xref: /openbmc/linux/fs/btrfs/block-group.c (revision 2243acd5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
99 		allowed = BTRFS_BLOCK_GROUP_RAID6;
100 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
101 		allowed = BTRFS_BLOCK_GROUP_RAID5;
102 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
103 		allowed = BTRFS_BLOCK_GROUP_RAID10;
104 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
105 		allowed = BTRFS_BLOCK_GROUP_RAID1;
106 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
107 		allowed = BTRFS_BLOCK_GROUP_RAID0;
108 
109 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
110 
111 	return extended_to_chunk(flags | allowed);
112 }
113 
114 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
115 {
116 	unsigned seq;
117 	u64 flags;
118 
119 	do {
120 		flags = orig_flags;
121 		seq = read_seqbegin(&fs_info->profiles_lock);
122 
123 		if (flags & BTRFS_BLOCK_GROUP_DATA)
124 			flags |= fs_info->avail_data_alloc_bits;
125 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
126 			flags |= fs_info->avail_system_alloc_bits;
127 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
128 			flags |= fs_info->avail_metadata_alloc_bits;
129 	} while (read_seqretry(&fs_info->profiles_lock, seq));
130 
131 	return btrfs_reduce_alloc_profile(fs_info, flags);
132 }
133 
134 void btrfs_get_block_group(struct btrfs_block_group *cache)
135 {
136 	refcount_inc(&cache->refs);
137 }
138 
139 void btrfs_put_block_group(struct btrfs_block_group *cache)
140 {
141 	if (refcount_dec_and_test(&cache->refs)) {
142 		WARN_ON(cache->pinned > 0);
143 		/*
144 		 * If there was a failure to cleanup a log tree, very likely due
145 		 * to an IO failure on a writeback attempt of one or more of its
146 		 * extent buffers, we could not do proper (and cheap) unaccounting
147 		 * of their reserved space, so don't warn on reserved > 0 in that
148 		 * case.
149 		 */
150 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
151 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
152 			WARN_ON(cache->reserved > 0);
153 
154 		/*
155 		 * A block_group shouldn't be on the discard_list anymore.
156 		 * Remove the block_group from the discard_list to prevent us
157 		 * from causing a panic due to NULL pointer dereference.
158 		 */
159 		if (WARN_ON(!list_empty(&cache->discard_list)))
160 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
161 						  cache);
162 
163 		/*
164 		 * If not empty, someone is still holding mutex of
165 		 * full_stripe_lock, which can only be released by caller.
166 		 * And it will definitely cause use-after-free when caller
167 		 * tries to release full stripe lock.
168 		 *
169 		 * No better way to resolve, but only to warn.
170 		 */
171 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
172 		kfree(cache->free_space_ctl);
173 		kfree(cache->physical_map);
174 		kfree(cache);
175 	}
176 }
177 
178 /*
179  * This adds the block group to the fs_info rb tree for the block group cache
180  */
181 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
182 				       struct btrfs_block_group *block_group)
183 {
184 	struct rb_node **p;
185 	struct rb_node *parent = NULL;
186 	struct btrfs_block_group *cache;
187 	bool leftmost = true;
188 
189 	ASSERT(block_group->length != 0);
190 
191 	write_lock(&info->block_group_cache_lock);
192 	p = &info->block_group_cache_tree.rb_root.rb_node;
193 
194 	while (*p) {
195 		parent = *p;
196 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
197 		if (block_group->start < cache->start) {
198 			p = &(*p)->rb_left;
199 		} else if (block_group->start > cache->start) {
200 			p = &(*p)->rb_right;
201 			leftmost = false;
202 		} else {
203 			write_unlock(&info->block_group_cache_lock);
204 			return -EEXIST;
205 		}
206 	}
207 
208 	rb_link_node(&block_group->cache_node, parent, p);
209 	rb_insert_color_cached(&block_group->cache_node,
210 			       &info->block_group_cache_tree, leftmost);
211 
212 	write_unlock(&info->block_group_cache_lock);
213 
214 	return 0;
215 }
216 
217 /*
218  * This will return the block group at or after bytenr if contains is 0, else
219  * it will return the block group that contains the bytenr
220  */
221 static struct btrfs_block_group *block_group_cache_tree_search(
222 		struct btrfs_fs_info *info, u64 bytenr, int contains)
223 {
224 	struct btrfs_block_group *cache, *ret = NULL;
225 	struct rb_node *n;
226 	u64 end, start;
227 
228 	read_lock(&info->block_group_cache_lock);
229 	n = info->block_group_cache_tree.rb_root.rb_node;
230 
231 	while (n) {
232 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
233 		end = cache->start + cache->length - 1;
234 		start = cache->start;
235 
236 		if (bytenr < start) {
237 			if (!contains && (!ret || start < ret->start))
238 				ret = cache;
239 			n = n->rb_left;
240 		} else if (bytenr > start) {
241 			if (contains && bytenr <= end) {
242 				ret = cache;
243 				break;
244 			}
245 			n = n->rb_right;
246 		} else {
247 			ret = cache;
248 			break;
249 		}
250 	}
251 	if (ret)
252 		btrfs_get_block_group(ret);
253 	read_unlock(&info->block_group_cache_lock);
254 
255 	return ret;
256 }
257 
258 /*
259  * Return the block group that starts at or after bytenr
260  */
261 struct btrfs_block_group *btrfs_lookup_first_block_group(
262 		struct btrfs_fs_info *info, u64 bytenr)
263 {
264 	return block_group_cache_tree_search(info, bytenr, 0);
265 }
266 
267 /*
268  * Return the block group that contains the given bytenr
269  */
270 struct btrfs_block_group *btrfs_lookup_block_group(
271 		struct btrfs_fs_info *info, u64 bytenr)
272 {
273 	return block_group_cache_tree_search(info, bytenr, 1);
274 }
275 
276 struct btrfs_block_group *btrfs_next_block_group(
277 		struct btrfs_block_group *cache)
278 {
279 	struct btrfs_fs_info *fs_info = cache->fs_info;
280 	struct rb_node *node;
281 
282 	read_lock(&fs_info->block_group_cache_lock);
283 
284 	/* If our block group was removed, we need a full search. */
285 	if (RB_EMPTY_NODE(&cache->cache_node)) {
286 		const u64 next_bytenr = cache->start + cache->length;
287 
288 		read_unlock(&fs_info->block_group_cache_lock);
289 		btrfs_put_block_group(cache);
290 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
291 	}
292 	node = rb_next(&cache->cache_node);
293 	btrfs_put_block_group(cache);
294 	if (node) {
295 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
296 		btrfs_get_block_group(cache);
297 	} else
298 		cache = NULL;
299 	read_unlock(&fs_info->block_group_cache_lock);
300 	return cache;
301 }
302 
303 /*
304  * Check if we can do a NOCOW write for a given extent.
305  *
306  * @fs_info:       The filesystem information object.
307  * @bytenr:        Logical start address of the extent.
308  *
309  * Check if we can do a NOCOW write for the given extent, and increments the
310  * number of NOCOW writers in the block group that contains the extent, as long
311  * as the block group exists and it's currently not in read-only mode.
312  *
313  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
314  *          is responsible for calling btrfs_dec_nocow_writers() later.
315  *
316  *          Or NULL if we can not do a NOCOW write
317  */
318 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
319 						  u64 bytenr)
320 {
321 	struct btrfs_block_group *bg;
322 	bool can_nocow = true;
323 
324 	bg = btrfs_lookup_block_group(fs_info, bytenr);
325 	if (!bg)
326 		return NULL;
327 
328 	spin_lock(&bg->lock);
329 	if (bg->ro)
330 		can_nocow = false;
331 	else
332 		atomic_inc(&bg->nocow_writers);
333 	spin_unlock(&bg->lock);
334 
335 	if (!can_nocow) {
336 		btrfs_put_block_group(bg);
337 		return NULL;
338 	}
339 
340 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
341 	return bg;
342 }
343 
344 /*
345  * Decrement the number of NOCOW writers in a block group.
346  *
347  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
348  * and on the block group returned by that call. Typically this is called after
349  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
350  * relocation.
351  *
352  * After this call, the caller should not use the block group anymore. It it wants
353  * to use it, then it should get a reference on it before calling this function.
354  */
355 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
356 {
357 	if (atomic_dec_and_test(&bg->nocow_writers))
358 		wake_up_var(&bg->nocow_writers);
359 
360 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
361 	btrfs_put_block_group(bg);
362 }
363 
364 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
365 {
366 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
367 }
368 
369 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
370 					const u64 start)
371 {
372 	struct btrfs_block_group *bg;
373 
374 	bg = btrfs_lookup_block_group(fs_info, start);
375 	ASSERT(bg);
376 	if (atomic_dec_and_test(&bg->reservations))
377 		wake_up_var(&bg->reservations);
378 	btrfs_put_block_group(bg);
379 }
380 
381 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
382 {
383 	struct btrfs_space_info *space_info = bg->space_info;
384 
385 	ASSERT(bg->ro);
386 
387 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
388 		return;
389 
390 	/*
391 	 * Our block group is read only but before we set it to read only,
392 	 * some task might have had allocated an extent from it already, but it
393 	 * has not yet created a respective ordered extent (and added it to a
394 	 * root's list of ordered extents).
395 	 * Therefore wait for any task currently allocating extents, since the
396 	 * block group's reservations counter is incremented while a read lock
397 	 * on the groups' semaphore is held and decremented after releasing
398 	 * the read access on that semaphore and creating the ordered extent.
399 	 */
400 	down_write(&space_info->groups_sem);
401 	up_write(&space_info->groups_sem);
402 
403 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
404 }
405 
406 struct btrfs_caching_control *btrfs_get_caching_control(
407 		struct btrfs_block_group *cache)
408 {
409 	struct btrfs_caching_control *ctl;
410 
411 	spin_lock(&cache->lock);
412 	if (!cache->caching_ctl) {
413 		spin_unlock(&cache->lock);
414 		return NULL;
415 	}
416 
417 	ctl = cache->caching_ctl;
418 	refcount_inc(&ctl->count);
419 	spin_unlock(&cache->lock);
420 	return ctl;
421 }
422 
423 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
424 {
425 	if (refcount_dec_and_test(&ctl->count))
426 		kfree(ctl);
427 }
428 
429 /*
430  * When we wait for progress in the block group caching, its because our
431  * allocation attempt failed at least once.  So, we must sleep and let some
432  * progress happen before we try again.
433  *
434  * This function will sleep at least once waiting for new free space to show
435  * up, and then it will check the block group free space numbers for our min
436  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
437  * a free extent of a given size, but this is a good start.
438  *
439  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
440  * any of the information in this block group.
441  */
442 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
443 					   u64 num_bytes)
444 {
445 	struct btrfs_caching_control *caching_ctl;
446 
447 	caching_ctl = btrfs_get_caching_control(cache);
448 	if (!caching_ctl)
449 		return;
450 
451 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
452 		   (cache->free_space_ctl->free_space >= num_bytes));
453 
454 	btrfs_put_caching_control(caching_ctl);
455 }
456 
457 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
458 				       struct btrfs_caching_control *caching_ctl)
459 {
460 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
461 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
462 }
463 
464 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
465 {
466 	struct btrfs_caching_control *caching_ctl;
467 	int ret;
468 
469 	caching_ctl = btrfs_get_caching_control(cache);
470 	if (!caching_ctl)
471 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
472 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
473 	btrfs_put_caching_control(caching_ctl);
474 	return ret;
475 }
476 
477 #ifdef CONFIG_BTRFS_DEBUG
478 static void fragment_free_space(struct btrfs_block_group *block_group)
479 {
480 	struct btrfs_fs_info *fs_info = block_group->fs_info;
481 	u64 start = block_group->start;
482 	u64 len = block_group->length;
483 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
484 		fs_info->nodesize : fs_info->sectorsize;
485 	u64 step = chunk << 1;
486 
487 	while (len > chunk) {
488 		btrfs_remove_free_space(block_group, start, chunk);
489 		start += step;
490 		if (len < step)
491 			len = 0;
492 		else
493 			len -= step;
494 	}
495 }
496 #endif
497 
498 /*
499  * This is only called by btrfs_cache_block_group, since we could have freed
500  * extents we need to check the pinned_extents for any extents that can't be
501  * used yet since their free space will be released as soon as the transaction
502  * commits.
503  */
504 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
505 {
506 	struct btrfs_fs_info *info = block_group->fs_info;
507 	u64 extent_start, extent_end, size, total_added = 0;
508 	int ret;
509 
510 	while (start < end) {
511 		ret = find_first_extent_bit(&info->excluded_extents, start,
512 					    &extent_start, &extent_end,
513 					    EXTENT_DIRTY | EXTENT_UPTODATE,
514 					    NULL);
515 		if (ret)
516 			break;
517 
518 		if (extent_start <= start) {
519 			start = extent_end + 1;
520 		} else if (extent_start > start && extent_start < end) {
521 			size = extent_start - start;
522 			total_added += size;
523 			ret = btrfs_add_free_space_async_trimmed(block_group,
524 								 start, size);
525 			BUG_ON(ret); /* -ENOMEM or logic error */
526 			start = extent_end + 1;
527 		} else {
528 			break;
529 		}
530 	}
531 
532 	if (start < end) {
533 		size = end - start;
534 		total_added += size;
535 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
536 							 size);
537 		BUG_ON(ret); /* -ENOMEM or logic error */
538 	}
539 
540 	return total_added;
541 }
542 
543 /*
544  * Get an arbitrary extent item index / max_index through the block group
545  *
546  * @block_group   the block group to sample from
547  * @index:        the integral step through the block group to grab from
548  * @max_index:    the granularity of the sampling
549  * @key:          return value parameter for the item we find
550  *
551  * Pre-conditions on indices:
552  * 0 <= index <= max_index
553  * 0 < max_index
554  *
555  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
556  * error code on error.
557  */
558 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
559 					  struct btrfs_block_group *block_group,
560 					  int index, int max_index,
561 					  struct btrfs_key *found_key)
562 {
563 	struct btrfs_fs_info *fs_info = block_group->fs_info;
564 	struct btrfs_root *extent_root;
565 	u64 search_offset;
566 	u64 search_end = block_group->start + block_group->length;
567 	struct btrfs_path *path;
568 	struct btrfs_key search_key;
569 	int ret = 0;
570 
571 	ASSERT(index >= 0);
572 	ASSERT(index <= max_index);
573 	ASSERT(max_index > 0);
574 	lockdep_assert_held(&caching_ctl->mutex);
575 	lockdep_assert_held_read(&fs_info->commit_root_sem);
576 
577 	path = btrfs_alloc_path();
578 	if (!path)
579 		return -ENOMEM;
580 
581 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
582 						       BTRFS_SUPER_INFO_OFFSET));
583 
584 	path->skip_locking = 1;
585 	path->search_commit_root = 1;
586 	path->reada = READA_FORWARD;
587 
588 	search_offset = index * div_u64(block_group->length, max_index);
589 	search_key.objectid = block_group->start + search_offset;
590 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
591 	search_key.offset = 0;
592 
593 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
594 		/* Success; sampled an extent item in the block group */
595 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
596 		    found_key->objectid >= block_group->start &&
597 		    found_key->objectid + found_key->offset <= search_end)
598 			break;
599 
600 		/* We can't possibly find a valid extent item anymore */
601 		if (found_key->objectid >= search_end) {
602 			ret = 1;
603 			break;
604 		}
605 	}
606 
607 	lockdep_assert_held(&caching_ctl->mutex);
608 	lockdep_assert_held_read(&fs_info->commit_root_sem);
609 	btrfs_free_path(path);
610 	return ret;
611 }
612 
613 /*
614  * Best effort attempt to compute a block group's size class while caching it.
615  *
616  * @block_group: the block group we are caching
617  *
618  * We cannot infer the size class while adding free space extents, because that
619  * logic doesn't care about contiguous file extents (it doesn't differentiate
620  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
621  * file extent items. Reading all of them is quite wasteful, because usually
622  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
623  * them at even steps through the block group and pick the smallest size class
624  * we see. Since size class is best effort, and not guaranteed in general,
625  * inaccuracy is acceptable.
626  *
627  * To be more explicit about why this algorithm makes sense:
628  *
629  * If we are caching in a block group from disk, then there are three major cases
630  * to consider:
631  * 1. the block group is well behaved and all extents in it are the same size
632  *    class.
633  * 2. the block group is mostly one size class with rare exceptions for last
634  *    ditch allocations
635  * 3. the block group was populated before size classes and can have a totally
636  *    arbitrary mix of size classes.
637  *
638  * In case 1, looking at any extent in the block group will yield the correct
639  * result. For the mixed cases, taking the minimum size class seems like a good
640  * approximation, since gaps from frees will be usable to the size class. For
641  * 2., a small handful of file extents is likely to yield the right answer. For
642  * 3, we can either read every file extent, or admit that this is best effort
643  * anyway and try to stay fast.
644  *
645  * Returns: 0 on success, negative error code on error.
646  */
647 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
648 				       struct btrfs_block_group *block_group)
649 {
650 	struct btrfs_fs_info *fs_info = block_group->fs_info;
651 	struct btrfs_key key;
652 	int i;
653 	u64 min_size = block_group->length;
654 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
655 	int ret;
656 
657 	if (!btrfs_block_group_should_use_size_class(block_group))
658 		return 0;
659 
660 	lockdep_assert_held(&caching_ctl->mutex);
661 	lockdep_assert_held_read(&fs_info->commit_root_sem);
662 	for (i = 0; i < 5; ++i) {
663 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
664 		if (ret < 0)
665 			goto out;
666 		if (ret > 0)
667 			continue;
668 		min_size = min_t(u64, min_size, key.offset);
669 		size_class = btrfs_calc_block_group_size_class(min_size);
670 	}
671 	if (size_class != BTRFS_BG_SZ_NONE) {
672 		spin_lock(&block_group->lock);
673 		block_group->size_class = size_class;
674 		spin_unlock(&block_group->lock);
675 	}
676 out:
677 	return ret;
678 }
679 
680 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
681 {
682 	struct btrfs_block_group *block_group = caching_ctl->block_group;
683 	struct btrfs_fs_info *fs_info = block_group->fs_info;
684 	struct btrfs_root *extent_root;
685 	struct btrfs_path *path;
686 	struct extent_buffer *leaf;
687 	struct btrfs_key key;
688 	u64 total_found = 0;
689 	u64 last = 0;
690 	u32 nritems;
691 	int ret;
692 	bool wakeup = true;
693 
694 	path = btrfs_alloc_path();
695 	if (!path)
696 		return -ENOMEM;
697 
698 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
699 	extent_root = btrfs_extent_root(fs_info, last);
700 
701 #ifdef CONFIG_BTRFS_DEBUG
702 	/*
703 	 * If we're fragmenting we don't want to make anybody think we can
704 	 * allocate from this block group until we've had a chance to fragment
705 	 * the free space.
