1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 u64 group_start, struct extent_map *em) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_em; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, group_start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info, 1218 -block_group->zone_unusable); 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the extent map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_em = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_em) { 1275 struct extent_map_tree *em_tree; 1276 1277 em_tree = &fs_info->mapping_tree; 1278 write_lock(&em_tree->lock); 1279 remove_extent_mapping(em_tree, em); 1280 write_unlock(&em_tree->lock); 1281 /* once for the tree */ 1282 free_extent_map(em); 1283 } 1284 1285 out: 1286 /* Once for the lookup reference */ 1287 btrfs_put_block_group(block_group); 1288 if (remove_rsv) 1289 btrfs_delayed_refs_rsv_release(fs_info, 1); 1290 btrfs_free_path(path); 1291 return ret; 1292 } 1293 1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1296 { 1297 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1299 struct extent_map *em; 1300 struct map_lookup *map; 1301 unsigned int num_items; 1302 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1305 read_unlock(&em_tree->lock); 1306 ASSERT(em && em->start == chunk_offset); 1307 1308 /* 1309 * We need to reserve 3 + N units from the metadata space info in order 1310 * to remove a block group (done at btrfs_remove_chunk() and at 1311 * btrfs_remove_block_group()), which are used for: 1312 * 1313 * 1 unit for adding the free space inode's orphan (located in the tree 1314 * of tree roots). 1315 * 1 unit for deleting the block group item (located in the extent 1316 * tree). 1317 * 1 unit for deleting the free space item (located in tree of tree 1318 * roots). 1319 * N units for deleting N device extent items corresponding to each 1320 * stripe (located in the device tree). 1321 * 1322 * In order to remove a block group we also need to reserve units in the 1323 * system space info in order to update the chunk tree (update one or 1324 * more device items and remove one chunk item), but this is done at 1325 * btrfs_remove_chunk() through a call to check_system_chunk(). 1326 */ 1327 map = em->map_lookup; 1328 num_items = 3 + map->num_stripes; 1329 free_extent_map(em); 1330 1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1332 } 1333 1334 /* 1335 * Mark block group @cache read-only, so later write won't happen to block 1336 * group @cache. 1337 * 1338 * If @force is not set, this function will only mark the block group readonly 1339 * if we have enough free space (1M) in other metadata/system block groups. 1340 * If @force is not set, this function will mark the block group readonly 1341 * without checking free space. 1342 * 1343 * NOTE: This function doesn't care if other block groups can contain all the 1344 * data in this block group. That check should be done by relocation routine, 1345 * not this function. 1346 */ 1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1348 { 1349 struct btrfs_space_info *sinfo = cache->space_info; 1350 u64 num_bytes; 1351 int ret = -ENOSPC; 1352 1353 spin_lock(&sinfo->lock); 1354 spin_lock(&cache->lock); 1355 1356 if (cache->swap_extents) { 1357 ret = -ETXTBSY; 1358 goto out; 1359 } 1360 1361 if (cache->ro) { 1362 cache->ro++; 1363 ret = 0; 1364 goto out; 1365 } 1366 1367 num_bytes = cache->length - cache->reserved - cache->pinned - 1368 cache->bytes_super - cache->zone_unusable - cache->used; 1369 1370 /* 1371 * Data never overcommits, even in mixed mode, so do just the straight 1372 * check of left over space in how much we have allocated. 1373 */ 1374 if (force) { 1375 ret = 0; 1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1378 1379 /* 1380 * Here we make sure if we mark this bg RO, we still have enough 1381 * free space as buffer. 1382 */ 1383 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1384 ret = 0; 1385 } else { 1386 /* 1387 * We overcommit metadata, so we need to do the 1388 * btrfs_can_overcommit check here, and we need to pass in 1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1390 * leeway to allow us to mark this block group as read only. 1391 */ 1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1393 BTRFS_RESERVE_NO_FLUSH)) 1394 ret = 0; 1395 } 1396 1397 if (!ret) { 1398 sinfo->bytes_readonly += num_bytes; 1399 if (btrfs_is_zoned(cache->fs_info)) { 1400 /* Migrate zone_unusable bytes to readonly */ 1401 sinfo->bytes_readonly += cache->zone_unusable; 1402 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo, 1403 -cache->zone_unusable); 1404 cache->zone_unusable = 0; 1405 } 1406 cache->ro++; 1407 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1408 } 1409 out: 1410 spin_unlock(&cache->lock); 1411 spin_unlock(&sinfo->lock); 1412 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1413 btrfs_info(cache->fs_info, 1414 "unable to make block group %llu ro", cache->start); 1415 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1416 } 1417 return ret; 1418 } 1419 1420 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1421 struct btrfs_block_group *bg) 1422 { 1423 struct btrfs_fs_info *fs_info = bg->fs_info; 1424 struct btrfs_transaction *prev_trans = NULL; 1425 const u64 start = bg->start; 1426 const u64 end = start + bg->length - 1; 1427 int ret; 1428 1429 spin_lock(&fs_info->trans_lock); 1430 if (trans->transaction->list.prev != &fs_info->trans_list) { 1431 prev_trans = list_last_entry(&trans->transaction->list, 1432 struct btrfs_transaction, list); 1433 refcount_inc(&prev_trans->use_count); 1434 } 1435 spin_unlock(&fs_info->trans_lock); 1436 1437 /* 1438 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1439 * btrfs_finish_extent_commit(). If we are at transaction N, another 1440 * task might be running finish_extent_commit() for the previous 1441 * transaction N - 1, and have seen a range belonging to the block 1442 * group in pinned_extents before we were able to clear the whole block 1443 * group range from pinned_extents. This means that task can lookup for 1444 * the block group after we unpinned it from pinned_extents and removed 1445 * it, leading to a BUG_ON() at unpin_extent_range(). 1446 */ 1447 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1448 if (prev_trans) { 1449 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1450 EXTENT_DIRTY); 1451 if (ret) 1452 goto out; 1453 } 1454 1455 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1456 EXTENT_DIRTY); 1457 out: 1458 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1459 if (prev_trans) 1460 btrfs_put_transaction(prev_trans); 1461 1462 return ret == 0; 1463 } 1464 1465 /* 1466 * Process the unused_bgs list and remove any that don't have any allocated 1467 * space inside of them. 1468 */ 1469 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1470 { 1471 LIST_HEAD(retry_list); 1472 struct btrfs_block_group *block_group; 1473 struct btrfs_space_info *space_info; 1474 struct btrfs_trans_handle *trans; 1475 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1476 int ret = 0; 1477 1478 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1479 return; 1480 1481 if (btrfs_fs_closing(fs_info)) 1482 return; 1483 1484 /* 1485 * Long running balances can keep us blocked here for eternity, so 1486 * simply skip deletion if we're unable to get the mutex. 1487 */ 1488 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1489 return; 1490 1491 spin_lock(&fs_info->unused_bgs_lock); 1492 while (!list_empty(&fs_info->unused_bgs)) { 1493 u64 used; 1494 int trimming; 1495 1496 block_group = list_first_entry(&fs_info->unused_bgs, 1497 struct btrfs_block_group, 1498 bg_list); 1499 list_del_init(&block_group->bg_list); 1500 1501 space_info = block_group->space_info; 1502 1503 if (ret || btrfs_mixed_space_info(space_info)) { 1504 btrfs_put_block_group(block_group); 1505 continue; 1506 } 1507 spin_unlock(&fs_info->unused_bgs_lock); 1508 1509 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1510 1511 /* Don't want to race with allocators so take the groups_sem */ 1512 down_write(&space_info->groups_sem); 1513 1514 /* 1515 * Async discard moves the final block group discard to be prior 1516 * to the unused_bgs code path. Therefore, if it's not fully 1517 * trimmed, punt it back to the async discard lists. 1518 */ 1519 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1520 !btrfs_is_free_space_trimmed(block_group)) { 1521 trace_btrfs_skip_unused_block_group(block_group); 1522 up_write(&space_info->groups_sem); 1523 /* Requeue if we failed because of async discard */ 1524 btrfs_discard_queue_work(&fs_info->discard_ctl, 1525 block_group); 1526 goto next; 1527 } 1528 1529 spin_lock(&space_info->lock); 1530 spin_lock(&block_group->lock); 1531 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1532 list_is_singular(&block_group->list)) { 1533 /* 1534 * We want to bail if we made new allocations or have 1535 * outstanding allocations in this block group. We do 1536 * the ro check in case balance is currently acting on 1537 * this block group. 1538 */ 1539 trace_btrfs_skip_unused_block_group(block_group); 1540 spin_unlock(&block_group->lock); 1541 spin_unlock(&space_info->lock); 1542 up_write(&space_info->groups_sem); 1543 goto next; 1544 } 1545 1546 /* 1547 * The block group may be unused but there may be space reserved 1548 * accounting with the existence of that block group, that is, 1549 * space_info->bytes_may_use was incremented by a task but no 1550 * space was yet allocated from the block group by the task. 1551 * That space may or may not be allocated, as we are generally 1552 * pessimistic about space reservation for metadata as well as 1553 * for data when using compression (as we reserve space based on 1554 * the worst case, when data can't be compressed, and before 1555 * actually attempting compression, before starting writeback). 1556 * 1557 * So check if the total space of the space_info minus the size 1558 * of this block group is less than the used space of the 1559 * space_info - if that's the case, then it means we have tasks 1560 * that might be relying on the block group in order to allocate 1561 * extents, and add back the block group to the unused list when 1562 * we finish, so that we retry later in case no tasks ended up 1563 * needing to allocate extents from the block group. 1564 */ 1565 used = btrfs_space_info_used(space_info, true); 1566 if (space_info->total_bytes - block_group->length < used && 1567 block_group->zone_unusable < block_group->length) { 1568 /* 1569 * Add a reference for the list, compensate for the ref 1570 * drop under the "next" label for the 1571 * fs_info->unused_bgs list. 1572 */ 1573 btrfs_get_block_group(block_group); 1574 list_add_tail(&block_group->bg_list, &retry_list); 1575 1576 trace_btrfs_skip_unused_block_group(block_group); 1577 spin_unlock(&block_group->lock); 1578 spin_unlock(&space_info->lock); 1579 up_write(&space_info->groups_sem); 1580 goto next; 1581 } 1582 1583 spin_unlock(&block_group->lock); 1584 spin_unlock(&space_info->lock); 1585 1586 /* We don't want to force the issue, only flip if it's ok. */ 1587 ret = inc_block_group_ro(block_group, 0); 1588 up_write(&space_info->groups_sem); 1589 if (ret < 0) { 1590 ret = 0; 1591 goto next; 1592 } 1593 1594 ret = btrfs_zone_finish(block_group); 1595 if (ret < 0) { 1596 btrfs_dec_block_group_ro(block_group); 1597 if (ret == -EAGAIN) 1598 ret = 0; 1599 goto next; 1600 } 1601 1602 /* 1603 * Want to do this before we do anything else so we can recover 1604 * properly if we fail to join the transaction. 1605 */ 1606 trans = btrfs_start_trans_remove_block_group(fs_info, 1607 block_group->start); 1608 if (IS_ERR(trans)) { 1609 btrfs_dec_block_group_ro(block_group); 1610 ret = PTR_ERR(trans); 1611 goto next; 1612 } 1613 1614 /* 1615 * We could have pending pinned extents for this block group, 1616 * just delete them, we don't care about them anymore. 1617 */ 1618 if (!clean_pinned_extents(trans, block_group)) { 1619 btrfs_dec_block_group_ro(block_group); 1620 goto end_trans; 1621 } 1622 1623 /* 1624 * At this point, the block_group is read only and should fail 1625 * new allocations. However, btrfs_finish_extent_commit() can 1626 * cause this block_group to be placed back on the discard 1627 * lists because now the block_group isn't fully discarded. 1628 * Bail here and try again later after discarding everything. 1629 */ 1630 spin_lock(&fs_info->discard_ctl.lock); 1631 if (!list_empty(&block_group->discard_list)) { 1632 spin_unlock(&fs_info->discard_ctl.lock); 1633 btrfs_dec_block_group_ro(block_group); 1634 btrfs_discard_queue_work(&fs_info->discard_ctl, 1635 block_group); 1636 goto end_trans; 1637 } 1638 spin_unlock(&fs_info->discard_ctl.lock); 1639 1640 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1641 spin_lock(&space_info->lock); 1642 spin_lock(&block_group->lock); 1643 1644 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1645 -block_group->pinned); 1646 space_info->bytes_readonly += block_group->pinned; 1647 block_group->pinned = 0; 1648 1649 spin_unlock(&block_group->lock); 1650 spin_unlock(&space_info->lock); 1651 1652 /* 1653 * The normal path here is an unused block group is passed here, 1654 * then trimming is handled in the transaction commit path. 1655 * Async discard interposes before this to do the trimming 1656 * before coming down the unused block group path as trimming 1657 * will no longer be done later in the transaction commit path. 1658 */ 1659 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1660 goto flip_async; 1661 1662 /* 1663 * DISCARD can flip during remount. On zoned filesystems, we 1664 * need to reset sequential-required zones. 1665 */ 1666 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1667 btrfs_is_zoned(fs_info); 1668 1669 /* Implicit trim during transaction commit. */ 1670 if (trimming) 1671 btrfs_freeze_block_group(block_group); 1672 1673 /* 1674 * Btrfs_remove_chunk will abort the transaction if things go 1675 * horribly wrong. 