xref: /openbmc/linux/fs/btrfs/block-group.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 		allowed = BTRFS_BLOCK_GROUP_RAID6;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 		allowed = BTRFS_BLOCK_GROUP_RAID5;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 		allowed = BTRFS_BLOCK_GROUP_RAID10;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 		allowed = BTRFS_BLOCK_GROUP_RAID1;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 		allowed = BTRFS_BLOCK_GROUP_RAID0;
91 
92 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 
94 	return extended_to_chunk(flags | allowed);
95 }
96 
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 	unsigned seq;
100 	u64 flags;
101 
102 	do {
103 		flags = orig_flags;
104 		seq = read_seqbegin(&fs_info->profiles_lock);
105 
106 		if (flags & BTRFS_BLOCK_GROUP_DATA)
107 			flags |= fs_info->avail_data_alloc_bits;
108 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 			flags |= fs_info->avail_system_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 			flags |= fs_info->avail_metadata_alloc_bits;
112 	} while (read_seqretry(&fs_info->profiles_lock, seq));
113 
114 	return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116 
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 	refcount_inc(&cache->refs);
120 }
121 
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 	if (refcount_dec_and_test(&cache->refs)) {
125 		WARN_ON(cache->pinned > 0);
126 		WARN_ON(cache->reserved > 0);
127 
128 		/*
129 		 * A block_group shouldn't be on the discard_list anymore.
130 		 * Remove the block_group from the discard_list to prevent us
131 		 * from causing a panic due to NULL pointer dereference.
132 		 */
133 		if (WARN_ON(!list_empty(&cache->discard_list)))
134 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 						  cache);
136 
137 		/*
138 		 * If not empty, someone is still holding mutex of
139 		 * full_stripe_lock, which can only be released by caller.
140 		 * And it will definitely cause use-after-free when caller
141 		 * tries to release full stripe lock.
142 		 *
143 		 * No better way to resolve, but only to warn.
144 		 */
145 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 		kfree(cache->free_space_ctl);
147 		kfree(cache);
148 	}
149 }
150 
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				       struct btrfs_block_group *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group *cache;
160 
161 	ASSERT(block_group->length != 0);
162 
163 	spin_lock(&info->block_group_cache_lock);
164 	p = &info->block_group_cache_tree.rb_node;
165 
166 	while (*p) {
167 		parent = *p;
168 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 		if (block_group->start < cache->start) {
170 			p = &(*p)->rb_left;
171 		} else if (block_group->start > cache->start) {
172 			p = &(*p)->rb_right;
173 		} else {
174 			spin_unlock(&info->block_group_cache_lock);
175 			return -EEXIST;
176 		}
177 	}
178 
179 	rb_link_node(&block_group->cache_node, parent, p);
180 	rb_insert_color(&block_group->cache_node,
181 			&info->block_group_cache_tree);
182 
183 	if (info->first_logical_byte > block_group->start)
184 		info->first_logical_byte = block_group->start;
185 
186 	spin_unlock(&info->block_group_cache_lock);
187 
188 	return 0;
189 }
190 
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196 		struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 	struct btrfs_block_group *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 		end = cache->start + cache->length - 1;
208 		start = cache->start;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->start))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->start)
228 			info->first_logical_byte = ret->start;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 		struct btrfs_fs_info *info, u64 bytenr)
240 {
241 	return block_group_cache_tree_search(info, bytenr, 0);
242 }
243 
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248 		struct btrfs_fs_info *info, u64 bytenr)
249 {
250 	return block_group_cache_tree_search(info, bytenr, 1);
251 }
252 
253 struct btrfs_block_group *btrfs_next_block_group(
254 		struct btrfs_block_group *cache)
255 {
256 	struct btrfs_fs_info *fs_info = cache->fs_info;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->block_group_cache_lock);
260 
261 	/* If our block group was removed, we need a full search. */
262 	if (RB_EMPTY_NODE(&cache->cache_node)) {
263 		const u64 next_bytenr = cache->start + cache->length;
264 
265 		spin_unlock(&fs_info->block_group_cache_lock);
266 		btrfs_put_block_group(cache);
267 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 	}
269 	node = rb_next(&cache->cache_node);
270 	btrfs_put_block_group(cache);
271 	if (node) {
272 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 		btrfs_get_block_group(cache);
274 	} else
275 		cache = NULL;
276 	spin_unlock(&fs_info->block_group_cache_lock);
277 	return cache;
278 }
279 
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 	struct btrfs_block_group *bg;
283 	bool ret = true;
284 
285 	bg = btrfs_lookup_block_group(fs_info, bytenr);
286 	if (!bg)
287 		return false;
288 
289 	spin_lock(&bg->lock);
290 	if (bg->ro)
291 		ret = false;
292 	else
293 		atomic_inc(&bg->nocow_writers);
294 	spin_unlock(&bg->lock);
295 
296 	/* No put on block group, done by btrfs_dec_nocow_writers */
297 	if (!ret)
298 		btrfs_put_block_group(bg);
299 
300 	return ret;
301 }
302 
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 
307 	bg = btrfs_lookup_block_group(fs_info, bytenr);
308 	ASSERT(bg);
309 	if (atomic_dec_and_test(&bg->nocow_writers))
310 		wake_up_var(&bg->nocow_writers);
311 	/*
312 	 * Once for our lookup and once for the lookup done by a previous call
313 	 * to btrfs_inc_nocow_writers()
314 	 */
315 	btrfs_put_block_group(bg);
316 	btrfs_put_block_group(bg);
317 }
318 
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323 
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 					const u64 start)
326 {
327 	struct btrfs_block_group *bg;
328 
329 	bg = btrfs_lookup_block_group(fs_info, start);
330 	ASSERT(bg);
331 	if (atomic_dec_and_test(&bg->reservations))
332 		wake_up_var(&bg->reservations);
333 	btrfs_put_block_group(bg);
334 }
335 
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 	struct btrfs_space_info *space_info = bg->space_info;
339 
340 	ASSERT(bg->ro);
341 
342 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 		return;
344 
345 	/*
346 	 * Our block group is read only but before we set it to read only,
347 	 * some task might have had allocated an extent from it already, but it
348 	 * has not yet created a respective ordered extent (and added it to a
349 	 * root's list of ordered extents).
350 	 * Therefore wait for any task currently allocating extents, since the
351 	 * block group's reservations counter is incremented while a read lock
352 	 * on the groups' semaphore is held and decremented after releasing
353 	 * the read access on that semaphore and creating the ordered extent.
354 	 */
355 	down_write(&space_info->groups_sem);
356 	up_write(&space_info->groups_sem);
357 
358 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360 
361 struct btrfs_caching_control *btrfs_get_caching_control(
362 		struct btrfs_block_group *cache)
363 {
364 	struct btrfs_caching_control *ctl;
365 
366 	spin_lock(&cache->lock);
367 	if (!cache->caching_ctl) {
368 		spin_unlock(&cache->lock);
369 		return NULL;
370 	}
371 
372 	ctl = cache->caching_ctl;
373 	refcount_inc(&ctl->count);
374 	spin_unlock(&cache->lock);
375 	return ctl;
376 }
377 
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 	if (refcount_dec_and_test(&ctl->count))
381 		kfree(ctl);
382 }
383 
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 					   u64 num_bytes)
399 {
400 	struct btrfs_caching_control *caching_ctl;
401 
402 	caching_ctl = btrfs_get_caching_control(cache);
403 	if (!caching_ctl)
404 		return;
405 
406 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 		   (cache->free_space_ctl->free_space >= num_bytes));
408 
409 	btrfs_put_caching_control(caching_ctl);
410 }
411 
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 	struct btrfs_caching_control *caching_ctl;
415 	int ret = 0;
416 
417 	caching_ctl = btrfs_get_caching_control(cache);
418 	if (!caching_ctl)
419 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 
421 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 	if (cache->cached == BTRFS_CACHE_ERROR)
423 		ret = -EIO;
424 	btrfs_put_caching_control(caching_ctl);
425 	return ret;
426 }
427 
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 	bool ret;
431 
432 	spin_lock(&cache->lock);
433 	ret = cache->cached != BTRFS_CACHE_FAST;
434 	spin_unlock(&cache->lock);
435 
436 	return ret;
437 }
438 
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 				struct btrfs_caching_control *caching_ctl)
441 {
442 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444 
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 	u64 start = block_group->start;
450 	u64 len = block_group->length;
451 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 		fs_info->nodesize : fs_info->sectorsize;
453 	u64 step = chunk << 1;
454 
455 	while (len > chunk) {
456 		btrfs_remove_free_space(block_group, start, chunk);
457 		start += step;
458 		if (len < step)
459 			len = 0;
460 		else
461 			len -= step;
462 	}
463 }
464 #endif
465 
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 	struct btrfs_fs_info *info = block_group->fs_info;
475 	u64 extent_start, extent_end, size, total_added = 0;
476 	int ret;
477 
478 	while (start < end) {
479 		ret = find_first_extent_bit(&info->excluded_extents, start,
480 					    &extent_start, &extent_end,
481 					    EXTENT_DIRTY | EXTENT_UPTODATE,
482 					    NULL);
483 		if (ret)
484 			break;
485 
486 		if (extent_start <= start) {
487 			start = extent_end + 1;
488 		} else if (extent_start > start && extent_start < end) {
489 			size = extent_start - start;
490 			total_added += size;
491 			ret = btrfs_add_free_space_async_trimmed(block_group,
492 								 start, size);
493 			BUG_ON(ret); /* -ENOMEM or logic error */
494 			start = extent_end + 1;
495 		} else {
496 			break;
497 		}
498 	}
499 
500 	if (start < end) {
501 		size = end - start;
502 		total_added += size;
503 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 							 size);
505 		BUG_ON(ret); /* -ENOMEM or logic error */
506 	}
507 
508 	return total_added;
509 }
510 
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
515 	struct btrfs_root *extent_root = fs_info->extent_root;
516 	struct btrfs_path *path;
517 	struct extent_buffer *leaf;
518 	struct btrfs_key key;
519 	u64 total_found = 0;
520 	u64 last = 0;
521 	u32 nritems;
522 	int ret;
523 	bool wakeup = true;
524 
525 	path = btrfs_alloc_path();
526 	if (!path)
527 		return -ENOMEM;
528 
529 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 
531 #ifdef CONFIG_BTRFS_DEBUG
532 	/*
533 	 * If we're fragmenting we don't want to make anybody think we can
534 	 * allocate from this block group until we've had a chance to fragment
535 	 * the free space.
536 	 */
537 	if (btrfs_should_fragment_free_space(block_group))
538 		wakeup = false;
539 #endif
540 	/*
541 	 * We don't want to deadlock with somebody trying to allocate a new
542 	 * extent for the extent root while also trying to search the extent
543 	 * root to add free space.  So we skip locking and search the commit
544 	 * root, since its read-only
545 	 */
546 	path->skip_locking = 1;
547 	path->search_commit_root = 1;
548 	path->reada = READA_FORWARD;
549 
550 	key.objectid = last;
551 	key.offset = 0;
552 	key.type = BTRFS_EXTENT_ITEM_KEY;
553 
554 next:
555 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 	if (ret < 0)
557 		goto out;
558 
559 	leaf = path->nodes[0];
560 	nritems = btrfs_header_nritems(leaf);
561 
562 	while (1) {
563 		if (btrfs_fs_closing(fs_info) > 1) {
564 			last = (u64)-1;
565 			break;
566 		}
567 
568 		if (path->slots[0] < nritems) {
569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 		} else {
571 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 			if (ret)
573 				break;
574 
575 			if (need_resched() ||
576 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
577 				if (wakeup)
578 					caching_ctl->progress = last;
579 				btrfs_release_path(path);
580 				up_read(&fs_info->commit_root_sem);
581 				mutex_unlock(&caching_ctl->mutex);
582 				cond_resched();
583 				mutex_lock(&caching_ctl->mutex);
584 				down_read(&fs_info->commit_root_sem);
585 				goto next;
586 			}
587 
588 			ret = btrfs_next_leaf(extent_root, path);
589 			if (ret < 0)
590 				goto out;
591 			if (ret)
592 				break;
593 			leaf = path->nodes[0];
594 			nritems = btrfs_header_nritems(leaf);
595 			continue;
596 		}
597 
598 		if (key.objectid < last) {
599 			key.objectid = last;
600 			key.offset = 0;
601 			key.type = BTRFS_EXTENT_ITEM_KEY;
602 
603 			if (wakeup)
604 				caching_ctl->progress = last;
605 			btrfs_release_path(path);
606 			goto next;
607 		}
608 
609 		if (key.objectid < block_group->start) {
610 			path->slots[0]++;
611 			continue;
612 		}
613 
614 		if (key.objectid >= block_group->start + block_group->length)
615 			break;
616 
617 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 		    key.type == BTRFS_METADATA_ITEM_KEY) {
619 			total_found += add_new_free_space(block_group, last,
620 							  key.objectid);
621 			if (key.type == BTRFS_METADATA_ITEM_KEY)
622 				last = key.objectid +
623 					fs_info->nodesize;
624 			else
625 				last = key.objectid + key.offset;
626 
627 			if (total_found > CACHING_CTL_WAKE_UP) {
628 				total_found = 0;
629 				if (wakeup)
630 					wake_up(&caching_ctl->wait);
631 			}
632 		}
633 		path->slots[0]++;
634 	}
635 	ret = 0;
636 
637 	total_found += add_new_free_space(block_group, last,
638 				block_group->start + block_group->length);
639 	caching_ctl->progress = (u64)-1;
640 
641 out:
642 	btrfs_free_path(path);
643 	return ret;
644 }
645 
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 	struct btrfs_block_group *block_group;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_caching_control *caching_ctl;
651 	int ret;
652 
653 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 	block_group = caching_ctl->block_group;
655 	fs_info = block_group->fs_info;
656 
657 	mutex_lock(&caching_ctl->mutex);
658 	down_read(&fs_info->commit_root_sem);
659 
660 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 		ret = load_free_space_cache(block_group);
662 		if (ret == 1) {
663 			ret = 0;
664 			goto done;
665 		}
666 
667 		/*
668 		 * We failed to load the space cache, set ourselves to
669 		 * CACHE_STARTED and carry on.