706 	 */
707 	if (btrfs_should_fragment_free_space(block_group))
708 		wakeup = false;
709 #endif
710 	/*
711 	 * We don't want to deadlock with somebody trying to allocate a new
712 	 * extent for the extent root while also trying to search the extent
713 	 * root to add free space.  So we skip locking and search the commit
714 	 * root, since its read-only
715 	 */
716 	path->skip_locking = 1;
717 	path->search_commit_root = 1;
718 	path->reada = READA_FORWARD;
719 
720 	key.objectid = last;
721 	key.offset = 0;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 
724 next:
725 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
726 	if (ret < 0)
727 		goto out;
728 
729 	leaf = path->nodes[0];
730 	nritems = btrfs_header_nritems(leaf);
731 
732 	while (1) {
733 		if (btrfs_fs_closing(fs_info) > 1) {
734 			last = (u64)-1;
735 			break;
736 		}
737 
738 		if (path->slots[0] < nritems) {
739 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
740 		} else {
741 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
742 			if (ret)
743 				break;
744 
745 			if (need_resched() ||
746 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
747 				btrfs_release_path(path);
748 				up_read(&fs_info->commit_root_sem);
749 				mutex_unlock(&caching_ctl->mutex);
750 				cond_resched();
751 				mutex_lock(&caching_ctl->mutex);
752 				down_read(&fs_info->commit_root_sem);
753 				goto next;
754 			}
755 
756 			ret = btrfs_next_leaf(extent_root, path);
757 			if (ret < 0)
758 				goto out;
759 			if (ret)
760 				break;
761 			leaf = path->nodes[0];
762 			nritems = btrfs_header_nritems(leaf);
763 			continue;
764 		}
765 
766 		if (key.objectid < last) {
767 			key.objectid = last;
768 			key.offset = 0;
769 			key.type = BTRFS_EXTENT_ITEM_KEY;
770 			btrfs_release_path(path);
771 			goto next;
772 		}
773 
774 		if (key.objectid < block_group->start) {
775 			path->slots[0]++;
776 			continue;
777 		}
778 
779 		if (key.objectid >= block_group->start + block_group->length)
780 			break;
781 
782 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
783 		    key.type == BTRFS_METADATA_ITEM_KEY) {
784 			total_found += add_new_free_space(block_group, last,
785 							  key.objectid);
786 			if (key.type == BTRFS_METADATA_ITEM_KEY)
787 				last = key.objectid +
788 					fs_info->nodesize;
789 			else
790 				last = key.objectid + key.offset;
791 
792 			if (total_found > CACHING_CTL_WAKE_UP) {
793 				total_found = 0;
794 				if (wakeup)
795 					wake_up(&caching_ctl->wait);
796 			}
797 		}
798 		path->slots[0]++;
799 	}
800 	ret = 0;
801 
802 	total_found += add_new_free_space(block_group, last,
803 				block_group->start + block_group->length);
804 
805 out:
806 	btrfs_free_path(path);
807 	return ret;
808 }
809 
810 static noinline void caching_thread(struct btrfs_work *work)
811 {
812 	struct btrfs_block_group *block_group;
813 	struct btrfs_fs_info *fs_info;
814 	struct btrfs_caching_control *caching_ctl;
815 	int ret;
816 
817 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
818 	block_group = caching_ctl->block_group;
819 	fs_info = block_group->fs_info;
820 
821 	mutex_lock(&caching_ctl->mutex);
822 	down_read(&fs_info->commit_root_sem);
823 
824 	load_block_group_size_class(caching_ctl, block_group);
825 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
826 		ret = load_free_space_cache(block_group);
827 		if (ret == 1) {
828 			ret = 0;
829 			goto done;
830 		}
831 
832 		/*
833 		 * We failed to load the space cache, set ourselves to
834 		 * CACHE_STARTED and carry on.
835 		 */
836 		spin_lock(&block_group->lock);
837 		block_group->cached = BTRFS_CACHE_STARTED;
838 		spin_unlock(&block_group->lock);
839 		wake_up(&caching_ctl->wait);
840 	}
841 
842 	/*
843 	 * If we are in the transaction that populated the free space tree we
844 	 * can't actually cache from the free space tree as our commit root and
845 	 * real root are the same, so we could change the contents of the blocks
846 	 * while caching.  Instead do the slow caching in this case, and after
847 	 * the transaction has committed we will be safe.
848 	 */
849 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
850 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
851 		ret = load_free_space_tree(caching_ctl);
852 	else
853 		ret = load_extent_tree_free(caching_ctl);
854 done:
855 	spin_lock(&block_group->lock);
856 	block_group->caching_ctl = NULL;
857 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
858 	spin_unlock(&block_group->lock);
859 
860 #ifdef CONFIG_BTRFS_DEBUG
861 	if (btrfs_should_fragment_free_space(block_group)) {
862 		u64 bytes_used;
863 
864 		spin_lock(&block_group->space_info->lock);
865 		spin_lock(&block_group->lock);
866 		bytes_used = block_group->length - block_group->used;
867 		block_group->space_info->bytes_used += bytes_used >> 1;
868 		spin_unlock(&block_group->lock);
869 		spin_unlock(&block_group->space_info->lock);
870 		fragment_free_space(block_group);
871 	}
872 #endif
873 
874 	up_read(&fs_info->commit_root_sem);
875 	btrfs_free_excluded_extents(block_group);
876 	mutex_unlock(&caching_ctl->mutex);
877 
878 	wake_up(&caching_ctl->wait);
879 
880 	btrfs_put_caching_control(caching_ctl);
881 	btrfs_put_block_group(block_group);
882 }
883 
884 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
885 {
886 	struct btrfs_fs_info *fs_info = cache->fs_info;
887 	struct btrfs_caching_control *caching_ctl = NULL;
888 	int ret = 0;
889 
890 	/* Allocator for zoned filesystems does not use the cache at all */
891 	if (btrfs_is_zoned(fs_info))
892 		return 0;
893 
894 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
895 	if (!caching_ctl)
896 		return -ENOMEM;
897 
898 	INIT_LIST_HEAD(&caching_ctl->list);
899 	mutex_init(&caching_ctl->mutex);
900 	init_waitqueue_head(&caching_ctl->wait);
901 	caching_ctl->block_group = cache;
902 	refcount_set(&caching_ctl->count, 2);
903 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
904 
905 	spin_lock(&cache->lock);
906 	if (cache->cached != BTRFS_CACHE_NO) {
907 		kfree(caching_ctl);
908 
909 		caching_ctl = cache->caching_ctl;
910 		if (caching_ctl)
911 			refcount_inc(&caching_ctl->count);
912 		spin_unlock(&cache->lock);
913 		goto out;
914 	}
915 	WARN_ON(cache->caching_ctl);
916 	cache->caching_ctl = caching_ctl;
917 	cache->cached = BTRFS_CACHE_STARTED;
918 	spin_unlock(&cache->lock);
919 
920 	write_lock(&fs_info->block_group_cache_lock);
921 	refcount_inc(&caching_ctl->count);
922 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
923 	write_unlock(&fs_info->block_group_cache_lock);
924 
925 	btrfs_get_block_group(cache);
926 
927 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
928 out:
929 	if (wait && caching_ctl)
930 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
931 	if (caching_ctl)
932 		btrfs_put_caching_control(caching_ctl);
933 
934 	return ret;
935 }
936 
937 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
938 {
939 	u64 extra_flags = chunk_to_extended(flags) &
940 				BTRFS_EXTENDED_PROFILE_MASK;
941 
942 	write_seqlock(&fs_info->profiles_lock);
943 	if (flags & BTRFS_BLOCK_GROUP_DATA)
944 		fs_info->avail_data_alloc_bits &= ~extra_flags;
945 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
946 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
947 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
948 		fs_info->avail_system_alloc_bits &= ~extra_flags;
949 	write_sequnlock(&fs_info->profiles_lock);
950 }
951 
952 /*
953  * Clear incompat bits for the following feature(s):
954  *
955  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
956  *            in the whole filesystem
957  *
958  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
959  */
960 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
961 {
962 	bool found_raid56 = false;
963 	bool found_raid1c34 = false;
964 
965 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
966 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
967 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
968 		struct list_head *head = &fs_info->space_info;
969 		struct btrfs_space_info *sinfo;
970 
971 		list_for_each_entry_rcu(sinfo, head, list) {
972 			down_read(&sinfo->groups_sem);
973 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
974 				found_raid56 = true;
975 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
976 				found_raid56 = true;
977 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
978 				found_raid1c34 = true;
979 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
980 				found_raid1c34 = true;
981 			up_read(&sinfo->groups_sem);
982 		}
983 		if (!found_raid56)
984 			btrfs_clear_fs_incompat(fs_info, RAID56);
985 		if (!found_raid1c34)
986 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
987 	}
988 }
989 
990 static int remove_block_group_item(struct btrfs_trans_handle *trans,
991 				   struct btrfs_path *path,
992 				   struct btrfs_block_group *block_group)
993 {
994 	struct btrfs_fs_info *fs_info = trans->fs_info;
995 	struct btrfs_root *root;
996 	struct btrfs_key key;
997 	int ret;
998 
999 	root = btrfs_block_group_root(fs_info);
1000 	key.objectid = block_group->start;
1001 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1002 	key.offset = block_group->length;
1003 
1004 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1005 	if (ret > 0)
1006 		ret = -ENOENT;
1007 	if (ret < 0)
1008 		return ret;
1009 
1010 	ret = btrfs_del_item(trans, root, path);
1011 	return ret;
1012 }
1013 
1014 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1015 			     u64 group_start, struct extent_map *em)
1016 {
1017 	struct btrfs_fs_info *fs_info = trans->fs_info;
1018 	struct btrfs_path *path;
1019 	struct btrfs_block_group *block_group;
1020 	struct btrfs_free_cluster *cluster;
1021 	struct inode *inode;
1022 	struct kobject *kobj = NULL;
1023 	int ret;
1024 	int index;
1025 	int factor;
1026 	struct btrfs_caching_control *caching_ctl = NULL;
1027 	bool remove_em;
1028 	bool remove_rsv = false;
1029 
1030 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1031 	BUG_ON(!block_group);
1032 	BUG_ON(!block_group->ro);
1033 
1034 	trace_btrfs_remove_block_group(block_group);
1035 	/*
1036 	 * Free the reserved super bytes from this block group before
1037 	 * remove it.
1038 	 */
1039 	btrfs_free_excluded_extents(block_group);
1040 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1041 				  block_group->length);
1042 
1043 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1044 	factor = btrfs_bg_type_to_factor(block_group->flags);
1045 
1046 	/* make sure this block group isn't part of an allocation cluster */
1047 	cluster = &fs_info->data_alloc_cluster;
1048 	spin_lock(&cluster->refill_lock);
1049 	btrfs_return_cluster_to_free_space(block_group, cluster);
1050 	spin_unlock(&cluster->refill_lock);
1051 
1052 	/*
1053 	 * make sure this block group isn't part of a metadata
1054 	 * allocation cluster
1055 	 */
1056 	cluster = &fs_info->meta_alloc_cluster;
1057 	spin_lock(&cluster->refill_lock);
1058 	btrfs_return_cluster_to_free_space(block_group, cluster);
1059 	spin_unlock(&cluster->refill_lock);
1060 
1061 	btrfs_clear_treelog_bg(block_group);
1062 	btrfs_clear_data_reloc_bg(block_group);
1063 
1064 	path = btrfs_alloc_path();
1065 	if (!path) {
1066 		ret = -ENOMEM;
1067 		goto out;
1068 	}
1069 
1070 	/*
1071 	 * get the inode first so any iput calls done for the io_list
1072 	 * aren't the final iput (no unlinks allowed now)
1073 	 */
1074 	inode = lookup_free_space_inode(block_group, path);
1075 
1076 	mutex_lock(&trans->transaction->cache_write_mutex);
1077 	/*
1078 	 * Make sure our free space cache IO is done before removing the
1079 	 * free space inode
1080 	 */
1081 	spin_lock(&trans->transaction->dirty_bgs_lock);
1082 	if (!list_empty(&block_group->io_list)) {
1083 		list_del_init(&block_group->io_list);
1084 
1085 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1086 
1087 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1088 		btrfs_wait_cache_io(trans, block_group, path);
1089 		btrfs_put_block_group(block_group);
1090 		spin_lock(&trans->transaction->dirty_bgs_lock);
1091 	}
1092 
1093 	if (!list_empty(&block_group->dirty_list)) {
1094 		list_del_init(&block_group->dirty_list);
1095 		remove_rsv = true;
1096 		btrfs_put_block_group(block_group);
1097 	}
1098 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1099 	mutex_unlock(&trans->transaction->cache_write_mutex);
1100 
1101 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1102 	if (ret)
1103 		goto out;
1104 
1105 	write_lock(&fs_info->block_group_cache_lock);
1106 	rb_erase_cached(&block_group->cache_node,
1107 			&fs_info->block_group_cache_tree);
1108 	RB_CLEAR_NODE(&block_group->cache_node);
1109 
1110 	/* Once for the block groups rbtree */
1111 	btrfs_put_block_group(block_group);
1112 
1113 	write_unlock(&fs_info->block_group_cache_lock);
1114 
1115 	down_write(&block_group->space_info->groups_sem);
1116 	/*
1117 	 * we must use list_del_init so people can check to see if they
1118 	 * are still on the list after taking the semaphore
1119 	 */
1120 	list_del_init(&block_group->list);
1121 	if (list_empty(&block_group->space_info->block_groups[index])) {
1122 		kobj = block_group->space_info->block_group_kobjs[index];
1123 		block_group->space_info->block_group_kobjs[index] = NULL;
1124 		clear_avail_alloc_bits(fs_info, block_group->flags);
1125 	}
1126 	up_write(&block_group->space_info->groups_sem);
1127 	clear_incompat_bg_bits(fs_info, block_group->flags);
1128 	if (kobj) {
1129 		kobject_del(kobj);
1130 		kobject_put(kobj);
1131 	}
1132 
1133 	if (block_group->cached == BTRFS_CACHE_STARTED)
1134 		btrfs_wait_block_group_cache_done(block_group);
1135 
1136 	write_lock(&fs_info->block_group_cache_lock);
1137 	caching_ctl = btrfs_get_caching_control(block_group);
1138 	if (!caching_ctl) {
1139 		struct btrfs_caching_control *ctl;
1140 
1141 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1142 			if (ctl->block_group == block_group) {
1143 				caching_ctl = ctl;
1144 				refcount_inc(&caching_ctl->count);
1145 				break;
1146 			}
1147 		}
1148 	}
1149 	if (caching_ctl)
1150 		list_del_init(&caching_ctl->list);
1151 	write_unlock(&fs_info->block_group_cache_lock);
1152 
1153 	if (caching_ctl) {
1154 		/* Once for the caching bgs list and once for us. */
1155 		btrfs_put_caching_control(caching_ctl);
1156 		btrfs_put_caching_control(caching_ctl);
1157 	}
1158 
1159 	spin_lock(&trans->transaction->dirty_bgs_lock);
1160 	WARN_ON(!list_empty(&block_group->dirty_list));
1161 	WARN_ON(!list_empty(&block_group->io_list));
1162 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1163 
1164 	btrfs_remove_free_space_cache(block_group);
1165 
1166 	spin_lock(&block_group->space_info->lock);
1167 	list_del_init(&block_group->ro_list);
1168 
1169 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1170 		WARN_ON(block_group->space_info->total_bytes
1171 			< block_group->length);
1172 		WARN_ON(block_group->space_info->bytes_readonly
1173 			< block_group->length - block_group->zone_unusable);
1174 		WARN_ON(block_group->space_info->bytes_zone_unusable
1175 			< block_group->zone_unusable);
1176 		WARN_ON(block_group->space_info->disk_total
1177 			< block_group->length * factor);
1178 	}
1179 	block_group->space_info->total_bytes -= block_group->length;
1180 	block_group->space_info->bytes_readonly -=
1181 		(block_group->length - block_group->zone_unusable);
1182 	block_group->space_info->bytes_zone_unusable -=
1183 		block_group->zone_unusable;
1184 	block_group->space_info->disk_total -= block_group->length * factor;
1185 
1186 	spin_unlock(&block_group->space_info->lock);
1187 
1188 	/*
1189 	 * Remove the free space for the block group from the free space tree
1190 	 * and the block group's item from the extent tree before marking the
1191 	 * block group as removed. This is to prevent races with tasks that
1192 	 * freeze and unfreeze a block group, this task and another task
1193 	 * allocating a new block group - the unfreeze task ends up removing
1194 	 * the block group's extent map before the task calling this function
1195 	 * deletes the block group item from the extent tree, allowing for
1196 	 * another task to attempt to create another block group with the same
1197 	 * item key (and failing with -EEXIST and a transaction abort).
1198 	 */
1199 	ret = remove_block_group_free_space(trans, block_group);
1200 	if (ret)
1201 		goto out;
1202 
1203 	ret = remove_block_group_item(trans, path, block_group);
1204 	if (ret < 0)
1205 		goto out;
1206 
1207 	spin_lock(&block_group->lock);
1208 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1209 
1210 	/*
1211 	 * At this point trimming or scrub can't start on this block group,
1212 	 * because we removed the block group from the rbtree
1213 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1214 	 * even if someone already got this block group before we removed it
1215 	 * from the rbtree, they have already incremented block_group->frozen -
1216 	 * if they didn't, for the trimming case they won't find any free space
1217 	 * entries because we already removed them all when we called
1218 	 * btrfs_remove_free_space_cache().
1219 	 *
1220 	 * And we must not remove the extent map from the fs_info->mapping_tree
1221 	 * to prevent the same logical address range and physical device space
1222 	 * ranges from being reused for a new block group. This is needed to
1223 	 * avoid races with trimming and scrub.