1676 */ 1677 ret = btrfs_remove_chunk(trans, block_group->start); 1678 1679 if (ret) { 1680 if (trimming) 1681 btrfs_unfreeze_block_group(block_group); 1682 goto end_trans; 1683 } 1684 1685 /* 1686 * If we're not mounted with -odiscard, we can just forget 1687 * about this block group. Otherwise we'll need to wait 1688 * until transaction commit to do the actual discard. 1689 */ 1690 if (trimming) { 1691 spin_lock(&fs_info->unused_bgs_lock); 1692 /* 1693 * A concurrent scrub might have added us to the list 1694 * fs_info->unused_bgs, so use a list_move operation 1695 * to add the block group to the deleted_bgs list. 1696 */ 1697 list_move(&block_group->bg_list, 1698 &trans->transaction->deleted_bgs); 1699 spin_unlock(&fs_info->unused_bgs_lock); 1700 btrfs_get_block_group(block_group); 1701 } 1702 end_trans: 1703 btrfs_end_transaction(trans); 1704 next: 1705 btrfs_put_block_group(block_group); 1706 spin_lock(&fs_info->unused_bgs_lock); 1707 } 1708 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1709 spin_unlock(&fs_info->unused_bgs_lock); 1710 mutex_unlock(&fs_info->reclaim_bgs_lock); 1711 return; 1712 1713 flip_async: 1714 btrfs_end_transaction(trans); 1715 spin_lock(&fs_info->unused_bgs_lock); 1716 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1717 spin_unlock(&fs_info->unused_bgs_lock); 1718 mutex_unlock(&fs_info->reclaim_bgs_lock); 1719 btrfs_put_block_group(block_group); 1720 btrfs_discard_punt_unused_bgs_list(fs_info); 1721 } 1722 1723 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1724 { 1725 struct btrfs_fs_info *fs_info = bg->fs_info; 1726 1727 spin_lock(&fs_info->unused_bgs_lock); 1728 if (list_empty(&bg->bg_list)) { 1729 btrfs_get_block_group(bg); 1730 trace_btrfs_add_unused_block_group(bg); 1731 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1732 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1733 /* Pull out the block group from the reclaim_bgs list. */ 1734 trace_btrfs_add_unused_block_group(bg); 1735 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1736 } 1737 spin_unlock(&fs_info->unused_bgs_lock); 1738 } 1739 1740 /* 1741 * We want block groups with a low number of used bytes to be in the beginning 1742 * of the list, so they will get reclaimed first. 1743 */ 1744 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1745 const struct list_head *b) 1746 { 1747 const struct btrfs_block_group *bg1, *bg2; 1748 1749 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1750 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1751 1752 return bg1->used > bg2->used; 1753 } 1754 1755 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1756 { 1757 if (btrfs_is_zoned(fs_info)) 1758 return btrfs_zoned_should_reclaim(fs_info); 1759 return true; 1760 } 1761 1762 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1763 { 1764 const struct btrfs_space_info *space_info = bg->space_info; 1765 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1766 const u64 new_val = bg->used; 1767 const u64 old_val = new_val + bytes_freed; 1768 u64 thresh; 1769 1770 if (reclaim_thresh == 0) 1771 return false; 1772 1773 thresh = mult_perc(bg->length, reclaim_thresh); 1774 1775 /* 1776 * If we were below the threshold before don't reclaim, we are likely a 1777 * brand new block group and we don't want to relocate new block groups. 1778 */ 1779 if (old_val < thresh) 1780 return false; 1781 if (new_val >= thresh) 1782 return false; 1783 return true; 1784 } 1785 1786 void btrfs_reclaim_bgs_work(struct work_struct *work) 1787 { 1788 struct btrfs_fs_info *fs_info = 1789 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1790 struct btrfs_block_group *bg; 1791 struct btrfs_space_info *space_info; 1792 LIST_HEAD(retry_list); 1793 1794 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1795 return; 1796 1797 if (btrfs_fs_closing(fs_info)) 1798 return; 1799 1800 if (!btrfs_should_reclaim(fs_info)) 1801 return; 1802 1803 sb_start_write(fs_info->sb); 1804 1805 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1806 sb_end_write(fs_info->sb); 1807 return; 1808 } 1809 1810 /* 1811 * Long running balances can keep us blocked here for eternity, so 1812 * simply skip reclaim if we're unable to get the mutex. 1813 */ 1814 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1815 btrfs_exclop_finish(fs_info); 1816 sb_end_write(fs_info->sb); 1817 return; 1818 } 1819 1820 spin_lock(&fs_info->unused_bgs_lock); 1821 /* 1822 * Sort happens under lock because we can't simply splice it and sort. 1823 * The block groups might still be in use and reachable via bg_list, 1824 * and their presence in the reclaim_bgs list must be preserved. 1825 */ 1826 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1827 while (!list_empty(&fs_info->reclaim_bgs)) { 1828 u64 zone_unusable; 1829 int ret = 0; 1830 1831 bg = list_first_entry(&fs_info->reclaim_bgs, 1832 struct btrfs_block_group, 1833 bg_list); 1834 list_del_init(&bg->bg_list); 1835 1836 space_info = bg->space_info; 1837 spin_unlock(&fs_info->unused_bgs_lock); 1838 1839 /* Don't race with allocators so take the groups_sem */ 1840 down_write(&space_info->groups_sem); 1841 1842 spin_lock(&bg->lock); 1843 if (bg->reserved || bg->pinned || bg->ro) { 1844 /* 1845 * We want to bail if we made new allocations or have 1846 * outstanding allocations in this block group. We do 1847 * the ro check in case balance is currently acting on 1848 * this block group. 1849 */ 1850 spin_unlock(&bg->lock); 1851 up_write(&space_info->groups_sem); 1852 goto next; 1853 } 1854 if (bg->used == 0) { 1855 /* 1856 * It is possible that we trigger relocation on a block 1857 * group as its extents are deleted and it first goes 1858 * below the threshold, then shortly after goes empty. 1859 * 1860 * In this case, relocating it does delete it, but has 1861 * some overhead in relocation specific metadata, looking 1862 * for the non-existent extents and running some extra 1863 * transactions, which we can avoid by using one of the 1864 * other mechanisms for dealing with empty block groups. 1865 */ 1866 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1867 btrfs_mark_bg_unused(bg); 1868 spin_unlock(&bg->lock); 1869 up_write(&space_info->groups_sem); 1870 goto next; 1871 1872 } 1873 /* 1874 * The block group might no longer meet the reclaim condition by 1875 * the time we get around to reclaiming it, so to avoid 1876 * reclaiming overly full block_groups, skip reclaiming them. 1877 * 1878 * Since the decision making process also depends on the amount 1879 * being freed, pass in a fake giant value to skip that extra 1880 * check, which is more meaningful when adding to the list in 1881 * the first place. 1882 */ 1883 if (!should_reclaim_block_group(bg, bg->length)) { 1884 spin_unlock(&bg->lock); 1885 up_write(&space_info->groups_sem); 1886 goto next; 1887 } 1888 spin_unlock(&bg->lock); 1889 1890 /* 1891 * Get out fast, in case we're read-only or unmounting the 1892 * filesystem. It is OK to drop block groups from the list even 1893 * for the read-only case. As we did sb_start_write(), 1894 * "mount -o remount,ro" won't happen and read-only filesystem 1895 * means it is forced read-only due to a fatal error. So, it 1896 * never gets back to read-write to let us reclaim again. 1897 */ 1898 if (btrfs_need_cleaner_sleep(fs_info)) { 1899 up_write(&space_info->groups_sem); 1900 goto next; 1901 } 1902 1903 /* 1904 * Cache the zone_unusable value before turning the block group 1905 * to read only. As soon as the blog group is read only it's 1906 * zone_unusable value gets moved to the block group's read-only 1907 * bytes and isn't available for calculations anymore. 1908 */ 1909 zone_unusable = bg->zone_unusable; 1910 ret = inc_block_group_ro(bg, 0); 1911 up_write(&space_info->groups_sem); 1912 if (ret < 0) 1913 goto next; 1914 1915 btrfs_info(fs_info, 1916 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1917 bg->start, 1918 div64_u64(bg->used * 100, bg->length), 1919 div64_u64(zone_unusable * 100, bg->length)); 1920 trace_btrfs_reclaim_block_group(bg); 1921 ret = btrfs_relocate_chunk(fs_info, bg->start); 1922 if (ret) { 1923 btrfs_dec_block_group_ro(bg); 1924 btrfs_err(fs_info, "error relocating chunk %llu", 1925 bg->start); 1926 } 1927 1928 next: 1929 if (ret) { 1930 /* Refcount held by the reclaim_bgs list after splice. */ 1931 spin_lock(&fs_info->unused_bgs_lock); 1932 /* 1933 * This block group might be added to the unused list 1934 * during the above process. Move it back to the 1935 * reclaim list otherwise. 1936 */ 1937 if (list_empty(&bg->bg_list)) { 1938 btrfs_get_block_group(bg); 1939 list_add_tail(&bg->bg_list, &retry_list); 1940 } 1941 spin_unlock(&fs_info->unused_bgs_lock); 1942 } 1943 btrfs_put_block_group(bg); 1944 1945 mutex_unlock(&fs_info->reclaim_bgs_lock); 1946 /* 1947 * Reclaiming all the block groups in the list can take really 1948 * long. Prioritize cleaning up unused block groups. 1949 */ 1950 btrfs_delete_unused_bgs(fs_info); 1951 /* 1952 * If we are interrupted by a balance, we can just bail out. The 1953 * cleaner thread restart again if necessary. 1954 */ 1955 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1956 goto end; 1957 spin_lock(&fs_info->unused_bgs_lock); 1958 } 1959 spin_unlock(&fs_info->unused_bgs_lock); 1960 mutex_unlock(&fs_info->reclaim_bgs_lock); 1961 end: 1962 spin_lock(&fs_info->unused_bgs_lock); 1963 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 1964 spin_unlock(&fs_info->unused_bgs_lock); 1965 btrfs_exclop_finish(fs_info); 1966 sb_end_write(fs_info->sb); 1967 } 1968 1969 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1970 { 1971 spin_lock(&fs_info->unused_bgs_lock); 1972 if (!list_empty(&fs_info->reclaim_bgs)) 1973 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1974 spin_unlock(&fs_info->unused_bgs_lock); 1975 } 1976 1977 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1978 { 1979 struct btrfs_fs_info *fs_info = bg->fs_info; 1980 1981 spin_lock(&fs_info->unused_bgs_lock); 1982 if (list_empty(&bg->bg_list)) { 1983 btrfs_get_block_group(bg); 1984 trace_btrfs_add_reclaim_block_group(bg); 1985 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1986 } 1987 spin_unlock(&fs_info->unused_bgs_lock); 1988 } 1989 1990 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1991 struct btrfs_path *path) 1992 { 1993 struct extent_map_tree *em_tree; 1994 struct extent_map *em; 1995 struct btrfs_block_group_item bg; 1996 struct extent_buffer *leaf; 1997 int slot; 1998 u64 flags; 1999 int ret = 0; 2000 2001 slot = path->slots[0]; 2002 leaf = path->nodes[0]; 2003 2004 em_tree = &fs_info->mapping_tree; 2005 read_lock(&em_tree->lock); 2006 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 2007 read_unlock(&em_tree->lock); 2008 if (!em) { 2009 btrfs_err(fs_info, 2010 "logical %llu len %llu found bg but no related chunk", 2011 key->objectid, key->offset); 2012 return -ENOENT; 2013 } 2014 2015 if (em->start != key->objectid || em->len != key->offset) { 2016 btrfs_err(fs_info, 2017 "block group %llu len %llu mismatch with chunk %llu len %llu", 2018 key->objectid, key->offset, em->start, em->len); 2019 ret = -EUCLEAN; 2020 goto out_free_em; 2021 } 2022 2023 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2024 sizeof(bg)); 2025 flags = btrfs_stack_block_group_flags(&bg) & 2026 BTRFS_BLOCK_GROUP_TYPE_MASK; 2027 2028 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2029 btrfs_err(fs_info, 2030 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2031 key->objectid, key->offset, flags, 2032 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 2033 ret = -EUCLEAN; 2034 } 2035 2036 out_free_em: 2037 free_extent_map(em); 2038 return ret; 2039 } 2040 2041 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2042 struct btrfs_path *path, 2043 struct btrfs_key *key) 2044 { 2045 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2046 int ret; 2047 struct btrfs_key found_key; 2048 2049 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2050 if (found_key.objectid >= key->objectid && 2051 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2052 return read_bg_from_eb(fs_info, &found_key, path); 2053 } 2054 } 2055 return ret; 2056 } 2057 2058 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2059 { 2060 u64 extra_flags = chunk_to_extended(flags) & 2061 BTRFS_EXTENDED_PROFILE_MASK; 2062 2063 write_seqlock(&fs_info->profiles_lock); 2064 if (flags & BTRFS_BLOCK_GROUP_DATA) 2065 fs_info->avail_data_alloc_bits |= extra_flags; 2066 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2067 fs_info->avail_metadata_alloc_bits |= extra_flags; 2068 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2069 fs_info->avail_system_alloc_bits |= extra_flags; 2070 write_sequnlock(&fs_info->profiles_lock); 2071 } 2072 2073 /* 2074 * Map a physical disk address to a list of logical addresses. 2075 * 2076 * @fs_info: the filesystem 2077 * @chunk_start: logical address of block group 2078 * @physical: physical address to map to logical addresses 2079 * @logical: return array of logical addresses which map to @physical 2080 * @naddrs: length of @logical 2081 * @stripe_len: size of IO stripe for the given block group 2082 * 2083 * Maps a particular @physical disk address to a list of @logical addresses. 2084 * Used primarily to exclude those portions of a block group that contain super 2085 * block copies. 