xref: /openbmc/linux/fs/btrfs/block-group.c (revision 27e45f2e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "extent-tree.h"
23 
24 #ifdef CONFIG_BTRFS_DEBUG
25 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
26 {
27 	struct btrfs_fs_info *fs_info = block_group->fs_info;
28 
29 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
30 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
31 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
32 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
33 }
34 #endif
35 
36 /*
37  * Return target flags in extended format or 0 if restripe for this chunk_type
38  * is not in progress
39  *
40  * Should be called with balance_lock held
41  */
42 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
43 {
44 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
45 	u64 target = 0;
46 
47 	if (!bctl)
48 		return 0;
49 
50 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
51 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
52 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
53 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
54 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
55 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
56 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
57 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
58 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
59 	}
60 
61 	return target;
62 }
63 
64 /*
65  * @flags: available profiles in extended format (see ctree.h)
66  *
67  * Return reduced profile in chunk format.  If profile changing is in progress
68  * (either running or paused) picks the target profile (if it's already
69  * available), otherwise falls back to plain reducing.
70  */
71 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
72 {
73 	u64 num_devices = fs_info->fs_devices->rw_devices;
74 	u64 target;
75 	u64 raid_type;
76 	u64 allowed = 0;
77 
78 	/*
79 	 * See if restripe for this chunk_type is in progress, if so try to
80 	 * reduce to the target profile
81 	 */
82 	spin_lock(&fs_info->balance_lock);
83 	target = get_restripe_target(fs_info, flags);
84 	if (target) {
85 		spin_unlock(&fs_info->balance_lock);
86 		return extended_to_chunk(target);
87 	}
88 	spin_unlock(&fs_info->balance_lock);
89 
90 	/* First, mask out the RAID levels which aren't possible */
91 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
92 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
93 			allowed |= btrfs_raid_array[raid_type].bg_flag;
94 	}
95 	allowed &= flags;
96 
97 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
98 		allowed = BTRFS_BLOCK_GROUP_RAID6;
99 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
100 		allowed = BTRFS_BLOCK_GROUP_RAID5;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
102 		allowed = BTRFS_BLOCK_GROUP_RAID10;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
106 		allowed = BTRFS_BLOCK_GROUP_RAID0;
107 
108 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
109 
110 	return extended_to_chunk(flags | allowed);
111 }
112 
113 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
114 {
115 	unsigned seq;
116 	u64 flags;
117 
118 	do {
119 		flags = orig_flags;
120 		seq = read_seqbegin(&fs_info->profiles_lock);
121 
122 		if (flags & BTRFS_BLOCK_GROUP_DATA)
123 			flags |= fs_info->avail_data_alloc_bits;
124 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
125 			flags |= fs_info->avail_system_alloc_bits;
126 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
127 			flags |= fs_info->avail_metadata_alloc_bits;
128 	} while (read_seqretry(&fs_info->profiles_lock, seq));
129 
130 	return btrfs_reduce_alloc_profile(fs_info, flags);
131 }
132 
133 void btrfs_get_block_group(struct btrfs_block_group *cache)
134 {
135 	refcount_inc(&cache->refs);
136 }
137 
138 void btrfs_put_block_group(struct btrfs_block_group *cache)
139 {
140 	if (refcount_dec_and_test(&cache->refs)) {
141 		WARN_ON(cache->pinned > 0);
142 		/*
143 		 * If there was a failure to cleanup a log tree, very likely due
144 		 * to an IO failure on a writeback attempt of one or more of its
145 		 * extent buffers, we could not do proper (and cheap) unaccounting
146 		 * of their reserved space, so don't warn on reserved > 0 in that
147 		 * case.
148 		 */
149 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
150 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
151 			WARN_ON(cache->reserved > 0);
152 
153 		/*
154 		 * A block_group shouldn't be on the discard_list anymore.
155 		 * Remove the block_group from the discard_list to prevent us
156 		 * from causing a panic due to NULL pointer dereference.
157 		 */
158 		if (WARN_ON(!list_empty(&cache->discard_list)))
159 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
160 						  cache);
161 
162 		/*
163 		 * If not empty, someone is still holding mutex of
164 		 * full_stripe_lock, which can only be released by caller.
165 		 * And it will definitely cause use-after-free when caller
166 		 * tries to release full stripe lock.
167 		 *
168 		 * No better way to resolve, but only to warn.
169 		 */
170 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
171 		kfree(cache->free_space_ctl);
172 		kfree(cache->physical_map);
173 		kfree(cache);
174 	}
175 }
176 
177 /*
178  * This adds the block group to the fs_info rb tree for the block group cache
179  */
180 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
181 				       struct btrfs_block_group *block_group)
182 {
183 	struct rb_node **p;
184 	struct rb_node *parent = NULL;
185 	struct btrfs_block_group *cache;
186 	bool leftmost = true;
187 
188 	ASSERT(block_group->length != 0);
189 
190 	write_lock(&info->block_group_cache_lock);
191 	p = &info->block_group_cache_tree.rb_root.rb_node;
192 
193 	while (*p) {
194 		parent = *p;
195 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
196 		if (block_group->start < cache->start) {
197 			p = &(*p)->rb_left;
198 		} else if (block_group->start > cache->start) {
199 			p = &(*p)->rb_right;
200 			leftmost = false;
201 		} else {
202 			write_unlock(&info->block_group_cache_lock);
203 			return -EEXIST;
204 		}
205 	}
206 
207 	rb_link_node(&block_group->cache_node, parent, p);
208 	rb_insert_color_cached(&block_group->cache_node,
209 			       &info->block_group_cache_tree, leftmost);
210 
211 	write_unlock(&info->block_group_cache_lock);
212 
213 	return 0;
214 }
215 
216 /*
217  * This will return the block group at or after bytenr if contains is 0, else
218  * it will return the block group that contains the bytenr
219  */
220 static struct btrfs_block_group *block_group_cache_tree_search(
221 		struct btrfs_fs_info *info, u64 bytenr, int contains)
222 {
223 	struct btrfs_block_group *cache, *ret = NULL;
224 	struct rb_node *n;
225 	u64 end, start;
226 
227 	read_lock(&info->block_group_cache_lock);
228 	n = info->block_group_cache_tree.rb_root.rb_node;
229 
230 	while (n) {
231 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
232 		end = cache->start + cache->length - 1;
233 		start = cache->start;
234 
235 		if (bytenr < start) {
236 			if (!contains && (!ret || start < ret->start))
237 				ret = cache;
238 			n = n->rb_left;
239 		} else if (bytenr > start) {
240 			if (contains && bytenr <= end) {
241 				ret = cache;
242 				break;
243 			}
244 			n = n->rb_right;
245 		} else {
246 			ret = cache;
247 			break;
248 		}
249 	}
250 	if (ret)
251 		btrfs_get_block_group(ret);
252 	read_unlock(&info->block_group_cache_lock);
253 
254 	return ret;
255 }
256 
257 /*
258  * Return the block group that starts at or after bytenr
259  */
260 struct btrfs_block_group *btrfs_lookup_first_block_group(
261 		struct btrfs_fs_info *info, u64 bytenr)
262 {
263 	return block_group_cache_tree_search(info, bytenr, 0);
264 }
265 
266 /*
267  * Return the block group that contains the given bytenr
268  */
269 struct btrfs_block_group *btrfs_lookup_block_group(
270 		struct btrfs_fs_info *info, u64 bytenr)
271 {
272 	return block_group_cache_tree_search(info, bytenr, 1);
273 }
274 
275 struct btrfs_block_group *btrfs_next_block_group(
276 		struct btrfs_block_group *cache)
277 {
278 	struct btrfs_fs_info *fs_info = cache->fs_info;
279 	struct rb_node *node;
280 
281 	read_lock(&fs_info->block_group_cache_lock);
282 
283 	/* If our block group was removed, we need a full search. */
284 	if (RB_EMPTY_NODE(&cache->cache_node)) {
285 		const u64 next_bytenr = cache->start + cache->length;
286 
287 		read_unlock(&fs_info->block_group_cache_lock);
288 		btrfs_put_block_group(cache);
289 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
290 	}
291 	node = rb_next(&cache->cache_node);
292 	btrfs_put_block_group(cache);
293 	if (node) {
294 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
295 		btrfs_get_block_group(cache);
296 	} else
297 		cache = NULL;
298 	read_unlock(&fs_info->block_group_cache_lock);
299 	return cache;
300 }
301 
302 /*
303  * Check if we can do a NOCOW write for a given extent.
304  *
305  * @fs_info:       The filesystem information object.
306  * @bytenr:        Logical start address of the extent.
307  *
308  * Check if we can do a NOCOW write for the given extent, and increments the
309  * number of NOCOW writers in the block group that contains the extent, as long
310  * as the block group exists and it's currently not in read-only mode.
311  *
312  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
313  *          is responsible for calling btrfs_dec_nocow_writers() later.
314  *
315  *          Or NULL if we can not do a NOCOW write
316  */
317 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
318 						  u64 bytenr)
319 {
320 	struct btrfs_block_group *bg;
321 	bool can_nocow = true;
322 
323 	bg = btrfs_lookup_block_group(fs_info, bytenr);
324 	if (!bg)
325 		return NULL;
326 
327 	spin_lock(&bg->lock);
328 	if (bg->ro)
329 		can_nocow = false;
330 	else
331 		atomic_inc(&bg->nocow_writers);
332 	spin_unlock(&bg->lock);
333 
334 	if (!can_nocow) {
335 		btrfs_put_block_group(bg);
336 		return NULL;
337 	}
338 
339 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
340 	return bg;
341 }
342 
343 /*
344  * Decrement the number of NOCOW writers in a block group.
345  *
346  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
347  * and on the block group returned by that call. Typically this is called after
348  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
349  * relocation.
350  *
351  * After this call, the caller should not use the block group anymore. It it wants
352  * to use it, then it should get a reference on it before calling this function.
353  */
354 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
355 {
356 	if (atomic_dec_and_test(&bg->nocow_writers))
357 		wake_up_var(&bg->nocow_writers);
358 
359 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
360 	btrfs_put_block_group(bg);
361 }
362 
363 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
364 {
365 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
366 }
367 
368 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
369 					const u64 start)
370 {
371 	struct btrfs_block_group *bg;
372 
373 	bg = btrfs_lookup_block_group(fs_info, start);
374 	ASSERT(bg);
375 	if (atomic_dec_and_test(&bg->reservations))
376 		wake_up_var(&bg->reservations);
377 	btrfs_put_block_group(bg);
378 }
379 
380 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
381 {
382 	struct btrfs_space_info *space_info = bg->space_info;
383 
384 	ASSERT(bg->ro);
385 
386 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
387 		return;
388 
389 	/*
390 	 * Our block group is read only but before we set it to read only,
391 	 * some task might have had allocated an extent from it already, but it
392 	 * has not yet created a respective ordered extent (and added it to a
393 	 * root's list of ordered extents).
394 	 * Therefore wait for any task currently allocating extents, since the
395 	 * block group's reservations counter is incremented while a read lock
396 	 * on the groups' semaphore is held and decremented after releasing
397 	 * the read access on that semaphore and creating the ordered extent.
398 	 */
399 	down_write(&space_info->groups_sem);
400 	up_write(&space_info->groups_sem);
401 
402 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
403 }
404 
405 struct btrfs_caching_control *btrfs_get_caching_control(
406 		struct btrfs_block_group *cache)
407 {
408 	struct btrfs_caching_control *ctl;
409 
410 	spin_lock(&cache->lock);
411 	if (!cache->caching_ctl) {
412 		spin_unlock(&cache->lock);
413 		return NULL;
414 	}
415 
416 	ctl = cache->caching_ctl;
417 	refcount_inc(&ctl->count);
418 	spin_unlock(&cache->lock);
419 	return ctl;
420 }
421 
422 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
423 {
424 	if (refcount_dec_and_test(&ctl->count))
425 		kfree(ctl);
426 }
427 
428 /*
429  * When we wait for progress in the block group caching, its because our
430  * allocation attempt failed at least once.  So, we must sleep and let some
431  * progress happen before we try again.
432  *
433  * This function will sleep at least once waiting for new free space to show
434  * up, and then it will check the block group free space numbers for our min
435  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
436  * a free extent of a given size, but this is a good start.
437  *
438  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
439  * any of the information in this block group.
440  */
441 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
442 					   u64 num_bytes)
443 {
444 	struct btrfs_caching_control *caching_ctl;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
451 		   (cache->free_space_ctl->free_space >= num_bytes));
452 
453 	btrfs_put_caching_control(caching_ctl);
454 }
455 
456 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
457 				       struct btrfs_caching_control *caching_ctl)
458 {
459 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
460 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
461 }
462 
463 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
464 {
465 	struct btrfs_caching_control *caching_ctl;
466 	int ret;
467 
468 	caching_ctl = btrfs_get_caching_control(cache);
469 	if (!caching_ctl)
470 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
471 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
472 	btrfs_put_caching_control(caching_ctl);
473 	return ret;
474 }
475 
476 #ifdef CONFIG_BTRFS_DEBUG
477 static void fragment_free_space(struct btrfs_block_group *block_group)
478 {
479 	struct btrfs_fs_info *fs_info = block_group->fs_info;
480 	u64 start = block_group->start;
481 	u64 len = block_group->length;
482 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
483 		fs_info->nodesize : fs_info->sectorsize;
484 	u64 step = chunk << 1;
485 
486 	while (len > chunk) {
487 		btrfs_remove_free_space(block_group, start, chunk);
488 		start += step;
489 		if (len < step)
490 			len = 0;
491 		else
492 			len -= step;
493 	}
494 }
495 #endif
496 
497 /*
498  * This is only called by btrfs_cache_block_group, since we could have freed
499  * extents we need to check the pinned_extents for any extents that can't be
500  * used yet since their free space will be released as soon as the transaction
501  * commits.
502  */
503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
504 {
505 	struct btrfs_fs_info *info = block_group->fs_info;
506 	u64 extent_start, extent_end, size, total_added = 0;
507 	int ret;
508 
509 	while (start < end) {
510 		ret = find_first_extent_bit(&info->excluded_extents, start,
511 					    &extent_start, &extent_end,
512 					    EXTENT_DIRTY | EXTENT_UPTODATE,
513 					    NULL);
514 		if (ret)
515 			break;
516 
517 		if (extent_start <= start) {
518 			start = extent_end + 1;
519 		} else if (extent_start > start && extent_start < end) {
520 			size = extent_start - start;
521 			total_added += size;
522 			ret = btrfs_add_free_space_async_trimmed(block_group,
523 								 start, size);
524 			BUG_ON(ret); /* -ENOMEM or logic error */
525 			start = extent_end + 1;
526 		} else {
527 			break;
528 		}
529 	}
530 
531 	if (start < end) {
532 		size = end - start;
533 		total_added += size;
534 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
535 							 size);
536 		BUG_ON(ret); /* -ENOMEM or logic error */
537 	}
538 
539 	return total_added;
540 }
541 
542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
543 {
544 	struct btrfs_block_group *block_group = caching_ctl->block_group;
545 	struct btrfs_fs_info *fs_info = block_group->fs_info;
546 	struct btrfs_root *extent_root;
547 	struct btrfs_path *path;
548 	struct extent_buffer *leaf;
549 	struct btrfs_key key;
550 	u64 total_found = 0;
551 	u64 last = 0;
552 	u32 nritems;
553 	int ret;
554 	bool wakeup = true;
555 
556 	path = btrfs_alloc_path();
557 	if (!path)
558 		return -ENOMEM;
559 
560 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
561 	extent_root = btrfs_extent_root(fs_info, last);
562 
563 #ifdef CONFIG_BTRFS_DEBUG
564 	/*
565 	 * If we're fragmenting we don't want to make anybody think we can
566 	 * allocate from this block group until we've had a chance to fragment
567 	 * the free space.
