xref: /openbmc/linux/fs/btrfs/bio.c (revision 9b68f30b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /*
31  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
32  * is already initialized by the block layer.
33  */
34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
35 		    btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->fs_info = fs_info;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 	atomic_set(&bbio->pending_ios, 1);
42 }
43 
44 /*
45  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
46  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
47  *
48  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
49  * a mempool.
50  */
51 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
52 				  struct btrfs_fs_info *fs_info,
53 				  btrfs_bio_end_io_t end_io, void *private)
54 {
55 	struct btrfs_bio *bbio;
56 	struct bio *bio;
57 
58 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
59 	bbio = btrfs_bio(bio);
60 	btrfs_bio_init(bbio, fs_info, end_io, private);
61 	return bbio;
62 }
63 
64 static blk_status_t btrfs_bio_extract_ordered_extent(struct btrfs_bio *bbio)
65 {
66 	struct btrfs_ordered_extent *ordered;
67 	int ret;
68 
69 	ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
70 	if (WARN_ON_ONCE(!ordered))
71 		return BLK_STS_IOERR;
72 	ret = btrfs_extract_ordered_extent(bbio, ordered);
73 	btrfs_put_ordered_extent(ordered);
74 
75 	return errno_to_blk_status(ret);
76 }
77 
78 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
79 					 struct btrfs_bio *orig_bbio,
80 					 u64 map_length, bool use_append)
81 {
82 	struct btrfs_bio *bbio;
83 	struct bio *bio;
84 
85 	if (use_append) {
86 		unsigned int nr_segs;
87 
88 		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
89 				   &btrfs_clone_bioset, map_length);
90 	} else {
91 		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
92 				GFP_NOFS, &btrfs_clone_bioset);
93 	}
94 	bbio = btrfs_bio(bio);
95 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
96 	bbio->inode = orig_bbio->inode;
97 	bbio->file_offset = orig_bbio->file_offset;
98 	if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
99 		orig_bbio->file_offset += map_length;
100 
101 	atomic_inc(&orig_bbio->pending_ios);
102 	return bbio;
103 }
104 
105 static void btrfs_orig_write_end_io(struct bio *bio);
106 
107 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
108 				       struct btrfs_bio *orig_bbio)
109 {
110 	/*
111 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
112 	 * just blindly propagate a write failure here.  Instead increment the
113 	 * error count in the original I/O context so that it is guaranteed to
114 	 * be larger than the error tolerance.
115 	 */
116 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
117 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
118 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
119 
120 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
121 	} else {
122 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
123 	}
124 }
125 
126 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
127 {
128 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
129 		struct btrfs_bio *orig_bbio = bbio->private;
130 
131 		if (bbio->bio.bi_status)
132 			btrfs_bbio_propagate_error(bbio, orig_bbio);
133 		bio_put(&bbio->bio);
134 		bbio = orig_bbio;
135 	}
136 
137 	if (atomic_dec_and_test(&bbio->pending_ios))
138 		bbio->end_io(bbio);
139 }
140 
141 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
142 {
143 	if (cur_mirror == fbio->num_copies)
144 		return cur_mirror + 1 - fbio->num_copies;
145 	return cur_mirror + 1;
146 }
147 
148 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
149 {
150 	if (cur_mirror == 1)
151 		return fbio->num_copies;
152 	return cur_mirror - 1;
153 }
154 
155 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
156 {
157 	if (atomic_dec_and_test(&fbio->repair_count)) {
158 		btrfs_orig_bbio_end_io(fbio->bbio);
159 		mempool_free(fbio, &btrfs_failed_bio_pool);
160 	}
161 }
162 
163 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
164 				 struct btrfs_device *dev)
165 {
166 	struct btrfs_failed_bio *fbio = repair_bbio->private;
167 	struct btrfs_inode *inode = repair_bbio->inode;
168 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
169 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
170 	int mirror = repair_bbio->mirror_num;
171 
172 	if (repair_bbio->bio.bi_status ||
173 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
174 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
175 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
176 
177 		mirror = next_repair_mirror(fbio, mirror);
178 		if (mirror == fbio->bbio->mirror_num) {
179 			btrfs_debug(fs_info, "no mirror left");
180 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
181 			goto done;
182 		}
183 
184 		btrfs_submit_bio(repair_bbio, mirror);
185 		return;
186 	}
187 
188 	do {
189 		mirror = prev_repair_mirror(fbio, mirror);
190 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
191 				  repair_bbio->file_offset, fs_info->sectorsize,
192 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
193 				  bv->bv_page, bv->bv_offset, mirror);
194 	} while (mirror != fbio->bbio->mirror_num);
195 
196 done:
197 	btrfs_repair_done(fbio);
198 	bio_put(&repair_bbio->bio);
199 }
200 
201 /*
202  * Try to kick off a repair read to the next available mirror for a bad sector.