670 		 */
671 		spin_lock(&block_group->lock);
672 		block_group->cached = BTRFS_CACHE_STARTED;
673 		spin_unlock(&block_group->lock);
674 		wake_up(&caching_ctl->wait);
675 	}
676 
677 	/*
678 	 * If we are in the transaction that populated the free space tree we
679 	 * can't actually cache from the free space tree as our commit root and
680 	 * real root are the same, so we could change the contents of the blocks
681 	 * while caching.  Instead do the slow caching in this case, and after
682 	 * the transaction has committed we will be safe.
683 	 */
684 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 		ret = load_free_space_tree(caching_ctl);
687 	else
688 		ret = load_extent_tree_free(caching_ctl);
689 done:
690 	spin_lock(&block_group->lock);
691 	block_group->caching_ctl = NULL;
692 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 	spin_unlock(&block_group->lock);
694 
695 #ifdef CONFIG_BTRFS_DEBUG
696 	if (btrfs_should_fragment_free_space(block_group)) {
697 		u64 bytes_used;
698 
699 		spin_lock(&block_group->space_info->lock);
700 		spin_lock(&block_group->lock);
701 		bytes_used = block_group->length - block_group->used;
702 		block_group->space_info->bytes_used += bytes_used >> 1;
703 		spin_unlock(&block_group->lock);
704 		spin_unlock(&block_group->space_info->lock);
705 		fragment_free_space(block_group);
706 	}
707 #endif
708 
709 	caching_ctl->progress = (u64)-1;
710 
711 	up_read(&fs_info->commit_root_sem);
712 	btrfs_free_excluded_extents(block_group);
713 	mutex_unlock(&caching_ctl->mutex);
714 
715 	wake_up(&caching_ctl->wait);
716 
717 	btrfs_put_caching_control(caching_ctl);
718 	btrfs_put_block_group(block_group);
719 }
720 
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 	DEFINE_WAIT(wait);
724 	struct btrfs_fs_info *fs_info = cache->fs_info;
725 	struct btrfs_caching_control *caching_ctl = NULL;
726 	int ret = 0;
727 
728 	/* Allocator for zoned filesystems does not use the cache at all */
729 	if (btrfs_is_zoned(fs_info))
730 		return 0;
731 
732 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 	if (!caching_ctl)
734 		return -ENOMEM;
735 
736 	INIT_LIST_HEAD(&caching_ctl->list);
737 	mutex_init(&caching_ctl->mutex);
738 	init_waitqueue_head(&caching_ctl->wait);
739 	caching_ctl->block_group = cache;
740 	caching_ctl->progress = cache->start;
741 	refcount_set(&caching_ctl->count, 2);
742 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 
744 	spin_lock(&cache->lock);
745 	if (cache->cached != BTRFS_CACHE_NO) {
746 		kfree(caching_ctl);
747 
748 		caching_ctl = cache->caching_ctl;
749 		if (caching_ctl)
750 			refcount_inc(&caching_ctl->count);
751 		spin_unlock(&cache->lock);
752 		goto out;
753 	}
754 	WARN_ON(cache->caching_ctl);
755 	cache->caching_ctl = caching_ctl;
756 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 		cache->cached = BTRFS_CACHE_FAST;
758 	else
759 		cache->cached = BTRFS_CACHE_STARTED;
760 	cache->has_caching_ctl = 1;
761 	spin_unlock(&cache->lock);
762 
763 	spin_lock(&fs_info->block_group_cache_lock);
764 	refcount_inc(&caching_ctl->count);
765 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 	spin_unlock(&fs_info->block_group_cache_lock);
767 
768 	btrfs_get_block_group(cache);
769 
770 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 	if (load_cache_only && caching_ctl)
773 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 	if (caching_ctl)
775 		btrfs_put_caching_control(caching_ctl);
776 
777 	return ret;
778 }
779 
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 	u64 extra_flags = chunk_to_extended(flags) &
783 				BTRFS_EXTENDED_PROFILE_MASK;
784 
785 	write_seqlock(&fs_info->profiles_lock);
786 	if (flags & BTRFS_BLOCK_GROUP_DATA)
787 		fs_info->avail_data_alloc_bits &= ~extra_flags;
788 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 		fs_info->avail_system_alloc_bits &= ~extra_flags;
792 	write_sequnlock(&fs_info->profiles_lock);
793 }
794 
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 	bool found_raid56 = false;
806 	bool found_raid1c34 = false;
807 
808 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 		struct list_head *head = &fs_info->space_info;
812 		struct btrfs_space_info *sinfo;
813 
814 		list_for_each_entry_rcu(sinfo, head, list) {
815 			down_read(&sinfo->groups_sem);
816 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 				found_raid56 = true;
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 				found_raid1c34 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 				found_raid1c34 = true;
824 			up_read(&sinfo->groups_sem);
825 		}
826 		if (!found_raid56)
827 			btrfs_clear_fs_incompat(fs_info, RAID56);
828 		if (!found_raid1c34)
829 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 	}
831 }
832 
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 				   struct btrfs_path *path,
835 				   struct btrfs_block_group *block_group)
836 {
837 	struct btrfs_fs_info *fs_info = trans->fs_info;
838 	struct btrfs_root *root;
839 	struct btrfs_key key;
840 	int ret;
841 
842 	root = fs_info->extent_root;
843 	key.objectid = block_group->start;
844 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 	key.offset = block_group->length;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 	if (ret > 0)
849 		ret = -ENOENT;
850 	if (ret < 0)
851 		return ret;
852 
853 	ret = btrfs_del_item(trans, root, path);
854 	return ret;
855 }
856 
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 			     u64 group_start, struct extent_map *em)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct btrfs_path *path;
862 	struct btrfs_block_group *block_group;
863 	struct btrfs_free_cluster *cluster;
864 	struct inode *inode;
865 	struct kobject *kobj = NULL;
866 	int ret;
867 	int index;
868 	int factor;
869 	struct btrfs_caching_control *caching_ctl = NULL;
870 	bool remove_em;
871 	bool remove_rsv = false;
872 
873 	block_group = btrfs_lookup_block_group(fs_info, group_start);
874 	BUG_ON(!block_group);
875 	BUG_ON(!block_group->ro);
876 
877 	trace_btrfs_remove_block_group(block_group);
878 	/*
879 	 * Free the reserved super bytes from this block group before
880 	 * remove it.
881 	 */
882 	btrfs_free_excluded_extents(block_group);
883 	btrfs_free_ref_tree_range(fs_info, block_group->start,
884 				  block_group->length);
885 
886 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 	factor = btrfs_bg_type_to_factor(block_group->flags);
888 
889 	/* make sure this block group isn't part of an allocation cluster */
890 	cluster = &fs_info->data_alloc_cluster;
891 	spin_lock(&cluster->refill_lock);
892 	btrfs_return_cluster_to_free_space(block_group, cluster);
893 	spin_unlock(&cluster->refill_lock);
894 
895 	/*
896 	 * make sure this block group isn't part of a metadata
897 	 * allocation cluster
898 	 */
899 	cluster = &fs_info->meta_alloc_cluster;
900 	spin_lock(&cluster->refill_lock);
901 	btrfs_return_cluster_to_free_space(block_group, cluster);
902 	spin_unlock(&cluster->refill_lock);
903 
904 	btrfs_clear_treelog_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->swap_extents) {
1166 		ret = -ETXTBSY;
1167 		goto out;
1168 	}
1169 
1170 	if (cache->ro) {
1171 		cache->ro++;
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	num_bytes = cache->length - cache->reserved - cache->pinned -
1177 		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 
1179 	/*
1180 	 * Data never overcommits, even in mixed mode, so do just the straight
1181 	 * check of left over space in how much we have allocated.
1182 	 */
1183 	if (force) {
1184 		ret = 0;
1185 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187 
1188 		/*
1189 		 * Here we make sure if we mark this bg RO, we still have enough
1190 		 * free space as buffer.
1191 		 */
1192 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 			ret = 0;
1194 	} else {
1195 		/*
1196 		 * We overcommit metadata, so we need to do the
1197 		 * btrfs_can_overcommit check here, and we need to pass in
1198 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 		 * leeway to allow us to mark this block group as read only.
1200 		 */
1201 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 					 BTRFS_RESERVE_NO_FLUSH))
1203 			ret = 0;
1204 	}
1205 
1206 	if (!ret) {
1207 		sinfo->bytes_readonly += num_bytes;
1208 		if (btrfs_is_zoned(cache->fs_info)) {
1209 			/* Migrate zone_unusable bytes to readonly */
1210 			sinfo->bytes_readonly += cache->zone_unusable;
1211 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 			cache->zone_unusable = 0;
1213 		}
1214 		cache->ro++;
1215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 	}
1217 out:
1218 	spin_unlock(&cache->lock);
1219 	spin_unlock(&sinfo->lock);
1220 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 		btrfs_info(cache->fs_info,
1222 			"unable to make block group %llu ro", cache->start);
1223 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 	}
1225 	return ret;
1226 }
1227 
1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_block_group *bg)
1230 {
1231 	struct btrfs_fs_info *fs_info = bg->fs_info;
1232 	struct btrfs_transaction *prev_trans = NULL;
1233 	const u64 start = bg->start;
1234 	const u64 end = start + bg->length - 1;
1235 	int ret;
1236 
1237 	spin_lock(&fs_info->trans_lock);
1238 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 		prev_trans = list_last_entry(&trans->transaction->list,
1240 					     struct btrfs_transaction, list);
1241 		refcount_inc(&prev_trans->use_count);
1242 	}
1243 	spin_unlock(&fs_info->trans_lock);
1244 
1245 	/*
1246 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 	 * task might be running finish_extent_commit() for the previous
1249 	 * transaction N - 1, and have seen a range belonging to the block
1250 	 * group in pinned_extents before we were able to clear the whole block
1251 	 * group range from pinned_extents. This means that task can lookup for
1252 	 * the block group after we unpinned it from pinned_extents and removed
1253 	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 	 */
1255 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 	if (prev_trans) {
1257 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 					EXTENT_DIRTY);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 				EXTENT_DIRTY);
1265 out:
1266 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 	if (prev_trans)
1268 		btrfs_put_transaction(prev_trans);
1269 
1270 	return ret == 0;
1271 }
1272 
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_block_group *block_group;
1280 	struct btrfs_space_info *space_info;
1281 	struct btrfs_trans_handle *trans;
1282 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 	int ret = 0;
1284 
1285 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 		return;
1287 
1288 	/*
1289 	 * Long running balances can keep us blocked here for eternity, so
1290 	 * simply skip deletion if we're unable to get the mutex.
1291 	 */
1292 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 		return;
1294 
1295 	spin_lock(&fs_info->unused_bgs_lock);
1296 	while (!list_empty(&fs_info->unused_bgs)) {
1297 		int trimming;
1298 
1299 		block_group = list_first_entry(&fs_info->unused_bgs,
1300 					       struct btrfs_block_group,
1301 					       bg_list);
1302 		list_del_init(&block_group->bg_list);
1303 
1304 		space_info = block_group->space_info;
1305 
1306 		if (ret || btrfs_mixed_space_info(space_info)) {
1307 			btrfs_put_block_group(block_group);
1308 			continue;
1309 		}
1310 		spin_unlock(&fs_info->unused_bgs_lock);
1311 
1312 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313 
1314 		/* Don't want to race with allocators so take the groups_sem */
1315 		down_write(&space_info->groups_sem);
1316 
1317 		/*
1318 		 * Async discard moves the final block group discard to be prior
1319 		 * to the unused_bgs code path.  Therefore, if it's not fully
1320 		 * trimmed, punt it back to the async discard lists.
1321 		 */
1322 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 		    !btrfs_is_free_space_trimmed(block_group)) {
1324 			trace_btrfs_skip_unused_block_group(block_group);
1325 			up_write(&space_info->groups_sem);
1326 			/* Requeue if we failed because of async discard */
1327 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 						 block_group);
1329 			goto next;
1330 		}
1331 
1332 		spin_lock(&block_group->lock);
1333 		if (block_group->reserved || block_group->pinned ||
1334 		    block_group->used || block_group->ro ||
1335 		    list_is_singular(&block_group->list)) {
1336 			/*
1337 			 * We want to bail if we made new allocations or have
1338 			 * outstanding allocations in this block group.  We do
1339 			 * the ro check in case balance is currently acting on
1340 			 * this block group.