568 	 */
569 	if (btrfs_should_fragment_free_space(block_group))
570 		wakeup = false;
571 #endif
572 	/*
573 	 * We don't want to deadlock with somebody trying to allocate a new
574 	 * extent for the extent root while also trying to search the extent
575 	 * root to add free space.  So we skip locking and search the commit
576 	 * root, since its read-only
577 	 */
578 	path->skip_locking = 1;
579 	path->search_commit_root = 1;
580 	path->reada = READA_FORWARD;
581 
582 	key.objectid = last;
583 	key.offset = 0;
584 	key.type = BTRFS_EXTENT_ITEM_KEY;
585 
586 next:
587 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
588 	if (ret < 0)
589 		goto out;
590 
591 	leaf = path->nodes[0];
592 	nritems = btrfs_header_nritems(leaf);
593 
594 	while (1) {
595 		if (btrfs_fs_closing(fs_info) > 1) {
596 			last = (u64)-1;
597 			break;
598 		}
599 
600 		if (path->slots[0] < nritems) {
601 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
602 		} else {
603 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
604 			if (ret)
605 				break;
606 
607 			if (need_resched() ||
608 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
609 				btrfs_release_path(path);
610 				up_read(&fs_info->commit_root_sem);
611 				mutex_unlock(&caching_ctl->mutex);
612 				cond_resched();
613 				mutex_lock(&caching_ctl->mutex);
614 				down_read(&fs_info->commit_root_sem);
615 				goto next;
616 			}
617 
618 			ret = btrfs_next_leaf(extent_root, path);
619 			if (ret < 0)
620 				goto out;
621 			if (ret)
622 				break;
623 			leaf = path->nodes[0];
624 			nritems = btrfs_header_nritems(leaf);
625 			continue;
626 		}
627 
628 		if (key.objectid < last) {
629 			key.objectid = last;
630 			key.offset = 0;
631 			key.type = BTRFS_EXTENT_ITEM_KEY;
632 			btrfs_release_path(path);
633 			goto next;
634 		}
635 
636 		if (key.objectid < block_group->start) {
637 			path->slots[0]++;
638 			continue;
639 		}
640 
641 		if (key.objectid >= block_group->start + block_group->length)
642 			break;
643 
644 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
645 		    key.type == BTRFS_METADATA_ITEM_KEY) {
646 			total_found += add_new_free_space(block_group, last,
647 							  key.objectid);
648 			if (key.type == BTRFS_METADATA_ITEM_KEY)
649 				last = key.objectid +
650 					fs_info->nodesize;
651 			else
652 				last = key.objectid + key.offset;
653 
654 			if (total_found > CACHING_CTL_WAKE_UP) {
655 				total_found = 0;
656 				if (wakeup)
657 					wake_up(&caching_ctl->wait);
658 			}
659 		}
660 		path->slots[0]++;
661 	}
662 	ret = 0;
663 
664 	total_found += add_new_free_space(block_group, last,
665 				block_group->start + block_group->length);
666 
667 out:
668 	btrfs_free_path(path);
669 	return ret;
670 }
671 
672 static noinline void caching_thread(struct btrfs_work *work)
673 {
674 	struct btrfs_block_group *block_group;
675 	struct btrfs_fs_info *fs_info;
676 	struct btrfs_caching_control *caching_ctl;
677 	int ret;
678 
679 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
680 	block_group = caching_ctl->block_group;
681 	fs_info = block_group->fs_info;
682 
683 	mutex_lock(&caching_ctl->mutex);
684 	down_read(&fs_info->commit_root_sem);
685 
686 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
687 		ret = load_free_space_cache(block_group);
688 		if (ret == 1) {
689 			ret = 0;
690 			goto done;
691 		}
692 
693 		/*
694 		 * We failed to load the space cache, set ourselves to
695 		 * CACHE_STARTED and carry on.
696 		 */
697 		spin_lock(&block_group->lock);
698 		block_group->cached = BTRFS_CACHE_STARTED;
699 		spin_unlock(&block_group->lock);
700 		wake_up(&caching_ctl->wait);
701 	}
702 
703 	/*
704 	 * If we are in the transaction that populated the free space tree we
705 	 * can't actually cache from the free space tree as our commit root and
706 	 * real root are the same, so we could change the contents of the blocks
707 	 * while caching.  Instead do the slow caching in this case, and after
708 	 * the transaction has committed we will be safe.
709 	 */
710 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
711 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
712 		ret = load_free_space_tree(caching_ctl);
713 	else
714 		ret = load_extent_tree_free(caching_ctl);
715 done:
716 	spin_lock(&block_group->lock);
717 	block_group->caching_ctl = NULL;
718 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
719 	spin_unlock(&block_group->lock);
720 
721 #ifdef CONFIG_BTRFS_DEBUG
722 	if (btrfs_should_fragment_free_space(block_group)) {
723 		u64 bytes_used;
724 
725 		spin_lock(&block_group->space_info->lock);
726 		spin_lock(&block_group->lock);
727 		bytes_used = block_group->length - block_group->used;
728 		block_group->space_info->bytes_used += bytes_used >> 1;
729 		spin_unlock(&block_group->lock);
730 		spin_unlock(&block_group->space_info->lock);
731 		fragment_free_space(block_group);
732 	}
733 #endif
734 
735 	up_read(&fs_info->commit_root_sem);
736 	btrfs_free_excluded_extents(block_group);
737 	mutex_unlock(&caching_ctl->mutex);
738 
739 	wake_up(&caching_ctl->wait);
740 
741 	btrfs_put_caching_control(caching_ctl);
742 	btrfs_put_block_group(block_group);
743 }
744 
745 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
746 {
747 	struct btrfs_fs_info *fs_info = cache->fs_info;
748 	struct btrfs_caching_control *caching_ctl = NULL;
749 	int ret = 0;
750 
751 	/* Allocator for zoned filesystems does not use the cache at all */
752 	if (btrfs_is_zoned(fs_info))
753 		return 0;
754 
755 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
756 	if (!caching_ctl)
757 		return -ENOMEM;
758 
759 	INIT_LIST_HEAD(&caching_ctl->list);
760 	mutex_init(&caching_ctl->mutex);
761 	init_waitqueue_head(&caching_ctl->wait);
762 	caching_ctl->block_group = cache;
763 	refcount_set(&caching_ctl->count, 2);
764 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
765 
766 	spin_lock(&cache->lock);
767 	if (cache->cached != BTRFS_CACHE_NO) {
768 		kfree(caching_ctl);
769 
770 		caching_ctl = cache->caching_ctl;
771 		if (caching_ctl)
772 			refcount_inc(&caching_ctl->count);
773 		spin_unlock(&cache->lock);
774 		goto out;
775 	}
776 	WARN_ON(cache->caching_ctl);
777 	cache->caching_ctl = caching_ctl;
778 	cache->cached = BTRFS_CACHE_STARTED;
779 	spin_unlock(&cache->lock);
780 
781 	write_lock(&fs_info->block_group_cache_lock);
782 	refcount_inc(&caching_ctl->count);
783 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
784 	write_unlock(&fs_info->block_group_cache_lock);
785 
786 	btrfs_get_block_group(cache);
787 
788 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
789 out:
790 	if (wait && caching_ctl)
791 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
792 	if (caching_ctl)
793 		btrfs_put_caching_control(caching_ctl);
794 
795 	return ret;
796 }
797 
798 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
799 {
800 	u64 extra_flags = chunk_to_extended(flags) &
801 				BTRFS_EXTENDED_PROFILE_MASK;
802 
803 	write_seqlock(&fs_info->profiles_lock);
804 	if (flags & BTRFS_BLOCK_GROUP_DATA)
805 		fs_info->avail_data_alloc_bits &= ~extra_flags;
806 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
807 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
808 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
809 		fs_info->avail_system_alloc_bits &= ~extra_flags;
810 	write_sequnlock(&fs_info->profiles_lock);
811 }
812 
813 /*
814  * Clear incompat bits for the following feature(s):
815  *
816  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
817  *            in the whole filesystem
818  *
819  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
820  */
821 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
822 {
823 	bool found_raid56 = false;
824 	bool found_raid1c34 = false;
825 
826 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
827 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
828 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
829 		struct list_head *head = &fs_info->space_info;
830 		struct btrfs_space_info *sinfo;
831 
832 		list_for_each_entry_rcu(sinfo, head, list) {
833 			down_read(&sinfo->groups_sem);
834 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
835 				found_raid56 = true;
836 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
837 				found_raid56 = true;
838 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
839 				found_raid1c34 = true;
840 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
841 				found_raid1c34 = true;
842 			up_read(&sinfo->groups_sem);
843 		}
844 		if (!found_raid56)
845 			btrfs_clear_fs_incompat(fs_info, RAID56);
846 		if (!found_raid1c34)
847 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
848 	}
849 }
850 
851 static int remove_block_group_item(struct btrfs_trans_handle *trans,
852 				   struct btrfs_path *path,
853 				   struct btrfs_block_group *block_group)
854 {
855 	struct btrfs_fs_info *fs_info = trans->fs_info;
856 	struct btrfs_root *root;
857 	struct btrfs_key key;
858 	int ret;
859 
860 	root = btrfs_block_group_root(fs_info);
861 	key.objectid = block_group->start;
862 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
863 	key.offset = block_group->length;
864 
865 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
866 	if (ret > 0)
867 		ret = -ENOENT;
868 	if (ret < 0)
869 		return ret;
870 
871 	ret = btrfs_del_item(trans, root, path);
872 	return ret;
873 }
874 
875 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
876 			     u64 group_start, struct extent_map *em)
877 {
878 	struct btrfs_fs_info *fs_info = trans->fs_info;
879 	struct btrfs_path *path;
880 	struct btrfs_block_group *block_group;
881 	struct btrfs_free_cluster *cluster;
882 	struct inode *inode;
883 	struct kobject *kobj = NULL;
884 	int ret;
885 	int index;
886 	int factor;
887 	struct btrfs_caching_control *caching_ctl = NULL;
888 	bool remove_em;
889 	bool remove_rsv = false;
890 
891 	block_group = btrfs_lookup_block_group(fs_info, group_start);
892 	BUG_ON(!block_group);
893 	BUG_ON(!block_group->ro);
894 
895 	trace_btrfs_remove_block_group(block_group);
896 	/*
897 	 * Free the reserved super bytes from this block group before
898 	 * remove it.
899 	 */
900 	btrfs_free_excluded_extents(block_group);
901 	btrfs_free_ref_tree_range(fs_info, block_group->start,
902 				  block_group->length);
903 
904 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
905 	factor = btrfs_bg_type_to_factor(block_group->flags);
906 
907 	/* make sure this block group isn't part of an allocation cluster */
908 	cluster = &fs_info->data_alloc_cluster;
909 	spin_lock(&cluster->refill_lock);
910 	btrfs_return_cluster_to_free_space(block_group, cluster);
911 	spin_unlock(&cluster->refill_lock);
912 
913 	/*
914 	 * make sure this block group isn't part of a metadata
915 	 * allocation cluster
916 	 */
917 	cluster = &fs_info->meta_alloc_cluster;
918 	spin_lock(&cluster->refill_lock);
919 	btrfs_return_cluster_to_free_space(block_group, cluster);
920 	spin_unlock(&cluster->refill_lock);
921 
922 	btrfs_clear_treelog_bg(block_group);
923 	btrfs_clear_data_reloc_bg(block_group);
924 
925 	path = btrfs_alloc_path();
926 	if (!path) {
927 		ret = -ENOMEM;
928 		goto out;
929 	}
930 
931 	/*
932 	 * get the inode first so any iput calls done for the io_list
933 	 * aren't the final iput (no unlinks allowed now)
934 	 */
935 	inode = lookup_free_space_inode(block_group, path);
936 
937 	mutex_lock(&trans->transaction->cache_write_mutex);
938 	/*
939 	 * Make sure our free space cache IO is done before removing the
940 	 * free space inode
941 	 */
942 	spin_lock(&trans->transaction->dirty_bgs_lock);
943 	if (!list_empty(&block_group->io_list)) {
944 		list_del_init(&block_group->io_list);
945 
946 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
947 
948 		spin_unlock(&trans->transaction->dirty_bgs_lock);
949 		btrfs_wait_cache_io(trans, block_group, path);
950 		btrfs_put_block_group(block_group);
951 		spin_lock(&trans->transaction->dirty_bgs_lock);
952 	}
953 
954 	if (!list_empty(&block_group->dirty_list)) {
955 		list_del_init(&block_group->dirty_list);
956 		remove_rsv = true;
957 		btrfs_put_block_group(block_group);
958 	}
959 	spin_unlock(&trans->transaction->dirty_bgs_lock);
960 	mutex_unlock(&trans->transaction->cache_write_mutex);
961 
962 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
963 	if (ret)
964 		goto out;
965 
966 	write_lock(&fs_info->block_group_cache_lock);
967 	rb_erase_cached(&block_group->cache_node,
968 			&fs_info->block_group_cache_tree);
969 	RB_CLEAR_NODE(&block_group->cache_node);
970 
971 	/* Once for the block groups rbtree */
972 	btrfs_put_block_group(block_group);
973 
974 	write_unlock(&fs_info->block_group_cache_lock);
975 
976 	down_write(&block_group->space_info->groups_sem);
977 	/*
978 	 * we must use list_del_init so people can check to see if they
979 	 * are still on the list after taking the semaphore
980 	 */
981 	list_del_init(&block_group->list);
982 	if (list_empty(&block_group->space_info->block_groups[index])) {
983 		kobj = block_group->space_info->block_group_kobjs[index];
984 		block_group->space_info->block_group_kobjs[index] = NULL;
985 		clear_avail_alloc_bits(fs_info, block_group->flags);
986 	}
987 	up_write(&block_group->space_info->groups_sem);
988 	clear_incompat_bg_bits(fs_info, block_group->flags);
989 	if (kobj) {
990 		kobject_del(kobj);
991 		kobject_put(kobj);
992 	}
993 
994 	if (block_group->cached == BTRFS_CACHE_STARTED)
995 		btrfs_wait_block_group_cache_done(block_group);
996 
997 	write_lock(&fs_info->block_group_cache_lock);
998 	caching_ctl = btrfs_get_caching_control(block_group);
999 	if (!caching_ctl) {
1000 		struct btrfs_caching_control *ctl;
1001 
1002 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1003 			if (ctl->block_group == block_group) {
1004 				caching_ctl = ctl;
1005 				refcount_inc(&caching_ctl->count);
1006 				break;
1007 			}
1008 		}
1009 	}
1010 	if (caching_ctl)
1011 		list_del_init(&caching_ctl->list);
1012 	write_unlock(&fs_info->block_group_cache_lock);
1013 
1014 	if (caching_ctl) {
1015 		/* Once for the caching bgs list and once for us. */
1016 		btrfs_put_caching_control(caching_ctl);
1017 		btrfs_put_caching_control(caching_ctl);
1018 	}
1019 
1020 	spin_lock(&trans->transaction->dirty_bgs_lock);
1021 	WARN_ON(!list_empty(&block_group->dirty_list));
1022 	WARN_ON(!list_empty(&block_group->io_list));
1023 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1024 
1025 	btrfs_remove_free_space_cache(block_group);
1026 
1027 	spin_lock(&block_group->space_info->lock);
1028 	list_del_init(&block_group->ro_list);
1029 
1030 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1031 		WARN_ON(block_group->space_info->total_bytes
1032 			< block_group->length);
1033 		WARN_ON(block_group->space_info->bytes_readonly
1034 			< block_group->length - block_group->zone_unusable);
1035 		WARN_ON(block_group->space_info->bytes_zone_unusable
1036 			< block_group->zone_unusable);
1037 		WARN_ON(block_group->space_info->disk_total
1038 			< block_group->length * factor);
1039 		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1040 				 &block_group->runtime_flags) &&
1041 			block_group->space_info->active_total_bytes
1042 			< block_group->length);
1043 	}
1044 	block_group->space_info->total_bytes -= block_group->length;
1045 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1046 		block_group->space_info->active_total_bytes -= block_group->length;
1047 	block_group->space_info->bytes_readonly -=
1048 		(block_group->length - block_group->zone_unusable);
1049 	block_group->space_info->bytes_zone_unusable -=
1050 		block_group->zone_unusable;
1051 	block_group->space_info->disk_total -= block_group->length * factor;
1052 
1053 	spin_unlock(&block_group->space_info->lock);
1054 
1055 	/*
1056 	 * Remove the free space for the block group from the free space tree
1057 	 * and the block group's item from the extent tree before marking the
1058 	 * block group as removed. This is to prevent races with tasks that
1059 	 * freeze and unfreeze a block group, this task and another task
1060 	 * allocating a new block group - the unfreeze task ends up removing
1061 	 * the block group's extent map before the task calling this function
1062 	 * deletes the block group item from the extent tree, allowing for
1063 	 * another task to attempt to create another block group with the same
1064 	 * item key (and failing with -EEXIST and a transaction abort).
1065 	 */
1066 	ret = remove_block_group_free_space(trans, block_group);
1067 	if (ret)
1068 		goto out;
1069 
1070 	ret = remove_block_group_item(trans, path, block_group);
1071 	if (ret < 0)
1072 		goto out;
1073 
1074 	spin_lock(&block_group->lock);
1075 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1076 
1077 	/*
1078 	 * At this point trimming or scrub can't start on this block group,
1079 	 * because we removed the block group from the rbtree
1080 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1081 	 * even if someone already got this block group before we removed it
1082 	 * from the rbtree, they have already incremented block_group->frozen -
1083 	 * if they didn't, for the trimming case they won't find any free space
1084 	 * entries because we already removed them all when we called
1085 	 * btrfs_remove_free_space_cache().
1086 	 *
1087 	 * And we must not remove the extent map from the fs_info->mapping_tree
1088 	 * to prevent the same logical address range and physical device space
1089 	 * ranges from being reused for a new block group. This is needed to
1090 	 * avoid races with trimming and scrub.
1091 	 *
1092 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1093 	 * completely transactionless, so while it is trimming a range the
1094 	 * currently running transaction might finish and a new one start,
1095 	 * allowing for new block groups to be created that can reuse the same
1096 	 * physical device locations unless we take this special care.
1097 	 *
1098 	 * There may also be an implicit trim operation if the file system
1099 	 * is mounted with -odiscard. The same protections must remain
1100 	 * in place until the extents have been discarded completely when
1101 	 * the transaction commit has completed.
1102 	 */
1103 	remove_em = (atomic_read(&block_group->frozen) == 0);
1104 	spin_unlock(&block_group->lock);
1105 
1106 	if (remove_em) {
1107 		struct extent_map_tree *em_tree;
1108 
1109 		em_tree = &fs_info->mapping_tree;
1110 		write_lock(&em_tree->lock);
1111 		remove_extent_mapping(em_tree, em);
1112 		write_unlock(&em_tree->lock);
1113 		/* once for the tree */
1114 		free_extent_map(em);
1115 	}
1116 
1117 out:
1118 	/* Once for the lookup reference */
1119 	btrfs_put_block_group(block_group);
1120 	if (remove_rsv)
1121 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1122 	btrfs_free_path(path);
1123 	return ret;
1124 }
1125 
1126 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1127 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1128 {
1129 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1130 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1131 	struct extent_map *em;
1132 	struct map_lookup *map;
1133 	unsigned int num_items;
1134 
1135 	read_lock(&em_tree->lock);
1136 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1137 	read_unlock(&em_tree->lock);
1138 	ASSERT(em && em->start == chunk_offset);
1139 
1140 	/*
1141 	 * We need to reserve 3 + N units from the metadata space info in order
1142 	 * to remove a block group (done at btrfs_remove_chunk() and at
1143 	 * btrfs_remove_block_group()), which are used for:
1144 	 *
1145 	 * 1 unit for adding the free space inode's orphan (located in the tree
1146 	 * of tree roots).