203  *
204  * This primarily tries to recover good data to serve the actual read request,
205  * but also tries to write the good data back to the bad mirror(s) when a
206  * read succeeded to restore the redundancy.
207  */
208 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
209 						  u32 bio_offset,
210 						  struct bio_vec *bv,
211 						  struct btrfs_failed_bio *fbio)
212 {
213 	struct btrfs_inode *inode = failed_bbio->inode;
214 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
215 	const u32 sectorsize = fs_info->sectorsize;
216 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
217 	struct btrfs_bio *repair_bbio;
218 	struct bio *repair_bio;
219 	int num_copies;
220 	int mirror;
221 
222 	btrfs_debug(fs_info, "repair read error: read error at %llu",
223 		    failed_bbio->file_offset + bio_offset);
224 
225 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
226 	if (num_copies == 1) {
227 		btrfs_debug(fs_info, "no copy to repair from");
228 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
229 		return fbio;
230 	}
231 
232 	if (!fbio) {
233 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
234 		fbio->bbio = failed_bbio;
235 		fbio->num_copies = num_copies;
236 		atomic_set(&fbio->repair_count, 1);
237 	}
238 
239 	atomic_inc(&fbio->repair_count);
240 
241 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
242 				      &btrfs_repair_bioset);
243 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
244 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
245 
246 	repair_bbio = btrfs_bio(repair_bio);
247 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
248 	repair_bbio->inode = failed_bbio->inode;
249 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
250 
251 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
252 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
253 	btrfs_submit_bio(repair_bbio, mirror);
254 	return fbio;
255 }
256 
257 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
258 {
259 	struct btrfs_inode *inode = bbio->inode;
260 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
261 	u32 sectorsize = fs_info->sectorsize;
262 	struct bvec_iter *iter = &bbio->saved_iter;
263 	blk_status_t status = bbio->bio.bi_status;
264 	struct btrfs_failed_bio *fbio = NULL;
265 	u32 offset = 0;
266 
267 	/* Read-repair requires the inode field to be set by the submitter. */
268 	ASSERT(inode);
269 
270 	/*
271 	 * Hand off repair bios to the repair code as there is no upper level
272 	 * submitter for them.