1341 			 */
1342 			trace_btrfs_skip_unused_block_group(block_group);
1343 			spin_unlock(&block_group->lock);
1344 			up_write(&space_info->groups_sem);
1345 			goto next;
1346 		}
1347 		spin_unlock(&block_group->lock);
1348 
1349 		/* We don't want to force the issue, only flip if it's ok. */
1350 		ret = inc_block_group_ro(block_group, 0);
1351 		up_write(&space_info->groups_sem);
1352 		if (ret < 0) {
1353 			ret = 0;
1354 			goto next;
1355 		}
1356 
1357 		/*
1358 		 * Want to do this before we do anything else so we can recover
1359 		 * properly if we fail to join the transaction.
1360 		 */
1361 		trans = btrfs_start_trans_remove_block_group(fs_info,
1362 						     block_group->start);
1363 		if (IS_ERR(trans)) {
1364 			btrfs_dec_block_group_ro(block_group);
1365 			ret = PTR_ERR(trans);
1366 			goto next;
1367 		}
1368 
1369 		/*
1370 		 * We could have pending pinned extents for this block group,
1371 		 * just delete them, we don't care about them anymore.
1372 		 */
1373 		if (!clean_pinned_extents(trans, block_group)) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			goto end_trans;
1376 		}
1377 
1378 		/*
1379 		 * At this point, the block_group is read only and should fail
1380 		 * new allocations.  However, btrfs_finish_extent_commit() can
1381 		 * cause this block_group to be placed back on the discard
1382 		 * lists because now the block_group isn't fully discarded.
1383 		 * Bail here and try again later after discarding everything.
1384 		 */
1385 		spin_lock(&fs_info->discard_ctl.lock);
1386 		if (!list_empty(&block_group->discard_list)) {
1387 			spin_unlock(&fs_info->discard_ctl.lock);
1388 			btrfs_dec_block_group_ro(block_group);
1389 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 						 block_group);
1391 			goto end_trans;
1392 		}
1393 		spin_unlock(&fs_info->discard_ctl.lock);
1394 
1395 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396 		spin_lock(&space_info->lock);
1397 		spin_lock(&block_group->lock);
1398 
1399 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 						     -block_group->pinned);
1401 		space_info->bytes_readonly += block_group->pinned;
1402 		block_group->pinned = 0;
1403 
1404 		spin_unlock(&block_group->lock);
1405 		spin_unlock(&space_info->lock);
1406 
1407 		/*
1408 		 * The normal path here is an unused block group is passed here,
1409 		 * then trimming is handled in the transaction commit path.
1410 		 * Async discard interposes before this to do the trimming
1411 		 * before coming down the unused block group path as trimming
1412 		 * will no longer be done later in the transaction commit path.
1413 		 */
1414 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 			goto flip_async;
1416 
1417 		/*
1418 		 * DISCARD can flip during remount. On zoned filesystems, we
1419 		 * need to reset sequential-required zones.
1420 		 */
1421 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 				btrfs_is_zoned(fs_info);
1423 
1424 		/* Implicit trim during transaction commit. */
1425 		if (trimming)
1426 			btrfs_freeze_block_group(block_group);
1427 
1428 		/*
1429 		 * Btrfs_remove_chunk will abort the transaction if things go
1430 		 * horribly wrong.
1431 		 */
1432 		ret = btrfs_remove_chunk(trans, block_group->start);
1433 
1434 		if (ret) {
1435 			if (trimming)
1436 				btrfs_unfreeze_block_group(block_group);
1437 			goto end_trans;
1438 		}
1439 
1440 		/*
1441 		 * If we're not mounted with -odiscard, we can just forget
1442 		 * about this block group. Otherwise we'll need to wait
1443 		 * until transaction commit to do the actual discard.
1444 		 */
1445 		if (trimming) {
1446 			spin_lock(&fs_info->unused_bgs_lock);
1447 			/*
1448 			 * A concurrent scrub might have added us to the list
1449 			 * fs_info->unused_bgs, so use a list_move operation
1450 			 * to add the block group to the deleted_bgs list.
1451 			 */
1452 			list_move(&block_group->bg_list,
1453 				  &trans->transaction->deleted_bgs);
1454 			spin_unlock(&fs_info->unused_bgs_lock);
1455 			btrfs_get_block_group(block_group);
1456 		}
1457 end_trans:
1458 		btrfs_end_transaction(trans);
1459 next:
1460 		btrfs_put_block_group(block_group);
1461 		spin_lock(&fs_info->unused_bgs_lock);
1462 	}
1463 	spin_unlock(&fs_info->unused_bgs_lock);
1464 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 	return;
1466 
1467 flip_async:
1468 	btrfs_end_transaction(trans);
1469 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 	btrfs_put_block_group(block_group);
1471 	btrfs_discard_punt_unused_bgs_list(fs_info);
1472 }
1473 
1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 {
1476 	struct btrfs_fs_info *fs_info = bg->fs_info;
1477 
1478 	spin_lock(&fs_info->unused_bgs_lock);
1479 	if (list_empty(&bg->bg_list)) {
1480 		btrfs_get_block_group(bg);
1481 		trace_btrfs_add_unused_block_group(bg);
1482 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 	}
1484 	spin_unlock(&fs_info->unused_bgs_lock);
1485 }
1486 
1487 void btrfs_reclaim_bgs_work(struct work_struct *work)
1488 {
1489 	struct btrfs_fs_info *fs_info =
1490 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 	struct btrfs_block_group *bg;
1492 	struct btrfs_space_info *space_info;
1493 	LIST_HEAD(again_list);
1494 
1495 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 		return;
1497 
1498 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 		return;
1500 
1501 	mutex_lock(&fs_info->reclaim_bgs_lock);
1502 	spin_lock(&fs_info->unused_bgs_lock);
1503 	while (!list_empty(&fs_info->reclaim_bgs)) {
1504 		int ret = 0;
1505 
1506 		bg = list_first_entry(&fs_info->reclaim_bgs,
1507 				      struct btrfs_block_group,
1508 				      bg_list);
1509 		list_del_init(&bg->bg_list);
1510 
1511 		space_info = bg->space_info;
1512 		spin_unlock(&fs_info->unused_bgs_lock);
1513 
1514 		/* Don't race with allocators so take the groups_sem */
1515 		down_write(&space_info->groups_sem);
1516 
1517 		spin_lock(&bg->lock);
1518 		if (bg->reserved || bg->pinned || bg->ro) {
1519 			/*
1520 			 * We want to bail if we made new allocations or have
1521 			 * outstanding allocations in this block group.  We do
1522 			 * the ro check in case balance is currently acting on
1523 			 * this block group.
1524 			 */
1525 			spin_unlock(&bg->lock);
1526 			up_write(&space_info->groups_sem);
1527 			goto next;
1528 		}
1529 		spin_unlock(&bg->lock);
1530 
1531 		/* Get out fast, in case we're unmounting the filesystem */
1532 		if (btrfs_fs_closing(fs_info)) {
1533 			up_write(&space_info->groups_sem);
1534 			goto next;
1535 		}
1536 
1537 		ret = inc_block_group_ro(bg, 0);
1538 		up_write(&space_info->groups_sem);
1539 		if (ret < 0)
1540 			goto next;
1541 
1542 		btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used",
1543 				bg->start, div_u64(bg->used * 100, bg->length));
1544 		trace_btrfs_reclaim_block_group(bg);
1545 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1546 		if (ret)
1547 			btrfs_err(fs_info, "error relocating chunk %llu",
1548 				  bg->start);
1549 
1550 next:
1551 		spin_lock(&fs_info->unused_bgs_lock);
1552 		if (ret == -EAGAIN && list_empty(&bg->bg_list))
1553 			list_add_tail(&bg->bg_list, &again_list);
1554 		else
1555 			btrfs_put_block_group(bg);
1556 	}
1557 	list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1558 	spin_unlock(&fs_info->unused_bgs_lock);
1559 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1560 	btrfs_exclop_finish(fs_info);
1561 }
1562 
1563 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1564 {
1565 	spin_lock(&fs_info->unused_bgs_lock);
1566 	if (!list_empty(&fs_info->reclaim_bgs))
1567 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1568 	spin_unlock(&fs_info->unused_bgs_lock);
1569 }
1570 
1571 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1572 {
1573 	struct btrfs_fs_info *fs_info = bg->fs_info;
1574 
1575 	spin_lock(&fs_info->unused_bgs_lock);
1576 	if (list_empty(&bg->bg_list)) {
1577 		btrfs_get_block_group(bg);
1578 		trace_btrfs_add_reclaim_block_group(bg);
1579 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1580 	}
1581 	spin_unlock(&fs_info->unused_bgs_lock);
1582 }
1583 
1584 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1585 			   struct btrfs_path *path)
1586 {
1587 	struct extent_map_tree *em_tree;
1588 	struct extent_map *em;
1589 	struct btrfs_block_group_item bg;
1590 	struct extent_buffer *leaf;
1591 	int slot;
1592 	u64 flags;
1593 	int ret = 0;
1594 
1595 	slot = path->slots[0];
1596 	leaf = path->nodes[0];
1597 
1598 	em_tree = &fs_info->mapping_tree;
1599 	read_lock(&em_tree->lock);
1600 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1601 	read_unlock(&em_tree->lock);
1602 	if (!em) {
1603 		btrfs_err(fs_info,
1604 			  "logical %llu len %llu found bg but no related chunk",
1605 			  key->objectid, key->offset);
1606 		return -ENOENT;
1607 	}
1608 
1609 	if (em->start != key->objectid || em->len != key->offset) {
1610 		btrfs_err(fs_info,
1611 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1612 			key->objectid, key->offset, em->start, em->len);
1613 		ret = -EUCLEAN;
1614 		goto out_free_em;
1615 	}
1616 
1617 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1618 			   sizeof(bg));
1619 	flags = btrfs_stack_block_group_flags(&bg) &
1620 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1621 
1622 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1623 		btrfs_err(fs_info,
1624 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1625 			  key->objectid, key->offset, flags,
1626 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1627 		ret = -EUCLEAN;
1628 	}
1629 
1630 out_free_em:
1631 	free_extent_map(em);
1632 	return ret;
1633 }
1634 
1635 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1636 				  struct btrfs_path *path,
1637 				  struct btrfs_key *key)
1638 {
1639 	struct btrfs_root *root = fs_info->extent_root;
1640 	int ret;
1641 	struct btrfs_key found_key;
1642 	struct extent_buffer *leaf;
1643 	int slot;
1644 
1645 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	while (1) {
1650 		slot = path->slots[0];
1651 		leaf = path->nodes[0];
1652 		if (slot >= btrfs_header_nritems(leaf)) {
1653 			ret = btrfs_next_leaf(root, path);
1654 			if (ret == 0)
1655 				continue;
1656 			if (ret < 0)
1657 				goto out;
1658 			break;
1659 		}
1660 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1661 
1662 		if (found_key.objectid >= key->objectid &&
1663 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1664 			ret = read_bg_from_eb(fs_info, &found_key, path);
1665 			break;
1666 		}
1667 
1668 		path->slots[0]++;
1669 	}
1670 out:
1671 	return ret;
1672 }
1673 
1674 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1675 {
1676 	u64 extra_flags = chunk_to_extended(flags) &
1677 				BTRFS_EXTENDED_PROFILE_MASK;
1678 
1679 	write_seqlock(&fs_info->profiles_lock);
1680 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1681 		fs_info->avail_data_alloc_bits |= extra_flags;
1682 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1683 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1684 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1685 		fs_info->avail_system_alloc_bits |= extra_flags;
1686 	write_sequnlock(&fs_info->profiles_lock);
1687 }
1688 
1689 /**
1690  * Map a physical disk address to a list of logical addresses
1691  *
1692  * @fs_info:       the filesystem
1693  * @chunk_start:   logical address of block group
1694  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1695  * @physical:	   physical address to map to logical addresses
1696  * @logical:	   return array of logical addresses which map to @physical
1697  * @naddrs:	   length of @logical
1698  * @stripe_len:    size of IO stripe for the given block group
1699  *
1700  * Maps a particular @physical disk address to a list of @logical addresses.
1701  * Used primarily to exclude those portions of a block group that contain super
1702  * block copies.
