xref: /openbmc/linux/fs/btrfs/block-group.c (revision 32c2e6dd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 		allowed = BTRFS_BLOCK_GROUP_RAID6;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 		allowed = BTRFS_BLOCK_GROUP_RAID5;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 		allowed = BTRFS_BLOCK_GROUP_RAID10;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 		allowed = BTRFS_BLOCK_GROUP_RAID1;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 		allowed = BTRFS_BLOCK_GROUP_RAID0;
91 
92 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 
94 	return extended_to_chunk(flags | allowed);
95 }
96 
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 	unsigned seq;
100 	u64 flags;
101 
102 	do {
103 		flags = orig_flags;
104 		seq = read_seqbegin(&fs_info->profiles_lock);
105 
106 		if (flags & BTRFS_BLOCK_GROUP_DATA)
107 			flags |= fs_info->avail_data_alloc_bits;
108 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 			flags |= fs_info->avail_system_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 			flags |= fs_info->avail_metadata_alloc_bits;
112 	} while (read_seqretry(&fs_info->profiles_lock, seq));
113 
114 	return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116 
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 	refcount_inc(&cache->refs);
120 }
121 
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 	if (refcount_dec_and_test(&cache->refs)) {
125 		WARN_ON(cache->pinned > 0);
126 		WARN_ON(cache->reserved > 0);
127 
128 		/*
129 		 * A block_group shouldn't be on the discard_list anymore.
130 		 * Remove the block_group from the discard_list to prevent us
131 		 * from causing a panic due to NULL pointer dereference.
132 		 */
133 		if (WARN_ON(!list_empty(&cache->discard_list)))
134 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 						  cache);
136 
137 		/*
138 		 * If not empty, someone is still holding mutex of
139 		 * full_stripe_lock, which can only be released by caller.
140 		 * And it will definitely cause use-after-free when caller
141 		 * tries to release full stripe lock.
142 		 *
143 		 * No better way to resolve, but only to warn.
144 		 */
145 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 		kfree(cache->free_space_ctl);
147 		kfree(cache);
148 	}
149 }
150 
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				       struct btrfs_block_group *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group *cache;
160 
161 	ASSERT(block_group->length != 0);
162 
163 	spin_lock(&info->block_group_cache_lock);
164 	p = &info->block_group_cache_tree.rb_node;
165 
166 	while (*p) {
167 		parent = *p;
168 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 		if (block_group->start < cache->start) {
170 			p = &(*p)->rb_left;
171 		} else if (block_group->start > cache->start) {
172 			p = &(*p)->rb_right;
173 		} else {
174 			spin_unlock(&info->block_group_cache_lock);
175 			return -EEXIST;
176 		}
177 	}
178 
179 	rb_link_node(&block_group->cache_node, parent, p);
180 	rb_insert_color(&block_group->cache_node,
181 			&info->block_group_cache_tree);
182 
183 	if (info->first_logical_byte > block_group->start)
184 		info->first_logical_byte = block_group->start;
185 
186 	spin_unlock(&info->block_group_cache_lock);
187 
188 	return 0;
189 }
190 
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196 		struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 	struct btrfs_block_group *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 		end = cache->start + cache->length - 1;
208 		start = cache->start;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->start))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->start)
228 			info->first_logical_byte = ret->start;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 		struct btrfs_fs_info *info, u64 bytenr)
240 {
241 	return block_group_cache_tree_search(info, bytenr, 0);
242 }
243 
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248 		struct btrfs_fs_info *info, u64 bytenr)
249 {
250 	return block_group_cache_tree_search(info, bytenr, 1);
251 }
252 
253 struct btrfs_block_group *btrfs_next_block_group(
254 		struct btrfs_block_group *cache)
255 {
256 	struct btrfs_fs_info *fs_info = cache->fs_info;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->block_group_cache_lock);
260 
261 	/* If our block group was removed, we need a full search. */
262 	if (RB_EMPTY_NODE(&cache->cache_node)) {
263 		const u64 next_bytenr = cache->start + cache->length;
264 
265 		spin_unlock(&fs_info->block_group_cache_lock);
266 		btrfs_put_block_group(cache);
267 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 	}
269 	node = rb_next(&cache->cache_node);
270 	btrfs_put_block_group(cache);
271 	if (node) {
272 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 		btrfs_get_block_group(cache);
274 	} else
275 		cache = NULL;
276 	spin_unlock(&fs_info->block_group_cache_lock);
277 	return cache;
278 }
279 
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 	struct btrfs_block_group *bg;
283 	bool ret = true;
284 
285 	bg = btrfs_lookup_block_group(fs_info, bytenr);
286 	if (!bg)
287 		return false;
288 
289 	spin_lock(&bg->lock);
290 	if (bg->ro)
291 		ret = false;
292 	else
293 		atomic_inc(&bg->nocow_writers);
294 	spin_unlock(&bg->lock);
295 
296 	/* No put on block group, done by btrfs_dec_nocow_writers */
297 	if (!ret)
298 		btrfs_put_block_group(bg);
299 
300 	return ret;
301 }
302 
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 
307 	bg = btrfs_lookup_block_group(fs_info, bytenr);
308 	ASSERT(bg);
309 	if (atomic_dec_and_test(&bg->nocow_writers))
310 		wake_up_var(&bg->nocow_writers);
311 	/*
312 	 * Once for our lookup and once for the lookup done by a previous call
313 	 * to btrfs_inc_nocow_writers()
314 	 */
315 	btrfs_put_block_group(bg);
316 	btrfs_put_block_group(bg);
317 }
318 
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323 
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 					const u64 start)
326 {
327 	struct btrfs_block_group *bg;
328 
329 	bg = btrfs_lookup_block_group(fs_info, start);
330 	ASSERT(bg);
331 	if (atomic_dec_and_test(&bg->reservations))
332 		wake_up_var(&bg->reservations);
333 	btrfs_put_block_group(bg);
334 }
335 
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 	struct btrfs_space_info *space_info = bg->space_info;
339 
340 	ASSERT(bg->ro);
341 
342 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 		return;
344 
345 	/*
346 	 * Our block group is read only but before we set it to read only,
347 	 * some task might have had allocated an extent from it already, but it
348 	 * has not yet created a respective ordered extent (and added it to a
349 	 * root's list of ordered extents).
350 	 * Therefore wait for any task currently allocating extents, since the
351 	 * block group's reservations counter is incremented while a read lock
352 	 * on the groups' semaphore is held and decremented after releasing
353 	 * the read access on that semaphore and creating the ordered extent.
354 	 */
355 	down_write(&space_info->groups_sem);
356 	up_write(&space_info->groups_sem);
357 
358 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360 
361 struct btrfs_caching_control *btrfs_get_caching_control(
362 		struct btrfs_block_group *cache)
363 {
364 	struct btrfs_caching_control *ctl;
365 
366 	spin_lock(&cache->lock);
367 	if (!cache->caching_ctl) {
368 		spin_unlock(&cache->lock);
369 		return NULL;
370 	}
371 
372 	ctl = cache->caching_ctl;
373 	refcount_inc(&ctl->count);
374 	spin_unlock(&cache->lock);
375 	return ctl;
376 }
377 
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 	if (refcount_dec_and_test(&ctl->count))
381 		kfree(ctl);
382 }
383 
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 					   u64 num_bytes)
399 {
400 	struct btrfs_caching_control *caching_ctl;
401 
402 	caching_ctl = btrfs_get_caching_control(cache);
403 	if (!caching_ctl)
404 		return;
405 
406 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 		   (cache->free_space_ctl->free_space >= num_bytes));
408 
409 	btrfs_put_caching_control(caching_ctl);
410 }
411 
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 	struct btrfs_caching_control *caching_ctl;
415 	int ret = 0;
416 
417 	caching_ctl = btrfs_get_caching_control(cache);
418 	if (!caching_ctl)
419 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 
421 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 	if (cache->cached == BTRFS_CACHE_ERROR)
423 		ret = -EIO;
424 	btrfs_put_caching_control(caching_ctl);
425 	return ret;
426 }
427 
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 	bool ret;
431 
432 	spin_lock(&cache->lock);
433 	ret = cache->cached != BTRFS_CACHE_FAST;
434 	spin_unlock(&cache->lock);
435 
436 	return ret;
437 }
438 
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 				struct btrfs_caching_control *caching_ctl)
441 {
442 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444 
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 	u64 start = block_group->start;
450 	u64 len = block_group->length;
451 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 		fs_info->nodesize : fs_info->sectorsize;
453 	u64 step = chunk << 1;
454 
455 	while (len > chunk) {
456 		btrfs_remove_free_space(block_group, start, chunk);
457 		start += step;
458 		if (len < step)
459 			len = 0;
460 		else
461 			len -= step;
462 	}
463 }
464 #endif
465 
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 	struct btrfs_fs_info *info = block_group->fs_info;
475 	u64 extent_start, extent_end, size, total_added = 0;
476 	int ret;
477 
478 	while (start < end) {
479 		ret = find_first_extent_bit(&info->excluded_extents, start,
480 					    &extent_start, &extent_end,
481 					    EXTENT_DIRTY | EXTENT_UPTODATE,
482 					    NULL);
483 		if (ret)
484 			break;
485 
486 		if (extent_start <= start) {
487 			start = extent_end + 1;
488 		} else if (extent_start > start && extent_start < end) {
489 			size = extent_start - start;
490 			total_added += size;
491 			ret = btrfs_add_free_space_async_trimmed(block_group,
492 								 start, size);
493 			BUG_ON(ret); /* -ENOMEM or logic error */
494 			start = extent_end + 1;
495 		} else {
496 			break;
497 		}
498 	}
499 
500 	if (start < end) {
501 		size = end - start;
502 		total_added += size;
503 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 							 size);
505 		BUG_ON(ret); /* -ENOMEM or logic error */
506 	}
507 
508 	return total_added;
509 }
510 
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
515 	struct btrfs_root *extent_root = fs_info->extent_root;
516 	struct btrfs_path *path;
517 	struct extent_buffer *leaf;
518 	struct btrfs_key key;
519 	u64 total_found = 0;
520 	u64 last = 0;
521 	u32 nritems;
522 	int ret;
523 	bool wakeup = true;
524 
525 	path = btrfs_alloc_path();
526 	if (!path)
527 		return -ENOMEM;
528 
529 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 
531 #ifdef CONFIG_BTRFS_DEBUG
532 	/*
533 	 * If we're fragmenting we don't want to make anybody think we can
534 	 * allocate from this block group until we've had a chance to fragment
535 	 * the free space.
536 	 */
537 	if (btrfs_should_fragment_free_space(block_group))
538 		wakeup = false;
539 #endif
540 	/*
541 	 * We don't want to deadlock with somebody trying to allocate a new
542 	 * extent for the extent root while also trying to search the extent
543 	 * root to add free space.  So we skip locking and search the commit
544 	 * root, since its read-only
545 	 */
546 	path->skip_locking = 1;
547 	path->search_commit_root = 1;
548 	path->reada = READA_FORWARD;
549 
550 	key.objectid = last;
551 	key.offset = 0;
552 	key.type = BTRFS_EXTENT_ITEM_KEY;
553 
554 next:
555 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 	if (ret < 0)
557 		goto out;
558 
559 	leaf = path->nodes[0];
560 	nritems = btrfs_header_nritems(leaf);
561 
562 	while (1) {
563 		if (btrfs_fs_closing(fs_info) > 1) {
564 			last = (u64)-1;
565 			break;
566 		}
567 
568 		if (path->slots[0] < nritems) {
569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 		} else {
571 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 			if (ret)
573 				break;
574 
575 			if (need_resched() ||
576 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
577 				if (wakeup)
578 					caching_ctl->progress = last;
579 				btrfs_release_path(path);
580 				up_read(&fs_info->commit_root_sem);
581 				mutex_unlock(&caching_ctl->mutex);
582 				cond_resched();
583 				mutex_lock(&caching_ctl->mutex);
584 				down_read(&fs_info->commit_root_sem);
585 				goto next;
586 			}
587 
588 			ret = btrfs_next_leaf(extent_root, path);
589 			if (ret < 0)
590 				goto out;
591 			if (ret)
592 				break;
593 			leaf = path->nodes[0];
594 			nritems = btrfs_header_nritems(leaf);
595 			continue;
596 		}
597 
598 		if (key.objectid < last) {
599 			key.objectid = last;
600 			key.offset = 0;
601 			key.type = BTRFS_EXTENT_ITEM_KEY;
602 
603 			if (wakeup)
604 				caching_ctl->progress = last;
605 			btrfs_release_path(path);
606 			goto next;
607 		}
608 
609 		if (key.objectid < block_group->start) {
610 			path->slots[0]++;
611 			continue;
612 		}
613 
614 		if (key.objectid >= block_group->start + block_group->length)
615 			break;
616 
617 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 		    key.type == BTRFS_METADATA_ITEM_KEY) {
619 			total_found += add_new_free_space(block_group, last,
620 							  key.objectid);
621 			if (key.type == BTRFS_METADATA_ITEM_KEY)
622 				last = key.objectid +
623 					fs_info->nodesize;
624 			else
625 				last = key.objectid + key.offset;
626 
627 			if (total_found > CACHING_CTL_WAKE_UP) {
628 				total_found = 0;
629 				if (wakeup)
630 					wake_up(&caching_ctl->wait);
631 			}
632 		}
633 		path->slots[0]++;
634 	}
635 	ret = 0;
636 
637 	total_found += add_new_free_space(block_group, last,
638 				block_group->start + block_group->length);
639 	caching_ctl->progress = (u64)-1;
640 
641 out:
642 	btrfs_free_path(path);
643 	return ret;
644 }
645 
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 	struct btrfs_block_group *block_group;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_caching_control *caching_ctl;
651 	int ret;
652 
653 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 	block_group = caching_ctl->block_group;
655 	fs_info = block_group->fs_info;
656 
657 	mutex_lock(&caching_ctl->mutex);
658 	down_read(&fs_info->commit_root_sem);
659 
660 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 		ret = load_free_space_cache(block_group);
662 		if (ret == 1) {
663 			ret = 0;
664 			goto done;
665 		}
666 
667 		/*
668 		 * We failed to load the space cache, set ourselves to
669 		 * CACHE_STARTED and carry on.