1224 	 *
1225 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1226 	 * completely transactionless, so while it is trimming a range the
1227 	 * currently running transaction might finish and a new one start,
1228 	 * allowing for new block groups to be created that can reuse the same
1229 	 * physical device locations unless we take this special care.
1230 	 *
1231 	 * There may also be an implicit trim operation if the file system
1232 	 * is mounted with -odiscard. The same protections must remain
1233 	 * in place until the extents have been discarded completely when
1234 	 * the transaction commit has completed.
1235 	 */
1236 	remove_em = (atomic_read(&block_group->frozen) == 0);
1237 	spin_unlock(&block_group->lock);
1238 
1239 	if (remove_em) {
1240 		struct extent_map_tree *em_tree;
1241 
1242 		em_tree = &fs_info->mapping_tree;
1243 		write_lock(&em_tree->lock);
1244 		remove_extent_mapping(em_tree, em);
1245 		write_unlock(&em_tree->lock);
1246 		/* once for the tree */
1247 		free_extent_map(em);
1248 	}
1249 
1250 out:
1251 	/* Once for the lookup reference */
1252 	btrfs_put_block_group(block_group);
1253 	if (remove_rsv)
1254 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1255 	btrfs_free_path(path);
1256 	return ret;
1257 }
1258 
1259 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1260 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1261 {
1262 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1263 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1264 	struct extent_map *em;
1265 	struct map_lookup *map;
1266 	unsigned int num_items;
1267 
1268 	read_lock(&em_tree->lock);
1269 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1270 	read_unlock(&em_tree->lock);
1271 	ASSERT(em && em->start == chunk_offset);
1272 
1273 	/*
1274 	 * We need to reserve 3 + N units from the metadata space info in order
1275 	 * to remove a block group (done at btrfs_remove_chunk() and at
1276 	 * btrfs_remove_block_group()), which are used for:
1277 	 *
1278 	 * 1 unit for adding the free space inode's orphan (located in the tree
1279 	 * of tree roots).
1280 	 * 1 unit for deleting the block group item (located in the extent
1281 	 * tree).
1282 	 * 1 unit for deleting the free space item (located in tree of tree
1283 	 * roots).
1284 	 * N units for deleting N device extent items corresponding to each
1285 	 * stripe (located in the device tree).
1286 	 *
1287 	 * In order to remove a block group we also need to reserve units in the
1288 	 * system space info in order to update the chunk tree (update one or
1289 	 * more device items and remove one chunk item), but this is done at
1290 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1291 	 */
1292 	map = em->map_lookup;
1293 	num_items = 3 + map->num_stripes;
1294 	free_extent_map(em);
1295 
1296 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1297 }
1298 
1299 /*
1300  * Mark block group @cache read-only, so later write won't happen to block
1301  * group @cache.
1302  *
1303  * If @force is not set, this function will only mark the block group readonly
1304  * if we have enough free space (1M) in other metadata/system block groups.
1305  * If @force is not set, this function will mark the block group readonly
1306  * without checking free space.
1307  *
1308  * NOTE: This function doesn't care if other block groups can contain all the
1309  * data in this block group. That check should be done by relocation routine,
1310  * not this function.
1311  */
1312 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1313 {
1314 	struct btrfs_space_info *sinfo = cache->space_info;
1315 	u64 num_bytes;
1316 	int ret = -ENOSPC;
1317 
1318 	spin_lock(&sinfo->lock);
1319 	spin_lock(&cache->lock);
1320 
1321 	if (cache->swap_extents) {
1322 		ret = -ETXTBSY;
1323 		goto out;
1324 	}
1325 
1326 	if (cache->ro) {
1327 		cache->ro++;
1328 		ret = 0;
1329 		goto out;
1330 	}
1331 
1332 	num_bytes = cache->length - cache->reserved - cache->pinned -
1333 		    cache->bytes_super - cache->zone_unusable - cache->used;
1334 
1335 	/*
1336 	 * Data never overcommits, even in mixed mode, so do just the straight
1337 	 * check of left over space in how much we have allocated.
1338 	 */
1339 	if (force) {
1340 		ret = 0;
1341 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1342 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1343 
1344 		/*
1345 		 * Here we make sure if we mark this bg RO, we still have enough
1346 		 * free space as buffer.
1347 		 */
1348 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1349 			ret = 0;
1350 	} else {
1351 		/*
1352 		 * We overcommit metadata, so we need to do the
1353 		 * btrfs_can_overcommit check here, and we need to pass in
1354 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1355 		 * leeway to allow us to mark this block group as read only.
1356 		 */
1357 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1358 					 BTRFS_RESERVE_NO_FLUSH))
1359 			ret = 0;
1360 	}
1361 
1362 	if (!ret) {
1363 		sinfo->bytes_readonly += num_bytes;
1364 		if (btrfs_is_zoned(cache->fs_info)) {
1365 			/* Migrate zone_unusable bytes to readonly */
1366 			sinfo->bytes_readonly += cache->zone_unusable;
1367 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1368 			cache->zone_unusable = 0;
1369 		}
1370 		cache->ro++;
1371 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1372 	}
1373 out:
1374 	spin_unlock(&cache->lock);
1375 	spin_unlock(&sinfo->lock);
1376 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1377 		btrfs_info(cache->fs_info,
1378 			"unable to make block group %llu ro", cache->start);
1379 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1380 	}
1381 	return ret;
1382 }
1383 
1384 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1385 				 struct btrfs_block_group *bg)
1386 {
1387 	struct btrfs_fs_info *fs_info = bg->fs_info;
1388 	struct btrfs_transaction *prev_trans = NULL;
1389 	const u64 start = bg->start;
1390 	const u64 end = start + bg->length - 1;
1391 	int ret;
1392 
1393 	spin_lock(&fs_info->trans_lock);
1394 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1395 		prev_trans = list_last_entry(&trans->transaction->list,
1396 					     struct btrfs_transaction, list);
1397 		refcount_inc(&prev_trans->use_count);
1398 	}
1399 	spin_unlock(&fs_info->trans_lock);
1400 
1401 	/*
1402 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1403 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1404 	 * task might be running finish_extent_commit() for the previous
1405 	 * transaction N - 1, and have seen a range belonging to the block
1406 	 * group in pinned_extents before we were able to clear the whole block
1407 	 * group range from pinned_extents. This means that task can lookup for
1408 	 * the block group after we unpinned it from pinned_extents and removed
1409 	 * it, leading to a BUG_ON() at unpin_extent_range().
1410 	 */
1411 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1412 	if (prev_trans) {
1413 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1414 					EXTENT_DIRTY);
1415 		if (ret)
1416 			goto out;
1417 	}
1418 
1419 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1420 				EXTENT_DIRTY);
1421 out:
1422 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1423 	if (prev_trans)
1424 		btrfs_put_transaction(prev_trans);
1425 
1426 	return ret == 0;
1427 }
1428 
1429 /*
1430  * Process the unused_bgs list and remove any that don't have any allocated
1431  * space inside of them.
1432  */
1433 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1434 {
1435 	struct btrfs_block_group *block_group;
1436 	struct btrfs_space_info *space_info;
1437 	struct btrfs_trans_handle *trans;
1438 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1439 	int ret = 0;
1440 
1441 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1442 		return;
1443 
1444 	if (btrfs_fs_closing(fs_info))
1445 		return;
1446 
1447 	/*
1448 	 * Long running balances can keep us blocked here for eternity, so
1449 	 * simply skip deletion if we're unable to get the mutex.
1450 	 */
1451 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1452 		return;
1453 
1454 	spin_lock(&fs_info->unused_bgs_lock);
1455 	while (!list_empty(&fs_info->unused_bgs)) {
1456 		int trimming;
1457 
1458 		block_group = list_first_entry(&fs_info->unused_bgs,
1459 					       struct btrfs_block_group,
1460 					       bg_list);
1461 		list_del_init(&block_group->bg_list);
1462 
1463 		space_info = block_group->space_info;
1464 
1465 		if (ret || btrfs_mixed_space_info(space_info)) {
1466 			btrfs_put_block_group(block_group);
1467 			continue;
1468 		}
1469 		spin_unlock(&fs_info->unused_bgs_lock);
1470 
1471 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1472 
1473 		/* Don't want to race with allocators so take the groups_sem */
1474 		down_write(&space_info->groups_sem);
1475 
1476 		/*
1477 		 * Async discard moves the final block group discard to be prior
1478 		 * to the unused_bgs code path.  Therefore, if it's not fully
1479 		 * trimmed, punt it back to the async discard lists.
1480 		 */
1481 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1482 		    !btrfs_is_free_space_trimmed(block_group)) {
1483 			trace_btrfs_skip_unused_block_group(block_group);
1484 			up_write(&space_info->groups_sem);
1485 			/* Requeue if we failed because of async discard */
1486 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1487 						 block_group);
1488 			goto next;
1489 		}
1490 
1491 		spin_lock(&block_group->lock);
1492 		if (block_group->reserved || block_group->pinned ||
1493 		    block_group->used || block_group->ro ||
1494 		    list_is_singular(&block_group->list)) {
1495 			/*
1496 			 * We want to bail if we made new allocations or have
1497 			 * outstanding allocations in this block group.  We do
1498 			 * the ro check in case balance is currently acting on
1499 			 * this block group.
1500 			 */
1501 			trace_btrfs_skip_unused_block_group(block_group);
1502 			spin_unlock(&block_group->lock);
1503 			up_write(&space_info->groups_sem);
1504 			goto next;
1505 		}
1506 		spin_unlock(&block_group->lock);
1507 
1508 		/* We don't want to force the issue, only flip if it's ok. */
1509 		ret = inc_block_group_ro(block_group, 0);
1510 		up_write(&space_info->groups_sem);
1511 		if (ret < 0) {
1512 			ret = 0;
1513 			goto next;
1514 		}
1515 
1516 		ret = btrfs_zone_finish(block_group);
1517 		if (ret < 0) {
1518 			btrfs_dec_block_group_ro(block_group);
1519 			if (ret == -EAGAIN)
1520 				ret = 0;
1521 			goto next;
1522 		}
1523 
1524 		/*
1525 		 * Want to do this before we do anything else so we can recover
1526 		 * properly if we fail to join the transaction.
1527 		 */
1528 		trans = btrfs_start_trans_remove_block_group(fs_info,
1529 						     block_group->start);
1530 		if (IS_ERR(trans)) {
1531 			btrfs_dec_block_group_ro(block_group);
1532 			ret = PTR_ERR(trans);
1533 			goto next;
1534 		}
1535 
1536 		/*
1537 		 * We could have pending pinned extents for this block group,
1538 		 * just delete them, we don't care about them anymore.
1539 		 */
1540 		if (!clean_pinned_extents(trans, block_group)) {
1541 			btrfs_dec_block_group_ro(block_group);
1542 			goto end_trans;
1543 		}
1544 
1545 		/*
1546 		 * At this point, the block_group is read only and should fail
1547 		 * new allocations.  However, btrfs_finish_extent_commit() can
1548 		 * cause this block_group to be placed back on the discard
1549 		 * lists because now the block_group isn't fully discarded.
1550 		 * Bail here and try again later after discarding everything.
1551 		 */
1552 		spin_lock(&fs_info->discard_ctl.lock);
1553 		if (!list_empty(&block_group->discard_list)) {
1554 			spin_unlock(&fs_info->discard_ctl.lock);
1555 			btrfs_dec_block_group_ro(block_group);
1556 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1557 						 block_group);
1558 			goto end_trans;
1559 		}
1560 		spin_unlock(&fs_info->discard_ctl.lock);
1561 
1562 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1563 		spin_lock(&space_info->lock);
1564 		spin_lock(&block_group->lock);
1565 
1566 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1567 						     -block_group->pinned);
1568 		space_info->bytes_readonly += block_group->pinned;
1569 		block_group->pinned = 0;
1570 
1571 		spin_unlock(&block_group->lock);
1572 		spin_unlock(&space_info->lock);
1573 
1574 		/*
1575 		 * The normal path here is an unused block group is passed here,
1576 		 * then trimming is handled in the transaction commit path.
1577 		 * Async discard interposes before this to do the trimming
1578 		 * before coming down the unused block group path as trimming
1579 		 * will no longer be done later in the transaction commit path.
1580 		 */
1581 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1582 			goto flip_async;
1583 
1584 		/*
1585 		 * DISCARD can flip during remount. On zoned filesystems, we
1586 		 * need to reset sequential-required zones.
1587 		 */
1588 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1589 				btrfs_is_zoned(fs_info);
1590 
1591 		/* Implicit trim during transaction commit. */
1592 		if (trimming)
1593 			btrfs_freeze_block_group(block_group);
1594 
1595 		/*
1596 		 * Btrfs_remove_chunk will abort the transaction if things go
1597 		 * horribly wrong.
1598 		 */
1599 		ret = btrfs_remove_chunk(trans, block_group->start);
1600 
1601 		if (ret) {
1602 			if (trimming)
1603 				btrfs_unfreeze_block_group(block_group);
1604 			goto end_trans;
1605 		}
1606 
1607 		/*
1608 		 * If we're not mounted with -odiscard, we can just forget
1609 		 * about this block group. Otherwise we'll need to wait
1610 		 * until transaction commit to do the actual discard.
1611 		 */
1612 		if (trimming) {
1613 			spin_lock(&fs_info->unused_bgs_lock);
1614 			/*
1615 			 * A concurrent scrub might have added us to the list
1616 			 * fs_info->unused_bgs, so use a list_move operation
1617 			 * to add the block group to the deleted_bgs list.
1618 			 */
1619 			list_move(&block_group->bg_list,
1620 				  &trans->transaction->deleted_bgs);
1621 			spin_unlock(&fs_info->unused_bgs_lock);
1622 			btrfs_get_block_group(block_group);
1623 		}
1624 end_trans:
1625 		btrfs_end_transaction(trans);
1626 next:
1627 		btrfs_put_block_group(block_group);
1628 		spin_lock(&fs_info->unused_bgs_lock);
1629 	}
1630 	spin_unlock(&fs_info->unused_bgs_lock);
1631 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1632 	return;
1633 
1634 flip_async:
1635 	btrfs_end_transaction(trans);
1636 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1637 	btrfs_put_block_group(block_group);
1638 	btrfs_discard_punt_unused_bgs_list(fs_info);
1639 }
1640 
1641 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1642 {
1643 	struct btrfs_fs_info *fs_info = bg->fs_info;
1644 
1645 	spin_lock(&fs_info->unused_bgs_lock);
1646 	if (list_empty(&bg->bg_list)) {
1647 		btrfs_get_block_group(bg);
1648 		trace_btrfs_add_unused_block_group(bg);
1649 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1650 	}
1651 	spin_unlock(&fs_info->unused_bgs_lock);
1652 }
1653 
1654 /*
1655  * We want block groups with a low number of used bytes to be in the beginning
1656  * of the list, so they will get reclaimed first.
1657  */
1658 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1659 			   const struct list_head *b)
1660 {
1661 	const struct btrfs_block_group *bg1, *bg2;
1662 
1663 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1664 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1665 
1666 	return bg1->used > bg2->used;
1667 }
1668 
1669 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1670 {
1671 	if (btrfs_is_zoned(fs_info))
1672 		return btrfs_zoned_should_reclaim(fs_info);
1673 	return true;
1674 }
1675 
1676 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1677 {
1678 	const struct btrfs_space_info *space_info = bg->space_info;
1679 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1680 	const u64 new_val = bg->used;
1681 	const u64 old_val = new_val + bytes_freed;
1682 	u64 thresh;
1683 
1684 	if (reclaim_thresh == 0)
1685 		return false;
1686 
1687 	thresh = mult_perc(bg->length, reclaim_thresh);
1688 
1689 	/*
1690 	 * If we were below the threshold before don't reclaim, we are likely a
1691 	 * brand new block group and we don't want to relocate new block groups.
1692 	 */
1693 	if (old_val < thresh)
1694 		return false;
1695 	if (new_val >= thresh)
1696 		return false;
1697 	return true;
1698 }
1699 
1700 void btrfs_reclaim_bgs_work(struct work_struct *work)
1701 {
1702 	struct btrfs_fs_info *fs_info =
1703 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1704 	struct btrfs_block_group *bg;
1705 	struct btrfs_space_info *space_info;
1706 
1707 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1708 		return;
1709 
1710 	if (btrfs_fs_closing(fs_info))
1711 		return;
1712 
1713 	if (!btrfs_should_reclaim(fs_info))
1714 		return;
1715 
1716 	sb_start_write(fs_info->sb);
1717 
1718 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1719 		sb_end_write(fs_info->sb);
1720 		return;
1721 	}
1722 
1723 	/*
1724 	 * Long running balances can keep us blocked here for eternity, so
1725 	 * simply skip reclaim if we're unable to get the mutex.
1726 	 */
1727 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1728 		btrfs_exclop_finish(fs_info);
1729 		sb_end_write(fs_info->sb);
1730 		return;
1731 	}
1732 
1733 	spin_lock(&fs_info->unused_bgs_lock);
1734 	/*
1735 	 * Sort happens under lock because we can't simply splice it and sort.
1736 	 * The block groups might still be in use and reachable via bg_list,
1737 	 * and their presence in the reclaim_bgs list must be preserved.
1738 	 */
1739 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1740 	while (!list_empty(&fs_info->reclaim_bgs)) {
1741 		u64 zone_unusable;
1742 		int ret = 0;
1743 
1744 		bg = list_first_entry(&fs_info->reclaim_bgs,
1745 				      struct btrfs_block_group,
1746 				      bg_list);
1747 		list_del_init(&bg->bg_list);
1748 
1749 		space_info = bg->space_info;
1750 		spin_unlock(&fs_info->unused_bgs_lock);
1751 
1752 		/* Don't race with allocators so take the groups_sem */
1753 		down_write(&space_info->groups_sem);
1754 
1755 		spin_lock(&bg->lock);
1756 		if (bg->reserved || bg->pinned || bg->ro) {
1757 			/*
1758 			 * We want to bail if we made new allocations or have
1759 			 * outstanding allocations in this block group.  We do
1760 			 * the ro check in case balance is currently acting on
1761 			 * this block group.
