1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 u64 group_start, struct extent_map *em) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_em; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, group_start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 block_group->space_info->bytes_zone_unusable -= 1218 block_group->zone_unusable; 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the extent map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_em = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_em) { 1275 struct extent_map_tree *em_tree; 1276 1277 em_tree = &fs_info->mapping_tree; 1278 write_lock(&em_tree->lock); 1279 remove_extent_mapping(em_tree, em); 1280 write_unlock(&em_tree->lock); 1281 /* once for the tree */ 1282 free_extent_map(em); 1283 } 1284 1285 out: 1286 /* Once for the lookup reference */ 1287 btrfs_put_block_group(block_group); 1288 if (remove_rsv) 1289 btrfs_delayed_refs_rsv_release(fs_info, 1); 1290 btrfs_free_path(path); 1291 return ret; 1292 } 1293 1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1296 { 1297 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1299 struct extent_map *em; 1300 struct map_lookup *map; 1301 unsigned int num_items; 1302 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1305 read_unlock(&em_tree->lock); 1306 ASSERT(em && em->start == chunk_offset); 1307 1308 /* 1309 * We need to reserve 3 + N units from the metadata space info in order 1310 * to remove a block group (done at btrfs_remove_chunk() and at 1311 * btrfs_remove_block_group()), which are used for: 1312 * 1313 * 1 unit for adding the free space inode's orphan (located in the tree 1314 * of tree roots). 1315 * 1 unit for deleting the block group item (located in the extent 1316 * tree). 1317 * 1 unit for deleting the free space item (located in tree of tree 1318 * roots). 1319 * N units for deleting N device extent items corresponding to each 1320 * stripe (located in the device tree). 1321 * 1322 * In order to remove a block group we also need to reserve units in the 1323 * system space info in order to update the chunk tree (update one or 1324 * more device items and remove one chunk item), but this is done at 1325 * btrfs_remove_chunk() through a call to check_system_chunk(). 1326 */ 1327 map = em->map_lookup; 1328 num_items = 3 + map->num_stripes; 1329 free_extent_map(em); 1330 1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1332 } 1333 1334 /* 1335 * Mark block group @cache read-only, so later write won't happen to block 1336 * group @cache. 1337 * 1338 * If @force is not set, this function will only mark the block group readonly 1339 * if we have enough free space (1M) in other metadata/system block groups. 1340 * If @force is not set, this function will mark the block group readonly 1341 * without checking free space. 1342 * 1343 * NOTE: This function doesn't care if other block groups can contain all the 1344 * data in this block group. That check should be done by relocation routine, 1345 * not this function. 1346 */ 1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1348 { 1349 struct btrfs_space_info *sinfo = cache->space_info; 1350 u64 num_bytes; 1351 int ret = -ENOSPC; 1352 1353 spin_lock(&sinfo->lock); 1354 spin_lock(&cache->lock); 1355 1356 if (cache->swap_extents) { 1357 ret = -ETXTBSY; 1358 goto out; 1359 } 1360 1361 if (cache->ro) { 1362 cache->ro++; 1363 ret = 0; 1364 goto out; 1365 } 1366 1367 num_bytes = cache->length - cache->reserved - cache->pinned - 1368 cache->bytes_super - cache->zone_unusable - cache->used; 1369 1370 /* 1371 * Data never overcommits, even in mixed mode, so do just the straight 1372 * check of left over space in how much we have allocated. 1373 */ 1374 if (force) { 1375 ret = 0; 1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1378 1379 /* 1380 * Here we make sure if we mark this bg RO, we still have enough 1381 * free space as buffer. 1382 */ 1383 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1384 ret = 0; 1385 } else { 1386 /* 1387 * We overcommit metadata, so we need to do the 1388 * btrfs_can_overcommit check here, and we need to pass in 1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1390 * leeway to allow us to mark this block group as read only. 1391 */ 1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1393 BTRFS_RESERVE_NO_FLUSH)) 1394 ret = 0; 1395 } 1396 1397 if (!ret) { 1398 sinfo->bytes_readonly += num_bytes; 1399 if (btrfs_is_zoned(cache->fs_info)) { 1400 /* Migrate zone_unusable bytes to readonly */ 1401 sinfo->bytes_readonly += cache->zone_unusable; 1402 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1403 cache->zone_unusable = 0; 1404 } 1405 cache->ro++; 1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1407 } 1408 out: 1409 spin_unlock(&cache->lock); 1410 spin_unlock(&sinfo->lock); 1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1412 btrfs_info(cache->fs_info, 1413 "unable to make block group %llu ro", cache->start); 1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1415 } 1416 return ret; 1417 } 1418 1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1420 struct btrfs_block_group *bg) 1421 { 1422 struct btrfs_fs_info *fs_info = bg->fs_info; 1423 struct btrfs_transaction *prev_trans = NULL; 1424 const u64 start = bg->start; 1425 const u64 end = start + bg->length - 1; 1426 int ret; 1427 1428 spin_lock(&fs_info->trans_lock); 1429 if (trans->transaction->list.prev != &fs_info->trans_list) { 1430 prev_trans = list_last_entry(&trans->transaction->list, 1431 struct btrfs_transaction, list); 1432 refcount_inc(&prev_trans->use_count); 1433 } 1434 spin_unlock(&fs_info->trans_lock); 1435 1436 /* 1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1438 * btrfs_finish_extent_commit(). If we are at transaction N, another 1439 * task might be running finish_extent_commit() for the previous 1440 * transaction N - 1, and have seen a range belonging to the block 1441 * group in pinned_extents before we were able to clear the whole block 1442 * group range from pinned_extents. This means that task can lookup for 1443 * the block group after we unpinned it from pinned_extents and removed 1444 * it, leading to a BUG_ON() at unpin_extent_range(). 1445 */ 1446 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1447 if (prev_trans) { 1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1449 EXTENT_DIRTY); 1450 if (ret) 1451 goto out; 1452 } 1453 1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1455 EXTENT_DIRTY); 1456 out: 1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1458 if (prev_trans) 1459 btrfs_put_transaction(prev_trans); 1460 1461 return ret == 0; 1462 } 1463 1464 /* 1465 * Process the unused_bgs list and remove any that don't have any allocated 1466 * space inside of them. 1467 */ 1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1469 { 1470 LIST_HEAD(retry_list); 1471 struct btrfs_block_group *block_group; 1472 struct btrfs_space_info *space_info; 1473 struct btrfs_trans_handle *trans; 1474 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1475 int ret = 0; 1476 1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1478 return; 1479 1480 if (btrfs_fs_closing(fs_info)) 1481 return; 1482 1483 /* 1484 * Long running balances can keep us blocked here for eternity, so 1485 * simply skip deletion if we're unable to get the mutex. 1486 */ 1487 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1488 return; 1489 1490 spin_lock(&fs_info->unused_bgs_lock); 1491 while (!list_empty(&fs_info->unused_bgs)) { 1492 u64 used; 1493 int trimming; 1494 1495 block_group = list_first_entry(&fs_info->unused_bgs, 1496 struct btrfs_block_group, 1497 bg_list); 1498 list_del_init(&block_group->bg_list); 1499 1500 space_info = block_group->space_info; 1501 1502 if (ret || btrfs_mixed_space_info(space_info)) { 1503 btrfs_put_block_group(block_group); 1504 continue; 1505 } 1506 spin_unlock(&fs_info->unused_bgs_lock); 1507 1508 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1509 1510 /* Don't want to race with allocators so take the groups_sem */ 1511 down_write(&space_info->groups_sem); 1512 1513 /* 1514 * Async discard moves the final block group discard to be prior 1515 * to the unused_bgs code path. Therefore, if it's not fully 1516 * trimmed, punt it back to the async discard lists. 1517 */ 1518 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1519 !btrfs_is_free_space_trimmed(block_group)) { 1520 trace_btrfs_skip_unused_block_group(block_group); 1521 up_write(&space_info->groups_sem); 1522 /* Requeue if we failed because of async discard */ 1523 btrfs_discard_queue_work(&fs_info->discard_ctl, 1524 block_group); 1525 goto next; 1526 } 1527 1528 spin_lock(&space_info->lock); 1529 spin_lock(&block_group->lock); 1530 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1531 list_is_singular(&block_group->list)) { 1532 /* 1533 * We want to bail if we made new allocations or have 1534 * outstanding allocations in this block group. We do 1535 * the ro check in case balance is currently acting on 1536 * this block group. 1537 */ 1538 trace_btrfs_skip_unused_block_group(block_group); 1539 spin_unlock(&block_group->lock); 1540 spin_unlock(&space_info->lock); 1541 up_write(&space_info->groups_sem); 1542 goto next; 1543 } 1544 1545 /* 1546 * The block group may be unused but there may be space reserved 1547 * accounting with the existence of that block group, that is, 1548 * space_info->bytes_may_use was incremented by a task but no 1549 * space was yet allocated from the block group by the task. 1550 * That space may or may not be allocated, as we are generally 1551 * pessimistic about space reservation for metadata as well as 1552 * for data when using compression (as we reserve space based on 1553 * the worst case, when data can't be compressed, and before 1554 * actually attempting compression, before starting writeback). 1555 * 1556 * So check if the total space of the space_info minus the size 1557 * of this block group is less than the used space of the 1558 * space_info - if that's the case, then it means we have tasks 1559 * that might be relying on the block group in order to allocate 1560 * extents, and add back the block group to the unused list when 1561 * we finish, so that we retry later in case no tasks ended up 1562 * needing to allocate extents from the block group. 1563 */ 1564 used = btrfs_space_info_used(space_info, true); 1565 if (space_info->total_bytes - block_group->length < used && 1566 block_group->zone_unusable < block_group->length) { 1567 /* 1568 * Add a reference for the list, compensate for the ref 1569 * drop under the "next" label for the 1570 * fs_info->unused_bgs list. 1571 */ 1572 btrfs_get_block_group(block_group); 1573 list_add_tail(&block_group->bg_list, &retry_list); 1574 1575 trace_btrfs_skip_unused_block_group(block_group); 1576 spin_unlock(&block_group->lock); 1577 spin_unlock(&space_info->lock); 1578 up_write(&space_info->groups_sem); 1579 goto next; 1580 } 1581 1582 spin_unlock(&block_group->lock); 1583 spin_unlock(&space_info->lock); 1584 1585 /* We don't want to force the issue, only flip if it's ok. */ 1586 ret = inc_block_group_ro(block_group, 0); 1587 up_write(&space_info->groups_sem); 1588 if (ret < 0) { 1589 ret = 0; 1590 goto next; 1591 } 1592 1593 ret = btrfs_zone_finish(block_group); 1594 if (ret < 0) { 1595 btrfs_dec_block_group_ro(block_group); 1596 if (ret == -EAGAIN) 1597 ret = 0; 1598 goto next; 1599 } 1600 1601 /* 1602 * Want to do this before we do anything else so we can recover 1603 * properly if we fail to join the transaction. 1604 */ 1605 trans = btrfs_start_trans_remove_block_group(fs_info, 1606 block_group->start); 1607 if (IS_ERR(trans)) { 1608 btrfs_dec_block_group_ro(block_group); 1609 ret = PTR_ERR(trans); 1610 goto next; 1611 } 1612 1613 /* 1614 * We could have pending pinned extents for this block group, 1615 * just delete them, we don't care about them anymore. 1616 */ 1617 if (!clean_pinned_extents(trans, block_group)) { 1618 btrfs_dec_block_group_ro(block_group); 1619 goto end_trans; 1620 } 1621 1622 /* 1623 * At this point, the block_group is read only and should fail 1624 * new allocations. However, btrfs_finish_extent_commit() can 1625 * cause this block_group to be placed back on the discard 1626 * lists because now the block_group isn't fully discarded. 1627 * Bail here and try again later after discarding everything. 1628 */ 1629 spin_lock(&fs_info->discard_ctl.lock); 1630 if (!list_empty(&block_group->discard_list)) { 1631 spin_unlock(&fs_info->discard_ctl.lock); 1632 btrfs_dec_block_group_ro(block_group); 1633 btrfs_discard_queue_work(&fs_info->discard_ctl, 1634 block_group); 1635 goto end_trans; 1636 } 1637 spin_unlock(&fs_info->discard_ctl.lock); 1638 1639 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1640 spin_lock(&space_info->lock); 1641 spin_lock(&block_group->lock); 1642 1643 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1644 -block_group->pinned); 1645 space_info->bytes_readonly += block_group->pinned; 1646 block_group->pinned = 0; 1647 1648 spin_unlock(&block_group->lock); 1649 spin_unlock(&space_info->lock); 1650 1651 /* 1652 * The normal path here is an unused block group is passed here, 1653 * then trimming is handled in the transaction commit path. 1654 * Async discard interposes before this to do the trimming 1655 * before coming down the unused block group path as trimming 1656 * will no longer be done later in the transaction commit path. 1657 */ 1658 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1659 goto flip_async; 1660 1661 /* 1662 * DISCARD can flip during remount. On zoned filesystems, we 1663 * need to reset sequential-required zones. 1664 */ 1665 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1666 btrfs_is_zoned(fs_info); 1667 1668 /* Implicit trim during transaction commit. */ 1669 if (trimming) 1670 btrfs_freeze_block_group(block_group); 1671 1672 /* 1673 * Btrfs_remove_chunk will abort the transaction if things go 1674 * horribly wrong. 