670 		 */
671 		spin_lock(&block_group->lock);
672 		block_group->cached = BTRFS_CACHE_STARTED;
673 		spin_unlock(&block_group->lock);
674 		wake_up(&caching_ctl->wait);
675 	}
676 
677 	/*
678 	 * If we are in the transaction that populated the free space tree we
679 	 * can't actually cache from the free space tree as our commit root and
680 	 * real root are the same, so we could change the contents of the blocks
681 	 * while caching.  Instead do the slow caching in this case, and after
682 	 * the transaction has committed we will be safe.
683 	 */
684 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 		ret = load_free_space_tree(caching_ctl);
687 	else
688 		ret = load_extent_tree_free(caching_ctl);
689 done:
690 	spin_lock(&block_group->lock);
691 	block_group->caching_ctl = NULL;
692 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 	spin_unlock(&block_group->lock);
694 
695 #ifdef CONFIG_BTRFS_DEBUG
696 	if (btrfs_should_fragment_free_space(block_group)) {
697 		u64 bytes_used;
698 
699 		spin_lock(&block_group->space_info->lock);
700 		spin_lock(&block_group->lock);
701 		bytes_used = block_group->length - block_group->used;
702 		block_group->space_info->bytes_used += bytes_used >> 1;
703 		spin_unlock(&block_group->lock);
704 		spin_unlock(&block_group->space_info->lock);
705 		fragment_free_space(block_group);
706 	}
707 #endif
708 
709 	caching_ctl->progress = (u64)-1;
710 
711 	up_read(&fs_info->commit_root_sem);
712 	btrfs_free_excluded_extents(block_group);
713 	mutex_unlock(&caching_ctl->mutex);
714 
715 	wake_up(&caching_ctl->wait);
716 
717 	btrfs_put_caching_control(caching_ctl);
718 	btrfs_put_block_group(block_group);
719 }
720 
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 	DEFINE_WAIT(wait);
724 	struct btrfs_fs_info *fs_info = cache->fs_info;
725 	struct btrfs_caching_control *caching_ctl = NULL;
726 	int ret = 0;
727 
728 	/* Allocator for zoned filesystems does not use the cache at all */
729 	if (btrfs_is_zoned(fs_info))
730 		return 0;
731 
732 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 	if (!caching_ctl)
734 		return -ENOMEM;
735 
736 	INIT_LIST_HEAD(&caching_ctl->list);
737 	mutex_init(&caching_ctl->mutex);
738 	init_waitqueue_head(&caching_ctl->wait);
739 	caching_ctl->block_group = cache;
740 	caching_ctl->progress = cache->start;
741 	refcount_set(&caching_ctl->count, 2);
742 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 
744 	spin_lock(&cache->lock);
745 	if (cache->cached != BTRFS_CACHE_NO) {
746 		kfree(caching_ctl);
747 
748 		caching_ctl = cache->caching_ctl;
749 		if (caching_ctl)
750 			refcount_inc(&caching_ctl->count);
751 		spin_unlock(&cache->lock);
752 		goto out;
753 	}
754 	WARN_ON(cache->caching_ctl);
755 	cache->caching_ctl = caching_ctl;
756 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 		cache->cached = BTRFS_CACHE_FAST;
758 	else
759 		cache->cached = BTRFS_CACHE_STARTED;
760 	cache->has_caching_ctl = 1;
761 	spin_unlock(&cache->lock);
762 
763 	spin_lock(&fs_info->block_group_cache_lock);
764 	refcount_inc(&caching_ctl->count);
765 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 	spin_unlock(&fs_info->block_group_cache_lock);
767 
768 	btrfs_get_block_group(cache);
769 
770 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 	if (load_cache_only && caching_ctl)
773 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 	if (caching_ctl)
775 		btrfs_put_caching_control(caching_ctl);
776 
777 	return ret;
778 }
779 
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 	u64 extra_flags = chunk_to_extended(flags) &
783 				BTRFS_EXTENDED_PROFILE_MASK;
784 
785 	write_seqlock(&fs_info->profiles_lock);
786 	if (flags & BTRFS_BLOCK_GROUP_DATA)
787 		fs_info->avail_data_alloc_bits &= ~extra_flags;
788 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 		fs_info->avail_system_alloc_bits &= ~extra_flags;
792 	write_sequnlock(&fs_info->profiles_lock);
793 }
794 
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 	bool found_raid56 = false;
806 	bool found_raid1c34 = false;
807 
808 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 		struct list_head *head = &fs_info->space_info;
812 		struct btrfs_space_info *sinfo;
813 
814 		list_for_each_entry_rcu(sinfo, head, list) {
815 			down_read(&sinfo->groups_sem);
816 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 				found_raid56 = true;
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 				found_raid1c34 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 				found_raid1c34 = true;
824 			up_read(&sinfo->groups_sem);
825 		}
826 		if (!found_raid56)
827 			btrfs_clear_fs_incompat(fs_info, RAID56);
828 		if (!found_raid1c34)
829 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 	}
831 }
832 
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 				   struct btrfs_path *path,
835 				   struct btrfs_block_group *block_group)
836 {
837 	struct btrfs_fs_info *fs_info = trans->fs_info;
838 	struct btrfs_root *root;
839 	struct btrfs_key key;
840 	int ret;
841 
842 	root = fs_info->extent_root;
843 	key.objectid = block_group->start;
844 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 	key.offset = block_group->length;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 	if (ret > 0)
849 		ret = -ENOENT;
850 	if (ret < 0)
851 		return ret;
852 
853 	ret = btrfs_del_item(trans, root, path);
854 	return ret;
855 }
856 
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 			     u64 group_start, struct extent_map *em)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct btrfs_path *path;
862 	struct btrfs_block_group *block_group;
863 	struct btrfs_free_cluster *cluster;
864 	struct inode *inode;
865 	struct kobject *kobj = NULL;
866 	int ret;
867 	int index;
868 	int factor;
869 	struct btrfs_caching_control *caching_ctl = NULL;
870 	bool remove_em;
871 	bool remove_rsv = false;
872 
873 	block_group = btrfs_lookup_block_group(fs_info, group_start);
874 	BUG_ON(!block_group);
875 	BUG_ON(!block_group->ro);
876 
877 	trace_btrfs_remove_block_group(block_group);
878 	/*
879 	 * Free the reserved super bytes from this block group before
880 	 * remove it.
881 	 */
882 	btrfs_free_excluded_extents(block_group);
883 	btrfs_free_ref_tree_range(fs_info, block_group->start,
884 				  block_group->length);
885 
886 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 	factor = btrfs_bg_type_to_factor(block_group->flags);
888 
889 	/* make sure this block group isn't part of an allocation cluster */
890 	cluster = &fs_info->data_alloc_cluster;
891 	spin_lock(&cluster->refill_lock);
892 	btrfs_return_cluster_to_free_space(block_group, cluster);
893 	spin_unlock(&cluster->refill_lock);
894 
895 	/*
896 	 * make sure this block group isn't part of a metadata
897 	 * allocation cluster
898 	 */
899 	cluster = &fs_info->meta_alloc_cluster;
900 	spin_lock(&cluster->refill_lock);
901 	btrfs_return_cluster_to_free_space(block_group, cluster);
902 	spin_unlock(&cluster->refill_lock);
903 
904 	btrfs_clear_treelog_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->swap_extents) {
1166 		ret = -ETXTBSY;
1167 		goto out;
1168 	}
1169 
1170 	if (cache->ro) {
1171 		cache->ro++;
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	num_bytes = cache->length - cache->reserved - cache->pinned -
1177 		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 
1179 	/*
1180 	 * Data never overcommits, even in mixed mode, so do just the straight
1181 	 * check of left over space in how much we have allocated.
1182 	 */
1183 	if (force) {
1184 		ret = 0;
1185 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187 
1188 		/*
1189 		 * Here we make sure if we mark this bg RO, we still have enough
1190 		 * free space as buffer.
1191 		 */
1192 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 			ret = 0;
1194 	} else {
1195 		/*
1196 		 * We overcommit metadata, so we need to do the
1197 		 * btrfs_can_overcommit check here, and we need to pass in
1198 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 		 * leeway to allow us to mark this block group as read only.
1200 		 */
1201 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 					 BTRFS_RESERVE_NO_FLUSH))
1203 			ret = 0;
1204 	}
1205 
1206 	if (!ret) {
1207 		sinfo->bytes_readonly += num_bytes;
1208 		if (btrfs_is_zoned(cache->fs_info)) {
1209 			/* Migrate zone_unusable bytes to readonly */
1210 			sinfo->bytes_readonly += cache->zone_unusable;
1211 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 			cache->zone_unusable = 0;
1213 		}
1214 		cache->ro++;
1215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 	}
1217 out:
1218 	spin_unlock(&cache->lock);
1219 	spin_unlock(&sinfo->lock);
1220 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 		btrfs_info(cache->fs_info,
1222 			"unable to make block group %llu ro", cache->start);
1223 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 	}
1225 	return ret;
1226 }
1227 
1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_block_group *bg)
1230 {
1231 	struct btrfs_fs_info *fs_info = bg->fs_info;
1232 	struct btrfs_transaction *prev_trans = NULL;
1233 	const u64 start = bg->start;
1234 	const u64 end = start + bg->length - 1;
1235 	int ret;
1236 
1237 	spin_lock(&fs_info->trans_lock);
1238 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 		prev_trans = list_last_entry(&trans->transaction->list,
1240 					     struct btrfs_transaction, list);
1241 		refcount_inc(&prev_trans->use_count);
1242 	}
1243 	spin_unlock(&fs_info->trans_lock);
1244 
1245 	/*
1246 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 	 * task might be running finish_extent_commit() for the previous
1249 	 * transaction N - 1, and have seen a range belonging to the block
1250 	 * group in pinned_extents before we were able to clear the whole block
1251 	 * group range from pinned_extents. This means that task can lookup for
1252 	 * the block group after we unpinned it from pinned_extents and removed
1253 	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 	 */
1255 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 	if (prev_trans) {
1257 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 					EXTENT_DIRTY);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 				EXTENT_DIRTY);
1265 out:
1266 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 	if (prev_trans)
1268 		btrfs_put_transaction(prev_trans);
1269 
1270 	return ret == 0;
1271 }
1272 
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_block_group *block_group;
1280 	struct btrfs_space_info *space_info;
1281 	struct btrfs_trans_handle *trans;
1282 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 	int ret = 0;
1284 
1285 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 		return;
1287 
1288 	/*
1289 	 * Long running balances can keep us blocked here for eternity, so
1290 	 * simply skip deletion if we're unable to get the mutex.