1147 	 * 1 unit for deleting the block group item (located in the extent
1148 	 * tree).
1149 	 * 1 unit for deleting the free space item (located in tree of tree
1150 	 * roots).
1151 	 * N units for deleting N device extent items corresponding to each
1152 	 * stripe (located in the device tree).
1153 	 *
1154 	 * In order to remove a block group we also need to reserve units in the
1155 	 * system space info in order to update the chunk tree (update one or
1156 	 * more device items and remove one chunk item), but this is done at
1157 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1158 	 */
1159 	map = em->map_lookup;
1160 	num_items = 3 + map->num_stripes;
1161 	free_extent_map(em);
1162 
1163 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1164 }
1165 
1166 /*
1167  * Mark block group @cache read-only, so later write won't happen to block
1168  * group @cache.
1169  *
1170  * If @force is not set, this function will only mark the block group readonly
1171  * if we have enough free space (1M) in other metadata/system block groups.
1172  * If @force is not set, this function will mark the block group readonly
1173  * without checking free space.
1174  *
1175  * NOTE: This function doesn't care if other block groups can contain all the
1176  * data in this block group. That check should be done by relocation routine,
1177  * not this function.
1178  */
1179 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1180 {
1181 	struct btrfs_space_info *sinfo = cache->space_info;
1182 	u64 num_bytes;
1183 	int ret = -ENOSPC;
1184 
1185 	spin_lock(&sinfo->lock);
1186 	spin_lock(&cache->lock);
1187 
1188 	if (cache->swap_extents) {
1189 		ret = -ETXTBSY;
1190 		goto out;
1191 	}
1192 
1193 	if (cache->ro) {
1194 		cache->ro++;
1195 		ret = 0;
1196 		goto out;
1197 	}
1198 
1199 	num_bytes = cache->length - cache->reserved - cache->pinned -
1200 		    cache->bytes_super - cache->zone_unusable - cache->used;
1201 
1202 	/*
1203 	 * Data never overcommits, even in mixed mode, so do just the straight
1204 	 * check of left over space in how much we have allocated.
1205 	 */
1206 	if (force) {
1207 		ret = 0;
1208 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1209 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1210 
1211 		/*
1212 		 * Here we make sure if we mark this bg RO, we still have enough
1213 		 * free space as buffer.
1214 		 */
1215 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1216 			ret = 0;
1217 	} else {
1218 		/*
1219 		 * We overcommit metadata, so we need to do the
1220 		 * btrfs_can_overcommit check here, and we need to pass in
1221 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1222 		 * leeway to allow us to mark this block group as read only.
1223 		 */
1224 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1225 					 BTRFS_RESERVE_NO_FLUSH))
1226 			ret = 0;
1227 	}
1228 
1229 	if (!ret) {
1230 		sinfo->bytes_readonly += num_bytes;
1231 		if (btrfs_is_zoned(cache->fs_info)) {
1232 			/* Migrate zone_unusable bytes to readonly */
1233 			sinfo->bytes_readonly += cache->zone_unusable;
1234 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1235 			cache->zone_unusable = 0;
1236 		}
1237 		cache->ro++;
1238 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1239 	}
1240 out:
1241 	spin_unlock(&cache->lock);
1242 	spin_unlock(&sinfo->lock);
1243 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244 		btrfs_info(cache->fs_info,
1245 			"unable to make block group %llu ro", cache->start);
1246 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247 	}
1248 	return ret;
1249 }
1250 
1251 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1252 				 struct btrfs_block_group *bg)
1253 {
1254 	struct btrfs_fs_info *fs_info = bg->fs_info;
1255 	struct btrfs_transaction *prev_trans = NULL;
1256 	const u64 start = bg->start;
1257 	const u64 end = start + bg->length - 1;
1258 	int ret;
1259 
1260 	spin_lock(&fs_info->trans_lock);
1261 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1262 		prev_trans = list_last_entry(&trans->transaction->list,
1263 					     struct btrfs_transaction, list);
1264 		refcount_inc(&prev_trans->use_count);
1265 	}
1266 	spin_unlock(&fs_info->trans_lock);
1267 
1268 	/*
1269 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1270 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1271 	 * task might be running finish_extent_commit() for the previous
1272 	 * transaction N - 1, and have seen a range belonging to the block
1273 	 * group in pinned_extents before we were able to clear the whole block
1274 	 * group range from pinned_extents. This means that task can lookup for
1275 	 * the block group after we unpinned it from pinned_extents and removed
1276 	 * it, leading to a BUG_ON() at unpin_extent_range().
1277 	 */
1278 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1279 	if (prev_trans) {
1280 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1281 					EXTENT_DIRTY);
1282 		if (ret)
1283 			goto out;
1284 	}
1285 
1286 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1287 				EXTENT_DIRTY);
1288 out:
1289 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1290 	if (prev_trans)
1291 		btrfs_put_transaction(prev_trans);
1292 
1293 	return ret == 0;
1294 }
1295 
1296 /*
1297  * Process the unused_bgs list and remove any that don't have any allocated
1298  * space inside of them.
1299  */
1300 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1301 {
1302 	struct btrfs_block_group *block_group;
1303 	struct btrfs_space_info *space_info;
1304 	struct btrfs_trans_handle *trans;
1305 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1306 	int ret = 0;
1307 
1308 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1309 		return;
1310 
1311 	if (btrfs_fs_closing(fs_info))
1312 		return;
1313 
1314 	/*
1315 	 * Long running balances can keep us blocked here for eternity, so
1316 	 * simply skip deletion if we're unable to get the mutex.
1317 	 */
1318 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1319 		return;
1320 
1321 	spin_lock(&fs_info->unused_bgs_lock);
1322 	while (!list_empty(&fs_info->unused_bgs)) {
1323 		int trimming;
1324 
1325 		block_group = list_first_entry(&fs_info->unused_bgs,
1326 					       struct btrfs_block_group,
1327 					       bg_list);
1328 		list_del_init(&block_group->bg_list);
1329 
1330 		space_info = block_group->space_info;
1331 
1332 		if (ret || btrfs_mixed_space_info(space_info)) {
1333 			btrfs_put_block_group(block_group);
1334 			continue;
1335 		}
1336 		spin_unlock(&fs_info->unused_bgs_lock);
1337 
1338 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1339 
1340 		/* Don't want to race with allocators so take the groups_sem */
1341 		down_write(&space_info->groups_sem);
1342 
1343 		/*
1344 		 * Async discard moves the final block group discard to be prior
1345 		 * to the unused_bgs code path.  Therefore, if it's not fully
1346 		 * trimmed, punt it back to the async discard lists.
1347 		 */
1348 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1349 		    !btrfs_is_free_space_trimmed(block_group)) {
1350 			trace_btrfs_skip_unused_block_group(block_group);
1351 			up_write(&space_info->groups_sem);
1352 			/* Requeue if we failed because of async discard */
1353 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1354 						 block_group);
1355 			goto next;
1356 		}
1357 
1358 		spin_lock(&block_group->lock);
1359 		if (block_group->reserved || block_group->pinned ||
1360 		    block_group->used || block_group->ro ||
1361 		    list_is_singular(&block_group->list)) {
1362 			/*
1363 			 * We want to bail if we made new allocations or have
1364 			 * outstanding allocations in this block group.  We do
1365 			 * the ro check in case balance is currently acting on
1366 			 * this block group.
1367 			 */
1368 			trace_btrfs_skip_unused_block_group(block_group);
1369 			spin_unlock(&block_group->lock);
1370 			up_write(&space_info->groups_sem);
1371 			goto next;
1372 		}
1373 		spin_unlock(&block_group->lock);
1374 
1375 		/* We don't want to force the issue, only flip if it's ok. */
1376 		ret = inc_block_group_ro(block_group, 0);
1377 		up_write(&space_info->groups_sem);
1378 		if (ret < 0) {
1379 			ret = 0;
1380 			goto next;
1381 		}
1382 
1383 		ret = btrfs_zone_finish(block_group);
1384 		if (ret < 0) {
1385 			btrfs_dec_block_group_ro(block_group);
1386 			if (ret == -EAGAIN)
1387 				ret = 0;
1388 			goto next;
1389 		}
1390 
1391 		/*
1392 		 * Want to do this before we do anything else so we can recover
1393 		 * properly if we fail to join the transaction.
1394 		 */
1395 		trans = btrfs_start_trans_remove_block_group(fs_info,
1396 						     block_group->start);
1397 		if (IS_ERR(trans)) {
1398 			btrfs_dec_block_group_ro(block_group);
1399 			ret = PTR_ERR(trans);
1400 			goto next;
1401 		}
1402 
1403 		/*
1404 		 * We could have pending pinned extents for this block group,
1405 		 * just delete them, we don't care about them anymore.
1406 		 */
1407 		if (!clean_pinned_extents(trans, block_group)) {
1408 			btrfs_dec_block_group_ro(block_group);
1409 			goto end_trans;
1410 		}
1411 
1412 		/*
1413 		 * At this point, the block_group is read only and should fail
1414 		 * new allocations.  However, btrfs_finish_extent_commit() can
1415 		 * cause this block_group to be placed back on the discard
1416 		 * lists because now the block_group isn't fully discarded.
1417 		 * Bail here and try again later after discarding everything.
1418 		 */
1419 		spin_lock(&fs_info->discard_ctl.lock);
1420 		if (!list_empty(&block_group->discard_list)) {
1421 			spin_unlock(&fs_info->discard_ctl.lock);
1422 			btrfs_dec_block_group_ro(block_group);
1423 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1424 						 block_group);
1425 			goto end_trans;
1426 		}
1427 		spin_unlock(&fs_info->discard_ctl.lock);
1428 
1429 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1430 		spin_lock(&space_info->lock);
1431 		spin_lock(&block_group->lock);
1432 
1433 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1434 						     -block_group->pinned);
1435 		space_info->bytes_readonly += block_group->pinned;
1436 		block_group->pinned = 0;
1437 
1438 		spin_unlock(&block_group->lock);
1439 		spin_unlock(&space_info->lock);
1440 
1441 		/*
1442 		 * The normal path here is an unused block group is passed here,
1443 		 * then trimming is handled in the transaction commit path.
1444 		 * Async discard interposes before this to do the trimming
1445 		 * before coming down the unused block group path as trimming
1446 		 * will no longer be done later in the transaction commit path.
1447 		 */
1448 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1449 			goto flip_async;
1450 
1451 		/*
1452 		 * DISCARD can flip during remount. On zoned filesystems, we
1453 		 * need to reset sequential-required zones.
1454 		 */
1455 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1456 				btrfs_is_zoned(fs_info);
1457 
1458 		/* Implicit trim during transaction commit. */
1459 		if (trimming)
1460 			btrfs_freeze_block_group(block_group);
1461 
1462 		/*
1463 		 * Btrfs_remove_chunk will abort the transaction if things go
1464 		 * horribly wrong.
1465 		 */
1466 		ret = btrfs_remove_chunk(trans, block_group->start);
1467 
1468 		if (ret) {
1469 			if (trimming)
1470 				btrfs_unfreeze_block_group(block_group);
1471 			goto end_trans;
1472 		}
1473 
1474 		/*
1475 		 * If we're not mounted with -odiscard, we can just forget
1476 		 * about this block group. Otherwise we'll need to wait
1477 		 * until transaction commit to do the actual discard.
1478 		 */
1479 		if (trimming) {
1480 			spin_lock(&fs_info->unused_bgs_lock);
1481 			/*
1482 			 * A concurrent scrub might have added us to the list
1483 			 * fs_info->unused_bgs, so use a list_move operation
1484 			 * to add the block group to the deleted_bgs list.
1485 			 */
1486 			list_move(&block_group->bg_list,
1487 				  &trans->transaction->deleted_bgs);
1488 			spin_unlock(&fs_info->unused_bgs_lock);
1489 			btrfs_get_block_group(block_group);
1490 		}
1491 end_trans:
1492 		btrfs_end_transaction(trans);
1493 next:
1494 		btrfs_put_block_group(block_group);
1495 		spin_lock(&fs_info->unused_bgs_lock);
1496 	}
1497 	spin_unlock(&fs_info->unused_bgs_lock);
1498 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1499 	return;
1500 
1501 flip_async:
1502 	btrfs_end_transaction(trans);
1503 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1504 	btrfs_put_block_group(block_group);
1505 	btrfs_discard_punt_unused_bgs_list(fs_info);
1506 }
1507 
1508 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1509 {
1510 	struct btrfs_fs_info *fs_info = bg->fs_info;
1511 
1512 	spin_lock(&fs_info->unused_bgs_lock);
1513 	if (list_empty(&bg->bg_list)) {
1514 		btrfs_get_block_group(bg);
1515 		trace_btrfs_add_unused_block_group(bg);
1516 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1517 	}
1518 	spin_unlock(&fs_info->unused_bgs_lock);
1519 }
1520 
1521 /*
1522  * We want block groups with a low number of used bytes to be in the beginning
1523  * of the list, so they will get reclaimed first.
1524  */
1525 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1526 			   const struct list_head *b)
1527 {
1528 	const struct btrfs_block_group *bg1, *bg2;
1529 
1530 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1531 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1532 
1533 	return bg1->used > bg2->used;
1534 }
1535 
1536 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1537 {
1538 	if (btrfs_is_zoned(fs_info))
1539 		return btrfs_zoned_should_reclaim(fs_info);
1540 	return true;
1541 }
1542 
1543 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1544 {
1545 	const struct btrfs_space_info *space_info = bg->space_info;
1546 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1547 	const u64 new_val = bg->used;
1548 	const u64 old_val = new_val + bytes_freed;
1549 	u64 thresh;
1550 
1551 	if (reclaim_thresh == 0)
1552 		return false;
1553 
1554 	thresh = mult_perc(bg->length, reclaim_thresh);
1555 
1556 	/*
1557 	 * If we were below the threshold before don't reclaim, we are likely a
1558 	 * brand new block group and we don't want to relocate new block groups.
1559 	 */
1560 	if (old_val < thresh)
1561 		return false;
1562 	if (new_val >= thresh)
1563 		return false;
1564 	return true;
1565 }
1566 
1567 void btrfs_reclaim_bgs_work(struct work_struct *work)
1568 {
1569 	struct btrfs_fs_info *fs_info =
1570 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1571 	struct btrfs_block_group *bg;
1572 	struct btrfs_space_info *space_info;
1573 
1574 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1575 		return;
1576 
1577 	if (btrfs_fs_closing(fs_info))
1578 		return;
1579 
1580 	if (!btrfs_should_reclaim(fs_info))
1581 		return;
1582 
1583 	sb_start_write(fs_info->sb);
1584 
1585 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1586 		sb_end_write(fs_info->sb);
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * Long running balances can keep us blocked here for eternity, so
1592 	 * simply skip reclaim if we're unable to get the mutex.
1593 	 */
1594 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1595 		btrfs_exclop_finish(fs_info);
1596 		sb_end_write(fs_info->sb);
1597 		return;
1598 	}
1599 
1600 	spin_lock(&fs_info->unused_bgs_lock);
1601 	/*
1602 	 * Sort happens under lock because we can't simply splice it and sort.
1603 	 * The block groups might still be in use and reachable via bg_list,
1604 	 * and their presence in the reclaim_bgs list must be preserved.
1605 	 */
1606 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1607 	while (!list_empty(&fs_info->reclaim_bgs)) {
1608 		u64 zone_unusable;
1609 		int ret = 0;
1610 
1611 		bg = list_first_entry(&fs_info->reclaim_bgs,
1612 				      struct btrfs_block_group,
1613 				      bg_list);
1614 		list_del_init(&bg->bg_list);
1615 
1616 		space_info = bg->space_info;
1617 		spin_unlock(&fs_info->unused_bgs_lock);
1618 
1619 		/* Don't race with allocators so take the groups_sem */
1620 		down_write(&space_info->groups_sem);
1621 
1622 		spin_lock(&bg->lock);
1623 		if (bg->reserved || bg->pinned || bg->ro) {
1624 			/*
1625 			 * We want to bail if we made new allocations or have
1626 			 * outstanding allocations in this block group.  We do
1627 			 * the ro check in case balance is currently acting on
1628 			 * this block group.
1629 			 */
1630 			spin_unlock(&bg->lock);
1631 			up_write(&space_info->groups_sem);
1632 			goto next;
1633 		}
1634 		if (bg->used == 0) {
1635 			/*
1636 			 * It is possible that we trigger relocation on a block
1637 			 * group as its extents are deleted and it first goes
1638 			 * below the threshold, then shortly after goes empty.
1639 			 *
1640 			 * In this case, relocating it does delete it, but has
1641 			 * some overhead in relocation specific metadata, looking
1642 			 * for the non-existent extents and running some extra
1643 			 * transactions, which we can avoid by using one of the
1644 			 * other mechanisms for dealing with empty block groups.
1645 			 */
1646 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1647 				btrfs_mark_bg_unused(bg);
1648 			spin_unlock(&bg->lock);
1649 			up_write(&space_info->groups_sem);
1650 			goto next;
1651 
1652 		}
1653 		/*
1654 		 * The block group might no longer meet the reclaim condition by
1655 		 * the time we get around to reclaiming it, so to avoid
1656 		 * reclaiming overly full block_groups, skip reclaiming them.