2086 */ 2087 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2088 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2089 { 2090 struct extent_map *em; 2091 struct map_lookup *map; 2092 u64 *buf; 2093 u64 bytenr; 2094 u64 data_stripe_length; 2095 u64 io_stripe_size; 2096 int i, nr = 0; 2097 int ret = 0; 2098 2099 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2100 if (IS_ERR(em)) 2101 return -EIO; 2102 2103 map = em->map_lookup; 2104 data_stripe_length = em->orig_block_len; 2105 io_stripe_size = BTRFS_STRIPE_LEN; 2106 chunk_start = em->start; 2107 2108 /* For RAID5/6 adjust to a full IO stripe length */ 2109 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2110 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2111 2112 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2113 if (!buf) { 2114 ret = -ENOMEM; 2115 goto out; 2116 } 2117 2118 for (i = 0; i < map->num_stripes; i++) { 2119 bool already_inserted = false; 2120 u32 stripe_nr; 2121 u32 offset; 2122 int j; 2123 2124 if (!in_range(physical, map->stripes[i].physical, 2125 data_stripe_length)) 2126 continue; 2127 2128 stripe_nr = (physical - map->stripes[i].physical) >> 2129 BTRFS_STRIPE_LEN_SHIFT; 2130 offset = (physical - map->stripes[i].physical) & 2131 BTRFS_STRIPE_LEN_MASK; 2132 2133 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2134 BTRFS_BLOCK_GROUP_RAID10)) 2135 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2136 map->sub_stripes); 2137 /* 2138 * The remaining case would be for RAID56, multiply by 2139 * nr_data_stripes(). Alternatively, just use rmap_len below 2140 * instead of map->stripe_len 2141 */ 2142 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2143 2144 /* Ensure we don't add duplicate addresses */ 2145 for (j = 0; j < nr; j++) { 2146 if (buf[j] == bytenr) { 2147 already_inserted = true; 2148 break; 2149 } 2150 } 2151 2152 if (!already_inserted) 2153 buf[nr++] = bytenr; 2154 } 2155 2156 *logical = buf; 2157 *naddrs = nr; 2158 *stripe_len = io_stripe_size; 2159 out: 2160 free_extent_map(em); 2161 return ret; 2162 } 2163 2164 static int exclude_super_stripes(struct btrfs_block_group *cache) 2165 { 2166 struct btrfs_fs_info *fs_info = cache->fs_info; 2167 const bool zoned = btrfs_is_zoned(fs_info); 2168 u64 bytenr; 2169 u64 *logical; 2170 int stripe_len; 2171 int i, nr, ret; 2172 2173 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2174 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2175 cache->bytes_super += stripe_len; 2176 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2177 cache->start + stripe_len - 1, 2178 EXTENT_UPTODATE, NULL); 2179 if (ret) 2180 return ret; 2181 } 2182 2183 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2184 bytenr = btrfs_sb_offset(i); 2185 ret = btrfs_rmap_block(fs_info, cache->start, 2186 bytenr, &logical, &nr, &stripe_len); 2187 if (ret) 2188 return ret; 2189 2190 /* Shouldn't have super stripes in sequential zones */ 2191 if (zoned && nr) { 2192 kfree(logical); 2193 btrfs_err(fs_info, 2194 "zoned: block group %llu must not contain super block", 2195 cache->start); 2196 return -EUCLEAN; 2197 } 2198 2199 while (nr--) { 2200 u64 len = min_t(u64, stripe_len, 2201 cache->start + cache->length - logical[nr]); 2202 2203 cache->bytes_super += len; 2204 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2205 logical[nr] + len - 1, 2206 EXTENT_UPTODATE, NULL); 2207 if (ret) { 2208 kfree(logical); 2209 return ret; 2210 } 2211 } 2212 2213 kfree(logical); 2214 } 2215 return 0; 2216 } 2217 2218 static struct btrfs_block_group *btrfs_create_block_group_cache( 2219 struct btrfs_fs_info *fs_info, u64 start) 2220 { 2221 struct btrfs_block_group *cache; 2222 2223 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2224 if (!cache) 2225 return NULL; 2226 2227 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2228 GFP_NOFS); 2229 if (!cache->free_space_ctl) { 2230 kfree(cache); 2231 return NULL; 2232 } 2233 2234 cache->start = start; 2235 2236 cache->fs_info = fs_info; 2237 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2238 2239 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2240 2241 refcount_set(&cache->refs, 1); 2242 spin_lock_init(&cache->lock); 2243 init_rwsem(&cache->data_rwsem); 2244 INIT_LIST_HEAD(&cache->list); 2245 INIT_LIST_HEAD(&cache->cluster_list); 2246 INIT_LIST_HEAD(&cache->bg_list); 2247 INIT_LIST_HEAD(&cache->ro_list); 2248 INIT_LIST_HEAD(&cache->discard_list); 2249 INIT_LIST_HEAD(&cache->dirty_list); 2250 INIT_LIST_HEAD(&cache->io_list); 2251 INIT_LIST_HEAD(&cache->active_bg_list); 2252 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2253 atomic_set(&cache->frozen, 0); 2254 mutex_init(&cache->free_space_lock); 2255 2256 return cache; 2257 } 2258 2259 /* 2260 * Iterate all chunks and verify that each of them has the corresponding block 2261 * group 2262 */ 2263 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2264 { 2265 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2266 struct extent_map *em; 2267 struct btrfs_block_group *bg; 2268 u64 start = 0; 2269 int ret = 0; 2270 2271 while (1) { 2272 read_lock(&map_tree->lock); 2273 /* 2274 * lookup_extent_mapping will return the first extent map 2275 * intersecting the range, so setting @len to 1 is enough to 2276 * get the first chunk. 2277 */ 2278 em = lookup_extent_mapping(map_tree, start, 1); 2279 read_unlock(&map_tree->lock); 2280 if (!em) 2281 break; 2282 2283 bg = btrfs_lookup_block_group(fs_info, em->start); 2284 if (!bg) { 2285 btrfs_err(fs_info, 2286 "chunk start=%llu len=%llu doesn't have corresponding block group", 2287 em->start, em->len); 2288 ret = -EUCLEAN; 2289 free_extent_map(em); 2290 break; 2291 } 2292 if (bg->start != em->start || bg->length != em->len || 2293 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2294 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2295 btrfs_err(fs_info, 2296 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2297 em->start, em->len, 2298 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2299 bg->start, bg->length, 2300 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2301 ret = -EUCLEAN; 2302 free_extent_map(em); 2303 btrfs_put_block_group(bg); 2304 break; 2305 } 2306 start = em->start + em->len; 2307 free_extent_map(em); 2308 btrfs_put_block_group(bg); 2309 } 2310 return ret; 2311 } 2312 2313 static int read_one_block_group(struct btrfs_fs_info *info, 2314 struct btrfs_block_group_item *bgi, 2315 const struct btrfs_key *key, 2316 int need_clear) 2317 { 2318 struct btrfs_block_group *cache; 2319 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2320 int ret; 2321 2322 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2323 2324 cache = btrfs_create_block_group_cache(info, key->objectid); 2325 if (!cache) 2326 return -ENOMEM; 2327 2328 cache->length = key->offset; 2329 cache->used = btrfs_stack_block_group_used(bgi); 2330 cache->commit_used = cache->used; 2331 cache->flags = btrfs_stack_block_group_flags(bgi); 2332 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2333 2334 set_free_space_tree_thresholds(cache); 2335 2336 if (need_clear) { 2337 /* 2338 * When we mount with old space cache, we need to 2339 * set BTRFS_DC_CLEAR and set dirty flag. 2340 * 2341 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2342 * truncate the old free space cache inode and 2343 * setup a new one. 2344 * b) Setting 'dirty flag' makes sure that we flush 2345 * the new space cache info onto disk. 2346 */ 2347 if (btrfs_test_opt(info, SPACE_CACHE)) 2348 cache->disk_cache_state = BTRFS_DC_CLEAR; 2349 } 2350 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2351 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2352 btrfs_err(info, 2353 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2354 cache->start); 2355 ret = -EINVAL; 2356 goto error; 2357 } 2358 2359 ret = btrfs_load_block_group_zone_info(cache, false); 2360 if (ret) { 2361 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2362 cache->start); 2363 goto error; 2364 } 2365 2366 /* 2367 * We need to exclude the super stripes now so that the space info has 2368 * super bytes accounted for, otherwise we'll think we have more space 2369 * than we actually do. 2370 */ 2371 ret = exclude_super_stripes(cache); 2372 if (ret) { 2373 /* We may have excluded something, so call this just in case. */ 2374 btrfs_free_excluded_extents(cache); 2375 goto error; 2376 } 2377 2378 /* 2379 * For zoned filesystem, space after the allocation offset is the only 2380 * free space for a block group. So, we don't need any caching work. 2381 * btrfs_calc_zone_unusable() will set the amount of free space and 2382 * zone_unusable space. 2383 * 2384 * For regular filesystem, check for two cases, either we are full, and 2385 * therefore don't need to bother with the caching work since we won't 2386 * find any space, or we are empty, and we can just add all the space 2387 * in and be done with it. This saves us _a_lot_ of time, particularly 2388 * in the full case. 2389 */ 2390 if (btrfs_is_zoned(info)) { 2391 btrfs_calc_zone_unusable(cache); 2392 /* Should not have any excluded extents. Just in case, though. */ 2393 btrfs_free_excluded_extents(cache); 2394 } else if (cache->length == cache->used) { 2395 cache->cached = BTRFS_CACHE_FINISHED; 2396 btrfs_free_excluded_extents(cache); 2397 } else if (cache->used == 0) { 2398 cache->cached = BTRFS_CACHE_FINISHED; 2399 ret = btrfs_add_new_free_space(cache, cache->start, 2400 cache->start + cache->length, NULL); 2401 btrfs_free_excluded_extents(cache); 2402 if (ret) 2403 goto error; 2404 } 2405 2406 ret = btrfs_add_block_group_cache(info, cache); 2407 if (ret) { 2408 btrfs_remove_free_space_cache(cache); 2409 goto error; 2410 } 2411 trace_btrfs_add_block_group(info, cache, 0); 2412 btrfs_add_bg_to_space_info(info, cache); 2413 2414 set_avail_alloc_bits(info, cache->flags); 2415 if (btrfs_chunk_writeable(info, cache->start)) { 2416 if (cache->used == 0) { 2417 ASSERT(list_empty(&cache->bg_list)); 2418 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2419 btrfs_discard_queue_work(&info->discard_ctl, cache); 2420 else 2421 btrfs_mark_bg_unused(cache); 2422 } 2423 } else { 2424 inc_block_group_ro(cache, 1); 2425 } 2426 2427 return 0; 2428 error: 2429 btrfs_put_block_group(cache); 2430 return ret; 2431 } 2432 2433 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2434 { 2435 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2436 struct rb_node *node; 2437 int ret = 0; 2438 2439 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2440 struct extent_map *em; 2441 struct map_lookup *map; 2442 struct btrfs_block_group *bg; 2443 2444 em = rb_entry(node, struct extent_map, rb_node); 2445 map = em->map_lookup; 2446 bg = btrfs_create_block_group_cache(fs_info, em->start); 2447 if (!bg) { 2448 ret = -ENOMEM; 2449 break; 2450 } 2451 2452 /* Fill dummy cache as FULL */ 2453 bg->length = em->len; 2454 bg->flags = map->type; 2455 bg->cached = BTRFS_CACHE_FINISHED; 2456 bg->used = em->len; 2457 bg->flags = map->type; 2458 ret = btrfs_add_block_group_cache(fs_info, bg); 2459 /* 2460 * We may have some valid block group cache added already, in 2461 * that case we skip to the next one. 2462 */ 2463 if (ret == -EEXIST) { 2464 ret = 0; 2465 btrfs_put_block_group(bg); 2466 continue; 2467 } 2468 2469 if (ret) { 2470 btrfs_remove_free_space_cache(bg); 2471 btrfs_put_block_group(bg); 2472 break; 2473 } 2474 2475 btrfs_add_bg_to_space_info(fs_info, bg); 2476 2477 set_avail_alloc_bits(fs_info, bg->flags); 2478 } 2479 if (!ret) 2480 btrfs_init_global_block_rsv(fs_info); 2481 return ret; 2482 } 2483 2484 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2485 { 2486 struct btrfs_root *root = btrfs_block_group_root(info); 2487 struct btrfs_path *path; 2488 int ret; 2489 struct btrfs_block_group *cache; 2490 struct btrfs_space_info *space_info; 2491 struct btrfs_key key; 2492 int need_clear = 0; 2493 u64 cache_gen; 2494 2495 /* 2496 * Either no extent root (with ibadroots rescue option) or we have 2497 * unsupported RO options. The fs can never be mounted read-write, so no 2498 * need to waste time searching block group items. 2499 * 2500 * This also allows new extent tree related changes to be RO compat, 2501 * no need for a full incompat flag. 2502 */ 2503 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2504 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2505 return fill_dummy_bgs(info); 2506 2507 key.objectid = 0; 2508 key.offset = 0; 2509 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2510 path = btrfs_alloc_path(); 2511 if (!path) 2512 return -ENOMEM; 2513 2514 cache_gen = btrfs_super_cache_generation(info->super_copy); 2515 if (btrfs_test_opt(info, SPACE_CACHE) && 2516 btrfs_super_generation(info->super_copy) != cache_gen) 2517 need_clear = 1; 2518 if (btrfs_test_opt(info, CLEAR_CACHE)) 2519 need_clear = 1; 2520 2521 while (1) { 2522 struct btrfs_block_group_item bgi; 2523 struct extent_buffer *leaf; 2524 int slot; 2525 2526 ret = find_first_block_group(info, path, &key); 2527 if (ret > 0) 2528 break; 2529 if (ret != 0) 2530 goto error; 2531 2532 leaf = path->nodes[0]; 2533 slot = path->slots[0]; 2534 2535 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2536 sizeof(bgi)); 2537 2538 btrfs_item_key_to_cpu(leaf, &key, slot); 2539 btrfs_release_path(path); 2540 ret = read_one_block_group(info, &bgi, &key, need_clear); 2541 if (ret < 0) 2542 goto error; 2543 key.objectid += key.offset; 2544 key.offset = 0; 2545 } 2546 btrfs_release_path(path); 2547 2548 list_for_each_entry(space_info, &info->space_info, list) { 2549 int i; 2550 2551 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2552 if (list_empty(&space_info->block_groups[i])) 2553 continue; 2554 cache = list_first_entry(&space_info->block_groups[i], 2555 struct btrfs_block_group, 2556 list); 2557 btrfs_sysfs_add_block_group_type(cache); 2558 } 2559 2560 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2561 (BTRFS_BLOCK_GROUP_RAID10 | 2562 BTRFS_BLOCK_GROUP_RAID1_MASK | 2563 BTRFS_BLOCK_GROUP_RAID56_MASK | 2564 BTRFS_BLOCK_GROUP_DUP))) 2565 continue; 2566 /* 2567 * Avoid allocating from un-mirrored block group if there are 2568 * mirrored block groups. 