1291 	 */
1292 	if (!mutex_trylock(&fs_info->delete_unused_bgs_mutex))
1293 		return;
1294 
1295 	spin_lock(&fs_info->unused_bgs_lock);
1296 	while (!list_empty(&fs_info->unused_bgs)) {
1297 		int trimming;
1298 
1299 		block_group = list_first_entry(&fs_info->unused_bgs,
1300 					       struct btrfs_block_group,
1301 					       bg_list);
1302 		list_del_init(&block_group->bg_list);
1303 
1304 		space_info = block_group->space_info;
1305 
1306 		if (ret || btrfs_mixed_space_info(space_info)) {
1307 			btrfs_put_block_group(block_group);
1308 			continue;
1309 		}
1310 		spin_unlock(&fs_info->unused_bgs_lock);
1311 
1312 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313 
1314 		/* Don't want to race with allocators so take the groups_sem */
1315 		down_write(&space_info->groups_sem);
1316 
1317 		/*
1318 		 * Async discard moves the final block group discard to be prior
1319 		 * to the unused_bgs code path.  Therefore, if it's not fully
1320 		 * trimmed, punt it back to the async discard lists.
1321 		 */
1322 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 		    !btrfs_is_free_space_trimmed(block_group)) {
1324 			trace_btrfs_skip_unused_block_group(block_group);
1325 			up_write(&space_info->groups_sem);
1326 			/* Requeue if we failed because of async discard */
1327 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 						 block_group);
1329 			goto next;
1330 		}
1331 
1332 		spin_lock(&block_group->lock);
1333 		if (block_group->reserved || block_group->pinned ||
1334 		    block_group->used || block_group->ro ||
1335 		    list_is_singular(&block_group->list)) {
1336 			/*
1337 			 * We want to bail if we made new allocations or have
1338 			 * outstanding allocations in this block group.  We do
1339 			 * the ro check in case balance is currently acting on
1340 			 * this block group.
1341 			 */
1342 			trace_btrfs_skip_unused_block_group(block_group);
1343 			spin_unlock(&block_group->lock);
1344 			up_write(&space_info->groups_sem);
1345 			goto next;
1346 		}
1347 		spin_unlock(&block_group->lock);
1348 
1349 		/* We don't want to force the issue, only flip if it's ok. */
1350 		ret = inc_block_group_ro(block_group, 0);
1351 		up_write(&space_info->groups_sem);
1352 		if (ret < 0) {
1353 			ret = 0;
1354 			goto next;
1355 		}
1356 
1357 		/*
1358 		 * Want to do this before we do anything else so we can recover
1359 		 * properly if we fail to join the transaction.
1360 		 */
1361 		trans = btrfs_start_trans_remove_block_group(fs_info,
1362 						     block_group->start);
1363 		if (IS_ERR(trans)) {
1364 			btrfs_dec_block_group_ro(block_group);
1365 			ret = PTR_ERR(trans);
1366 			goto next;
1367 		}
1368 
1369 		/*
1370 		 * We could have pending pinned extents for this block group,
1371 		 * just delete them, we don't care about them anymore.
1372 		 */
1373 		if (!clean_pinned_extents(trans, block_group)) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			goto end_trans;
1376 		}
1377 
1378 		/*
1379 		 * At this point, the block_group is read only and should fail
1380 		 * new allocations.  However, btrfs_finish_extent_commit() can
1381 		 * cause this block_group to be placed back on the discard
1382 		 * lists because now the block_group isn't fully discarded.
1383 		 * Bail here and try again later after discarding everything.
1384 		 */
1385 		spin_lock(&fs_info->discard_ctl.lock);
1386 		if (!list_empty(&block_group->discard_list)) {
1387 			spin_unlock(&fs_info->discard_ctl.lock);
1388 			btrfs_dec_block_group_ro(block_group);
1389 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 						 block_group);
1391 			goto end_trans;
1392 		}
1393 		spin_unlock(&fs_info->discard_ctl.lock);
1394 
1395 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396 		spin_lock(&space_info->lock);
1397 		spin_lock(&block_group->lock);
1398 
1399 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 						     -block_group->pinned);
1401 		space_info->bytes_readonly += block_group->pinned;
1402 		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1403 		block_group->pinned = 0;
1404 
1405 		spin_unlock(&block_group->lock);
1406 		spin_unlock(&space_info->lock);
1407 
1408 		/*
1409 		 * The normal path here is an unused block group is passed here,
1410 		 * then trimming is handled in the transaction commit path.
1411 		 * Async discard interposes before this to do the trimming
1412 		 * before coming down the unused block group path as trimming
1413 		 * will no longer be done later in the transaction commit path.
1414 		 */
1415 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1416 			goto flip_async;
1417 
1418 		/*
1419 		 * DISCARD can flip during remount. On zoned filesystems, we
1420 		 * need to reset sequential-required zones.
1421 		 */
1422 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1423 				btrfs_is_zoned(fs_info);
1424 
1425 		/* Implicit trim during transaction commit. */
1426 		if (trimming)
1427 			btrfs_freeze_block_group(block_group);
1428 
1429 		/*
1430 		 * Btrfs_remove_chunk will abort the transaction if things go
1431 		 * horribly wrong.
1432 		 */
1433 		ret = btrfs_remove_chunk(trans, block_group->start);
1434 
1435 		if (ret) {
1436 			if (trimming)
1437 				btrfs_unfreeze_block_group(block_group);
1438 			goto end_trans;
1439 		}
1440 
1441 		/*
1442 		 * If we're not mounted with -odiscard, we can just forget
1443 		 * about this block group. Otherwise we'll need to wait
1444 		 * until transaction commit to do the actual discard.
1445 		 */
1446 		if (trimming) {
1447 			spin_lock(&fs_info->unused_bgs_lock);
1448 			/*
1449 			 * A concurrent scrub might have added us to the list
1450 			 * fs_info->unused_bgs, so use a list_move operation
1451 			 * to add the block group to the deleted_bgs list.
1452 			 */
1453 			list_move(&block_group->bg_list,
1454 				  &trans->transaction->deleted_bgs);
1455 			spin_unlock(&fs_info->unused_bgs_lock);
1456 			btrfs_get_block_group(block_group);
1457 		}
1458 end_trans:
1459 		btrfs_end_transaction(trans);
1460 next:
1461 		btrfs_put_block_group(block_group);
1462 		spin_lock(&fs_info->unused_bgs_lock);
1463 	}
1464 	spin_unlock(&fs_info->unused_bgs_lock);
1465 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1466 	return;
1467 
1468 flip_async:
1469 	btrfs_end_transaction(trans);
1470 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1471 	btrfs_put_block_group(block_group);
1472 	btrfs_discard_punt_unused_bgs_list(fs_info);
1473 }
1474 
1475 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1476 {
1477 	struct btrfs_fs_info *fs_info = bg->fs_info;
1478 
1479 	spin_lock(&fs_info->unused_bgs_lock);
1480 	if (list_empty(&bg->bg_list)) {
1481 		btrfs_get_block_group(bg);
1482 		trace_btrfs_add_unused_block_group(bg);
1483 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1484 	}
1485 	spin_unlock(&fs_info->unused_bgs_lock);
1486 }
1487 
1488 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1489 			   struct btrfs_path *path)
1490 {
1491 	struct extent_map_tree *em_tree;
1492 	struct extent_map *em;
1493 	struct btrfs_block_group_item bg;
1494 	struct extent_buffer *leaf;
1495 	int slot;
1496 	u64 flags;
1497 	int ret = 0;
1498 
1499 	slot = path->slots[0];
1500 	leaf = path->nodes[0];
1501 
1502 	em_tree = &fs_info->mapping_tree;
1503 	read_lock(&em_tree->lock);
1504 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1505 	read_unlock(&em_tree->lock);
1506 	if (!em) {
1507 		btrfs_err(fs_info,
1508 			  "logical %llu len %llu found bg but no related chunk",
1509 			  key->objectid, key->offset);
1510 		return -ENOENT;
1511 	}
1512 
1513 	if (em->start != key->objectid || em->len != key->offset) {
1514 		btrfs_err(fs_info,
1515 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1516 			key->objectid, key->offset, em->start, em->len);
1517 		ret = -EUCLEAN;
1518 		goto out_free_em;
1519 	}
1520 
1521 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1522 			   sizeof(bg));
1523 	flags = btrfs_stack_block_group_flags(&bg) &
1524 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1525 
1526 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1527 		btrfs_err(fs_info,
1528 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1529 			  key->objectid, key->offset, flags,
1530 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1531 		ret = -EUCLEAN;
1532 	}
1533 
1534 out_free_em:
1535 	free_extent_map(em);
1536 	return ret;
1537 }
1538 
1539 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1540 				  struct btrfs_path *path,
1541 				  struct btrfs_key *key)
1542 {
1543 	struct btrfs_root *root = fs_info->extent_root;
1544 	int ret;
1545 	struct btrfs_key found_key;
1546 	struct extent_buffer *leaf;
1547 	int slot;
1548 
1549 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	while (1) {
1554 		slot = path->slots[0];
1555 		leaf = path->nodes[0];
1556 		if (slot >= btrfs_header_nritems(leaf)) {
1557 			ret = btrfs_next_leaf(root, path);
1558 			if (ret == 0)
1559 				continue;
1560 			if (ret < 0)
1561 				goto out;
1562 			break;
1563 		}
1564 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1565 
1566 		if (found_key.objectid >= key->objectid &&
1567 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1568 			ret = read_bg_from_eb(fs_info, &found_key, path);
1569 			break;
1570 		}
1571 
1572 		path->slots[0]++;
1573 	}
1574 out:
1575 	return ret;
1576 }
1577 
1578 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1579 {
1580 	u64 extra_flags = chunk_to_extended(flags) &
1581 				BTRFS_EXTENDED_PROFILE_MASK;
1582 
1583 	write_seqlock(&fs_info->profiles_lock);
1584 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1585 		fs_info->avail_data_alloc_bits |= extra_flags;
1586 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1587 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1588 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1589 		fs_info->avail_system_alloc_bits |= extra_flags;
1590 	write_sequnlock(&fs_info->profiles_lock);
1591 }
1592 
1593 /**
1594  * Map a physical disk address to a list of logical addresses
1595  *
1596  * @fs_info:       the filesystem
1597  * @chunk_start:   logical address of block group
1598  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1599  * @physical:	   physical address to map to logical addresses
1600  * @logical:	   return array of logical addresses which map to @physical
1601  * @naddrs:	   length of @logical
1602  * @stripe_len:    size of IO stripe for the given block group
1603  *
1604  * Maps a particular @physical disk address to a list of @logical addresses.
1605  * Used primarily to exclude those portions of a block group that contain super
1606  * block copies.