1657 		 *
1658 		 * Since the decision making process also depends on the amount
1659 		 * being freed, pass in a fake giant value to skip that extra
1660 		 * check, which is more meaningful when adding to the list in
1661 		 * the first place.
1662 		 */
1663 		if (!should_reclaim_block_group(bg, bg->length)) {
1664 			spin_unlock(&bg->lock);
1665 			up_write(&space_info->groups_sem);
1666 			goto next;
1667 		}
1668 		spin_unlock(&bg->lock);
1669 
1670 		/* Get out fast, in case we're unmounting the filesystem */
1671 		if (btrfs_fs_closing(fs_info)) {
1672 			up_write(&space_info->groups_sem);
1673 			goto next;
1674 		}
1675 
1676 		/*
1677 		 * Cache the zone_unusable value before turning the block group
1678 		 * to read only. As soon as the blog group is read only it's
1679 		 * zone_unusable value gets moved to the block group's read-only
1680 		 * bytes and isn't available for calculations anymore.
1681 		 */
1682 		zone_unusable = bg->zone_unusable;
1683 		ret = inc_block_group_ro(bg, 0);
1684 		up_write(&space_info->groups_sem);
1685 		if (ret < 0)
1686 			goto next;
1687 
1688 		btrfs_info(fs_info,
1689 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1690 				bg->start, div_u64(bg->used * 100, bg->length),
1691 				div64_u64(zone_unusable * 100, bg->length));
1692 		trace_btrfs_reclaim_block_group(bg);
1693 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1694 		if (ret) {
1695 			btrfs_dec_block_group_ro(bg);
1696 			btrfs_err(fs_info, "error relocating chunk %llu",
1697 				  bg->start);
1698 		}
1699 
1700 next:
1701 		btrfs_put_block_group(bg);
1702 		spin_lock(&fs_info->unused_bgs_lock);
1703 	}
1704 	spin_unlock(&fs_info->unused_bgs_lock);
1705 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1706 	btrfs_exclop_finish(fs_info);
1707 	sb_end_write(fs_info->sb);
1708 }
1709 
1710 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1711 {
1712 	spin_lock(&fs_info->unused_bgs_lock);
1713 	if (!list_empty(&fs_info->reclaim_bgs))
1714 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1715 	spin_unlock(&fs_info->unused_bgs_lock);
1716 }
1717 
1718 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1719 {
1720 	struct btrfs_fs_info *fs_info = bg->fs_info;
1721 
1722 	spin_lock(&fs_info->unused_bgs_lock);
1723 	if (list_empty(&bg->bg_list)) {
1724 		btrfs_get_block_group(bg);
1725 		trace_btrfs_add_reclaim_block_group(bg);
1726 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1727 	}
1728 	spin_unlock(&fs_info->unused_bgs_lock);
1729 }
1730 
1731 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1732 			   struct btrfs_path *path)
1733 {
1734 	struct extent_map_tree *em_tree;
1735 	struct extent_map *em;
1736 	struct btrfs_block_group_item bg;
1737 	struct extent_buffer *leaf;
1738 	int slot;
1739 	u64 flags;
1740 	int ret = 0;
1741 
1742 	slot = path->slots[0];
1743 	leaf = path->nodes[0];
1744 
1745 	em_tree = &fs_info->mapping_tree;
1746 	read_lock(&em_tree->lock);
1747 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1748 	read_unlock(&em_tree->lock);
1749 	if (!em) {
1750 		btrfs_err(fs_info,
1751 			  "logical %llu len %llu found bg but no related chunk",
1752 			  key->objectid, key->offset);
1753 		return -ENOENT;
1754 	}
1755 
1756 	if (em->start != key->objectid || em->len != key->offset) {
1757 		btrfs_err(fs_info,
1758 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1759 			key->objectid, key->offset, em->start, em->len);
1760 		ret = -EUCLEAN;
1761 		goto out_free_em;
1762 	}
1763 
1764 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1765 			   sizeof(bg));
1766 	flags = btrfs_stack_block_group_flags(&bg) &
1767 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1768 
1769 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1770 		btrfs_err(fs_info,
1771 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1772 			  key->objectid, key->offset, flags,
1773 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1774 		ret = -EUCLEAN;
1775 	}
1776 
1777 out_free_em:
1778 	free_extent_map(em);
1779 	return ret;
1780 }
1781 
1782 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1783 				  struct btrfs_path *path,
1784 				  struct btrfs_key *key)
1785 {
1786 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1787 	int ret;
1788 	struct btrfs_key found_key;
1789 
1790 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1791 		if (found_key.objectid >= key->objectid &&
1792 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1793 			return read_bg_from_eb(fs_info, &found_key, path);
1794 		}
1795 	}
1796 	return ret;
1797 }
1798 
1799 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1800 {
1801 	u64 extra_flags = chunk_to_extended(flags) &
1802 				BTRFS_EXTENDED_PROFILE_MASK;
1803 
1804 	write_seqlock(&fs_info->profiles_lock);
1805 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1806 		fs_info->avail_data_alloc_bits |= extra_flags;
1807 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1808 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1809 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1810 		fs_info->avail_system_alloc_bits |= extra_flags;
1811 	write_sequnlock(&fs_info->profiles_lock);
1812 }
1813 
1814 /*
1815  * Map a physical disk address to a list of logical addresses.
1816  *
1817  * @fs_info:       the filesystem
1818  * @chunk_start:   logical address of block group
1819  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1820  * @physical:	   physical address to map to logical addresses
1821  * @logical:	   return array of logical addresses which map to @physical
1822  * @naddrs:	   length of @logical
1823  * @stripe_len:    size of IO stripe for the given block group
1824  *
1825  * Maps a particular @physical disk address to a list of @logical addresses.
1826  * Used primarily to exclude those portions of a block group that contain super
1827  * block copies.
1828  */
1829 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1830 		     struct block_device *bdev, u64 physical, u64 **logical,
1831 		     int *naddrs, int *stripe_len)
1832 {
1833 	struct extent_map *em;
1834 	struct map_lookup *map;
1835 	u64 *buf;
1836 	u64 bytenr;
1837 	u64 data_stripe_length;
1838 	u64 io_stripe_size;
1839 	int i, nr = 0;
1840 	int ret = 0;
1841 
1842 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1843 	if (IS_ERR(em))
1844 		return -EIO;
1845 
1846 	map = em->map_lookup;
1847 	data_stripe_length = em->orig_block_len;
1848 	io_stripe_size = map->stripe_len;
1849 	chunk_start = em->start;
1850 
1851 	/* For RAID5/6 adjust to a full IO stripe length */
1852 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1853 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1854 
1855 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1856 	if (!buf) {
1857 		ret = -ENOMEM;
1858 		goto out;
1859 	}
1860 
1861 	for (i = 0; i < map->num_stripes; i++) {
1862 		bool already_inserted = false;
1863 		u64 stripe_nr;
1864 		u64 offset;
1865 		int j;
1866 
1867 		if (!in_range(physical, map->stripes[i].physical,
1868 			      data_stripe_length))
1869 			continue;
1870 
1871 		if (bdev && map->stripes[i].dev->bdev != bdev)
1872 			continue;
1873 
1874 		stripe_nr = physical - map->stripes[i].physical;
1875 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1876 
1877 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1878 				 BTRFS_BLOCK_GROUP_RAID10)) {
1879 			stripe_nr = stripe_nr * map->num_stripes + i;
1880 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1881 		}
1882 		/*
1883 		 * The remaining case would be for RAID56, multiply by
1884 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1885 		 * instead of map->stripe_len
1886 		 */
1887 
1888 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1889 
1890 		/* Ensure we don't add duplicate addresses */
1891 		for (j = 0; j < nr; j++) {
1892 			if (buf[j] == bytenr) {
1893 				already_inserted = true;
1894 				break;
1895 			}
1896 		}
1897 
1898 		if (!already_inserted)
1899 			buf[nr++] = bytenr;
1900 	}
1901 
1902 	*logical = buf;
1903 	*naddrs = nr;
1904 	*stripe_len = io_stripe_size;
1905 out:
1906 	free_extent_map(em);
1907 	return ret;
1908 }
1909 
1910 static int exclude_super_stripes(struct btrfs_block_group *cache)
1911 {
1912 	struct btrfs_fs_info *fs_info = cache->fs_info;
1913 	const bool zoned = btrfs_is_zoned(fs_info);
1914 	u64 bytenr;
1915 	u64 *logical;
1916 	int stripe_len;
1917 	int i, nr, ret;
1918 
1919 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1920 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1921 		cache->bytes_super += stripe_len;
1922 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1923 						stripe_len);
1924 		if (ret)
1925 			return ret;
1926 	}
1927 
1928 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1929 		bytenr = btrfs_sb_offset(i);
1930 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1931 				       bytenr, &logical, &nr, &stripe_len);
1932 		if (ret)
1933 			return ret;
1934 
1935 		/* Shouldn't have super stripes in sequential zones */
1936 		if (zoned && nr) {
1937 			btrfs_err(fs_info,
1938 			"zoned: block group %llu must not contain super block",
1939 				  cache->start);
1940 			return -EUCLEAN;
1941 		}
1942 
1943 		while (nr--) {
1944 			u64 len = min_t(u64, stripe_len,
1945 				cache->start + cache->length - logical[nr]);
1946 
1947 			cache->bytes_super += len;
1948 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1949 							len);
1950 			if (ret) {
1951 				kfree(logical);
1952 				return ret;
1953 			}
1954 		}
1955 
1956 		kfree(logical);
1957 	}
1958 	return 0;
1959 }
1960 
1961 static struct btrfs_block_group *btrfs_create_block_group_cache(
1962 		struct btrfs_fs_info *fs_info, u64 start)
1963 {
1964 	struct btrfs_block_group *cache;
1965 
1966 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1967 	if (!cache)
1968 		return NULL;
1969 
1970 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1971 					GFP_NOFS);
1972 	if (!cache->free_space_ctl) {
1973 		kfree(cache);
1974 		return NULL;
1975 	}
1976 
1977 	cache->start = start;
1978 
1979 	cache->fs_info = fs_info;
1980 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1981 
1982 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1983 
1984 	refcount_set(&cache->refs, 1);
1985 	spin_lock_init(&cache->lock);
1986 	init_rwsem(&cache->data_rwsem);
1987 	INIT_LIST_HEAD(&cache->list);
1988 	INIT_LIST_HEAD(&cache->cluster_list);
1989 	INIT_LIST_HEAD(&cache->bg_list);
1990 	INIT_LIST_HEAD(&cache->ro_list);
1991 	INIT_LIST_HEAD(&cache->discard_list);
1992 	INIT_LIST_HEAD(&cache->dirty_list);
1993 	INIT_LIST_HEAD(&cache->io_list);
1994 	INIT_LIST_HEAD(&cache->active_bg_list);
1995 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1996 	atomic_set(&cache->frozen, 0);
1997 	mutex_init(&cache->free_space_lock);
1998 	cache->full_stripe_locks_root.root = RB_ROOT;
1999 	mutex_init(&cache->full_stripe_locks_root.lock);
2000 
2001 	return cache;
2002 }
2003 
2004 /*
2005  * Iterate all chunks and verify that each of them has the corresponding block
2006  * group
2007  */
2008 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2009 {
2010 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2011 	struct extent_map *em;
2012 	struct btrfs_block_group *bg;
2013 	u64 start = 0;
2014 	int ret = 0;
2015 
2016 	while (1) {
2017 		read_lock(&map_tree->lock);
2018 		/*
2019 		 * lookup_extent_mapping will return the first extent map
2020 		 * intersecting the range, so setting @len to 1 is enough to
2021 		 * get the first chunk.
2022 		 */
2023 		em = lookup_extent_mapping(map_tree, start, 1);
2024 		read_unlock(&map_tree->lock);
2025 		if (!em)
2026 			break;
2027 
2028 		bg = btrfs_lookup_block_group(fs_info, em->start);
2029 		if (!bg) {
2030 			btrfs_err(fs_info,
2031 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2032 				     em->start, em->len);
2033 			ret = -EUCLEAN;
2034 			free_extent_map(em);
2035 			break;
2036 		}
2037 		if (bg->start != em->start || bg->length != em->len ||
2038 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2039 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2040 			btrfs_err(fs_info,
2041 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2042 				em->start, em->len,
2043 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2044 				bg->start, bg->length,
2045 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2046 			ret = -EUCLEAN;
2047 			free_extent_map(em);
2048 			btrfs_put_block_group(bg);
2049 			break;
2050 		}
2051 		start = em->start + em->len;
2052 		free_extent_map(em);
2053 		btrfs_put_block_group(bg);
2054 	}
2055 	return ret;
2056 }
2057 
2058 static int read_one_block_group(struct btrfs_fs_info *info,
2059 				struct btrfs_block_group_item *bgi,
2060 				const struct btrfs_key *key,
2061 				int need_clear)
2062 {
2063 	struct btrfs_block_group *cache;
2064 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2065 	int ret;
2066 
2067 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2068 
2069 	cache = btrfs_create_block_group_cache(info, key->objectid);
2070 	if (!cache)
2071 		return -ENOMEM;
2072 
2073 	cache->length = key->offset;
2074 	cache->used = btrfs_stack_block_group_used(bgi);
2075 	cache->commit_used = cache->used;
2076 	cache->flags = btrfs_stack_block_group_flags(bgi);
2077 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2078 
2079 	set_free_space_tree_thresholds(cache);
2080 
2081 	if (need_clear) {
2082 		/*
2083 		 * When we mount with old space cache, we need to
2084 		 * set BTRFS_DC_CLEAR and set dirty flag.
2085 		 *
2086 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2087 		 *    truncate the old free space cache inode and
2088 		 *    setup a new one.
2089 		 * b) Setting 'dirty flag' makes sure that we flush
2090 		 *    the new space cache info onto disk.
2091 		 */
2092 		if (btrfs_test_opt(info, SPACE_CACHE))
2093 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2094 	}
2095 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2096 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2097 			btrfs_err(info,
2098 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2099 				  cache->start);
2100 			ret = -EINVAL;
2101 			goto error;
2102 	}
2103 
2104 	ret = btrfs_load_block_group_zone_info(cache, false);
2105 	if (ret) {
2106 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2107 			  cache->start);
2108 		goto error;
2109 	}
2110 
2111 	/*
2112 	 * We need to exclude the super stripes now so that the space info has
2113 	 * super bytes accounted for, otherwise we'll think we have more space
2114 	 * than we actually do.
2115 	 */
2116 	ret = exclude_super_stripes(cache);
2117 	if (ret) {
2118 		/* We may have excluded something, so call this just in case. */
2119 		btrfs_free_excluded_extents(cache);
2120 		goto error;
2121 	}
2122 
2123 	/*
2124 	 * For zoned filesystem, space after the allocation offset is the only
2125 	 * free space for a block group. So, we don't need any caching work.
2126 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2127 	 * zone_unusable space.
2128 	 *
2129 	 * For regular filesystem, check for two cases, either we are full, and
2130 	 * therefore don't need to bother with the caching work since we won't
2131 	 * find any space, or we are empty, and we can just add all the space
2132 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2133 	 * in the full case.
2134 	 */
2135 	if (btrfs_is_zoned(info)) {
2136 		btrfs_calc_zone_unusable(cache);
2137 		/* Should not have any excluded extents. Just in case, though. */
2138 		btrfs_free_excluded_extents(cache);
2139 	} else if (cache->length == cache->used) {
2140 		cache->cached = BTRFS_CACHE_FINISHED;
2141 		btrfs_free_excluded_extents(cache);
2142 	} else if (cache->used == 0) {
2143 		cache->cached = BTRFS_CACHE_FINISHED;
2144 		add_new_free_space(cache, cache->start,
2145 				   cache->start + cache->length);
2146 		btrfs_free_excluded_extents(cache);
2147 	}
2148 
2149 	ret = btrfs_add_block_group_cache(info, cache);
2150 	if (ret) {
2151 		btrfs_remove_free_space_cache(cache);
2152 		goto error;
2153 	}
2154 	trace_btrfs_add_block_group(info, cache, 0);
2155 	btrfs_add_bg_to_space_info(info, cache);
2156 
2157 	set_avail_alloc_bits(info, cache->flags);
2158 	if (btrfs_chunk_writeable(info, cache->start)) {
2159 		if (cache->used == 0) {
2160 			ASSERT(list_empty(&cache->bg_list));
2161 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2162 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2163 			else
2164 				btrfs_mark_bg_unused(cache);
2165 		}
2166 	} else {
2167 		inc_block_group_ro(cache, 1);
2168 	}
2169 
2170 	return 0;
2171 error:
2172 	btrfs_put_block_group(cache);
2173 	return ret;
2174 }
2175 
2176 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2177 {
2178 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2179 	struct rb_node *node;
2180 	int ret = 0;
2181 
2182 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2183 		struct extent_map *em;
2184 		struct map_lookup *map;
2185 		struct btrfs_block_group *bg;
2186 
2187 		em = rb_entry(node, struct extent_map, rb_node);
2188 		map = em->map_lookup;
2189 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2190 		if (!bg) {
2191 			ret = -ENOMEM;
2192 			break;
2193 		}
2194 
2195 		/* Fill dummy cache as FULL */
2196 		bg->length = em->len;
2197 		bg->flags = map->type;
2198 		bg->cached = BTRFS_CACHE_FINISHED;
2199 		bg->used = em->len;
2200 		bg->flags = map->type;
2201 		ret = btrfs_add_block_group_cache(fs_info, bg);
2202 		/*
2203 		 * We may have some valid block group cache added already, in
2204 		 * that case we skip to the next one.