1675 */ 1676 ret = btrfs_remove_chunk(trans, block_group->start); 1677 1678 if (ret) { 1679 if (trimming) 1680 btrfs_unfreeze_block_group(block_group); 1681 goto end_trans; 1682 } 1683 1684 /* 1685 * If we're not mounted with -odiscard, we can just forget 1686 * about this block group. Otherwise we'll need to wait 1687 * until transaction commit to do the actual discard. 1688 */ 1689 if (trimming) { 1690 spin_lock(&fs_info->unused_bgs_lock); 1691 /* 1692 * A concurrent scrub might have added us to the list 1693 * fs_info->unused_bgs, so use a list_move operation 1694 * to add the block group to the deleted_bgs list. 1695 */ 1696 list_move(&block_group->bg_list, 1697 &trans->transaction->deleted_bgs); 1698 spin_unlock(&fs_info->unused_bgs_lock); 1699 btrfs_get_block_group(block_group); 1700 } 1701 end_trans: 1702 btrfs_end_transaction(trans); 1703 next: 1704 btrfs_put_block_group(block_group); 1705 spin_lock(&fs_info->unused_bgs_lock); 1706 } 1707 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1708 spin_unlock(&fs_info->unused_bgs_lock); 1709 mutex_unlock(&fs_info->reclaim_bgs_lock); 1710 return; 1711 1712 flip_async: 1713 btrfs_end_transaction(trans); 1714 spin_lock(&fs_info->unused_bgs_lock); 1715 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1716 spin_unlock(&fs_info->unused_bgs_lock); 1717 mutex_unlock(&fs_info->reclaim_bgs_lock); 1718 btrfs_put_block_group(block_group); 1719 btrfs_discard_punt_unused_bgs_list(fs_info); 1720 } 1721 1722 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1723 { 1724 struct btrfs_fs_info *fs_info = bg->fs_info; 1725 1726 spin_lock(&fs_info->unused_bgs_lock); 1727 if (list_empty(&bg->bg_list)) { 1728 btrfs_get_block_group(bg); 1729 trace_btrfs_add_unused_block_group(bg); 1730 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1731 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1732 /* Pull out the block group from the reclaim_bgs list. */ 1733 trace_btrfs_add_unused_block_group(bg); 1734 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1735 } 1736 spin_unlock(&fs_info->unused_bgs_lock); 1737 } 1738 1739 /* 1740 * We want block groups with a low number of used bytes to be in the beginning 1741 * of the list, so they will get reclaimed first. 1742 */ 1743 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1744 const struct list_head *b) 1745 { 1746 const struct btrfs_block_group *bg1, *bg2; 1747 1748 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1749 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1750 1751 return bg1->used > bg2->used; 1752 } 1753 1754 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1755 { 1756 if (btrfs_is_zoned(fs_info)) 1757 return btrfs_zoned_should_reclaim(fs_info); 1758 return true; 1759 } 1760 1761 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1762 { 1763 const struct btrfs_space_info *space_info = bg->space_info; 1764 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1765 const u64 new_val = bg->used; 1766 const u64 old_val = new_val + bytes_freed; 1767 u64 thresh; 1768 1769 if (reclaim_thresh == 0) 1770 return false; 1771 1772 thresh = mult_perc(bg->length, reclaim_thresh); 1773 1774 /* 1775 * If we were below the threshold before don't reclaim, we are likely a 1776 * brand new block group and we don't want to relocate new block groups. 1777 */ 1778 if (old_val < thresh) 1779 return false; 1780 if (new_val >= thresh) 1781 return false; 1782 return true; 1783 } 1784 1785 void btrfs_reclaim_bgs_work(struct work_struct *work) 1786 { 1787 struct btrfs_fs_info *fs_info = 1788 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1789 struct btrfs_block_group *bg; 1790 struct btrfs_space_info *space_info; 1791 LIST_HEAD(retry_list); 1792 1793 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1794 return; 1795 1796 if (btrfs_fs_closing(fs_info)) 1797 return; 1798 1799 if (!btrfs_should_reclaim(fs_info)) 1800 return; 1801 1802 sb_start_write(fs_info->sb); 1803 1804 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1805 sb_end_write(fs_info->sb); 1806 return; 1807 } 1808 1809 /* 1810 * Long running balances can keep us blocked here for eternity, so 1811 * simply skip reclaim if we're unable to get the mutex. 1812 */ 1813 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1814 btrfs_exclop_finish(fs_info); 1815 sb_end_write(fs_info->sb); 1816 return; 1817 } 1818 1819 spin_lock(&fs_info->unused_bgs_lock); 1820 /* 1821 * Sort happens under lock because we can't simply splice it and sort. 1822 * The block groups might still be in use and reachable via bg_list, 1823 * and their presence in the reclaim_bgs list must be preserved. 1824 */ 1825 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1826 while (!list_empty(&fs_info->reclaim_bgs)) { 1827 u64 zone_unusable; 1828 int ret = 0; 1829 1830 bg = list_first_entry(&fs_info->reclaim_bgs, 1831 struct btrfs_block_group, 1832 bg_list); 1833 list_del_init(&bg->bg_list); 1834 1835 space_info = bg->space_info; 1836 spin_unlock(&fs_info->unused_bgs_lock); 1837 1838 /* Don't race with allocators so take the groups_sem */ 1839 down_write(&space_info->groups_sem); 1840 1841 spin_lock(&bg->lock); 1842 if (bg->reserved || bg->pinned || bg->ro) { 1843 /* 1844 * We want to bail if we made new allocations or have 1845 * outstanding allocations in this block group. We do 1846 * the ro check in case balance is currently acting on 1847 * this block group. 1848 */ 1849 spin_unlock(&bg->lock); 1850 up_write(&space_info->groups_sem); 1851 goto next; 1852 } 1853 if (bg->used == 0) { 1854 /* 1855 * It is possible that we trigger relocation on a block 1856 * group as its extents are deleted and it first goes 1857 * below the threshold, then shortly after goes empty. 1858 * 1859 * In this case, relocating it does delete it, but has 1860 * some overhead in relocation specific metadata, looking 1861 * for the non-existent extents and running some extra 1862 * transactions, which we can avoid by using one of the 1863 * other mechanisms for dealing with empty block groups. 1864 */ 1865 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1866 btrfs_mark_bg_unused(bg); 1867 spin_unlock(&bg->lock); 1868 up_write(&space_info->groups_sem); 1869 goto next; 1870 1871 } 1872 /* 1873 * The block group might no longer meet the reclaim condition by 1874 * the time we get around to reclaiming it, so to avoid 1875 * reclaiming overly full block_groups, skip reclaiming them. 1876 * 1877 * Since the decision making process also depends on the amount 1878 * being freed, pass in a fake giant value to skip that extra 1879 * check, which is more meaningful when adding to the list in 1880 * the first place. 1881 */ 1882 if (!should_reclaim_block_group(bg, bg->length)) { 1883 spin_unlock(&bg->lock); 1884 up_write(&space_info->groups_sem); 1885 goto next; 1886 } 1887 spin_unlock(&bg->lock); 1888 1889 /* 1890 * Get out fast, in case we're read-only or unmounting the 1891 * filesystem. It is OK to drop block groups from the list even 1892 * for the read-only case. As we did sb_start_write(), 1893 * "mount -o remount,ro" won't happen and read-only filesystem 1894 * means it is forced read-only due to a fatal error. So, it 1895 * never gets back to read-write to let us reclaim again. 1896 */ 1897 if (btrfs_need_cleaner_sleep(fs_info)) { 1898 up_write(&space_info->groups_sem); 1899 goto next; 1900 } 1901 1902 /* 1903 * Cache the zone_unusable value before turning the block group 1904 * to read only. As soon as the blog group is read only it's 1905 * zone_unusable value gets moved to the block group's read-only 1906 * bytes and isn't available for calculations anymore. 1907 */ 1908 zone_unusable = bg->zone_unusable; 1909 ret = inc_block_group_ro(bg, 0); 1910 up_write(&space_info->groups_sem); 1911 if (ret < 0) 1912 goto next; 1913 1914 btrfs_info(fs_info, 1915 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1916 bg->start, 1917 div64_u64(bg->used * 100, bg->length), 1918 div64_u64(zone_unusable * 100, bg->length)); 1919 trace_btrfs_reclaim_block_group(bg); 1920 ret = btrfs_relocate_chunk(fs_info, bg->start); 1921 if (ret) { 1922 btrfs_dec_block_group_ro(bg); 1923 btrfs_err(fs_info, "error relocating chunk %llu", 1924 bg->start); 1925 } 1926 1927 next: 1928 if (ret) { 1929 /* Refcount held by the reclaim_bgs list after splice. */ 1930 spin_lock(&fs_info->unused_bgs_lock); 1931 /* 1932 * This block group might be added to the unused list 1933 * during the above process. Move it back to the 1934 * reclaim list otherwise. 1935 */ 1936 if (list_empty(&bg->bg_list)) { 1937 btrfs_get_block_group(bg); 1938 list_add_tail(&bg->bg_list, &retry_list); 1939 } 1940 spin_unlock(&fs_info->unused_bgs_lock); 1941 } 1942 btrfs_put_block_group(bg); 1943 1944 mutex_unlock(&fs_info->reclaim_bgs_lock); 1945 /* 1946 * Reclaiming all the block groups in the list can take really 1947 * long. Prioritize cleaning up unused block groups. 1948 */ 1949 btrfs_delete_unused_bgs(fs_info); 1950 /* 1951 * If we are interrupted by a balance, we can just bail out. The 1952 * cleaner thread restart again if necessary. 1953 */ 1954 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1955 goto end; 1956 spin_lock(&fs_info->unused_bgs_lock); 1957 } 1958 spin_unlock(&fs_info->unused_bgs_lock); 1959 mutex_unlock(&fs_info->reclaim_bgs_lock); 1960 end: 1961 spin_lock(&fs_info->unused_bgs_lock); 1962 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1963 spin_unlock(&fs_info->unused_bgs_lock); 1964 btrfs_exclop_finish(fs_info); 1965 sb_end_write(fs_info->sb); 1966 } 1967 1968 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1969 { 1970 spin_lock(&fs_info->unused_bgs_lock); 1971 if (!list_empty(&fs_info->reclaim_bgs)) 1972 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1973 spin_unlock(&fs_info->unused_bgs_lock); 1974 } 1975 1976 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1977 { 1978 struct btrfs_fs_info *fs_info = bg->fs_info; 1979 1980 spin_lock(&fs_info->unused_bgs_lock); 1981 if (list_empty(&bg->bg_list)) { 1982 btrfs_get_block_group(bg); 1983 trace_btrfs_add_reclaim_block_group(bg); 1984 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1985 } 1986 spin_unlock(&fs_info->unused_bgs_lock); 1987 } 1988 1989 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1990 struct btrfs_path *path) 1991 { 1992 struct extent_map_tree *em_tree; 1993 struct extent_map *em; 1994 struct btrfs_block_group_item bg; 1995 struct extent_buffer *leaf; 1996 int slot; 1997 u64 flags; 1998 int ret = 0; 1999 2000 slot = path->slots[0]; 2001 leaf = path->nodes[0]; 2002 2003 em_tree = &fs_info->mapping_tree; 2004 read_lock(&em_tree->lock); 2005 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 2006 read_unlock(&em_tree->lock); 2007 if (!em) { 2008 btrfs_err(fs_info, 2009 "logical %llu len %llu found bg but no related chunk", 2010 key->objectid, key->offset); 2011 return -ENOENT; 2012 } 2013 2014 if (em->start != key->objectid || em->len != key->offset) { 2015 btrfs_err(fs_info, 2016 "block group %llu len %llu mismatch with chunk %llu len %llu", 2017 key->objectid, key->offset, em->start, em->len); 2018 ret = -EUCLEAN; 2019 goto out_free_em; 2020 } 2021 2022 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2023 sizeof(bg)); 2024 flags = btrfs_stack_block_group_flags(&bg) & 2025 BTRFS_BLOCK_GROUP_TYPE_MASK; 2026 2027 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2028 btrfs_err(fs_info, 2029 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2030 key->objectid, key->offset, flags, 2031 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 2032 ret = -EUCLEAN; 2033 } 2034 2035 out_free_em: 2036 free_extent_map(em); 2037 return ret; 2038 } 2039 2040 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2041 struct btrfs_path *path, 2042 struct btrfs_key *key) 2043 { 2044 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2045 int ret; 2046 struct btrfs_key found_key; 2047 2048 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2049 if (found_key.objectid >= key->objectid && 2050 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2051 return read_bg_from_eb(fs_info, &found_key, path); 2052 } 2053 } 2054 return ret; 2055 } 2056 2057 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2058 { 2059 u64 extra_flags = chunk_to_extended(flags) & 2060 BTRFS_EXTENDED_PROFILE_MASK; 2061 2062 write_seqlock(&fs_info->profiles_lock); 2063 if (flags & BTRFS_BLOCK_GROUP_DATA) 2064 fs_info->avail_data_alloc_bits |= extra_flags; 2065 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2066 fs_info->avail_metadata_alloc_bits |= extra_flags; 2067 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2068 fs_info->avail_system_alloc_bits |= extra_flags; 2069 write_sequnlock(&fs_info->profiles_lock); 2070 } 2071 2072 /* 2073 * Map a physical disk address to a list of logical addresses. 2074 * 2075 * @fs_info: the filesystem 2076 * @chunk_start: logical address of block group 2077 * @physical: physical address to map to logical addresses 2078 * @logical: return array of logical addresses which map to @physical 2079 * @naddrs: length of @logical 2080 * @stripe_len: size of IO stripe for the given block group 2081 * 2082 * Maps a particular @physical disk address to a list of @logical addresses. 2083 * Used primarily to exclude those portions of a block group that contain super 2084 * block copies. 