1607  */
1608 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1609 		     struct block_device *bdev, u64 physical, u64 **logical,
1610 		     int *naddrs, int *stripe_len)
1611 {
1612 	struct extent_map *em;
1613 	struct map_lookup *map;
1614 	u64 *buf;
1615 	u64 bytenr;
1616 	u64 data_stripe_length;
1617 	u64 io_stripe_size;
1618 	int i, nr = 0;
1619 	int ret = 0;
1620 
1621 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1622 	if (IS_ERR(em))
1623 		return -EIO;
1624 
1625 	map = em->map_lookup;
1626 	data_stripe_length = em->orig_block_len;
1627 	io_stripe_size = map->stripe_len;
1628 	chunk_start = em->start;
1629 
1630 	/* For RAID5/6 adjust to a full IO stripe length */
1631 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1632 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1633 
1634 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1635 	if (!buf) {
1636 		ret = -ENOMEM;
1637 		goto out;
1638 	}
1639 
1640 	for (i = 0; i < map->num_stripes; i++) {
1641 		bool already_inserted = false;
1642 		u64 stripe_nr;
1643 		u64 offset;
1644 		int j;
1645 
1646 		if (!in_range(physical, map->stripes[i].physical,
1647 			      data_stripe_length))
1648 			continue;
1649 
1650 		if (bdev && map->stripes[i].dev->bdev != bdev)
1651 			continue;
1652 
1653 		stripe_nr = physical - map->stripes[i].physical;
1654 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1655 
1656 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1657 			stripe_nr = stripe_nr * map->num_stripes + i;
1658 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1659 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1660 			stripe_nr = stripe_nr * map->num_stripes + i;
1661 		}
1662 		/*
1663 		 * The remaining case would be for RAID56, multiply by
1664 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1665 		 * instead of map->stripe_len
1666 		 */
1667 
1668 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1669 
1670 		/* Ensure we don't add duplicate addresses */
1671 		for (j = 0; j < nr; j++) {
1672 			if (buf[j] == bytenr) {
1673 				already_inserted = true;
1674 				break;
1675 			}
1676 		}
1677 
1678 		if (!already_inserted)
1679 			buf[nr++] = bytenr;
1680 	}
1681 
1682 	*logical = buf;
1683 	*naddrs = nr;
1684 	*stripe_len = io_stripe_size;
1685 out:
1686 	free_extent_map(em);
1687 	return ret;
1688 }
1689 
1690 static int exclude_super_stripes(struct btrfs_block_group *cache)
1691 {
1692 	struct btrfs_fs_info *fs_info = cache->fs_info;
1693 	const bool zoned = btrfs_is_zoned(fs_info);
1694 	u64 bytenr;
1695 	u64 *logical;
1696 	int stripe_len;
1697 	int i, nr, ret;
1698 
1699 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1700 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1701 		cache->bytes_super += stripe_len;
1702 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1703 						stripe_len);
1704 		if (ret)
1705 			return ret;
1706 	}
1707 
1708 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1709 		bytenr = btrfs_sb_offset(i);
1710 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1711 				       bytenr, &logical, &nr, &stripe_len);
1712 		if (ret)
1713 			return ret;
1714 
1715 		/* Shouldn't have super stripes in sequential zones */
1716 		if (zoned && nr) {
1717 			btrfs_err(fs_info,
1718 			"zoned: block group %llu must not contain super block",
1719 				  cache->start);
1720 			return -EUCLEAN;
1721 		}
1722 
1723 		while (nr--) {
1724 			u64 len = min_t(u64, stripe_len,
1725 				cache->start + cache->length - logical[nr]);
1726 
1727 			cache->bytes_super += len;
1728 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1729 							len);
1730 			if (ret) {
1731 				kfree(logical);
1732 				return ret;
1733 			}
1734 		}
1735 
1736 		kfree(logical);
1737 	}
1738 	return 0;
1739 }
1740 
1741 static void link_block_group(struct btrfs_block_group *cache)
1742 {
1743 	struct btrfs_space_info *space_info = cache->space_info;
1744 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1745 
1746 	down_write(&space_info->groups_sem);
1747 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1748 	up_write(&space_info->groups_sem);
1749 }
1750 
1751 static struct btrfs_block_group *btrfs_create_block_group_cache(
1752 		struct btrfs_fs_info *fs_info, u64 start)
1753 {
1754 	struct btrfs_block_group *cache;
1755 
1756 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1757 	if (!cache)
1758 		return NULL;
1759 
1760 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1761 					GFP_NOFS);
1762 	if (!cache->free_space_ctl) {
1763 		kfree(cache);
1764 		return NULL;
1765 	}
1766 
1767 	cache->start = start;
1768 
1769 	cache->fs_info = fs_info;
1770 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1771 
1772 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1773 
1774 	refcount_set(&cache->refs, 1);
1775 	spin_lock_init(&cache->lock);
1776 	init_rwsem(&cache->data_rwsem);
1777 	INIT_LIST_HEAD(&cache->list);
1778 	INIT_LIST_HEAD(&cache->cluster_list);
1779 	INIT_LIST_HEAD(&cache->bg_list);
1780 	INIT_LIST_HEAD(&cache->ro_list);
1781 	INIT_LIST_HEAD(&cache->discard_list);
1782 	INIT_LIST_HEAD(&cache->dirty_list);
1783 	INIT_LIST_HEAD(&cache->io_list);
1784 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1785 	atomic_set(&cache->frozen, 0);
1786 	mutex_init(&cache->free_space_lock);
1787 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1788 
1789 	return cache;
1790 }
1791 
1792 /*
1793  * Iterate all chunks and verify that each of them has the corresponding block
1794  * group
1795  */
1796 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1797 {
1798 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1799 	struct extent_map *em;
1800 	struct btrfs_block_group *bg;
1801 	u64 start = 0;
1802 	int ret = 0;
1803 
1804 	while (1) {
1805 		read_lock(&map_tree->lock);
1806 		/*
1807 		 * lookup_extent_mapping will return the first extent map
1808 		 * intersecting the range, so setting @len to 1 is enough to
1809 		 * get the first chunk.
1810 		 */
1811 		em = lookup_extent_mapping(map_tree, start, 1);
1812 		read_unlock(&map_tree->lock);
1813 		if (!em)
1814 			break;
1815 
1816 		bg = btrfs_lookup_block_group(fs_info, em->start);
1817 		if (!bg) {
1818 			btrfs_err(fs_info,
1819 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1820 				     em->start, em->len);
1821 			ret = -EUCLEAN;
1822 			free_extent_map(em);
1823 			break;
1824 		}
1825 		if (bg->start != em->start || bg->length != em->len ||
1826 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1827 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1828 			btrfs_err(fs_info,
1829 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1830 				em->start, em->len,
1831 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1832 				bg->start, bg->length,
1833 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1834 			ret = -EUCLEAN;
1835 			free_extent_map(em);
1836 			btrfs_put_block_group(bg);
1837 			break;
1838 		}
1839 		start = em->start + em->len;
1840 		free_extent_map(em);
1841 		btrfs_put_block_group(bg);
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int read_one_block_group(struct btrfs_fs_info *info,
1847 				struct btrfs_block_group_item *bgi,
1848 				const struct btrfs_key *key,
1849 				int need_clear)
1850 {
1851 	struct btrfs_block_group *cache;
1852 	struct btrfs_space_info *space_info;
1853 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1854 	int ret;
1855 
1856 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1857 
1858 	cache = btrfs_create_block_group_cache(info, key->objectid);
1859 	if (!cache)
1860 		return -ENOMEM;
1861 
1862 	cache->length = key->offset;
1863 	cache->used = btrfs_stack_block_group_used(bgi);
1864 	cache->flags = btrfs_stack_block_group_flags(bgi);
1865 
1866 	set_free_space_tree_thresholds(cache);
1867 
1868 	if (need_clear) {
1869 		/*
1870 		 * When we mount with old space cache, we need to
1871 		 * set BTRFS_DC_CLEAR and set dirty flag.
1872 		 *
1873 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1874 		 *    truncate the old free space cache inode and
1875 		 *    setup a new one.
1876 		 * b) Setting 'dirty flag' makes sure that we flush
1877 		 *    the new space cache info onto disk.
1878 		 */
1879 		if (btrfs_test_opt(info, SPACE_CACHE))
1880 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1881 	}
1882 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1883 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1884 			btrfs_err(info,
1885 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1886 				  cache->start);
1887 			ret = -EINVAL;
1888 			goto error;
1889 	}
1890 
1891 	ret = btrfs_load_block_group_zone_info(cache, false);
1892 	if (ret) {
1893 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1894 			  cache->start);
1895 		goto error;
1896 	}
1897 
1898 	/*
1899 	 * We need to exclude the super stripes now so that the space info has
1900 	 * super bytes accounted for, otherwise we'll think we have more space
1901 	 * than we actually do.
1902 	 */
1903 	ret = exclude_super_stripes(cache);
1904 	if (ret) {
1905 		/* We may have excluded something, so call this just in case. */
1906 		btrfs_free_excluded_extents(cache);
1907 		goto error;
1908 	}
1909 
1910 	/*
1911 	 * For zoned filesystem, space after the allocation offset is the only
1912 	 * free space for a block group. So, we don't need any caching work.
1913 	 * btrfs_calc_zone_unusable() will set the amount of free space and
1914 	 * zone_unusable space.
1915 	 *
1916 	 * For regular filesystem, check for two cases, either we are full, and
1917 	 * therefore don't need to bother with the caching work since we won't
1918 	 * find any space, or we are empty, and we can just add all the space
1919 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
1920 	 * in the full case.
1921 	 */
1922 	if (btrfs_is_zoned(info)) {
1923 		btrfs_calc_zone_unusable(cache);
1924 	} else if (cache->length == cache->used) {
1925 		cache->last_byte_to_unpin = (u64)-1;
1926 		cache->cached = BTRFS_CACHE_FINISHED;
1927 		btrfs_free_excluded_extents(cache);
1928 	} else if (cache->used == 0) {
1929 		cache->last_byte_to_unpin = (u64)-1;
1930 		cache->cached = BTRFS_CACHE_FINISHED;
1931 		add_new_free_space(cache, cache->start,
1932 				   cache->start + cache->length);
1933 		btrfs_free_excluded_extents(cache);
1934 	}
1935 
1936 	ret = btrfs_add_block_group_cache(info, cache);
1937 	if (ret) {
1938 		btrfs_remove_free_space_cache(cache);
1939 		goto error;
1940 	}
1941 	trace_btrfs_add_block_group(info, cache, 0);
1942 	btrfs_update_space_info(info, cache->flags, cache->length,
1943 				cache->used, cache->bytes_super,
1944 				cache->zone_unusable, &space_info);
1945 
1946 	cache->space_info = space_info;
1947 
1948 	link_block_group(cache);
1949 
1950 	set_avail_alloc_bits(info, cache->flags);
1951 	if (btrfs_chunk_readonly(info, cache->start)) {
1952 		inc_block_group_ro(cache, 1);
1953 	} else if (cache->used == 0) {
1954 		ASSERT(list_empty(&cache->bg_list));
1955 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1956 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1957 		else
1958 			btrfs_mark_bg_unused(cache);
1959 	}
1960 	return 0;
1961 error:
1962 	btrfs_put_block_group(cache);
1963 	return ret;
1964 }
1965 
1966 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
1967 {
1968 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1969 	struct btrfs_space_info *space_info;
1970 	struct rb_node *node;
1971 	int ret = 0;
1972 
1973 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
1974 		struct extent_map *em;
1975 		struct map_lookup *map;
1976 		struct btrfs_block_group *bg;
1977 
1978 		em = rb_entry(node, struct extent_map, rb_node);
1979 		map = em->map_lookup;
1980 		bg = btrfs_create_block_group_cache(fs_info, em->start);
1981 		if (!bg) {
1982 			ret = -ENOMEM;
1983 			break;
1984 		}
1985 
1986 		/* Fill dummy cache as FULL */
1987 		bg->length = em->len;
1988 		bg->flags = map->type;
1989 		bg->last_byte_to_unpin = (u64)-1;
1990 		bg->cached = BTRFS_CACHE_FINISHED;
1991 		bg->used = em->len;
1992 		bg->flags = map->type;
1993 		ret = btrfs_add_block_group_cache(fs_info, bg);
1994 		if (ret) {
1995 			btrfs_remove_free_space_cache(bg);
1996 			btrfs_put_block_group(bg);
1997 			break;
1998 		}
1999 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2000 					0, 0, &space_info);
2001 		bg->space_info = space_info;
2002 		link_block_group(bg);
2003 
2004 		set_avail_alloc_bits(fs_info, bg->flags);
2005 	}
2006 	if (!ret)
2007 		btrfs_init_global_block_rsv(fs_info);
2008 	return ret;
2009 }
2010 
2011 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2012 {
2013 	struct btrfs_path *path;
2014 	int ret;
2015 	struct btrfs_block_group *cache;
2016 	struct btrfs_space_info *space_info;
2017 	struct btrfs_key key;
2018 	int need_clear = 0;
2019 	u64 cache_gen;
2020 
2021 	if (!info->extent_root)
2022 		return fill_dummy_bgs(info);
2023 
2024 	key.objectid = 0;
2025 	key.offset = 0;
2026 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2027 	path = btrfs_alloc_path();
2028 	if (!path)
2029 		return -ENOMEM;
2030 
2031 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2032 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2033 	    btrfs_super_generation(info->super_copy) != cache_gen)
2034 		need_clear = 1;
2035 	if (btrfs_test_opt(info, CLEAR_CACHE))
2036 		need_clear = 1;
2037 
2038 	while (1) {
2039 		struct btrfs_block_group_item bgi;
2040 		struct extent_buffer *leaf;
2041 		int slot;
2042 
2043 		ret = find_first_block_group(info, path, &key);
2044 		if (ret > 0)
2045 			break;
2046 		if (ret != 0)
2047 			goto error;
2048 
2049 		leaf = path->nodes[0];
2050 		slot = path->slots[0];
2051 
2052 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2053 				   sizeof(bgi));
2054 
2055 		btrfs_item_key_to_cpu(leaf, &key, slot);
2056 		btrfs_release_path(path);
2057 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2058 		if (ret < 0)
2059 			goto error;
2060 		key.objectid += key.offset;
2061 		key.offset = 0;
2062 	}
2063 	btrfs_release_path(path);
2064 
2065 	list_for_each_entry(space_info, &info->space_info, list) {
2066 		int i;
2067 
2068 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2069 			if (list_empty(&space_info->block_groups[i]))
2070 				continue;
2071 			cache = list_first_entry(&space_info->block_groups[i],
2072 						 struct btrfs_block_group,
2073 						 list);
2074 			btrfs_sysfs_add_block_group_type(cache);
2075 		}
2076 
2077 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2078 		      (BTRFS_BLOCK_GROUP_RAID10 |
2079 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2080 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2081 		       BTRFS_BLOCK_GROUP_DUP)))
2082 			continue;
2083 		/*
2084 		 * Avoid allocating from un-mirrored block group if there are
2085 		 * mirrored block groups.