1703  */
1704 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1705 		     struct block_device *bdev, u64 physical, u64 **logical,
1706 		     int *naddrs, int *stripe_len)
1707 {
1708 	struct extent_map *em;
1709 	struct map_lookup *map;
1710 	u64 *buf;
1711 	u64 bytenr;
1712 	u64 data_stripe_length;
1713 	u64 io_stripe_size;
1714 	int i, nr = 0;
1715 	int ret = 0;
1716 
1717 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1718 	if (IS_ERR(em))
1719 		return -EIO;
1720 
1721 	map = em->map_lookup;
1722 	data_stripe_length = em->orig_block_len;
1723 	io_stripe_size = map->stripe_len;
1724 	chunk_start = em->start;
1725 
1726 	/* For RAID5/6 adjust to a full IO stripe length */
1727 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1728 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1729 
1730 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1731 	if (!buf) {
1732 		ret = -ENOMEM;
1733 		goto out;
1734 	}
1735 
1736 	for (i = 0; i < map->num_stripes; i++) {
1737 		bool already_inserted = false;
1738 		u64 stripe_nr;
1739 		u64 offset;
1740 		int j;
1741 
1742 		if (!in_range(physical, map->stripes[i].physical,
1743 			      data_stripe_length))
1744 			continue;
1745 
1746 		if (bdev && map->stripes[i].dev->bdev != bdev)
1747 			continue;
1748 
1749 		stripe_nr = physical - map->stripes[i].physical;
1750 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1751 
1752 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1753 			stripe_nr = stripe_nr * map->num_stripes + i;
1754 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1755 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1756 			stripe_nr = stripe_nr * map->num_stripes + i;
1757 		}
1758 		/*
1759 		 * The remaining case would be for RAID56, multiply by
1760 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1761 		 * instead of map->stripe_len
1762 		 */
1763 
1764 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1765 
1766 		/* Ensure we don't add duplicate addresses */
1767 		for (j = 0; j < nr; j++) {
1768 			if (buf[j] == bytenr) {
1769 				already_inserted = true;
1770 				break;
1771 			}
1772 		}
1773 
1774 		if (!already_inserted)
1775 			buf[nr++] = bytenr;
1776 	}
1777 
1778 	*logical = buf;
1779 	*naddrs = nr;
1780 	*stripe_len = io_stripe_size;
1781 out:
1782 	free_extent_map(em);
1783 	return ret;
1784 }
1785 
1786 static int exclude_super_stripes(struct btrfs_block_group *cache)
1787 {
1788 	struct btrfs_fs_info *fs_info = cache->fs_info;
1789 	const bool zoned = btrfs_is_zoned(fs_info);
1790 	u64 bytenr;
1791 	u64 *logical;
1792 	int stripe_len;
1793 	int i, nr, ret;
1794 
1795 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1796 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1797 		cache->bytes_super += stripe_len;
1798 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1799 						stripe_len);
1800 		if (ret)
1801 			return ret;
1802 	}
1803 
1804 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1805 		bytenr = btrfs_sb_offset(i);
1806 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1807 				       bytenr, &logical, &nr, &stripe_len);
1808 		if (ret)
1809 			return ret;
1810 
1811 		/* Shouldn't have super stripes in sequential zones */
1812 		if (zoned && nr) {
1813 			btrfs_err(fs_info,
1814 			"zoned: block group %llu must not contain super block",
1815 				  cache->start);
1816 			return -EUCLEAN;
1817 		}
1818 
1819 		while (nr--) {
1820 			u64 len = min_t(u64, stripe_len,
1821 				cache->start + cache->length - logical[nr]);
1822 
1823 			cache->bytes_super += len;
1824 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1825 							len);
1826 			if (ret) {
1827 				kfree(logical);
1828 				return ret;
1829 			}
1830 		}
1831 
1832 		kfree(logical);
1833 	}
1834 	return 0;
1835 }
1836 
1837 static void link_block_group(struct btrfs_block_group *cache)
1838 {
1839 	struct btrfs_space_info *space_info = cache->space_info;
1840 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1841 
1842 	down_write(&space_info->groups_sem);
1843 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1844 	up_write(&space_info->groups_sem);
1845 }
1846 
1847 static struct btrfs_block_group *btrfs_create_block_group_cache(
1848 		struct btrfs_fs_info *fs_info, u64 start)
1849 {
1850 	struct btrfs_block_group *cache;
1851 
1852 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1853 	if (!cache)
1854 		return NULL;
1855 
1856 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1857 					GFP_NOFS);
1858 	if (!cache->free_space_ctl) {
1859 		kfree(cache);
1860 		return NULL;
1861 	}
1862 
1863 	cache->start = start;
1864 
1865 	cache->fs_info = fs_info;
1866 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1867 
1868 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1869 
1870 	refcount_set(&cache->refs, 1);
1871 	spin_lock_init(&cache->lock);
1872 	init_rwsem(&cache->data_rwsem);
1873 	INIT_LIST_HEAD(&cache->list);
1874 	INIT_LIST_HEAD(&cache->cluster_list);
1875 	INIT_LIST_HEAD(&cache->bg_list);
1876 	INIT_LIST_HEAD(&cache->ro_list);
1877 	INIT_LIST_HEAD(&cache->discard_list);
1878 	INIT_LIST_HEAD(&cache->dirty_list);
1879 	INIT_LIST_HEAD(&cache->io_list);
1880 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1881 	atomic_set(&cache->frozen, 0);
1882 	mutex_init(&cache->free_space_lock);
1883 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1884 
1885 	return cache;
1886 }
1887 
1888 /*
1889  * Iterate all chunks and verify that each of them has the corresponding block
1890  * group
1891  */
1892 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1893 {
1894 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1895 	struct extent_map *em;
1896 	struct btrfs_block_group *bg;
1897 	u64 start = 0;
1898 	int ret = 0;
1899 
1900 	while (1) {
1901 		read_lock(&map_tree->lock);
1902 		/*
1903 		 * lookup_extent_mapping will return the first extent map
1904 		 * intersecting the range, so setting @len to 1 is enough to
1905 		 * get the first chunk.
1906 		 */
1907 		em = lookup_extent_mapping(map_tree, start, 1);
1908 		read_unlock(&map_tree->lock);
1909 		if (!em)
1910 			break;
1911 
1912 		bg = btrfs_lookup_block_group(fs_info, em->start);
1913 		if (!bg) {
1914 			btrfs_err(fs_info,
1915 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1916 				     em->start, em->len);
1917 			ret = -EUCLEAN;
1918 			free_extent_map(em);
1919 			break;
1920 		}
1921 		if (bg->start != em->start || bg->length != em->len ||
1922 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1923 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1924 			btrfs_err(fs_info,
1925 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1926 				em->start, em->len,
1927 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1928 				bg->start, bg->length,
1929 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1930 			ret = -EUCLEAN;
1931 			free_extent_map(em);
1932 			btrfs_put_block_group(bg);
1933 			break;
1934 		}
1935 		start = em->start + em->len;
1936 		free_extent_map(em);
1937 		btrfs_put_block_group(bg);
1938 	}
1939 	return ret;
1940 }
1941 
1942 static int read_one_block_group(struct btrfs_fs_info *info,
1943 				struct btrfs_block_group_item *bgi,
1944 				const struct btrfs_key *key,
1945 				int need_clear)
1946 {
1947 	struct btrfs_block_group *cache;
1948 	struct btrfs_space_info *space_info;
1949 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1950 	int ret;
1951 
1952 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1953 
1954 	cache = btrfs_create_block_group_cache(info, key->objectid);
1955 	if (!cache)
1956 		return -ENOMEM;
1957 
1958 	cache->length = key->offset;
1959 	cache->used = btrfs_stack_block_group_used(bgi);
1960 	cache->flags = btrfs_stack_block_group_flags(bgi);
1961 
1962 	set_free_space_tree_thresholds(cache);
1963 
1964 	if (need_clear) {
1965 		/*
1966 		 * When we mount with old space cache, we need to
1967 		 * set BTRFS_DC_CLEAR and set dirty flag.
1968 		 *
1969 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1970 		 *    truncate the old free space cache inode and
1971 		 *    setup a new one.
1972 		 * b) Setting 'dirty flag' makes sure that we flush
1973 		 *    the new space cache info onto disk.
1974 		 */
1975 		if (btrfs_test_opt(info, SPACE_CACHE))
1976 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1977 	}
1978 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1979 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1980 			btrfs_err(info,
1981 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1982 				  cache->start);
1983 			ret = -EINVAL;
1984 			goto error;
1985 	}
1986 
1987 	ret = btrfs_load_block_group_zone_info(cache, false);
1988 	if (ret) {
1989 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1990 			  cache->start);
1991 		goto error;
1992 	}
1993 
1994 	/*
1995 	 * We need to exclude the super stripes now so that the space info has
1996 	 * super bytes accounted for, otherwise we'll think we have more space
1997 	 * than we actually do.
1998 	 */
1999 	ret = exclude_super_stripes(cache);
2000 	if (ret) {
2001 		/* We may have excluded something, so call this just in case. */
2002 		btrfs_free_excluded_extents(cache);
2003 		goto error;
2004 	}
2005 
2006 	/*
2007 	 * For zoned filesystem, space after the allocation offset is the only
2008 	 * free space for a block group. So, we don't need any caching work.
2009 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2010 	 * zone_unusable space.
2011 	 *
2012 	 * For regular filesystem, check for two cases, either we are full, and
2013 	 * therefore don't need to bother with the caching work since we won't
2014 	 * find any space, or we are empty, and we can just add all the space
2015 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2016 	 * in the full case.
2017 	 */
2018 	if (btrfs_is_zoned(info)) {
2019 		btrfs_calc_zone_unusable(cache);
2020 	} else if (cache->length == cache->used) {
2021 		cache->last_byte_to_unpin = (u64)-1;
2022 		cache->cached = BTRFS_CACHE_FINISHED;
2023 		btrfs_free_excluded_extents(cache);
2024 	} else if (cache->used == 0) {
2025 		cache->last_byte_to_unpin = (u64)-1;
2026 		cache->cached = BTRFS_CACHE_FINISHED;
2027 		add_new_free_space(cache, cache->start,
2028 				   cache->start + cache->length);
2029 		btrfs_free_excluded_extents(cache);
2030 	}
2031 
2032 	ret = btrfs_add_block_group_cache(info, cache);
2033 	if (ret) {
2034 		btrfs_remove_free_space_cache(cache);
2035 		goto error;
2036 	}
2037 	trace_btrfs_add_block_group(info, cache, 0);
2038 	btrfs_update_space_info(info, cache->flags, cache->length,
2039 				cache->used, cache->bytes_super,
2040 				cache->zone_unusable, &space_info);
2041 
2042 	cache->space_info = space_info;
2043 
2044 	link_block_group(cache);
2045 
2046 	set_avail_alloc_bits(info, cache->flags);
2047 	if (btrfs_chunk_readonly(info, cache->start)) {
2048 		inc_block_group_ro(cache, 1);
2049 	} else if (cache->used == 0) {
2050 		ASSERT(list_empty(&cache->bg_list));
2051 		if (btrfs_test_opt(info, DISCARD_ASYNC))
2052 			btrfs_discard_queue_work(&info->discard_ctl, cache);
2053 		else
2054 			btrfs_mark_bg_unused(cache);
2055 	}
2056 	return 0;
2057 error:
2058 	btrfs_put_block_group(cache);
2059 	return ret;
2060 }
2061 
2062 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2063 {
2064 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2065 	struct btrfs_space_info *space_info;
2066 	struct rb_node *node;
2067 	int ret = 0;
2068 
2069 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2070 		struct extent_map *em;
2071 		struct map_lookup *map;
2072 		struct btrfs_block_group *bg;
2073 
2074 		em = rb_entry(node, struct extent_map, rb_node);
2075 		map = em->map_lookup;
2076 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2077 		if (!bg) {
2078 			ret = -ENOMEM;
2079 			break;
2080 		}
2081 
2082 		/* Fill dummy cache as FULL */
2083 		bg->length = em->len;
2084 		bg->flags = map->type;
2085 		bg->last_byte_to_unpin = (u64)-1;
2086 		bg->cached = BTRFS_CACHE_FINISHED;
2087 		bg->used = em->len;
2088 		bg->flags = map->type;
2089 		ret = btrfs_add_block_group_cache(fs_info, bg);
2090 		if (ret) {
2091 			btrfs_remove_free_space_cache(bg);
2092 			btrfs_put_block_group(bg);
2093 			break;
2094 		}
2095 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2096 					0, 0, &space_info);
2097 		bg->space_info = space_info;
2098 		link_block_group(bg);
2099 
2100 		set_avail_alloc_bits(fs_info, bg->flags);
2101 	}
2102 	if (!ret)
2103 		btrfs_init_global_block_rsv(fs_info);
2104 	return ret;
2105 }
2106 
2107 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2108 {
2109 	struct btrfs_path *path;
2110 	int ret;
2111 	struct btrfs_block_group *cache;
2112 	struct btrfs_space_info *space_info;
2113 	struct btrfs_key key;
2114 	int need_clear = 0;
2115 	u64 cache_gen;
2116 
2117 	if (!info->extent_root)
2118 		return fill_dummy_bgs(info);
2119 
2120 	key.objectid = 0;
2121 	key.offset = 0;
2122 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2123 	path = btrfs_alloc_path();
2124 	if (!path)
2125 		return -ENOMEM;
2126 
2127 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2128 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2129 	    btrfs_super_generation(info->super_copy) != cache_gen)
2130 		need_clear = 1;
2131 	if (btrfs_test_opt(info, CLEAR_CACHE))
2132 		need_clear = 1;
2133 
2134 	while (1) {
2135 		struct btrfs_block_group_item bgi;
2136 		struct extent_buffer *leaf;
2137 		int slot;
2138 
2139 		ret = find_first_block_group(info, path, &key);
2140 		if (ret > 0)
2141 			break;
2142 		if (ret != 0)
2143 			goto error;
2144 
2145 		leaf = path->nodes[0];
2146 		slot = path->slots[0];
2147 
2148 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2149 				   sizeof(bgi));
2150 
2151 		btrfs_item_key_to_cpu(leaf, &key, slot);
2152 		btrfs_release_path(path);
2153 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2154 		if (ret < 0)
2155 			goto error;
2156 		key.objectid += key.offset;
2157 		key.offset = 0;
2158 	}
2159 	btrfs_release_path(path);
2160 
2161 	list_for_each_entry(space_info, &info->space_info, list) {
2162 		int i;
2163 
2164 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2165 			if (list_empty(&space_info->block_groups[i]))
2166 				continue;
2167 			cache = list_first_entry(&space_info->block_groups[i],
2168 						 struct btrfs_block_group,
2169 						 list);
2170 			btrfs_sysfs_add_block_group_type(cache);
2171 		}
2172 
2173 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2174 		      (BTRFS_BLOCK_GROUP_RAID10 |
2175 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2176 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2177 		       BTRFS_BLOCK_GROUP_DUP)))
2178 			continue;
2179 		/*
2180 		 * Avoid allocating from un-mirrored block group if there are
2181 		 * mirrored block groups.