2085 */ 2086 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2087 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2088 { 2089 struct extent_map *em; 2090 struct map_lookup *map; 2091 u64 *buf; 2092 u64 bytenr; 2093 u64 data_stripe_length; 2094 u64 io_stripe_size; 2095 int i, nr = 0; 2096 int ret = 0; 2097 2098 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2099 if (IS_ERR(em)) 2100 return -EIO; 2101 2102 map = em->map_lookup; 2103 data_stripe_length = em->orig_block_len; 2104 io_stripe_size = BTRFS_STRIPE_LEN; 2105 chunk_start = em->start; 2106 2107 /* For RAID5/6 adjust to a full IO stripe length */ 2108 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2109 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2110 2111 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2112 if (!buf) { 2113 ret = -ENOMEM; 2114 goto out; 2115 } 2116 2117 for (i = 0; i < map->num_stripes; i++) { 2118 bool already_inserted = false; 2119 u32 stripe_nr; 2120 u32 offset; 2121 int j; 2122 2123 if (!in_range(physical, map->stripes[i].physical, 2124 data_stripe_length)) 2125 continue; 2126 2127 stripe_nr = (physical - map->stripes[i].physical) >> 2128 BTRFS_STRIPE_LEN_SHIFT; 2129 offset = (physical - map->stripes[i].physical) & 2130 BTRFS_STRIPE_LEN_MASK; 2131 2132 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2133 BTRFS_BLOCK_GROUP_RAID10)) 2134 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2135 map->sub_stripes); 2136 /* 2137 * The remaining case would be for RAID56, multiply by 2138 * nr_data_stripes(). Alternatively, just use rmap_len below 2139 * instead of map->stripe_len 2140 */ 2141 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2142 2143 /* Ensure we don't add duplicate addresses */ 2144 for (j = 0; j < nr; j++) { 2145 if (buf[j] == bytenr) { 2146 already_inserted = true; 2147 break; 2148 } 2149 } 2150 2151 if (!already_inserted) 2152 buf[nr++] = bytenr; 2153 } 2154 2155 *logical = buf; 2156 *naddrs = nr; 2157 *stripe_len = io_stripe_size; 2158 out: 2159 free_extent_map(em); 2160 return ret; 2161 } 2162 2163 static int exclude_super_stripes(struct btrfs_block_group *cache) 2164 { 2165 struct btrfs_fs_info *fs_info = cache->fs_info; 2166 const bool zoned = btrfs_is_zoned(fs_info); 2167 u64 bytenr; 2168 u64 *logical; 2169 int stripe_len; 2170 int i, nr, ret; 2171 2172 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2173 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2174 cache->bytes_super += stripe_len; 2175 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2176 cache->start + stripe_len - 1, 2177 EXTENT_UPTODATE, NULL); 2178 if (ret) 2179 return ret; 2180 } 2181 2182 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2183 bytenr = btrfs_sb_offset(i); 2184 ret = btrfs_rmap_block(fs_info, cache->start, 2185 bytenr, &logical, &nr, &stripe_len); 2186 if (ret) 2187 return ret; 2188 2189 /* Shouldn't have super stripes in sequential zones */ 2190 if (zoned && nr) { 2191 kfree(logical); 2192 btrfs_err(fs_info, 2193 "zoned: block group %llu must not contain super block", 2194 cache->start); 2195 return -EUCLEAN; 2196 } 2197 2198 while (nr--) { 2199 u64 len = min_t(u64, stripe_len, 2200 cache->start + cache->length - logical[nr]); 2201 2202 cache->bytes_super += len; 2203 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2204 logical[nr] + len - 1, 2205 EXTENT_UPTODATE, NULL); 2206 if (ret) { 2207 kfree(logical); 2208 return ret; 2209 } 2210 } 2211 2212 kfree(logical); 2213 } 2214 return 0; 2215 } 2216 2217 static struct btrfs_block_group *btrfs_create_block_group_cache( 2218 struct btrfs_fs_info *fs_info, u64 start) 2219 { 2220 struct btrfs_block_group *cache; 2221 2222 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2223 if (!cache) 2224 return NULL; 2225 2226 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2227 GFP_NOFS); 2228 if (!cache->free_space_ctl) { 2229 kfree(cache); 2230 return NULL; 2231 } 2232 2233 cache->start = start; 2234 2235 cache->fs_info = fs_info; 2236 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2237 2238 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2239 2240 refcount_set(&cache->refs, 1); 2241 spin_lock_init(&cache->lock); 2242 init_rwsem(&cache->data_rwsem); 2243 INIT_LIST_HEAD(&cache->list); 2244 INIT_LIST_HEAD(&cache->cluster_list); 2245 INIT_LIST_HEAD(&cache->bg_list); 2246 INIT_LIST_HEAD(&cache->ro_list); 2247 INIT_LIST_HEAD(&cache->discard_list); 2248 INIT_LIST_HEAD(&cache->dirty_list); 2249 INIT_LIST_HEAD(&cache->io_list); 2250 INIT_LIST_HEAD(&cache->active_bg_list); 2251 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2252 atomic_set(&cache->frozen, 0); 2253 mutex_init(&cache->free_space_lock); 2254 2255 return cache; 2256 } 2257 2258 /* 2259 * Iterate all chunks and verify that each of them has the corresponding block 2260 * group 2261 */ 2262 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2263 { 2264 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2265 struct extent_map *em; 2266 struct btrfs_block_group *bg; 2267 u64 start = 0; 2268 int ret = 0; 2269 2270 while (1) { 2271 read_lock(&map_tree->lock); 2272 /* 2273 * lookup_extent_mapping will return the first extent map 2274 * intersecting the range, so setting @len to 1 is enough to 2275 * get the first chunk. 2276 */ 2277 em = lookup_extent_mapping(map_tree, start, 1); 2278 read_unlock(&map_tree->lock); 2279 if (!em) 2280 break; 2281 2282 bg = btrfs_lookup_block_group(fs_info, em->start); 2283 if (!bg) { 2284 btrfs_err(fs_info, 2285 "chunk start=%llu len=%llu doesn't have corresponding block group", 2286 em->start, em->len); 2287 ret = -EUCLEAN; 2288 free_extent_map(em); 2289 break; 2290 } 2291 if (bg->start != em->start || bg->length != em->len || 2292 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2293 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2294 btrfs_err(fs_info, 2295 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2296 em->start, em->len, 2297 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2298 bg->start, bg->length, 2299 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2300 ret = -EUCLEAN; 2301 free_extent_map(em); 2302 btrfs_put_block_group(bg); 2303 break; 2304 } 2305 start = em->start + em->len; 2306 free_extent_map(em); 2307 btrfs_put_block_group(bg); 2308 } 2309 return ret; 2310 } 2311 2312 static int read_one_block_group(struct btrfs_fs_info *info, 2313 struct btrfs_block_group_item *bgi, 2314 const struct btrfs_key *key, 2315 int need_clear) 2316 { 2317 struct btrfs_block_group *cache; 2318 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2319 int ret; 2320 2321 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2322 2323 cache = btrfs_create_block_group_cache(info, key->objectid); 2324 if (!cache) 2325 return -ENOMEM; 2326 2327 cache->length = key->offset; 2328 cache->used = btrfs_stack_block_group_used(bgi); 2329 cache->commit_used = cache->used; 2330 cache->flags = btrfs_stack_block_group_flags(bgi); 2331 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2332 2333 set_free_space_tree_thresholds(cache); 2334 2335 if (need_clear) { 2336 /* 2337 * When we mount with old space cache, we need to 2338 * set BTRFS_DC_CLEAR and set dirty flag. 2339 * 2340 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2341 * truncate the old free space cache inode and 2342 * setup a new one. 2343 * b) Setting 'dirty flag' makes sure that we flush 2344 * the new space cache info onto disk. 2345 */ 2346 if (btrfs_test_opt(info, SPACE_CACHE)) 2347 cache->disk_cache_state = BTRFS_DC_CLEAR; 2348 } 2349 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2350 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2351 btrfs_err(info, 2352 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2353 cache->start); 2354 ret = -EINVAL; 2355 goto error; 2356 } 2357 2358 ret = btrfs_load_block_group_zone_info(cache, false); 2359 if (ret) { 2360 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2361 cache->start); 2362 goto error; 2363 } 2364 2365 /* 2366 * We need to exclude the super stripes now so that the space info has 2367 * super bytes accounted for, otherwise we'll think we have more space 2368 * than we actually do. 2369 */ 2370 ret = exclude_super_stripes(cache); 2371 if (ret) { 2372 /* We may have excluded something, so call this just in case. */ 2373 btrfs_free_excluded_extents(cache); 2374 goto error; 2375 } 2376 2377 /* 2378 * For zoned filesystem, space after the allocation offset is the only 2379 * free space for a block group. So, we don't need any caching work. 2380 * btrfs_calc_zone_unusable() will set the amount of free space and 2381 * zone_unusable space. 2382 * 2383 * For regular filesystem, check for two cases, either we are full, and 2384 * therefore don't need to bother with the caching work since we won't 2385 * find any space, or we are empty, and we can just add all the space 2386 * in and be done with it. This saves us _a_lot_ of time, particularly 2387 * in the full case. 2388 */ 2389 if (btrfs_is_zoned(info)) { 2390 btrfs_calc_zone_unusable(cache); 2391 /* Should not have any excluded extents. Just in case, though. */ 2392 btrfs_free_excluded_extents(cache); 2393 } else if (cache->length == cache->used) { 2394 cache->cached = BTRFS_CACHE_FINISHED; 2395 btrfs_free_excluded_extents(cache); 2396 } else if (cache->used == 0) { 2397 cache->cached = BTRFS_CACHE_FINISHED; 2398 ret = btrfs_add_new_free_space(cache, cache->start, 2399 cache->start + cache->length, NULL); 2400 btrfs_free_excluded_extents(cache); 2401 if (ret) 2402 goto error; 2403 } 2404 2405 ret = btrfs_add_block_group_cache(info, cache); 2406 if (ret) { 2407 btrfs_remove_free_space_cache(cache); 2408 goto error; 2409 } 2410 trace_btrfs_add_block_group(info, cache, 0); 2411 btrfs_add_bg_to_space_info(info, cache); 2412 2413 set_avail_alloc_bits(info, cache->flags); 2414 if (btrfs_chunk_writeable(info, cache->start)) { 2415 if (cache->used == 0) { 2416 ASSERT(list_empty(&cache->bg_list)); 2417 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2418 btrfs_discard_queue_work(&info->discard_ctl, cache); 2419 else 2420 btrfs_mark_bg_unused(cache); 2421 } 2422 } else { 2423 inc_block_group_ro(cache, 1); 2424 } 2425 2426 return 0; 2427 error: 2428 btrfs_put_block_group(cache); 2429 return ret; 2430 } 2431 2432 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2433 { 2434 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2435 struct rb_node *node; 2436 int ret = 0; 2437 2438 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2439 struct extent_map *em; 2440 struct map_lookup *map; 2441 struct btrfs_block_group *bg; 2442 2443 em = rb_entry(node, struct extent_map, rb_node); 2444 map = em->map_lookup; 2445 bg = btrfs_create_block_group_cache(fs_info, em->start); 2446 if (!bg) { 2447 ret = -ENOMEM; 2448 break; 2449 } 2450 2451 /* Fill dummy cache as FULL */ 2452 bg->length = em->len; 2453 bg->flags = map->type; 2454 bg->cached = BTRFS_CACHE_FINISHED; 2455 bg->used = em->len; 2456 bg->flags = map->type; 2457 ret = btrfs_add_block_group_cache(fs_info, bg); 2458 /* 2459 * We may have some valid block group cache added already, in 2460 * that case we skip to the next one. 2461 */ 2462 if (ret == -EEXIST) { 2463 ret = 0; 2464 btrfs_put_block_group(bg); 2465 continue; 2466 } 2467 2468 if (ret) { 2469 btrfs_remove_free_space_cache(bg); 2470 btrfs_put_block_group(bg); 2471 break; 2472 } 2473 2474 btrfs_add_bg_to_space_info(fs_info, bg); 2475 2476 set_avail_alloc_bits(fs_info, bg->flags); 2477 } 2478 if (!ret) 2479 btrfs_init_global_block_rsv(fs_info); 2480 return ret; 2481 } 2482 2483 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2484 { 2485 struct btrfs_root *root = btrfs_block_group_root(info); 2486 struct btrfs_path *path; 2487 int ret; 2488 struct btrfs_block_group *cache; 2489 struct btrfs_space_info *space_info; 2490 struct btrfs_key key; 2491 int need_clear = 0; 2492 u64 cache_gen; 2493 2494 /* 2495 * Either no extent root (with ibadroots rescue option) or we have 2496 * unsupported RO options. The fs can never be mounted read-write, so no 2497 * need to waste time searching block group items. 2498 * 2499 * This also allows new extent tree related changes to be RO compat, 2500 * no need for a full incompat flag. 2501 */ 2502 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2503 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2504 return fill_dummy_bgs(info); 2505 2506 key.objectid = 0; 2507 key.offset = 0; 2508 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2509 path = btrfs_alloc_path(); 2510 if (!path) 2511 return -ENOMEM; 2512 2513 cache_gen = btrfs_super_cache_generation(info->super_copy); 2514 if (btrfs_test_opt(info, SPACE_CACHE) && 2515 btrfs_super_generation(info->super_copy) != cache_gen) 2516 need_clear = 1; 2517 if (btrfs_test_opt(info, CLEAR_CACHE)) 2518 need_clear = 1; 2519 2520 while (1) { 2521 struct btrfs_block_group_item bgi; 2522 struct extent_buffer *leaf; 2523 int slot; 2524 2525 ret = find_first_block_group(info, path, &key); 2526 if (ret > 0) 2527 break; 2528 if (ret != 0) 2529 goto error; 2530 2531 leaf = path->nodes[0]; 2532 slot = path->slots[0]; 2533 2534 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2535 sizeof(bgi)); 2536 2537 btrfs_item_key_to_cpu(leaf, &key, slot); 2538 btrfs_release_path(path); 2539 ret = read_one_block_group(info, &bgi, &key, need_clear); 2540 if (ret < 0) 2541 goto error; 2542 key.objectid += key.offset; 2543 key.offset = 0; 2544 } 2545 btrfs_release_path(path); 2546 2547 list_for_each_entry(space_info, &info->space_info, list) { 2548 int i; 2549 2550 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2551 if (list_empty(&space_info->block_groups[i])) 2552 continue; 2553 cache = list_first_entry(&space_info->block_groups[i], 2554 struct btrfs_block_group, 2555 list); 2556 btrfs_sysfs_add_block_group_type(cache); 2557 } 2558 2559 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2560 (BTRFS_BLOCK_GROUP_RAID10 | 2561 BTRFS_BLOCK_GROUP_RAID1_MASK | 2562 BTRFS_BLOCK_GROUP_RAID56_MASK | 2563 BTRFS_BLOCK_GROUP_DUP))) 2564 continue; 2565 /* 2566 * Avoid allocating from un-mirrored block group if there are 2567 * mirrored block groups. 