2086 		 */
2087 		list_for_each_entry(cache,
2088 				&space_info->block_groups[BTRFS_RAID_RAID0],
2089 				list)
2090 			inc_block_group_ro(cache, 1);
2091 		list_for_each_entry(cache,
2092 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2093 				list)
2094 			inc_block_group_ro(cache, 1);
2095 	}
2096 
2097 	btrfs_init_global_block_rsv(info);
2098 	ret = check_chunk_block_group_mappings(info);
2099 error:
2100 	btrfs_free_path(path);
2101 	return ret;
2102 }
2103 
2104 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2105 				   struct btrfs_block_group *block_group)
2106 {
2107 	struct btrfs_fs_info *fs_info = trans->fs_info;
2108 	struct btrfs_block_group_item bgi;
2109 	struct btrfs_root *root;
2110 	struct btrfs_key key;
2111 
2112 	spin_lock(&block_group->lock);
2113 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2114 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2115 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2116 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2117 	key.objectid = block_group->start;
2118 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2119 	key.offset = block_group->length;
2120 	spin_unlock(&block_group->lock);
2121 
2122 	root = fs_info->extent_root;
2123 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2124 }
2125 
2126 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2127 {
2128 	struct btrfs_fs_info *fs_info = trans->fs_info;
2129 	struct btrfs_block_group *block_group;
2130 	int ret = 0;
2131 
2132 	if (!trans->can_flush_pending_bgs)
2133 		return;
2134 
2135 	while (!list_empty(&trans->new_bgs)) {
2136 		int index;
2137 
2138 		block_group = list_first_entry(&trans->new_bgs,
2139 					       struct btrfs_block_group,
2140 					       bg_list);
2141 		if (ret)
2142 			goto next;
2143 
2144 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2145 
2146 		ret = insert_block_group_item(trans, block_group);
2147 		if (ret)
2148 			btrfs_abort_transaction(trans, ret);
2149 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2150 					block_group->length);
2151 		if (ret)
2152 			btrfs_abort_transaction(trans, ret);
2153 		add_block_group_free_space(trans, block_group);
2154 
2155 		/*
2156 		 * If we restriped during balance, we may have added a new raid
2157 		 * type, so now add the sysfs entries when it is safe to do so.
2158 		 * We don't have to worry about locking here as it's handled in
2159 		 * btrfs_sysfs_add_block_group_type.
2160 		 */
2161 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2162 			btrfs_sysfs_add_block_group_type(block_group);
2163 
2164 		/* Already aborted the transaction if it failed. */
2165 next:
2166 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2167 		list_del_init(&block_group->bg_list);
2168 	}
2169 	btrfs_trans_release_chunk_metadata(trans);
2170 }
2171 
2172 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2173 			   u64 type, u64 chunk_offset, u64 size)
2174 {
2175 	struct btrfs_fs_info *fs_info = trans->fs_info;
2176 	struct btrfs_block_group *cache;
2177 	int ret;
2178 
2179 	btrfs_set_log_full_commit(trans);
2180 
2181 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2182 	if (!cache)
2183 		return -ENOMEM;
2184 
2185 	cache->length = size;
2186 	set_free_space_tree_thresholds(cache);
2187 	cache->used = bytes_used;
2188 	cache->flags = type;
2189 	cache->last_byte_to_unpin = (u64)-1;
2190 	cache->cached = BTRFS_CACHE_FINISHED;
2191 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2192 		cache->needs_free_space = 1;
2193 
2194 	ret = btrfs_load_block_group_zone_info(cache, true);
2195 	if (ret) {
2196 		btrfs_put_block_group(cache);
2197 		return ret;
2198 	}
2199 
2200 	ret = exclude_super_stripes(cache);
2201 	if (ret) {
2202 		/* We may have excluded something, so call this just in case */
2203 		btrfs_free_excluded_extents(cache);
2204 		btrfs_put_block_group(cache);
2205 		return ret;
2206 	}
2207 
2208 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2209 
2210 	btrfs_free_excluded_extents(cache);
2211 
2212 #ifdef CONFIG_BTRFS_DEBUG
2213 	if (btrfs_should_fragment_free_space(cache)) {
2214 		u64 new_bytes_used = size - bytes_used;
2215 
2216 		bytes_used += new_bytes_used >> 1;
2217 		fragment_free_space(cache);
2218 	}
2219 #endif
2220 	/*
2221 	 * Ensure the corresponding space_info object is created and
2222 	 * assigned to our block group. We want our bg to be added to the rbtree
2223 	 * with its ->space_info set.
2224 	 */
2225 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2226 	ASSERT(cache->space_info);
2227 
2228 	ret = btrfs_add_block_group_cache(fs_info, cache);
2229 	if (ret) {
2230 		btrfs_remove_free_space_cache(cache);
2231 		btrfs_put_block_group(cache);
2232 		return ret;
2233 	}
2234 
2235 	/*
2236 	 * Now that our block group has its ->space_info set and is inserted in
2237 	 * the rbtree, update the space info's counters.
2238 	 */
2239 	trace_btrfs_add_block_group(fs_info, cache, 1);
2240 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2241 				cache->bytes_super, 0, &cache->space_info);
2242 	btrfs_update_global_block_rsv(fs_info);
2243 
2244 	link_block_group(cache);
2245 
2246 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2247 	trans->delayed_ref_updates++;
2248 	btrfs_update_delayed_refs_rsv(trans);
2249 
2250 	set_avail_alloc_bits(fs_info, type);
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Mark one block group RO, can be called several times for the same block
2256  * group.
2257  *
2258  * @cache:		the destination block group
2259  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2260  * 			ensure we still have some free space after marking this
2261  * 			block group RO.
2262  */
2263 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2264 			     bool do_chunk_alloc)
2265 {
2266 	struct btrfs_fs_info *fs_info = cache->fs_info;
2267 	struct btrfs_trans_handle *trans;
2268 	u64 alloc_flags;
2269 	int ret;
2270 
2271 again:
2272 	trans = btrfs_join_transaction(fs_info->extent_root);
2273 	if (IS_ERR(trans))
2274 		return PTR_ERR(trans);
2275 
2276 	/*
2277 	 * we're not allowed to set block groups readonly after the dirty
2278 	 * block groups cache has started writing.  If it already started,
2279 	 * back off and let this transaction commit
2280 	 */
2281 	mutex_lock(&fs_info->ro_block_group_mutex);
2282 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2283 		u64 transid = trans->transid;
2284 
2285 		mutex_unlock(&fs_info->ro_block_group_mutex);
2286 		btrfs_end_transaction(trans);
2287 
2288 		ret = btrfs_wait_for_commit(fs_info, transid);
2289 		if (ret)
2290 			return ret;
2291 		goto again;
2292 	}
2293 
2294 	if (do_chunk_alloc) {
2295 		/*
2296 		 * If we are changing raid levels, try to allocate a
2297 		 * corresponding block group with the new raid level.
2298 		 */
2299 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2300 		if (alloc_flags != cache->flags) {
2301 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2302 						CHUNK_ALLOC_FORCE);
2303 			/*
2304 			 * ENOSPC is allowed here, we may have enough space
2305 			 * already allocated at the new raid level to carry on
2306 			 */
2307 			if (ret == -ENOSPC)
2308 				ret = 0;
2309 			if (ret < 0)
2310 				goto out;
2311 		}
2312 	}
2313 
2314 	ret = inc_block_group_ro(cache, 0);
2315 	if (!do_chunk_alloc || ret == -ETXTBSY)
2316 		goto unlock_out;
2317 	if (!ret)
2318 		goto out;
2319 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2320 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2321 	if (ret < 0)
2322 		goto out;
2323 	ret = inc_block_group_ro(cache, 0);
2324 	if (ret == -ETXTBSY)
2325 		goto unlock_out;
2326 out:
2327 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2328 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2329 		mutex_lock(&fs_info->chunk_mutex);
2330 		check_system_chunk(trans, alloc_flags);
2331 		mutex_unlock(&fs_info->chunk_mutex);
2332 	}
2333 unlock_out:
2334 	mutex_unlock(&fs_info->ro_block_group_mutex);
2335 
2336 	btrfs_end_transaction(trans);
2337 	return ret;
2338 }
2339 
2340 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2341 {
2342 	struct btrfs_space_info *sinfo = cache->space_info;
2343 	u64 num_bytes;
2344 
2345 	BUG_ON(!cache->ro);
2346 
2347 	spin_lock(&sinfo->lock);
2348 	spin_lock(&cache->lock);
2349 	if (!--cache->ro) {
2350 		num_bytes = cache->length - cache->reserved -
2351 			    cache->pinned - cache->bytes_super -
2352 			    cache->zone_unusable - cache->used;
2353 		sinfo->bytes_readonly -= num_bytes;
2354 		if (btrfs_is_zoned(cache->fs_info)) {
2355 			/* Migrate zone_unusable bytes back */
2356 			cache->zone_unusable = cache->alloc_offset - cache->used;
2357 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2358 			sinfo->bytes_readonly -= cache->zone_unusable;
2359 		}
2360 		list_del_init(&cache->ro_list);
2361 	}
2362 	spin_unlock(&cache->lock);
2363 	spin_unlock(&sinfo->lock);
2364 }
2365 
2366 static int update_block_group_item(struct btrfs_trans_handle *trans,
2367 				   struct btrfs_path *path,
2368 				   struct btrfs_block_group *cache)
2369 {
2370 	struct btrfs_fs_info *fs_info = trans->fs_info;
2371 	int ret;
2372 	struct btrfs_root *root = fs_info->extent_root;
2373 	unsigned long bi;
2374 	struct extent_buffer *leaf;
2375 	struct btrfs_block_group_item bgi;
2376 	struct btrfs_key key;
2377 
2378 	key.objectid = cache->start;
2379 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2380 	key.offset = cache->length;
2381 
2382 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2383 	if (ret) {
2384 		if (ret > 0)
2385 			ret = -ENOENT;
2386 		goto fail;
2387 	}
2388 
2389 	leaf = path->nodes[0];
2390 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2391 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2392 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2393 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2394 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2395 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2396 	btrfs_mark_buffer_dirty(leaf);
2397 fail:
2398 	btrfs_release_path(path);
2399 	return ret;
2400 
2401 }
2402 
2403 static int cache_save_setup(struct btrfs_block_group *block_group,
2404 			    struct btrfs_trans_handle *trans,
2405 			    struct btrfs_path *path)
2406 {
2407 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2408 	struct btrfs_root *root = fs_info->tree_root;
2409 	struct inode *inode = NULL;
2410 	struct extent_changeset *data_reserved = NULL;
2411 	u64 alloc_hint = 0;
2412 	int dcs = BTRFS_DC_ERROR;
2413 	u64 num_pages = 0;
2414 	int retries = 0;
2415 	int ret = 0;
2416 
2417 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2418 		return 0;
2419 
2420 	/*
2421 	 * If this block group is smaller than 100 megs don't bother caching the
2422 	 * block group.
2423 	 */
2424 	if (block_group->length < (100 * SZ_1M)) {
2425 		spin_lock(&block_group->lock);
2426 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2427 		spin_unlock(&block_group->lock);
2428 		return 0;
2429 	}
2430 
2431 	if (TRANS_ABORTED(trans))
2432 		return 0;
2433 again:
2434 	inode = lookup_free_space_inode(block_group, path);
2435 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2436 		ret = PTR_ERR(inode);
2437 		btrfs_release_path(path);
2438 		goto out;
2439 	}
2440 
2441 	if (IS_ERR(inode)) {
2442 		BUG_ON(retries);
2443 		retries++;
2444 
2445 		if (block_group->ro)
2446 			goto out_free;
2447 
2448 		ret = create_free_space_inode(trans, block_group, path);
2449 		if (ret)
2450 			goto out_free;
2451 		goto again;
2452 	}
2453 
2454 	/*
2455 	 * We want to set the generation to 0, that way if anything goes wrong
2456 	 * from here on out we know not to trust this cache when we load up next
2457 	 * time.