2182 		 */
2183 		list_for_each_entry(cache,
2184 				&space_info->block_groups[BTRFS_RAID_RAID0],
2185 				list)
2186 			inc_block_group_ro(cache, 1);
2187 		list_for_each_entry(cache,
2188 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2189 				list)
2190 			inc_block_group_ro(cache, 1);
2191 	}
2192 
2193 	btrfs_init_global_block_rsv(info);
2194 	ret = check_chunk_block_group_mappings(info);
2195 error:
2196 	btrfs_free_path(path);
2197 	return ret;
2198 }
2199 
2200 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2201 				   struct btrfs_block_group *block_group)
2202 {
2203 	struct btrfs_fs_info *fs_info = trans->fs_info;
2204 	struct btrfs_block_group_item bgi;
2205 	struct btrfs_root *root;
2206 	struct btrfs_key key;
2207 
2208 	spin_lock(&block_group->lock);
2209 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2210 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2211 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2212 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2213 	key.objectid = block_group->start;
2214 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2215 	key.offset = block_group->length;
2216 	spin_unlock(&block_group->lock);
2217 
2218 	root = fs_info->extent_root;
2219 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2220 }
2221 
2222 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2223 {
2224 	struct btrfs_fs_info *fs_info = trans->fs_info;
2225 	struct btrfs_block_group *block_group;
2226 	int ret = 0;
2227 
2228 	if (!trans->can_flush_pending_bgs)
2229 		return;
2230 
2231 	while (!list_empty(&trans->new_bgs)) {
2232 		int index;
2233 
2234 		block_group = list_first_entry(&trans->new_bgs,
2235 					       struct btrfs_block_group,
2236 					       bg_list);
2237 		if (ret)
2238 			goto next;
2239 
2240 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2241 
2242 		ret = insert_block_group_item(trans, block_group);
2243 		if (ret)
2244 			btrfs_abort_transaction(trans, ret);
2245 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2246 					block_group->length);
2247 		if (ret)
2248 			btrfs_abort_transaction(trans, ret);
2249 		add_block_group_free_space(trans, block_group);
2250 
2251 		/*
2252 		 * If we restriped during balance, we may have added a new raid
2253 		 * type, so now add the sysfs entries when it is safe to do so.
2254 		 * We don't have to worry about locking here as it's handled in
2255 		 * btrfs_sysfs_add_block_group_type.
2256 		 */
2257 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2258 			btrfs_sysfs_add_block_group_type(block_group);
2259 
2260 		/* Already aborted the transaction if it failed. */
2261 next:
2262 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2263 		list_del_init(&block_group->bg_list);
2264 	}
2265 	btrfs_trans_release_chunk_metadata(trans);
2266 }
2267 
2268 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2269 			   u64 type, u64 chunk_offset, u64 size)
2270 {
2271 	struct btrfs_fs_info *fs_info = trans->fs_info;
2272 	struct btrfs_block_group *cache;
2273 	int ret;
2274 
2275 	btrfs_set_log_full_commit(trans);
2276 
2277 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2278 	if (!cache)
2279 		return -ENOMEM;
2280 
2281 	cache->length = size;
2282 	set_free_space_tree_thresholds(cache);
2283 	cache->used = bytes_used;
2284 	cache->flags = type;
2285 	cache->last_byte_to_unpin = (u64)-1;
2286 	cache->cached = BTRFS_CACHE_FINISHED;
2287 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2288 		cache->needs_free_space = 1;
2289 
2290 	ret = btrfs_load_block_group_zone_info(cache, true);
2291 	if (ret) {
2292 		btrfs_put_block_group(cache);
2293 		return ret;
2294 	}
2295 
2296 	ret = exclude_super_stripes(cache);
2297 	if (ret) {
2298 		/* We may have excluded something, so call this just in case */
2299 		btrfs_free_excluded_extents(cache);
2300 		btrfs_put_block_group(cache);
2301 		return ret;
2302 	}
2303 
2304 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2305 
2306 	btrfs_free_excluded_extents(cache);
2307 
2308 #ifdef CONFIG_BTRFS_DEBUG
2309 	if (btrfs_should_fragment_free_space(cache)) {
2310 		u64 new_bytes_used = size - bytes_used;
2311 
2312 		bytes_used += new_bytes_used >> 1;
2313 		fragment_free_space(cache);
2314 	}
2315 #endif
2316 	/*
2317 	 * Ensure the corresponding space_info object is created and
2318 	 * assigned to our block group. We want our bg to be added to the rbtree
2319 	 * with its ->space_info set.
2320 	 */
2321 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2322 	ASSERT(cache->space_info);
2323 
2324 	ret = btrfs_add_block_group_cache(fs_info, cache);
2325 	if (ret) {
2326 		btrfs_remove_free_space_cache(cache);
2327 		btrfs_put_block_group(cache);
2328 		return ret;
2329 	}
2330 
2331 	/*
2332 	 * Now that our block group has its ->space_info set and is inserted in
2333 	 * the rbtree, update the space info's counters.
2334 	 */
2335 	trace_btrfs_add_block_group(fs_info, cache, 1);
2336 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2337 				cache->bytes_super, 0, &cache->space_info);
2338 	btrfs_update_global_block_rsv(fs_info);
2339 
2340 	link_block_group(cache);
2341 
2342 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2343 	trans->delayed_ref_updates++;
2344 	btrfs_update_delayed_refs_rsv(trans);
2345 
2346 	set_avail_alloc_bits(fs_info, type);
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Mark one block group RO, can be called several times for the same block
2352  * group.
2353  *
2354  * @cache:		the destination block group
2355  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2356  * 			ensure we still have some free space after marking this
2357  * 			block group RO.
2358  */
2359 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2360 			     bool do_chunk_alloc)
2361 {
2362 	struct btrfs_fs_info *fs_info = cache->fs_info;
2363 	struct btrfs_trans_handle *trans;
2364 	u64 alloc_flags;
2365 	int ret;
2366 	bool dirty_bg_running;
2367 
2368 	do {
2369 		trans = btrfs_join_transaction(fs_info->extent_root);
2370 		if (IS_ERR(trans))
2371 			return PTR_ERR(trans);
2372 
2373 		dirty_bg_running = false;
2374 
2375 		/*
2376 		 * We're not allowed to set block groups readonly after the dirty
2377 		 * block group cache has started writing.  If it already started,
2378 		 * back off and let this transaction commit.
2379 		 */
2380 		mutex_lock(&fs_info->ro_block_group_mutex);
2381 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2382 			u64 transid = trans->transid;
2383 
2384 			mutex_unlock(&fs_info->ro_block_group_mutex);
2385 			btrfs_end_transaction(trans);
2386 
2387 			ret = btrfs_wait_for_commit(fs_info, transid);
2388 			if (ret)
2389 				return ret;
2390 			dirty_bg_running = true;
2391 		}
2392 	} while (dirty_bg_running);
2393 
2394 	if (do_chunk_alloc) {
2395 		/*
2396 		 * If we are changing raid levels, try to allocate a
2397 		 * corresponding block group with the new raid level.
2398 		 */
2399 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2400 		if (alloc_flags != cache->flags) {
2401 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2402 						CHUNK_ALLOC_FORCE);
2403 			/*
2404 			 * ENOSPC is allowed here, we may have enough space
2405 			 * already allocated at the new raid level to carry on
2406 			 */
2407 			if (ret == -ENOSPC)
2408 				ret = 0;
2409 			if (ret < 0)
2410 				goto out;
2411 		}
2412 	}
2413 
2414 	ret = inc_block_group_ro(cache, 0);
2415 	if (!do_chunk_alloc || ret == -ETXTBSY)
2416 		goto unlock_out;
2417 	if (!ret)
2418 		goto out;
2419 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2420 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2421 	if (ret < 0)
2422 		goto out;
2423 	ret = inc_block_group_ro(cache, 0);
2424 	if (ret == -ETXTBSY)
2425 		goto unlock_out;
2426 out:
2427 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2428 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2429 		mutex_lock(&fs_info->chunk_mutex);
2430 		check_system_chunk(trans, alloc_flags);
2431 		mutex_unlock(&fs_info->chunk_mutex);
2432 	}
2433 unlock_out:
2434 	mutex_unlock(&fs_info->ro_block_group_mutex);
2435 
2436 	btrfs_end_transaction(trans);
2437 	return ret;
2438 }
2439 
2440 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2441 {
2442 	struct btrfs_space_info *sinfo = cache->space_info;
2443 	u64 num_bytes;
2444 
2445 	BUG_ON(!cache->ro);
2446 
2447 	spin_lock(&sinfo->lock);
2448 	spin_lock(&cache->lock);
2449 	if (!--cache->ro) {
2450 		if (btrfs_is_zoned(cache->fs_info)) {
2451 			/* Migrate zone_unusable bytes back */
2452 			cache->zone_unusable = cache->alloc_offset - cache->used;
2453 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2454 			sinfo->bytes_readonly -= cache->zone_unusable;
2455 		}
2456 		num_bytes = cache->length - cache->reserved -
2457 			    cache->pinned - cache->bytes_super -
2458 			    cache->zone_unusable - cache->used;
2459 		sinfo->bytes_readonly -= num_bytes;
2460 		list_del_init(&cache->ro_list);
2461 	}
2462 	spin_unlock(&cache->lock);
2463 	spin_unlock(&sinfo->lock);
2464 }
2465 
2466 static int update_block_group_item(struct btrfs_trans_handle *trans,
2467 				   struct btrfs_path *path,
2468 				   struct btrfs_block_group *cache)
2469 {
2470 	struct btrfs_fs_info *fs_info = trans->fs_info;
2471 	int ret;
2472 	struct btrfs_root *root = fs_info->extent_root;
2473 	unsigned long bi;
2474 	struct extent_buffer *leaf;
2475 	struct btrfs_block_group_item bgi;
2476 	struct btrfs_key key;
2477 
2478 	key.objectid = cache->start;
2479 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2480 	key.offset = cache->length;
2481 
2482 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2483 	if (ret) {
2484 		if (ret > 0)
2485 			ret = -ENOENT;
2486 		goto fail;
2487 	}
2488 
2489 	leaf = path->nodes[0];
2490 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2491 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2492 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2493 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2494 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2495 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2496 	btrfs_mark_buffer_dirty(leaf);
2497 fail:
2498 	btrfs_release_path(path);
2499 	return ret;
2500 
2501 }
2502 
2503 static int cache_save_setup(struct btrfs_block_group *block_group,
2504 			    struct btrfs_trans_handle *trans,
2505 			    struct btrfs_path *path)
2506 {
2507 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2508 	struct btrfs_root *root = fs_info->tree_root;
2509 	struct inode *inode = NULL;
2510 	struct extent_changeset *data_reserved = NULL;
2511 	u64 alloc_hint = 0;
2512 	int dcs = BTRFS_DC_ERROR;
2513 	u64 cache_size = 0;
2514 	int retries = 0;
2515 	int ret = 0;
2516 
2517 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2518 		return 0;
2519 
2520 	/*
2521 	 * If this block group is smaller than 100 megs don't bother caching the
2522 	 * block group.
2523 	 */
2524 	if (block_group->length < (100 * SZ_1M)) {
2525 		spin_lock(&block_group->lock);
2526 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2527 		spin_unlock(&block_group->lock);
2528 		return 0;
2529 	}
2530 
2531 	if (TRANS_ABORTED(trans))
2532 		return 0;
2533 again:
2534 	inode = lookup_free_space_inode(block_group, path);
2535 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2536 		ret = PTR_ERR(inode);
2537 		btrfs_release_path(path);
2538 		goto out;
2539 	}
2540 
2541 	if (IS_ERR(inode)) {
2542 		BUG_ON(retries);
2543 		retries++;
2544 
2545 		if (block_group->ro)
2546 			goto out_free;
2547 
2548 		ret = create_free_space_inode(trans, block_group, path);
2549 		if (ret)
2550 			goto out_free;
2551 		goto again;
2552 	}
2553 
2554 	/*
2555 	 * We want to set the generation to 0, that way if anything goes wrong
2556 	 * from here on out we know not to trust this cache when we load up next
2557 	 * time.
2558 	 */
2559 	BTRFS_I(inode)->generation = 0;
2560 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2561 	if (ret) {
2562 		/*
2563 		 * So theoretically we could recover from this, simply set the
2564 		 * super cache generation to 0 so we know to invalidate the
2565 		 * cache, but then we'd have to keep track of the block groups
2566 		 * that fail this way so we know we _have_ to reset this cache
2567 		 * before the next commit or risk reading stale cache.  So to
2568 		 * limit our exposure to horrible edge cases lets just abort the
2569 		 * transaction, this only happens in really bad situations
2570 		 * anyway.