2568 */ 2569 list_for_each_entry(cache, 2570 &space_info->block_groups[BTRFS_RAID_RAID0], 2571 list) 2572 inc_block_group_ro(cache, 1); 2573 list_for_each_entry(cache, 2574 &space_info->block_groups[BTRFS_RAID_SINGLE], 2575 list) 2576 inc_block_group_ro(cache, 1); 2577 } 2578 2579 btrfs_init_global_block_rsv(info); 2580 ret = check_chunk_block_group_mappings(info); 2581 error: 2582 btrfs_free_path(path); 2583 /* 2584 * We've hit some error while reading the extent tree, and have 2585 * rescue=ibadroots mount option. 2586 * Try to fill the tree using dummy block groups so that the user can 2587 * continue to mount and grab their data. 2588 */ 2589 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2590 ret = fill_dummy_bgs(info); 2591 return ret; 2592 } 2593 2594 /* 2595 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2596 * allocation. 2597 * 2598 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2599 * phases. 2600 */ 2601 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2602 struct btrfs_block_group *block_group) 2603 { 2604 struct btrfs_fs_info *fs_info = trans->fs_info; 2605 struct btrfs_block_group_item bgi; 2606 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2607 struct btrfs_key key; 2608 u64 old_commit_used; 2609 int ret; 2610 2611 spin_lock(&block_group->lock); 2612 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2613 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2614 block_group->global_root_id); 2615 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2616 old_commit_used = block_group->commit_used; 2617 block_group->commit_used = block_group->used; 2618 key.objectid = block_group->start; 2619 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2620 key.offset = block_group->length; 2621 spin_unlock(&block_group->lock); 2622 2623 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2624 if (ret < 0) { 2625 spin_lock(&block_group->lock); 2626 block_group->commit_used = old_commit_used; 2627 spin_unlock(&block_group->lock); 2628 } 2629 2630 return ret; 2631 } 2632 2633 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2634 struct btrfs_device *device, u64 chunk_offset, 2635 u64 start, u64 num_bytes) 2636 { 2637 struct btrfs_fs_info *fs_info = device->fs_info; 2638 struct btrfs_root *root = fs_info->dev_root; 2639 struct btrfs_path *path; 2640 struct btrfs_dev_extent *extent; 2641 struct extent_buffer *leaf; 2642 struct btrfs_key key; 2643 int ret; 2644 2645 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2646 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2647 path = btrfs_alloc_path(); 2648 if (!path) 2649 return -ENOMEM; 2650 2651 key.objectid = device->devid; 2652 key.type = BTRFS_DEV_EXTENT_KEY; 2653 key.offset = start; 2654 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2655 if (ret) 2656 goto out; 2657 2658 leaf = path->nodes[0]; 2659 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2660 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2661 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2662 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2663 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2664 2665 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2666 btrfs_mark_buffer_dirty(trans, leaf); 2667 out: 2668 btrfs_free_path(path); 2669 return ret; 2670 } 2671 2672 /* 2673 * This function belongs to phase 2. 2674 * 2675 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2676 * phases. 2677 */ 2678 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2679 u64 chunk_offset, u64 chunk_size) 2680 { 2681 struct btrfs_fs_info *fs_info = trans->fs_info; 2682 struct btrfs_device *device; 2683 struct extent_map *em; 2684 struct map_lookup *map; 2685 u64 dev_offset; 2686 u64 stripe_size; 2687 int i; 2688 int ret = 0; 2689 2690 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2691 if (IS_ERR(em)) 2692 return PTR_ERR(em); 2693 2694 map = em->map_lookup; 2695 stripe_size = em->orig_block_len; 2696 2697 /* 2698 * Take the device list mutex to prevent races with the final phase of 2699 * a device replace operation that replaces the device object associated 2700 * with the map's stripes, because the device object's id can change 2701 * at any time during that final phase of the device replace operation 2702 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2703 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2704 * resulting in persisting a device extent item with such ID. 2705 */ 2706 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2707 for (i = 0; i < map->num_stripes; i++) { 2708 device = map->stripes[i].dev; 2709 dev_offset = map->stripes[i].physical; 2710 2711 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2712 stripe_size); 2713 if (ret) 2714 break; 2715 } 2716 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2717 2718 free_extent_map(em); 2719 return ret; 2720 } 2721 2722 /* 2723 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2724 * chunk allocation. 2725 * 2726 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2727 * phases. 2728 */ 2729 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2730 { 2731 struct btrfs_fs_info *fs_info = trans->fs_info; 2732 struct btrfs_block_group *block_group; 2733 int ret = 0; 2734 2735 while (!list_empty(&trans->new_bgs)) { 2736 int index; 2737 2738 block_group = list_first_entry(&trans->new_bgs, 2739 struct btrfs_block_group, 2740 bg_list); 2741 if (ret) 2742 goto next; 2743 2744 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2745 2746 ret = insert_block_group_item(trans, block_group); 2747 if (ret) 2748 btrfs_abort_transaction(trans, ret); 2749 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2750 &block_group->runtime_flags)) { 2751 mutex_lock(&fs_info->chunk_mutex); 2752 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2753 mutex_unlock(&fs_info->chunk_mutex); 2754 if (ret) 2755 btrfs_abort_transaction(trans, ret); 2756 } 2757 ret = insert_dev_extents(trans, block_group->start, 2758 block_group->length); 2759 if (ret) 2760 btrfs_abort_transaction(trans, ret); 2761 add_block_group_free_space(trans, block_group); 2762 2763 /* 2764 * If we restriped during balance, we may have added a new raid 2765 * type, so now add the sysfs entries when it is safe to do so. 2766 * We don't have to worry about locking here as it's handled in 2767 * btrfs_sysfs_add_block_group_type. 2768 */ 2769 if (block_group->space_info->block_group_kobjs[index] == NULL) 2770 btrfs_sysfs_add_block_group_type(block_group); 2771 2772 /* Already aborted the transaction if it failed. */ 2773 next: 2774 btrfs_delayed_refs_rsv_release(fs_info, 1); 2775 list_del_init(&block_group->bg_list); 2776 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2777 } 2778 btrfs_trans_release_chunk_metadata(trans); 2779 } 2780 2781 /* 2782 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2783 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2784 */ 2785 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2786 { 2787 u64 div = SZ_1G; 2788 u64 index; 2789 2790 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2791 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2792 2793 /* If we have a smaller fs index based on 128MiB. */ 2794 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2795 div = SZ_128M; 2796 2797 offset = div64_u64(offset, div); 2798 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2799 return index; 2800 } 2801 2802 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2803 u64 type, 2804 u64 chunk_offset, u64 size) 2805 { 2806 struct btrfs_fs_info *fs_info = trans->fs_info; 2807 struct btrfs_block_group *cache; 2808 int ret; 2809 2810 btrfs_set_log_full_commit(trans); 2811 2812 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2813 if (!cache) 2814 return ERR_PTR(-ENOMEM); 2815 2816 /* 2817 * Mark it as new before adding it to the rbtree of block groups or any 2818 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2819 * before the new flag is set. 2820 */ 2821 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2822 2823 cache->length = size; 2824 set_free_space_tree_thresholds(cache); 2825 cache->flags = type; 2826 cache->cached = BTRFS_CACHE_FINISHED; 2827 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2828 2829 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2830 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2831 2832 ret = btrfs_load_block_group_zone_info(cache, true); 2833 if (ret) { 2834 btrfs_put_block_group(cache); 2835 return ERR_PTR(ret); 2836 } 2837 2838 ret = exclude_super_stripes(cache); 2839 if (ret) { 2840 /* We may have excluded something, so call this just in case */ 2841 btrfs_free_excluded_extents(cache); 2842 btrfs_put_block_group(cache); 2843 return ERR_PTR(ret); 2844 } 2845 2846 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2847 btrfs_free_excluded_extents(cache); 2848 if (ret) { 2849 btrfs_put_block_group(cache); 2850 return ERR_PTR(ret); 2851 } 2852 2853 /* 2854 * Ensure the corresponding space_info object is created and 2855 * assigned to our block group. We want our bg to be added to the rbtree 2856 * with its ->space_info set. 2857 */ 2858 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2859 ASSERT(cache->space_info); 2860 2861 ret = btrfs_add_block_group_cache(fs_info, cache); 2862 if (ret) { 2863 btrfs_remove_free_space_cache(cache); 2864 btrfs_put_block_group(cache); 2865 return ERR_PTR(ret); 2866 } 2867 2868 /* 2869 * Now that our block group has its ->space_info set and is inserted in 2870 * the rbtree, update the space info's counters. 2871 */ 2872 trace_btrfs_add_block_group(fs_info, cache, 1); 2873 btrfs_add_bg_to_space_info(fs_info, cache); 2874 btrfs_update_global_block_rsv(fs_info); 2875 2876 #ifdef CONFIG_BTRFS_DEBUG 2877 if (btrfs_should_fragment_free_space(cache)) { 2878 cache->space_info->bytes_used += size >> 1; 2879 fragment_free_space(cache); 2880 } 2881 #endif 2882 2883 list_add_tail(&cache->bg_list, &trans->new_bgs); 2884 trans->delayed_ref_updates++; 2885 btrfs_update_delayed_refs_rsv(trans); 2886 2887 set_avail_alloc_bits(fs_info, type); 2888 return cache; 2889 } 2890 2891 /* 2892 * Mark one block group RO, can be called several times for the same block 2893 * group. 2894 * 2895 * @cache: the destination block group 2896 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2897 * ensure we still have some free space after marking this 2898 * block group RO. 2899 */ 2900 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2901 bool do_chunk_alloc) 2902 { 2903 struct btrfs_fs_info *fs_info = cache->fs_info; 2904 struct btrfs_trans_handle *trans; 2905 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2906 u64 alloc_flags; 2907 int ret; 2908 bool dirty_bg_running; 2909 2910 /* 2911 * This can only happen when we are doing read-only scrub on read-only 2912 * mount. 2913 * In that case we should not start a new transaction on read-only fs. 2914 * Thus here we skip all chunk allocations. 2915 */ 2916 if (sb_rdonly(fs_info->sb)) { 2917 mutex_lock(&fs_info->ro_block_group_mutex); 2918 ret = inc_block_group_ro(cache, 0); 2919 mutex_unlock(&fs_info->ro_block_group_mutex); 2920 return ret; 2921 } 2922 2923 do { 2924 trans = btrfs_join_transaction(root); 2925 if (IS_ERR(trans)) 2926 return PTR_ERR(trans); 2927 2928 dirty_bg_running = false; 2929 2930 /* 2931 * We're not allowed to set block groups readonly after the dirty 2932 * block group cache has started writing. If it already started, 2933 * back off and let this transaction commit. 2934 */ 2935 mutex_lock(&fs_info->ro_block_group_mutex); 2936 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2937 u64 transid = trans->transid; 2938 2939 mutex_unlock(&fs_info->ro_block_group_mutex); 2940 btrfs_end_transaction(trans); 2941 2942 ret = btrfs_wait_for_commit(fs_info, transid); 2943 if (ret) 2944 return ret; 2945 dirty_bg_running = true; 2946 } 2947 } while (dirty_bg_running); 2948 2949 if (do_chunk_alloc) { 2950 /* 2951 * If we are changing raid levels, try to allocate a 2952 * corresponding block group with the new raid level. 2953 */ 2954 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2955 if (alloc_flags != cache->flags) { 2956 ret = btrfs_chunk_alloc(trans, alloc_flags, 2957 CHUNK_ALLOC_FORCE); 2958 /* 2959 * ENOSPC is allowed here, we may have enough space 2960 * already allocated at the new raid level to carry on 2961 */ 2962 if (ret == -ENOSPC) 2963 ret = 0; 2964 if (ret < 0) 2965 goto out; 2966 } 2967 } 2968 2969 ret = inc_block_group_ro(cache, 0); 2970 if (!ret) 2971 goto out; 2972 if (ret == -ETXTBSY) 2973 goto unlock_out; 2974 2975 /* 2976 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2977 * chunk allocation storm to exhaust the system chunk array. Otherwise 2978 * we still want to try our best to mark the block group read-only. 2979 */ 2980 if (!do_chunk_alloc && ret == -ENOSPC && 2981 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2982 goto unlock_out; 2983 2984 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2985 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2986 if (ret < 0) 2987 goto out; 2988 /* 2989 * We have allocated a new chunk. We also need to activate that chunk to 2990 * grant metadata tickets for zoned filesystem. 2991 */ 2992 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2993 if (ret < 0) 2994 goto out; 2995 2996 ret = inc_block_group_ro(cache, 0); 2997 if (ret == -ETXTBSY) 2998 goto unlock_out; 2999 out: 3000 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3001 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3002 mutex_lock(&fs_info->chunk_mutex); 3003 check_system_chunk(trans, alloc_flags); 3004 mutex_unlock(&fs_info->chunk_mutex); 3005 } 3006 unlock_out: 3007 mutex_unlock(&fs_info->ro_block_group_mutex); 3008 3009 btrfs_end_transaction(trans); 3010 return ret; 3011 } 3012 3013 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3014 { 3015 struct btrfs_space_info *sinfo = cache->space_info; 3016 u64 num_bytes; 3017 3018 BUG_ON(!cache->ro); 3019 3020 spin_lock(&sinfo->lock); 3021 spin_lock(&cache->lock); 3022 if (!