1762 			 */
1763 			spin_unlock(&bg->lock);
1764 			up_write(&space_info->groups_sem);
1765 			goto next;
1766 		}
1767 		if (bg->used == 0) {
1768 			/*
1769 			 * It is possible that we trigger relocation on a block
1770 			 * group as its extents are deleted and it first goes
1771 			 * below the threshold, then shortly after goes empty.
1772 			 *
1773 			 * In this case, relocating it does delete it, but has
1774 			 * some overhead in relocation specific metadata, looking
1775 			 * for the non-existent extents and running some extra
1776 			 * transactions, which we can avoid by using one of the
1777 			 * other mechanisms for dealing with empty block groups.
1778 			 */
1779 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1780 				btrfs_mark_bg_unused(bg);
1781 			spin_unlock(&bg->lock);
1782 			up_write(&space_info->groups_sem);
1783 			goto next;
1784 
1785 		}
1786 		/*
1787 		 * The block group might no longer meet the reclaim condition by
1788 		 * the time we get around to reclaiming it, so to avoid
1789 		 * reclaiming overly full block_groups, skip reclaiming them.
1790 		 *
1791 		 * Since the decision making process also depends on the amount
1792 		 * being freed, pass in a fake giant value to skip that extra
1793 		 * check, which is more meaningful when adding to the list in
1794 		 * the first place.
1795 		 */
1796 		if (!should_reclaim_block_group(bg, bg->length)) {
1797 			spin_unlock(&bg->lock);
1798 			up_write(&space_info->groups_sem);
1799 			goto next;
1800 		}
1801 		spin_unlock(&bg->lock);
1802 
1803 		/* Get out fast, in case we're unmounting the filesystem */
1804 		if (btrfs_fs_closing(fs_info)) {
1805 			up_write(&space_info->groups_sem);
1806 			goto next;
1807 		}
1808 
1809 		/*
1810 		 * Cache the zone_unusable value before turning the block group
1811 		 * to read only. As soon as the blog group is read only it's
1812 		 * zone_unusable value gets moved to the block group's read-only
1813 		 * bytes and isn't available for calculations anymore.
1814 		 */
1815 		zone_unusable = bg->zone_unusable;
1816 		ret = inc_block_group_ro(bg, 0);
1817 		up_write(&space_info->groups_sem);
1818 		if (ret < 0)
1819 			goto next;
1820 
1821 		btrfs_info(fs_info,
1822 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1823 				bg->start,
1824 				div64_u64(bg->used * 100, bg->length),
1825 				div64_u64(zone_unusable * 100, bg->length));
1826 		trace_btrfs_reclaim_block_group(bg);
1827 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1828 		if (ret) {
1829 			btrfs_dec_block_group_ro(bg);
1830 			btrfs_err(fs_info, "error relocating chunk %llu",
1831 				  bg->start);
1832 		}
1833 
1834 next:
1835 		btrfs_put_block_group(bg);
1836 		spin_lock(&fs_info->unused_bgs_lock);
1837 	}
1838 	spin_unlock(&fs_info->unused_bgs_lock);
1839 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1840 	btrfs_exclop_finish(fs_info);
1841 	sb_end_write(fs_info->sb);
1842 }
1843 
1844 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1845 {
1846 	spin_lock(&fs_info->unused_bgs_lock);
1847 	if (!list_empty(&fs_info->reclaim_bgs))
1848 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1849 	spin_unlock(&fs_info->unused_bgs_lock);
1850 }
1851 
1852 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1853 {
1854 	struct btrfs_fs_info *fs_info = bg->fs_info;
1855 
1856 	spin_lock(&fs_info->unused_bgs_lock);
1857 	if (list_empty(&bg->bg_list)) {
1858 		btrfs_get_block_group(bg);
1859 		trace_btrfs_add_reclaim_block_group(bg);
1860 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1861 	}
1862 	spin_unlock(&fs_info->unused_bgs_lock);
1863 }
1864 
1865 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1866 			   struct btrfs_path *path)
1867 {
1868 	struct extent_map_tree *em_tree;
1869 	struct extent_map *em;
1870 	struct btrfs_block_group_item bg;
1871 	struct extent_buffer *leaf;
1872 	int slot;
1873 	u64 flags;
1874 	int ret = 0;
1875 
1876 	slot = path->slots[0];
1877 	leaf = path->nodes[0];
1878 
1879 	em_tree = &fs_info->mapping_tree;
1880 	read_lock(&em_tree->lock);
1881 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1882 	read_unlock(&em_tree->lock);
1883 	if (!em) {
1884 		btrfs_err(fs_info,
1885 			  "logical %llu len %llu found bg but no related chunk",
1886 			  key->objectid, key->offset);
1887 		return -ENOENT;
1888 	}
1889 
1890 	if (em->start != key->objectid || em->len != key->offset) {
1891 		btrfs_err(fs_info,
1892 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1893 			key->objectid, key->offset, em->start, em->len);
1894 		ret = -EUCLEAN;
1895 		goto out_free_em;
1896 	}
1897 
1898 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1899 			   sizeof(bg));
1900 	flags = btrfs_stack_block_group_flags(&bg) &
1901 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1902 
1903 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1904 		btrfs_err(fs_info,
1905 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1906 			  key->objectid, key->offset, flags,
1907 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1908 		ret = -EUCLEAN;
1909 	}
1910 
1911 out_free_em:
1912 	free_extent_map(em);
1913 	return ret;
1914 }
1915 
1916 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1917 				  struct btrfs_path *path,
1918 				  struct btrfs_key *key)
1919 {
1920 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1921 	int ret;
1922 	struct btrfs_key found_key;
1923 
1924 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1925 		if (found_key.objectid >= key->objectid &&
1926 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1927 			return read_bg_from_eb(fs_info, &found_key, path);
1928 		}
1929 	}
1930 	return ret;
1931 }
1932 
1933 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1934 {
1935 	u64 extra_flags = chunk_to_extended(flags) &
1936 				BTRFS_EXTENDED_PROFILE_MASK;
1937 
1938 	write_seqlock(&fs_info->profiles_lock);
1939 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1940 		fs_info->avail_data_alloc_bits |= extra_flags;
1941 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1942 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1943 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1944 		fs_info->avail_system_alloc_bits |= extra_flags;
1945 	write_sequnlock(&fs_info->profiles_lock);
1946 }
1947 
1948 /*
1949  * Map a physical disk address to a list of logical addresses.
1950  *
1951  * @fs_info:       the filesystem
1952  * @chunk_start:   logical address of block group
1953  * @physical:	   physical address to map to logical addresses
1954  * @logical:	   return array of logical addresses which map to @physical
1955  * @naddrs:	   length of @logical
1956  * @stripe_len:    size of IO stripe for the given block group
1957  *
1958  * Maps a particular @physical disk address to a list of @logical addresses.
1959  * Used primarily to exclude those portions of a block group that contain super
1960  * block copies.
1961  */
1962 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1963 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1964 {
1965 	struct extent_map *em;
1966 	struct map_lookup *map;
1967 	u64 *buf;
1968 	u64 bytenr;
1969 	u64 data_stripe_length;
1970 	u64 io_stripe_size;
1971 	int i, nr = 0;
1972 	int ret = 0;
1973 
1974 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1975 	if (IS_ERR(em))
1976 		return -EIO;
1977 
1978 	map = em->map_lookup;
1979 	data_stripe_length = em->orig_block_len;
1980 	io_stripe_size = map->stripe_len;
1981 	chunk_start = em->start;
1982 
1983 	/* For RAID5/6 adjust to a full IO stripe length */
1984 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1985 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1986 
1987 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1988 	if (!buf) {
1989 		ret = -ENOMEM;
1990 		goto out;
1991 	}
1992 
1993 	for (i = 0; i < map->num_stripes; i++) {
1994 		bool already_inserted = false;
1995 		u64 stripe_nr;
1996 		u64 offset;
1997 		int j;
1998 
1999 		if (!in_range(physical, map->stripes[i].physical,
2000 			      data_stripe_length))
2001 			continue;
2002 
2003 		stripe_nr = physical - map->stripes[i].physical;
2004 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
2005 
2006 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2007 				 BTRFS_BLOCK_GROUP_RAID10)) {
2008 			stripe_nr = stripe_nr * map->num_stripes + i;
2009 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
2010 		}
2011 		/*
2012 		 * The remaining case would be for RAID56, multiply by
2013 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2014 		 * instead of map->stripe_len
2015 		 */
2016 
2017 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2018 
2019 		/* Ensure we don't add duplicate addresses */
2020 		for (j = 0; j < nr; j++) {
2021 			if (buf[j] == bytenr) {
2022 				already_inserted = true;
2023 				break;
2024 			}
2025 		}
2026 
2027 		if (!already_inserted)
2028 			buf[nr++] = bytenr;
2029 	}
2030 
2031 	*logical = buf;
2032 	*naddrs = nr;
2033 	*stripe_len = io_stripe_size;
2034 out:
2035 	free_extent_map(em);
2036 	return ret;
2037 }
2038 
2039 static int exclude_super_stripes(struct btrfs_block_group *cache)
2040 {
2041 	struct btrfs_fs_info *fs_info = cache->fs_info;
2042 	const bool zoned = btrfs_is_zoned(fs_info);
2043 	u64 bytenr;
2044 	u64 *logical;
2045 	int stripe_len;
2046 	int i, nr, ret;
2047 
2048 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2049 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2050 		cache->bytes_super += stripe_len;
2051 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2052 						stripe_len);
2053 		if (ret)
2054 			return ret;
2055 	}
2056 
2057 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2058 		bytenr = btrfs_sb_offset(i);
2059 		ret = btrfs_rmap_block(fs_info, cache->start,
2060 				       bytenr, &logical, &nr, &stripe_len);
2061 		if (ret)
2062 			return ret;
2063 
2064 		/* Shouldn't have super stripes in sequential zones */
2065 		if (zoned && nr) {
2066 			btrfs_err(fs_info,
2067 			"zoned: block group %llu must not contain super block",
2068 				  cache->start);
2069 			return -EUCLEAN;
2070 		}
2071 
2072 		while (nr--) {
2073 			u64 len = min_t(u64, stripe_len,
2074 				cache->start + cache->length - logical[nr]);
2075 
2076 			cache->bytes_super += len;
2077 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2078 							len);
2079 			if (ret) {
2080 				kfree(logical);
2081 				return ret;
2082 			}
2083 		}
2084 
2085 		kfree(logical);
2086 	}
2087 	return 0;
2088 }
2089 
2090 static struct btrfs_block_group *btrfs_create_block_group_cache(
2091 		struct btrfs_fs_info *fs_info, u64 start)
2092 {
2093 	struct btrfs_block_group *cache;
2094 
2095 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2096 	if (!cache)
2097 		return NULL;
2098 
2099 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2100 					GFP_NOFS);
2101 	if (!cache->free_space_ctl) {
2102 		kfree(cache);
2103 		return NULL;
2104 	}
2105 
2106 	cache->start = start;
2107 
2108 	cache->fs_info = fs_info;
2109 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2110 
2111 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2112 
2113 	refcount_set(&cache->refs, 1);
2114 	spin_lock_init(&cache->lock);
2115 	init_rwsem(&cache->data_rwsem);
2116 	INIT_LIST_HEAD(&cache->list);
2117 	INIT_LIST_HEAD(&cache->cluster_list);
2118 	INIT_LIST_HEAD(&cache->bg_list);
2119 	INIT_LIST_HEAD(&cache->ro_list);
2120 	INIT_LIST_HEAD(&cache->discard_list);
2121 	INIT_LIST_HEAD(&cache->dirty_list);
2122 	INIT_LIST_HEAD(&cache->io_list);
2123 	INIT_LIST_HEAD(&cache->active_bg_list);
2124 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2125 	atomic_set(&cache->frozen, 0);
2126 	mutex_init(&cache->free_space_lock);
2127 	cache->full_stripe_locks_root.root = RB_ROOT;
2128 	mutex_init(&cache->full_stripe_locks_root.lock);
2129 
2130 	return cache;
2131 }
2132 
2133 /*
2134  * Iterate all chunks and verify that each of them has the corresponding block
2135  * group
2136  */
2137 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2138 {
2139 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2140 	struct extent_map *em;
2141 	struct btrfs_block_group *bg;
2142 	u64 start = 0;
2143 	int ret = 0;
2144 
2145 	while (1) {
2146 		read_lock(&map_tree->lock);
2147 		/*
2148 		 * lookup_extent_mapping will return the first extent map
2149 		 * intersecting the range, so setting @len to 1 is enough to
2150 		 * get the first chunk.
2151 		 */
2152 		em = lookup_extent_mapping(map_tree, start, 1);
2153 		read_unlock(&map_tree->lock);
2154 		if (!em)
2155 			break;
2156 
2157 		bg = btrfs_lookup_block_group(fs_info, em->start);
2158 		if (!bg) {
2159 			btrfs_err(fs_info,
2160 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2161 				     em->start, em->len);
2162 			ret = -EUCLEAN;
2163 			free_extent_map(em);
2164 			break;
2165 		}
2166 		if (bg->start != em->start || bg->length != em->len ||
2167 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2168 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2169 			btrfs_err(fs_info,
2170 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2171 				em->start, em->len,
2172 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2173 				bg->start, bg->length,
2174 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2175 			ret = -EUCLEAN;
2176 			free_extent_map(em);
2177 			btrfs_put_block_group(bg);
2178 			break;
2179 		}
2180 		start = em->start + em->len;
2181 		free_extent_map(em);
2182 		btrfs_put_block_group(bg);
2183 	}
2184 	return ret;
2185 }
2186 
2187 static int read_one_block_group(struct btrfs_fs_info *info,
2188 				struct btrfs_block_group_item *bgi,
2189 				const struct btrfs_key *key,
2190 				int need_clear)
2191 {
2192 	struct btrfs_block_group *cache;
2193 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2194 	int ret;
2195 
2196 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2197 
2198 	cache = btrfs_create_block_group_cache(info, key->objectid);
2199 	if (!cache)
2200 		return -ENOMEM;
2201 
2202 	cache->length = key->offset;
2203 	cache->used = btrfs_stack_block_group_used(bgi);
2204 	cache->commit_used = cache->used;
2205 	cache->flags = btrfs_stack_block_group_flags(bgi);
2206 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2207 
2208 	set_free_space_tree_thresholds(cache);
2209 
2210 	if (need_clear) {
2211 		/*
2212 		 * When we mount with old space cache, we need to
2213 		 * set BTRFS_DC_CLEAR and set dirty flag.
2214 		 *
2215 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2216 		 *    truncate the old free space cache inode and
2217 		 *    setup a new one.
2218 		 * b) Setting 'dirty flag' makes sure that we flush
2219 		 *    the new space cache info onto disk.
2220 		 */
2221 		if (btrfs_test_opt(info, SPACE_CACHE))
2222 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2223 	}
2224 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2225 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2226 			btrfs_err(info,
2227 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2228 				  cache->start);
2229 			ret = -EINVAL;
2230 			goto error;
2231 	}
2232 
2233 	ret = btrfs_load_block_group_zone_info(cache, false);
2234 	if (ret) {
2235 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2236 			  cache->start);
2237 		goto error;
2238 	}
2239 
2240 	/*
2241 	 * We need to exclude the super stripes now so that the space info has
2242 	 * super bytes accounted for, otherwise we'll think we have more space
2243 	 * than we actually do.
2244 	 */
2245 	ret = exclude_super_stripes(cache);
2246 	if (ret) {
2247 		/* We may have excluded something, so call this just in case. */
2248 		btrfs_free_excluded_extents(cache);
2249 		goto error;
2250 	}
2251 
2252 	/*
2253 	 * For zoned filesystem, space after the allocation offset is the only
2254 	 * free space for a block group. So, we don't need any caching work.
2255 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2256 	 * zone_unusable space.
2257 	 *
2258 	 * For regular filesystem, check for two cases, either we are full, and
2259 	 * therefore don't need to bother with the caching work since we won't
2260 	 * find any space, or we are empty, and we can just add all the space
2261 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2262 	 * in the full case.
2263 	 */
2264 	if (btrfs_is_zoned(info)) {
2265 		btrfs_calc_zone_unusable(cache);
2266 		/* Should not have any excluded extents. Just in case, though. */
2267 		btrfs_free_excluded_extents(cache);
2268 	} else if (cache->length == cache->used) {
2269 		cache->cached = BTRFS_CACHE_FINISHED;
2270 		btrfs_free_excluded_extents(cache);
2271 	} else if (cache->used == 0) {
2272 		cache->cached = BTRFS_CACHE_FINISHED;
2273 		add_new_free_space(cache, cache->start,
2274 				   cache->start + cache->length);
2275 		btrfs_free_excluded_extents(cache);
2276 	}
2277 
2278 	ret = btrfs_add_block_group_cache(info, cache);
2279 	if (ret) {
2280 		btrfs_remove_free_space_cache(cache);
2281 		goto error;
2282 	}
2283 	trace_btrfs_add_block_group(info, cache, 0);
2284 	btrfs_add_bg_to_space_info(info, cache);
2285 
2286 	set_avail_alloc_bits(info, cache->flags);
2287 	if (btrfs_chunk_writeable(info, cache->start)) {
2288 		if (cache->used == 0) {
2289 			ASSERT(list_empty(&cache->bg_list));
2290 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2291 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2292 			else
2293 				btrfs_mark_bg_unused(cache);
2294 		}
2295 	} else {
2296 		inc_block_group_ro(cache, 1);
2297 	}
2298 
2299 	return 0;
2300 error:
2301 	btrfs_put_block_group(cache);
2302 	return ret;
2303 }
2304 
2305 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2306 {
2307 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2308 	struct rb_node *node;
2309 	int ret = 0;
2310 
2311 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2312 		struct extent_map *em;
2313 		struct map_lookup *map;
2314 		struct btrfs_block_group *bg;
2315 
2316 		em = rb_entry(node, struct extent_map, rb_node);
2317 		map = em->map_lookup;
2318 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2319 		if (!bg) {
2320 			ret = -ENOMEM;
2321 			break;
2322 		}
2323 
2324 		/* Fill dummy cache as FULL */
2325 		bg->length = em->len;
2326 		bg->flags = map->type;
2327 		bg->cached = BTRFS_CACHE_FINISHED;
2328 		bg->used = em->len;
2329 		bg->flags = map->type;
2330 		ret = btrfs_add_block_group_cache(fs_info, bg);
2331 		/*
2332 		 * We may have some valid block group cache added already, in
2333 		 * that case we skip to the next one.