273 	 */
274 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
275 		btrfs_end_repair_bio(bbio, dev);
276 		return;
277 	}
278 
279 	/* Clear the I/O error. A failed repair will reset it. */
280 	bbio->bio.bi_status = BLK_STS_OK;
281 
282 	while (iter->bi_size) {
283 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
284 
285 		bv.bv_len = min(bv.bv_len, sectorsize);
286 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
287 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
288 
289 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
290 		offset += sectorsize;
291 	}
292 
293 	if (bbio->csum != bbio->csum_inline)
294 		kfree(bbio->csum);
295 
296 	if (fbio)
297 		btrfs_repair_done(fbio);
298 	else
299 		btrfs_orig_bbio_end_io(bbio);
300 }
301 
302 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
303 {
304 	if (!dev || !dev->bdev)
305 		return;
306 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
307 		return;
308 
309 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
310 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
311 	else if (!(bio->bi_opf & REQ_RAHEAD))
312 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
313 	if (bio->bi_opf & REQ_PREFLUSH)
314 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
315 }
316 
317 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
318 						struct bio *bio)
319 {
320 	if (bio->bi_opf & REQ_META)
321 		return fs_info->endio_meta_workers;
322 	return fs_info->endio_workers;
323 }
324 
325 static void btrfs_end_bio_work(struct work_struct *work)
326 {
327 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
328 
329 	/* Metadata reads are checked and repaired by the submitter. */
330 	if (bbio->inode && !(bbio->bio.bi_opf & REQ_META))
331 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
332 	else
333 		bbio->end_io(bbio);
334 }
335 
336 static void btrfs_simple_end_io(struct bio *bio)
337 {
338 	struct btrfs_bio *bbio = btrfs_bio(bio);
339 	struct btrfs_device *dev = bio->bi_private;
340 	struct btrfs_fs_info *fs_info = bbio->fs_info;
341 
342 	btrfs_bio_counter_dec(fs_info);
343 
344 	if (bio->bi_status)
345 		btrfs_log_dev_io_error(bio, dev);
346 
347 	if (bio_op(bio) == REQ_OP_READ) {
348 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
349 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
350 	} else {
351 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
352 			btrfs_record_physical_zoned(bbio);
353 		btrfs_orig_bbio_end_io(bbio);
354 	}
355 }
356 
357 static void btrfs_raid56_end_io(struct bio *bio)
358 {
359 	struct btrfs_io_context *bioc = bio->bi_private;
360 	struct btrfs_bio *bbio = btrfs_bio(bio);
361 
362 	btrfs_bio_counter_dec(bioc->fs_info);
363 	bbio->mirror_num = bioc->mirror_num;
364 	if (bio_op(bio) == REQ_OP_READ && bbio->inode &&
365 	    !(bbio->bio.bi_opf & REQ_META))
366 		btrfs_check_read_bio(bbio, NULL);
367 	else
368 		btrfs_orig_bbio_end_io(bbio);
369 
370 	btrfs_put_bioc(bioc);
371 }
372 
373 static void btrfs_orig_write_end_io(struct bio *bio)
374 {
375 	struct btrfs_io_stripe *stripe = bio->bi_private;
376 	struct btrfs_io_context *bioc = stripe->bioc;
377 	struct btrfs_bio *bbio = btrfs_bio(bio);
378 
379 	btrfs_bio_counter_dec(bioc->fs_info);
380 
381 	if (bio->bi_status) {
382 		atomic_inc(&bioc->error);
383 		btrfs_log_dev_io_error(bio, stripe->dev);
384 	}
385 
386 	/*
387 	 * Only send an error to the higher layers if it is beyond the tolerance
388 	 * threshold.
389 	 */
390 	if (atomic_read(&bioc->error) > bioc->max_errors)
391 		bio->bi_status = BLK_STS_IOERR;
392 	else
393 		bio->bi_status = BLK_STS_OK;
394 
395 	btrfs_orig_bbio_end_io(bbio);
396 	btrfs_put_bioc(bioc);
397 }
398 
399 static void btrfs_clone_write_end_io(struct bio *bio)
400 {
401 	struct btrfs_io_stripe *stripe = bio->bi_private;
402 
403 	if (bio->bi_status) {
404 		atomic_inc(&stripe->bioc->error);
405 		btrfs_log_dev_io_error(bio, stripe->dev);
406 	}
407 
408 	/* Pass on control to the original bio this one was cloned from */
409 	bio_endio(stripe->bioc->orig_bio);
410 	bio_put(bio);
411 }
412 
413 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
414 {
415 	if (!dev || !dev->bdev ||
416 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
417 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
418 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
419 		bio_io_error(bio);
420 		return;
421 	}
422 
423 	bio_set_dev(bio, dev->bdev);
424 
425 	/*
426 	 * For zone append writing, bi_sector must point the beginning of the
427 	 * zone