--cache->ro) { 3023 if (btrfs_is_zoned(cache->fs_info)) { 3024 /* Migrate zone_unusable bytes back */ 3025 cache->zone_unusable = 3026 (cache->alloc_offset - cache->used) + 3027 (cache->length - cache->zone_capacity); 3028 sinfo->bytes_zone_unusable += cache->zone_unusable; 3029 sinfo->bytes_readonly -= cache->zone_unusable; 3030 } 3031 num_bytes = cache->length - cache->reserved - 3032 cache->pinned - cache->bytes_super - 3033 cache->zone_unusable - cache->used; 3034 sinfo->bytes_readonly -= num_bytes; 3035 list_del_init(&cache->ro_list); 3036 } 3037 spin_unlock(&cache->lock); 3038 spin_unlock(&sinfo->lock); 3039 } 3040 3041 static int update_block_group_item(struct btrfs_trans_handle *trans, 3042 struct btrfs_path *path, 3043 struct btrfs_block_group *cache) 3044 { 3045 struct btrfs_fs_info *fs_info = trans->fs_info; 3046 int ret; 3047 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3048 unsigned long bi; 3049 struct extent_buffer *leaf; 3050 struct btrfs_block_group_item bgi; 3051 struct btrfs_key key; 3052 u64 old_commit_used; 3053 u64 used; 3054 3055 /* 3056 * Block group items update can be triggered out of commit transaction 3057 * critical section, thus we need a consistent view of used bytes. 3058 * We cannot use cache->used directly outside of the spin lock, as it 3059 * may be changed. 3060 */ 3061 spin_lock(&cache->lock); 3062 old_commit_used = cache->commit_used; 3063 used = cache->used; 3064 /* No change in used bytes, can safely skip it. */ 3065 if (cache->commit_used == used) { 3066 spin_unlock(&cache->lock); 3067 return 0; 3068 } 3069 cache->commit_used = used; 3070 spin_unlock(&cache->lock); 3071 3072 key.objectid = cache->start; 3073 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3074 key.offset = cache->length; 3075 3076 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3077 if (ret) { 3078 if (ret > 0) 3079 ret = -ENOENT; 3080 goto fail; 3081 } 3082 3083 leaf = path->nodes[0]; 3084 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3085 btrfs_set_stack_block_group_used(&bgi, used); 3086 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3087 cache->global_root_id); 3088 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3089 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3090 btrfs_mark_buffer_dirty(trans, leaf); 3091 fail: 3092 btrfs_release_path(path); 3093 /* 3094 * We didn't update the block group item, need to revert commit_used 3095 * unless the block group item didn't exist yet - this is to prevent a 3096 * race with a concurrent insertion of the block group item, with 3097 * insert_block_group_item(), that happened just after we attempted to 3098 * update. In that case we would reset commit_used to 0 just after the 3099 * insertion set it to a value greater than 0 - if the block group later 3100 * becomes with 0 used bytes, we would incorrectly skip its update. 3101 */ 3102 if (ret < 0 && ret != -ENOENT) { 3103 spin_lock(&cache->lock); 3104 cache->commit_used = old_commit_used; 3105 spin_unlock(&cache->lock); 3106 } 3107 return ret; 3108 3109 } 3110 3111 static int cache_save_setup(struct btrfs_block_group *block_group, 3112 struct btrfs_trans_handle *trans, 3113 struct btrfs_path *path) 3114 { 3115 struct btrfs_fs_info *fs_info = block_group->fs_info; 3116 struct btrfs_root *root = fs_info->tree_root; 3117 struct inode *inode = NULL; 3118 struct extent_changeset *data_reserved = NULL; 3119 u64 alloc_hint = 0; 3120 int dcs = BTRFS_DC_ERROR; 3121 u64 cache_size = 0; 3122 int retries = 0; 3123 int ret = 0; 3124 3125 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3126 return 0; 3127 3128 /* 3129 * If this block group is smaller than 100 megs don't bother caching the 3130 * block group. 3131 */ 3132 if (block_group->length < (100 * SZ_1M)) { 3133 spin_lock(&block_group->lock); 3134 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3135 spin_unlock(&block_group->lock); 3136 return 0; 3137 } 3138 3139 if (TRANS_ABORTED(trans)) 3140 return 0; 3141 again: 3142 inode = lookup_free_space_inode(block_group, path); 3143 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3144 ret = PTR_ERR(inode); 3145 btrfs_release_path(path); 3146 goto out; 3147 } 3148 3149 if (IS_ERR(inode)) { 3150 BUG_ON(retries); 3151 retries++; 3152 3153 if (block_group->ro) 3154 goto out_free; 3155 3156 ret = create_free_space_inode(trans, block_group, path); 3157 if (ret) 3158 goto out_free; 3159 goto again; 3160 } 3161 3162 /* 3163 * We want to set the generation to 0, that way if anything goes wrong 3164 * from here on out we know not to trust this cache when we load up next 3165 * time. 3166 */ 3167 BTRFS_I(inode)->generation = 0; 3168 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3169 if (ret) { 3170 /* 3171 * So theoretically we could recover from this, simply set the 3172 * super cache generation to 0 so we know to invalidate the 3173 * cache, but then we'd have to keep track of the block groups 3174 * that fail this way so we know we _have_ to reset this cache 3175 * before the next commit or risk reading stale cache. So to 3176 * limit our exposure to horrible edge cases lets just abort the 3177 * transaction, this only happens in really bad situations 3178 * anyway. 3179 */ 3180 btrfs_abort_transaction(trans, ret); 3181 goto out_put; 3182 } 3183 WARN_ON(ret); 3184 3185 /* We've already setup this transaction, go ahead and exit */ 3186 if (block_group->cache_generation == trans->transid && 3187 i_size_read(inode)) { 3188 dcs = BTRFS_DC_SETUP; 3189 goto out_put; 3190 } 3191 3192 if (i_size_read(inode) > 0) { 3193 ret = btrfs_check_trunc_cache_free_space(fs_info, 3194 &fs_info->global_block_rsv); 3195 if (ret) 3196 goto out_put; 3197 3198 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3199 if (ret) 3200 goto out_put; 3201 } 3202 3203 spin_lock(&block_group->lock); 3204 if (block_group->cached != BTRFS_CACHE_FINISHED || 3205 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3206 /* 3207 * don't bother trying to write stuff out _if_ 3208 * a) we're not cached, 3209 * b) we're with nospace_cache mount option, 3210 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3211 */ 3212 dcs = BTRFS_DC_WRITTEN; 3213 spin_unlock(&block_group->lock); 3214 goto out_put; 3215 } 3216 spin_unlock(&block_group->lock); 3217 3218 /* 3219 * We hit an ENOSPC when setting up the cache in this transaction, just 3220 * skip doing the setup, we've already cleared the cache so we're safe. 3221 */ 3222 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3223 ret = -ENOSPC; 3224 goto out_put; 3225 } 3226 3227 /* 3228 * Try to preallocate enough space based on how big the block group is. 3229 * Keep in mind this has to include any pinned space which could end up 3230 * taking up quite a bit since it's not folded into the other space 3231 * cache. 3232 */ 3233 cache_size = div_u64(block_group->length, SZ_256M); 3234 if (!cache_size) 3235 cache_size = 1; 3236 3237 cache_size *= 16; 3238 cache_size *= fs_info->sectorsize; 3239 3240 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3241 cache_size, false); 3242 if (ret) 3243 goto out_put; 3244 3245 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3246 cache_size, cache_size, 3247 &alloc_hint); 3248 /* 3249 * Our cache requires contiguous chunks so that we don't modify a bunch 3250 * of metadata or split extents when writing the cache out, which means 3251 * we can enospc if we are heavily fragmented in addition to just normal 3252 * out of space conditions. So if we hit this just skip setting up any 3253 * other block groups for this transaction, maybe we'll unpin enough 3254 * space the next time around. 3255 */ 3256 if (!ret) 3257 dcs = BTRFS_DC_SETUP; 3258 else if (ret == -ENOSPC) 3259 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3260 3261 out_put: 3262 iput(inode); 3263 out_free: 3264 btrfs_release_path(path); 3265 out: 3266 spin_lock(&block_group->lock); 3267 if (!ret && dcs == BTRFS_DC_SETUP) 3268 block_group->cache_generation = trans->transid; 3269 block_group->disk_cache_state = dcs; 3270 spin_unlock(&block_group->lock); 3271 3272 extent_changeset_free(data_reserved); 3273 return ret; 3274 } 3275 3276 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3277 { 3278 struct btrfs_fs_info *fs_info = trans->fs_info; 3279 struct btrfs_block_group *cache, *tmp; 3280 struct btrfs_transaction *cur_trans = trans->transaction; 3281 struct btrfs_path *path; 3282 3283 if (list_empty(&cur_trans->dirty_bgs) || 3284 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3285 return 0; 3286 3287 path = btrfs_alloc_path(); 3288 if (!path) 3289 return -ENOMEM; 3290 3291 /* Could add new block groups, use _safe just in case */ 3292 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3293 dirty_list) { 3294 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3295 cache_save_setup(cache, trans, path); 3296 } 3297 3298 btrfs_free_path(path); 3299 return 0; 3300 } 3301 3302 /* 3303 * Transaction commit does final block group cache writeback during a critical 3304 * section where nothing is allowed to change the FS. This is required in 3305 * order for the cache to actually match the block group, but can introduce a 3306 * lot of latency into the commit. 3307 * 3308 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3309 * There's a chance we'll have to redo some of it if the block group changes 3310 * again during the commit, but it greatly reduces the commit latency by 3311 * getting rid of the easy block groups while we're still allowing others to 3312 * join the commit. 3313 */ 3314 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3315 { 3316 struct btrfs_fs_info *fs_info = trans->fs_info; 3317 struct btrfs_block_group *cache; 3318 struct btrfs_transaction *cur_trans = trans->transaction; 3319 int ret = 0; 3320 int should_put; 3321 struct btrfs_path *path = NULL; 3322 LIST_HEAD(dirty); 3323 struct list_head *io = &cur_trans->io_bgs; 3324 int loops = 0; 3325 3326 spin_lock(&cur_trans->dirty_bgs_lock); 3327 if (list_empty(&cur_trans->dirty_bgs)) { 3328 spin_unlock(&cur_trans->dirty_bgs_lock); 3329 return 0; 3330 } 3331 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3332 spin_unlock(&cur_trans->dirty_bgs_lock); 3333 3334 again: 3335 /* Make sure all the block groups on our dirty list actually exist */ 3336 btrfs_create_pending_block_groups(trans); 3337 3338 if (!path) { 3339 path = btrfs_alloc_path(); 3340 if (!path) { 3341 ret = -ENOMEM; 3342 goto out; 3343 } 3344 } 3345 3346 /* 3347 * cache_write_mutex is here only to save us from balance or automatic 3348 * removal of empty block groups deleting this block group while we are 3349 * writing out the cache 3350 */ 3351 mutex_lock(&trans->transaction->cache_write_mutex); 3352 while (!list_empty(&dirty)) { 3353 bool drop_reserve = true; 3354 3355 cache = list_first_entry(&dirty, struct btrfs_block_group, 3356 dirty_list); 3357 /* 3358 * This can happen if something re-dirties a block group that 3359 * is already under IO. Just wait for it to finish and then do 3360 * it all again 3361 */ 3362 if (!list_empty(&cache->io_list)) { 3363 list_del_init(&cache->io_list); 3364 btrfs_wait_cache_io(trans, cache, path); 3365 btrfs_put_block_group(cache); 3366 } 3367 3368 3369 /* 3370 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3371 * it should update the cache_state. Don't delete until after 3372 * we wait. 3373 * 3374 * Since we're not running in the commit critical section 3375 * we need the dirty_bgs_lock to protect from update_block_group 3376 */ 3377 spin_lock(&cur_trans->dirty_bgs_lock); 3378 list_del_init(&cache->dirty_list); 3379 spin_unlock(&cur_trans->dirty_bgs_lock); 3380 3381 should_put = 1; 3382 3383 cache_save_setup(cache, trans, path); 3384 3385 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3386 cache->io_ctl.inode = NULL; 3387 ret = btrfs_write_out_cache(trans, cache, path); 3388 if (ret == 0 && cache->io_ctl.inode) { 3389 should_put = 0; 3390 3391 /* 3392 * The cache_write_mutex is protecting the 3393 * io_list, also refer to the definition of 3394 * btrfs_transaction::io_bgs for more details 3395 */ 3396 list_add_tail(&cache->io_list, io); 3397 } else { 3398 /* 3399 * If we failed to write the cache, the 3400 * generation will be bad and life goes on 3401 */ 3402 ret = 0; 3403 } 3404 } 3405 if (!ret) { 3406 ret = update_block_group_item(trans, path, cache); 3407 /* 3408 * Our block group might still be attached to the list 3409 * of new block groups in the transaction handle of some 3410 * other task (struct btrfs_trans_handle->new_bgs). This 3411 * means its block group item isn't yet in the extent 3412 * tree. If this happens ignore the error, as we will 3413 * try again later in the critical section of the 3414 * transaction commit. 3415 */ 3416 if (ret == -ENOENT) { 3417 ret = 0; 3418 spin_lock(&cur_trans->dirty_bgs_lock); 3419 if (list_empty(&cache->dirty_list)) { 3420 list_add_tail(&cache->dirty_list, 3421 &cur_trans->dirty_bgs); 3422 btrfs_get_block_group(cache); 3423 drop_reserve = false; 3424 } 3425 spin_unlock(&cur_trans->dirty_bgs_lock); 3426 } else if (ret) { 3427 btrfs_abort_transaction(trans, ret); 3428 } 3429 } 3430 3431 /* If it's not on the io list, we need to put the block group */ 3432 if (should_put) 3433 btrfs_put_block_group(cache); 3434 if (drop_reserve) 3435 btrfs_delayed_refs_rsv_release(fs_info, 1); 3436 /* 3437 * Avoid blocking other tasks for too long. It might even save 3438 * us from writing caches for block groups that are going to be 3439 * removed. 3440 */ 3441 mutex_unlock(&trans->transaction->cache_write_mutex); 3442 if (ret) 3443 goto out; 3444 mutex_lock(&trans->transaction->cache_write_mutex); 3445 } 3446 mutex_unlock(&trans->transaction->cache_write_mutex); 3447 3448 /* 3449 * Go through delayed refs for all the stuff we've just kicked off 3450 * and then loop back (just once) 3451 */ 3452 if (!ret) 3453 ret = btrfs_run_delayed_refs(trans, 0); 3454 if (!ret && loops == 0) { 3455 loops++; 3456 spin_lock(&cur_trans->dirty_bgs_lock); 3457 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3458 /* 3459 * dirty_bgs_lock protects us from concurrent block group 3460 * deletes too (not just cache_write_mutex). 