2569 */ 2570 list_for_each_entry(cache, 2571 &space_info->block_groups[BTRFS_RAID_RAID0], 2572 list) 2573 inc_block_group_ro(cache, 1); 2574 list_for_each_entry(cache, 2575 &space_info->block_groups[BTRFS_RAID_SINGLE], 2576 list) 2577 inc_block_group_ro(cache, 1); 2578 } 2579 2580 btrfs_init_global_block_rsv(info); 2581 ret = check_chunk_block_group_mappings(info); 2582 error: 2583 btrfs_free_path(path); 2584 /* 2585 * We've hit some error while reading the extent tree, and have 2586 * rescue=ibadroots mount option. 2587 * Try to fill the tree using dummy block groups so that the user can 2588 * continue to mount and grab their data. 2589 */ 2590 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2591 ret = fill_dummy_bgs(info); 2592 return ret; 2593 } 2594 2595 /* 2596 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2597 * allocation. 2598 * 2599 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2600 * phases. 2601 */ 2602 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2603 struct btrfs_block_group *block_group) 2604 { 2605 struct btrfs_fs_info *fs_info = trans->fs_info; 2606 struct btrfs_block_group_item bgi; 2607 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2608 struct btrfs_key key; 2609 u64 old_commit_used; 2610 int ret; 2611 2612 spin_lock(&block_group->lock); 2613 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2614 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2615 block_group->global_root_id); 2616 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2617 old_commit_used = block_group->commit_used; 2618 block_group->commit_used = block_group->used; 2619 key.objectid = block_group->start; 2620 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2621 key.offset = block_group->length; 2622 spin_unlock(&block_group->lock); 2623 2624 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2625 if (ret < 0) { 2626 spin_lock(&block_group->lock); 2627 block_group->commit_used = old_commit_used; 2628 spin_unlock(&block_group->lock); 2629 } 2630 2631 return ret; 2632 } 2633 2634 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2635 struct btrfs_device *device, u64 chunk_offset, 2636 u64 start, u64 num_bytes) 2637 { 2638 struct btrfs_fs_info *fs_info = device->fs_info; 2639 struct btrfs_root *root = fs_info->dev_root; 2640 struct btrfs_path *path; 2641 struct btrfs_dev_extent *extent; 2642 struct extent_buffer *leaf; 2643 struct btrfs_key key; 2644 int ret; 2645 2646 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2647 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2648 path = btrfs_alloc_path(); 2649 if (!path) 2650 return -ENOMEM; 2651 2652 key.objectid = device->devid; 2653 key.type = BTRFS_DEV_EXTENT_KEY; 2654 key.offset = start; 2655 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2656 if (ret) 2657 goto out; 2658 2659 leaf = path->nodes[0]; 2660 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2661 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2662 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2663 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2664 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2665 2666 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2667 btrfs_mark_buffer_dirty(trans, leaf); 2668 out: 2669 btrfs_free_path(path); 2670 return ret; 2671 } 2672 2673 /* 2674 * This function belongs to phase 2. 2675 * 2676 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2677 * phases. 2678 */ 2679 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2680 u64 chunk_offset, u64 chunk_size) 2681 { 2682 struct btrfs_fs_info *fs_info = trans->fs_info; 2683 struct btrfs_device *device; 2684 struct extent_map *em; 2685 struct map_lookup *map; 2686 u64 dev_offset; 2687 u64 stripe_size; 2688 int i; 2689 int ret = 0; 2690 2691 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2692 if (IS_ERR(em)) 2693 return PTR_ERR(em); 2694 2695 map = em->map_lookup; 2696 stripe_size = em->orig_block_len; 2697 2698 /* 2699 * Take the device list mutex to prevent races with the final phase of 2700 * a device replace operation that replaces the device object associated 2701 * with the map's stripes, because the device object's id can change 2702 * at any time during that final phase of the device replace operation 2703 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2704 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2705 * resulting in persisting a device extent item with such ID. 2706 */ 2707 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2708 for (i = 0; i < map->num_stripes; i++) { 2709 device = map->stripes[i].dev; 2710 dev_offset = map->stripes[i].physical; 2711 2712 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2713 stripe_size); 2714 if (ret) 2715 break; 2716 } 2717 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2718 2719 free_extent_map(em); 2720 return ret; 2721 } 2722 2723 /* 2724 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2725 * chunk allocation. 2726 * 2727 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2728 * phases. 2729 */ 2730 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2731 { 2732 struct btrfs_fs_info *fs_info = trans->fs_info; 2733 struct btrfs_block_group *block_group; 2734 int ret = 0; 2735 2736 while (!list_empty(&trans->new_bgs)) { 2737 int index; 2738 2739 block_group = list_first_entry(&trans->new_bgs, 2740 struct btrfs_block_group, 2741 bg_list); 2742 if (ret) 2743 goto next; 2744 2745 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2746 2747 ret = insert_block_group_item(trans, block_group); 2748 if (ret) 2749 btrfs_abort_transaction(trans, ret); 2750 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2751 &block_group->runtime_flags)) { 2752 mutex_lock(&fs_info->chunk_mutex); 2753 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2754 mutex_unlock(&fs_info->chunk_mutex); 2755 if (ret) 2756 btrfs_abort_transaction(trans, ret); 2757 } 2758 ret = insert_dev_extents(trans, block_group->start, 2759 block_group->length); 2760 if (ret) 2761 btrfs_abort_transaction(trans, ret); 2762 add_block_group_free_space(trans, block_group); 2763 2764 /* 2765 * If we restriped during balance, we may have added a new raid 2766 * type, so now add the sysfs entries when it is safe to do so. 2767 * We don't have to worry about locking here as it's handled in 2768 * btrfs_sysfs_add_block_group_type. 2769 */ 2770 if (block_group->space_info->block_group_kobjs[index] == NULL) 2771 btrfs_sysfs_add_block_group_type(block_group); 2772 2773 /* Already aborted the transaction if it failed. */ 2774 next: 2775 btrfs_delayed_refs_rsv_release(fs_info, 1); 2776 list_del_init(&block_group->bg_list); 2777 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2778 } 2779 btrfs_trans_release_chunk_metadata(trans); 2780 } 2781 2782 /* 2783 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2784 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2785 */ 2786 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2787 { 2788 u64 div = SZ_1G; 2789 u64 index; 2790 2791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2792 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2793 2794 /* If we have a smaller fs index based on 128MiB. */ 2795 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2796 div = SZ_128M; 2797 2798 offset = div64_u64(offset, div); 2799 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2800 return index; 2801 } 2802 2803 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2804 u64 type, 2805 u64 chunk_offset, u64 size) 2806 { 2807 struct btrfs_fs_info *fs_info = trans->fs_info; 2808 struct btrfs_block_group *cache; 2809 int ret; 2810 2811 btrfs_set_log_full_commit(trans); 2812 2813 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2814 if (!cache) 2815 return ERR_PTR(-ENOMEM); 2816 2817 /* 2818 * Mark it as new before adding it to the rbtree of block groups or any 2819 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2820 * before the new flag is set. 2821 */ 2822 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2823 2824 cache->length = size; 2825 set_free_space_tree_thresholds(cache); 2826 cache->flags = type; 2827 cache->cached = BTRFS_CACHE_FINISHED; 2828 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2829 2830 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2831 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2832 2833 ret = btrfs_load_block_group_zone_info(cache, true); 2834 if (ret) { 2835 btrfs_put_block_group(cache); 2836 return ERR_PTR(ret); 2837 } 2838 2839 ret = exclude_super_stripes(cache); 2840 if (ret) { 2841 /* We may have excluded something, so call this just in case */ 2842 btrfs_free_excluded_extents(cache); 2843 btrfs_put_block_group(cache); 2844 return ERR_PTR(ret); 2845 } 2846 2847 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2848 btrfs_free_excluded_extents(cache); 2849 if (ret) { 2850 btrfs_put_block_group(cache); 2851 return ERR_PTR(ret); 2852 } 2853 2854 /* 2855 * Ensure the corresponding space_info object is created and 2856 * assigned to our block group. We want our bg to be added to the rbtree 2857 * with its ->space_info set. 2858 */ 2859 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2860 ASSERT(cache->space_info); 2861 2862 ret = btrfs_add_block_group_cache(fs_info, cache); 2863 if (ret) { 2864 btrfs_remove_free_space_cache(cache); 2865 btrfs_put_block_group(cache); 2866 return ERR_PTR(ret); 2867 } 2868 2869 /* 2870 * Now that our block group has its ->space_info set and is inserted in 2871 * the rbtree, update the space info's counters. 2872 */ 2873 trace_btrfs_add_block_group(fs_info, cache, 1); 2874 btrfs_add_bg_to_space_info(fs_info, cache); 2875 btrfs_update_global_block_rsv(fs_info); 2876 2877 #ifdef CONFIG_BTRFS_DEBUG 2878 if (btrfs_should_fragment_free_space(cache)) { 2879 cache->space_info->bytes_used += size >> 1; 2880 fragment_free_space(cache); 2881 } 2882 #endif 2883 2884 list_add_tail(&cache->bg_list, &trans->new_bgs); 2885 trans->delayed_ref_updates++; 2886 btrfs_update_delayed_refs_rsv(trans); 2887 2888 set_avail_alloc_bits(fs_info, type); 2889 return cache; 2890 } 2891 2892 /* 2893 * Mark one block group RO, can be called several times for the same block 2894 * group. 2895 * 2896 * @cache: the destination block group 2897 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2898 * ensure we still have some free space after marking this 2899 * block group RO. 2900 */ 2901 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2902 bool do_chunk_alloc) 2903 { 2904 struct btrfs_fs_info *fs_info = cache->fs_info; 2905 struct btrfs_trans_handle *trans; 2906 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2907 u64 alloc_flags; 2908 int ret; 2909 bool dirty_bg_running; 2910 2911 /* 2912 * This can only happen when we are doing read-only scrub on read-only 2913 * mount. 2914 * In that case we should not start a new transaction on read-only fs. 2915 * Thus here we skip all chunk allocations. 2916 */ 2917 if (sb_rdonly(fs_info->sb)) { 2918 mutex_lock(&fs_info->ro_block_group_mutex); 2919 ret = inc_block_group_ro(cache, 0); 2920 mutex_unlock(&fs_info->ro_block_group_mutex); 2921 return ret; 2922 } 2923 2924 do { 2925 trans = btrfs_join_transaction(root); 2926 if (IS_ERR(trans)) 2927 return PTR_ERR(trans); 2928 2929 dirty_bg_running = false; 2930 2931 /* 2932 * We're not allowed to set block groups readonly after the dirty 2933 * block group cache has started writing. If it already started, 2934 * back off and let this transaction commit. 2935 */ 2936 mutex_lock(&fs_info->ro_block_group_mutex); 2937 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2938 u64 transid = trans->transid; 2939 2940 mutex_unlock(&fs_info->ro_block_group_mutex); 2941 btrfs_end_transaction(trans); 2942 2943 ret = btrfs_wait_for_commit(fs_info, transid); 2944 if (ret) 2945 return ret; 2946 dirty_bg_running = true; 2947 } 2948 } while (dirty_bg_running); 2949 2950 if (do_chunk_alloc) { 2951 /* 2952 * If we are changing raid levels, try to allocate a 2953 * corresponding block group with the new raid level. 2954 */ 2955 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2956 if (alloc_flags != cache->flags) { 2957 ret = btrfs_chunk_alloc(trans, alloc_flags, 2958 CHUNK_ALLOC_FORCE); 2959 /* 2960 * ENOSPC is allowed here, we may have enough space 2961 * already allocated at the new raid level to carry on 2962 */ 2963 if (ret == -ENOSPC) 2964 ret = 0; 2965 if (ret < 0) 2966 goto out; 2967 } 2968 } 2969 2970 ret = inc_block_group_ro(cache, 0); 2971 if (!ret) 2972 goto out; 2973 if (ret == -ETXTBSY) 2974 goto unlock_out; 2975 2976 /* 2977 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2978 * chunk allocation storm to exhaust the system chunk array. Otherwise 2979 * we still want to try our best to mark the block group read-only. 2980 */ 2981 if (!do_chunk_alloc && ret == -ENOSPC && 2982 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2983 goto unlock_out; 2984 2985 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2986 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2987 if (ret < 0) 2988 goto out; 2989 /* 2990 * We have allocated a new chunk. We also need to activate that chunk to 2991 * grant metadata tickets for zoned filesystem. 2992 */ 2993 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2994 if (ret < 0) 2995 goto out; 2996 2997 ret = inc_block_group_ro(cache, 0); 2998 if (ret == -ETXTBSY) 2999 goto unlock_out; 3000 out: 3001 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3002 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3003 mutex_lock(&fs_info->chunk_mutex); 3004 check_system_chunk(trans, alloc_flags); 3005 mutex_unlock(&fs_info->chunk_mutex); 3006 } 3007 unlock_out: 3008 mutex_unlock(&fs_info->ro_block_group_mutex); 3009 3010 btrfs_end_transaction(trans); 3011 return ret; 3012 } 3013 3014 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3015 { 3016 struct btrfs_space_info *sinfo = cache->space_info; 3017 u64 num_bytes; 3018 3019 BUG_ON(!cache->ro); 3020 3021 spin_lock(&sinfo->lock); 3022 spin_lock(&cache->lock); 3023 if (!