2458 	 */
2459 	BTRFS_I(inode)->generation = 0;
2460 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2461 	if (ret) {
2462 		/*
2463 		 * So theoretically we could recover from this, simply set the
2464 		 * super cache generation to 0 so we know to invalidate the
2465 		 * cache, but then we'd have to keep track of the block groups
2466 		 * that fail this way so we know we _have_ to reset this cache
2467 		 * before the next commit or risk reading stale cache.  So to
2468 		 * limit our exposure to horrible edge cases lets just abort the
2469 		 * transaction, this only happens in really bad situations
2470 		 * anyway.
2471 		 */
2472 		btrfs_abort_transaction(trans, ret);
2473 		goto out_put;
2474 	}
2475 	WARN_ON(ret);
2476 
2477 	/* We've already setup this transaction, go ahead and exit */
2478 	if (block_group->cache_generation == trans->transid &&
2479 	    i_size_read(inode)) {
2480 		dcs = BTRFS_DC_SETUP;
2481 		goto out_put;
2482 	}
2483 
2484 	if (i_size_read(inode) > 0) {
2485 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2486 					&fs_info->global_block_rsv);
2487 		if (ret)
2488 			goto out_put;
2489 
2490 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2491 		if (ret)
2492 			goto out_put;
2493 	}
2494 
2495 	spin_lock(&block_group->lock);
2496 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2497 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2498 		/*
2499 		 * don't bother trying to write stuff out _if_
2500 		 * a) we're not cached,
2501 		 * b) we're with nospace_cache mount option,
2502 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2503 		 */
2504 		dcs = BTRFS_DC_WRITTEN;
2505 		spin_unlock(&block_group->lock);
2506 		goto out_put;
2507 	}
2508 	spin_unlock(&block_group->lock);
2509 
2510 	/*
2511 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2512 	 * skip doing the setup, we've already cleared the cache so we're safe.
2513 	 */
2514 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2515 		ret = -ENOSPC;
2516 		goto out_put;
2517 	}
2518 
2519 	/*
2520 	 * Try to preallocate enough space based on how big the block group is.
2521 	 * Keep in mind this has to include any pinned space which could end up
2522 	 * taking up quite a bit since it's not folded into the other space
2523 	 * cache.
2524 	 */
2525 	num_pages = div_u64(block_group->length, SZ_256M);
2526 	if (!num_pages)
2527 		num_pages = 1;
2528 
2529 	num_pages *= 16;
2530 	num_pages *= PAGE_SIZE;
2531 
2532 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2533 					  num_pages);
2534 	if (ret)
2535 		goto out_put;
2536 
2537 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2538 					      num_pages, num_pages,
2539 					      &alloc_hint);
2540 	/*
2541 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2542 	 * of metadata or split extents when writing the cache out, which means
2543 	 * we can enospc if we are heavily fragmented in addition to just normal
2544 	 * out of space conditions.  So if we hit this just skip setting up any
2545 	 * other block groups for this transaction, maybe we'll unpin enough
2546 	 * space the next time around.
2547 	 */
2548 	if (!ret)
2549 		dcs = BTRFS_DC_SETUP;
2550 	else if (ret == -ENOSPC)
2551 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2552 
2553 out_put:
2554 	iput(inode);
2555 out_free:
2556 	btrfs_release_path(path);
2557 out:
2558 	spin_lock(&block_group->lock);
2559 	if (!ret && dcs == BTRFS_DC_SETUP)
2560 		block_group->cache_generation = trans->transid;
2561 	block_group->disk_cache_state = dcs;
2562 	spin_unlock(&block_group->lock);
2563 
2564 	extent_changeset_free(data_reserved);
2565 	return ret;
2566 }
2567 
2568 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2569 {
2570 	struct btrfs_fs_info *fs_info = trans->fs_info;
2571 	struct btrfs_block_group *cache, *tmp;
2572 	struct btrfs_transaction *cur_trans = trans->transaction;
2573 	struct btrfs_path *path;
2574 
2575 	if (list_empty(&cur_trans->dirty_bgs) ||
2576 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2577 		return 0;
2578 
2579 	path = btrfs_alloc_path();
2580 	if (!path)
2581 		return -ENOMEM;
2582 
2583 	/* Could add new block groups, use _safe just in case */
2584 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2585 				 dirty_list) {
2586 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2587 			cache_save_setup(cache, trans, path);
2588 	}
2589 
2590 	btrfs_free_path(path);
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Transaction commit does final block group cache writeback during a critical
2596  * section where nothing is allowed to change the FS.  This is required in
2597  * order for the cache to actually match the block group, but can introduce a
2598  * lot of latency into the commit.
2599  *
2600  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2601  * There's a chance we'll have to redo some of it if the block group changes
2602  * again during the commit, but it greatly reduces the commit latency by
2603  * getting rid of the easy block groups while we're still allowing others to
2604  * join the commit.
2605  */
2606 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2607 {
2608 	struct btrfs_fs_info *fs_info = trans->fs_info;
2609 	struct btrfs_block_group *cache;
2610 	struct btrfs_transaction *cur_trans = trans->transaction;
2611 	int ret = 0;
2612 	int should_put;
2613 	struct btrfs_path *path = NULL;
2614 	LIST_HEAD(dirty);
2615 	struct list_head *io = &cur_trans->io_bgs;
2616 	int num_started = 0;
2617 	int loops = 0;
2618 
2619 	spin_lock(&cur_trans->dirty_bgs_lock);
2620 	if (list_empty(&cur_trans->dirty_bgs)) {
2621 		spin_unlock(&cur_trans->dirty_bgs_lock);
2622 		return 0;
2623 	}
2624 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2625 	spin_unlock(&cur_trans->dirty_bgs_lock);
2626 
2627 again:
2628 	/* Make sure all the block groups on our dirty list actually exist */
2629 	btrfs_create_pending_block_groups(trans);
2630 
2631 	if (!path) {
2632 		path = btrfs_alloc_path();
2633 		if (!path) {
2634 			ret = -ENOMEM;
2635 			goto out;
2636 		}
2637 	}
2638 
2639 	/*
2640 	 * cache_write_mutex is here only to save us from balance or automatic
2641 	 * removal of empty block groups deleting this block group while we are
2642 	 * writing out the cache
2643 	 */
2644 	mutex_lock(&trans->transaction->cache_write_mutex);
2645 	while (!list_empty(&dirty)) {
2646 		bool drop_reserve = true;
2647 
2648 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2649 					 dirty_list);
2650 		/*
2651 		 * This can happen if something re-dirties a block group that
2652 		 * is already under IO.  Just wait for it to finish and then do
2653 		 * it all again
2654 		 */
2655 		if (!list_empty(&cache->io_list)) {
2656 			list_del_init(&cache->io_list);
2657 			btrfs_wait_cache_io(trans, cache, path);
2658 			btrfs_put_block_group(cache);
2659 		}
2660 
2661 
2662 		/*
2663 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2664 		 * it should update the cache_state.  Don't delete until after
2665 		 * we wait.
2666 		 *
2667 		 * Since we're not running in the commit critical section
2668 		 * we need the dirty_bgs_lock to protect from update_block_group
2669 		 */
2670 		spin_lock(&cur_trans->dirty_bgs_lock);
2671 		list_del_init(&cache->dirty_list);
2672 		spin_unlock(&cur_trans->dirty_bgs_lock);
2673 
2674 		should_put = 1;
2675 
2676 		cache_save_setup(cache, trans, path);
2677 
2678 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2679 			cache->io_ctl.inode = NULL;
2680 			ret = btrfs_write_out_cache(trans, cache, path);
2681 			if (ret == 0 && cache->io_ctl.inode) {
2682 				num_started++;
2683 				should_put = 0;
2684 
2685 				/*
2686 				 * The cache_write_mutex is protecting the
2687 				 * io_list, also refer to the definition of
2688 				 * btrfs_transaction::io_bgs for more details
2689 				 */
2690 				list_add_tail(&cache->io_list, io);
2691 			} else {
2692 				/*
2693 				 * If we failed to write the cache, the
2694 				 * generation will be bad and life goes on
2695 				 */
2696 				ret = 0;
2697 			}
2698 		}
2699 		if (!ret) {
2700 			ret = update_block_group_item(trans, path, cache);
2701 			/*
2702 			 * Our block group might still be attached to the list
2703 			 * of new block groups in the transaction handle of some
2704 			 * other task (struct btrfs_trans_handle->new_bgs). This
2705 			 * means its block group item isn't yet in the extent
2706 			 * tree. If this happens ignore the error, as we will
2707 			 * try again later in the critical section of the
2708 			 * transaction commit.
2709 			 */
2710 			if (ret == -ENOENT) {
2711 				ret = 0;
2712 				spin_lock(&cur_trans->dirty_bgs_lock);
2713 				if (list_empty(&cache->dirty_list)) {
2714 					list_add_tail(&cache->dirty_list,
2715 						      &cur_trans->dirty_bgs);
2716 					btrfs_get_block_group(cache);
2717 					drop_reserve = false;
2718 				}
2719 				spin_unlock(&cur_trans->dirty_bgs_lock);
2720 			} else if (ret) {
2721 				btrfs_abort_transaction(trans, ret);
2722 			}
2723 		}
2724 
2725 		/* If it's not on the io list, we need to put the block group */
2726 		if (should_put)
2727 			btrfs_put_block_group(cache);
2728 		if (drop_reserve)
2729 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2730 		/*
2731 		 * Avoid blocking other tasks for too long. It might even save
2732 		 * us from writing caches for block groups that are going to be
2733 		 * removed.
2734 		 */
2735 		mutex_unlock(&trans->transaction->cache_write_mutex);
2736 		if (ret)
2737 			goto out;
2738 		mutex_lock(&trans->transaction->cache_write_mutex);
2739 	}
2740 	mutex_unlock(&trans->transaction->cache_write_mutex);
2741 
2742 	/*
2743 	 * Go through delayed refs for all the stuff we've just kicked off
2744 	 * and then loop back (just once)
2745 	 */
2746 	if (!ret)
2747 		ret = btrfs_run_delayed_refs(trans, 0);
2748 	if (!ret && loops == 0) {
2749 		loops++;
2750 		spin_lock(&cur_trans->dirty_bgs_lock);
2751 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2752 		/*
2753 		 * dirty_bgs_lock protects us from concurrent block group
2754 		 * deletes too (not just cache_write_mutex).
2755 		 */
2756 		if (!list_empty(&dirty)) {
2757 			spin_unlock(&cur_trans->dirty_bgs_lock);
2758 			goto again;
2759 		}
2760 		spin_unlock(&cur_trans->dirty_bgs_lock);
2761 	}
2762 out:
2763 	if (ret < 0) {
2764 		spin_lock(&cur_trans->dirty_bgs_lock);
2765 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2766 		spin_unlock(&cur_trans->dirty_bgs_lock);
2767 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2768 	}
2769 
2770 	btrfs_free_path(path);
2771 	return ret;
2772 }
2773 
2774 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2775 {
2776 	struct btrfs_fs_info *fs_info = trans->fs_info;
2777 	struct btrfs_block_group *cache;
2778 	struct btrfs_transaction *cur_trans = trans->transaction;
2779 	int ret = 0;
2780 	int should_put;
2781 	struct btrfs_path *path;
2782 	struct list_head *io = &cur_trans->io_bgs;
2783 	int num_started = 0;
2784 
2785 	path = btrfs_alloc_path();
2786 	if (!path)
2787 		return -ENOMEM;
2788 
2789 	/*
2790 	 * Even though we are in the critical section of the transaction commit,
2791 	 * we can still have concurrent tasks adding elements to this
2792 	 * transaction's list of dirty block groups. These tasks correspond to
2793 	 * endio free space workers started when writeback finishes for a
2794 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2795 	 * allocate new block groups as a result of COWing nodes of the root
2796 	 * tree when updating the free space inode. The writeback for the space
2797 	 * caches is triggered by an earlier call to
2798 	 * btrfs_start_dirty_block_groups() and iterations of the following
2799 	 * loop.
2800 	 * Also we want to do the cache_save_setup first and then run the
2801 	 * delayed refs to make sure we have the best chance at doing this all
2802 	 * in one shot.