2334 		 */
2335 		if (ret == -EEXIST) {
2336 			ret = 0;
2337 			btrfs_put_block_group(bg);
2338 			continue;
2339 		}
2340 
2341 		if (ret) {
2342 			btrfs_remove_free_space_cache(bg);
2343 			btrfs_put_block_group(bg);
2344 			break;
2345 		}
2346 
2347 		btrfs_add_bg_to_space_info(fs_info, bg);
2348 
2349 		set_avail_alloc_bits(fs_info, bg->flags);
2350 	}
2351 	if (!ret)
2352 		btrfs_init_global_block_rsv(fs_info);
2353 	return ret;
2354 }
2355 
2356 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2357 {
2358 	struct btrfs_root *root = btrfs_block_group_root(info);
2359 	struct btrfs_path *path;
2360 	int ret;
2361 	struct btrfs_block_group *cache;
2362 	struct btrfs_space_info *space_info;
2363 	struct btrfs_key key;
2364 	int need_clear = 0;
2365 	u64 cache_gen;
2366 
2367 	/*
2368 	 * Either no extent root (with ibadroots rescue option) or we have
2369 	 * unsupported RO options. The fs can never be mounted read-write, so no
2370 	 * need to waste time searching block group items.
2371 	 *
2372 	 * This also allows new extent tree related changes to be RO compat,
2373 	 * no need for a full incompat flag.
2374 	 */
2375 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2376 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2377 		return fill_dummy_bgs(info);
2378 
2379 	key.objectid = 0;
2380 	key.offset = 0;
2381 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2382 	path = btrfs_alloc_path();
2383 	if (!path)
2384 		return -ENOMEM;
2385 
2386 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2387 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2388 	    btrfs_super_generation(info->super_copy) != cache_gen)
2389 		need_clear = 1;
2390 	if (btrfs_test_opt(info, CLEAR_CACHE))
2391 		need_clear = 1;
2392 
2393 	while (1) {
2394 		struct btrfs_block_group_item bgi;
2395 		struct extent_buffer *leaf;
2396 		int slot;
2397 
2398 		ret = find_first_block_group(info, path, &key);
2399 		if (ret > 0)
2400 			break;
2401 		if (ret != 0)
2402 			goto error;
2403 
2404 		leaf = path->nodes[0];
2405 		slot = path->slots[0];
2406 
2407 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2408 				   sizeof(bgi));
2409 
2410 		btrfs_item_key_to_cpu(leaf, &key, slot);
2411 		btrfs_release_path(path);
2412 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2413 		if (ret < 0)
2414 			goto error;
2415 		key.objectid += key.offset;
2416 		key.offset = 0;
2417 	}
2418 	btrfs_release_path(path);
2419 
2420 	list_for_each_entry(space_info, &info->space_info, list) {
2421 		int i;
2422 
2423 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2424 			if (list_empty(&space_info->block_groups[i]))
2425 				continue;
2426 			cache = list_first_entry(&space_info->block_groups[i],
2427 						 struct btrfs_block_group,
2428 						 list);
2429 			btrfs_sysfs_add_block_group_type(cache);
2430 		}
2431 
2432 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2433 		      (BTRFS_BLOCK_GROUP_RAID10 |
2434 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2435 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2436 		       BTRFS_BLOCK_GROUP_DUP)))
2437 			continue;
2438 		/*
2439 		 * Avoid allocating from un-mirrored block group if there are
2440 		 * mirrored block groups.
2441 		 */
2442 		list_for_each_entry(cache,
2443 				&space_info->block_groups[BTRFS_RAID_RAID0],
2444 				list)
2445 			inc_block_group_ro(cache, 1);
2446 		list_for_each_entry(cache,
2447 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2448 				list)
2449 			inc_block_group_ro(cache, 1);
2450 	}
2451 
2452 	btrfs_init_global_block_rsv(info);
2453 	ret = check_chunk_block_group_mappings(info);
2454 error:
2455 	btrfs_free_path(path);
2456 	/*
2457 	 * We've hit some error while reading the extent tree, and have
2458 	 * rescue=ibadroots mount option.
2459 	 * Try to fill the tree using dummy block groups so that the user can
2460 	 * continue to mount and grab their data.
2461 	 */
2462 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2463 		ret = fill_dummy_bgs(info);
2464 	return ret;
2465 }
2466 
2467 /*
2468  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2469  * allocation.
2470  *
2471  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2472  * phases.
2473  */
2474 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2475 				   struct btrfs_block_group *block_group)
2476 {
2477 	struct btrfs_fs_info *fs_info = trans->fs_info;
2478 	struct btrfs_block_group_item bgi;
2479 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2480 	struct btrfs_key key;
2481 	u64 old_commit_used;
2482 	int ret;
2483 
2484 	spin_lock(&block_group->lock);
2485 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2486 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2487 						   block_group->global_root_id);
2488 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2489 	old_commit_used = block_group->commit_used;
2490 	block_group->commit_used = block_group->used;
2491 	key.objectid = block_group->start;
2492 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2493 	key.offset = block_group->length;
2494 	spin_unlock(&block_group->lock);
2495 
2496 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2497 	if (ret < 0) {
2498 		spin_lock(&block_group->lock);
2499 		block_group->commit_used = old_commit_used;
2500 		spin_unlock(&block_group->lock);
2501 	}
2502 
2503 	return ret;
2504 }
2505 
2506 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2507 			    struct btrfs_device *device, u64 chunk_offset,
2508 			    u64 start, u64 num_bytes)
2509 {
2510 	struct btrfs_fs_info *fs_info = device->fs_info;
2511 	struct btrfs_root *root = fs_info->dev_root;
2512 	struct btrfs_path *path;
2513 	struct btrfs_dev_extent *extent;
2514 	struct extent_buffer *leaf;
2515 	struct btrfs_key key;
2516 	int ret;
2517 
2518 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2519 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	key.objectid = device->devid;
2525 	key.type = BTRFS_DEV_EXTENT_KEY;
2526 	key.offset = start;
2527 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2528 	if (ret)
2529 		goto out;
2530 
2531 	leaf = path->nodes[0];
2532 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2533 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2534 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2535 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2536 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2537 
2538 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2539 	btrfs_mark_buffer_dirty(leaf);
2540 out:
2541 	btrfs_free_path(path);
2542 	return ret;
2543 }
2544 
2545 /*
2546  * This function belongs to phase 2.
2547  *
2548  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2549  * phases.
2550  */
2551 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2552 				   u64 chunk_offset, u64 chunk_size)
2553 {
2554 	struct btrfs_fs_info *fs_info = trans->fs_info;
2555 	struct btrfs_device *device;
2556 	struct extent_map *em;
2557 	struct map_lookup *map;
2558 	u64 dev_offset;
2559 	u64 stripe_size;
2560 	int i;
2561 	int ret = 0;
2562 
2563 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2564 	if (IS_ERR(em))
2565 		return PTR_ERR(em);
2566 
2567 	map = em->map_lookup;
2568 	stripe_size = em->orig_block_len;
2569 
2570 	/*
2571 	 * Take the device list mutex to prevent races with the final phase of
2572 	 * a device replace operation that replaces the device object associated
2573 	 * with the map's stripes, because the device object's id can change
2574 	 * at any time during that final phase of the device replace operation
2575 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2576 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2577 	 * resulting in persisting a device extent item with such ID.
2578 	 */
2579 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580 	for (i = 0; i < map->num_stripes; i++) {
2581 		device = map->stripes[i].dev;
2582 		dev_offset = map->stripes[i].physical;
2583 
2584 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2585 				       stripe_size);
2586 		if (ret)
2587 			break;
2588 	}
2589 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2590 
2591 	free_extent_map(em);
2592 	return ret;
2593 }
2594 
2595 /*
2596  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2597  * chunk allocation.
2598  *
2599  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2600  * phases.
2601  */
2602 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2603 {
2604 	struct btrfs_fs_info *fs_info = trans->fs_info;
2605 	struct btrfs_block_group *block_group;
2606 	int ret = 0;
2607 
2608 	while (!list_empty(&trans->new_bgs)) {
2609 		int index;
2610 
2611 		block_group = list_first_entry(&trans->new_bgs,
2612 					       struct btrfs_block_group,
2613 					       bg_list);
2614 		if (ret)
2615 			goto next;
2616 
2617 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2618 
2619 		ret = insert_block_group_item(trans, block_group);
2620 		if (ret)
2621 			btrfs_abort_transaction(trans, ret);
2622 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2623 			      &block_group->runtime_flags)) {
2624 			mutex_lock(&fs_info->chunk_mutex);
2625 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2626 			mutex_unlock(&fs_info->chunk_mutex);
2627 			if (ret)
2628 				btrfs_abort_transaction(trans, ret);
2629 		}
2630 		ret = insert_dev_extents(trans, block_group->start,
2631 					 block_group->length);
2632 		if (ret)
2633 			btrfs_abort_transaction(trans, ret);
2634 		add_block_group_free_space(trans, block_group);
2635 
2636 		/*
2637 		 * If we restriped during balance, we may have added a new raid
2638 		 * type, so now add the sysfs entries when it is safe to do so.
2639 		 * We don't have to worry about locking here as it's handled in
2640 		 * btrfs_sysfs_add_block_group_type.
2641 		 */
2642 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2643 			btrfs_sysfs_add_block_group_type(block_group);
2644 
2645 		/* Already aborted the transaction if it failed. */
2646 next:
2647 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2648 		list_del_init(&block_group->bg_list);
2649 	}
2650 	btrfs_trans_release_chunk_metadata(trans);
2651 }
2652 
2653 /*
2654  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2655  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2656  */
2657 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2658 {
2659 	u64 div = SZ_1G;
2660 	u64 index;
2661 
2662 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2663 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2664 
2665 	/* If we have a smaller fs index based on 128MiB. */
2666 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2667 		div = SZ_128M;
2668 
2669 	offset = div64_u64(offset, div);
2670 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2671 	return index;
2672 }
2673 
2674 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2675 						 u64 bytes_used, u64 type,
2676 						 u64 chunk_offset, u64 size)
2677 {
2678 	struct btrfs_fs_info *fs_info = trans->fs_info;
2679 	struct btrfs_block_group *cache;
2680 	int ret;
2681 
2682 	btrfs_set_log_full_commit(trans);
2683 
2684 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2685 	if (!cache)
2686 		return ERR_PTR(-ENOMEM);
2687 
2688 	cache->length = size;
2689 	set_free_space_tree_thresholds(cache);
2690 	cache->used = bytes_used;
2691 	cache->flags = type;
2692 	cache->cached = BTRFS_CACHE_FINISHED;
2693 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2694 
2695 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2696 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2697 
2698 	ret = btrfs_load_block_group_zone_info(cache, true);
2699 	if (ret) {
2700 		btrfs_put_block_group(cache);
2701 		return ERR_PTR(ret);
2702 	}
2703 
2704 	ret = exclude_super_stripes(cache);
2705 	if (ret) {
2706 		/* We may have excluded something, so call this just in case */
2707 		btrfs_free_excluded_extents(cache);
2708 		btrfs_put_block_group(cache);
2709 		return ERR_PTR(ret);
2710 	}
2711 
2712 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2713 
2714 	btrfs_free_excluded_extents(cache);
2715 
2716 	/*
2717 	 * Ensure the corresponding space_info object is created and
2718 	 * assigned to our block group. We want our bg to be added to the rbtree
2719 	 * with its ->space_info set.
2720 	 */
2721 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2722 	ASSERT(cache->space_info);
2723 
2724 	ret = btrfs_add_block_group_cache(fs_info, cache);
2725 	if (ret) {
2726 		btrfs_remove_free_space_cache(cache);
2727 		btrfs_put_block_group(cache);
2728 		return ERR_PTR(ret);
2729 	}
2730 
2731 	/*
2732 	 * Now that our block group has its ->space_info set and is inserted in
2733 	 * the rbtree, update the space info's counters.
2734 	 */
2735 	trace_btrfs_add_block_group(fs_info, cache, 1);
2736 	btrfs_add_bg_to_space_info(fs_info, cache);
2737 	btrfs_update_global_block_rsv(fs_info);
2738 
2739 #ifdef CONFIG_BTRFS_DEBUG
2740 	if (btrfs_should_fragment_free_space(cache)) {
2741 		u64 new_bytes_used = size - bytes_used;
2742 
2743 		cache->space_info->bytes_used += new_bytes_used >> 1;
2744 		fragment_free_space(cache);
2745 	}
2746 #endif
2747 
2748 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2749 	trans->delayed_ref_updates++;
2750 	btrfs_update_delayed_refs_rsv(trans);
2751 
2752 	set_avail_alloc_bits(fs_info, type);
2753 	return cache;
2754 }
2755 
2756 /*
2757  * Mark one block group RO, can be called several times for the same block
2758  * group.
2759  *
2760  * @cache:		the destination block group
2761  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2762  * 			ensure we still have some free space after marking this
2763  * 			block group RO.
2764  */
2765 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2766 			     bool do_chunk_alloc)
2767 {
2768 	struct btrfs_fs_info *fs_info = cache->fs_info;
2769 	struct btrfs_trans_handle *trans;
2770 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2771 	u64 alloc_flags;
2772 	int ret;
2773 	bool dirty_bg_running;
2774 
2775 	/*
2776 	 * This can only happen when we are doing read-only scrub on read-only
2777 	 * mount.
2778 	 * In that case we should not start a new transaction on read-only fs.
2779 	 * Thus here we skip all chunk allocations.
2780 	 */
2781 	if (sb_rdonly(fs_info->sb)) {
2782 		mutex_lock(&fs_info->ro_block_group_mutex);
2783 		ret = inc_block_group_ro(cache, 0);
2784 		mutex_unlock(&fs_info->ro_block_group_mutex);
2785 		return ret;
2786 	}
2787 
2788 	do {
2789 		trans = btrfs_join_transaction(root);
2790 		if (IS_ERR(trans))
2791 			return PTR_ERR(trans);
2792 
2793 		dirty_bg_running = false;
2794 
2795 		/*
2796 		 * We're not allowed to set block groups readonly after the dirty
2797 		 * block group cache has started writing.  If it already started,
2798 		 * back off and let this transaction commit.
2799 		 */
2800 		mutex_lock(&fs_info->ro_block_group_mutex);
2801 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2802 			u64 transid = trans->transid;
2803 
2804 			mutex_unlock(&fs_info->ro_block_group_mutex);
2805 			btrfs_end_transaction(trans);
2806 
2807 			ret = btrfs_wait_for_commit(fs_info, transid);
2808 			if (ret)
2809 				return ret;
2810 			dirty_bg_running = true;
2811 		}
2812 	} while (dirty_bg_running);
2813 
2814 	if (do_chunk_alloc) {
2815 		/*
2816 		 * If we are changing raid levels, try to allocate a
2817 		 * corresponding block group with the new raid level.
2818 		 */
2819 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2820 		if (alloc_flags != cache->flags) {
2821 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2822 						CHUNK_ALLOC_FORCE);
2823 			/*
2824 			 * ENOSPC is allowed here, we may have enough space
2825 			 * already allocated at the new raid level to carry on
2826 			 */
2827 			if (ret == -ENOSPC)
2828 				ret = 0;
2829 			if (ret < 0)
2830 				goto out;
2831 		}
2832 	}
2833 
2834 	ret = inc_block_group_ro(cache, 0);
2835 	if (!do_chunk_alloc || ret == -ETXTBSY)
2836 		goto unlock_out;
2837 	if (!ret)
2838 		goto out;
2839 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2840 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2841 	if (ret < 0)
2842 		goto out;
2843 	/*
2844 	 * We have allocated a new chunk. We also need to activate that chunk to
2845 	 * grant metadata tickets for zoned filesystem.
2846 	 */
2847 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2848 	if (ret < 0)
2849 		goto out;
2850 
2851 	ret = inc_block_group_ro(cache, 0);
2852 	if (ret == -ETXTBSY)
2853 		goto unlock_out;
2854 out:
2855 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2856 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2857 		mutex_lock(&fs_info->chunk_mutex);
2858 		check_system_chunk(trans, alloc_flags);
2859 		mutex_unlock(&fs_info->chunk_mutex);
2860 	}
2861 unlock_out:
2862 	mutex_unlock(&fs_info->ro_block_group_mutex);
2863 
2864 	btrfs_end_transaction(trans);
2865 	return ret;
2866 }
2867 
2868 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2869 {
2870 	struct btrfs_space_info *sinfo = cache->space_info;
2871 	u64 num_bytes;
2872 
2873 	BUG_ON(!cache->ro);
2874 
2875 	spin_lock(&sinfo->lock);
2876 	spin_lock(&cache->lock);
2877 	if (!--cache->ro) {
2878 		if (btrfs_is_zoned(cache->fs_info)) {
2879 			/* Migrate zone_unusable bytes back */
2880 			cache->zone_unusable =
2881 				(cache->alloc_offset - cache->used) +
2882 				(cache->length - cache->zone_capacity);
2883 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2884 			sinfo->bytes_readonly -= cache->zone_unusable;
2885 		}
2886 		num_bytes = cache->length - cache->reserved -
2887 			    cache->pinned - cache->bytes_super -
2888 			    cache->zone_unusable - cache->used;
2889 		sinfo->bytes_readonly -= num_bytes;
2890 		list_del_init(&cache->ro_list);
2891 	}
2892 	spin_unlock(&cache->lock);
2893 	spin_unlock(&sinfo->lock);
2894 }
2895 
2896 static int update_block_group_item(struct btrfs_trans_handle *trans,
2897 				   struct btrfs_path *path,
2898 				   struct btrfs_block_group *cache)
2899 {
2900 	struct btrfs_fs_info *fs_info = trans->fs_info;
2901 	int ret;
2902 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2903 	unsigned long bi;
2904 	struct extent_buffer *leaf;
2905 	struct btrfs_block_group_item bgi;
2906 	struct btrfs_key key;
2907 	u64 old_commit_used;
2908 	u64 used;
2909 
2910 	/*
2911 	 * Block group items update can be triggered out of commit transaction
2912 	 * critical section, thus we need a consistent view of used bytes.
2913 	 * We cannot use cache->used directly outside of the spin lock, as it
2914 	 * may be changed.