--cache->ro) { 3024 if (btrfs_is_zoned(cache->fs_info)) { 3025 /* Migrate zone_unusable bytes back */ 3026 cache->zone_unusable = 3027 (cache->alloc_offset - cache->used - cache->pinned - 3028 cache->reserved) + 3029 (cache->length - cache->zone_capacity); 3030 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo, 3031 cache->zone_unusable); 3032 sinfo->bytes_readonly -= cache->zone_unusable; 3033 } 3034 num_bytes = cache->length - cache->reserved - 3035 cache->pinned - cache->bytes_super - 3036 cache->zone_unusable - cache->used; 3037 sinfo->bytes_readonly -= num_bytes; 3038 list_del_init(&cache->ro_list); 3039 } 3040 spin_unlock(&cache->lock); 3041 spin_unlock(&sinfo->lock); 3042 } 3043 3044 static int update_block_group_item(struct btrfs_trans_handle *trans, 3045 struct btrfs_path *path, 3046 struct btrfs_block_group *cache) 3047 { 3048 struct btrfs_fs_info *fs_info = trans->fs_info; 3049 int ret; 3050 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3051 unsigned long bi; 3052 struct extent_buffer *leaf; 3053 struct btrfs_block_group_item bgi; 3054 struct btrfs_key key; 3055 u64 old_commit_used; 3056 u64 used; 3057 3058 /* 3059 * Block group items update can be triggered out of commit transaction 3060 * critical section, thus we need a consistent view of used bytes. 3061 * We cannot use cache->used directly outside of the spin lock, as it 3062 * may be changed. 3063 */ 3064 spin_lock(&cache->lock); 3065 old_commit_used = cache->commit_used; 3066 used = cache->used; 3067 /* No change in used bytes, can safely skip it. */ 3068 if (cache->commit_used == used) { 3069 spin_unlock(&cache->lock); 3070 return 0; 3071 } 3072 cache->commit_used = used; 3073 spin_unlock(&cache->lock); 3074 3075 key.objectid = cache->start; 3076 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3077 key.offset = cache->length; 3078 3079 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3080 if (ret) { 3081 if (ret > 0) 3082 ret = -ENOENT; 3083 goto fail; 3084 } 3085 3086 leaf = path->nodes[0]; 3087 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3088 btrfs_set_stack_block_group_used(&bgi, used); 3089 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3090 cache->global_root_id); 3091 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3092 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3093 btrfs_mark_buffer_dirty(trans, leaf); 3094 fail: 3095 btrfs_release_path(path); 3096 /* 3097 * We didn't update the block group item, need to revert commit_used 3098 * unless the block group item didn't exist yet - this is to prevent a 3099 * race with a concurrent insertion of the block group item, with 3100 * insert_block_group_item(), that happened just after we attempted to 3101 * update. In that case we would reset commit_used to 0 just after the 3102 * insertion set it to a value greater than 0 - if the block group later 3103 * becomes with 0 used bytes, we would incorrectly skip its update. 3104 */ 3105 if (ret < 0 && ret != -ENOENT) { 3106 spin_lock(&cache->lock); 3107 cache->commit_used = old_commit_used; 3108 spin_unlock(&cache->lock); 3109 } 3110 return ret; 3111 3112 } 3113 3114 static int cache_save_setup(struct btrfs_block_group *block_group, 3115 struct btrfs_trans_handle *trans, 3116 struct btrfs_path *path) 3117 { 3118 struct btrfs_fs_info *fs_info = block_group->fs_info; 3119 struct btrfs_root *root = fs_info->tree_root; 3120 struct inode *inode = NULL; 3121 struct extent_changeset *data_reserved = NULL; 3122 u64 alloc_hint = 0; 3123 int dcs = BTRFS_DC_ERROR; 3124 u64 cache_size = 0; 3125 int retries = 0; 3126 int ret = 0; 3127 3128 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3129 return 0; 3130 3131 /* 3132 * If this block group is smaller than 100 megs don't bother caching the 3133 * block group. 3134 */ 3135 if (block_group->length < (100 * SZ_1M)) { 3136 spin_lock(&block_group->lock); 3137 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3138 spin_unlock(&block_group->lock); 3139 return 0; 3140 } 3141 3142 if (TRANS_ABORTED(trans)) 3143 return 0; 3144 again: 3145 inode = lookup_free_space_inode(block_group, path); 3146 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3147 ret = PTR_ERR(inode); 3148 btrfs_release_path(path); 3149 goto out; 3150 } 3151 3152 if (IS_ERR(inode)) { 3153 BUG_ON(retries); 3154 retries++; 3155 3156 if (block_group->ro) 3157 goto out_free; 3158 3159 ret = create_free_space_inode(trans, block_group, path); 3160 if (ret) 3161 goto out_free; 3162 goto again; 3163 } 3164 3165 /* 3166 * We want to set the generation to 0, that way if anything goes wrong 3167 * from here on out we know not to trust this cache when we load up next 3168 * time. 3169 */ 3170 BTRFS_I(inode)->generation = 0; 3171 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3172 if (ret) { 3173 /* 3174 * So theoretically we could recover from this, simply set the 3175 * super cache generation to 0 so we know to invalidate the 3176 * cache, but then we'd have to keep track of the block groups 3177 * that fail this way so we know we _have_ to reset this cache 3178 * before the next commit or risk reading stale cache. So to 3179 * limit our exposure to horrible edge cases lets just abort the 3180 * transaction, this only happens in really bad situations 3181 * anyway. 3182 */ 3183 btrfs_abort_transaction(trans, ret); 3184 goto out_put; 3185 } 3186 WARN_ON(ret); 3187 3188 /* We've already setup this transaction, go ahead and exit */ 3189 if (block_group->cache_generation == trans->transid && 3190 i_size_read(inode)) { 3191 dcs = BTRFS_DC_SETUP; 3192 goto out_put; 3193 } 3194 3195 if (i_size_read(inode) > 0) { 3196 ret = btrfs_check_trunc_cache_free_space(fs_info, 3197 &fs_info->global_block_rsv); 3198 if (ret) 3199 goto out_put; 3200 3201 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3202 if (ret) 3203 goto out_put; 3204 } 3205 3206 spin_lock(&block_group->lock); 3207 if (block_group->cached != BTRFS_CACHE_FINISHED || 3208 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3209 /* 3210 * don't bother trying to write stuff out _if_ 3211 * a) we're not cached, 3212 * b) we're with nospace_cache mount option, 3213 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3214 */ 3215 dcs = BTRFS_DC_WRITTEN; 3216 spin_unlock(&block_group->lock); 3217 goto out_put; 3218 } 3219 spin_unlock(&block_group->lock); 3220 3221 /* 3222 * We hit an ENOSPC when setting up the cache in this transaction, just 3223 * skip doing the setup, we've already cleared the cache so we're safe. 3224 */ 3225 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3226 ret = -ENOSPC; 3227 goto out_put; 3228 } 3229 3230 /* 3231 * Try to preallocate enough space based on how big the block group is. 3232 * Keep in mind this has to include any pinned space which could end up 3233 * taking up quite a bit since it's not folded into the other space 3234 * cache. 3235 */ 3236 cache_size = div_u64(block_group->length, SZ_256M); 3237 if (!cache_size) 3238 cache_size = 1; 3239 3240 cache_size *= 16; 3241 cache_size *= fs_info->sectorsize; 3242 3243 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3244 cache_size, false); 3245 if (ret) 3246 goto out_put; 3247 3248 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3249 cache_size, cache_size, 3250 &alloc_hint); 3251 /* 3252 * Our cache requires contiguous chunks so that we don't modify a bunch 3253 * of metadata or split extents when writing the cache out, which means 3254 * we can enospc if we are heavily fragmented in addition to just normal 3255 * out of space conditions. So if we hit this just skip setting up any 3256 * other block groups for this transaction, maybe we'll unpin enough 3257 * space the next time around. 3258 */ 3259 if (!ret) 3260 dcs = BTRFS_DC_SETUP; 3261 else if (ret == -ENOSPC) 3262 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3263 3264 out_put: 3265 iput(inode); 3266 out_free: 3267 btrfs_release_path(path); 3268 out: 3269 spin_lock(&block_group->lock); 3270 if (!ret && dcs == BTRFS_DC_SETUP) 3271 block_group->cache_generation = trans->transid; 3272 block_group->disk_cache_state = dcs; 3273 spin_unlock(&block_group->lock); 3274 3275 extent_changeset_free(data_reserved); 3276 return ret; 3277 } 3278 3279 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3280 { 3281 struct btrfs_fs_info *fs_info = trans->fs_info; 3282 struct btrfs_block_group *cache, *tmp; 3283 struct btrfs_transaction *cur_trans = trans->transaction; 3284 struct btrfs_path *path; 3285 3286 if (list_empty(&cur_trans->dirty_bgs) || 3287 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3288 return 0; 3289 3290 path = btrfs_alloc_path(); 3291 if (!path) 3292 return -ENOMEM; 3293 3294 /* Could add new block groups, use _safe just in case */ 3295 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3296 dirty_list) { 3297 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3298 cache_save_setup(cache, trans, path); 3299 } 3300 3301 btrfs_free_path(path); 3302 return 0; 3303 } 3304 3305 /* 3306 * Transaction commit does final block group cache writeback during a critical 3307 * section where nothing is allowed to change the FS. This is required in 3308 * order for the cache to actually match the block group, but can introduce a 3309 * lot of latency into the commit. 3310 * 3311 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3312 * There's a chance we'll have to redo some of it if the block group changes 3313 * again during the commit, but it greatly reduces the commit latency by 3314 * getting rid of the easy block groups while we're still allowing others to 3315 * join the commit. 3316 */ 3317 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3318 { 3319 struct btrfs_fs_info *fs_info = trans->fs_info; 3320 struct btrfs_block_group *cache; 3321 struct btrfs_transaction *cur_trans = trans->transaction; 3322 int ret = 0; 3323 int should_put; 3324 struct btrfs_path *path = NULL; 3325 LIST_HEAD(dirty); 3326 struct list_head *io = &cur_trans->io_bgs; 3327 int loops = 0; 3328 3329 spin_lock(&cur_trans->dirty_bgs_lock); 3330 if (list_empty(&cur_trans->dirty_bgs)) { 3331 spin_unlock(&cur_trans->dirty_bgs_lock); 3332 return 0; 3333 } 3334 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3335 spin_unlock(&cur_trans->dirty_bgs_lock); 3336 3337 again: 3338 /* Make sure all the block groups on our dirty list actually exist */ 3339 btrfs_create_pending_block_groups(trans); 3340 3341 if (!path) { 3342 path = btrfs_alloc_path(); 3343 if (!path) { 3344 ret = -ENOMEM; 3345 goto out; 3346 } 3347 } 3348 3349 /* 3350 * cache_write_mutex is here only to save us from balance or automatic 3351 * removal of empty block groups deleting this block group while we are 3352 * writing out the cache 3353 */ 3354 mutex_lock(&trans->transaction->cache_write_mutex); 3355 while (!list_empty(&dirty)) { 3356 bool drop_reserve = true; 3357 3358 cache = list_first_entry(&dirty, struct btrfs_block_group, 3359 dirty_list); 3360 /* 3361 * This can happen if something re-dirties a block group that 3362 * is already under IO. Just wait for it to finish and then do 3363 * it all again 3364 */ 3365 if (!list_empty(&cache->io_list)) { 3366 list_del_init(&cache->io_list); 3367 btrfs_wait_cache_io(trans, cache, path); 3368 btrfs_put_block_group(cache); 3369 } 3370 3371 3372 /* 3373 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3374 * it should update the cache_state. Don't delete until after 3375 * we wait. 3376 * 3377 * Since we're not running in the commit critical section 3378 * we need the dirty_bgs_lock to protect from update_block_group 3379 */ 3380 spin_lock(&cur_trans->dirty_bgs_lock); 3381 list_del_init(&cache->dirty_list); 3382 spin_unlock(&cur_trans->dirty_bgs_lock); 3383 3384 should_put = 1; 3385 3386 cache_save_setup(cache, trans, path); 3387 3388 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3389 cache->io_ctl.inode = NULL; 3390 ret = btrfs_write_out_cache(trans, cache, path); 3391 if (ret == 0 && cache->io_ctl.inode) { 3392 should_put = 0; 3393 3394 /* 3395 * The cache_write_mutex is protecting the 3396 * io_list, also refer to the definition of 3397 * btrfs_transaction::io_bgs for more details 3398 */ 3399 list_add_tail(&cache->io_list, io); 3400 } else { 3401 /* 3402 * If we failed to write the cache, the 3403 * generation will be bad and life goes on 3404 */ 3405 ret = 0; 3406 } 3407 } 3408 if (!ret) { 3409 ret = update_block_group_item(trans, path, cache); 3410 /* 3411 * Our block group might still be attached to the list 3412 * of new block groups in the transaction handle of some 3413 * other task (struct btrfs_trans_handle->new_bgs). This 3414 * means its block group item isn't yet in the extent 3415 * tree. If this happens ignore the error, as we will 3416 * try again later in the critical section of the 3417 * transaction commit. 3418 */ 3419 if (ret == -ENOENT) { 3420 ret = 0; 3421 spin_lock(&cur_trans->dirty_bgs_lock); 3422 if (list_empty(&cache->dirty_list)) { 3423 list_add_tail(&cache->dirty_list, 3424 &cur_trans->dirty_bgs); 3425 btrfs_get_block_group(cache); 3426 drop_reserve = false; 3427 } 3428 spin_unlock(&cur_trans->dirty_bgs_lock); 3429 } else if (ret) { 3430 btrfs_abort_transaction(trans, ret); 3431 } 3432 } 3433 3434 /* If it's not on the io list, we need to put the block group */ 3435 if (should_put) 3436 btrfs_put_block_group(cache); 3437 if (drop_reserve) 3438 btrfs_delayed_refs_rsv_release(fs_info, 1); 3439 /* 3440 * Avoid blocking other tasks for too long. It might even save 3441 * us from writing caches for block groups that are going to be 3442 * removed. 3443 */ 3444 mutex_unlock(&trans->transaction->cache_write_mutex); 3445 if (ret) 3446 goto out; 3447 mutex_lock(&trans->transaction->cache_write_mutex); 3448 } 3449 mutex_unlock(&trans->transaction->cache_write_mutex); 3450 3451 /* 3452 * Go through delayed refs for all the stuff we've just kicked off 3453 * and then loop back (just once) 3454 */ 3455 if (!ret) 3456 ret = btrfs_run_delayed_refs(trans, 0); 3457 if (!ret && loops == 0) { 3458 loops++; 3459 spin_lock(&cur_trans->dirty_bgs_lock); 3460 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3461 /* 3462 * dirty_bgs_lock protects us from concurrent block group 3463 * deletes too (not just cache_write_mutex). 