2571 		 */
2572 		btrfs_abort_transaction(trans, ret);
2573 		goto out_put;
2574 	}
2575 	WARN_ON(ret);
2576 
2577 	/* We've already setup this transaction, go ahead and exit */
2578 	if (block_group->cache_generation == trans->transid &&
2579 	    i_size_read(inode)) {
2580 		dcs = BTRFS_DC_SETUP;
2581 		goto out_put;
2582 	}
2583 
2584 	if (i_size_read(inode) > 0) {
2585 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2586 					&fs_info->global_block_rsv);
2587 		if (ret)
2588 			goto out_put;
2589 
2590 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2591 		if (ret)
2592 			goto out_put;
2593 	}
2594 
2595 	spin_lock(&block_group->lock);
2596 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2597 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2598 		/*
2599 		 * don't bother trying to write stuff out _if_
2600 		 * a) we're not cached,
2601 		 * b) we're with nospace_cache mount option,
2602 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2603 		 */
2604 		dcs = BTRFS_DC_WRITTEN;
2605 		spin_unlock(&block_group->lock);
2606 		goto out_put;
2607 	}
2608 	spin_unlock(&block_group->lock);
2609 
2610 	/*
2611 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2612 	 * skip doing the setup, we've already cleared the cache so we're safe.
2613 	 */
2614 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2615 		ret = -ENOSPC;
2616 		goto out_put;
2617 	}
2618 
2619 	/*
2620 	 * Try to preallocate enough space based on how big the block group is.
2621 	 * Keep in mind this has to include any pinned space which could end up
2622 	 * taking up quite a bit since it's not folded into the other space
2623 	 * cache.
2624 	 */
2625 	cache_size = div_u64(block_group->length, SZ_256M);
2626 	if (!cache_size)
2627 		cache_size = 1;
2628 
2629 	cache_size *= 16;
2630 	cache_size *= fs_info->sectorsize;
2631 
2632 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2633 					  cache_size);
2634 	if (ret)
2635 		goto out_put;
2636 
2637 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2638 					      cache_size, cache_size,
2639 					      &alloc_hint);
2640 	/*
2641 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2642 	 * of metadata or split extents when writing the cache out, which means
2643 	 * we can enospc if we are heavily fragmented in addition to just normal
2644 	 * out of space conditions.  So if we hit this just skip setting up any
2645 	 * other block groups for this transaction, maybe we'll unpin enough
2646 	 * space the next time around.
2647 	 */
2648 	if (!ret)
2649 		dcs = BTRFS_DC_SETUP;
2650 	else if (ret == -ENOSPC)
2651 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2652 
2653 out_put:
2654 	iput(inode);
2655 out_free:
2656 	btrfs_release_path(path);
2657 out:
2658 	spin_lock(&block_group->lock);
2659 	if (!ret && dcs == BTRFS_DC_SETUP)
2660 		block_group->cache_generation = trans->transid;
2661 	block_group->disk_cache_state = dcs;
2662 	spin_unlock(&block_group->lock);
2663 
2664 	extent_changeset_free(data_reserved);
2665 	return ret;
2666 }
2667 
2668 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2669 {
2670 	struct btrfs_fs_info *fs_info = trans->fs_info;
2671 	struct btrfs_block_group *cache, *tmp;
2672 	struct btrfs_transaction *cur_trans = trans->transaction;
2673 	struct btrfs_path *path;
2674 
2675 	if (list_empty(&cur_trans->dirty_bgs) ||
2676 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2677 		return 0;
2678 
2679 	path = btrfs_alloc_path();
2680 	if (!path)
2681 		return -ENOMEM;
2682 
2683 	/* Could add new block groups, use _safe just in case */
2684 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2685 				 dirty_list) {
2686 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2687 			cache_save_setup(cache, trans, path);
2688 	}
2689 
2690 	btrfs_free_path(path);
2691 	return 0;
2692 }
2693 
2694 /*
2695  * Transaction commit does final block group cache writeback during a critical
2696  * section where nothing is allowed to change the FS.  This is required in
2697  * order for the cache to actually match the block group, but can introduce a
2698  * lot of latency into the commit.
2699  *
2700  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2701  * There's a chance we'll have to redo some of it if the block group changes
2702  * again during the commit, but it greatly reduces the commit latency by
2703  * getting rid of the easy block groups while we're still allowing others to
2704  * join the commit.
2705  */
2706 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2707 {
2708 	struct btrfs_fs_info *fs_info = trans->fs_info;
2709 	struct btrfs_block_group *cache;
2710 	struct btrfs_transaction *cur_trans = trans->transaction;
2711 	int ret = 0;
2712 	int should_put;
2713 	struct btrfs_path *path = NULL;
2714 	LIST_HEAD(dirty);
2715 	struct list_head *io = &cur_trans->io_bgs;
2716 	int num_started = 0;
2717 	int loops = 0;
2718 
2719 	spin_lock(&cur_trans->dirty_bgs_lock);
2720 	if (list_empty(&cur_trans->dirty_bgs)) {
2721 		spin_unlock(&cur_trans->dirty_bgs_lock);
2722 		return 0;
2723 	}
2724 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2725 	spin_unlock(&cur_trans->dirty_bgs_lock);
2726 
2727 again:
2728 	/* Make sure all the block groups on our dirty list actually exist */
2729 	btrfs_create_pending_block_groups(trans);
2730 
2731 	if (!path) {
2732 		path = btrfs_alloc_path();
2733 		if (!path) {
2734 			ret = -ENOMEM;
2735 			goto out;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * cache_write_mutex is here only to save us from balance or automatic
2741 	 * removal of empty block groups deleting this block group while we are
2742 	 * writing out the cache
2743 	 */
2744 	mutex_lock(&trans->transaction->cache_write_mutex);
2745 	while (!list_empty(&dirty)) {
2746 		bool drop_reserve = true;
2747 
2748 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2749 					 dirty_list);
2750 		/*
2751 		 * This can happen if something re-dirties a block group that
2752 		 * is already under IO.  Just wait for it to finish and then do
2753 		 * it all again
2754 		 */
2755 		if (!list_empty(&cache->io_list)) {
2756 			list_del_init(&cache->io_list);
2757 			btrfs_wait_cache_io(trans, cache, path);
2758 			btrfs_put_block_group(cache);
2759 		}
2760 
2761 
2762 		/*
2763 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2764 		 * it should update the cache_state.  Don't delete until after
2765 		 * we wait.
2766 		 *
2767 		 * Since we're not running in the commit critical section
2768 		 * we need the dirty_bgs_lock to protect from update_block_group
2769 		 */
2770 		spin_lock(&cur_trans->dirty_bgs_lock);
2771 		list_del_init(&cache->dirty_list);
2772 		spin_unlock(&cur_trans->dirty_bgs_lock);
2773 
2774 		should_put = 1;
2775 
2776 		cache_save_setup(cache, trans, path);
2777 
2778 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2779 			cache->io_ctl.inode = NULL;
2780 			ret = btrfs_write_out_cache(trans, cache, path);
2781 			if (ret == 0 && cache->io_ctl.inode) {
2782 				num_started++;
2783 				should_put = 0;
2784 
2785 				/*
2786 				 * The cache_write_mutex is protecting the
2787 				 * io_list, also refer to the definition of
2788 				 * btrfs_transaction::io_bgs for more details
2789 				 */
2790 				list_add_tail(&cache->io_list, io);
2791 			} else {
2792 				/*
2793 				 * If we failed to write the cache, the
2794 				 * generation will be bad and life goes on
2795 				 */
2796 				ret = 0;
2797 			}
2798 		}
2799 		if (!ret) {
2800 			ret = update_block_group_item(trans, path, cache);
2801 			/*
2802 			 * Our block group might still be attached to the list
2803 			 * of new block groups in the transaction handle of some
2804 			 * other task (struct btrfs_trans_handle->new_bgs). This
2805 			 * means its block group item isn't yet in the extent
2806 			 * tree. If this happens ignore the error, as we will
2807 			 * try again later in the critical section of the
2808 			 * transaction commit.
2809 			 */
2810 			if (ret == -ENOENT) {
2811 				ret = 0;
2812 				spin_lock(&cur_trans->dirty_bgs_lock);
2813 				if (list_empty(&cache->dirty_list)) {
2814 					list_add_tail(&cache->dirty_list,
2815 						      &cur_trans->dirty_bgs);
2816 					btrfs_get_block_group(cache);
2817 					drop_reserve = false;
2818 				}
2819 				spin_unlock(&cur_trans->dirty_bgs_lock);
2820 			} else if (ret) {
2821 				btrfs_abort_transaction(trans, ret);
2822 			}
2823 		}
2824 
2825 		/* If it's not on the io list, we need to put the block group */
2826 		if (should_put)
2827 			btrfs_put_block_group(cache);
2828 		if (drop_reserve)
2829 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2830 		/*
2831 		 * Avoid blocking other tasks for too long. It might even save
2832 		 * us from writing caches for block groups that are going to be
2833 		 * removed.
2834 		 */
2835 		mutex_unlock(&trans->transaction->cache_write_mutex);
2836 		if (ret)
2837 			goto out;
2838 		mutex_lock(&trans->transaction->cache_write_mutex);
2839 	}
2840 	mutex_unlock(&trans->transaction->cache_write_mutex);
2841 
2842 	/*
2843 	 * Go through delayed refs for all the stuff we've just kicked off
2844 	 * and then loop back (just once)
2845 	 */
2846 	if (!ret)
2847 		ret = btrfs_run_delayed_refs(trans, 0);
2848 	if (!ret && loops == 0) {
2849 		loops++;
2850 		spin_lock(&cur_trans->dirty_bgs_lock);
2851 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2852 		/*
2853 		 * dirty_bgs_lock protects us from concurrent block group
2854 		 * deletes too (not just cache_write_mutex).
2855 		 */
2856 		if (!list_empty(&dirty)) {
2857 			spin_unlock(&cur_trans->dirty_bgs_lock);
2858 			goto again;
2859 		}
2860 		spin_unlock(&cur_trans->dirty_bgs_lock);
2861 	}
2862 out:
2863 	if (ret < 0) {
2864 		spin_lock(&cur_trans->dirty_bgs_lock);
2865 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2866 		spin_unlock(&cur_trans->dirty_bgs_lock);
2867 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2868 	}
2869 
2870 	btrfs_free_path(path);
2871 	return ret;
2872 }
2873 
2874 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2875 {
2876 	struct btrfs_fs_info *fs_info = trans->fs_info;
2877 	struct btrfs_block_group *cache;
2878 	struct btrfs_transaction *cur_trans = trans->transaction;
2879 	int ret = 0;
2880 	int should_put;
2881 	struct btrfs_path *path;
2882 	struct list_head *io = &cur_trans->io_bgs;
2883 	int num_started = 0;
2884 
2885 	path = btrfs_alloc_path();
2886 	if (!path)
2887 		return -ENOMEM;
2888 
2889 	/*
2890 	 * Even though we are in the critical section of the transaction commit,
2891 	 * we can still have concurrent tasks adding elements to this
2892 	 * transaction's list of dirty block groups. These tasks correspond to
2893 	 * endio free space workers started when writeback finishes for a
2894 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2895 	 * allocate new block groups as a result of COWing nodes of the root
2896 	 * tree when updating the free space inode. The writeback for the space
2897 	 * caches is triggered by an earlier call to
2898 	 * btrfs_start_dirty_block_groups() and iterations of the following
2899 	 * loop.
2900 	 * Also we want to do the cache_save_setup first and then run the
2901 	 * delayed refs to make sure we have the best chance at doing this all
2902 	 * in one shot.
2903 	 */
2904 	spin_lock(&cur_trans->dirty_bgs_lock);
2905 	while (!list_empty(&cur_trans->dirty_bgs)) {
2906 		cache = list_first_entry(&cur_trans->dirty_bgs,
2907 					 struct btrfs_block_group,
2908 					 dirty_list);
2909 
2910 		/*
2911 		 * This can happen if cache_save_setup re-dirties a block group
2912 		 * that is already under IO.  Just wait for it to finish and
2913 		 * then do it all again
2914 		 */
2915 		if (!list_empty(&cache->io_list)) {
2916 			spin_unlock(&cur_trans->dirty_bgs_lock);
2917 			list_del_init(&cache->io_list);
2918 			btrfs_wait_cache_io(trans, cache, path);
2919 			btrfs_put_block_group(cache);
2920 			spin_lock(&cur_trans->dirty_bgs_lock);
2921 		}
2922 
2923 		/*
2924 		 * Don't remove from the dirty list until after we've waited on
2925 		 * any pending IO
2926 		 */
2927 		list_del_init(&cache->dirty_list);
2928 		spin_unlock(&cur_trans->dirty_bgs_lock);
2929 		should_put = 1;
2930 
2931 		cache_save_setup(cache, trans, path);
2932 
2933 		if (!ret)
2934 			ret = btrfs_run_delayed_refs(trans,
2935 						     (unsigned long) -1);
2936 
2937 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2938 			cache->io_ctl.inode = NULL;
2939 			ret = btrfs_write_out_cache(trans, cache, path);
2940 			if (ret == 0 && cache->io_ctl.inode) {
2941 				num_started++;
2942 				should_put = 0;
2943 				list_add_tail(&cache->io_list, io);
2944 			} else {
2945 				/*
2946 				 * If we failed to write the cache, the
2947 				 * generation will be bad and life goes on
2948 				 */
2949 				ret = 0;
2950 			}
2951 		}
2952 		if (!ret) {
2953 			ret = update_block_group_item(trans, path, cache);
2954 			/*
2955 			 * One of the free space endio workers might have
2956 			 * created a new block group while updating a free space
2957 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2958 			 * and hasn't released its transaction handle yet, in
2959 			 * which case the new block group is still attached to
2960 			 * its transaction handle and its creation has not
2961 			 * finished yet (no block group item in the extent tree
2962 			 * yet, etc). If this is the case, wait for all free
2963 			 * space endio workers to finish and retry. This is a
2964 			 * very rare case so no need for a more efficient and
2965 			 * complex approach.