2915 	 */
2916 	spin_lock(&cache->lock);
2917 	old_commit_used = cache->commit_used;
2918 	used = cache->used;
2919 	/* No change in used bytes, can safely skip it. */
2920 	if (cache->commit_used == used) {
2921 		spin_unlock(&cache->lock);
2922 		return 0;
2923 	}
2924 	cache->commit_used = used;
2925 	spin_unlock(&cache->lock);
2926 
2927 	key.objectid = cache->start;
2928 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2929 	key.offset = cache->length;
2930 
2931 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2932 	if (ret) {
2933 		if (ret > 0)
2934 			ret = -ENOENT;
2935 		goto fail;
2936 	}
2937 
2938 	leaf = path->nodes[0];
2939 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2940 	btrfs_set_stack_block_group_used(&bgi, used);
2941 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2942 						   cache->global_root_id);
2943 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2944 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2945 	btrfs_mark_buffer_dirty(leaf);
2946 fail:
2947 	btrfs_release_path(path);
2948 	/* We didn't update the block group item, need to revert @commit_used. */
2949 	if (ret < 0) {
2950 		spin_lock(&cache->lock);
2951 		cache->commit_used = old_commit_used;
2952 		spin_unlock(&cache->lock);
2953 	}
2954 	return ret;
2955 
2956 }
2957 
2958 static int cache_save_setup(struct btrfs_block_group *block_group,
2959 			    struct btrfs_trans_handle *trans,
2960 			    struct btrfs_path *path)
2961 {
2962 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2963 	struct btrfs_root *root = fs_info->tree_root;
2964 	struct inode *inode = NULL;
2965 	struct extent_changeset *data_reserved = NULL;
2966 	u64 alloc_hint = 0;
2967 	int dcs = BTRFS_DC_ERROR;
2968 	u64 cache_size = 0;
2969 	int retries = 0;
2970 	int ret = 0;
2971 
2972 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2973 		return 0;
2974 
2975 	/*
2976 	 * If this block group is smaller than 100 megs don't bother caching the
2977 	 * block group.
2978 	 */
2979 	if (block_group->length < (100 * SZ_1M)) {
2980 		spin_lock(&block_group->lock);
2981 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2982 		spin_unlock(&block_group->lock);
2983 		return 0;
2984 	}
2985 
2986 	if (TRANS_ABORTED(trans))
2987 		return 0;
2988 again:
2989 	inode = lookup_free_space_inode(block_group, path);
2990 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2991 		ret = PTR_ERR(inode);
2992 		btrfs_release_path(path);
2993 		goto out;
2994 	}
2995 
2996 	if (IS_ERR(inode)) {
2997 		BUG_ON(retries);
2998 		retries++;
2999 
3000 		if (block_group->ro)
3001 			goto out_free;
3002 
3003 		ret = create_free_space_inode(trans, block_group, path);
3004 		if (ret)
3005 			goto out_free;
3006 		goto again;
3007 	}
3008 
3009 	/*
3010 	 * We want to set the generation to 0, that way if anything goes wrong
3011 	 * from here on out we know not to trust this cache when we load up next
3012 	 * time.
3013 	 */
3014 	BTRFS_I(inode)->generation = 0;
3015 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3016 	if (ret) {
3017 		/*
3018 		 * So theoretically we could recover from this, simply set the
3019 		 * super cache generation to 0 so we know to invalidate the
3020 		 * cache, but then we'd have to keep track of the block groups
3021 		 * that fail this way so we know we _have_ to reset this cache
3022 		 * before the next commit or risk reading stale cache.  So to
3023 		 * limit our exposure to horrible edge cases lets just abort the
3024 		 * transaction, this only happens in really bad situations
3025 		 * anyway.
3026 		 */
3027 		btrfs_abort_transaction(trans, ret);
3028 		goto out_put;
3029 	}
3030 	WARN_ON(ret);
3031 
3032 	/* We've already setup this transaction, go ahead and exit */
3033 	if (block_group->cache_generation == trans->transid &&
3034 	    i_size_read(inode)) {
3035 		dcs = BTRFS_DC_SETUP;
3036 		goto out_put;
3037 	}
3038 
3039 	if (i_size_read(inode) > 0) {
3040 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3041 					&fs_info->global_block_rsv);
3042 		if (ret)
3043 			goto out_put;
3044 
3045 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3046 		if (ret)
3047 			goto out_put;
3048 	}
3049 
3050 	spin_lock(&block_group->lock);
3051 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3052 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3053 		/*
3054 		 * don't bother trying to write stuff out _if_
3055 		 * a) we're not cached,
3056 		 * b) we're with nospace_cache mount option,
3057 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3058 		 */
3059 		dcs = BTRFS_DC_WRITTEN;
3060 		spin_unlock(&block_group->lock);
3061 		goto out_put;
3062 	}
3063 	spin_unlock(&block_group->lock);
3064 
3065 	/*
3066 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3067 	 * skip doing the setup, we've already cleared the cache so we're safe.
3068 	 */
3069 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3070 		ret = -ENOSPC;
3071 		goto out_put;
3072 	}
3073 
3074 	/*
3075 	 * Try to preallocate enough space based on how big the block group is.
3076 	 * Keep in mind this has to include any pinned space which could end up
3077 	 * taking up quite a bit since it's not folded into the other space
3078 	 * cache.
3079 	 */
3080 	cache_size = div_u64(block_group->length, SZ_256M);
3081 	if (!cache_size)
3082 		cache_size = 1;
3083 
3084 	cache_size *= 16;
3085 	cache_size *= fs_info->sectorsize;
3086 
3087 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3088 					  cache_size, false);
3089 	if (ret)
3090 		goto out_put;
3091 
3092 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3093 					      cache_size, cache_size,
3094 					      &alloc_hint);
3095 	/*
3096 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3097 	 * of metadata or split extents when writing the cache out, which means
3098 	 * we can enospc if we are heavily fragmented in addition to just normal
3099 	 * out of space conditions.  So if we hit this just skip setting up any
3100 	 * other block groups for this transaction, maybe we'll unpin enough
3101 	 * space the next time around.
3102 	 */
3103 	if (!ret)
3104 		dcs = BTRFS_DC_SETUP;
3105 	else if (ret == -ENOSPC)
3106 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3107 
3108 out_put:
3109 	iput(inode);
3110 out_free:
3111 	btrfs_release_path(path);
3112 out:
3113 	spin_lock(&block_group->lock);
3114 	if (!ret && dcs == BTRFS_DC_SETUP)
3115 		block_group->cache_generation = trans->transid;
3116 	block_group->disk_cache_state = dcs;
3117 	spin_unlock(&block_group->lock);
3118 
3119 	extent_changeset_free(data_reserved);
3120 	return ret;
3121 }
3122 
3123 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3124 {
3125 	struct btrfs_fs_info *fs_info = trans->fs_info;
3126 	struct btrfs_block_group *cache, *tmp;
3127 	struct btrfs_transaction *cur_trans = trans->transaction;
3128 	struct btrfs_path *path;
3129 
3130 	if (list_empty(&cur_trans->dirty_bgs) ||
3131 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3132 		return 0;
3133 
3134 	path = btrfs_alloc_path();
3135 	if (!path)
3136 		return -ENOMEM;
3137 
3138 	/* Could add new block groups, use _safe just in case */
3139 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3140 				 dirty_list) {
3141 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3142 			cache_save_setup(cache, trans, path);
3143 	}
3144 
3145 	btrfs_free_path(path);
3146 	return 0;
3147 }
3148 
3149 /*
3150  * Transaction commit does final block group cache writeback during a critical
3151  * section where nothing is allowed to change the FS.  This is required in
3152  * order for the cache to actually match the block group, but can introduce a
3153  * lot of latency into the commit.
3154  *
3155  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3156  * There's a chance we'll have to redo some of it if the block group changes
3157  * again during the commit, but it greatly reduces the commit latency by
3158  * getting rid of the easy block groups while we're still allowing others to
3159  * join the commit.
3160  */
3161 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3162 {
3163 	struct btrfs_fs_info *fs_info = trans->fs_info;
3164 	struct btrfs_block_group *cache;
3165 	struct btrfs_transaction *cur_trans = trans->transaction;
3166 	int ret = 0;
3167 	int should_put;
3168 	struct btrfs_path *path = NULL;
3169 	LIST_HEAD(dirty);
3170 	struct list_head *io = &cur_trans->io_bgs;
3171 	int loops = 0;
3172 
3173 	spin_lock(&cur_trans->dirty_bgs_lock);
3174 	if (list_empty(&cur_trans->dirty_bgs)) {
3175 		spin_unlock(&cur_trans->dirty_bgs_lock);
3176 		return 0;
3177 	}
3178 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3179 	spin_unlock(&cur_trans->dirty_bgs_lock);
3180 
3181 again:
3182 	/* Make sure all the block groups on our dirty list actually exist */
3183 	btrfs_create_pending_block_groups(trans);
3184 
3185 	if (!path) {
3186 		path = btrfs_alloc_path();
3187 		if (!path) {
3188 			ret = -ENOMEM;
3189 			goto out;
3190 		}
3191 	}
3192 
3193 	/*
3194 	 * cache_write_mutex is here only to save us from balance or automatic
3195 	 * removal of empty block groups deleting this block group while we are
3196 	 * writing out the cache
3197 	 */
3198 	mutex_lock(&trans->transaction->cache_write_mutex);
3199 	while (!list_empty(&dirty)) {
3200 		bool drop_reserve = true;
3201 
3202 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3203 					 dirty_list);
3204 		/*
3205 		 * This can happen if something re-dirties a block group that
3206 		 * is already under IO.  Just wait for it to finish and then do
3207 		 * it all again
3208 		 */
3209 		if (!list_empty(&cache->io_list)) {
3210 			list_del_init(&cache->io_list);
3211 			btrfs_wait_cache_io(trans, cache, path);
3212 			btrfs_put_block_group(cache);
3213 		}
3214 
3215 
3216 		/*
3217 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3218 		 * it should update the cache_state.  Don't delete until after
3219 		 * we wait.
3220 		 *
3221 		 * Since we're not running in the commit critical section
3222 		 * we need the dirty_bgs_lock to protect from update_block_group
3223 		 */
3224 		spin_lock(&cur_trans->dirty_bgs_lock);
3225 		list_del_init(&cache->dirty_list);
3226 		spin_unlock(&cur_trans->dirty_bgs_lock);
3227 
3228 		should_put = 1;
3229 
3230 		cache_save_setup(cache, trans, path);
3231 
3232 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3233 			cache->io_ctl.inode = NULL;
3234 			ret = btrfs_write_out_cache(trans, cache, path);
3235 			if (ret == 0 && cache->io_ctl.inode) {
3236 				should_put = 0;
3237 
3238 				/*
3239 				 * The cache_write_mutex is protecting the
3240 				 * io_list, also refer to the definition of
3241 				 * btrfs_transaction::io_bgs for more details
3242 				 */
3243 				list_add_tail(&cache->io_list, io);
3244 			} else {
3245 				/*
3246 				 * If we failed to write the cache, the
3247 				 * generation will be bad and life goes on
3248 				 */
3249 				ret = 0;
3250 			}
3251 		}
3252 		if (!ret) {
3253 			ret = update_block_group_item(trans, path, cache);
3254 			/*
3255 			 * Our block group might still be attached to the list
3256 			 * of new block groups in the transaction handle of some
3257 			 * other task (struct btrfs_trans_handle->new_bgs). This
3258 			 * means its block group item isn't yet in the extent
3259 			 * tree. If this happens ignore the error, as we will
3260 			 * try again later in the critical section of the
3261 			 * transaction commit.
3262 			 */
3263 			if (ret == -ENOENT) {
3264 				ret = 0;
3265 				spin_lock(&cur_trans->dirty_bgs_lock);
3266 				if (list_empty(&cache->dirty_list)) {
3267 					list_add_tail(&cache->dirty_list,
3268 						      &cur_trans->dirty_bgs);
3269 					btrfs_get_block_group(cache);
3270 					drop_reserve = false;
3271 				}
3272 				spin_unlock(&cur_trans->dirty_bgs_lock);
3273 			} else if (ret) {
3274 				btrfs_abort_transaction(trans, ret);
3275 			}
3276 		}
3277 
3278 		/* If it's not on the io list, we need to put the block group */
3279 		if (should_put)
3280 			btrfs_put_block_group(cache);
3281 		if (drop_reserve)
3282 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3283 		/*
3284 		 * Avoid blocking other tasks for too long. It might even save
3285 		 * us from writing caches for block groups that are going to be
3286 		 * removed.
3287 		 */
3288 		mutex_unlock(&trans->transaction->cache_write_mutex);
3289 		if (ret)
3290 			goto out;
3291 		mutex_lock(&trans->transaction->cache_write_mutex);
3292 	}
3293 	mutex_unlock(&trans->transaction->cache_write_mutex);
3294 
3295 	/*
3296 	 * Go through delayed refs for all the stuff we've just kicked off
3297 	 * and then loop back (just once)
3298 	 */
3299 	if (!ret)
3300 		ret = btrfs_run_delayed_refs(trans, 0);
3301 	if (!ret && loops == 0) {
3302 		loops++;
3303 		spin_lock(&cur_trans->dirty_bgs_lock);
3304 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3305 		/*
3306 		 * dirty_bgs_lock protects us from concurrent block group
3307 		 * deletes too (not just cache_write_mutex).
3308 		 */
3309 		if (!list_empty(&dirty)) {
3310 			spin_unlock(&cur_trans->dirty_bgs_lock);
3311 			goto again;
3312 		}
3313 		spin_unlock(&cur_trans->dirty_bgs_lock);
3314 	}
3315 out:
3316 	if (ret < 0) {
3317 		spin_lock(&cur_trans->dirty_bgs_lock);
3318 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3319 		spin_unlock(&cur_trans->dirty_bgs_lock);
3320 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3321 	}
3322 
3323 	btrfs_free_path(path);
3324 	return ret;
3325 }
3326 
3327 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3328 {
3329 	struct btrfs_fs_info *fs_info = trans->fs_info;
3330 	struct btrfs_block_group *cache;
3331 	struct btrfs_transaction *cur_trans = trans->transaction;
3332 	int ret = 0;
3333 	int should_put;
3334 	struct btrfs_path *path;
3335 	struct list_head *io = &cur_trans->io_bgs;
3336 
3337 	path = btrfs_alloc_path();
3338 	if (!path)
3339 		return -ENOMEM;
3340 
3341 	/*
3342 	 * Even though we are in the critical section of the transaction commit,
3343 	 * we can still have concurrent tasks adding elements to this
3344 	 * transaction's list of dirty block groups. These tasks correspond to
3345 	 * endio free space workers started when writeback finishes for a
3346 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3347 	 * allocate new block groups as a result of COWing nodes of the root
3348 	 * tree when updating the free space inode. The writeback for the space
3349 	 * caches is triggered by an earlier call to
3350 	 * btrfs_start_dirty_block_groups() and iterations of the following
3351 	 * loop.
3352 	 * Also we want to do the cache_save_setup first and then run the
3353 	 * delayed refs to make sure we have the best chance at doing this all
3354 	 * in one shot.
3355 	 */
3356 	spin_lock(&cur_trans->dirty_bgs_lock);
3357 	while (!list_empty(&cur_trans->dirty_bgs)) {
3358 		cache = list_first_entry(&cur_trans->dirty_bgs,
3359 					 struct btrfs_block_group,
3360 					 dirty_list);
3361 
3362 		/*
3363 		 * This can happen if cache_save_setup re-dirties a block group
3364 		 * that is already under IO.  Just wait for it to finish and
3365 		 * then do it all again
3366 		 */
3367 		if (!list_empty(&cache->io_list)) {
3368 			spin_unlock(&cur_trans->dirty_bgs_lock);
3369 			list_del_init(&cache->io_list);
3370 			btrfs_wait_cache_io(trans, cache, path);
3371 			btrfs_put_block_group(cache);
3372 			spin_lock(&cur_trans->dirty_bgs_lock);
3373 		}
3374 
3375 		/*
3376 		 * Don't remove from the dirty list until after we've waited on
3377 		 * any pending IO
3378 		 */
3379 		list_del_init(&cache->dirty_list);
3380 		spin_unlock(&cur_trans->dirty_bgs_lock);
3381 		should_put = 1;
3382 
3383 		cache_save_setup(cache, trans, path);
3384 
3385 		if (!ret)
3386 			ret = btrfs_run_delayed_refs(trans,
3387 						     (unsigned long) -1);
3388 
3389 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3390 			cache->io_ctl.inode = NULL;
3391 			ret = btrfs_write_out_cache(trans, cache, path);
3392 			if (ret == 0 && cache->io_ctl.inode) {
3393 				should_put = 0;
3394 				list_add_tail(&cache->io_list, io);
3395 			} else {
3396 				/*
3397 				 * If we failed to write the cache, the
3398 				 * generation will be bad and life goes on
3399 				 */
3400 				ret = 0;
3401 			}
3402 		}
3403 		if (!ret) {
3404 			ret = update_block_group_item(trans, path, cache);
3405 			/*
3406 			 * One of the free space endio workers might have
3407 			 * created a new block group while updating a free space
3408 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3409 			 * and hasn't released its transaction handle yet, in
3410 			 * which case the new block group is still attached to
3411 			 * its transaction handle and its creation has not
3412 			 * finished yet (no block group item in the extent tree
3413 			 * yet, etc). If this is the case, wait for all free
3414 			 * space endio workers to finish and retry. This is a
3415 			 * very rare case so no need for a more efficient and
3416 			 * complex approach.