3464 */ 3465 if (!list_empty(&dirty)) { 3466 spin_unlock(&cur_trans->dirty_bgs_lock); 3467 goto again; 3468 } 3469 spin_unlock(&cur_trans->dirty_bgs_lock); 3470 } 3471 out: 3472 if (ret < 0) { 3473 spin_lock(&cur_trans->dirty_bgs_lock); 3474 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3475 spin_unlock(&cur_trans->dirty_bgs_lock); 3476 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3477 } 3478 3479 btrfs_free_path(path); 3480 return ret; 3481 } 3482 3483 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3484 { 3485 struct btrfs_fs_info *fs_info = trans->fs_info; 3486 struct btrfs_block_group *cache; 3487 struct btrfs_transaction *cur_trans = trans->transaction; 3488 int ret = 0; 3489 int should_put; 3490 struct btrfs_path *path; 3491 struct list_head *io = &cur_trans->io_bgs; 3492 3493 path = btrfs_alloc_path(); 3494 if (!path) 3495 return -ENOMEM; 3496 3497 /* 3498 * Even though we are in the critical section of the transaction commit, 3499 * we can still have concurrent tasks adding elements to this 3500 * transaction's list of dirty block groups. These tasks correspond to 3501 * endio free space workers started when writeback finishes for a 3502 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3503 * allocate new block groups as a result of COWing nodes of the root 3504 * tree when updating the free space inode. The writeback for the space 3505 * caches is triggered by an earlier call to 3506 * btrfs_start_dirty_block_groups() and iterations of the following 3507 * loop. 3508 * Also we want to do the cache_save_setup first and then run the 3509 * delayed refs to make sure we have the best chance at doing this all 3510 * in one shot. 3511 */ 3512 spin_lock(&cur_trans->dirty_bgs_lock); 3513 while (!list_empty(&cur_trans->dirty_bgs)) { 3514 cache = list_first_entry(&cur_trans->dirty_bgs, 3515 struct btrfs_block_group, 3516 dirty_list); 3517 3518 /* 3519 * This can happen if cache_save_setup re-dirties a block group 3520 * that is already under IO. Just wait for it to finish and 3521 * then do it all again 3522 */ 3523 if (!list_empty(&cache->io_list)) { 3524 spin_unlock(&cur_trans->dirty_bgs_lock); 3525 list_del_init(&cache->io_list); 3526 btrfs_wait_cache_io(trans, cache, path); 3527 btrfs_put_block_group(cache); 3528 spin_lock(&cur_trans->dirty_bgs_lock); 3529 } 3530 3531 /* 3532 * Don't remove from the dirty list until after we've waited on 3533 * any pending IO 3534 */ 3535 list_del_init(&cache->dirty_list); 3536 spin_unlock(&cur_trans->dirty_bgs_lock); 3537 should_put = 1; 3538 3539 cache_save_setup(cache, trans, path); 3540 3541 if (!ret) 3542 ret = btrfs_run_delayed_refs(trans, 3543 (unsigned long) -1); 3544 3545 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3546 cache->io_ctl.inode = NULL; 3547 ret = btrfs_write_out_cache(trans, cache, path); 3548 if (ret == 0 && cache->io_ctl.inode) { 3549 should_put = 0; 3550 list_add_tail(&cache->io_list, io); 3551 } else { 3552 /* 3553 * If we failed to write the cache, the 3554 * generation will be bad and life goes on 3555 */ 3556 ret = 0; 3557 } 3558 } 3559 if (!ret) { 3560 ret = update_block_group_item(trans, path, cache); 3561 /* 3562 * One of the free space endio workers might have 3563 * created a new block group while updating a free space 3564 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3565 * and hasn't released its transaction handle yet, in 3566 * which case the new block group is still attached to 3567 * its transaction handle and its creation has not 3568 * finished yet (no block group item in the extent tree 3569 * yet, etc). If this is the case, wait for all free 3570 * space endio workers to finish and retry. This is a 3571 * very rare case so no need for a more efficient and 3572 * complex approach. 3573 */ 3574 if (ret == -ENOENT) { 3575 wait_event(cur_trans->writer_wait, 3576 atomic_read(&cur_trans->num_writers) == 1); 3577 ret = update_block_group_item(trans, path, cache); 3578 } 3579 if (ret) 3580 btrfs_abort_transaction(trans, ret); 3581 } 3582 3583 /* If its not on the io list, we need to put the block group */ 3584 if (should_put) 3585 btrfs_put_block_group(cache); 3586 btrfs_delayed_refs_rsv_release(fs_info, 1); 3587 spin_lock(&cur_trans->dirty_bgs_lock); 3588 } 3589 spin_unlock(&cur_trans->dirty_bgs_lock); 3590 3591 /* 3592 * Refer to the definition of io_bgs member for details why it's safe 3593 * to use it without any locking 3594 */ 3595 while (!list_empty(io)) { 3596 cache = list_first_entry(io, struct btrfs_block_group, 3597 io_list); 3598 list_del_init(&cache->io_list); 3599 btrfs_wait_cache_io(trans, cache, path); 3600 btrfs_put_block_group(cache); 3601 } 3602 3603 btrfs_free_path(path); 3604 return ret; 3605 } 3606 3607 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3608 u64 bytenr, u64 num_bytes, bool alloc) 3609 { 3610 struct btrfs_fs_info *info = trans->fs_info; 3611 struct btrfs_block_group *cache = NULL; 3612 u64 total = num_bytes; 3613 u64 old_val; 3614 u64 byte_in_group; 3615 int factor; 3616 int ret = 0; 3617 3618 /* Block accounting for super block */ 3619 spin_lock(&info->delalloc_root_lock); 3620 old_val = btrfs_super_bytes_used(info->super_copy); 3621 if (alloc) 3622 old_val += num_bytes; 3623 else 3624 old_val -= num_bytes; 3625 btrfs_set_super_bytes_used(info->super_copy, old_val); 3626 spin_unlock(&info->delalloc_root_lock); 3627 3628 while (total) { 3629 struct btrfs_space_info *space_info; 3630 bool reclaim = false; 3631 3632 cache = btrfs_lookup_block_group(info, bytenr); 3633 if (!cache) { 3634 ret = -ENOENT; 3635 break; 3636 } 3637 space_info = cache->space_info; 3638 factor = btrfs_bg_type_to_factor(cache->flags); 3639 3640 /* 3641 * If this block group has free space cache written out, we 3642 * need to make sure to load it if we are removing space. This 3643 * is because we need the unpinning stage to actually add the 3644 * space back to the block group, otherwise we will leak space. 3645 */ 3646 if (!alloc && !btrfs_block_group_done(cache)) 3647 btrfs_cache_block_group(cache, true); 3648 3649 byte_in_group = bytenr - cache->start; 3650 WARN_ON(byte_in_group > cache->length); 3651 3652 spin_lock(&space_info->lock); 3653 spin_lock(&cache->lock); 3654 3655 if (btrfs_test_opt(info, SPACE_CACHE) && 3656 cache->disk_cache_state < BTRFS_DC_CLEAR) 3657 cache->disk_cache_state = BTRFS_DC_CLEAR; 3658 3659 old_val = cache->used; 3660 num_bytes = min(total, cache->length - byte_in_group); 3661 if (alloc) { 3662 old_val += num_bytes; 3663 cache->used = old_val; 3664 cache->reserved -= num_bytes; 3665 space_info->bytes_reserved -= num_bytes; 3666 space_info->bytes_used += num_bytes; 3667 space_info->disk_used += num_bytes * factor; 3668 spin_unlock(&cache->lock); 3669 spin_unlock(&space_info->lock); 3670 } else { 3671 old_val -= num_bytes; 3672 cache->used = old_val; 3673 cache->pinned += num_bytes; 3674 btrfs_space_info_update_bytes_pinned(info, space_info, 3675 num_bytes); 3676 space_info->bytes_used -= num_bytes; 3677 space_info->disk_used -= num_bytes * factor; 3678 3679 reclaim = should_reclaim_block_group(cache, num_bytes); 3680 3681 spin_unlock(&cache->lock); 3682 spin_unlock(&space_info->lock); 3683 3684 set_extent_bit(&trans->transaction->pinned_extents, 3685 bytenr, bytenr + num_bytes - 1, 3686 EXTENT_DIRTY, NULL); 3687 } 3688 3689 spin_lock(&trans->transaction->dirty_bgs_lock); 3690 if (list_empty(&cache->dirty_list)) { 3691 list_add_tail(&cache->dirty_list, 3692 &trans->transaction->dirty_bgs); 3693 trans->delayed_ref_updates++; 3694 btrfs_get_block_group(cache); 3695 } 3696 spin_unlock(&trans->transaction->dirty_bgs_lock); 3697 3698 /* 3699 * No longer have used bytes in this block group, queue it for 3700 * deletion. We do this after adding the block group to the 3701 * dirty list to avoid races between cleaner kthread and space 3702 * cache writeout. 3703 */ 3704 if (!alloc && old_val == 0) { 3705 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3706 btrfs_mark_bg_unused(cache); 3707 } else if (!alloc && reclaim) { 3708 btrfs_mark_bg_to_reclaim(cache); 3709 } 3710 3711 btrfs_put_block_group(cache); 3712 total -= num_bytes; 3713 bytenr += num_bytes; 3714 } 3715 3716 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3717 btrfs_update_delayed_refs_rsv(trans); 3718 return ret; 3719 } 3720 3721 /* 3722 * Update the block_group and space info counters. 3723 * 3724 * @cache: The cache we are manipulating 3725 * @ram_bytes: The number of bytes of file content, and will be same to 3726 * @num_bytes except for the compress path. 3727 * @num_bytes: The number of bytes in question 3728 * @delalloc: The blocks are allocated for the delalloc write 3729 * 3730 * This is called by the allocator when it reserves space. If this is a 3731 * reservation and the block group has become read only we cannot make the 3732 * reservation and return -EAGAIN, otherwise this function always succeeds. 3733 */ 3734 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3735 u64 ram_bytes, u64 num_bytes, int delalloc, 3736 bool force_wrong_size_class) 3737 { 3738 struct btrfs_space_info *space_info = cache->space_info; 3739 enum btrfs_block_group_size_class size_class; 3740 int ret = 0; 3741 3742 spin_lock(&space_info->lock); 3743 spin_lock(&cache->lock); 3744 if (cache->ro) { 3745 ret = -EAGAIN; 3746 goto out; 3747 } 3748 3749 if (btrfs_block_group_should_use_size_class(cache)) { 3750 size_class = btrfs_calc_block_group_size_class(num_bytes); 3751 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3752 if (ret) 3753 goto out; 3754 } 3755 cache->reserved += num_bytes; 3756 space_info->bytes_reserved += num_bytes; 3757 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3758 space_info->flags, num_bytes, 1); 3759 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3760 space_info, -ram_bytes); 3761 if (delalloc) 3762 cache->delalloc_bytes += num_bytes; 3763 3764 /* 3765 * Compression can use less space than we reserved, so wake tickets if 3766 * that happens. 3767 */ 3768 if (num_bytes < ram_bytes) 3769 btrfs_try_granting_tickets(cache->fs_info, space_info); 3770 out: 3771 spin_unlock(&cache->lock); 3772 spin_unlock(&space_info->lock); 3773 return ret; 3774 } 3775 3776 /* 3777 * Update the block_group and space info counters. 3778 * 3779 * @cache: The cache we are manipulating 3780 * @num_bytes: The number of bytes in question 3781 * @delalloc: The blocks are allocated for the delalloc write 3782 * 3783 * This is called by somebody who is freeing space that was never actually used 3784 * on disk. For example if you reserve some space for a new leaf in transaction 3785 * A and before transaction A commits you free that leaf, you call this with 3786 * reserve set to 0 in order to clear the reservation. 3787 */ 3788 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3789 u64 num_bytes, int delalloc) 3790 { 3791 struct btrfs_space_info *space_info = cache->space_info; 3792 3793 spin_lock(&space_info->lock); 3794 spin_lock(&cache->lock); 3795 if (cache->ro) 3796 space_info->bytes_readonly += num_bytes; 3797 cache->reserved -= num_bytes; 3798 space_info->bytes_reserved -= num_bytes; 3799 space_info->max_extent_size = 0; 3800 3801 if (delalloc) 3802 cache->delalloc_bytes -= num_bytes; 3803 spin_unlock(&cache->lock); 3804 3805 btrfs_try_granting_tickets(cache->fs_info, space_info); 3806 spin_unlock(&space_info->lock); 3807 } 3808 3809 static void force_metadata_allocation(struct btrfs_fs_info *info) 3810 { 3811 struct list_head *head = &info->space_info; 3812 struct btrfs_space_info *found; 3813 3814 list_for_each_entry(found, head, list) { 3815 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3816 found->force_alloc = CHUNK_ALLOC_FORCE; 3817 } 3818 } 3819 3820 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3821 struct btrfs_space_info *sinfo, int force) 3822 { 3823 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3824 u64 thresh; 3825 3826 if (force == CHUNK_ALLOC_FORCE) 3827 return 1; 3828 3829 /* 3830 * in limited mode, we want to have some free space up to 3831 * about 1% of the FS size. 3832 */ 3833 if (force == CHUNK_ALLOC_LIMITED) { 3834 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3835 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3836 3837 if (sinfo->total_bytes - bytes_used < thresh) 3838 return 1; 3839 } 3840 3841 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3842 return 0; 3843 return 1; 3844 } 3845 3846 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3847 { 3848 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3849 3850 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3851 } 3852 3853 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3854 { 3855 struct btrfs_block_group *bg; 3856 int ret; 3857 3858 /* 3859 * Check if we have enough space in the system space info because we 3860 * will need to update device items in the chunk btree and insert a new 3861 * chunk item in the chunk btree as well. This will allocate a new 3862 * system block group if needed. 3863 */ 3864 check_system_chunk(trans, flags); 3865 3866 bg = btrfs_create_chunk(trans, flags); 3867 if (IS_ERR(bg)) { 3868 ret = PTR_ERR(bg); 3869 goto out; 3870 } 3871 3872 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3873 /* 3874 * Normally we are not expected to fail with -ENOSPC here, since we have 3875 * previously reserved space in the system space_info and allocated one 3876 * new system chunk if necessary. However there are three exceptions: 3877 * 3878 * 1) We may have enough free space in the system space_info but all the 3879 * existing system block groups have a profile which can not be used 3880 * for extent allocation. 