2205 		 */
2206 		if (ret == -EEXIST) {
2207 			ret = 0;
2208 			btrfs_put_block_group(bg);
2209 			continue;
2210 		}
2211 
2212 		if (ret) {
2213 			btrfs_remove_free_space_cache(bg);
2214 			btrfs_put_block_group(bg);
2215 			break;
2216 		}
2217 
2218 		btrfs_add_bg_to_space_info(fs_info, bg);
2219 
2220 		set_avail_alloc_bits(fs_info, bg->flags);
2221 	}
2222 	if (!ret)
2223 		btrfs_init_global_block_rsv(fs_info);
2224 	return ret;
2225 }
2226 
2227 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2228 {
2229 	struct btrfs_root *root = btrfs_block_group_root(info);
2230 	struct btrfs_path *path;
2231 	int ret;
2232 	struct btrfs_block_group *cache;
2233 	struct btrfs_space_info *space_info;
2234 	struct btrfs_key key;
2235 	int need_clear = 0;
2236 	u64 cache_gen;
2237 
2238 	/*
2239 	 * Either no extent root (with ibadroots rescue option) or we have
2240 	 * unsupported RO options. The fs can never be mounted read-write, so no
2241 	 * need to waste time searching block group items.
2242 	 *
2243 	 * This also allows new extent tree related changes to be RO compat,
2244 	 * no need for a full incompat flag.
2245 	 */
2246 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2247 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2248 		return fill_dummy_bgs(info);
2249 
2250 	key.objectid = 0;
2251 	key.offset = 0;
2252 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2253 	path = btrfs_alloc_path();
2254 	if (!path)
2255 		return -ENOMEM;
2256 
2257 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2258 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2259 	    btrfs_super_generation(info->super_copy) != cache_gen)
2260 		need_clear = 1;
2261 	if (btrfs_test_opt(info, CLEAR_CACHE))
2262 		need_clear = 1;
2263 
2264 	while (1) {
2265 		struct btrfs_block_group_item bgi;
2266 		struct extent_buffer *leaf;
2267 		int slot;
2268 
2269 		ret = find_first_block_group(info, path, &key);
2270 		if (ret > 0)
2271 			break;
2272 		if (ret != 0)
2273 			goto error;
2274 
2275 		leaf = path->nodes[0];
2276 		slot = path->slots[0];
2277 
2278 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2279 				   sizeof(bgi));
2280 
2281 		btrfs_item_key_to_cpu(leaf, &key, slot);
2282 		btrfs_release_path(path);
2283 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2284 		if (ret < 0)
2285 			goto error;
2286 		key.objectid += key.offset;
2287 		key.offset = 0;
2288 	}
2289 	btrfs_release_path(path);
2290 
2291 	list_for_each_entry(space_info, &info->space_info, list) {
2292 		int i;
2293 
2294 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2295 			if (list_empty(&space_info->block_groups[i]))
2296 				continue;
2297 			cache = list_first_entry(&space_info->block_groups[i],
2298 						 struct btrfs_block_group,
2299 						 list);
2300 			btrfs_sysfs_add_block_group_type(cache);
2301 		}
2302 
2303 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2304 		      (BTRFS_BLOCK_GROUP_RAID10 |
2305 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2306 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2307 		       BTRFS_BLOCK_GROUP_DUP)))
2308 			continue;
2309 		/*
2310 		 * Avoid allocating from un-mirrored block group if there are
2311 		 * mirrored block groups.
2312 		 */
2313 		list_for_each_entry(cache,
2314 				&space_info->block_groups[BTRFS_RAID_RAID0],
2315 				list)
2316 			inc_block_group_ro(cache, 1);
2317 		list_for_each_entry(cache,
2318 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2319 				list)
2320 			inc_block_group_ro(cache, 1);
2321 	}
2322 
2323 	btrfs_init_global_block_rsv(info);
2324 	ret = check_chunk_block_group_mappings(info);
2325 error:
2326 	btrfs_free_path(path);
2327 	/*
2328 	 * We've hit some error while reading the extent tree, and have
2329 	 * rescue=ibadroots mount option.
2330 	 * Try to fill the tree using dummy block groups so that the user can
2331 	 * continue to mount and grab their data.
2332 	 */
2333 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2334 		ret = fill_dummy_bgs(info);
2335 	return ret;
2336 }
2337 
2338 /*
2339  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2340  * allocation.
2341  *
2342  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2343  * phases.
2344  */
2345 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2346 				   struct btrfs_block_group *block_group)
2347 {
2348 	struct btrfs_fs_info *fs_info = trans->fs_info;
2349 	struct btrfs_block_group_item bgi;
2350 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2351 	struct btrfs_key key;
2352 
2353 	spin_lock(&block_group->lock);
2354 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2355 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2356 						   block_group->global_root_id);
2357 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2358 	key.objectid = block_group->start;
2359 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2360 	key.offset = block_group->length;
2361 	spin_unlock(&block_group->lock);
2362 
2363 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2364 }
2365 
2366 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2367 			    struct btrfs_device *device, u64 chunk_offset,
2368 			    u64 start, u64 num_bytes)
2369 {
2370 	struct btrfs_fs_info *fs_info = device->fs_info;
2371 	struct btrfs_root *root = fs_info->dev_root;
2372 	struct btrfs_path *path;
2373 	struct btrfs_dev_extent *extent;
2374 	struct extent_buffer *leaf;
2375 	struct btrfs_key key;
2376 	int ret;
2377 
2378 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2379 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2380 	path = btrfs_alloc_path();
2381 	if (!path)
2382 		return -ENOMEM;
2383 
2384 	key.objectid = device->devid;
2385 	key.type = BTRFS_DEV_EXTENT_KEY;
2386 	key.offset = start;
2387 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2388 	if (ret)
2389 		goto out;
2390 
2391 	leaf = path->nodes[0];
2392 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2393 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2394 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2395 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2396 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2397 
2398 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2399 	btrfs_mark_buffer_dirty(leaf);
2400 out:
2401 	btrfs_free_path(path);
2402 	return ret;
2403 }
2404 
2405 /*
2406  * This function belongs to phase 2.
2407  *
2408  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2409  * phases.
2410  */
2411 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2412 				   u64 chunk_offset, u64 chunk_size)
2413 {
2414 	struct btrfs_fs_info *fs_info = trans->fs_info;
2415 	struct btrfs_device *device;
2416 	struct extent_map *em;
2417 	struct map_lookup *map;
2418 	u64 dev_offset;
2419 	u64 stripe_size;
2420 	int i;
2421 	int ret = 0;
2422 
2423 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2424 	if (IS_ERR(em))
2425 		return PTR_ERR(em);
2426 
2427 	map = em->map_lookup;
2428 	stripe_size = em->orig_block_len;
2429 
2430 	/*
2431 	 * Take the device list mutex to prevent races with the final phase of
2432 	 * a device replace operation that replaces the device object associated
2433 	 * with the map's stripes, because the device object's id can change
2434 	 * at any time during that final phase of the device replace operation
2435 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2436 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2437 	 * resulting in persisting a device extent item with such ID.
2438 	 */
2439 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2440 	for (i = 0; i < map->num_stripes; i++) {
2441 		device = map->stripes[i].dev;
2442 		dev_offset = map->stripes[i].physical;
2443 
2444 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2445 				       stripe_size);
2446 		if (ret)
2447 			break;
2448 	}
2449 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450 
2451 	free_extent_map(em);
2452 	return ret;
2453 }
2454 
2455 /*
2456  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2457  * chunk allocation.
2458  *
2459  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2460  * phases.
2461  */
2462 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2463 {
2464 	struct btrfs_fs_info *fs_info = trans->fs_info;
2465 	struct btrfs_block_group *block_group;
2466 	int ret = 0;
2467 
2468 	while (!list_empty(&trans->new_bgs)) {
2469 		int index;
2470 
2471 		block_group = list_first_entry(&trans->new_bgs,
2472 					       struct btrfs_block_group,
2473 					       bg_list);
2474 		if (ret)
2475 			goto next;
2476 
2477 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2478 
2479 		ret = insert_block_group_item(trans, block_group);
2480 		if (ret)
2481 			btrfs_abort_transaction(trans, ret);
2482 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2483 			      &block_group->runtime_flags)) {
2484 			mutex_lock(&fs_info->chunk_mutex);
2485 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2486 			mutex_unlock(&fs_info->chunk_mutex);
2487 			if (ret)
2488 				btrfs_abort_transaction(trans, ret);
2489 		}
2490 		ret = insert_dev_extents(trans, block_group->start,
2491 					 block_group->length);
2492 		if (ret)
2493 			btrfs_abort_transaction(trans, ret);
2494 		add_block_group_free_space(trans, block_group);
2495 
2496 		/*
2497 		 * If we restriped during balance, we may have added a new raid
2498 		 * type, so now add the sysfs entries when it is safe to do so.
2499 		 * We don't have to worry about locking here as it's handled in
2500 		 * btrfs_sysfs_add_block_group_type.
2501 		 */
2502 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2503 			btrfs_sysfs_add_block_group_type(block_group);
2504 
2505 		/* Already aborted the transaction if it failed. */
2506 next:
2507 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2508 		list_del_init(&block_group->bg_list);
2509 	}
2510 	btrfs_trans_release_chunk_metadata(trans);
2511 }
2512 
2513 /*
2514  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2515  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2516  */
2517 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2518 {
2519 	u64 div = SZ_1G;
2520 	u64 index;
2521 
2522 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2523 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2524 
2525 	/* If we have a smaller fs index based on 128MiB. */
2526 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2527 		div = SZ_128M;
2528 
2529 	offset = div64_u64(offset, div);
2530 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2531 	return index;
2532 }
2533 
2534 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2535 						 u64 bytes_used, u64 type,
2536 						 u64 chunk_offset, u64 size)
2537 {
2538 	struct btrfs_fs_info *fs_info = trans->fs_info;
2539 	struct btrfs_block_group *cache;
2540 	int ret;
2541 
2542 	btrfs_set_log_full_commit(trans);
2543 
2544 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2545 	if (!cache)
2546 		return ERR_PTR(-ENOMEM);
2547 
2548 	cache->length = size;
2549 	set_free_space_tree_thresholds(cache);
2550 	cache->used = bytes_used;
2551 	cache->flags = type;
2552 	cache->cached = BTRFS_CACHE_FINISHED;
2553 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2554 
2555 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2556 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2557 
2558 	ret = btrfs_load_block_group_zone_info(cache, true);
2559 	if (ret) {
2560 		btrfs_put_block_group(cache);
2561 		return ERR_PTR(ret);
2562 	}
2563 
2564 	ret = exclude_super_stripes(cache);
2565 	if (ret) {
2566 		/* We may have excluded something, so call this just in case */
2567 		btrfs_free_excluded_extents(cache);
2568 		btrfs_put_block_group(cache);
2569 		return ERR_PTR(ret);
2570 	}
2571 
2572 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2573 
2574 	btrfs_free_excluded_extents(cache);
2575 
2576 	/*
2577 	 * Ensure the corresponding space_info object is created and
2578 	 * assigned to our block group. We want our bg to be added to the rbtree
2579 	 * with its ->space_info set.
2580 	 */
2581 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2582 	ASSERT(cache->space_info);
2583 
2584 	ret = btrfs_add_block_group_cache(fs_info, cache);
2585 	if (ret) {
2586 		btrfs_remove_free_space_cache(cache);
2587 		btrfs_put_block_group(cache);
2588 		return ERR_PTR(ret);
2589 	}
2590 
2591 	/*
2592 	 * Now that our block group has its ->space_info set and is inserted in
2593 	 * the rbtree, update the space info's counters.
2594 	 */
2595 	trace_btrfs_add_block_group(fs_info, cache, 1);
2596 	btrfs_add_bg_to_space_info(fs_info, cache);
2597 	btrfs_update_global_block_rsv(fs_info);
2598 
2599 #ifdef CONFIG_BTRFS_DEBUG
2600 	if (btrfs_should_fragment_free_space(cache)) {
2601 		u64 new_bytes_used = size - bytes_used;
2602 
2603 		cache->space_info->bytes_used += new_bytes_used >> 1;
2604 		fragment_free_space(cache);
2605 	}
2606 #endif
2607 
2608 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2609 	trans->delayed_ref_updates++;
2610 	btrfs_update_delayed_refs_rsv(trans);
2611 
2612 	set_avail_alloc_bits(fs_info, type);
2613 	return cache;
2614 }
2615 
2616 /*
2617  * Mark one block group RO, can be called several times for the same block
2618  * group.
2619  *
2620  * @cache:		the destination block group
2621  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2622  * 			ensure we still have some free space after marking this
2623  * 			block group RO.
2624  */
2625 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2626 			     bool do_chunk_alloc)
2627 {
2628 	struct btrfs_fs_info *fs_info = cache->fs_info;
2629 	struct btrfs_trans_handle *trans;
2630 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2631 	u64 alloc_flags;
2632 	int ret;
2633 	bool dirty_bg_running;
2634 
2635 	/*
2636 	 * This can only happen when we are doing read-only scrub on read-only
2637 	 * mount.
2638 	 * In that case we should not start a new transaction on read-only fs.
2639 	 * Thus here we skip all chunk allocations.
2640 	 */
2641 	if (sb_rdonly(fs_info->sb)) {
2642 		mutex_lock(&fs_info->ro_block_group_mutex);
2643 		ret = inc_block_group_ro(cache, 0);
2644 		mutex_unlock(&fs_info->ro_block_group_mutex);
2645 		return ret;
2646 	}
2647 
2648 	do {
2649 		trans = btrfs_join_transaction(root);
2650 		if (IS_ERR(trans))
2651 			return PTR_ERR(trans);
2652 
2653 		dirty_bg_running = false;
2654 
2655 		/*
2656 		 * We're not allowed to set block groups readonly after the dirty
2657 		 * block group cache has started writing.  If it already started,
2658 		 * back off and let this transaction commit.
2659 		 */
2660 		mutex_lock(&fs_info->ro_block_group_mutex);
2661 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2662 			u64 transid = trans->transid;
2663 
2664 			mutex_unlock(&fs_info->ro_block_group_mutex);
2665 			btrfs_end_transaction(trans);
2666 
2667 			ret = btrfs_wait_for_commit(fs_info, transid);
2668 			if (ret)
2669 				return ret;
2670 			dirty_bg_running = true;
2671 		}
2672 	} while (dirty_bg_running);
2673 
2674 	if (do_chunk_alloc) {
2675 		/*
2676 		 * If we are changing raid levels, try to allocate a
2677 		 * corresponding block group with the new raid level.
2678 		 */
2679 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2680 		if (alloc_flags != cache->flags) {
2681 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2682 						CHUNK_ALLOC_FORCE);
2683 			/*
2684 			 * ENOSPC is allowed here, we may have enough space
2685 			 * already allocated at the new raid level to carry on
2686 			 */
2687 			if (ret == -ENOSPC)
2688 				ret = 0;
2689 			if (ret < 0)
2690 				goto out;
2691 		}
2692 	}
2693 
2694 	ret = inc_block_group_ro(cache, 0);
2695 	if (!do_chunk_alloc || ret == -ETXTBSY)
2696 		goto unlock_out;
2697 	if (!ret)
2698 		goto out;
2699 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2700 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2701 	if (ret < 0)
2702 		goto out;
2703 	/*
2704 	 * We have allocated a new chunk. We also need to activate that chunk to
2705 	 * grant metadata tickets for zoned filesystem.
2706 	 */
2707 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2708 	if (ret < 0)
2709 		goto out;
2710 
2711 	ret = inc_block_group_ro(cache, 0);
2712 	if (ret == -ETXTBSY)
2713 		goto unlock_out;
2714 out:
2715 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2716 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2717 		mutex_lock(&fs_info->chunk_mutex);
2718 		check_system_chunk(trans, alloc_flags);
2719 		mutex_unlock(&fs_info->chunk_mutex);
2720 	}
2721 unlock_out:
2722 	mutex_unlock(&fs_info->ro_block_group_mutex);
2723 
2724 	btrfs_end_transaction(trans);
2725 	return ret;
2726 }
2727 
2728 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2729 {
2730 	struct btrfs_space_info *sinfo = cache->space_info;
2731 	u64 num_bytes;
2732 
2733 	BUG_ON(!cache->ro);
2734 
2735 	spin_lock(&sinfo->lock);
2736 	spin_lock(&cache->lock);
2737 	if (!--cache->ro) {
2738 		if (btrfs_is_zoned(cache->fs_info)) {
2739 			/* Migrate zone_unusable bytes back */
2740 			cache->zone_unusable =
2741 				(cache->alloc_offset - cache->used) +
2742 				(cache->length - cache->zone_capacity);
2743 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2744 			sinfo->bytes_readonly -= cache->zone_unusable;
2745 		}
2746 		num_bytes = cache->length - cache->reserved -
2747 			    cache->pinned - cache->bytes_super -
2748 			    cache->zone_unusable - cache->used;
2749 		sinfo->bytes_readonly -= num_bytes;
2750 		list_del_init(&cache->ro_list);
2751 	}
2752 	spin_unlock(&cache->lock);
2753 	spin_unlock(&sinfo->lock);
2754 }
2755 
2756 static int update_block_group_item(struct btrfs_trans_handle *trans,
2757 				   struct btrfs_path *path,
2758 				   struct btrfs_block_group *cache)
2759 {
2760 	struct btrfs_fs_info *fs_info = trans->fs_info;
2761 	int ret;
2762 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2763 	unsigned long bi;
2764 	struct extent_buffer *leaf;
2765 	struct btrfs_block_group_item bgi;
2766 	struct btrfs_key key;
2767 	u64 old_commit_used;
2768 	u64 used;
2769 
2770 	/*
2771 	 * Block group items update can be triggered out of commit transaction
2772 	 * critical section, thus we need a consistent view of used bytes.