3417 			 */
3418 			if (ret == -ENOENT) {
3419 				wait_event(cur_trans->writer_wait,
3420 				   atomic_read(&cur_trans->num_writers) == 1);
3421 				ret = update_block_group_item(trans, path, cache);
3422 			}
3423 			if (ret)
3424 				btrfs_abort_transaction(trans, ret);
3425 		}
3426 
3427 		/* If its not on the io list, we need to put the block group */
3428 		if (should_put)
3429 			btrfs_put_block_group(cache);
3430 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3431 		spin_lock(&cur_trans->dirty_bgs_lock);
3432 	}
3433 	spin_unlock(&cur_trans->dirty_bgs_lock);
3434 
3435 	/*
3436 	 * Refer to the definition of io_bgs member for details why it's safe
3437 	 * to use it without any locking
3438 	 */
3439 	while (!list_empty(io)) {
3440 		cache = list_first_entry(io, struct btrfs_block_group,
3441 					 io_list);
3442 		list_del_init(&cache->io_list);
3443 		btrfs_wait_cache_io(trans, cache, path);
3444 		btrfs_put_block_group(cache);
3445 	}
3446 
3447 	btrfs_free_path(path);
3448 	return ret;
3449 }
3450 
3451 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3452 			     u64 bytenr, u64 num_bytes, bool alloc)
3453 {
3454 	struct btrfs_fs_info *info = trans->fs_info;
3455 	struct btrfs_block_group *cache = NULL;
3456 	u64 total = num_bytes;
3457 	u64 old_val;
3458 	u64 byte_in_group;
3459 	int factor;
3460 	int ret = 0;
3461 
3462 	/* Block accounting for super block */
3463 	spin_lock(&info->delalloc_root_lock);
3464 	old_val = btrfs_super_bytes_used(info->super_copy);
3465 	if (alloc)
3466 		old_val += num_bytes;
3467 	else
3468 		old_val -= num_bytes;
3469 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3470 	spin_unlock(&info->delalloc_root_lock);
3471 
3472 	while (total) {
3473 		struct btrfs_space_info *space_info;
3474 		bool reclaim = false;
3475 
3476 		cache = btrfs_lookup_block_group(info, bytenr);
3477 		if (!cache) {
3478 			ret = -ENOENT;
3479 			break;
3480 		}
3481 		space_info = cache->space_info;
3482 		factor = btrfs_bg_type_to_factor(cache->flags);
3483 
3484 		/*
3485 		 * If this block group has free space cache written out, we
3486 		 * need to make sure to load it if we are removing space.  This
3487 		 * is because we need the unpinning stage to actually add the
3488 		 * space back to the block group, otherwise we will leak space.
3489 		 */
3490 		if (!alloc && !btrfs_block_group_done(cache))
3491 			btrfs_cache_block_group(cache, true);
3492 
3493 		byte_in_group = bytenr - cache->start;
3494 		WARN_ON(byte_in_group > cache->length);
3495 
3496 		spin_lock(&space_info->lock);
3497 		spin_lock(&cache->lock);
3498 
3499 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3500 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3501 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3502 
3503 		old_val = cache->used;
3504 		num_bytes = min(total, cache->length - byte_in_group);
3505 		if (alloc) {
3506 			old_val += num_bytes;
3507 			cache->used = old_val;
3508 			cache->reserved -= num_bytes;
3509 			space_info->bytes_reserved -= num_bytes;
3510 			space_info->bytes_used += num_bytes;
3511 			space_info->disk_used += num_bytes * factor;
3512 			spin_unlock(&cache->lock);
3513 			spin_unlock(&space_info->lock);
3514 		} else {
3515 			old_val -= num_bytes;
3516 			cache->used = old_val;
3517 			cache->pinned += num_bytes;
3518 			btrfs_space_info_update_bytes_pinned(info, space_info,
3519 							     num_bytes);
3520 			space_info->bytes_used -= num_bytes;
3521 			space_info->disk_used -= num_bytes * factor;
3522 
3523 			reclaim = should_reclaim_block_group(cache, num_bytes);
3524 
3525 			spin_unlock(&cache->lock);
3526 			spin_unlock(&space_info->lock);
3527 
3528 			set_extent_dirty(&trans->transaction->pinned_extents,
3529 					 bytenr, bytenr + num_bytes - 1,
3530 					 GFP_NOFS | __GFP_NOFAIL);
3531 		}
3532 
3533 		spin_lock(&trans->transaction->dirty_bgs_lock);
3534 		if (list_empty(&cache->dirty_list)) {
3535 			list_add_tail(&cache->dirty_list,
3536 				      &trans->transaction->dirty_bgs);
3537 			trans->delayed_ref_updates++;
3538 			btrfs_get_block_group(cache);
3539 		}
3540 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3541 
3542 		/*
3543 		 * No longer have used bytes in this block group, queue it for
3544 		 * deletion. We do this after adding the block group to the
3545 		 * dirty list to avoid races between cleaner kthread and space
3546 		 * cache writeout.
3547 		 */
3548 		if (!alloc && old_val == 0) {
3549 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3550 				btrfs_mark_bg_unused(cache);
3551 		} else if (!alloc && reclaim) {
3552 			btrfs_mark_bg_to_reclaim(cache);
3553 		}
3554 
3555 		btrfs_put_block_group(cache);
3556 		total -= num_bytes;
3557 		bytenr += num_bytes;
3558 	}
3559 
3560 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3561 	btrfs_update_delayed_refs_rsv(trans);
3562 	return ret;
3563 }
3564 
3565 /*
3566  * Update the block_group and space info counters.
3567  *
3568  * @cache:	The cache we are manipulating
3569  * @ram_bytes:  The number of bytes of file content, and will be same to
3570  *              @num_bytes except for the compress path.
3571  * @num_bytes:	The number of bytes in question
3572  * @delalloc:   The blocks are allocated for the delalloc write
3573  *
3574  * This is called by the allocator when it reserves space. If this is a
3575  * reservation and the block group has become read only we cannot make the
3576  * reservation and return -EAGAIN, otherwise this function always succeeds.
3577  */
3578 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3579 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3580 			     bool force_wrong_size_class)
3581 {
3582 	struct btrfs_space_info *space_info = cache->space_info;
3583 	enum btrfs_block_group_size_class size_class;
3584 	int ret = 0;
3585 
3586 	spin_lock(&space_info->lock);
3587 	spin_lock(&cache->lock);
3588 	if (cache->ro) {
3589 		ret = -EAGAIN;
3590 		goto out;
3591 	}
3592 
3593 	if (btrfs_block_group_should_use_size_class(cache)) {
3594 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3595 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3596 		if (ret)
3597 			goto out;
3598 	}
3599 	cache->reserved += num_bytes;
3600 	space_info->bytes_reserved += num_bytes;
3601 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3602 				      space_info->flags, num_bytes, 1);
3603 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3604 					      space_info, -ram_bytes);
3605 	if (delalloc)
3606 		cache->delalloc_bytes += num_bytes;
3607 
3608 	/*
3609 	 * Compression can use less space than we reserved, so wake tickets if
3610 	 * that happens.
3611 	 */
3612 	if (num_bytes < ram_bytes)
3613 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3614 out:
3615 	spin_unlock(&cache->lock);
3616 	spin_unlock(&space_info->lock);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * Update the block_group and space info counters.
3622  *
3623  * @cache:      The cache we are manipulating
3624  * @num_bytes:  The number of bytes in question
3625  * @delalloc:   The blocks are allocated for the delalloc write
3626  *
3627  * This is called by somebody who is freeing space that was never actually used
3628  * on disk.  For example if you reserve some space for a new leaf in transaction
3629  * A and before transaction A commits you free that leaf, you call this with
3630  * reserve set to 0 in order to clear the reservation.
3631  */
3632 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3633 			       u64 num_bytes, int delalloc)
3634 {
3635 	struct btrfs_space_info *space_info = cache->space_info;
3636 
3637 	spin_lock(&space_info->lock);
3638 	spin_lock(&cache->lock);
3639 	if (cache->ro)
3640 		space_info->bytes_readonly += num_bytes;
3641 	cache->reserved -= num_bytes;
3642 	space_info->bytes_reserved -= num_bytes;
3643 	space_info->max_extent_size = 0;
3644 
3645 	if (delalloc)
3646 		cache->delalloc_bytes -= num_bytes;
3647 	spin_unlock(&cache->lock);
3648 
3649 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3650 	spin_unlock(&space_info->lock);
3651 }
3652 
3653 static void force_metadata_allocation(struct btrfs_fs_info *info)
3654 {
3655 	struct list_head *head = &info->space_info;
3656 	struct btrfs_space_info *found;
3657 
3658 	list_for_each_entry(found, head, list) {
3659 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3660 			found->force_alloc = CHUNK_ALLOC_FORCE;
3661 	}
3662 }
3663 
3664 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3665 			      struct btrfs_space_info *sinfo, int force)
3666 {
3667 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3668 	u64 thresh;
3669 
3670 	if (force == CHUNK_ALLOC_FORCE)
3671 		return 1;
3672 
3673 	/*
3674 	 * in limited mode, we want to have some free space up to
3675 	 * about 1% of the FS size.
3676 	 */
3677 	if (force == CHUNK_ALLOC_LIMITED) {
3678 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3679 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3680 
3681 		if (sinfo->total_bytes - bytes_used < thresh)
3682 			return 1;
3683 	}
3684 
3685 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3686 		return 0;
3687 	return 1;
3688 }
3689 
3690 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3691 {
3692 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3693 
3694 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3695 }
3696 
3697 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3698 {
3699 	struct btrfs_block_group *bg;
3700 	int ret;
3701 
3702 	/*
3703 	 * Check if we have enough space in the system space info because we
3704 	 * will need to update device items in the chunk btree and insert a new
3705 	 * chunk item in the chunk btree as well. This will allocate a new
3706 	 * system block group if needed.
3707 	 */
3708 	check_system_chunk(trans, flags);
3709 
3710 	bg = btrfs_create_chunk(trans, flags);
3711 	if (IS_ERR(bg)) {
3712 		ret = PTR_ERR(bg);
3713 		goto out;
3714 	}
3715 
3716 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3717 	/*
3718 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3719 	 * previously reserved space in the system space_info and allocated one
3720 	 * new system chunk if necessary. However there are three exceptions:
3721 	 *
3722 	 * 1) We may have enough free space in the system space_info but all the
3723 	 *    existing system block groups have a profile which can not be used
3724 	 *    for extent allocation.
3725 	 *
3726 	 *    This happens when mounting in degraded mode. For example we have a
3727 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3728 	 *    using the other device in degraded mode. If we then allocate a chunk,
3729 	 *    we may have enough free space in the existing system space_info, but
3730 	 *    none of the block groups can be used for extent allocation since they
3731 	 *    have a RAID1 profile, and because we are in degraded mode with a
3732 	 *    single device, we are forced to allocate a new system chunk with a
3733 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3734 	 *    block groups and check if they have a usable profile and enough space
3735 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3736 	 *    try again after forcing allocation of a new system chunk. Like this
3737 	 *    we avoid paying the cost of that search in normal circumstances, when
3738 	 *    we were not mounted in degraded mode;
3739 	 *
3740 	 * 2) We had enough free space info the system space_info, and one suitable
3741 	 *    block group to allocate from when we called check_system_chunk()
3742 	 *    above. However right after we called it, the only system block group
3743 	 *    with enough free space got turned into RO mode by a running scrub,
3744 	 *    and in this case we have to allocate a new one and retry. We only
3745 	 *    need do this allocate and retry once, since we have a transaction
3746 	 *    handle and scrub uses the commit root to search for block groups;
3747 	 *
3748 	 * 3) We had one system block group with enough free space when we called
3749 	 *    check_system_chunk(), but after that, right before we tried to
3750 	 *    allocate the last extent buffer we needed, a discard operation came
3751 	 *    in and it temporarily removed the last free space entry from the
3752 	 *    block group (discard removes a free space entry, discards it, and
3753 	 *    then adds back the entry to the block group cache).
3754 	 */
3755 	if (ret == -ENOSPC) {
3756 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3757 		struct btrfs_block_group *sys_bg;
3758 
3759 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3760 		if (IS_ERR(sys_bg)) {
3761 			ret = PTR_ERR(sys_bg);
3762 			btrfs_abort_transaction(trans, ret);
3763 			goto out;
3764 		}
3765 
3766 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3767 		if (ret) {
3768 			btrfs_abort_transaction(trans, ret);
3769 			goto out;
3770 		}
3771 
3772 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3773 		if (ret) {
3774 			btrfs_abort_transaction(trans, ret);
3775 			goto out;
3776 		}
3777 	} else if (ret) {
3778 		btrfs_abort_transaction(trans, ret);
3779 		goto out;
3780 	}
3781 out:
3782 	btrfs_trans_release_chunk_metadata(trans);
3783 
3784 	if (ret)
3785 		return ERR_PTR(ret);
3786 
3787 	btrfs_get_block_group(bg);
3788 	return bg;
3789 }
3790 
3791 /*
3792  * Chunk allocation is done in 2 phases:
3793  *
3794  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3795  *    the chunk, the chunk mapping, create its block group and add the items
3796  *    that belong in the chunk btree to it - more specifically, we need to
3797  *    update device items in the chunk btree and add a new chunk item to it.
3798  *
3799  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3800  *    group item to the extent btree and the device extent items to the devices
3801  *    btree.
3802  *
3803  * This is done to prevent deadlocks. For example when COWing a node from the
3804  * extent btree we are holding a write lock on the node's parent and if we
3805  * trigger chunk allocation and attempted to insert the new block group item
3806  * in the extent btree right way, we could deadlock because the path for the
3807  * insertion can include that parent node. At first glance it seems impossible
3808  * to trigger chunk allocation after starting a transaction since tasks should
3809  * reserve enough transaction units (metadata space), however while that is true
3810  * most of the time, chunk allocation may still be triggered for several reasons:
3811  *
3812  * 1) When reserving metadata, we check if there is enough free space in the
3813  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3814  *    However later when the task actually tries to COW an extent buffer from
3815  *    the extent btree or from the device btree for example, it is forced to
3816  *    allocate a new block group (chunk) because the only one that had enough
3817  *    free space was just turned to RO mode by a running scrub for example (or
3818  *    device replace, block group reclaim thread, etc), so we can not use it
3819  *    for allocating an extent and end up being forced to allocate a new one;
3820  *
3821  * 2) Because we only check that the metadata space_info has enough free bytes,
3822  *    we end up not allocating a new metadata chunk in that case. However if
3823  *    the filesystem was mounted in degraded mode, none of the existing block
3824  *    groups might be suitable for extent allocation due to their incompatible
3825  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3826  *    use a RAID1 profile, in degraded mode using a single device). In this case
3827  *    when the task attempts to COW some extent buffer of the extent btree for
3828  *    example, it will trigger allocation of a new metadata block group with a
3829  *    suitable profile (SINGLE profile in the example of the degraded mount of
3830  *    the RAID1 filesystem);
3831  *
3832  * 3) The task has reserved enough transaction units / metadata space, but when
3833  *    it attempts to COW an extent buffer from the extent or device btree for
3834  *    example, it does not find any free extent in any metadata block group,
3835  *    therefore forced to try to allocate a new metadata block group.
3836  *    This is because some other task allocated all available extents in the
3837  *    meanwhile - this typically happens with tasks that don't reserve space
3838  *    properly, either intentionally or as a bug. One example where this is
3839  *    done intentionally is fsync, as it does not reserve any transaction units
3840  *    and ends up allocating a variable number of metadata extents for log
3841  *    tree extent buffers;
3842  *
3843  * 4) The task has reserved enough transaction units / metadata space, but right
3844  *    before it tries to allocate the last extent buffer it needs, a discard
3845  *    operation comes in and, temporarily, removes the last free space entry from
3846  *    the only metadata block group that had free space (discard starts by
3847  *    removing a free space entry from a block group, then does the discard
3848  *    operation and, once it's done, it adds back the free space entry to the
3849  *    block group).
3850  *
3851  * We also need this 2 phases setup when adding a device to a filesystem with
3852  * a seed device - we must create new metadata and system chunks without adding
3853  * any of the block group items to the chunk, extent and device btrees. If we
3854  * did not do it this way, we would get ENOSPC when attempting to update those
3855  * btrees, since all the chunks from the seed device are read-only.
3856  *
3857  * Phase 1 does the updates and insertions to the chunk btree because if we had
3858  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3859  * parallel, we risk having too many system chunks allocated by many tasks if
3860  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3861  * extreme case this leads to exhaustion of the system chunk array in the
3862  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3863  * and with RAID filesystems (so we have more device items in the chunk btree).
3864  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3865  * the system chunk array due to concurrent allocations") provides more details.
3866  *
3867  * Allocation of system chunks does not happen through this function. A task that
3868  * needs to update the chunk btree (the only btree that uses system chunks), must
3869  * preallocate chunk space by calling either check_system_chunk() or
3870  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3871  * metadata chunk or when removing a chunk, while the later is used before doing
3872  * a modification to the chunk btree - use cases for the later are adding,
3873  * removing and resizing a device as well as relocation of a system chunk.
3874  * See the comment below for more details.
3875  *
3876  * The reservation of system space, done through check_system_chunk(), as well
3877  * as all the updates and insertions into the chunk btree must be done while
3878  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3879  * an extent buffer from the chunks btree we never trigger allocation of a new
3880  * system chunk, which would result in a deadlock (trying to lock twice an
3881  * extent buffer of the chunk btree, first time before triggering the chunk
3882  * allocation and the second time during chunk allocation while attempting to
3883  * update the chunks btree). The system chunk array is also updated while holding
3884  * that mutex. The same logic applies to removing chunks - we must reserve system
3885  * space, update the chunk btree and the system chunk array in the superblock
3886  * while holding fs_info->chunk_mutex.
3887  *
3888  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3889  *
3890  * If @force is CHUNK_ALLOC_FORCE:
3891  *    - return 1 if it successfully allocates a chunk,
3892  *    - return errors including -ENOSPC otherwise.
3893  * If @force is NOT CHUNK_ALLOC_FORCE:
3894  *    - return 0 if it doesn't need to allocate a new chunk,
3895  *    - return 1 if it successfully allocates a chunk,
3896  *    - return errors including -ENOSPC otherwise.
3897  */
3898 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3899 		      enum btrfs_chunk_alloc_enum force)
3900 {
3901 	struct btrfs_fs_info *fs_info = trans->fs_info;
3902 	struct btrfs_space_info *space_info;
3903 	struct btrfs_block_group *ret_bg;
3904 	bool wait_for_alloc = false;
3905 	bool should_alloc = false;
3906 	bool from_extent_allocation = false;
3907 	int ret = 0;
3908 
3909 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3910 		from_extent_allocation = true;
3911 		force = CHUNK_ALLOC_FORCE;
3912 	}
3913 
3914 	/* Don't re-enter if we're already allocating a chunk */
3915 	if (trans->allocating_chunk)
3916 		return -ENOSPC;
3917 	/*
3918 	 * Allocation of system chunks can not happen through this path, as we
3919 	 * could end up in a deadlock if we are allocating a data or metadata
3920 	 * chunk and there is another task modifying the chunk btree.
