2777 ret = update_block_group_item(trans, path, cache); 2778 /* 2779 * One of the free space endio workers might have 2780 * created a new block group while updating a free space 2781 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2782 * and hasn't released its transaction handle yet, in 2783 * which case the new block group is still attached to 2784 * its transaction handle and its creation has not 2785 * finished yet (no block group item in the extent tree 2786 * yet, etc). If this is the case, wait for all free 2787 * space endio workers to finish and retry. This is a 2788 * a very rare case so no need for a more efficient and 2789 * complex approach. 2790 */ 2791 if (ret == -ENOENT) { 2792 wait_event(cur_trans->writer_wait, 2793 atomic_read(&cur_trans->num_writers) == 1); 2794 ret = update_block_group_item(trans, path, cache); 2795 } 2796 if (ret) 2797 btrfs_abort_transaction(trans, ret); 2798 } 2799 2800 /* If its not on the io list, we need to put the block group */ 2801 if (should_put) 2802 btrfs_put_block_group(cache); 2803 btrfs_delayed_refs_rsv_release(fs_info, 1); 2804 spin_lock(&cur_trans->dirty_bgs_lock); 2805 } 2806 spin_unlock(&cur_trans->dirty_bgs_lock); 2807 2808 /* 2809 * Refer to the definition of io_bgs member for details why it's safe 2810 * to use it without any locking 2811 */ 2812 while (!list_empty(io)) { 2813 cache = list_first_entry(io, struct btrfs_block_group, 2814 io_list); 2815 list_del_init(&cache->io_list); 2816 btrfs_wait_cache_io(trans, cache, path); 2817 btrfs_put_block_group(cache); 2818 } 2819 2820 btrfs_free_path(path); 2821 return ret; 2822 } 2823 2824 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2825 u64 bytenr, u64 num_bytes, int alloc) 2826 { 2827 struct btrfs_fs_info *info = trans->fs_info; 2828 struct btrfs_block_group *cache = NULL; 2829 u64 total = num_bytes; 2830 u64 old_val; 2831 u64 byte_in_group; 2832 int factor; 2833 int ret = 0; 2834 2835 /* Block accounting for super block */ 2836 spin_lock(&info->delalloc_root_lock); 2837 old_val = btrfs_super_bytes_used(info->super_copy); 2838 if (alloc) 2839 old_val += num_bytes; 2840 else 2841 old_val -= num_bytes; 2842 btrfs_set_super_bytes_used(info->super_copy, old_val); 2843 spin_unlock(&info->delalloc_root_lock); 2844 2845 while (total) { 2846 cache = btrfs_lookup_block_group(info, bytenr); 2847 if (!cache) { 2848 ret = -ENOENT; 2849 break; 2850 } 2851 factor = btrfs_bg_type_to_factor(cache->flags); 2852 2853 /* 2854 * If this block group has free space cache written out, we 2855 * need to make sure to load it if we are removing space. This 2856 * is because we need the unpinning stage to actually add the 2857 * space back to the block group, otherwise we will leak space. 2858 */ 2859 if (!alloc && !btrfs_block_group_done(cache)) 2860 btrfs_cache_block_group(cache, 1); 2861 2862 byte_in_group = bytenr - cache->start; 2863 WARN_ON(byte_in_group > cache->length); 2864 2865 spin_lock(&cache->space_info->lock); 2866 spin_lock(&cache->lock); 2867 2868 if (btrfs_test_opt(info, SPACE_CACHE) && 2869 cache->disk_cache_state < BTRFS_DC_CLEAR) 2870 cache->disk_cache_state = BTRFS_DC_CLEAR; 2871 2872 old_val = cache->used; 2873 num_bytes = min(total, cache->length - byte_in_group); 2874 if (alloc) { 2875 old_val += num_bytes; 2876 cache->used = old_val; 2877 cache->reserved -= num_bytes; 2878 cache->space_info->bytes_reserved -= num_bytes; 2879 cache->space_info->bytes_used += num_bytes; 2880 cache->space_info->disk_used += num_bytes * factor; 2881 spin_unlock(&cache->lock); 2882 spin_unlock(&cache->space_info->lock); 2883 } else { 2884 old_val -= num_bytes; 2885 cache->used = old_val; 2886 cache->pinned += num_bytes; 2887 btrfs_space_info_update_bytes_pinned(info, 2888 cache->space_info, num_bytes); 2889 cache->space_info->bytes_used -= num_bytes; 2890 cache->space_info->disk_used -= num_bytes * factor; 2891 spin_unlock(&cache->lock); 2892 spin_unlock(&cache->space_info->lock); 2893 2894 percpu_counter_add_batch( 2895 &cache->space_info->total_bytes_pinned, 2896 num_bytes, 2897 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2898 