3881 * 3882 * This happens when mounting in degraded mode. For example we have a 3883 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3884 * using the other device in degraded mode. If we then allocate a chunk, 3885 * we may have enough free space in the existing system space_info, but 3886 * none of the block groups can be used for extent allocation since they 3887 * have a RAID1 profile, and because we are in degraded mode with a 3888 * single device, we are forced to allocate a new system chunk with a 3889 * SINGLE profile. Making check_system_chunk() iterate over all system 3890 * block groups and check if they have a usable profile and enough space 3891 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3892 * try again after forcing allocation of a new system chunk. Like this 3893 * we avoid paying the cost of that search in normal circumstances, when 3894 * we were not mounted in degraded mode; 3895 * 3896 * 2) We had enough free space info the system space_info, and one suitable 3897 * block group to allocate from when we called check_system_chunk() 3898 * above. However right after we called it, the only system block group 3899 * with enough free space got turned into RO mode by a running scrub, 3900 * and in this case we have to allocate a new one and retry. We only 3901 * need do this allocate and retry once, since we have a transaction 3902 * handle and scrub uses the commit root to search for block groups; 3903 * 3904 * 3) We had one system block group with enough free space when we called 3905 * check_system_chunk(), but after that, right before we tried to 3906 * allocate the last extent buffer we needed, a discard operation came 3907 * in and it temporarily removed the last free space entry from the 3908 * block group (discard removes a free space entry, discards it, and 3909 * then adds back the entry to the block group cache). 3910 */ 3911 if (ret == -ENOSPC) { 3912 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3913 struct btrfs_block_group *sys_bg; 3914 3915 sys_bg = btrfs_create_chunk(trans, sys_flags); 3916 if (IS_ERR(sys_bg)) { 3917 ret = PTR_ERR(sys_bg); 3918 btrfs_abort_transaction(trans, ret); 3919 goto out; 3920 } 3921 3922 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3923 if (ret) { 3924 btrfs_abort_transaction(trans, ret); 3925 goto out; 3926 } 3927 3928 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3929 if (ret) { 3930 btrfs_abort_transaction(trans, ret); 3931 goto out; 3932 } 3933 } else if (ret) { 3934 btrfs_abort_transaction(trans, ret); 3935 goto out; 3936 } 3937 out: 3938 btrfs_trans_release_chunk_metadata(trans); 3939 3940 if (ret) 3941 return ERR_PTR(ret); 3942 3943 btrfs_get_block_group(bg); 3944 return bg; 3945 } 3946 3947 /* 3948 * Chunk allocation is done in 2 phases: 3949 * 3950 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3951 * the chunk, the chunk mapping, create its block group and add the items 3952 * that belong in the chunk btree to it - more specifically, we need to 3953 * update device items in the chunk btree and add a new chunk item to it. 3954 * 3955 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3956 * group item to the extent btree and the device extent items to the devices 3957 * btree. 3958 * 3959 * This is done to prevent deadlocks. For example when COWing a node from the 3960 * extent btree we are holding a write lock on the node's parent and if we 3961 * trigger chunk allocation and attempted to insert the new block group item 3962 * in the extent btree right way, we could deadlock because the path for the 3963 * insertion can include that parent node. At first glance it seems impossible 3964 * to trigger chunk allocation after starting a transaction since tasks should 3965 * reserve enough transaction units (metadata space), however while that is true 3966 * most of the time, chunk allocation may still be triggered for several reasons: 3967 * 3968 * 1) When reserving metadata, we check if there is enough free space in the 3969 * metadata space_info and therefore don't trigger allocation of a new chunk. 3970 * However later when the task actually tries to COW an extent buffer from 3971 * the extent btree or from the device btree for example, it is forced to 3972 * allocate a new block group (chunk) because the only one that had enough 3973 * free space was just turned to RO mode by a running scrub for example (or 3974 * device replace, block group reclaim thread, etc), so we can not use it 3975 * for allocating an extent and end up being forced to allocate a new one; 3976 * 3977 * 2) Because we only check that the metadata space_info has enough free bytes, 3978 * we end up not allocating a new metadata chunk in that case. However if 3979 * the filesystem was mounted in degraded mode, none of the existing block 3980 * groups might be suitable for extent allocation due to their incompatible 3981 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3982 * use a RAID1 profile, in degraded mode using a single device). In this case 3983 * when the task attempts to COW some extent buffer of the extent btree for 3984 * example, it will trigger allocation of a new metadata block group with a 3985 * suitable profile (SINGLE profile in the example of the degraded mount of 3986 * the RAID1 filesystem); 3987 * 3988 * 3) The task has reserved enough transaction units / metadata space, but when 3989 * it attempts to COW an extent buffer from the extent or device btree for 3990 * example, it does not find any free extent in any metadata block group, 3991 * therefore forced to try to allocate a new metadata block group. 3992 * This is because some other task allocated all available extents in the 3993 * meanwhile - this typically happens with tasks that don't reserve space 3994 * properly, either intentionally or as a bug. One example where this is 3995 * done intentionally is fsync, as it does not reserve any transaction units 3996 * and ends up allocating a variable number of metadata extents for log 3997 * tree extent buffers; 3998 * 3999 * 4) The task has reserved enough transaction units / metadata space, but right 4000 * before it tries to allocate the last extent buffer it needs, a discard 4001 * operation comes in and, temporarily, removes the last free space entry from 4002 * the only metadata block group that had free space (discard starts by 4003 * removing a free space entry from a block group, then does the discard 4004 * operation and, once it's done, it adds back the free space entry to the 4005 * block group). 4006 * 4007 * We also need this 2 phases setup when adding a device to a filesystem with 4008 * a seed device - we must create new metadata and system chunks without adding 4009 * any of the block group items to the chunk, extent and device btrees. If we 4010 * did not do it this way, we would get ENOSPC when attempting to update those 4011 * btrees, since all the chunks from the seed device are read-only. 4012 * 4013 * Phase 1 does the updates and insertions to the chunk btree because if we had 4014 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4015 * parallel, we risk having too many system chunks allocated by many tasks if 4016 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4017 * extreme case this leads to exhaustion of the system chunk array in the 4018 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4019 * and with RAID filesystems (so we have more device items in the chunk btree). 4020 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4021 * the system chunk array due to concurrent allocations") provides more details. 4022 * 4023 * Allocation of system chunks does not happen through this function. A task that 4024 * needs to update the chunk btree (the only btree that uses system chunks), must 4025 * preallocate chunk space by calling either check_system_chunk() or 4026 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4027 * metadata chunk or when removing a chunk, while the later is used before doing 4028 * a modification to the chunk btree - use cases for the later are adding, 4029 * removing and resizing a device as well as relocation of a system chunk. 4030 * See the comment below for more details. 4031 * 4032 * The reservation of system space, done through check_system_chunk(), as well 4033 * as all the updates and insertions into the chunk btree must be done while 4034 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4035 * an extent buffer from the chunks btree we never trigger allocation of a new 4036 * system chunk, which would result in a deadlock (trying to lock twice an 4037 * extent buffer of the chunk btree, first time before triggering the chunk 4038 * allocation and the second time during chunk allocation while attempting to 4039 * update the chunks btree). The system chunk array is also updated while holding 4040 * that mutex. The same logic applies to removing chunks - we must reserve system 4041 * space, update the chunk btree and the system chunk array in the superblock 4042 * while holding fs_info->chunk_mutex. 4043 * 4044 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4045 * 4046 * If @force is CHUNK_ALLOC_FORCE: 4047 * - return 1 if it successfully allocates a chunk, 4048 * - return errors including -ENOSPC otherwise. 4049 * If @force is NOT CHUNK_ALLOC_FORCE: 4050 * - return 0 if it doesn't need to allocate a new chunk, 4051 * - return 1 if it successfully allocates a chunk, 4052 * - return errors including -ENOSPC otherwise. 4053 */ 4054 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4055 enum btrfs_chunk_alloc_enum force) 4056 { 4057 struct btrfs_fs_info *fs_info = trans->fs_info; 4058 struct btrfs_space_info *space_info; 4059 struct btrfs_block_group *ret_bg; 4060 bool wait_for_alloc = false; 4061 bool should_alloc = false; 4062 bool from_extent_allocation = false; 4063 int ret = 0; 4064 4065 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4066 from_extent_allocation = true; 4067 force = CHUNK_ALLOC_FORCE; 4068 } 4069 4070 /* Don't re-enter if we're already allocating a chunk */ 4071 if (trans->allocating_chunk) 4072 return -ENOSPC; 4073 /* 4074 * Allocation of system chunks can not happen through this path, as we 4075 * could end up in a deadlock if we are allocating a data or metadata 4076 * chunk and there is another task modifying the chunk btree. 4077 * 4078 * This is because while we are holding the chunk mutex, we will attempt 4079 * to add the new chunk item to the chunk btree or update an existing 4080 * device item in the chunk btree, while the other task that is modifying 4081 * the chunk btree is attempting to COW an extent buffer while holding a 4082 * lock on it and on its parent - if the COW operation triggers a system 4083 * chunk allocation, then we can deadlock because we are holding the 4084 * chunk mutex and we may need to access that extent buffer or its parent 4085 * in order to add the chunk item or update a device item. 4086 * 4087 * Tasks that want to modify the chunk tree should reserve system space 4088 * before updating the chunk btree, by calling either 4089 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4090 * It's possible that after a task reserves the space, it still ends up 4091 * here - this happens in the cases described above at do_chunk_alloc(). 4092 * The task will have to either retry or fail. 4093 */ 4094 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4095 return -ENOSPC; 4096 4097 space_info = btrfs_find_space_info(fs_info, flags); 4098 ASSERT(space_info); 4099 4100 do { 4101 spin_lock(&space_info->lock); 4102 if (force < space_info->force_alloc) 4103 force = space_info->force_alloc; 4104 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4105 if (space_info->full) { 4106 /* No more free physical space */ 4107 if (should_alloc) 4108 ret = -ENOSPC; 4109 else 4110 ret = 0; 4111 spin_unlock(&space_info->lock); 4112 return ret; 4113 } else if (!should_alloc) { 4114 spin_unlock(&space_info->lock); 4115 return 0; 4116 } else if (space_info->chunk_alloc) { 4117 /* 4118 * Someone is already allocating, so we need to block 4119 * until this someone is finished and then loop to 4120 * recheck if we should continue with our allocation 4121 * attempt. 4122 */ 4123 wait_for_alloc = true; 4124 force = CHUNK_ALLOC_NO_FORCE; 4125 spin_unlock(&space_info->lock); 4126 mutex_lock(&fs_info->chunk_mutex); 4127 mutex_unlock(&fs_info->chunk_mutex); 4128 } else { 4129 /* Proceed with allocation */ 4130 space_info->chunk_alloc = 1; 4131 wait_for_alloc = false; 4132 spin_unlock(&space_info->lock); 4133 } 4134 4135 cond_resched(); 4136 } while (wait_for_alloc); 4137 4138 mutex_lock(&fs_info->chunk_mutex); 4139 trans->allocating_chunk = true; 4140 4141 /* 4142 * If we have mixed data/metadata chunks we want to make sure we keep 4143 * allocating mixed chunks instead of individual chunks. 4144 */ 4145 if (btrfs_mixed_space_info(space_info)) 4146 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4147 4148 /* 4149 * if we're doing a data chunk, go ahead and make sure that 4150 * we keep a reasonable number of metadata chunks allocated in the 4151 * FS as well. 4152 */ 4153 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4154 fs_info->data_chunk_allocations++; 4155 if (!