3461 */ 3462 if (!list_empty(&dirty)) { 3463 spin_unlock(&cur_trans->dirty_bgs_lock); 3464 goto again; 3465 } 3466 spin_unlock(&cur_trans->dirty_bgs_lock); 3467 } 3468 out: 3469 if (ret < 0) { 3470 spin_lock(&cur_trans->dirty_bgs_lock); 3471 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3472 spin_unlock(&cur_trans->dirty_bgs_lock); 3473 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3474 } 3475 3476 btrfs_free_path(path); 3477 return ret; 3478 } 3479 3480 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3481 { 3482 struct btrfs_fs_info *fs_info = trans->fs_info; 3483 struct btrfs_block_group *cache; 3484 struct btrfs_transaction *cur_trans = trans->transaction; 3485 int ret = 0; 3486 int should_put; 3487 struct btrfs_path *path; 3488 struct list_head *io = &cur_trans->io_bgs; 3489 3490 path = btrfs_alloc_path(); 3491 if (!path) 3492 return -ENOMEM; 3493 3494 /* 3495 * Even though we are in the critical section of the transaction commit, 3496 * we can still have concurrent tasks adding elements to this 3497 * transaction's list of dirty block groups. These tasks correspond to 3498 * endio free space workers started when writeback finishes for a 3499 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3500 * allocate new block groups as a result of COWing nodes of the root 3501 * tree when updating the free space inode. The writeback for the space 3502 * caches is triggered by an earlier call to 3503 * btrfs_start_dirty_block_groups() and iterations of the following 3504 * loop. 3505 * Also we want to do the cache_save_setup first and then run the 3506 * delayed refs to make sure we have the best chance at doing this all 3507 * in one shot. 3508 */ 3509 spin_lock(&cur_trans->dirty_bgs_lock); 3510 while (!list_empty(&cur_trans->dirty_bgs)) { 3511 cache = list_first_entry(&cur_trans->dirty_bgs, 3512 struct btrfs_block_group, 3513 dirty_list); 3514 3515 /* 3516 * This can happen if cache_save_setup re-dirties a block group 3517 * that is already under IO. Just wait for it to finish and 3518 * then do it all again 3519 */ 3520 if (!list_empty(&cache->io_list)) { 3521 spin_unlock(&cur_trans->dirty_bgs_lock); 3522 list_del_init(&cache->io_list); 3523 btrfs_wait_cache_io(trans, cache, path); 3524 btrfs_put_block_group(cache); 3525 spin_lock(&cur_trans->dirty_bgs_lock); 3526 } 3527 3528 /* 3529 * Don't remove from the dirty list until after we've waited on 3530 * any pending IO 3531 */ 3532 list_del_init(&cache->dirty_list); 3533 spin_unlock(&cur_trans->dirty_bgs_lock); 3534 should_put = 1; 3535 3536 cache_save_setup(cache, trans, path); 3537 3538 if (!ret) 3539 ret = btrfs_run_delayed_refs(trans, 3540 (unsigned long) -1); 3541 3542 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3543 cache->io_ctl.inode = NULL; 3544 ret = btrfs_write_out_cache(trans, cache, path); 3545 if (ret == 0 && cache->io_ctl.inode) { 3546 should_put = 0; 3547 list_add_tail(&cache->io_list, io); 3548 } else { 3549 /* 3550 * If we failed to write the cache, the 3551 * generation will be bad and life goes on 3552 */ 3553 ret = 0; 3554 } 3555 } 3556 if (!ret) { 3557 ret = update_block_group_item(trans, path, cache); 3558 /* 3559 * One of the free space endio workers might have 3560 * created a new block group while updating a free space 3561 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3562 * and hasn't released its transaction handle yet, in 3563 * which case the new block group is still attached to 3564 * its transaction handle and its creation has not 3565 * finished yet (no block group item in the extent tree 3566 * yet, etc). If this is the case, wait for all free 3567 * space endio workers to finish and retry. This is a 3568 * very rare case so no need for a more efficient and 3569 * complex approach. 3570 */ 3571 if (ret == -ENOENT) { 3572 wait_event(cur_trans->writer_wait, 3573 atomic_read(&cur_trans->num_writers) == 1); 3574 ret = update_block_group_item(trans, path, cache); 3575 } 3576 if (ret) 3577 btrfs_abort_transaction(trans, ret); 3578 } 3579 3580 /* If its not on the io list, we need to put the block group */ 3581 if (should_put) 3582 btrfs_put_block_group(cache); 3583 btrfs_delayed_refs_rsv_release(fs_info, 1); 3584 spin_lock(&cur_trans->dirty_bgs_lock); 3585 } 3586 spin_unlock(&cur_trans->dirty_bgs_lock); 3587 3588 /* 3589 * Refer to the definition of io_bgs member for details why it's safe 3590 * to use it without any locking 3591 */ 3592 while (!list_empty(io)) { 3593 cache = list_first_entry(io, struct btrfs_block_group, 3594 io_list); 3595 list_del_init(&cache->io_list); 3596 btrfs_wait_cache_io(trans, cache, path); 3597 btrfs_put_block_group(cache); 3598 } 3599 3600 btrfs_free_path(path); 3601 return ret; 3602 } 3603 3604 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3605 u64 bytenr, u64 num_bytes, bool alloc) 3606 { 3607 struct btrfs_fs_info *info = trans->fs_info; 3608 struct btrfs_block_group *cache = NULL; 3609 u64 total = num_bytes; 3610 u64 old_val; 3611 u64 byte_in_group; 3612 int factor; 3613 int ret = 0; 3614 3615 /* Block accounting for super block */ 3616 spin_lock(&info->delalloc_root_lock); 3617 old_val = btrfs_super_bytes_used(info->super_copy); 3618 if (alloc) 3619 old_val += num_bytes; 3620 else 3621 old_val -= num_bytes; 3622 btrfs_set_super_bytes_used(info->super_copy, old_val); 3623 spin_unlock(&info->delalloc_root_lock); 3624 3625 while (total) { 3626 struct btrfs_space_info *space_info; 3627 bool reclaim = false; 3628 3629 cache = btrfs_lookup_block_group(info, bytenr); 3630 if (!cache) { 3631 ret = -ENOENT; 3632 break; 3633 } 3634 space_info = cache->space_info; 3635 factor = btrfs_bg_type_to_factor(cache->flags); 3636 3637 /* 3638 * If this block group has free space cache written out, we 3639 * need to make sure to load it if we are removing space. This 3640 * is because we need the unpinning stage to actually add the 3641 * space back to the block group, otherwise we will leak space. 3642 */ 3643 if (!alloc && !btrfs_block_group_done(cache)) 3644 btrfs_cache_block_group(cache, true); 3645 3646 byte_in_group = bytenr - cache->start; 3647 WARN_ON(byte_in_group > cache->length); 3648 3649 spin_lock(&space_info->lock); 3650 spin_lock(&cache->lock); 3651 3652 if (btrfs_test_opt(info, SPACE_CACHE) && 3653 cache->disk_cache_state < BTRFS_DC_CLEAR) 3654 cache->disk_cache_state = BTRFS_DC_CLEAR; 3655 3656 old_val = cache->used; 3657 num_bytes = min(total, cache->length - byte_in_group); 3658 if (alloc) { 3659 old_val += num_bytes; 3660 cache->used = old_val; 3661 cache->reserved -= num_bytes; 3662 space_info->bytes_reserved -= num_bytes; 3663 space_info->bytes_used += num_bytes; 3664 space_info->disk_used += num_bytes * factor; 3665 spin_unlock(&cache->lock); 3666 spin_unlock(&space_info->lock); 3667 } else { 3668 old_val -= num_bytes; 3669 cache->used = old_val; 3670 cache->pinned += num_bytes; 3671 btrfs_space_info_update_bytes_pinned(info, space_info, 3672 num_bytes); 3673 space_info->bytes_used -= num_bytes; 3674 space_info->disk_used -= num_bytes * factor; 3675 3676 reclaim = should_reclaim_block_group(cache, num_bytes); 3677 3678 spin_unlock(&cache->lock); 3679 spin_unlock(&space_info->lock); 3680 3681 set_extent_bit(&trans->transaction->pinned_extents, 3682 bytenr, bytenr + num_bytes - 1, 3683 EXTENT_DIRTY, NULL); 3684 } 3685 3686 spin_lock(&trans->transaction->dirty_bgs_lock); 3687 if (list_empty(&cache->dirty_list)) { 3688 list_add_tail(&cache->dirty_list, 3689 &trans->transaction->dirty_bgs); 3690 trans->delayed_ref_updates++; 3691 btrfs_get_block_group(cache); 3692 } 3693 spin_unlock(&trans->transaction->dirty_bgs_lock); 3694 3695 /* 3696 * No longer have used bytes in this block group, queue it for 3697 * deletion. We do this after adding the block group to the 3698 * dirty list to avoid races between cleaner kthread and space 3699 * cache writeout. 3700 */ 3701 if (!alloc && old_val == 0) { 3702 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3703 btrfs_mark_bg_unused(cache); 3704 } else if (!alloc && reclaim) { 3705 btrfs_mark_bg_to_reclaim(cache); 3706 } 3707 3708 btrfs_put_block_group(cache); 3709 total -= num_bytes; 3710 bytenr += num_bytes; 3711 } 3712 3713 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3714 btrfs_update_delayed_refs_rsv(trans); 3715 return ret; 3716 } 3717 3718 /* 3719 * Update the block_group and space info counters. 3720 * 3721 * @cache: The cache we are manipulating 3722 * @ram_bytes: The number of bytes of file content, and will be same to 3723 * @num_bytes except for the compress path. 3724 * @num_bytes: The number of bytes in question 3725 * @delalloc: The blocks are allocated for the delalloc write 3726 * 3727 * This is called by the allocator when it reserves space. If this is a 3728 * reservation and the block group has become read only we cannot make the 3729 * reservation and return -EAGAIN, otherwise this function always succeeds. 3730 */ 3731 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3732 u64 ram_bytes, u64 num_bytes, int delalloc, 3733 bool force_wrong_size_class) 3734 { 3735 struct btrfs_space_info *space_info = cache->space_info; 3736 enum btrfs_block_group_size_class size_class; 3737 int ret = 0; 3738 3739 spin_lock(&space_info->lock); 3740 spin_lock(&cache->lock); 3741 if (cache->ro) { 3742 ret = -EAGAIN; 3743 goto out; 3744 } 3745 3746 if (btrfs_block_group_should_use_size_class(cache)) { 3747 size_class = btrfs_calc_block_group_size_class(num_bytes); 3748 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3749 if (ret) 3750 goto out; 3751 } 3752 cache->reserved += num_bytes; 3753 space_info->bytes_reserved += num_bytes; 3754 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3755 space_info->flags, num_bytes, 1); 3756 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3757 space_info, -ram_bytes); 3758 if (delalloc) 3759 cache->delalloc_bytes += num_bytes; 3760 3761 /* 3762 * Compression can use less space than we reserved, so wake tickets if 3763 * that happens. 3764 */ 3765 if (num_bytes < ram_bytes) 3766 btrfs_try_granting_tickets(cache->fs_info, space_info); 3767 out: 3768 spin_unlock(&cache->lock); 3769 spin_unlock(&space_info->lock); 3770 return ret; 3771 } 3772 3773 /* 3774 * Update the block_group and space info counters. 3775 * 3776 * @cache: The cache we are manipulating 3777 * @num_bytes: The number of bytes in question 3778 * @delalloc: The blocks are allocated for the delalloc write 3779 * 3780 * This is called by somebody who is freeing space that was never actually used 3781 * on disk. For example if you reserve some space for a new leaf in transaction 3782 * A and before transaction A commits you free that leaf, you call this with 3783 * reserve set to 0 in order to clear the reservation. 3784 */ 3785 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3786 u64 num_bytes, int delalloc) 3787 { 3788 struct btrfs_space_info *space_info = cache->space_info; 3789 3790 spin_lock(&space_info->lock); 3791 spin_lock(&cache->lock); 3792 if (cache->ro) 3793 space_info->bytes_readonly += num_bytes; 3794 cache->reserved -= num_bytes; 3795 space_info->bytes_reserved -= num_bytes; 3796 space_info->max_extent_size = 0; 3797 3798 if (delalloc) 3799 cache->delalloc_bytes -= num_bytes; 3800 spin_unlock(&cache->lock); 3801 3802 btrfs_try_granting_tickets(cache->fs_info, space_info); 3803 spin_unlock(&space_info->lock); 3804 } 3805 3806 static void force_metadata_allocation(struct btrfs_fs_info *info) 3807 { 3808 struct list_head *head = &info->space_info; 3809 struct btrfs_space_info *found; 3810 3811 list_for_each_entry(found, head, list) { 3812 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3813 found->force_alloc = CHUNK_ALLOC_FORCE; 3814 } 3815 } 3816 3817 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3818 struct btrfs_space_info *sinfo, int force) 3819 { 3820 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3821 u64 thresh; 3822 3823 if (force == CHUNK_ALLOC_FORCE) 3824 return 1; 3825 3826 /* 3827 * in limited mode, we want to have some free space up to 3828 * about 1% of the FS size. 3829 */ 3830 if (force == CHUNK_ALLOC_LIMITED) { 3831 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3832 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3833 3834 if (sinfo->total_bytes - bytes_used < thresh) 3835 return 1; 3836 } 3837 3838 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3839 return 0; 3840 return 1; 3841 } 3842 3843 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3844 { 3845 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3846 3847 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3848 } 3849 3850 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3851 { 3852 struct btrfs_block_group *bg; 3853 int ret; 3854 3855 /* 3856 * Check if we have enough space in the system space info because we 3857 * will need to update device items in the chunk btree and insert a new 3858 * chunk item in the chunk btree as well. This will allocate a new 3859 * system block group if needed. 3860 */ 3861 check_system_chunk(trans, flags); 3862 3863 bg = btrfs_create_chunk(trans, flags); 3864 if (IS_ERR(bg)) { 3865 ret = PTR_ERR(bg); 3866 goto out; 3867 } 3868 3869 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3870 /* 3871 * Normally we are not expected to fail with -ENOSPC here, since we have 3872 * previously reserved space in the system space_info and allocated one 3873 * new system chunk if necessary. However there are three exceptions: 3874 * 3875 * 1) We may have enough free space in the system space_info but all the 3876 * existing system block groups have a profile which can not be used 3877 * for extent allocation. 