set_extent_dirty(&trans->transaction->pinned_extents, 2899 bytenr, bytenr + num_bytes - 1, 2900 GFP_NOFS | __GFP_NOFAIL); 2901 } 2902 2903 spin_lock(&trans->transaction->dirty_bgs_lock); 2904 if (list_empty(&cache->dirty_list)) { 2905 list_add_tail(&cache->dirty_list, 2906 &trans->transaction->dirty_bgs); 2907 trans->delayed_ref_updates++; 2908 btrfs_get_block_group(cache); 2909 } 2910 spin_unlock(&trans->transaction->dirty_bgs_lock); 2911 2912 /* 2913 * No longer have used bytes in this block group, queue it for 2914 * deletion. We do this after adding the block group to the 2915 * dirty list to avoid races between cleaner kthread and space 2916 * cache writeout. 2917 */ 2918 if (!alloc && old_val == 0) { 2919 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2920 btrfs_mark_bg_unused(cache); 2921 } 2922 2923 btrfs_put_block_group(cache); 2924 total -= num_bytes; 2925 bytenr += num_bytes; 2926 } 2927 2928 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2929 btrfs_update_delayed_refs_rsv(trans); 2930 return ret; 2931 } 2932 2933 /** 2934 * btrfs_add_reserved_bytes - update the block_group and space info counters 2935 * @cache: The cache we are manipulating 2936 * @ram_bytes: The number of bytes of file content, and will be same to 2937 * @num_bytes except for the compress path. 2938 * @num_bytes: The number of bytes in question 2939 * @delalloc: The blocks are allocated for the delalloc write 2940 * 2941 * This is called by the allocator when it reserves space. If this is a 2942 * reservation and the block group has become read only we cannot make the 2943 * reservation and return -EAGAIN, otherwise this function always succeeds. 2944 */ 2945 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2946 u64 ram_bytes, u64 num_bytes, int delalloc) 2947 { 2948 struct btrfs_space_info *space_info = cache->space_info; 2949 int ret = 0; 2950 2951 spin_lock(&space_info->lock); 2952 spin_lock(&cache->lock); 2953 if (cache->ro) { 2954 ret = -EAGAIN; 2955 } else { 2956 cache->reserved += num_bytes; 2957 space_info->bytes_reserved += num_bytes; 2958 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2959 space_info->flags, num_bytes, 1); 2960 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2961 space_info, -ram_bytes); 2962 if (delalloc) 2963 cache->delalloc_bytes += num_bytes; 2964 } 2965 spin_unlock(&cache->lock); 2966 spin_unlock(&space_info->lock); 2967 return ret; 2968 } 2969 2970 /** 2971 * btrfs_free_reserved_bytes - update the block_group and space info counters 2972 * @cache: The cache we are manipulating 2973 * @num_bytes: The number of bytes in question 2974 * @delalloc: The blocks are allocated for the delalloc write 2975 * 2976 * This is called by somebody who is freeing space that was never actually used 2977 * on disk. For example if you reserve some space for a new leaf in transaction 2978 * A and before transaction A commits you free that leaf, you call this with 2979 * reserve set to 0 in order to clear the reservation. 2980 */ 2981 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 2982 u64 num_bytes, int delalloc) 2983 { 2984 struct btrfs_space_info *space_info = cache->space_info; 2985 2986 spin_lock(&space_info->lock); 2987 spin_lock(&cache->lock); 2988 if (cache->ro) 2989 space_info->bytes_readonly += num_bytes; 2990 cache->reserved -= num_bytes; 2991 space_info->bytes_reserved -= num_bytes; 2992 space_info->max_extent_size = 0; 2993 2994 if (delalloc) 2995 cache->delalloc_bytes -= num_bytes; 2996 spin_unlock(&cache->lock); 2997 spin_unlock(&space_info->lock); 2998 } 2999 3000 static void force_metadata_allocation(struct btrfs_fs_info *info) 3001 { 3002 struct list_head *head = &info->space_info; 3003 struct btrfs_space_info *found; 3004 3005 rcu_read_lock(); 3006 list_for_each_entry_rcu(found, head, list) { 3007 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3008 found->force_alloc = CHUNK_ALLOC_FORCE; 3009 } 3010 rcu_read_unlock(); 3011 } 3012 3013 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3014 struct btrfs_space_info *sinfo, int force) 3015 { 3016 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3017 u64 thresh; 3018 3019 if (force == CHUNK_ALLOC_FORCE) 3020 return 1; 3021 3022 /* 3023 * in limited mode, we want to have some free space up to 3024 * about 1% of the FS size. 3025 */ 3026 if (force == CHUNK_ALLOC_LIMITED) { 3027 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3028 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3029 3030 if (sinfo->total_bytes - bytes_used < thresh) 3031 return 1; 3032 } 3033 3034 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3035 return 0; 3036 return 1; 3037 } 3038 3039 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3040 { 3041 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3042 3043 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3044 } 3045 3046 /* 3047 * If force is CHUNK_ALLOC_FORCE: 3048 * - return 1 if it successfully allocates a chunk, 3049 * - return errors including -ENOSPC otherwise. 3050 * If force is NOT CHUNK_ALLOC_FORCE: 3051 * - return 0 if it doesn't need to allocate a new chunk, 3052 * - return 1 if it successfully allocates a chunk, 3053 * - return errors including -ENOSPC otherwise. 3054 */ 3055 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3056 enum btrfs_chunk_alloc_enum force) 3057 { 3058 struct btrfs_fs_info *fs_info = trans->fs_info; 3059 struct btrfs_space_info *space_info; 3060 bool wait_for_alloc = false; 3061 bool should_alloc = false; 3062 int ret = 0; 3063 3064 /* Don't re-enter if we're already allocating a chunk */ 3065 if (trans->allocating_chunk) 3066 return -ENOSPC; 3067 3068 space_info = btrfs_find_space_info(fs_info, flags); 3069 ASSERT(space_info); 3070 3071 do { 3072 spin_lock(&space_info->lock); 3073 if (force < space_info->force_alloc) 3074 force = space_info->force_alloc; 3075 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3076 if (space_info->full) { 3077 /* No more free physical space */ 3078 if (should_alloc) 3079 ret = -ENOSPC; 3080 else 3081 ret = 0; 3082 spin_unlock(&space_info->lock); 3083 return ret; 3084 } else if (!should_alloc) { 3085 spin_unlock(&space_info->lock); 3086 return 0; 3087 } else if (space_info->chunk_alloc) { 3088 /* 3089 * Someone is already allocating, so we need to block 3090 * until this someone is finished and then loop to 3091 * recheck if we should continue with our allocation 3092 * attempt. 3093 */ 3094 wait_for_alloc = true; 3095 spin_unlock(&space_info->lock); 3096 mutex_lock(&fs_info->chunk_mutex); 3097 mutex_unlock(&fs_info->chunk_mutex); 3098 } else { 3099 /* Proceed with allocation */ 3100 space_info->chunk_alloc = 1; 3101 wait_for_alloc = false; 3102 spin_unlock(&space_info->lock); 3103 } 3104 3105 cond_resched(); 3106 } while (wait_for_alloc); 3107 3108 mutex_lock(&fs_info->chunk_mutex); 3109 trans->allocating_chunk = true; 3110 3111 /* 3112 * If we have mixed data/metadata chunks we want to make sure we keep 3113 * allocating mixed chunks instead of individual chunks. 3114 */ 3115 if (btrfs_mixed_space_info(space_info)) 3116 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3117 3118 /* 3119 * if we're doing a data chunk, go ahead and make sure that 3120 * we keep a reasonable number of metadata chunks allocated in the 3121 * FS as well. 3122 */ 3123 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3124 fs_info->data_chunk_allocations++; 3125 if (!(fs_info->data_chunk_allocations % 3126 fs_info->metadata_ratio)) 3127 force_metadata_allocation(fs_info); 3128 } 3129 3130 /* 3131 * Check if we have enough space in SYSTEM chunk because we may need 3132 * to update devices. 3133 */ 3134 check_system_chunk(trans, flags); 3135 3136 ret = btrfs_alloc_chunk(trans, flags); 3137 trans->allocating_chunk = false; 3138 3139 spin_lock(&space_info->lock); 3140 if (ret < 0) { 3141 if (ret == -ENOSPC) 3142 space_info->full = 1; 3143 else 3144 goto out; 3145 } else { 3146 ret = 1; 3147 space_info->max_extent_size = 0; 3148 } 3149 3150 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3151 out: 3152 space_info->chunk_alloc = 0; 3153 spin_unlock(&space_info->lock); 3154 mutex_unlock(&fs_info->chunk_mutex); 3155 /* 3156 * When we allocate a new chunk we reserve space in the chunk block 3157 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3158 * add new nodes/leafs to it if we end up needing to do it when 3159 * inserting the chunk item and updating device items as part of the 3160 * second phase of chunk allocation, performed by 3161 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3162 * large number of new block groups to create in our transaction 3163 * handle's new_bgs list to avoid exhausting the chunk block reserve 3164 * in extreme cases - like having a single transaction create many new 3165 * block groups when starting to write out the free space caches of all 3166 * the block groups that were made dirty during the lifetime of the 3167 * transaction. 3168 */ 3169 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3170 btrfs_create_pending_block_groups(trans); 3171 3172 return ret; 3173 } 3174 3175 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3176 { 3177 u64 num_dev; 3178 3179 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3180 if (!num_dev) 3181 num_dev = fs_info->fs_devices->rw_devices; 3182 3183 return num_dev; 3184 } 3185 3186 /* 3187 * Reserve space in the system space for allocating or removing a chunk 3188 */ 3189 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3190 { 3191 struct btrfs_fs_info *fs_info = trans->fs_info; 3192 struct btrfs_space_info *info; 3193 u64 left; 3194 u64 thresh; 3195 int ret = 0; 3196 u64 num_devs; 3197 3198 /* 3199 * Needed because we can end up allocating a system chunk and for an 3200 * atomic and race free space reservation in the chunk block reserve. 3201 */ 3202 lockdep_assert_held(&fs_info->chunk_mutex); 3203 3204 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3205 spin_lock(&info->lock); 3206 left = info->total_bytes - btrfs_space_info_used(info, true); 3207 spin_unlock(&info->lock); 3208 3209 num_devs = get_profile_num_devs(fs_info, type); 3210 3211 /* num_devs device items to update and 1 chunk item to add or remove */ 3212 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3213 btrfs_calc_insert_metadata_size(fs_info, 1); 3214 3215 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3216 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3217 left, thresh, type); 3218 btrfs_dump_space_info(fs_info, info, 0, 0); 3219 } 3220 3221 if (left < thresh) { 3222 u64 flags = btrfs_system_alloc_profile(fs_info); 3223 3224 /* 3225 * Ignore failure to create system chunk. We might end up not 3226 * needing it, as we might not need to COW all nodes/leafs from 3227 * the paths we visit in the chunk tree (they were already COWed 3228 * or created in the current transaction for example). 3229 */ 3230 ret = btrfs_alloc_chunk(trans, flags); 3231 } 3232 3233 if (!ret) { 3234 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3235 &fs_info->chunk_block_rsv, 3236 thresh, BTRFS_RESERVE_NO_FLUSH); 3237 if (!ret) 3238 trans->chunk_bytes_reserved += thresh; 3239 } 3240 } 3241 3242 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3243 { 3244 struct btrfs_block_group *block_group; 3245 u64 last = 0; 3246 3247 while (1) { 3248 struct inode *inode; 3249 3250 block_group = btrfs_lookup_first_block_group(info, last); 3251 while (block_group) { 3252 btrfs_wait_block_group_cache_done(block_group); 3253 spin_lock(&block_group->lock); 3254 if (block_group->iref) 3255 break; 3256 spin_unlock(&block_group->lock); 3257 block_group = btrfs_next_block_group(block_group); 3258 } 3259 if (!block_group) { 3260 if (last == 0) 3261 break; 3262 last = 0; 3263 continue; 3264 } 3265 3266 inode = block_group->inode; 3267 block_group->iref = 0; 3268 block_group->inode = NULL; 3269 spin_unlock(&block_group->lock); 3270 ASSERT(block_group->io_ctl.inode == NULL); 3271 iput(inode); 3272 last = block_group->start + block_group->length; 3273 btrfs_put_block_group(block_group); 3274 } 3275 } 3276 3277 /* 3278 * Must be called only after stopping all workers, since we could have block 3279 * group caching kthreads running, and therefore they could race with us if we 3280 * freed the block groups before stopping them. 3281 */ 3282 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3283 { 3284 struct btrfs_block_group *block_group; 3285 struct btrfs_space_info *space_info; 3286 struct btrfs_caching_control *caching_ctl; 3287 struct rb_node *n; 3288 3289 down_write(&info->commit_root_sem); 3290 while (!list_empty(&info->caching_block_groups)) { 3291 caching_ctl = list_entry(info->caching_block_groups.next, 3292 struct btrfs_caching_control, list); 3293 list_del(&caching_ctl->list); 3294 btrfs_put_caching_control(caching_ctl); 3295 } 3296 up_write(&info->commit_root_sem); 3297 3298 spin_lock(&info->unused_bgs_lock); 3299 while (!list_empty(&info->unused_bgs)) { 3300 block_group = list_first_entry(&info->unused_bgs, 3301 struct btrfs_block_group, 3302 bg_list); 3303 list_del_init(&block_group->bg_list); 3304 btrfs_put_block_group(block_group); 3305 } 3306 spin_unlock(&info->unused_bgs_lock); 3307 3308 spin_lock(&info->block_group_cache_lock); 3309 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3310 block_group = rb_entry(n, struct btrfs_block_group, 3311 cache_node); 3312 rb_erase(&block_group->cache_node, 3313 &info->block_group_cache_tree); 3314 RB_CLEAR_NODE(&block_group->cache_node); 3315 spin_unlock(&info->block_group_cache_lock); 3316 3317 down_write(&block_group->space_info->groups_sem); 3318 list_del(&block_group->list); 3319 up_write(&block_group->space_info->groups_sem); 3320 3321 /* 3322 * We haven't cached this block group, which means we could 3323 * possibly have excluded extents on this block group. 3324 */ 3325 if (block_group->cached == BTRFS_CACHE_NO || 3326 block_group->cached == BTRFS_CACHE_ERROR) 3327 btrfs_free_excluded_extents(block_group); 3328 3329 btrfs_remove_free_space_cache(block_group); 3330 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3331 ASSERT(list_empty(&block_group->dirty_list)); 3332 ASSERT(list_empty(&block_group->io_list)); 3333 ASSERT(list_empty(&block_group->bg_list)); 3334 ASSERT(refcount_read(&block_group->refs) == 1); 3335 btrfs_put_block_group(block_group); 3336 3337 spin_lock(&info->block_group_cache_lock); 3338 } 3339 spin_unlock(&info->block_group_cache_lock); 3340 3341 /* 3342 * Now that all the block groups are freed, go through and free all the 3343 * space_info structs. This is only called during the final stages of 3344 * unmount, and so we know nobody is using them. We call 3345 * synchronize_rcu() once before we start, just to be on the safe side. 3346 */ 3347 synchronize_rcu(); 3348 3349 btrfs_release_global_block_rsv(info); 3350 3351 while (!list_empty(&info->space_info)) { 3352 space_info = list_entry(info->space_info.next, 3353 struct btrfs_space_info, 3354 list); 3355 3356 /* 3357 * Do not hide this behind enospc_debug, this is actually 3358 * important and indicates a real bug if this happens. 3359 */ 3360 if (WARN_ON(space_info->bytes_pinned > 0 || 3361 space_info->bytes_reserved > 0 || 3362 space_info->bytes_may_use > 0)) 3363 btrfs_dump_space_info(info, space_info, 0, 0); 3364 WARN_ON(space_info->reclaim_size > 0); 3365 list_del(&space_info->list); 3366 btrfs_sysfs_remove_space_info(space_info); 3367 } 3368 return 0; 3369 } 3370 3371 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3372 { 3373 atomic_inc(&cache->frozen); 3374 } 3375 3376 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3377 { 3378 struct btrfs_fs_info *fs_info = block_group->fs_info; 3379 struct extent_map_tree *em_tree; 3380 struct extent_map *em; 3381 bool cleanup; 3382 3383 spin_lock(&block_group->lock); 3384 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3385 block_group->removed); 3386 spin_unlock(&block_group->lock); 3387 3388 if (cleanup) { 3389 em_tree = &fs_info->mapping_tree; 3390 write_lock(&em_tree->lock); 3391 em = lookup_extent_mapping(em_tree, block_group->start, 3392 1); 3393 BUG_ON(!em); /* logic error, can't happen */ 3394 remove_extent_mapping(em_tree, em); 3395 write_unlock(&em_tree->lock); 3396 3397 /* once for us and once for the tree */ 3398 free_extent_map(em); 3399 free_extent_map(em); 3400 3401 /* 3402 * We may have left one free space entry and other possible 3403 * tasks trimming this block group have left 1 entry each one. 3404 * Free them if any. 3405 */ 3406 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3407 } 3408 } 3409