428 	 */
429 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
430 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
431 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
432 
433 		ASSERT(btrfs_dev_is_sequential(dev, physical));
434 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
435 	}
436 	btrfs_debug_in_rcu(dev->fs_info,
437 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
438 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
439 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
440 		dev->devid, bio->bi_iter.bi_size);
441 
442 	btrfsic_check_bio(bio);
443 
444 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
445 		blkcg_punt_bio_submit(bio);
446 	else
447 		submit_bio(bio);
448 }
449 
450 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
451 {
452 	struct bio *orig_bio = bioc->orig_bio, *bio;
453 
454 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
455 
456 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
457 	if (dev_nr == bioc->num_stripes - 1) {
458 		bio = orig_bio;
459 		bio->bi_end_io = btrfs_orig_write_end_io;
460 	} else {
461 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
462 		bio_inc_remaining(orig_bio);
463 		bio->bi_end_io = btrfs_clone_write_end_io;
464 	}
465 
466 	bio->bi_private = &bioc->stripes[dev_nr];
467 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
468 	bioc->stripes[dev_nr].bioc = bioc;
469 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
470 }
471 
472 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
473 			       struct btrfs_io_stripe *smap, int mirror_num)
474 {
475 	/* Do not leak our private flag into the block layer. */
476 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
477 
478 	if (!bioc) {
479 		/* Single mirror read/write fast path. */
480 		btrfs_bio(bio)->mirror_num = mirror_num;
481 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
482 		bio->bi_private = smap->dev;
483 		bio->bi_end_io = btrfs_simple_end_io;
484 		btrfs_submit_dev_bio(smap->dev, bio);
485 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
486 		/* Parity RAID write or read recovery. */
487 		bio->bi_private = bioc;
488 		bio->bi_end_io = btrfs_raid56_end_io;
489 		if (bio_op(bio) == REQ_OP_READ)
490 			raid56_parity_recover(bio, bioc, mirror_num);
491 		else
492 			raid56_parity_write(bio, bioc);
493 	} else {
494 		/* Write to multiple mirrors. */
495 		int total_devs = bioc->num_stripes;
496 
497 		bioc->orig_bio = bio;
498 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
499 			btrfs_submit_mirrored_bio(bioc, dev_nr);
500 	}
501 }
502 
503 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
504 {
505 	if (bbio->bio.bi_opf & REQ_META)
506 		return btree_csum_one_bio(bbio);
507 	return btrfs_csum_one_bio(bbio);
508 }
509 
510 /*
511  * Async submit bios are used to offload expensive checksumming onto the worker
512  * threads.
513  */
514 struct async_submit_bio {
515 	struct btrfs_bio *bbio;
516 	struct btrfs_io_context *bioc;
517 	struct btrfs_io_stripe smap;
518 	int mirror_num;
519 	struct btrfs_work work;
520 };
521 
522 /*
523  * In order to insert checksums into the metadata in large chunks, we wait
524  * until bio submission time.   All the pages in the bio are checksummed and
525  * sums are attached onto the ordered extent record.
526  *
527  * At IO completion time the csums attached on the ordered extent record are
528  * inserted into the btree.
529  */
530 static void run_one_async_start(struct btrfs_work *work)
531 {
532 	struct async_submit_bio *async =
533 		container_of(work, struct async_submit_bio, work);
534 	blk_status_t ret;
535 
536 	ret = btrfs_bio_csum(async->bbio);
537 	if (ret)
538 		async->bbio->bio.bi_status = ret;
539 }
540 
541 /*
542  * In order to insert checksums into the metadata in large chunks, we wait
543  * until bio submission time.   All the pages in the bio are checksummed and
544  * sums are attached onto the ordered extent record.
545  *
546  * At IO completion time the csums attached on the ordered extent record are
547  * inserted into the tree.
548  */
549 static void run_one_async_done(struct btrfs_work *work)
550 {
551 	struct async_submit_bio *async =
552 		container_of(work, struct async_submit_bio, work);
553 	struct bio *bio = &async->bbio->bio;
554 
555 	/* If an error occurred we just want to clean up the bio and move on. */
556 	if (bio->bi_status) {
557 		btrfs_orig_bbio_end_io(async->bbio);
558 		return;
559 	}
560 
561 	/*
562 	 * All of the bios that pass through here are from async helpers.