3878 * 3879 * This happens when mounting in degraded mode. For example we have a 3880 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3881 * using the other device in degraded mode. If we then allocate a chunk, 3882 * we may have enough free space in the existing system space_info, but 3883 * none of the block groups can be used for extent allocation since they 3884 * have a RAID1 profile, and because we are in degraded mode with a 3885 * single device, we are forced to allocate a new system chunk with a 3886 * SINGLE profile. Making check_system_chunk() iterate over all system 3887 * block groups and check if they have a usable profile and enough space 3888 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3889 * try again after forcing allocation of a new system chunk. Like this 3890 * we avoid paying the cost of that search in normal circumstances, when 3891 * we were not mounted in degraded mode; 3892 * 3893 * 2) We had enough free space info the system space_info, and one suitable 3894 * block group to allocate from when we called check_system_chunk() 3895 * above. However right after we called it, the only system block group 3896 * with enough free space got turned into RO mode by a running scrub, 3897 * and in this case we have to allocate a new one and retry. We only 3898 * need do this allocate and retry once, since we have a transaction 3899 * handle and scrub uses the commit root to search for block groups; 3900 * 3901 * 3) We had one system block group with enough free space when we called 3902 * check_system_chunk(), but after that, right before we tried to 3903 * allocate the last extent buffer we needed, a discard operation came 3904 * in and it temporarily removed the last free space entry from the 3905 * block group (discard removes a free space entry, discards it, and 3906 * then adds back the entry to the block group cache). 3907 */ 3908 if (ret == -ENOSPC) { 3909 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3910 struct btrfs_block_group *sys_bg; 3911 3912 sys_bg = btrfs_create_chunk(trans, sys_flags); 3913 if (IS_ERR(sys_bg)) { 3914 ret = PTR_ERR(sys_bg); 3915 btrfs_abort_transaction(trans, ret); 3916 goto out; 3917 } 3918 3919 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3920 if (ret) { 3921 btrfs_abort_transaction(trans, ret); 3922 goto out; 3923 } 3924 3925 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3926 if (ret) { 3927 btrfs_abort_transaction(trans, ret); 3928 goto out; 3929 } 3930 } else if (ret) { 3931 btrfs_abort_transaction(trans, ret); 3932 goto out; 3933 } 3934 out: 3935 btrfs_trans_release_chunk_metadata(trans); 3936 3937 if (ret) 3938 return ERR_PTR(ret); 3939 3940 btrfs_get_block_group(bg); 3941 return bg; 3942 } 3943 3944 /* 3945 * Chunk allocation is done in 2 phases: 3946 * 3947 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3948 * the chunk, the chunk mapping, create its block group and add the items 3949 * that belong in the chunk btree to it - more specifically, we need to 3950 * update device items in the chunk btree and add a new chunk item to it. 3951 * 3952 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3953 * group item to the extent btree and the device extent items to the devices 3954 * btree. 3955 * 3956 * This is done to prevent deadlocks. For example when COWing a node from the 3957 * extent btree we are holding a write lock on the node's parent and if we 3958 * trigger chunk allocation and attempted to insert the new block group item 3959 * in the extent btree right way, we could deadlock because the path for the 3960 * insertion can include that parent node. At first glance it seems impossible 3961 * to trigger chunk allocation after starting a transaction since tasks should 3962 * reserve enough transaction units (metadata space), however while that is true 3963 * most of the time, chunk allocation may still be triggered for several reasons: 3964 * 3965 * 1) When reserving metadata, we check if there is enough free space in the 3966 * metadata space_info and therefore don't trigger allocation of a new chunk. 3967 * However later when the task actually tries to COW an extent buffer from 3968 * the extent btree or from the device btree for example, it is forced to 3969 * allocate a new block group (chunk) because the only one that had enough 3970 * free space was just turned to RO mode by a running scrub for example (or 3971 * device replace, block group reclaim thread, etc), so we can not use it 3972 * for allocating an extent and end up being forced to allocate a new one; 3973 * 3974 * 2) Because we only check that the metadata space_info has enough free bytes, 3975 * we end up not allocating a new metadata chunk in that case. However if 3976 * the filesystem was mounted in degraded mode, none of the existing block 3977 * groups might be suitable for extent allocation due to their incompatible 3978 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3979 * use a RAID1 profile, in degraded mode using a single device). In this case 3980 * when the task attempts to COW some extent buffer of the extent btree for 3981 * example, it will trigger allocation of a new metadata block group with a 3982 * suitable profile (SINGLE profile in the example of the degraded mount of 3983 * the RAID1 filesystem); 3984 * 3985 * 3) The task has reserved enough transaction units / metadata space, but when 3986 * it attempts to COW an extent buffer from the extent or device btree for 3987 * example, it does not find any free extent in any metadata block group, 3988 * therefore forced to try to allocate a new metadata block group. 3989 * This is because some other task allocated all available extents in the 3990 * meanwhile - this typically happens with tasks that don't reserve space 3991 * properly, either intentionally or as a bug. One example where this is 3992 * done intentionally is fsync, as it does not reserve any transaction units 3993 * and ends up allocating a variable number of metadata extents for log 3994 * tree extent buffers; 3995 * 3996 * 4) The task has reserved enough transaction units / metadata space, but right 3997 * before it tries to allocate the last extent buffer it needs, a discard 3998 * operation comes in and, temporarily, removes the last free space entry from 3999 * the only metadata block group that had free space (discard starts by 4000 * removing a free space entry from a block group, then does the discard 4001 * operation and, once it's done, it adds back the free space entry to the 4002 * block group). 4003 * 4004 * We also need this 2 phases setup when adding a device to a filesystem with 4005 * a seed device - we must create new metadata and system chunks without adding 4006 * any of the block group items to the chunk, extent and device btrees. If we 4007 * did not do it this way, we would get ENOSPC when attempting to update those 4008 * btrees, since all the chunks from the seed device are read-only. 4009 * 4010 * Phase 1 does the updates and insertions to the chunk btree because if we had 4011 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4012 * parallel, we risk having too many system chunks allocated by many tasks if 4013 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4014 * extreme case this leads to exhaustion of the system chunk array in the 4015 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4016 * and with RAID filesystems (so we have more device items in the chunk btree). 4017 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4018 * the system chunk array due to concurrent allocations") provides more details. 4019 * 4020 * Allocation of system chunks does not happen through this function. A task that 4021 * needs to update the chunk btree (the only btree that uses system chunks), must 4022 * preallocate chunk space by calling either check_system_chunk() or 4023 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4024 * metadata chunk or when removing a chunk, while the later is used before doing 4025 * a modification to the chunk btree - use cases for the later are adding, 4026 * removing and resizing a device as well as relocation of a system chunk. 4027 * See the comment below for more details. 4028 * 4029 * The reservation of system space, done through check_system_chunk(), as well 4030 * as all the updates and insertions into the chunk btree must be done while 4031 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4032 * an extent buffer from the chunks btree we never trigger allocation of a new 4033 * system chunk, which would result in a deadlock (trying to lock twice an 4034 * extent buffer of the chunk btree, first time before triggering the chunk 4035 * allocation and the second time during chunk allocation while attempting to 4036 * update the chunks btree). The system chunk array is also updated while holding 4037 * that mutex. The same logic applies to removing chunks - we must reserve system 4038 * space, update the chunk btree and the system chunk array in the superblock 4039 * while holding fs_info->chunk_mutex. 4040 * 4041 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4042 * 4043 * If @force is CHUNK_ALLOC_FORCE: 4044 * - return 1 if it successfully allocates a chunk, 4045 * - return errors including -ENOSPC otherwise. 4046 * If @force is NOT CHUNK_ALLOC_FORCE: 4047 * - return 0 if it doesn't need to allocate a new chunk, 4048 * - return 1 if it successfully allocates a chunk, 4049 * - return errors including -ENOSPC otherwise. 4050 */ 4051 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4052 enum btrfs_chunk_alloc_enum force) 4053 { 4054 struct btrfs_fs_info *fs_info = trans->fs_info; 4055 struct btrfs_space_info *space_info; 4056 struct btrfs_block_group *ret_bg; 4057 bool wait_for_alloc = false; 4058 bool should_alloc = false; 4059 bool from_extent_allocation = false; 4060 int ret = 0; 4061 4062 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4063 from_extent_allocation = true; 4064 force = CHUNK_ALLOC_FORCE; 4065 } 4066 4067 /* Don't re-enter if we're already allocating a chunk */ 4068 if (trans->allocating_chunk) 4069 return -ENOSPC; 4070 /* 4071 * Allocation of system chunks can not happen through this path, as we 4072 * could end up in a deadlock if we are allocating a data or metadata 4073 * chunk and there is another task modifying the chunk btree. 4074 * 4075 * This is because while we are holding the chunk mutex, we will attempt 4076 * to add the new chunk item to the chunk btree or update an existing 4077 * device item in the chunk btree, while the other task that is modifying 4078 * the chunk btree is attempting to COW an extent buffer while holding a 4079 * lock on it and on its parent - if the COW operation triggers a system 4080 * chunk allocation, then we can deadlock because we are holding the 4081 * chunk mutex and we may need to access that extent buffer or its parent 4082 * in order to add the chunk item or update a device item. 4083 * 4084 * Tasks that want to modify the chunk tree should reserve system space 4085 * before updating the chunk btree, by calling either 4086 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4087 * It's possible that after a task reserves the space, it still ends up 4088 * here - this happens in the cases described above at do_chunk_alloc(). 4089 * The task will have to either retry or fail. 4090 */ 4091 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4092 return -ENOSPC; 4093 4094 space_info = btrfs_find_space_info(fs_info, flags); 4095 ASSERT(space_info); 4096 4097 do { 4098 spin_lock(&space_info->lock); 4099 if (force < space_info->force_alloc) 4100 force = space_info->force_alloc; 4101 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4102 if (space_info->full) { 4103 /* No more free physical space */ 4104 if (should_alloc) 4105 ret = -ENOSPC; 4106 else 4107 ret = 0; 4108 spin_unlock(&space_info->lock); 4109 return ret; 4110 } else if (!should_alloc) { 4111 spin_unlock(&space_info->lock); 4112 return 0; 4113 } else if (space_info->chunk_alloc) { 4114 /* 4115 * Someone is already allocating, so we need to block 4116 * until this someone is finished and then loop to 4117 * recheck if we should continue with our allocation 4118 * attempt. 4119 */ 4120 wait_for_alloc = true; 4121 force = CHUNK_ALLOC_NO_FORCE; 4122 spin_unlock(&space_info->lock); 4123 mutex_lock(&fs_info->chunk_mutex); 4124 mutex_unlock(&fs_info->chunk_mutex); 4125 } else { 4126 /* Proceed with allocation */ 4127 space_info->chunk_alloc = 1; 4128 wait_for_alloc = false; 4129 spin_unlock(&space_info->lock); 4130 } 4131 4132 cond_resched(); 4133 } while (wait_for_alloc); 4134 4135 mutex_lock(&fs_info->chunk_mutex); 4136 trans->allocating_chunk = true; 4137 4138 /* 4139 * If we have mixed data/metadata chunks we want to make sure we keep 4140 * allocating mixed chunks instead of individual chunks. 4141 */ 4142 if (btrfs_mixed_space_info(space_info)) 4143 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4144 4145 /* 4146 * if we're doing a data chunk, go ahead and make sure that 4147 * we keep a reasonable number of metadata chunks allocated in the 4148 * FS as well. 4149 */ 4150 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4151 fs_info->data_chunk_allocations++; 4152 if (!