2803 	 */
2804 	spin_lock(&cur_trans->dirty_bgs_lock);
2805 	while (!list_empty(&cur_trans->dirty_bgs)) {
2806 		cache = list_first_entry(&cur_trans->dirty_bgs,
2807 					 struct btrfs_block_group,
2808 					 dirty_list);
2809 
2810 		/*
2811 		 * This can happen if cache_save_setup re-dirties a block group
2812 		 * that is already under IO.  Just wait for it to finish and
2813 		 * then do it all again
2814 		 */
2815 		if (!list_empty(&cache->io_list)) {
2816 			spin_unlock(&cur_trans->dirty_bgs_lock);
2817 			list_del_init(&cache->io_list);
2818 			btrfs_wait_cache_io(trans, cache, path);
2819 			btrfs_put_block_group(cache);
2820 			spin_lock(&cur_trans->dirty_bgs_lock);
2821 		}
2822 
2823 		/*
2824 		 * Don't remove from the dirty list until after we've waited on
2825 		 * any pending IO
2826 		 */
2827 		list_del_init(&cache->dirty_list);
2828 		spin_unlock(&cur_trans->dirty_bgs_lock);
2829 		should_put = 1;
2830 
2831 		cache_save_setup(cache, trans, path);
2832 
2833 		if (!ret)
2834 			ret = btrfs_run_delayed_refs(trans,
2835 						     (unsigned long) -1);
2836 
2837 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2838 			cache->io_ctl.inode = NULL;
2839 			ret = btrfs_write_out_cache(trans, cache, path);
2840 			if (ret == 0 && cache->io_ctl.inode) {
2841 				num_started++;
2842 				should_put = 0;
2843 				list_add_tail(&cache->io_list, io);
2844 			} else {
2845 				/*
2846 				 * If we failed to write the cache, the
2847 				 * generation will be bad and life goes on
2848 				 */
2849 				ret = 0;
2850 			}
2851 		}
2852 		if (!ret) {
2853 			ret = update_block_group_item(trans, path, cache);
2854 			/*
2855 			 * One of the free space endio workers might have
2856 			 * created a new block group while updating a free space
2857 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2858 			 * and hasn't released its transaction handle yet, in
2859 			 * which case the new block group is still attached to
2860 			 * its transaction handle and its creation has not
2861 			 * finished yet (no block group item in the extent tree
2862 			 * yet, etc). If this is the case, wait for all free
2863 			 * space endio workers to finish and retry. This is a
2864 			 * very rare case so no need for a more efficient and
2865 			 * complex approach.
2866 			 */
2867 			if (ret == -ENOENT) {
2868 				wait_event(cur_trans->writer_wait,
2869 				   atomic_read(&cur_trans->num_writers) == 1);
2870 				ret = update_block_group_item(trans, path, cache);
2871 			}
2872 			if (ret)
2873 				btrfs_abort_transaction(trans, ret);
2874 		}
2875 
2876 		/* If its not on the io list, we need to put the block group */
2877 		if (should_put)
2878 			btrfs_put_block_group(cache);
2879 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2880 		spin_lock(&cur_trans->dirty_bgs_lock);
2881 	}
2882 	spin_unlock(&cur_trans->dirty_bgs_lock);
2883 
2884 	/*
2885 	 * Refer to the definition of io_bgs member for details why it's safe
2886 	 * to use it without any locking
2887 	 */
2888 	while (!list_empty(io)) {
2889 		cache = list_first_entry(io, struct btrfs_block_group,
2890 					 io_list);
2891 		list_del_init(&cache->io_list);
2892 		btrfs_wait_cache_io(trans, cache, path);
2893 		btrfs_put_block_group(cache);
2894 	}
2895 
2896 	btrfs_free_path(path);
2897 	return ret;
2898 }
2899 
2900 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2901 			     u64 bytenr, u64 num_bytes, int alloc)
2902 {
2903 	struct btrfs_fs_info *info = trans->fs_info;
2904 	struct btrfs_block_group *cache = NULL;
2905 	u64 total = num_bytes;
2906 	u64 old_val;
2907 	u64 byte_in_group;
2908 	int factor;
2909 	int ret = 0;
2910 
2911 	/* Block accounting for super block */
2912 	spin_lock(&info->delalloc_root_lock);
2913 	old_val = btrfs_super_bytes_used(info->super_copy);
2914 	if (alloc)
2915 		old_val += num_bytes;
2916 	else
2917 		old_val -= num_bytes;
2918 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2919 	spin_unlock(&info->delalloc_root_lock);
2920 
2921 	while (total) {
2922 		cache = btrfs_lookup_block_group(info, bytenr);
2923 		if (!cache) {
2924 			ret = -ENOENT;
2925 			break;
2926 		}
2927 		factor = btrfs_bg_type_to_factor(cache->flags);
2928 
2929 		/*
2930 		 * If this block group has free space cache written out, we
2931 		 * need to make sure to load it if we are removing space.  This
2932 		 * is because we need the unpinning stage to actually add the
2933 		 * space back to the block group, otherwise we will leak space.
2934 		 */
2935 		if (!alloc && !btrfs_block_group_done(cache))
2936 			btrfs_cache_block_group(cache, 1);
2937 
2938 		byte_in_group = bytenr - cache->start;
2939 		WARN_ON(byte_in_group > cache->length);
2940 
2941 		spin_lock(&cache->space_info->lock);
2942 		spin_lock(&cache->lock);
2943 
2944 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2945 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2946 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2947 
2948 		old_val = cache->used;
2949 		num_bytes = min(total, cache->length - byte_in_group);
2950 		if (alloc) {
2951 			old_val += num_bytes;
2952 			cache->used = old_val;
2953 			cache->reserved -= num_bytes;
2954 			cache->space_info->bytes_reserved -= num_bytes;
2955 			cache->space_info->bytes_used += num_bytes;
2956 			cache->space_info->disk_used += num_bytes * factor;
2957 			spin_unlock(&cache->lock);
2958 			spin_unlock(&cache->space_info->lock);
2959 		} else {
2960 			old_val -= num_bytes;
2961 			cache->used = old_val;
2962 			cache->pinned += num_bytes;
2963 			btrfs_space_info_update_bytes_pinned(info,
2964 					cache->space_info, num_bytes);
2965 			cache->space_info->bytes_used -= num_bytes;
2966 			cache->space_info->disk_used -= num_bytes * factor;
2967 			spin_unlock(&cache->lock);
2968 			spin_unlock(&cache->space_info->lock);
2969 
2970 			__btrfs_mod_total_bytes_pinned(cache->space_info,
2971 						       num_bytes);
2972 			set_extent_dirty(&trans->transaction->pinned_extents,
2973 					 bytenr, bytenr + num_bytes - 1,
2974 					 GFP_NOFS | __GFP_NOFAIL);
2975 		}
2976 
2977 		spin_lock(&trans->transaction->dirty_bgs_lock);
2978 		if (list_empty(&cache->dirty_list)) {
2979 			list_add_tail(&cache->dirty_list,
2980 				      &trans->transaction->dirty_bgs);
2981 			trans->delayed_ref_updates++;
2982 			btrfs_get_block_group(cache);
2983 		}
2984 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2985 
2986 		/*
2987 		 * No longer have used bytes in this block group, queue it for
2988 		 * deletion. We do this after adding the block group to the
2989 		 * dirty list to avoid races between cleaner kthread and space
2990 		 * cache writeout.
2991 		 */
2992 		if (!alloc && old_val == 0) {
2993 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2994 				btrfs_mark_bg_unused(cache);
2995 		}
2996 
2997 		btrfs_put_block_group(cache);
2998 		total -= num_bytes;
2999 		bytenr += num_bytes;
3000 	}
3001 
3002 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3003 	btrfs_update_delayed_refs_rsv(trans);
3004 	return ret;
3005 }
3006 
3007 /**
3008  * btrfs_add_reserved_bytes - update the block_group and space info counters
3009  * @cache:	The cache we are manipulating
3010  * @ram_bytes:  The number of bytes of file content, and will be same to
3011  *              @num_bytes except for the compress path.
3012  * @num_bytes:	The number of bytes in question
3013  * @delalloc:   The blocks are allocated for the delalloc write
3014  *
3015  * This is called by the allocator when it reserves space. If this is a
3016  * reservation and the block group has become read only we cannot make the
3017  * reservation and return -EAGAIN, otherwise this function always succeeds.
3018  */
3019 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3020 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3021 {
3022 	struct btrfs_space_info *space_info = cache->space_info;
3023 	int ret = 0;
3024 
3025 	spin_lock(&space_info->lock);
3026 	spin_lock(&cache->lock);
3027 	if (cache->ro) {
3028 		ret = -EAGAIN;
3029 	} else {
3030 		cache->reserved += num_bytes;
3031 		space_info->bytes_reserved += num_bytes;
3032 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3033 					      space_info->flags, num_bytes, 1);
3034 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3035 						      space_info, -ram_bytes);
3036 		if (delalloc)
3037 			cache->delalloc_bytes += num_bytes;
3038 
3039 		/*
3040 		 * Compression can use less space than we reserved, so wake
3041 		 * tickets if that happens
3042 		 */
3043 		if (num_bytes < ram_bytes)
3044 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3045 	}
3046 	spin_unlock(&cache->lock);
3047 	spin_unlock(&space_info->lock);
3048 	return ret;
3049 }
3050 
3051 /**
3052  * btrfs_free_reserved_bytes - update the block_group and space info counters
3053  * @cache:      The cache we are manipulating
3054  * @num_bytes:  The number of bytes in question
3055  * @delalloc:   The blocks are allocated for the delalloc write
3056  *
3057  * This is called by somebody who is freeing space that was never actually used
3058  * on disk.  For example if you reserve some space for a new leaf in transaction
3059  * A and before transaction A commits you free that leaf, you call this with
3060  * reserve set to 0 in order to clear the reservation.
3061  */
3062 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3063 			       u64 num_bytes, int delalloc)
3064 {
3065 	struct btrfs_space_info *space_info = cache->space_info;
3066 
3067 	spin_lock(&space_info->lock);
3068 	spin_lock(&cache->lock);
3069 	if (cache->ro)
3070 		space_info->bytes_readonly += num_bytes;
3071 	cache->reserved -= num_bytes;
3072 	space_info->bytes_reserved -= num_bytes;
3073 	space_info->max_extent_size = 0;
3074 
3075 	if (delalloc)
3076 		cache->delalloc_bytes -= num_bytes;
3077 	spin_unlock(&cache->lock);
3078 
3079 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3080 	spin_unlock(&space_info->lock);
3081 }
3082 
3083 static void force_metadata_allocation(struct btrfs_fs_info *info)
3084 {
3085 	struct list_head *head = &info->space_info;
3086 	struct btrfs_space_info *found;
3087 
3088 	list_for_each_entry(found, head, list) {
3089 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3090 			found->force_alloc = CHUNK_ALLOC_FORCE;
3091 	}
3092 }
3093 
3094 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3095 			      struct btrfs_space_info *sinfo, int force)
3096 {
3097 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3098 	u64 thresh;
3099 
3100 	if (force == CHUNK_ALLOC_FORCE)
3101 		return 1;
3102 
3103 	/*
3104 	 * in limited mode, we want to have some free space up to
3105 	 * about 1% of the FS size.
3106 	 */
3107 	if (force == CHUNK_ALLOC_LIMITED) {
3108 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3109 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3110 
3111 		if (sinfo->total_bytes - bytes_used < thresh)
3112 			return 1;
3113 	}
3114 
3115 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3116 		return 0;
3117 	return 1;
3118 }
3119 
3120 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3121 {
3122 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3123 
3124 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3125 }
3126 
3127 /*
3128  * If force is CHUNK_ALLOC_FORCE:
3129  *    - return 1 if it successfully allocates a chunk,
3130  *    - return errors including -ENOSPC otherwise.
3131  * If force is NOT CHUNK_ALLOC_FORCE:
3132  *    - return 0 if it doesn't need to allocate a new chunk,
3133  *    - return 1 if it successfully allocates a chunk,
3134  *    - return errors including -ENOSPC otherwise.