2773 	 * We cannot use cache->used directly outside of the spin lock, as it
2774 	 * may be changed.
2775 	 */
2776 	spin_lock(&cache->lock);
2777 	old_commit_used = cache->commit_used;
2778 	used = cache->used;
2779 	/* No change in used bytes, can safely skip it. */
2780 	if (cache->commit_used == used) {
2781 		spin_unlock(&cache->lock);
2782 		return 0;
2783 	}
2784 	cache->commit_used = used;
2785 	spin_unlock(&cache->lock);
2786 
2787 	key.objectid = cache->start;
2788 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2789 	key.offset = cache->length;
2790 
2791 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2792 	if (ret) {
2793 		if (ret > 0)
2794 			ret = -ENOENT;
2795 		goto fail;
2796 	}
2797 
2798 	leaf = path->nodes[0];
2799 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2800 	btrfs_set_stack_block_group_used(&bgi, used);
2801 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2802 						   cache->global_root_id);
2803 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2804 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2805 	btrfs_mark_buffer_dirty(leaf);
2806 fail:
2807 	btrfs_release_path(path);
2808 	/* We didn't update the block group item, need to revert @commit_used. */
2809 	if (ret < 0) {
2810 		spin_lock(&cache->lock);
2811 		cache->commit_used = old_commit_used;
2812 		spin_unlock(&cache->lock);
2813 	}
2814 	return ret;
2815 
2816 }
2817 
2818 static int cache_save_setup(struct btrfs_block_group *block_group,
2819 			    struct btrfs_trans_handle *trans,
2820 			    struct btrfs_path *path)
2821 {
2822 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2823 	struct btrfs_root *root = fs_info->tree_root;
2824 	struct inode *inode = NULL;
2825 	struct extent_changeset *data_reserved = NULL;
2826 	u64 alloc_hint = 0;
2827 	int dcs = BTRFS_DC_ERROR;
2828 	u64 cache_size = 0;
2829 	int retries = 0;
2830 	int ret = 0;
2831 
2832 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2833 		return 0;
2834 
2835 	/*
2836 	 * If this block group is smaller than 100 megs don't bother caching the
2837 	 * block group.
2838 	 */
2839 	if (block_group->length < (100 * SZ_1M)) {
2840 		spin_lock(&block_group->lock);
2841 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2842 		spin_unlock(&block_group->lock);
2843 		return 0;
2844 	}
2845 
2846 	if (TRANS_ABORTED(trans))
2847 		return 0;
2848 again:
2849 	inode = lookup_free_space_inode(block_group, path);
2850 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2851 		ret = PTR_ERR(inode);
2852 		btrfs_release_path(path);
2853 		goto out;
2854 	}
2855 
2856 	if (IS_ERR(inode)) {
2857 		BUG_ON(retries);
2858 		retries++;
2859 
2860 		if (block_group->ro)
2861 			goto out_free;
2862 
2863 		ret = create_free_space_inode(trans, block_group, path);
2864 		if (ret)
2865 			goto out_free;
2866 		goto again;
2867 	}
2868 
2869 	/*
2870 	 * We want to set the generation to 0, that way if anything goes wrong
2871 	 * from here on out we know not to trust this cache when we load up next
2872 	 * time.
2873 	 */
2874 	BTRFS_I(inode)->generation = 0;
2875 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2876 	if (ret) {
2877 		/*
2878 		 * So theoretically we could recover from this, simply set the
2879 		 * super cache generation to 0 so we know to invalidate the
2880 		 * cache, but then we'd have to keep track of the block groups
2881 		 * that fail this way so we know we _have_ to reset this cache
2882 		 * before the next commit or risk reading stale cache.  So to
2883 		 * limit our exposure to horrible edge cases lets just abort the
2884 		 * transaction, this only happens in really bad situations
2885 		 * anyway.
2886 		 */
2887 		btrfs_abort_transaction(trans, ret);
2888 		goto out_put;
2889 	}
2890 	WARN_ON(ret);
2891 
2892 	/* We've already setup this transaction, go ahead and exit */
2893 	if (block_group->cache_generation == trans->transid &&
2894 	    i_size_read(inode)) {
2895 		dcs = BTRFS_DC_SETUP;
2896 		goto out_put;
2897 	}
2898 
2899 	if (i_size_read(inode) > 0) {
2900 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2901 					&fs_info->global_block_rsv);
2902 		if (ret)
2903 			goto out_put;
2904 
2905 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2906 		if (ret)
2907 			goto out_put;
2908 	}
2909 
2910 	spin_lock(&block_group->lock);
2911 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2912 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2913 		/*
2914 		 * don't bother trying to write stuff out _if_
2915 		 * a) we're not cached,
2916 		 * b) we're with nospace_cache mount option,
2917 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2918 		 */
2919 		dcs = BTRFS_DC_WRITTEN;
2920 		spin_unlock(&block_group->lock);
2921 		goto out_put;
2922 	}
2923 	spin_unlock(&block_group->lock);
2924 
2925 	/*
2926 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2927 	 * skip doing the setup, we've already cleared the cache so we're safe.
2928 	 */
2929 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2930 		ret = -ENOSPC;
2931 		goto out_put;
2932 	}
2933 
2934 	/*
2935 	 * Try to preallocate enough space based on how big the block group is.
2936 	 * Keep in mind this has to include any pinned space which could end up
2937 	 * taking up quite a bit since it's not folded into the other space
2938 	 * cache.
2939 	 */
2940 	cache_size = div_u64(block_group->length, SZ_256M);
2941 	if (!cache_size)
2942 		cache_size = 1;
2943 
2944 	cache_size *= 16;
2945 	cache_size *= fs_info->sectorsize;
2946 
2947 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2948 					  cache_size, false);
2949 	if (ret)
2950 		goto out_put;
2951 
2952 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2953 					      cache_size, cache_size,
2954 					      &alloc_hint);
2955 	/*
2956 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2957 	 * of metadata or split extents when writing the cache out, which means
2958 	 * we can enospc if we are heavily fragmented in addition to just normal
2959 	 * out of space conditions.  So if we hit this just skip setting up any
2960 	 * other block groups for this transaction, maybe we'll unpin enough
2961 	 * space the next time around.
2962 	 */
2963 	if (!ret)
2964 		dcs = BTRFS_DC_SETUP;
2965 	else if (ret == -ENOSPC)
2966 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2967 
2968 out_put:
2969 	iput(inode);
2970 out_free:
2971 	btrfs_release_path(path);
2972 out:
2973 	spin_lock(&block_group->lock);
2974 	if (!ret && dcs == BTRFS_DC_SETUP)
2975 		block_group->cache_generation = trans->transid;
2976 	block_group->disk_cache_state = dcs;
2977 	spin_unlock(&block_group->lock);
2978 
2979 	extent_changeset_free(data_reserved);
2980 	return ret;
2981 }
2982 
2983 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2984 {
2985 	struct btrfs_fs_info *fs_info = trans->fs_info;
2986 	struct btrfs_block_group *cache, *tmp;
2987 	struct btrfs_transaction *cur_trans = trans->transaction;
2988 	struct btrfs_path *path;
2989 
2990 	if (list_empty(&cur_trans->dirty_bgs) ||
2991 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2992 		return 0;
2993 
2994 	path = btrfs_alloc_path();
2995 	if (!path)
2996 		return -ENOMEM;
2997 
2998 	/* Could add new block groups, use _safe just in case */
2999 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3000 				 dirty_list) {
3001 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3002 			cache_save_setup(cache, trans, path);
3003 	}
3004 
3005 	btrfs_free_path(path);
3006 	return 0;
3007 }
3008 
3009 /*
3010  * Transaction commit does final block group cache writeback during a critical
3011  * section where nothing is allowed to change the FS.  This is required in
3012  * order for the cache to actually match the block group, but can introduce a
3013  * lot of latency into the commit.
3014  *
3015  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3016  * There's a chance we'll have to redo some of it if the block group changes
3017  * again during the commit, but it greatly reduces the commit latency by
3018  * getting rid of the easy block groups while we're still allowing others to
3019  * join the commit.
3020  */
3021 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3022 {
3023 	struct btrfs_fs_info *fs_info = trans->fs_info;
3024 	struct btrfs_block_group *cache;
3025 	struct btrfs_transaction *cur_trans = trans->transaction;
3026 	int ret = 0;
3027 	int should_put;
3028 	struct btrfs_path *path = NULL;
3029 	LIST_HEAD(dirty);
3030 	struct list_head *io = &cur_trans->io_bgs;
3031 	int loops = 0;
3032 
3033 	spin_lock(&cur_trans->dirty_bgs_lock);
3034 	if (list_empty(&cur_trans->dirty_bgs)) {
3035 		spin_unlock(&cur_trans->dirty_bgs_lock);
3036 		return 0;
3037 	}
3038 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3039 	spin_unlock(&cur_trans->dirty_bgs_lock);
3040 
3041 again:
3042 	/* Make sure all the block groups on our dirty list actually exist */
3043 	btrfs_create_pending_block_groups(trans);
3044 
3045 	if (!path) {
3046 		path = btrfs_alloc_path();
3047 		if (!path) {
3048 			ret = -ENOMEM;
3049 			goto out;
3050 		}
3051 	}
3052 
3053 	/*
3054 	 * cache_write_mutex is here only to save us from balance or automatic
3055 	 * removal of empty block groups deleting this block group while we are
3056 	 * writing out the cache
3057 	 */
3058 	mutex_lock(&trans->transaction->cache_write_mutex);
3059 	while (!list_empty(&dirty)) {
3060 		bool drop_reserve = true;
3061 
3062 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3063 					 dirty_list);
3064 		/*
3065 		 * This can happen if something re-dirties a block group that
3066 		 * is already under IO.  Just wait for it to finish and then do
3067 		 * it all again
3068 		 */
3069 		if (!list_empty(&cache->io_list)) {
3070 			list_del_init(&cache->io_list);
3071 			btrfs_wait_cache_io(trans, cache, path);
3072 			btrfs_put_block_group(cache);
3073 		}
3074 
3075 
3076 		/*
3077 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3078 		 * it should update the cache_state.  Don't delete until after
3079 		 * we wait.
3080 		 *
3081 		 * Since we're not running in the commit critical section
3082 		 * we need the dirty_bgs_lock to protect from update_block_group
3083 		 */
3084 		spin_lock(&cur_trans->dirty_bgs_lock);
3085 		list_del_init(&cache->dirty_list);
3086 		spin_unlock(&cur_trans->dirty_bgs_lock);
3087 
3088 		should_put = 1;
3089 
3090 		cache_save_setup(cache, trans, path);
3091 
3092 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3093 			cache->io_ctl.inode = NULL;
3094 			ret = btrfs_write_out_cache(trans, cache, path);
3095 			if (ret == 0 && cache->io_ctl.inode) {
3096 				should_put = 0;
3097 
3098 				/*
3099 				 * The cache_write_mutex is protecting the
3100 				 * io_list, also refer to the definition of
3101 				 * btrfs_transaction::io_bgs for more details
3102 				 */
3103 				list_add_tail(&cache->io_list, io);
3104 			} else {
3105 				/*
3106 				 * If we failed to write the cache, the
3107 				 * generation will be bad and life goes on
3108 				 */
3109 				ret = 0;
3110 			}
3111 		}
3112 		if (!ret) {
3113 			ret = update_block_group_item(trans, path, cache);
3114 			/*
3115 			 * Our block group might still be attached to the list
3116 			 * of new block groups in the transaction handle of some
3117 			 * other task (struct btrfs_trans_handle->new_bgs). This
3118 			 * means its block group item isn't yet in the extent
3119 			 * tree. If this happens ignore the error, as we will
3120 			 * try again later in the critical section of the
3121 			 * transaction commit.
3122 			 */
3123 			if (ret == -ENOENT) {
3124 				ret = 0;
3125 				spin_lock(&cur_trans->dirty_bgs_lock);
3126 				if (list_empty(&cache->dirty_list)) {
3127 					list_add_tail(&cache->dirty_list,
3128 						      &cur_trans->dirty_bgs);
3129 					btrfs_get_block_group(cache);
3130 					drop_reserve = false;
3131 				}
3132 				spin_unlock(&cur_trans->dirty_bgs_lock);
3133 			} else if (ret) {
3134 				btrfs_abort_transaction(trans, ret);
3135 			}
3136 		}
3137 
3138 		/* If it's not on the io list, we need to put the block group */
3139 		if (should_put)
3140 			btrfs_put_block_group(cache);
3141 		if (drop_reserve)
3142 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3143 		/*
3144 		 * Avoid blocking other tasks for too long. It might even save
3145 		 * us from writing caches for block groups that are going to be
3146 		 * removed.
3147 		 */
3148 		mutex_unlock(&trans->transaction->cache_write_mutex);
3149 		if (ret)
3150 			goto out;
3151 		mutex_lock(&trans->transaction->cache_write_mutex);
3152 	}
3153 	mutex_unlock(&trans->transaction->cache_write_mutex);
3154 
3155 	/*
3156 	 * Go through delayed refs for all the stuff we've just kicked off
3157 	 * and then loop back (just once)
3158 	 */
3159 	if (!ret)
3160 		ret = btrfs_run_delayed_refs(trans, 0);
3161 	if (!ret && loops == 0) {
3162 		loops++;
3163 		spin_lock(&cur_trans->dirty_bgs_lock);
3164 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3165 		/*
3166 		 * dirty_bgs_lock protects us from concurrent block group
3167 		 * deletes too (not just cache_write_mutex).
3168 		 */
3169 		if (!list_empty(&dirty)) {
3170 			spin_unlock(&cur_trans->dirty_bgs_lock);
3171 			goto again;
3172 		}
3173 		spin_unlock(&cur_trans->dirty_bgs_lock);
3174 	}
3175 out:
3176 	if (ret < 0) {
3177 		spin_lock(&cur_trans->dirty_bgs_lock);
3178 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3179 		spin_unlock(&cur_trans->dirty_bgs_lock);
3180 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3181 	}
3182 
3183 	btrfs_free_path(path);
3184 	return ret;
3185 }
3186 
3187 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3188 {
3189 	struct btrfs_fs_info *fs_info = trans->fs_info;
3190 	struct btrfs_block_group *cache;
3191 	struct btrfs_transaction *cur_trans = trans->transaction;
3192 	int ret = 0;
3193 	int should_put;
3194 	struct btrfs_path *path;
3195 	struct list_head *io = &cur_trans->io_bgs;
3196 
3197 	path = btrfs_alloc_path();
3198 	if (!path)
3199 		return -ENOMEM;
3200 
3201 	/*
3202 	 * Even though we are in the critical section of the transaction commit,
3203 	 * we can still have concurrent tasks adding elements to this
3204 	 * transaction's list of dirty block groups. These tasks correspond to
3205 	 * endio free space workers started when writeback finishes for a
3206 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3207 	 * allocate new block groups as a result of COWing nodes of the root
3208 	 * tree when updating the free space inode. The writeback for the space
3209 	 * caches is triggered by an earlier call to
3210 	 * btrfs_start_dirty_block_groups() and iterations of the following
3211 	 * loop.
3212 	 * Also we want to do the cache_save_setup first and then run the
3213 	 * delayed refs to make sure we have the best chance at doing this all
3214 	 * in one shot.
3215 	 */
3216 	spin_lock(&cur_trans->dirty_bgs_lock);
3217 	while (!list_empty(&cur_trans->dirty_bgs)) {
3218 		cache = list_first_entry(&cur_trans->dirty_bgs,
3219 					 struct btrfs_block_group,
3220 					 dirty_list);
3221 
3222 		/*
3223 		 * This can happen if cache_save_setup re-dirties a block group
3224 		 * that is already under IO.  Just wait for it to finish and
3225 		 * then do it all again
3226 		 */
3227 		if (!list_empty(&cache->io_list)) {
3228 			spin_unlock(&cur_trans->dirty_bgs_lock);
3229 			list_del_init(&cache->io_list);
3230 			btrfs_wait_cache_io(trans, cache, path);
3231 			btrfs_put_block_group(cache);
3232 			spin_lock(&cur_trans->dirty_bgs_lock);
3233 		}
3234 
3235 		/*
3236 		 * Don't remove from the dirty list until after we've waited on
3237 		 * any pending IO
3238 		 */
3239 		list_del_init(&cache->dirty_list);
3240 		spin_unlock(&cur_trans->dirty_bgs_lock);
3241 		should_put = 1;
3242 
3243 		cache_save_setup(cache, trans, path);
3244 
3245 		if (!ret)
3246 			ret = btrfs_run_delayed_refs(trans,
3247 						     (unsigned long) -1);
3248 
3249 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3250 			cache->io_ctl.inode = NULL;
3251 			ret = btrfs_write_out_cache(trans, cache, path);
3252 			if (ret == 0 && cache->io_ctl.inode) {
3253 				should_put = 0;
3254 				list_add_tail(&cache->io_list, io);
3255 			} else {
3256 				/*
3257 				 * If we failed to write the cache, the
3258 				 * generation will be bad and life goes on
3259 				 */
3260 				ret = 0;
3261 			}
3262 		}
3263 		if (!ret) {
3264 			ret = update_block_group_item(trans, path, cache);
3265 			/*
3266 			 * One of the free space endio workers might have
3267 			 * created a new block group while updating a free space
3268 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3269 			 * and hasn't released its transaction handle yet, in
3270 			 * which case the new block group is still attached to
3271 			 * its transaction handle and its creation has not
3272 			 * finished yet (no block group item in the extent tree
3273 			 * yet, etc). If this is the case, wait for all free
3274 			 * space endio workers to finish and retry. This is a
3275 			 * very rare case so no need for a more efficient and
3276 			 * complex approach.