563 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
564 	 * context.  This changes nothing when cgroups aren't in use.
565 	 */
566 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
567 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
568 }
569 
570 static void run_one_async_free(struct btrfs_work *work)
571 {
572 	kfree(container_of(work, struct async_submit_bio, work));
573 }
574 
575 static bool should_async_write(struct btrfs_bio *bbio)
576 {
577 	/*
578 	 * If the I/O is not issued by fsync and friends, (->sync_writers != 0),
579 	 * then try to defer the submission to a workqueue to parallelize the
580 	 * checksum calculation.
581 	 */
582 	if (atomic_read(&bbio->inode->sync_writers))
583 		return false;
584 
585 	/*
586 	 * Submit metadata writes synchronously if the checksum implementation
587 	 * is fast, or we are on a zoned device that wants I/O to be submitted
588 	 * in order.
589 	 */
590 	if (bbio->bio.bi_opf & REQ_META) {
591 		struct btrfs_fs_info *fs_info = bbio->fs_info;
592 
593 		if (btrfs_is_zoned(fs_info))
594 			return false;
595 		if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
596 			return false;
597 	}
598 
599 	return true;
600 }
601 
602 /*
603  * Submit bio to an async queue.
604  *
605  * Return true if the work has been succesfuly submitted, else false.
606  */
607 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
608 				struct btrfs_io_context *bioc,
609 				struct btrfs_io_stripe *smap, int mirror_num)
610 {
611 	struct btrfs_fs_info *fs_info = bbio->fs_info;
612 	struct async_submit_bio *async;
613 
614 	async = kmalloc(sizeof(*async), GFP_NOFS);
615 	if (!async)
616 		return false;
617 
618 	async->bbio = bbio;
619 	async->bioc = bioc;
620 	async->smap = *smap;
621 	async->mirror_num = mirror_num;
622 
623 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
624 			run_one_async_free);
625 	if (op_is_sync(bbio->bio.bi_opf))
626 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
627 	else
628 		btrfs_queue_work(fs_info->workers, &async->work);
629 	return true;
630 }
631 
632 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
633 {
634 	struct btrfs_inode *inode = bbio->inode;
635 	struct btrfs_fs_info *fs_info = bbio->fs_info;
636 	struct btrfs_bio *orig_bbio = bbio;
637 	struct bio *bio = &bbio->bio;
638 	u64 logical = bio->bi_iter.bi_sector << 9;
639 	u64 length = bio->bi_iter.bi_size;
640 	u64 map_length = length;
641 	bool use_append = btrfs_use_zone_append(bbio);
642 	struct btrfs_io_context *bioc = NULL;
643 	struct btrfs_io_stripe smap;
644 	blk_status_t ret;
645 	int error;
646 
647 	btrfs_bio_counter_inc_blocked(fs_info);
648 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
649 				  &bioc, &smap, &mirror_num, 1);
650 	if (error) {
651 		ret = errno_to_blk_status(error);
652 		goto fail;
653 	}
654 
655 	map_length = min(map_length, length);
656 	if (use_append)
657 		map_length = min(map_length, fs_info->max_zone_append_size);
658 
659 	if (map_length < length) {
660 		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
661 		bio = &bbio->bio;
662 	}
663 
664 	/*
665 	 * Save the iter for the end_io handler and preload the checksums for
666 	 * data reads.
667 	 */
668 	if (bio_op(bio) == REQ_OP_READ && inode && !(bio->bi_opf & REQ_META)) {
669 		bbio->saved_iter = bio->bi_iter;
670 		ret = btrfs_lookup_bio_sums(bbio);
671 		if (ret)
672 			goto fail_put_bio;
673 	}
674 
675 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
676 		if (use_append) {
677 			bio->bi_opf &= ~REQ_OP_WRITE;
678 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
679 			ret = btrfs_bio_extract_ordered_extent(bbio);
680 			if (ret)
681 				goto fail_put_bio;
682 		}
683 
684 		/*
685 		 * Csum items for reloc roots have already been cloned at this
686 		 * point, so they are handled as part of the no-checksum case.