2966 			 */
2967 			if (ret == -ENOENT) {
2968 				wait_event(cur_trans->writer_wait,
2969 				   atomic_read(&cur_trans->num_writers) == 1);
2970 				ret = update_block_group_item(trans, path, cache);
2971 			}
2972 			if (ret)
2973 				btrfs_abort_transaction(trans, ret);
2974 		}
2975 
2976 		/* If its not on the io list, we need to put the block group */
2977 		if (should_put)
2978 			btrfs_put_block_group(cache);
2979 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2980 		spin_lock(&cur_trans->dirty_bgs_lock);
2981 	}
2982 	spin_unlock(&cur_trans->dirty_bgs_lock);
2983 
2984 	/*
2985 	 * Refer to the definition of io_bgs member for details why it's safe
2986 	 * to use it without any locking
2987 	 */
2988 	while (!list_empty(io)) {
2989 		cache = list_first_entry(io, struct btrfs_block_group,
2990 					 io_list);
2991 		list_del_init(&cache->io_list);
2992 		btrfs_wait_cache_io(trans, cache, path);
2993 		btrfs_put_block_group(cache);
2994 	}
2995 
2996 	btrfs_free_path(path);
2997 	return ret;
2998 }
2999 
3000 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3001 			     u64 bytenr, u64 num_bytes, int alloc)
3002 {
3003 	struct btrfs_fs_info *info = trans->fs_info;
3004 	struct btrfs_block_group *cache = NULL;
3005 	u64 total = num_bytes;
3006 	u64 old_val;
3007 	u64 byte_in_group;
3008 	int factor;
3009 	int ret = 0;
3010 
3011 	/* Block accounting for super block */
3012 	spin_lock(&info->delalloc_root_lock);
3013 	old_val = btrfs_super_bytes_used(info->super_copy);
3014 	if (alloc)
3015 		old_val += num_bytes;
3016 	else
3017 		old_val -= num_bytes;
3018 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3019 	spin_unlock(&info->delalloc_root_lock);
3020 
3021 	while (total) {
3022 		cache = btrfs_lookup_block_group(info, bytenr);
3023 		if (!cache) {
3024 			ret = -ENOENT;
3025 			break;
3026 		}
3027 		factor = btrfs_bg_type_to_factor(cache->flags);
3028 
3029 		/*
3030 		 * If this block group has free space cache written out, we
3031 		 * need to make sure to load it if we are removing space.  This
3032 		 * is because we need the unpinning stage to actually add the
3033 		 * space back to the block group, otherwise we will leak space.
3034 		 */
3035 		if (!alloc && !btrfs_block_group_done(cache))
3036 			btrfs_cache_block_group(cache, 1);
3037 
3038 		byte_in_group = bytenr - cache->start;
3039 		WARN_ON(byte_in_group > cache->length);
3040 
3041 		spin_lock(&cache->space_info->lock);
3042 		spin_lock(&cache->lock);
3043 
3044 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3045 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3046 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3047 
3048 		old_val = cache->used;
3049 		num_bytes = min(total, cache->length - byte_in_group);
3050 		if (alloc) {
3051 			old_val += num_bytes;
3052 			cache->used = old_val;
3053 			cache->reserved -= num_bytes;
3054 			cache->space_info->bytes_reserved -= num_bytes;
3055 			cache->space_info->bytes_used += num_bytes;
3056 			cache->space_info->disk_used += num_bytes * factor;
3057 			spin_unlock(&cache->lock);
3058 			spin_unlock(&cache->space_info->lock);
3059 		} else {
3060 			old_val -= num_bytes;
3061 			cache->used = old_val;
3062 			cache->pinned += num_bytes;
3063 			btrfs_space_info_update_bytes_pinned(info,
3064 					cache->space_info, num_bytes);
3065 			cache->space_info->bytes_used -= num_bytes;
3066 			cache->space_info->disk_used -= num_bytes * factor;
3067 			spin_unlock(&cache->lock);
3068 			spin_unlock(&cache->space_info->lock);
3069 
3070 			set_extent_dirty(&trans->transaction->pinned_extents,
3071 					 bytenr, bytenr + num_bytes - 1,
3072 					 GFP_NOFS | __GFP_NOFAIL);
3073 		}
3074 
3075 		spin_lock(&trans->transaction->dirty_bgs_lock);
3076 		if (list_empty(&cache->dirty_list)) {
3077 			list_add_tail(&cache->dirty_list,
3078 				      &trans->transaction->dirty_bgs);
3079 			trans->delayed_ref_updates++;
3080 			btrfs_get_block_group(cache);
3081 		}
3082 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3083 
3084 		/*
3085 		 * No longer have used bytes in this block group, queue it for
3086 		 * deletion. We do this after adding the block group to the
3087 		 * dirty list to avoid races between cleaner kthread and space
3088 		 * cache writeout.
3089 		 */
3090 		if (!alloc && old_val == 0) {
3091 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3092 				btrfs_mark_bg_unused(cache);
3093 		}
3094 
3095 		btrfs_put_block_group(cache);
3096 		total -= num_bytes;
3097 		bytenr += num_bytes;
3098 	}
3099 
3100 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3101 	btrfs_update_delayed_refs_rsv(trans);
3102 	return ret;
3103 }
3104 
3105 /**
3106  * btrfs_add_reserved_bytes - update the block_group and space info counters
3107  * @cache:	The cache we are manipulating
3108  * @ram_bytes:  The number of bytes of file content, and will be same to
3109  *              @num_bytes except for the compress path.
3110  * @num_bytes:	The number of bytes in question
3111  * @delalloc:   The blocks are allocated for the delalloc write
3112  *
3113  * This is called by the allocator when it reserves space. If this is a
3114  * reservation and the block group has become read only we cannot make the
3115  * reservation and return -EAGAIN, otherwise this function always succeeds.
3116  */
3117 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3118 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3119 {
3120 	struct btrfs_space_info *space_info = cache->space_info;
3121 	int ret = 0;
3122 
3123 	spin_lock(&space_info->lock);
3124 	spin_lock(&cache->lock);
3125 	if (cache->ro) {
3126 		ret = -EAGAIN;
3127 	} else {
3128 		cache->reserved += num_bytes;
3129 		space_info->bytes_reserved += num_bytes;
3130 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3131 					      space_info->flags, num_bytes, 1);
3132 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3133 						      space_info, -ram_bytes);
3134 		if (delalloc)
3135 			cache->delalloc_bytes += num_bytes;
3136 
3137 		/*
3138 		 * Compression can use less space than we reserved, so wake
3139 		 * tickets if that happens
3140 		 */
3141 		if (num_bytes < ram_bytes)
3142 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3143 	}
3144 	spin_unlock(&cache->lock);
3145 	spin_unlock(&space_info->lock);
3146 	return ret;
3147 }
3148 
3149 /**
3150  * btrfs_free_reserved_bytes - update the block_group and space info counters
3151  * @cache:      The cache we are manipulating
3152  * @num_bytes:  The number of bytes in question
3153  * @delalloc:   The blocks are allocated for the delalloc write
3154  *
3155  * This is called by somebody who is freeing space that was never actually used
3156  * on disk.  For example if you reserve some space for a new leaf in transaction
3157  * A and before transaction A commits you free that leaf, you call this with
3158  * reserve set to 0 in order to clear the reservation.
3159  */
3160 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3161 			       u64 num_bytes, int delalloc)
3162 {
3163 	struct btrfs_space_info *space_info = cache->space_info;
3164 
3165 	spin_lock(&space_info->lock);
3166 	spin_lock(&cache->lock);
3167 	if (cache->ro)
3168 		space_info->bytes_readonly += num_bytes;
3169 	cache->reserved -= num_bytes;
3170 	space_info->bytes_reserved -= num_bytes;
3171 	space_info->max_extent_size = 0;
3172 
3173 	if (delalloc)
3174 		cache->delalloc_bytes -= num_bytes;
3175 	spin_unlock(&cache->lock);
3176 
3177 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3178 	spin_unlock(&space_info->lock);
3179 }
3180 
3181 static void force_metadata_allocation(struct btrfs_fs_info *info)
3182 {
3183 	struct list_head *head = &info->space_info;
3184 	struct btrfs_space_info *found;
3185 
3186 	list_for_each_entry(found, head, list) {
3187 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3188 			found->force_alloc = CHUNK_ALLOC_FORCE;
3189 	}
3190 }
3191 
3192 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3193 			      struct btrfs_space_info *sinfo, int force)
3194 {
3195 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3196 	u64 thresh;
3197 
3198 	if (force == CHUNK_ALLOC_FORCE)
3199 		return 1;
3200 
3201 	/*
3202 	 * in limited mode, we want to have some free space up to
3203 	 * about 1% of the FS size.
3204 	 */
3205 	if (force == CHUNK_ALLOC_LIMITED) {
3206 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3207 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3208 
3209 		if (sinfo->total_bytes - bytes_used < thresh)
3210 			return 1;
3211 	}
3212 
3213 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3214 		return 0;
3215 	return 1;
3216 }
3217 
3218 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3219 {
3220 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3221 
3222 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3223 }
3224 
3225 /*
3226  * If force is CHUNK_ALLOC_FORCE:
3227  *    - return 1 if it successfully allocates a chunk,
3228  *    - return errors including -ENOSPC otherwise.
3229  * If force is NOT CHUNK_ALLOC_FORCE:
3230  *    - return 0 if it doesn't need to allocate a new chunk,
3231  *    - return 1 if it successfully allocates a chunk,
3232  *    - return errors including -ENOSPC otherwise.
3233  */
3234 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3235 		      enum btrfs_chunk_alloc_enum force)
3236 {
3237 	struct btrfs_fs_info *fs_info = trans->fs_info;
3238 	struct btrfs_space_info *space_info;
3239 	bool wait_for_alloc = false;
3240 	bool should_alloc = false;
3241 	int ret = 0;
3242 
3243 	/* Don't re-enter if we're already allocating a chunk */
3244 	if (trans->allocating_chunk)
3245 		return -ENOSPC;
3246 
3247 	space_info = btrfs_find_space_info(fs_info, flags);
3248 	ASSERT(space_info);
3249 
3250 	do {
3251 		spin_lock(&space_info->lock);
3252 		if (force < space_info->force_alloc)
3253 			force = space_info->force_alloc;
3254 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3255 		if (space_info->full) {
3256 			/* No more free physical space */
3257 			if (should_alloc)
3258 				ret = -ENOSPC;
3259 			else
3260 				ret = 0;
3261 			spin_unlock(&space_info->lock);
3262 			return ret;
3263 		} else if (!should_alloc) {
3264 			spin_unlock(&space_info->lock);
3265 			return 0;
3266 		} else if (space_info->chunk_alloc) {
3267 			/*
3268 			 * Someone is already allocating, so we need to block
3269 			 * until this someone is finished and then loop to
3270 			 * recheck if we should continue with our allocation
3271 			 * attempt.
3272 			 */
3273 			wait_for_alloc = true;
3274 			spin_unlock(&space_info->lock);
3275 			mutex_lock(&fs_info->chunk_mutex);
3276 			mutex_unlock(&fs_info->chunk_mutex);
3277 		} else {
3278 			/* Proceed with allocation */
3279 			space_info->chunk_alloc = 1;
3280 			wait_for_alloc = false;
3281 			spin_unlock(&space_info->lock);
3282 		}
3283 
3284 		cond_resched();
3285 	} while (wait_for_alloc);
3286 
3287 	mutex_lock(&fs_info->chunk_mutex);
3288 	trans->allocating_chunk = true;
3289 
3290 	/*
3291 	 * If we have mixed data/metadata chunks we want to make sure we keep
3292 	 * allocating mixed chunks instead of individual chunks.
3293 	 */
3294 	if (btrfs_mixed_space_info(space_info))
3295 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3296 
3297 	/*
3298 	 * if we're doing a data chunk, go ahead and make sure that
3299 	 * we keep a reasonable number of metadata chunks allocated in the
3300 	 * FS as well.
3301 	 */
3302 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3303 		fs_info->data_chunk_allocations++;
3304 		if (!(fs_info->data_chunk_allocations %
3305 		      fs_info->metadata_ratio))
3306 			force_metadata_allocation(fs_info);
3307 	}
3308 
3309 	/*
3310 	 * Check if we have enough space in SYSTEM chunk because we may need
3311 	 * to update devices.