3135  */
3136 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3137 		      enum btrfs_chunk_alloc_enum force)
3138 {
3139 	struct btrfs_fs_info *fs_info = trans->fs_info;
3140 	struct btrfs_space_info *space_info;
3141 	bool wait_for_alloc = false;
3142 	bool should_alloc = false;
3143 	int ret = 0;
3144 
3145 	/* Don't re-enter if we're already allocating a chunk */
3146 	if (trans->allocating_chunk)
3147 		return -ENOSPC;
3148 
3149 	space_info = btrfs_find_space_info(fs_info, flags);
3150 	ASSERT(space_info);
3151 
3152 	do {
3153 		spin_lock(&space_info->lock);
3154 		if (force < space_info->force_alloc)
3155 			force = space_info->force_alloc;
3156 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3157 		if (space_info->full) {
3158 			/* No more free physical space */
3159 			if (should_alloc)
3160 				ret = -ENOSPC;
3161 			else
3162 				ret = 0;
3163 			spin_unlock(&space_info->lock);
3164 			return ret;
3165 		} else if (!should_alloc) {
3166 			spin_unlock(&space_info->lock);
3167 			return 0;
3168 		} else if (space_info->chunk_alloc) {
3169 			/*
3170 			 * Someone is already allocating, so we need to block
3171 			 * until this someone is finished and then loop to
3172 			 * recheck if we should continue with our allocation
3173 			 * attempt.
3174 			 */
3175 			wait_for_alloc = true;
3176 			spin_unlock(&space_info->lock);
3177 			mutex_lock(&fs_info->chunk_mutex);
3178 			mutex_unlock(&fs_info->chunk_mutex);
3179 		} else {
3180 			/* Proceed with allocation */
3181 			space_info->chunk_alloc = 1;
3182 			wait_for_alloc = false;
3183 			spin_unlock(&space_info->lock);
3184 		}
3185 
3186 		cond_resched();
3187 	} while (wait_for_alloc);
3188 
3189 	mutex_lock(&fs_info->chunk_mutex);
3190 	trans->allocating_chunk = true;
3191 
3192 	/*
3193 	 * If we have mixed data/metadata chunks we want to make sure we keep
3194 	 * allocating mixed chunks instead of individual chunks.
3195 	 */
3196 	if (btrfs_mixed_space_info(space_info))
3197 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3198 
3199 	/*
3200 	 * if we're doing a data chunk, go ahead and make sure that
3201 	 * we keep a reasonable number of metadata chunks allocated in the
3202 	 * FS as well.
3203 	 */
3204 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3205 		fs_info->data_chunk_allocations++;
3206 		if (!(fs_info->data_chunk_allocations %
3207 		      fs_info->metadata_ratio))
3208 			force_metadata_allocation(fs_info);
3209 	}
3210 
3211 	/*
3212 	 * Check if we have enough space in SYSTEM chunk because we may need
3213 	 * to update devices.
3214 	 */
3215 	check_system_chunk(trans, flags);
3216 
3217 	ret = btrfs_alloc_chunk(trans, flags);
3218 	trans->allocating_chunk = false;
3219 
3220 	spin_lock(&space_info->lock);
3221 	if (ret < 0) {
3222 		if (ret == -ENOSPC)
3223 			space_info->full = 1;
3224 		else
3225 			goto out;
3226 	} else {
3227 		ret = 1;
3228 		space_info->max_extent_size = 0;
3229 	}
3230 
3231 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3232 out:
3233 	space_info->chunk_alloc = 0;
3234 	spin_unlock(&space_info->lock);
3235 	mutex_unlock(&fs_info->chunk_mutex);
3236 	/*
3237 	 * When we allocate a new chunk we reserve space in the chunk block
3238 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3239 	 * add new nodes/leafs to it if we end up needing to do it when
3240 	 * inserting the chunk item and updating device items as part of the
3241 	 * second phase of chunk allocation, performed by
3242 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3243 	 * large number of new block groups to create in our transaction
3244 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3245 	 * in extreme cases - like having a single transaction create many new
3246 	 * block groups when starting to write out the free space caches of all
3247 	 * the block groups that were made dirty during the lifetime of the
3248 	 * transaction.
3249 	 */
3250 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3251 		btrfs_create_pending_block_groups(trans);
3252 
3253 	return ret;
3254 }
3255 
3256 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3257 {
3258 	u64 num_dev;
3259 
3260 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3261 	if (!num_dev)
3262 		num_dev = fs_info->fs_devices->rw_devices;
3263 
3264 	return num_dev;
3265 }
3266 
3267 /*
3268  * Reserve space in the system space for allocating or removing a chunk
3269  */
3270 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3271 {
3272 	struct btrfs_fs_info *fs_info = trans->fs_info;
3273 	struct btrfs_space_info *info;
3274 	u64 left;
3275 	u64 thresh;
3276 	int ret = 0;
3277 	u64 num_devs;
3278 
3279 	/*
3280 	 * Needed because we can end up allocating a system chunk and for an
3281 	 * atomic and race free space reservation in the chunk block reserve.
3282 	 */
3283 	lockdep_assert_held(&fs_info->chunk_mutex);
3284 
3285 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3286 	spin_lock(&info->lock);
3287 	left = info->total_bytes - btrfs_space_info_used(info, true);
3288 	spin_unlock(&info->lock);
3289 
3290 	num_devs = get_profile_num_devs(fs_info, type);
3291 
3292 	/* num_devs device items to update and 1 chunk item to add or remove */
3293 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3294 		btrfs_calc_insert_metadata_size(fs_info, 1);
3295 
3296 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3297 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3298 			   left, thresh, type);
3299 		btrfs_dump_space_info(fs_info, info, 0, 0);
3300 	}
3301 
3302 	if (left < thresh) {
3303 		u64 flags = btrfs_system_alloc_profile(fs_info);
3304 
3305 		/*
3306 		 * Ignore failure to create system chunk. We might end up not
3307 		 * needing it, as we might not need to COW all nodes/leafs from
3308 		 * the paths we visit in the chunk tree (they were already COWed
3309 		 * or created in the current transaction for example).
3310 		 */
3311 		ret = btrfs_alloc_chunk(trans, flags);
3312 	}
3313 
3314 	if (!ret) {
3315 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3316 					  &fs_info->chunk_block_rsv,
3317 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3318 		if (!ret)
3319 			trans->chunk_bytes_reserved += thresh;
3320 	}
3321 }
3322 
3323 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3324 {
3325 	struct btrfs_block_group *block_group;
3326 	u64 last = 0;
3327 
3328 	while (1) {
3329 		struct inode *inode;
3330 
3331 		block_group = btrfs_lookup_first_block_group(info, last);
3332 		while (block_group) {
3333 			btrfs_wait_block_group_cache_done(block_group);
3334 			spin_lock(&block_group->lock);
3335 			if (block_group->iref)
3336 				break;
3337 			spin_unlock(&block_group->lock);
3338 			block_group = btrfs_next_block_group(block_group);
3339 		}
3340 		if (!block_group) {
3341 			if (last == 0)
3342 				break;
3343 			last = 0;
3344 			continue;
3345 		}
3346 
3347 		inode = block_group->inode;
3348 		block_group->iref = 0;
3349 		block_group->inode = NULL;
3350 		spin_unlock(&block_group->lock);
3351 		ASSERT(block_group->io_ctl.inode == NULL);
3352 		iput(inode);
3353 		last = block_group->start + block_group->length;
3354 		btrfs_put_block_group(block_group);
3355 	}
3356 }
3357 
3358 /*
3359  * Must be called only after stopping all workers, since we could have block
3360  * group caching kthreads running, and therefore they could race with us if we
3361  * freed the block groups before stopping them.
3362  */
3363 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3364 {
3365 	struct btrfs_block_group *block_group;
3366 	struct btrfs_space_info *space_info;
3367 	struct btrfs_caching_control *caching_ctl;
3368 	struct rb_node *n;
3369 
3370 	spin_lock(&info->block_group_cache_lock);
3371 	while (!list_empty(&info->caching_block_groups)) {
3372 		caching_ctl = list_entry(info->caching_block_groups.next,
3373 					 struct btrfs_caching_control, list);
3374 		list_del(&caching_ctl->list);
3375 		btrfs_put_caching_control(caching_ctl);
3376 	}
3377 	spin_unlock(&info->block_group_cache_lock);
3378 
3379 	spin_lock(&info->unused_bgs_lock);
3380 	while (!list_empty(&info->unused_bgs)) {
3381 		block_group = list_first_entry(&info->unused_bgs,
3382 					       struct btrfs_block_group,
3383 					       bg_list);
3384 		list_del_init(&block_group->bg_list);
3385 		btrfs_put_block_group(block_group);
3386 	}
3387 	spin_unlock(&info->unused_bgs_lock);
3388 
3389 	spin_lock(&info->block_group_cache_lock);
3390 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3391 		block_group = rb_entry(n, struct btrfs_block_group,
3392 				       cache_node);
3393 		rb_erase(&block_group->cache_node,
3394 			 &info->block_group_cache_tree);
3395 		RB_CLEAR_NODE(&block_group->cache_node);
3396 		spin_unlock(&info->block_group_cache_lock);
3397 
3398 		down_write(&block_group->space_info->groups_sem);
3399 		list_del(&block_group->list);
3400 		up_write(&block_group->space_info->groups_sem);
3401 
3402 		/*
3403 		 * We haven't cached this block group, which means we could
3404 		 * possibly have excluded extents on this block group.
3405 		 */
3406 		if (block_group->cached == BTRFS_CACHE_NO ||
3407 		    block_group->cached == BTRFS_CACHE_ERROR)
3408 			btrfs_free_excluded_extents(block_group);
3409 
3410 		btrfs_remove_free_space_cache(block_group);
3411 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3412 		ASSERT(list_empty(&block_group->dirty_list));
3413 		ASSERT(list_empty(&block_group->io_list));
3414 		ASSERT(list_empty(&block_group->bg_list));
3415 		ASSERT(refcount_read(&block_group->refs) == 1);
3416 		ASSERT(block_group->swap_extents == 0);
3417 		btrfs_put_block_group(block_group);
3418 
3419 		spin_lock(&info->block_group_cache_lock);
3420 	}
3421 	spin_unlock(&info->block_group_cache_lock);
3422 
3423 	btrfs_release_global_block_rsv(info);
3424 
3425 	while (!list_empty(&info->space_info)) {
3426 		space_info = list_entry(info->space_info.next,
3427 					struct btrfs_space_info,
3428 					list);
3429 
3430 		/*
3431 		 * Do not hide this behind enospc_debug, this is actually
3432 		 * important and indicates a real bug if this happens.
3433 		 */
3434 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3435 			    space_info->bytes_reserved > 0 ||
3436 			    space_info->bytes_may_use > 0))
3437 			btrfs_dump_space_info(info, space_info, 0, 0);
3438 		WARN_ON(space_info->reclaim_size > 0);
3439 		list_del(&space_info->list);
3440 		btrfs_sysfs_remove_space_info(space_info);
3441 	}
3442 	return 0;
3443 }
3444 
3445 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3446 {
3447 	atomic_inc(&cache->frozen);
3448 }
3449 
3450 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3451 {
3452 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3453 	struct extent_map_tree *em_tree;
3454 	struct extent_map *em;
3455 	bool cleanup;
3456 
3457 	spin_lock(&block_group->lock);
3458 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3459 		   block_group->removed);
3460 	spin_unlock(&block_group->lock);
3461 
3462 	if (cleanup) {
3463 		em_tree = &fs_info->mapping_tree;
3464 		write_lock(&em_tree->lock);
3465 		em = lookup_extent_mapping(em_tree, block_group->start,
3466 					   1);
3467 		BUG_ON(!em); /* logic error, can't happen */
3468 		remove_extent_mapping(em_tree, em);
3469 		write_unlock(&em_tree->lock);
3470 
3471 		/* once for us and once for the tree */
3472 		free_extent_map(em);
3473 		free_extent_map(em);
3474 
3475 		/*
3476 		 * We may have left one free space entry and other possible
3477 		 * tasks trimming this block group have left 1 entry each one.
3478 		 * Free them if any.
3479 		 */
3480 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3481 	}
3482 }
3483 
3484 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3485 {
3486 	bool ret = true;
3487 
3488 	spin_lock(&bg->lock);
3489 	if (bg->ro)
3490 		ret = false;
3491 	else
3492 		bg->swap_extents++;
3493 	spin_unlock(&bg->lock);
3494 
3495 	return ret;
3496 }
3497 
3498 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3499 {
3500 	spin_lock(&bg->lock);
3501 	ASSERT(!bg->ro);
3502 	ASSERT(bg->swap_extents >= amount);
3503 	bg->swap_extents -= amount;
3504 	spin_unlock(&bg->lock);
3505 }
3506