3277 			 */
3278 			if (ret == -ENOENT) {
3279 				wait_event(cur_trans->writer_wait,
3280 				   atomic_read(&cur_trans->num_writers) == 1);
3281 				ret = update_block_group_item(trans, path, cache);
3282 			}
3283 			if (ret)
3284 				btrfs_abort_transaction(trans, ret);
3285 		}
3286 
3287 		/* If its not on the io list, we need to put the block group */
3288 		if (should_put)
3289 			btrfs_put_block_group(cache);
3290 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3291 		spin_lock(&cur_trans->dirty_bgs_lock);
3292 	}
3293 	spin_unlock(&cur_trans->dirty_bgs_lock);
3294 
3295 	/*
3296 	 * Refer to the definition of io_bgs member for details why it's safe
3297 	 * to use it without any locking
3298 	 */
3299 	while (!list_empty(io)) {
3300 		cache = list_first_entry(io, struct btrfs_block_group,
3301 					 io_list);
3302 		list_del_init(&cache->io_list);
3303 		btrfs_wait_cache_io(trans, cache, path);
3304 		btrfs_put_block_group(cache);
3305 	}
3306 
3307 	btrfs_free_path(path);
3308 	return ret;
3309 }
3310 
3311 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3312 			     u64 bytenr, u64 num_bytes, bool alloc)
3313 {
3314 	struct btrfs_fs_info *info = trans->fs_info;
3315 	struct btrfs_block_group *cache = NULL;
3316 	u64 total = num_bytes;
3317 	u64 old_val;
3318 	u64 byte_in_group;
3319 	int factor;
3320 	int ret = 0;
3321 
3322 	/* Block accounting for super block */
3323 	spin_lock(&info->delalloc_root_lock);
3324 	old_val = btrfs_super_bytes_used(info->super_copy);
3325 	if (alloc)
3326 		old_val += num_bytes;
3327 	else
3328 		old_val -= num_bytes;
3329 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3330 	spin_unlock(&info->delalloc_root_lock);
3331 
3332 	while (total) {
3333 		bool reclaim;
3334 
3335 		cache = btrfs_lookup_block_group(info, bytenr);
3336 		if (!cache) {
3337 			ret = -ENOENT;
3338 			break;
3339 		}
3340 		factor = btrfs_bg_type_to_factor(cache->flags);
3341 
3342 		/*
3343 		 * If this block group has free space cache written out, we
3344 		 * need to make sure to load it if we are removing space.  This
3345 		 * is because we need the unpinning stage to actually add the
3346 		 * space back to the block group, otherwise we will leak space.
3347 		 */
3348 		if (!alloc && !btrfs_block_group_done(cache))
3349 			btrfs_cache_block_group(cache, true);
3350 
3351 		byte_in_group = bytenr - cache->start;
3352 		WARN_ON(byte_in_group > cache->length);
3353 
3354 		spin_lock(&cache->space_info->lock);
3355 		spin_lock(&cache->lock);
3356 
3357 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3358 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3359 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3360 
3361 		old_val = cache->used;
3362 		num_bytes = min(total, cache->length - byte_in_group);
3363 		if (alloc) {
3364 			old_val += num_bytes;
3365 			cache->used = old_val;
3366 			cache->reserved -= num_bytes;
3367 			cache->space_info->bytes_reserved -= num_bytes;
3368 			cache->space_info->bytes_used += num_bytes;
3369 			cache->space_info->disk_used += num_bytes * factor;
3370 			spin_unlock(&cache->lock);
3371 			spin_unlock(&cache->space_info->lock);
3372 		} else {
3373 			old_val -= num_bytes;
3374 			cache->used = old_val;
3375 			cache->pinned += num_bytes;
3376 			btrfs_space_info_update_bytes_pinned(info,
3377 					cache->space_info, num_bytes);
3378 			cache->space_info->bytes_used -= num_bytes;
3379 			cache->space_info->disk_used -= num_bytes * factor;
3380 
3381 			reclaim = should_reclaim_block_group(cache, num_bytes);
3382 			spin_unlock(&cache->lock);
3383 			spin_unlock(&cache->space_info->lock);
3384 
3385 			set_extent_dirty(&trans->transaction->pinned_extents,
3386 					 bytenr, bytenr + num_bytes - 1,
3387 					 GFP_NOFS | __GFP_NOFAIL);
3388 		}
3389 
3390 		spin_lock(&trans->transaction->dirty_bgs_lock);
3391 		if (list_empty(&cache->dirty_list)) {
3392 			list_add_tail(&cache->dirty_list,
3393 				      &trans->transaction->dirty_bgs);
3394 			trans->delayed_ref_updates++;
3395 			btrfs_get_block_group(cache);
3396 		}
3397 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3398 
3399 		/*
3400 		 * No longer have used bytes in this block group, queue it for
3401 		 * deletion. We do this after adding the block group to the
3402 		 * dirty list to avoid races between cleaner kthread and space
3403 		 * cache writeout.
3404 		 */
3405 		if (!alloc && old_val == 0) {
3406 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3407 				btrfs_mark_bg_unused(cache);
3408 		} else if (!alloc && reclaim) {
3409 			btrfs_mark_bg_to_reclaim(cache);
3410 		}
3411 
3412 		btrfs_put_block_group(cache);
3413 		total -= num_bytes;
3414 		bytenr += num_bytes;
3415 	}
3416 
3417 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3418 	btrfs_update_delayed_refs_rsv(trans);
3419 	return ret;
3420 }
3421 
3422 /*
3423  * Update the block_group and space info counters.
3424  *
3425  * @cache:	The cache we are manipulating
3426  * @ram_bytes:  The number of bytes of file content, and will be same to
3427  *              @num_bytes except for the compress path.
3428  * @num_bytes:	The number of bytes in question
3429  * @delalloc:   The blocks are allocated for the delalloc write
3430  *
3431  * This is called by the allocator when it reserves space. If this is a
3432  * reservation and the block group has become read only we cannot make the
3433  * reservation and return -EAGAIN, otherwise this function always succeeds.
3434  */
3435 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3436 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3437 {
3438 	struct btrfs_space_info *space_info = cache->space_info;
3439 	int ret = 0;
3440 
3441 	spin_lock(&space_info->lock);
3442 	spin_lock(&cache->lock);
3443 	if (cache->ro) {
3444 		ret = -EAGAIN;
3445 	} else {
3446 		cache->reserved += num_bytes;
3447 		space_info->bytes_reserved += num_bytes;
3448 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3449 					      space_info->flags, num_bytes, 1);
3450 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3451 						      space_info, -ram_bytes);
3452 		if (delalloc)
3453 			cache->delalloc_bytes += num_bytes;
3454 
3455 		/*
3456 		 * Compression can use less space than we reserved, so wake
3457 		 * tickets if that happens
3458 		 */
3459 		if (num_bytes < ram_bytes)
3460 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3461 	}
3462 	spin_unlock(&cache->lock);
3463 	spin_unlock(&space_info->lock);
3464 	return ret;
3465 }
3466 
3467 /*
3468  * Update the block_group and space info counters.
3469  *
3470  * @cache:      The cache we are manipulating
3471  * @num_bytes:  The number of bytes in question
3472  * @delalloc:   The blocks are allocated for the delalloc write
3473  *
3474  * This is called by somebody who is freeing space that was never actually used
3475  * on disk.  For example if you reserve some space for a new leaf in transaction
3476  * A and before transaction A commits you free that leaf, you call this with
3477  * reserve set to 0 in order to clear the reservation.
3478  */
3479 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3480 			       u64 num_bytes, int delalloc)
3481 {
3482 	struct btrfs_space_info *space_info = cache->space_info;
3483 
3484 	spin_lock(&space_info->lock);
3485 	spin_lock(&cache->lock);
3486 	if (cache->ro)
3487 		space_info->bytes_readonly += num_bytes;
3488 	cache->reserved -= num_bytes;
3489 	space_info->bytes_reserved -= num_bytes;
3490 	space_info->max_extent_size = 0;
3491 
3492 	if (delalloc)
3493 		cache->delalloc_bytes -= num_bytes;
3494 	spin_unlock(&cache->lock);
3495 
3496 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3497 	spin_unlock(&space_info->lock);
3498 }
3499 
3500 static void force_metadata_allocation(struct btrfs_fs_info *info)
3501 {
3502 	struct list_head *head = &info->space_info;
3503 	struct btrfs_space_info *found;
3504 
3505 	list_for_each_entry(found, head, list) {
3506 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3507 			found->force_alloc = CHUNK_ALLOC_FORCE;
3508 	}
3509 }
3510 
3511 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3512 			      struct btrfs_space_info *sinfo, int force)
3513 {
3514 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3515 	u64 thresh;
3516 
3517 	if (force == CHUNK_ALLOC_FORCE)
3518 		return 1;
3519 
3520 	/*
3521 	 * in limited mode, we want to have some free space up to
3522 	 * about 1% of the FS size.
3523 	 */
3524 	if (force == CHUNK_ALLOC_LIMITED) {
3525 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3526 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3527 
3528 		if (sinfo->total_bytes - bytes_used < thresh)
3529 			return 1;
3530 	}
3531 
3532 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3533 		return 0;
3534 	return 1;
3535 }
3536 
3537 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3538 {
3539 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3540 
3541 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3542 }
3543 
3544 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3545 {
3546 	struct btrfs_block_group *bg;
3547 	int ret;
3548 
3549 	/*
3550 	 * Check if we have enough space in the system space info because we
3551 	 * will need to update device items in the chunk btree and insert a new
3552 	 * chunk item in the chunk btree as well. This will allocate a new
3553 	 * system block group if needed.
3554 	 */
3555 	check_system_chunk(trans, flags);
3556 
3557 	bg = btrfs_create_chunk(trans, flags);
3558 	if (IS_ERR(bg)) {
3559 		ret = PTR_ERR(bg);
3560 		goto out;
3561 	}
3562 
3563 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3564 	/*
3565 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3566 	 * previously reserved space in the system space_info and allocated one
3567 	 * new system chunk if necessary. However there are three exceptions:
3568 	 *
3569 	 * 1) We may have enough free space in the system space_info but all the
3570 	 *    existing system block groups have a profile which can not be used
3571 	 *    for extent allocation.
3572 	 *
3573 	 *    This happens when mounting in degraded mode. For example we have a
3574 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3575 	 *    using the other device in degraded mode. If we then allocate a chunk,
3576 	 *    we may have enough free space in the existing system space_info, but
3577 	 *    none of the block groups can be used for extent allocation since they
3578 	 *    have a RAID1 profile, and because we are in degraded mode with a
3579 	 *    single device, we are forced to allocate a new system chunk with a
3580 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3581 	 *    block groups and check if they have a usable profile and enough space
3582 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3583 	 *    try again after forcing allocation of a new system chunk. Like this
3584 	 *    we avoid paying the cost of that search in normal circumstances, when
3585 	 *    we were not mounted in degraded mode;
3586 	 *
3587 	 * 2) We had enough free space info the system space_info, and one suitable
3588 	 *    block group to allocate from when we called check_system_chunk()
3589 	 *    above. However right after we called it, the only system block group
3590 	 *    with enough free space got turned into RO mode by a running scrub,
3591 	 *    and in this case we have to allocate a new one and retry. We only
3592 	 *    need do this allocate and retry once, since we have a transaction
3593 	 *    handle and scrub uses the commit root to search for block groups;
3594 	 *
3595 	 * 3) We had one system block group with enough free space when we called
3596 	 *    check_system_chunk(), but after that, right before we tried to
3597 	 *    allocate the last extent buffer we needed, a discard operation came
3598 	 *    in and it temporarily removed the last free space entry from the
3599 	 *    block group (discard removes a free space entry, discards it, and
3600 	 *    then adds back the entry to the block group cache).
3601 	 */
3602 	if (ret == -ENOSPC) {
3603 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3604 		struct btrfs_block_group *sys_bg;
3605 
3606 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3607 		if (IS_ERR(sys_bg)) {
3608 			ret = PTR_ERR(sys_bg);
3609 			btrfs_abort_transaction(trans, ret);
3610 			goto out;
3611 		}
3612 
3613 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3614 		if (ret) {
3615 			btrfs_abort_transaction(trans, ret);
3616 			goto out;
3617 		}
3618 
3619 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3620 		if (ret) {
3621 			btrfs_abort_transaction(trans, ret);
3622 			goto out;
3623 		}
3624 	} else if (ret) {
3625 		btrfs_abort_transaction(trans, ret);
3626 		goto out;
3627 	}
3628 out:
3629 	btrfs_trans_release_chunk_metadata(trans);
3630 
3631 	if (ret)
3632 		return ERR_PTR(ret);
3633 
3634 	btrfs_get_block_group(bg);
3635 	return bg;
3636 }
3637 
3638 /*
3639  * Chunk allocation is done in 2 phases:
3640  *
3641  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3642  *    the chunk, the chunk mapping, create its block group and add the items
3643  *    that belong in the chunk btree to it - more specifically, we need to
3644  *    update device items in the chunk btree and add a new chunk item to it.
3645  *
3646  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3647  *    group item to the extent btree and the device extent items to the devices
3648  *    btree.
3649  *
3650  * This is done to prevent deadlocks. For example when COWing a node from the
3651  * extent btree we are holding a write lock on the node's parent and if we
3652  * trigger chunk allocation and attempted to insert the new block group item
3653  * in the extent btree right way, we could deadlock because the path for the
3654  * insertion can include that parent node. At first glance it seems impossible
3655  * to trigger chunk allocation after starting a transaction since tasks should
3656  * reserve enough transaction units (metadata space), however while that is true
3657  * most of the time, chunk allocation may still be triggered for several reasons:
3658  *
3659  * 1) When reserving metadata, we check if there is enough free space in the
3660  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3661  *    However later when the task actually tries to COW an extent buffer from
3662  *    the extent btree or from the device btree for example, it is forced to
3663  *    allocate a new block group (chunk) because the only one that had enough
3664  *    free space was just turned to RO mode by a running scrub for example (or
3665  *    device replace, block group reclaim thread, etc), so we can not use it
3666  *    for allocating an extent and end up being forced to allocate a new one;
3667  *
3668  * 2) Because we only check that the metadata space_info has enough free bytes,
3669  *    we end up not allocating a new metadata chunk in that case. However if
3670  *    the filesystem was mounted in degraded mode, none of the existing block
3671  *    groups might be suitable for extent allocation due to their incompatible
3672  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3673  *    use a RAID1 profile, in degraded mode using a single device). In this case
3674  *    when the task attempts to COW some extent buffer of the extent btree for
3675  *    example, it will trigger allocation of a new metadata block group with a
3676  *    suitable profile (SINGLE profile in the example of the degraded mount of
3677  *    the RAID1 filesystem);
3678  *
3679  * 3) The task has reserved enough transaction units / metadata space, but when
3680  *    it attempts to COW an extent buffer from the extent or device btree for
3681  *    example, it does not find any free extent in any metadata block group,
3682  *    therefore forced to try to allocate a new metadata block group.
3683  *    This is because some other task allocated all available extents in the
3684  *    meanwhile - this typically happens with tasks that don't reserve space
3685  *    properly, either intentionally or as a bug. One example where this is
3686  *    done intentionally is fsync, as it does not reserve any transaction units
3687  *    and ends up allocating a variable number of metadata extents for log
3688  *    tree extent buffers;
3689  *
3690  * 4) The task has reserved enough transaction units / metadata space, but right
3691  *    before it tries to allocate the last extent buffer it needs, a discard
3692  *    operation comes in and, temporarily, removes the last free space entry from
3693  *    the only metadata block group that had free space (discard starts by
3694  *    removing a free space entry from a block group, then does the discard
3695  *    operation and, once it's done, it adds back the free space entry to the
3696  *    block group).
3697  *
3698  * We also need this 2 phases setup when adding a device to a filesystem with
3699  * a seed device - we must create new metadata and system chunks without adding
3700  * any of the block group items to the chunk, extent and device btrees. If we
3701  * did not do it this way, we would get ENOSPC when attempting to update those
3702  * btrees, since all the chunks from the seed device are read-only.
3703  *
3704  * Phase 1 does the updates and insertions to the chunk btree because if we had
3705  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3706  * parallel, we risk having too many system chunks allocated by many tasks if
3707  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3708  * extreme case this leads to exhaustion of the system chunk array in the
3709  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3710  * and with RAID filesystems (so we have more device items in the chunk btree).
3711  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3712  * the system chunk array due to concurrent allocations") provides more details.
3713  *
3714  * Allocation of system chunks does not happen through this function. A task that
3715  * needs to update the chunk btree (the only btree that uses system chunks), must
3716  * preallocate chunk space by calling either check_system_chunk() or
3717  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3718  * metadata chunk or when removing a chunk, while the later is used before doing
3719  * a modification to the chunk btree - use cases for the later are adding,
3720  * removing and resizing a device as well as relocation of a system chunk.
3721  * See the comment below for more details.
3722  *
3723  * The reservation of system space, done through check_system_chunk(), as well
3724  * as all the updates and insertions into the chunk btree must be done while
3725  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3726  * an extent buffer from the chunks btree we never trigger allocation of a new
3727  * system chunk, which would result in a deadlock (trying to lock twice an
3728  * extent buffer of the chunk btree, first time before triggering the chunk
3729  * allocation and the second time during chunk allocation while attempting to
3730  * update the chunks btree). The system chunk array is also updated while holding
3731  * that mutex. The same logic applies to removing chunks - we must reserve system
3732  * space, update the chunk btree and the system chunk array in the superblock
3733  * while holding fs_info->chunk_mutex.