3312 	 */
3313 	check_system_chunk(trans, flags);
3314 
3315 	ret = btrfs_alloc_chunk(trans, flags);
3316 	trans->allocating_chunk = false;
3317 
3318 	spin_lock(&space_info->lock);
3319 	if (ret < 0) {
3320 		if (ret == -ENOSPC)
3321 			space_info->full = 1;
3322 		else
3323 			goto out;
3324 	} else {
3325 		ret = 1;
3326 		space_info->max_extent_size = 0;
3327 	}
3328 
3329 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3330 out:
3331 	space_info->chunk_alloc = 0;
3332 	spin_unlock(&space_info->lock);
3333 	mutex_unlock(&fs_info->chunk_mutex);
3334 	/*
3335 	 * When we allocate a new chunk we reserve space in the chunk block
3336 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3337 	 * add new nodes/leafs to it if we end up needing to do it when
3338 	 * inserting the chunk item and updating device items as part of the
3339 	 * second phase of chunk allocation, performed by
3340 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3341 	 * large number of new block groups to create in our transaction
3342 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3343 	 * in extreme cases - like having a single transaction create many new
3344 	 * block groups when starting to write out the free space caches of all
3345 	 * the block groups that were made dirty during the lifetime of the
3346 	 * transaction.
3347 	 */
3348 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3349 		btrfs_create_pending_block_groups(trans);
3350 
3351 	return ret;
3352 }
3353 
3354 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3355 {
3356 	u64 num_dev;
3357 
3358 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3359 	if (!num_dev)
3360 		num_dev = fs_info->fs_devices->rw_devices;
3361 
3362 	return num_dev;
3363 }
3364 
3365 /*
3366  * Reserve space in the system space for allocating or removing a chunk
3367  */
3368 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3369 {
3370 	struct btrfs_transaction *cur_trans = trans->transaction;
3371 	struct btrfs_fs_info *fs_info = trans->fs_info;
3372 	struct btrfs_space_info *info;
3373 	u64 left;
3374 	u64 thresh;
3375 	int ret = 0;
3376 	u64 num_devs;
3377 
3378 	/*
3379 	 * Needed because we can end up allocating a system chunk and for an
3380 	 * atomic and race free space reservation in the chunk block reserve.
3381 	 */
3382 	lockdep_assert_held(&fs_info->chunk_mutex);
3383 
3384 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3385 again:
3386 	spin_lock(&info->lock);
3387 	left = info->total_bytes - btrfs_space_info_used(info, true);
3388 	spin_unlock(&info->lock);
3389 
3390 	num_devs = get_profile_num_devs(fs_info, type);
3391 
3392 	/* num_devs device items to update and 1 chunk item to add or remove */
3393 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3394 		btrfs_calc_insert_metadata_size(fs_info, 1);
3395 
3396 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3397 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3398 			   left, thresh, type);
3399 		btrfs_dump_space_info(fs_info, info, 0, 0);
3400 	}
3401 
3402 	if (left < thresh) {
3403 		u64 flags = btrfs_system_alloc_profile(fs_info);
3404 		u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved);
3405 
3406 		/*
3407 		 * If there's not available space for the chunk tree (system
3408 		 * space) and there are other tasks that reserved space for
3409 		 * creating a new system block group, wait for them to complete
3410 		 * the creation of their system block group and release excess
3411 		 * reserved space. We do this because:
3412 		 *
3413 		 * *) We can end up allocating more system chunks than necessary
3414 		 *    when there are multiple tasks that are concurrently
3415 		 *    allocating block groups, which can lead to exhaustion of
3416 		 *    the system array in the superblock;
3417 		 *
3418 		 * *) If we allocate extra and unnecessary system block groups,
3419 		 *    despite being empty for a long time, and possibly forever,
3420 		 *    they end not being added to the list of unused block groups
3421 		 *    because that typically happens only when deallocating the
3422 		 *    last extent from a block group - which never happens since
3423 		 *    we never allocate from them in the first place. The few
3424 		 *    exceptions are when mounting a filesystem or running scrub,
3425 		 *    which add unused block groups to the list of unused block
3426 		 *    groups, to be deleted by the cleaner kthread.
3427 		 *    And even when they are added to the list of unused block
3428 		 *    groups, it can take a long time until they get deleted,
3429 		 *    since the cleaner kthread might be sleeping or busy with
3430 		 *    other work (deleting subvolumes, running delayed iputs,
3431 		 *    defrag scheduling, etc);
3432 		 *
3433 		 * This is rare in practice, but can happen when too many tasks
3434 		 * are allocating blocks groups in parallel (via fallocate())
3435 		 * and before the one that reserved space for a new system block
3436 		 * group finishes the block group creation and releases the space
3437 		 * reserved in excess (at btrfs_create_pending_block_groups()),
3438 		 * other tasks end up here and see free system space temporarily
3439 		 * not enough for updating the chunk tree.
3440 		 *
3441 		 * We unlock the chunk mutex before waiting for such tasks and
3442 		 * lock it again after the wait, otherwise we would deadlock.
3443 		 * It is safe to do so because allocating a system chunk is the
3444 		 * first thing done while allocating a new block group.
3445 		 */
3446 		if (reserved > trans->chunk_bytes_reserved) {
3447 			const u64 min_needed = reserved - thresh;
3448 
3449 			mutex_unlock(&fs_info->chunk_mutex);
3450 			wait_event(cur_trans->chunk_reserve_wait,
3451 			   atomic64_read(&cur_trans->chunk_bytes_reserved) <=
3452 			   min_needed);
3453 			mutex_lock(&fs_info->chunk_mutex);
3454 			goto again;
3455 		}
3456 
3457 		/*
3458 		 * Ignore failure to create system chunk. We might end up not
3459 		 * needing it, as we might not need to COW all nodes/leafs from
3460 		 * the paths we visit in the chunk tree (they were already COWed
3461 		 * or created in the current transaction for example).
3462 		 */
3463 		ret = btrfs_alloc_chunk(trans, flags);
3464 	}
3465 
3466 	if (!ret) {
3467 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3468 					  &fs_info->chunk_block_rsv,
3469 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3470 		if (!ret) {
3471 			atomic64_add(thresh, &cur_trans->chunk_bytes_reserved);
3472 			trans->chunk_bytes_reserved += thresh;
3473 		}
3474 	}
3475 }
3476 
3477 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3478 {
3479 	struct btrfs_block_group *block_group;
3480 	u64 last = 0;
3481 
3482 	while (1) {
3483 		struct inode *inode;
3484 
3485 		block_group = btrfs_lookup_first_block_group(info, last);
3486 		while (block_group) {
3487 			btrfs_wait_block_group_cache_done(block_group);
3488 			spin_lock(&block_group->lock);
3489 			if (block_group->iref)
3490 				break;
3491 			spin_unlock(&block_group->lock);
3492 			block_group = btrfs_next_block_group(block_group);
3493 		}
3494 		if (!block_group) {
3495 			if (last == 0)
3496 				break;
3497 			last = 0;
3498 			continue;
3499 		}
3500 
3501 		inode = block_group->inode;
3502 		block_group->iref = 0;
3503 		block_group->inode = NULL;
3504 		spin_unlock(&block_group->lock);
3505 		ASSERT(block_group->io_ctl.inode == NULL);
3506 		iput(inode);
3507 		last = block_group->start + block_group->length;
3508 		btrfs_put_block_group(block_group);
3509 	}
3510 }
3511 
3512 /*
3513  * Must be called only after stopping all workers, since we could have block
3514  * group caching kthreads running, and therefore they could race with us if we
3515  * freed the block groups before stopping them.
3516  */
3517 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3518 {
3519 	struct btrfs_block_group *block_group;
3520 	struct btrfs_space_info *space_info;
3521 	struct btrfs_caching_control *caching_ctl;
3522 	struct rb_node *n;
3523 
3524 	spin_lock(&info->block_group_cache_lock);
3525 	while (!list_empty(&info->caching_block_groups)) {
3526 		caching_ctl = list_entry(info->caching_block_groups.next,
3527 					 struct btrfs_caching_control, list);
3528 		list_del(&caching_ctl->list);
3529 		btrfs_put_caching_control(caching_ctl);
3530 	}
3531 	spin_unlock(&info->block_group_cache_lock);
3532 
3533 	spin_lock(&info->unused_bgs_lock);
3534 	while (!list_empty(&info->unused_bgs)) {
3535 		block_group = list_first_entry(&info->unused_bgs,
3536 					       struct btrfs_block_group,
3537 					       bg_list);
3538 		list_del_init(&block_group->bg_list);
3539 		btrfs_put_block_group(block_group);
3540 	}
3541 	spin_unlock(&info->unused_bgs_lock);
3542 
3543 	spin_lock(&info->unused_bgs_lock);
3544 	while (!list_empty(&info->reclaim_bgs)) {
3545 		block_group = list_first_entry(&info->reclaim_bgs,
3546 					       struct btrfs_block_group,
3547 					       bg_list);
3548 		list_del_init(&block_group->bg_list);
3549 		btrfs_put_block_group(block_group);
3550 	}
3551 	spin_unlock(&info->unused_bgs_lock);
3552 
3553 	spin_lock(&info->block_group_cache_lock);
3554 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3555 		block_group = rb_entry(n, struct btrfs_block_group,
3556 				       cache_node);
3557 		rb_erase(&block_group->cache_node,
3558 			 &info->block_group_cache_tree);
3559 		RB_CLEAR_NODE(&block_group->cache_node);
3560 		spin_unlock(&info->block_group_cache_lock);
3561 
3562 		down_write(&block_group->space_info->groups_sem);
3563 		list_del(&block_group->list);
3564 		up_write(&block_group->space_info->groups_sem);
3565 
3566 		/*
3567 		 * We haven't cached this block group, which means we could
3568 		 * possibly have excluded extents on this block group.
3569 		 */
3570 		if (block_group->cached == BTRFS_CACHE_NO ||
3571 		    block_group->cached == BTRFS_CACHE_ERROR)
3572 			btrfs_free_excluded_extents(block_group);
3573 
3574 		btrfs_remove_free_space_cache(block_group);
3575 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3576 		ASSERT(list_empty(&block_group->dirty_list));
3577 		ASSERT(list_empty(&block_group->io_list));
3578 		ASSERT(list_empty(&block_group->bg_list));
3579 		ASSERT(refcount_read(&block_group->refs) == 1);
3580 		ASSERT(block_group->swap_extents == 0);
3581 		btrfs_put_block_group(block_group);
3582 
3583 		spin_lock(&info->block_group_cache_lock);
3584 	}
3585 	spin_unlock(&info->block_group_cache_lock);
3586 
3587 	btrfs_release_global_block_rsv(info);
3588 
3589 	while (!list_empty(&info->space_info)) {
3590 		space_info = list_entry(info->space_info.next,
3591 					struct btrfs_space_info,
3592 					list);
3593 
3594 		/*
3595 		 * Do not hide this behind enospc_debug, this is actually
3596 		 * important and indicates a real bug if this happens.
3597 		 */
3598 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3599 			    space_info->bytes_reserved > 0 ||
3600 			    space_info->bytes_may_use > 0))
3601 			btrfs_dump_space_info(info, space_info, 0, 0);
3602 		WARN_ON(space_info->reclaim_size > 0);
3603 		list_del(&space_info->list);
3604 		btrfs_sysfs_remove_space_info(space_info);
3605 	}
3606 	return 0;
3607 }
3608 
3609 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3610 {
3611 	atomic_inc(&cache->frozen);
3612 }
3613 
3614 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3615 {
3616 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3617 	struct extent_map_tree *em_tree;
3618 	struct extent_map *em;
3619 	bool cleanup;
3620 
3621 	spin_lock(&block_group->lock);
3622 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3623 		   block_group->removed);
3624 	spin_unlock(&block_group->lock);
3625 
3626 	if (cleanup) {
3627 		em_tree = &fs_info->mapping_tree;
3628 		write_lock(&em_tree->lock);
3629 		em = lookup_extent_mapping(em_tree, block_group->start,
3630 					   1);
3631 		BUG_ON(!em); /* logic error, can't happen */
3632 		remove_extent_mapping(em_tree, em);
3633 		write_unlock(&em_tree->lock);
3634 
3635 		/* once for us and once for the tree */
3636 		free_extent_map(em);
3637 		free_extent_map(em);
3638 
3639 		/*
3640 		 * We may have left one free space entry and other possible
3641 		 * tasks trimming this block group have left 1 entry each one.
3642 		 * Free them if any.
3643 		 */
3644 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3645 	}
3646 }
3647 
3648 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3649 {
3650 	bool ret = true;
3651 
3652 	spin_lock(&bg->lock);
3653 	if (bg->ro)
3654 		ret = false;
3655 	else
3656 		bg->swap_extents++;
3657 	spin_unlock(&bg->lock);
3658 
3659 	return ret;
3660 }
3661 
3662 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3663 {
3664 	spin_lock(&bg->lock);
3665 	ASSERT(!bg->ro);
3666 	ASSERT(bg->swap_extents >= amount);
3667 	bg->swap_extents -= amount;
3668 	spin_unlock(&bg->lock);
3669 }
3670