(fs_info->data_chunk_allocations % 4156 fs_info->metadata_ratio)) 4157 force_metadata_allocation(fs_info); 4158 } 4159 4160 ret_bg = do_chunk_alloc(trans, flags); 4161 trans->allocating_chunk = false; 4162 4163 if (IS_ERR(ret_bg)) { 4164 ret = PTR_ERR(ret_bg); 4165 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4166 /* 4167 * New block group is likely to be used soon. Try to activate 4168 * it now. Failure is OK for now. 4169 */ 4170 btrfs_zone_activate(ret_bg); 4171 } 4172 4173 if (!ret) 4174 btrfs_put_block_group(ret_bg); 4175 4176 spin_lock(&space_info->lock); 4177 if (ret < 0) { 4178 if (ret == -ENOSPC) 4179 space_info->full = 1; 4180 else 4181 goto out; 4182 } else { 4183 ret = 1; 4184 space_info->max_extent_size = 0; 4185 } 4186 4187 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4188 out: 4189 space_info->chunk_alloc = 0; 4190 spin_unlock(&space_info->lock); 4191 mutex_unlock(&fs_info->chunk_mutex); 4192 4193 return ret; 4194 } 4195 4196 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4197 { 4198 u64 num_dev; 4199 4200 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4201 if (!num_dev) 4202 num_dev = fs_info->fs_devices->rw_devices; 4203 4204 return num_dev; 4205 } 4206 4207 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4208 u64 bytes, 4209 u64 type) 4210 { 4211 struct btrfs_fs_info *fs_info = trans->fs_info; 4212 struct btrfs_space_info *info; 4213 u64 left; 4214 int ret = 0; 4215 4216 /* 4217 * Needed because we can end up allocating a system chunk and for an 4218 * atomic and race free space reservation in the chunk block reserve. 4219 */ 4220 lockdep_assert_held(&fs_info->chunk_mutex); 4221 4222 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4223 spin_lock(&info->lock); 4224 left = info->total_bytes - btrfs_space_info_used(info, true); 4225 spin_unlock(&info->lock); 4226 4227 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4228 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4229 left, bytes, type); 4230 btrfs_dump_space_info(fs_info, info, 0, 0); 4231 } 4232 4233 if (left < bytes) { 4234 u64 flags = btrfs_system_alloc_profile(fs_info); 4235 struct btrfs_block_group *bg; 4236 4237 /* 4238 * Ignore failure to create system chunk. We might end up not 4239 * needing it, as we might not need to COW all nodes/leafs from 4240 * the paths we visit in the chunk tree (they were already COWed 4241 * or created in the current transaction for example). 4242 */ 4243 bg = btrfs_create_chunk(trans, flags); 4244 if (IS_ERR(bg)) { 4245 ret = PTR_ERR(bg); 4246 } else { 4247 /* 4248 * We have a new chunk. We also need to activate it for 4249 * zoned filesystem. 4250 */ 4251 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4252 if (ret < 0) 4253 return; 4254 4255 /* 4256 * If we fail to add the chunk item here, we end up 4257 * trying again at phase 2 of chunk allocation, at 4258 * btrfs_create_pending_block_groups(). So ignore 4259 * any error here. An ENOSPC here could happen, due to 4260 * the cases described at do_chunk_alloc() - the system 4261 * block group we just created was just turned into RO 4262 * mode by a scrub for example, or a running discard 4263 * temporarily removed its free space entries, etc. 4264 */ 4265 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4266 } 4267 } 4268 4269 if (!ret) { 4270 ret = btrfs_block_rsv_add(fs_info, 4271 &fs_info->chunk_block_rsv, 4272 bytes, BTRFS_RESERVE_NO_FLUSH); 4273 if (!ret) 4274 trans->chunk_bytes_reserved += bytes; 4275 } 4276 } 4277 4278 /* 4279 * Reserve space in the system space for allocating or removing a chunk. 4280 * The caller must be holding fs_info->chunk_mutex. 4281 */ 4282 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4283 { 4284 struct btrfs_fs_info *fs_info = trans->fs_info; 4285 const u64 num_devs = get_profile_num_devs(fs_info, type); 4286 u64 bytes; 4287 4288 /* num_devs device items to update and 1 chunk item to add or remove. */ 4289 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4290 btrfs_calc_insert_metadata_size(fs_info, 1); 4291 4292 reserve_chunk_space(trans, bytes, type); 4293 } 4294 4295 /* 4296 * Reserve space in the system space, if needed, for doing a modification to the 4297 * chunk btree. 4298 * 4299 * @trans: A transaction handle. 4300 * @is_item_insertion: Indicate if the modification is for inserting a new item 4301 * in the chunk btree or if it's for the deletion or update 4302 * of an existing item. 4303 * 4304 * This is used in a context where we need to update the chunk btree outside 4305 * block group allocation and removal, to avoid a deadlock with a concurrent 4306 * task that is allocating a metadata or data block group and therefore needs to 4307 * update the chunk btree while holding the chunk mutex. After the update to the 4308 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4309 * 4310 */ 4311 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4312 bool is_item_insertion) 4313 { 4314 struct btrfs_fs_info *fs_info = trans->fs_info; 4315 u64 bytes; 4316 4317 if (is_item_insertion) 4318 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4319 else 4320 bytes = btrfs_calc_metadata_size(fs_info, 1); 4321 4322 mutex_lock(&fs_info->chunk_mutex); 4323 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4324 mutex_unlock(&fs_info->chunk_mutex); 4325 } 4326 4327 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4328 { 4329 struct btrfs_block_group *block_group; 4330 4331 block_group = btrfs_lookup_first_block_group(info, 0); 4332 while (block_group) { 4333 btrfs_wait_block_group_cache_done(block_group); 4334 spin_lock(&block_group->lock); 4335 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4336 &block_group->runtime_flags)) { 4337 struct inode *inode = block_group->inode; 4338 4339 block_group->inode = NULL; 4340 spin_unlock(&block_group->lock); 4341 4342 ASSERT(block_group->io_ctl.inode == NULL); 4343 iput(inode); 4344 } else { 4345 spin_unlock(&block_group->lock); 4346 } 4347 block_group = btrfs_next_block_group(block_group); 4348 } 4349 } 4350 4351 /* 4352 * Must be called only after stopping all workers, since we could have block 4353 * group caching kthreads running, and therefore they could race with us if we 4354 * freed the block groups before stopping them. 4355 */ 4356 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4357 { 4358 struct btrfs_block_group *block_group; 4359 struct btrfs_space_info *space_info; 4360 struct btrfs_caching_control *caching_ctl; 4361 struct rb_node *n; 4362 4363 if (btrfs_is_zoned(info)) { 4364 if (info->active_meta_bg) { 4365 btrfs_put_block_group(info->active_meta_bg); 4366 info->active_meta_bg = NULL; 4367 } 4368 if (info->active_system_bg) { 4369 btrfs_put_block_group(info->active_system_bg); 4370 info->active_system_bg = NULL; 4371 } 4372 } 4373 4374 write_lock(&info->block_group_cache_lock); 4375 while (!list_empty(&info->caching_block_groups)) { 4376 caching_ctl = list_entry(info->caching_block_groups.next, 4377 struct btrfs_caching_control, list); 4378 list_del(&caching_ctl->list); 4379 btrfs_put_caching_control(caching_ctl); 4380 } 4381 write_unlock(&info->block_group_cache_lock); 4382 4383 spin_lock(&info->unused_bgs_lock); 4384 while (!list_empty(&info->unused_bgs)) { 4385 block_group = list_first_entry(&info->unused_bgs, 4386 struct btrfs_block_group, 4387 bg_list); 4388 list_del_init(&block_group->bg_list); 4389 btrfs_put_block_group(block_group); 4390 } 4391 4392 while (!list_empty(&info->reclaim_bgs)) { 4393 block_group = list_first_entry(&info->reclaim_bgs, 4394 struct btrfs_block_group, 4395 bg_list); 4396 list_del_init(&block_group->bg_list); 4397 btrfs_put_block_group(block_group); 4398 } 4399 spin_unlock(&info->unused_bgs_lock); 4400 4401 spin_lock(&info->zone_active_bgs_lock); 4402 while (!list_empty(&info->zone_active_bgs)) { 4403 block_group = list_first_entry(&info->zone_active_bgs, 4404 struct btrfs_block_group, 4405 active_bg_list); 4406 list_del_init(&block_group->active_bg_list); 4407 btrfs_put_block_group(block_group); 4408 } 4409 spin_unlock(&info->zone_active_bgs_lock); 4410 4411 write_lock(&info->block_group_cache_lock); 4412 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4413 block_group = rb_entry(n, struct btrfs_block_group, 4414 cache_node); 4415 rb_erase_cached(&block_group->cache_node, 4416 &info->block_group_cache_tree); 4417 RB_CLEAR_NODE(&block_group->cache_node); 4418 write_unlock(&info->block_group_cache_lock); 4419 4420 down_write(&block_group->space_info->groups_sem); 4421 list_del(&block_group->list); 4422 up_write(&block_group->space_info->groups_sem); 4423 4424 /* 4425 * We haven't cached this block group, which means we could 4426 * possibly have excluded extents on this block group. 4427 */ 4428 if (block_group->cached == BTRFS_CACHE_NO || 4429 block_group->cached == BTRFS_CACHE_ERROR) 4430 btrfs_free_excluded_extents(block_group); 4431 4432 btrfs_remove_free_space_cache(block_group); 4433 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4434 ASSERT(list_empty(&block_group->dirty_list)); 4435 ASSERT(list_empty(&block_group->io_list)); 4436 ASSERT(list_empty(&block_group->bg_list)); 4437 ASSERT(refcount_read(&block_group->refs) == 1); 4438 ASSERT(block_group->swap_extents == 0); 4439 btrfs_put_block_group(block_group); 4440 4441 write_lock(&info->block_group_cache_lock); 4442 } 4443 write_unlock(&info->block_group_cache_lock); 4444 4445 btrfs_release_global_block_rsv(info); 4446 4447 while (!list_empty(&info->space_info)) { 4448 space_info = list_entry(info->space_info.next, 4449 struct btrfs_space_info, 4450 list); 4451 4452 /* 4453 * Do not hide this behind enospc_debug, this is actually 4454 * important and indicates a real bug if this happens. 4455 */ 4456 if (WARN_ON(space_info->bytes_pinned > 0 || 4457 space_info->bytes_may_use > 0)) 4458 btrfs_dump_space_info(info, space_info, 0, 0); 4459 4460 /* 4461 * If there was a failure to cleanup a log tree, very likely due 4462 * to an IO failure on a writeback attempt of one or more of its 4463 * extent buffers, we could not do proper (and cheap) unaccounting 4464 * of their reserved space, so don't warn on bytes_reserved > 0 in 4465 * that case. 4466 */ 4467 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4468 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4469 if (WARN_ON(space_info->bytes_reserved > 0)) 4470 btrfs_dump_space_info(info, space_info, 0, 0); 4471 } 4472 4473 WARN_ON(space_info->reclaim_size > 0); 4474 list_del(&space_info->list); 4475 btrfs_sysfs_remove_space_info(space_info); 4476 } 4477 return 0; 4478 } 4479 4480 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4481 { 4482 atomic_inc(&cache->frozen); 4483 } 4484 4485 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4486 { 4487 struct btrfs_fs_info *fs_info = block_group->fs_info; 4488 struct extent_map_tree *em_tree; 4489 struct extent_map *em; 4490 bool cleanup; 4491 4492 spin_lock(&block_group->lock); 4493 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4494 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4495 spin_unlock(&block_group->lock); 4496 4497 if (cleanup) { 4498 em_tree = &fs_info->mapping_tree; 4499 write_lock(&em_tree->lock); 4500 em = lookup_extent_mapping(em_tree, block_group->start, 4501 1); 4502 BUG_ON(!em); /* logic error, can't happen */ 4503 remove_extent_mapping(em_tree, em); 4504 write_unlock(&em_tree->lock); 4505 4506 /* once for us and once for the tree */ 4507 free_extent_map(em); 4508 free_extent_map(em); 4509 4510 /* 4511 * We may have left one free space entry and other possible 4512 * tasks trimming this block group have left 1 entry each one. 4513 * Free them if any. 4514 */ 4515 btrfs_remove_free_space_cache(block_group); 4516 } 4517 } 4518 4519 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4520 { 4521 bool ret = true; 4522 4523 spin_lock(&bg->lock); 4524 if (bg->ro) 4525 ret = false; 4526 else 4527 bg->swap_extents++; 4528 spin_unlock(&bg->lock); 4529 4530 return ret; 4531 } 4532 4533 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4534 { 4535 spin_lock(&bg->lock); 4536 ASSERT(!bg->ro); 4537 ASSERT(bg->swap_extents >= amount); 4538 bg->swap_extents -= amount; 4539 spin_unlock(&bg->lock); 4540 } 4541 4542 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4543 { 4544 if (size <= SZ_128K) 4545 return BTRFS_BG_SZ_SMALL; 4546 if (size <= SZ_8M) 4547 return BTRFS_BG_SZ_MEDIUM; 4548 return BTRFS_BG_SZ_LARGE; 4549 } 4550 4551 /* 4552 * Handle a block group allocating an extent in a size class 4553 * 4554 * @bg: The block group we allocated in. 4555 * @size_class: The size class of the allocation. 4556 * @force_wrong_size_class: Whether we are desperate enough to allow 4557 * mismatched size classes. 4558 * 4559 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4560 * case of a race that leads to the wrong size class without 4561 * force_wrong_size_class set. 4562 * 4563 * find_free_extent will skip block groups with a mismatched size class until 4564 * it really needs to avoid ENOSPC. In that case it will set 4565 * force_wrong_size_class. However, if a block group is newly allocated and 4566 * doesn't yet have a size class, then it is possible for two allocations of 4567 * different sizes to race and both try to use it. The loser is caught here and 4568 * has to retry. 4569 */ 4570 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4571 enum btrfs_block_group_size_class size_class, 4572 bool force_wrong_size_class) 4573 { 4574 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4575 4576 /* The new allocation is in the right size class, do nothing */ 4577 if (bg->size_class == size_class) 4578 return 0; 4579 /* 4580 * The new allocation is in a mismatched size class. 4581 * This means one of two things: 4582 * 4583 * 1. Two tasks in find_free_extent for different size_classes raced 4584 * and hit the same empty block_group. Make the loser try again. 4585 * 2. A call to find_free_extent got desperate enough to set 4586 * 'force_wrong_slab'. Don't change the size_class, but allow the 4587 * allocation. 4588 */ 4589 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4590 if (force_wrong_size_class) 4591 return 0; 4592 return -EAGAIN; 4593 } 4594 /* 4595 * The happy new block group case: the new allocation is the first 4596 * one in the block_group so we set size_class. 4597 */ 4598 bg->size_class = size_class; 4599 4600 return 0; 4601 } 4602 4603 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4604 { 4605 if (btrfs_is_zoned(bg->fs_info)) 4606 return false; 4607 if (!btrfs_is_block_group_data_only(bg)) 4608 return false; 4609 return true; 4610 } 4611