3921 	 *
3922 	 * This is because while we are holding the chunk mutex, we will attempt
3923 	 * to add the new chunk item to the chunk btree or update an existing
3924 	 * device item in the chunk btree, while the other task that is modifying
3925 	 * the chunk btree is attempting to COW an extent buffer while holding a
3926 	 * lock on it and on its parent - if the COW operation triggers a system
3927 	 * chunk allocation, then we can deadlock because we are holding the
3928 	 * chunk mutex and we may need to access that extent buffer or its parent
3929 	 * in order to add the chunk item or update a device item.
3930 	 *
3931 	 * Tasks that want to modify the chunk tree should reserve system space
3932 	 * before updating the chunk btree, by calling either
3933 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3934 	 * It's possible that after a task reserves the space, it still ends up
3935 	 * here - this happens in the cases described above at do_chunk_alloc().
3936 	 * The task will have to either retry or fail.
3937 	 */
3938 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3939 		return -ENOSPC;
3940 
3941 	space_info = btrfs_find_space_info(fs_info, flags);
3942 	ASSERT(space_info);
3943 
3944 	do {
3945 		spin_lock(&space_info->lock);
3946 		if (force < space_info->force_alloc)
3947 			force = space_info->force_alloc;
3948 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3949 		if (space_info->full) {
3950 			/* No more free physical space */
3951 			if (should_alloc)
3952 				ret = -ENOSPC;
3953 			else
3954 				ret = 0;
3955 			spin_unlock(&space_info->lock);
3956 			return ret;
3957 		} else if (!should_alloc) {
3958 			spin_unlock(&space_info->lock);
3959 			return 0;
3960 		} else if (space_info->chunk_alloc) {
3961 			/*
3962 			 * Someone is already allocating, so we need to block
3963 			 * until this someone is finished and then loop to
3964 			 * recheck if we should continue with our allocation
3965 			 * attempt.
3966 			 */
3967 			wait_for_alloc = true;
3968 			force = CHUNK_ALLOC_NO_FORCE;
3969 			spin_unlock(&space_info->lock);
3970 			mutex_lock(&fs_info->chunk_mutex);
3971 			mutex_unlock(&fs_info->chunk_mutex);
3972 		} else {
3973 			/* Proceed with allocation */
3974 			space_info->chunk_alloc = 1;
3975 			wait_for_alloc = false;
3976 			spin_unlock(&space_info->lock);
3977 		}
3978 
3979 		cond_resched();
3980 	} while (wait_for_alloc);
3981 
3982 	mutex_lock(&fs_info->chunk_mutex);
3983 	trans->allocating_chunk = true;
3984 
3985 	/*
3986 	 * If we have mixed data/metadata chunks we want to make sure we keep
3987 	 * allocating mixed chunks instead of individual chunks.
3988 	 */
3989 	if (btrfs_mixed_space_info(space_info))
3990 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3991 
3992 	/*
3993 	 * if we're doing a data chunk, go ahead and make sure that
3994 	 * we keep a reasonable number of metadata chunks allocated in the
3995 	 * FS as well.
3996 	 */
3997 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3998 		fs_info->data_chunk_allocations++;
3999 		if (!(fs_info->data_chunk_allocations %
4000 		      fs_info->metadata_ratio))
4001 			force_metadata_allocation(fs_info);
4002 	}
4003 
4004 	ret_bg = do_chunk_alloc(trans, flags);
4005 	trans->allocating_chunk = false;
4006 
4007 	if (IS_ERR(ret_bg)) {
4008 		ret = PTR_ERR(ret_bg);
4009 	} else if (from_extent_allocation) {
4010 		/*
4011 		 * New block group is likely to be used soon. Try to activate
4012 		 * it now. Failure is OK for now.
4013 		 */
4014 		btrfs_zone_activate(ret_bg);
4015 	}
4016 
4017 	if (!ret)
4018 		btrfs_put_block_group(ret_bg);
4019 
4020 	spin_lock(&space_info->lock);
4021 	if (ret < 0) {
4022 		if (ret == -ENOSPC)
4023 			space_info->full = 1;
4024 		else
4025 			goto out;
4026 	} else {
4027 		ret = 1;
4028 		space_info->max_extent_size = 0;
4029 	}
4030 
4031 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4032 out:
4033 	space_info->chunk_alloc = 0;
4034 	spin_unlock(&space_info->lock);
4035 	mutex_unlock(&fs_info->chunk_mutex);
4036 
4037 	return ret;
4038 }
4039 
4040 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4041 {
4042 	u64 num_dev;
4043 
4044 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4045 	if (!num_dev)
4046 		num_dev = fs_info->fs_devices->rw_devices;
4047 
4048 	return num_dev;
4049 }
4050 
4051 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4052 				u64 bytes,
4053 				u64 type)
4054 {
4055 	struct btrfs_fs_info *fs_info = trans->fs_info;
4056 	struct btrfs_space_info *info;
4057 	u64 left;
4058 	int ret = 0;
4059 
4060 	/*
4061 	 * Needed because we can end up allocating a system chunk and for an
4062 	 * atomic and race free space reservation in the chunk block reserve.
4063 	 */
4064 	lockdep_assert_held(&fs_info->chunk_mutex);
4065 
4066 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4067 	spin_lock(&info->lock);
4068 	left = info->total_bytes - btrfs_space_info_used(info, true);
4069 	spin_unlock(&info->lock);
4070 
4071 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4072 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4073 			   left, bytes, type);
4074 		btrfs_dump_space_info(fs_info, info, 0, 0);
4075 	}
4076 
4077 	if (left < bytes) {
4078 		u64 flags = btrfs_system_alloc_profile(fs_info);
4079 		struct btrfs_block_group *bg;
4080 
4081 		/*
4082 		 * Ignore failure to create system chunk. We might end up not
4083 		 * needing it, as we might not need to COW all nodes/leafs from
4084 		 * the paths we visit in the chunk tree (they were already COWed
4085 		 * or created in the current transaction for example).
4086 		 */
4087 		bg = btrfs_create_chunk(trans, flags);
4088 		if (IS_ERR(bg)) {
4089 			ret = PTR_ERR(bg);
4090 		} else {
4091 			/*
4092 			 * We have a new chunk. We also need to activate it for
4093 			 * zoned filesystem.
4094 			 */
4095 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4096 			if (ret < 0)
4097 				return;
4098 
4099 			/*
4100 			 * If we fail to add the chunk item here, we end up
4101 			 * trying again at phase 2 of chunk allocation, at
4102 			 * btrfs_create_pending_block_groups(). So ignore
4103 			 * any error here. An ENOSPC here could happen, due to
4104 			 * the cases described at do_chunk_alloc() - the system
4105 			 * block group we just created was just turned into RO
4106 			 * mode by a scrub for example, or a running discard
4107 			 * temporarily removed its free space entries, etc.
4108 			 */
4109 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4110 		}
4111 	}
4112 
4113 	if (!ret) {
4114 		ret = btrfs_block_rsv_add(fs_info,
4115 					  &fs_info->chunk_block_rsv,
4116 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4117 		if (!ret)
4118 			trans->chunk_bytes_reserved += bytes;
4119 	}
4120 }
4121 
4122 /*
4123  * Reserve space in the system space for allocating or removing a chunk.
4124  * The caller must be holding fs_info->chunk_mutex.
4125  */
4126 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4127 {
4128 	struct btrfs_fs_info *fs_info = trans->fs_info;
4129 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4130 	u64 bytes;
4131 
4132 	/* num_devs device items to update and 1 chunk item to add or remove. */
4133 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4134 		btrfs_calc_insert_metadata_size(fs_info, 1);
4135 
4136 	reserve_chunk_space(trans, bytes, type);
4137 }
4138 
4139 /*
4140  * Reserve space in the system space, if needed, for doing a modification to the
4141  * chunk btree.
4142  *
4143  * @trans:		A transaction handle.
4144  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4145  *			in the chunk btree or if it's for the deletion or update
4146  *			of an existing item.
4147  *
4148  * This is used in a context where we need to update the chunk btree outside
4149  * block group allocation and removal, to avoid a deadlock with a concurrent
4150  * task that is allocating a metadata or data block group and therefore needs to
4151  * update the chunk btree while holding the chunk mutex. After the update to the
4152  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4153  *
4154  */
4155 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4156 				  bool is_item_insertion)
4157 {
4158 	struct btrfs_fs_info *fs_info = trans->fs_info;
4159 	u64 bytes;
4160 
4161 	if (is_item_insertion)
4162 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4163 	else
4164 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4165 
4166 	mutex_lock(&fs_info->chunk_mutex);
4167 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4168 	mutex_unlock(&fs_info->chunk_mutex);
4169 }
4170 
4171 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4172 {
4173 	struct btrfs_block_group *block_group;
4174 
4175 	block_group = btrfs_lookup_first_block_group(info, 0);
4176 	while (block_group) {
4177 		btrfs_wait_block_group_cache_done(block_group);
4178 		spin_lock(&block_group->lock);
4179 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4180 				       &block_group->runtime_flags)) {
4181 			struct inode *inode = block_group->inode;
4182 
4183 			block_group->inode = NULL;
4184 			spin_unlock(&block_group->lock);
4185 
4186 			ASSERT(block_group->io_ctl.inode == NULL);
4187 			iput(inode);
4188 		} else {
4189 			spin_unlock(&block_group->lock);
4190 		}
4191 		block_group = btrfs_next_block_group(block_group);
4192 	}
4193 }
4194 
4195 /*
4196  * Must be called only after stopping all workers, since we could have block
4197  * group caching kthreads running, and therefore they could race with us if we
4198  * freed the block groups before stopping them.
4199  */
4200 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4201 {
4202 	struct btrfs_block_group *block_group;
4203 	struct btrfs_space_info *space_info;
4204 	struct btrfs_caching_control *caching_ctl;
4205 	struct rb_node *n;
4206 
4207 	write_lock(&info->block_group_cache_lock);
4208 	while (!list_empty(&info->caching_block_groups)) {
4209 		caching_ctl = list_entry(info->caching_block_groups.next,
4210 					 struct btrfs_caching_control, list);
4211 		list_del(&caching_ctl->list);
4212 		btrfs_put_caching_control(caching_ctl);
4213 	}
4214 	write_unlock(&info->block_group_cache_lock);
4215 
4216 	spin_lock(&info->unused_bgs_lock);
4217 	while (!list_empty(&info->unused_bgs)) {
4218 		block_group = list_first_entry(&info->unused_bgs,
4219 					       struct btrfs_block_group,
4220 					       bg_list);
4221 		list_del_init(&block_group->bg_list);
4222 		btrfs_put_block_group(block_group);
4223 	}
4224 
4225 	while (!list_empty(&info->reclaim_bgs)) {
4226 		block_group = list_first_entry(&info->reclaim_bgs,
4227 					       struct btrfs_block_group,
4228 					       bg_list);
4229 		list_del_init(&block_group->bg_list);
4230 		btrfs_put_block_group(block_group);
4231 	}
4232 	spin_unlock(&info->unused_bgs_lock);
4233 
4234 	spin_lock(&info->zone_active_bgs_lock);
4235 	while (!list_empty(&info->zone_active_bgs)) {
4236 		block_group = list_first_entry(&info->zone_active_bgs,
4237 					       struct btrfs_block_group,
4238 					       active_bg_list);
4239 		list_del_init(&block_group->active_bg_list);
4240 		btrfs_put_block_group(block_group);
4241 	}
4242 	spin_unlock(&info->zone_active_bgs_lock);
4243 
4244 	write_lock(&info->block_group_cache_lock);
4245 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4246 		block_group = rb_entry(n, struct btrfs_block_group,
4247 				       cache_node);
4248 		rb_erase_cached(&block_group->cache_node,
4249 				&info->block_group_cache_tree);
4250 		RB_CLEAR_NODE(&block_group->cache_node);
4251 		write_unlock(&info->block_group_cache_lock);
4252 
4253 		down_write(&block_group->space_info->groups_sem);
4254 		list_del(&block_group->list);
4255 		up_write(&block_group->space_info->groups_sem);
4256 
4257 		/*
4258 		 * We haven't cached this block group, which means we could
4259 		 * possibly have excluded extents on this block group.
4260 		 */
4261 		if (block_group->cached == BTRFS_CACHE_NO ||
4262 		    block_group->cached == BTRFS_CACHE_ERROR)
4263 			btrfs_free_excluded_extents(block_group);
4264 
4265 		btrfs_remove_free_space_cache(block_group);
4266 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4267 		ASSERT(list_empty(&block_group->dirty_list));
4268 		ASSERT(list_empty(&block_group->io_list));
4269 		ASSERT(list_empty(&block_group->bg_list));
4270 		ASSERT(refcount_read(&block_group->refs) == 1);
4271 		ASSERT(block_group->swap_extents == 0);
4272 		btrfs_put_block_group(block_group);
4273 
4274 		write_lock(&info->block_group_cache_lock);
4275 	}
4276 	write_unlock(&info->block_group_cache_lock);
4277 
4278 	btrfs_release_global_block_rsv(info);
4279 
4280 	while (!list_empty(&info->space_info)) {
4281 		space_info = list_entry(info->space_info.next,
4282 					struct btrfs_space_info,
4283 					list);
4284 
4285 		/*
4286 		 * Do not hide this behind enospc_debug, this is actually
4287 		 * important and indicates a real bug if this happens.
4288 		 */
4289 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4290 			    space_info->bytes_may_use > 0))
4291 			btrfs_dump_space_info(info, space_info, 0, 0);
4292 
4293 		/*
4294 		 * If there was a failure to cleanup a log tree, very likely due
4295 		 * to an IO failure on a writeback attempt of one or more of its
4296 		 * extent buffers, we could not do proper (and cheap) unaccounting
4297 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4298 		 * that case.
4299 		 */
4300 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4301 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4302 			if (WARN_ON(space_info->bytes_reserved > 0))
4303 				btrfs_dump_space_info(info, space_info, 0, 0);
4304 		}
4305 
4306 		WARN_ON(space_info->reclaim_size > 0);
4307 		list_del(&space_info->list);
4308 		btrfs_sysfs_remove_space_info(space_info);
4309 	}
4310 	return 0;
4311 }
4312 
4313 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4314 {
4315 	atomic_inc(&cache->frozen);
4316 }
4317 
4318 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4319 {
4320 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4321 	struct extent_map_tree *em_tree;
4322 	struct extent_map *em;
4323 	bool cleanup;
4324 
4325 	spin_lock(&block_group->lock);
4326 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4327 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4328 	spin_unlock(&block_group->lock);
4329 
4330 	if (cleanup) {
4331 		em_tree = &fs_info->mapping_tree;
4332 		write_lock(&em_tree->lock);
4333 		em = lookup_extent_mapping(em_tree, block_group->start,
4334 					   1);
4335 		BUG_ON(!em); /* logic error, can't happen */
4336 		remove_extent_mapping(em_tree, em);
4337 		write_unlock(&em_tree->lock);
4338 
4339 		/* once for us and once for the tree */
4340 		free_extent_map(em);
4341 		free_extent_map(em);
4342 
4343 		/*
4344 		 * We may have left one free space entry and other possible
4345 		 * tasks trimming this block group have left 1 entry each one.
4346 		 * Free them if any.
4347 		 */
4348 		btrfs_remove_free_space_cache(block_group);
4349 	}
4350 }
4351 
4352 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4353 {
4354 	bool ret = true;
4355 
4356 	spin_lock(&bg->lock);
4357 	if (bg->ro)
4358 		ret = false;
4359 	else
4360 		bg->swap_extents++;
4361 	spin_unlock(&bg->lock);
4362 
4363 	return ret;
4364 }
4365 
4366 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4367 {
4368 	spin_lock(&bg->lock);
4369 	ASSERT(!bg->ro);
4370 	ASSERT(bg->swap_extents >= amount);
4371 	bg->swap_extents -= amount;
4372 	spin_unlock(&bg->lock);
4373 }
4374 
4375 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4376 {
4377 	if (size <= SZ_128K)
4378 		return BTRFS_BG_SZ_SMALL;
4379 	if (size <= SZ_8M)
4380 		return BTRFS_BG_SZ_MEDIUM;
4381 	return BTRFS_BG_SZ_LARGE;
4382 }
4383 
4384 /*
4385  * Handle a block group allocating an extent in a size class
4386  *
4387  * @bg:				The block group we allocated in.
4388  * @size_class:			The size class of the allocation.
4389  * @force_wrong_size_class:	Whether we are desperate enough to allow
4390  *				mismatched size classes.
4391  *
4392  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4393  * case of a race that leads to the wrong size class without
4394  * force_wrong_size_class set.
4395  *
4396  * find_free_extent will skip block groups with a mismatched size class until
4397  * it really needs to avoid ENOSPC. In that case it will set
4398  * force_wrong_size_class. However, if a block group is newly allocated and
4399  * doesn't yet have a size class, then it is possible for two allocations of
4400  * different sizes to race and both try to use it. The loser is caught here and
4401  * has to retry.
4402  */
4403 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4404 				     enum btrfs_block_group_size_class size_class,
4405 				     bool force_wrong_size_class)
4406 {
4407 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4408 
4409 	/* The new allocation is in the right size class, do nothing */
4410 	if (bg->size_class == size_class)
4411 		return 0;
4412 	/*
4413 	 * The new allocation is in a mismatched size class.
4414 	 * This means one of two things:
4415 	 *
4416 	 * 1. Two tasks in find_free_extent for different size_classes raced
4417 	 *    and hit the same empty block_group. Make the loser try again.
4418 	 * 2. A call to find_free_extent got desperate enough to set
4419 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4420 	 *    allocation.
4421 	 */
4422 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4423 		if (force_wrong_size_class)
4424 			return 0;
4425 		return -EAGAIN;
4426 	}
4427 	/*
4428 	 * The happy new block group case: the new allocation is the first
4429 	 * one in the block_group so we set size_class.
4430 	 */
4431 	bg->size_class = size_class;
4432 
4433 	return 0;
4434 }
4435 
4436 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4437 {
4438 	if (btrfs_is_zoned(bg->fs_info))
4439 		return false;
4440 	if (!btrfs_is_block_group_data_only(bg))
4441 		return false;
4442 	return true;
4443 }
4444