3734  *
3735  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3736  *
3737  * If @force is CHUNK_ALLOC_FORCE:
3738  *    - return 1 if it successfully allocates a chunk,
3739  *    - return errors including -ENOSPC otherwise.
3740  * If @force is NOT CHUNK_ALLOC_FORCE:
3741  *    - return 0 if it doesn't need to allocate a new chunk,
3742  *    - return 1 if it successfully allocates a chunk,
3743  *    - return errors including -ENOSPC otherwise.
3744  */
3745 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3746 		      enum btrfs_chunk_alloc_enum force)
3747 {
3748 	struct btrfs_fs_info *fs_info = trans->fs_info;
3749 	struct btrfs_space_info *space_info;
3750 	struct btrfs_block_group *ret_bg;
3751 	bool wait_for_alloc = false;
3752 	bool should_alloc = false;
3753 	bool from_extent_allocation = false;
3754 	int ret = 0;
3755 
3756 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3757 		from_extent_allocation = true;
3758 		force = CHUNK_ALLOC_FORCE;
3759 	}
3760 
3761 	/* Don't re-enter if we're already allocating a chunk */
3762 	if (trans->allocating_chunk)
3763 		return -ENOSPC;
3764 	/*
3765 	 * Allocation of system chunks can not happen through this path, as we
3766 	 * could end up in a deadlock if we are allocating a data or metadata
3767 	 * chunk and there is another task modifying the chunk btree.
3768 	 *
3769 	 * This is because while we are holding the chunk mutex, we will attempt
3770 	 * to add the new chunk item to the chunk btree or update an existing
3771 	 * device item in the chunk btree, while the other task that is modifying
3772 	 * the chunk btree is attempting to COW an extent buffer while holding a
3773 	 * lock on it and on its parent - if the COW operation triggers a system
3774 	 * chunk allocation, then we can deadlock because we are holding the
3775 	 * chunk mutex and we may need to access that extent buffer or its parent
3776 	 * in order to add the chunk item or update a device item.
3777 	 *
3778 	 * Tasks that want to modify the chunk tree should reserve system space
3779 	 * before updating the chunk btree, by calling either
3780 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3781 	 * It's possible that after a task reserves the space, it still ends up
3782 	 * here - this happens in the cases described above at do_chunk_alloc().
3783 	 * The task will have to either retry or fail.
3784 	 */
3785 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3786 		return -ENOSPC;
3787 
3788 	space_info = btrfs_find_space_info(fs_info, flags);
3789 	ASSERT(space_info);
3790 
3791 	do {
3792 		spin_lock(&space_info->lock);
3793 		if (force < space_info->force_alloc)
3794 			force = space_info->force_alloc;
3795 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3796 		if (space_info->full) {
3797 			/* No more free physical space */
3798 			if (should_alloc)
3799 				ret = -ENOSPC;
3800 			else
3801 				ret = 0;
3802 			spin_unlock(&space_info->lock);
3803 			return ret;
3804 		} else if (!should_alloc) {
3805 			spin_unlock(&space_info->lock);
3806 			return 0;
3807 		} else if (space_info->chunk_alloc) {
3808 			/*
3809 			 * Someone is already allocating, so we need to block
3810 			 * until this someone is finished and then loop to
3811 			 * recheck if we should continue with our allocation
3812 			 * attempt.
3813 			 */
3814 			wait_for_alloc = true;
3815 			force = CHUNK_ALLOC_NO_FORCE;
3816 			spin_unlock(&space_info->lock);
3817 			mutex_lock(&fs_info->chunk_mutex);
3818 			mutex_unlock(&fs_info->chunk_mutex);
3819 		} else {
3820 			/* Proceed with allocation */
3821 			space_info->chunk_alloc = 1;
3822 			wait_for_alloc = false;
3823 			spin_unlock(&space_info->lock);
3824 		}
3825 
3826 		cond_resched();
3827 	} while (wait_for_alloc);
3828 
3829 	mutex_lock(&fs_info->chunk_mutex);
3830 	trans->allocating_chunk = true;
3831 
3832 	/*
3833 	 * If we have mixed data/metadata chunks we want to make sure we keep
3834 	 * allocating mixed chunks instead of individual chunks.
3835 	 */
3836 	if (btrfs_mixed_space_info(space_info))
3837 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3838 
3839 	/*
3840 	 * if we're doing a data chunk, go ahead and make sure that
3841 	 * we keep a reasonable number of metadata chunks allocated in the
3842 	 * FS as well.
3843 	 */
3844 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3845 		fs_info->data_chunk_allocations++;
3846 		if (!(fs_info->data_chunk_allocations %
3847 		      fs_info->metadata_ratio))
3848 			force_metadata_allocation(fs_info);
3849 	}
3850 
3851 	ret_bg = do_chunk_alloc(trans, flags);
3852 	trans->allocating_chunk = false;
3853 
3854 	if (IS_ERR(ret_bg)) {
3855 		ret = PTR_ERR(ret_bg);
3856 	} else if (from_extent_allocation) {
3857 		/*
3858 		 * New block group is likely to be used soon. Try to activate
3859 		 * it now. Failure is OK for now.
3860 		 */
3861 		btrfs_zone_activate(ret_bg);
3862 	}
3863 
3864 	if (!ret)
3865 		btrfs_put_block_group(ret_bg);
3866 
3867 	spin_lock(&space_info->lock);
3868 	if (ret < 0) {
3869 		if (ret == -ENOSPC)
3870 			space_info->full = 1;
3871 		else
3872 			goto out;
3873 	} else {
3874 		ret = 1;
3875 		space_info->max_extent_size = 0;
3876 	}
3877 
3878 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879 out:
3880 	space_info->chunk_alloc = 0;
3881 	spin_unlock(&space_info->lock);
3882 	mutex_unlock(&fs_info->chunk_mutex);
3883 
3884 	return ret;
3885 }
3886 
3887 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3888 {
3889 	u64 num_dev;
3890 
3891 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3892 	if (!num_dev)
3893 		num_dev = fs_info->fs_devices->rw_devices;
3894 
3895 	return num_dev;
3896 }
3897 
3898 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3899 				u64 bytes,
3900 				u64 type)
3901 {
3902 	struct btrfs_fs_info *fs_info = trans->fs_info;
3903 	struct btrfs_space_info *info;
3904 	u64 left;
3905 	int ret = 0;
3906 
3907 	/*
3908 	 * Needed because we can end up allocating a system chunk and for an
3909 	 * atomic and race free space reservation in the chunk block reserve.
3910 	 */
3911 	lockdep_assert_held(&fs_info->chunk_mutex);
3912 
3913 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3914 	spin_lock(&info->lock);
3915 	left = info->total_bytes - btrfs_space_info_used(info, true);
3916 	spin_unlock(&info->lock);
3917 
3918 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3919 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3920 			   left, bytes, type);
3921 		btrfs_dump_space_info(fs_info, info, 0, 0);
3922 	}
3923 
3924 	if (left < bytes) {
3925 		u64 flags = btrfs_system_alloc_profile(fs_info);
3926 		struct btrfs_block_group *bg;
3927 
3928 		/*
3929 		 * Ignore failure to create system chunk. We might end up not
3930 		 * needing it, as we might not need to COW all nodes/leafs from
3931 		 * the paths we visit in the chunk tree (they were already COWed
3932 		 * or created in the current transaction for example).
3933 		 */
3934 		bg = btrfs_create_chunk(trans, flags);
3935 		if (IS_ERR(bg)) {
3936 			ret = PTR_ERR(bg);
3937 		} else {
3938 			/*
3939 			 * We have a new chunk. We also need to activate it for
3940 			 * zoned filesystem.
3941 			 */
3942 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3943 			if (ret < 0)
3944 				return;
3945 
3946 			/*
3947 			 * If we fail to add the chunk item here, we end up
3948 			 * trying again at phase 2 of chunk allocation, at
3949 			 * btrfs_create_pending_block_groups(). So ignore
3950 			 * any error here. An ENOSPC here could happen, due to
3951 			 * the cases described at do_chunk_alloc() - the system
3952 			 * block group we just created was just turned into RO
3953 			 * mode by a scrub for example, or a running discard
3954 			 * temporarily removed its free space entries, etc.
3955 			 */
3956 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3957 		}
3958 	}
3959 
3960 	if (!ret) {
3961 		ret = btrfs_block_rsv_add(fs_info,
3962 					  &fs_info->chunk_block_rsv,
3963 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3964 		if (!ret)
3965 			trans->chunk_bytes_reserved += bytes;
3966 	}
3967 }
3968 
3969 /*
3970  * Reserve space in the system space for allocating or removing a chunk.
3971  * The caller must be holding fs_info->chunk_mutex.
3972  */
3973 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3974 {
3975 	struct btrfs_fs_info *fs_info = trans->fs_info;
3976 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3977 	u64 bytes;
3978 
3979 	/* num_devs device items to update and 1 chunk item to add or remove. */
3980 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3981 		btrfs_calc_insert_metadata_size(fs_info, 1);
3982 
3983 	reserve_chunk_space(trans, bytes, type);
3984 }
3985 
3986 /*
3987  * Reserve space in the system space, if needed, for doing a modification to the
3988  * chunk btree.
3989  *
3990  * @trans:		A transaction handle.
3991  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3992  *			in the chunk btree or if it's for the deletion or update
3993  *			of an existing item.
3994  *
3995  * This is used in a context where we need to update the chunk btree outside
3996  * block group allocation and removal, to avoid a deadlock with a concurrent
3997  * task that is allocating a metadata or data block group and therefore needs to
3998  * update the chunk btree while holding the chunk mutex. After the update to the
3999  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4000  *
4001  */
4002 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4003 				  bool is_item_insertion)
4004 {
4005 	struct btrfs_fs_info *fs_info = trans->fs_info;
4006 	u64 bytes;
4007 
4008 	if (is_item_insertion)
4009 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4010 	else
4011 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4012 
4013 	mutex_lock(&fs_info->chunk_mutex);
4014 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4015 	mutex_unlock(&fs_info->chunk_mutex);
4016 }
4017 
4018 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4019 {
4020 	struct btrfs_block_group *block_group;
4021 
4022 	block_group = btrfs_lookup_first_block_group(info, 0);
4023 	while (block_group) {
4024 		btrfs_wait_block_group_cache_done(block_group);
4025 		spin_lock(&block_group->lock);
4026 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4027 				       &block_group->runtime_flags)) {
4028 			struct inode *inode = block_group->inode;
4029 
4030 			block_group->inode = NULL;
4031 			spin_unlock(&block_group->lock);
4032 
4033 			ASSERT(block_group->io_ctl.inode == NULL);
4034 			iput(inode);
4035 		} else {
4036 			spin_unlock(&block_group->lock);
4037 		}
4038 		block_group = btrfs_next_block_group(block_group);
4039 	}
4040 }
4041 
4042 /*
4043  * Must be called only after stopping all workers, since we could have block
4044  * group caching kthreads running, and therefore they could race with us if we
4045  * freed the block groups before stopping them.
4046  */
4047 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4048 {
4049 	struct btrfs_block_group *block_group;
4050 	struct btrfs_space_info *space_info;
4051 	struct btrfs_caching_control *caching_ctl;
4052 	struct rb_node *n;
4053 
4054 	write_lock(&info->block_group_cache_lock);
4055 	while (!list_empty(&info->caching_block_groups)) {
4056 		caching_ctl = list_entry(info->caching_block_groups.next,
4057 					 struct btrfs_caching_control, list);
4058 		list_del(&caching_ctl->list);
4059 		btrfs_put_caching_control(caching_ctl);
4060 	}
4061 	write_unlock(&info->block_group_cache_lock);
4062 
4063 	spin_lock(&info->unused_bgs_lock);
4064 	while (!list_empty(&info->unused_bgs)) {
4065 		block_group = list_first_entry(&info->unused_bgs,
4066 					       struct btrfs_block_group,
4067 					       bg_list);
4068 		list_del_init(&block_group->bg_list);
4069 		btrfs_put_block_group(block_group);
4070 	}
4071 
4072 	while (!list_empty(&info->reclaim_bgs)) {
4073 		block_group = list_first_entry(&info->reclaim_bgs,
4074 					       struct btrfs_block_group,
4075 					       bg_list);
4076 		list_del_init(&block_group->bg_list);
4077 		btrfs_put_block_group(block_group);
4078 	}
4079 	spin_unlock(&info->unused_bgs_lock);
4080 
4081 	spin_lock(&info->zone_active_bgs_lock);
4082 	while (!list_empty(&info->zone_active_bgs)) {
4083 		block_group = list_first_entry(&info->zone_active_bgs,
4084 					       struct btrfs_block_group,
4085 					       active_bg_list);
4086 		list_del_init(&block_group->active_bg_list);
4087 		btrfs_put_block_group(block_group);
4088 	}
4089 	spin_unlock(&info->zone_active_bgs_lock);
4090 
4091 	write_lock(&info->block_group_cache_lock);
4092 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4093 		block_group = rb_entry(n, struct btrfs_block_group,
4094 				       cache_node);
4095 		rb_erase_cached(&block_group->cache_node,
4096 				&info->block_group_cache_tree);
4097 		RB_CLEAR_NODE(&block_group->cache_node);
4098 		write_unlock(&info->block_group_cache_lock);
4099 
4100 		down_write(&block_group->space_info->groups_sem);
4101 		list_del(&block_group->list);
4102 		up_write(&block_group->space_info->groups_sem);
4103 
4104 		/*
4105 		 * We haven't cached this block group, which means we could
4106 		 * possibly have excluded extents on this block group.
4107 		 */
4108 		if (block_group->cached == BTRFS_CACHE_NO ||
4109 		    block_group->cached == BTRFS_CACHE_ERROR)
4110 			btrfs_free_excluded_extents(block_group);
4111 
4112 		btrfs_remove_free_space_cache(block_group);
4113 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4114 		ASSERT(list_empty(&block_group->dirty_list));
4115 		ASSERT(list_empty(&block_group->io_list));
4116 		ASSERT(list_empty(&block_group->bg_list));
4117 		ASSERT(refcount_read(&block_group->refs) == 1);
4118 		ASSERT(block_group->swap_extents == 0);
4119 		btrfs_put_block_group(block_group);
4120 
4121 		write_lock(&info->block_group_cache_lock);
4122 	}
4123 	write_unlock(&info->block_group_cache_lock);
4124 
4125 	btrfs_release_global_block_rsv(info);
4126 
4127 	while (!list_empty(&info->space_info)) {
4128 		space_info = list_entry(info->space_info.next,
4129 					struct btrfs_space_info,
4130 					list);
4131 
4132 		/*
4133 		 * Do not hide this behind enospc_debug, this is actually
4134 		 * important and indicates a real bug if this happens.
4135 		 */
4136 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4137 			    space_info->bytes_may_use > 0))
4138 			btrfs_dump_space_info(info, space_info, 0, 0);
4139 
4140 		/*
4141 		 * If there was a failure to cleanup a log tree, very likely due
4142 		 * to an IO failure on a writeback attempt of one or more of its
4143 		 * extent buffers, we could not do proper (and cheap) unaccounting
4144 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4145 		 * that case.
4146 		 */
4147 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4148 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4149 			if (WARN_ON(space_info->bytes_reserved > 0))
4150 				btrfs_dump_space_info(info, space_info, 0, 0);
4151 		}
4152 
4153 		WARN_ON(space_info->reclaim_size > 0);
4154 		list_del(&space_info->list);
4155 		btrfs_sysfs_remove_space_info(space_info);
4156 	}
4157 	return 0;
4158 }
4159 
4160 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4161 {
4162 	atomic_inc(&cache->frozen);
4163 }
4164 
4165 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4166 {
4167 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4168 	struct extent_map_tree *em_tree;
4169 	struct extent_map *em;
4170 	bool cleanup;
4171 
4172 	spin_lock(&block_group->lock);
4173 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4174 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4175 	spin_unlock(&block_group->lock);
4176 
4177 	if (cleanup) {
4178 		em_tree = &fs_info->mapping_tree;
4179 		write_lock(&em_tree->lock);
4180 		em = lookup_extent_mapping(em_tree, block_group->start,
4181 					   1);
4182 		BUG_ON(!em); /* logic error, can't happen */
4183 		remove_extent_mapping(em_tree, em);
4184 		write_unlock(&em_tree->lock);
4185 
4186 		/* once for us and once for the tree */
4187 		free_extent_map(em);
4188 		free_extent_map(em);
4189 
4190 		/*
4191 		 * We may have left one free space entry and other possible
4192 		 * tasks trimming this block group have left 1 entry each one.
4193 		 * Free them if any.
4194 		 */
4195 		btrfs_remove_free_space_cache(block_group);
4196 	}
4197 }
4198 
4199 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4200 {
4201 	bool ret = true;
4202 
4203 	spin_lock(&bg->lock);
4204 	if (bg->ro)
4205 		ret = false;
4206 	else
4207 		bg->swap_extents++;
4208 	spin_unlock(&bg->lock);
4209 
4210 	return ret;
4211 }
4212 
4213 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4214 {
4215 	spin_lock(&bg->lock);
4216 	ASSERT(!bg->ro);
4217 	ASSERT(bg->swap_extents >= amount);
4218 	bg->swap_extents -= amount;
4219 	spin_unlock(&bg->lock);
4220 }
4221