(fs_info->data_chunk_allocations % 4153 fs_info->metadata_ratio)) 4154 force_metadata_allocation(fs_info); 4155 } 4156 4157 ret_bg = do_chunk_alloc(trans, flags); 4158 trans->allocating_chunk = false; 4159 4160 if (IS_ERR(ret_bg)) { 4161 ret = PTR_ERR(ret_bg); 4162 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4163 /* 4164 * New block group is likely to be used soon. Try to activate 4165 * it now. Failure is OK for now. 4166 */ 4167 btrfs_zone_activate(ret_bg); 4168 } 4169 4170 if (!ret) 4171 btrfs_put_block_group(ret_bg); 4172 4173 spin_lock(&space_info->lock); 4174 if (ret < 0) { 4175 if (ret == -ENOSPC) 4176 space_info->full = 1; 4177 else 4178 goto out; 4179 } else { 4180 ret = 1; 4181 space_info->max_extent_size = 0; 4182 } 4183 4184 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4185 out: 4186 space_info->chunk_alloc = 0; 4187 spin_unlock(&space_info->lock); 4188 mutex_unlock(&fs_info->chunk_mutex); 4189 4190 return ret; 4191 } 4192 4193 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4194 { 4195 u64 num_dev; 4196 4197 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4198 if (!num_dev) 4199 num_dev = fs_info->fs_devices->rw_devices; 4200 4201 return num_dev; 4202 } 4203 4204 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4205 u64 bytes, 4206 u64 type) 4207 { 4208 struct btrfs_fs_info *fs_info = trans->fs_info; 4209 struct btrfs_space_info *info; 4210 u64 left; 4211 int ret = 0; 4212 4213 /* 4214 * Needed because we can end up allocating a system chunk and for an 4215 * atomic and race free space reservation in the chunk block reserve. 4216 */ 4217 lockdep_assert_held(&fs_info->chunk_mutex); 4218 4219 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4220 spin_lock(&info->lock); 4221 left = info->total_bytes - btrfs_space_info_used(info, true); 4222 spin_unlock(&info->lock); 4223 4224 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4225 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4226 left, bytes, type); 4227 btrfs_dump_space_info(fs_info, info, 0, 0); 4228 } 4229 4230 if (left < bytes) { 4231 u64 flags = btrfs_system_alloc_profile(fs_info); 4232 struct btrfs_block_group *bg; 4233 4234 /* 4235 * Ignore failure to create system chunk. We might end up not 4236 * needing it, as we might not need to COW all nodes/leafs from 4237 * the paths we visit in the chunk tree (they were already COWed 4238 * or created in the current transaction for example). 4239 */ 4240 bg = btrfs_create_chunk(trans, flags); 4241 if (IS_ERR(bg)) { 4242 ret = PTR_ERR(bg); 4243 } else { 4244 /* 4245 * We have a new chunk. We also need to activate it for 4246 * zoned filesystem. 4247 */ 4248 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4249 if (ret < 0) 4250 return; 4251 4252 /* 4253 * If we fail to add the chunk item here, we end up 4254 * trying again at phase 2 of chunk allocation, at 4255 * btrfs_create_pending_block_groups(). So ignore 4256 * any error here. An ENOSPC here could happen, due to 4257 * the cases described at do_chunk_alloc() - the system 4258 * block group we just created was just turned into RO 4259 * mode by a scrub for example, or a running discard 4260 * temporarily removed its free space entries, etc. 4261 */ 4262 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4263 } 4264 } 4265 4266 if (!ret) { 4267 ret = btrfs_block_rsv_add(fs_info, 4268 &fs_info->chunk_block_rsv, 4269 bytes, BTRFS_RESERVE_NO_FLUSH); 4270 if (!ret) 4271 trans->chunk_bytes_reserved += bytes; 4272 } 4273 } 4274 4275 /* 4276 * Reserve space in the system space for allocating or removing a chunk. 4277 * The caller must be holding fs_info->chunk_mutex. 4278 */ 4279 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4280 { 4281 struct btrfs_fs_info *fs_info = trans->fs_info; 4282 const u64 num_devs = get_profile_num_devs(fs_info, type); 4283 u64 bytes; 4284 4285 /* num_devs device items to update and 1 chunk item to add or remove. */ 4286 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4287 btrfs_calc_insert_metadata_size(fs_info, 1); 4288 4289 reserve_chunk_space(trans, bytes, type); 4290 } 4291 4292 /* 4293 * Reserve space in the system space, if needed, for doing a modification to the 4294 * chunk btree. 4295 * 4296 * @trans: A transaction handle. 4297 * @is_item_insertion: Indicate if the modification is for inserting a new item 4298 * in the chunk btree or if it's for the deletion or update 4299 * of an existing item. 4300 * 4301 * This is used in a context where we need to update the chunk btree outside 4302 * block group allocation and removal, to avoid a deadlock with a concurrent 4303 * task that is allocating a metadata or data block group and therefore needs to 4304 * update the chunk btree while holding the chunk mutex. After the update to the 4305 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4306 * 4307 */ 4308 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4309 bool is_item_insertion) 4310 { 4311 struct btrfs_fs_info *fs_info = trans->fs_info; 4312 u64 bytes; 4313 4314 if (is_item_insertion) 4315 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4316 else 4317 bytes = btrfs_calc_metadata_size(fs_info, 1); 4318 4319 mutex_lock(&fs_info->chunk_mutex); 4320 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4321 mutex_unlock(&fs_info->chunk_mutex); 4322 } 4323 4324 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4325 { 4326 struct btrfs_block_group *block_group; 4327 4328 block_group = btrfs_lookup_first_block_group(info, 0); 4329 while (block_group) { 4330 btrfs_wait_block_group_cache_done(block_group); 4331 spin_lock(&block_group->lock); 4332 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4333 &block_group->runtime_flags)) { 4334 struct inode *inode = block_group->inode; 4335 4336 block_group->inode = NULL; 4337 spin_unlock(&block_group->lock); 4338 4339 ASSERT(block_group->io_ctl.inode == NULL); 4340 iput(inode); 4341 } else { 4342 spin_unlock(&block_group->lock); 4343 } 4344 block_group = btrfs_next_block_group(block_group); 4345 } 4346 } 4347 4348 /* 4349 * Must be called only after stopping all workers, since we could have block 4350 * group caching kthreads running, and therefore they could race with us if we 4351 * freed the block groups before stopping them. 4352 */ 4353 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4354 { 4355 struct btrfs_block_group *block_group; 4356 struct btrfs_space_info *space_info; 4357 struct btrfs_caching_control *caching_ctl; 4358 struct rb_node *n; 4359 4360 if (btrfs_is_zoned(info)) { 4361 if (info->active_meta_bg) { 4362 btrfs_put_block_group(info->active_meta_bg); 4363 info->active_meta_bg = NULL; 4364 } 4365 if (info->active_system_bg) { 4366 btrfs_put_block_group(info->active_system_bg); 4367 info->active_system_bg = NULL; 4368 } 4369 } 4370 4371 write_lock(&info->block_group_cache_lock); 4372 while (!list_empty(&info->caching_block_groups)) { 4373 caching_ctl = list_entry(info->caching_block_groups.next, 4374 struct btrfs_caching_control, list); 4375 list_del(&caching_ctl->list); 4376 btrfs_put_caching_control(caching_ctl); 4377 } 4378 write_unlock(&info->block_group_cache_lock); 4379 4380 spin_lock(&info->unused_bgs_lock); 4381 while (!list_empty(&info->unused_bgs)) { 4382 block_group = list_first_entry(&info->unused_bgs, 4383 struct btrfs_block_group, 4384 bg_list); 4385 list_del_init(&block_group->bg_list); 4386 btrfs_put_block_group(block_group); 4387 } 4388 4389 while (!list_empty(&info->reclaim_bgs)) { 4390 block_group = list_first_entry(&info->reclaim_bgs, 4391 struct btrfs_block_group, 4392 bg_list); 4393 list_del_init(&block_group->bg_list); 4394 btrfs_put_block_group(block_group); 4395 } 4396 spin_unlock(&info->unused_bgs_lock); 4397 4398 spin_lock(&info->zone_active_bgs_lock); 4399 while (!list_empty(&info->zone_active_bgs)) { 4400 block_group = list_first_entry(&info->zone_active_bgs, 4401 struct btrfs_block_group, 4402 active_bg_list); 4403 list_del_init(&block_group->active_bg_list); 4404 btrfs_put_block_group(block_group); 4405 } 4406 spin_unlock(&info->zone_active_bgs_lock); 4407 4408 write_lock(&info->block_group_cache_lock); 4409 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4410 block_group = rb_entry(n, struct btrfs_block_group, 4411 cache_node); 4412 rb_erase_cached(&block_group->cache_node, 4413 &info->block_group_cache_tree); 4414 RB_CLEAR_NODE(&block_group->cache_node); 4415 write_unlock(&info->block_group_cache_lock); 4416 4417 down_write(&block_group->space_info->groups_sem); 4418 list_del(&block_group->list); 4419 up_write(&block_group->space_info->groups_sem); 4420 4421 /* 4422 * We haven't cached this block group, which means we could 4423 * possibly have excluded extents on this block group. 4424 */ 4425 if (block_group->cached == BTRFS_CACHE_NO || 4426 block_group->cached == BTRFS_CACHE_ERROR) 4427 btrfs_free_excluded_extents(block_group); 4428 4429 btrfs_remove_free_space_cache(block_group); 4430 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4431 ASSERT(list_empty(&block_group->dirty_list)); 4432 ASSERT(list_empty(&block_group->io_list)); 4433 ASSERT(list_empty(&block_group->bg_list)); 4434 ASSERT(refcount_read(&block_group->refs) == 1); 4435 ASSERT(block_group->swap_extents == 0); 4436 btrfs_put_block_group(block_group); 4437 4438 write_lock(&info->block_group_cache_lock); 4439 } 4440 write_unlock(&info->block_group_cache_lock); 4441 4442 btrfs_release_global_block_rsv(info); 4443 4444 while (!list_empty(&info->space_info)) { 4445 space_info = list_entry(info->space_info.next, 4446 struct btrfs_space_info, 4447 list); 4448 4449 /* 4450 * Do not hide this behind enospc_debug, this is actually 4451 * important and indicates a real bug if this happens. 4452 */ 4453 if (WARN_ON(space_info->bytes_pinned > 0 || 4454 space_info->bytes_may_use > 0)) 4455 btrfs_dump_space_info(info, space_info, 0, 0); 4456 4457 /* 4458 * If there was a failure to cleanup a log tree, very likely due 4459 * to an IO failure on a writeback attempt of one or more of its 4460 * extent buffers, we could not do proper (and cheap) unaccounting 4461 * of their reserved space, so don't warn on bytes_reserved > 0 in 4462 * that case. 4463 */ 4464 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4465 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4466 if (WARN_ON(space_info->bytes_reserved > 0)) 4467 btrfs_dump_space_info(info, space_info, 0, 0); 4468 } 4469 4470 WARN_ON(space_info->reclaim_size > 0); 4471 list_del(&space_info->list); 4472 btrfs_sysfs_remove_space_info(space_info); 4473 } 4474 return 0; 4475 } 4476 4477 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4478 { 4479 atomic_inc(&cache->frozen); 4480 } 4481 4482 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4483 { 4484 struct btrfs_fs_info *fs_info = block_group->fs_info; 4485 struct extent_map_tree *em_tree; 4486 struct extent_map *em; 4487 bool cleanup; 4488 4489 spin_lock(&block_group->lock); 4490 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4491 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4492 spin_unlock(&block_group->lock); 4493 4494 if (cleanup) { 4495 em_tree = &fs_info->mapping_tree; 4496 write_lock(&em_tree->lock); 4497 em = lookup_extent_mapping(em_tree, block_group->start, 4498 1); 4499 BUG_ON(!em); /* logic error, can't happen */ 4500 remove_extent_mapping(em_tree, em); 4501 write_unlock(&em_tree->lock); 4502 4503 /* once for us and once for the tree */ 4504 free_extent_map(em); 4505 free_extent_map(em); 4506 4507 /* 4508 * We may have left one free space entry and other possible 4509 * tasks trimming this block group have left 1 entry each one. 4510 * Free them if any. 4511 */ 4512 btrfs_remove_free_space_cache(block_group); 4513 } 4514 } 4515 4516 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4517 { 4518 bool ret = true; 4519 4520 spin_lock(&bg->lock); 4521 if (bg->ro) 4522 ret = false; 4523 else 4524 bg->swap_extents++; 4525 spin_unlock(&bg->lock); 4526 4527 return ret; 4528 } 4529 4530 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4531 { 4532 spin_lock(&bg->lock); 4533 ASSERT(!bg->ro); 4534 ASSERT(bg->swap_extents >= amount); 4535 bg->swap_extents -= amount; 4536 spin_unlock(&bg->lock); 4537 } 4538 4539 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4540 { 4541 if (size <= SZ_128K) 4542 return BTRFS_BG_SZ_SMALL; 4543 if (size <= SZ_8M) 4544 return BTRFS_BG_SZ_MEDIUM; 4545 return BTRFS_BG_SZ_LARGE; 4546 } 4547 4548 /* 4549 * Handle a block group allocating an extent in a size class 4550 * 4551 * @bg: The block group we allocated in. 4552 * @size_class: The size class of the allocation. 4553 * @force_wrong_size_class: Whether we are desperate enough to allow 4554 * mismatched size classes. 4555 * 4556 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4557 * case of a race that leads to the wrong size class without 4558 * force_wrong_size_class set. 4559 * 4560 * find_free_extent will skip block groups with a mismatched size class until 4561 * it really needs to avoid ENOSPC. In that case it will set 4562 * force_wrong_size_class. However, if a block group is newly allocated and 4563 * doesn't yet have a size class, then it is possible for two allocations of 4564 * different sizes to race and both try to use it. The loser is caught here and 4565 * has to retry. 4566 */ 4567 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4568 enum btrfs_block_group_size_class size_class, 4569 bool force_wrong_size_class) 4570 { 4571 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4572 4573 /* The new allocation is in the right size class, do nothing */ 4574 if (bg->size_class == size_class) 4575 return 0; 4576 /* 4577 * The new allocation is in a mismatched size class. 4578 * This means one of two things: 4579 * 4580 * 1. Two tasks in find_free_extent for different size_classes raced 4581 * and hit the same empty block_group. Make the loser try again. 4582 * 2. A call to find_free_extent got desperate enough to set 4583 * 'force_wrong_slab'. Don't change the size_class, but allow the 4584 * allocation. 4585 */ 4586 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4587 if (force_wrong_size_class) 4588 return 0; 4589 return -EAGAIN; 4590 } 4591 /* 4592 * The happy new block group case: the new allocation is the first 4593 * one in the block_group so we set size_class. 4594 */ 4595 bg->size_class = size_class; 4596 4597 return 0; 4598 } 4599 4600 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4601 { 4602 if (btrfs_is_zoned(bg->fs_info)) 4603 return false; 4604 if (!btrfs_is_block_group_data_only(bg)) 4605 return false; 4606 return true; 4607 } 4608