687 		 */
688 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
689 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
690 		    !btrfs_is_data_reloc_root(inode->root)) {
691 			if (should_async_write(bbio) &&
692 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
693 				goto done;
694 
695 			ret = btrfs_bio_csum(bbio);
696 			if (ret)
697 				goto fail_put_bio;
698 		}
699 	}
700 
701 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
702 done:
703 	return map_length == length;
704 
705 fail_put_bio:
706 	if (map_length < length)
707 		bio_put(bio);
708 fail:
709 	btrfs_bio_counter_dec(fs_info);
710 	btrfs_bio_end_io(orig_bbio, ret);
711 	/* Do not submit another chunk */
712 	return true;
713 }
714 
715 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
716 {
717 	/* If bbio->inode is not populated, its file_offset must be 0. */
718 	ASSERT(bbio->inode || bbio->file_offset == 0);
719 
720 	while (!btrfs_submit_chunk(bbio, mirror_num))
721 		;
722 }
723 
724 /*
725  * Submit a repair write.
726  *
727  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
728  * RAID setup.  Here we only want to write the one bad copy, so we do the
729  * mapping ourselves and submit the bio directly.
730  *
731  * The I/O is issued synchronously to block the repair read completion from
732  * freeing the bio.
733  */
734 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
735 			    u64 length, u64 logical, struct page *page,
736 			    unsigned int pg_offset, int mirror_num)
737 {
738 	struct btrfs_io_stripe smap = { 0 };
739 	struct bio_vec bvec;
740 	struct bio bio;
741 	int ret = 0;
742 
743 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
744 	BUG_ON(!mirror_num);
745 
746 	if (btrfs_repair_one_zone(fs_info, logical))
747 		return 0;
748 
749 	/*
750 	 * Avoid races with device replace and make sure our bioc has devices
751 	 * associated to its stripes that don't go away while we are doing the
752 	 * read repair operation.
753 	 */
754 	btrfs_bio_counter_inc_blocked(fs_info);
755 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
756 	if (ret < 0)
757 		goto out_counter_dec;
758 
759 	if (!smap.dev->bdev ||
760 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
761 		ret = -EIO;
762 		goto out_counter_dec;
763 	}
764 
765 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
766 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
767 	__bio_add_page(&bio, page, length, pg_offset);
768 
769 	btrfsic_check_bio(&bio);
770 	ret = submit_bio_wait(&bio);
771 	if (ret) {
772 		/* try to remap that extent elsewhere? */
773 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
774 		goto out_bio_uninit;
775 	}
776 
777 	btrfs_info_rl_in_rcu(fs_info,
778 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
779 			     ino, start, btrfs_dev_name(smap.dev),
780 			     smap.physical >> SECTOR_SHIFT);
781 	ret = 0;
782 
783 out_bio_uninit:
784 	bio_uninit(&bio);
785 out_counter_dec:
786 	btrfs_bio_counter_dec(fs_info);
787 	return ret;
788 }
789 
790 /*
791  * Submit a btrfs_bio based repair write.
792  *
793  * If @dev_replace is true, the write would be submitted to dev-replace target.
794  */
795 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
796 {
797 	struct btrfs_fs_info *fs_info = bbio->fs_info;
798 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
799 	u64 length = bbio->bio.bi_iter.bi_size;
800 	struct btrfs_io_stripe smap = { 0 };
801 	int ret;
802 
803 	ASSERT(fs_info);
804 	ASSERT(mirror_num > 0);
805 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
806 	ASSERT(!bbio->inode);
807 
808 	btrfs_bio_counter_inc_blocked(fs_info);
809 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
810 	if (ret < 0)
811 		goto fail;
812 
813 	if (dev_replace) {
814 		if (btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE && btrfs_is_zoned(fs_info)) {
815 			bbio->bio.bi_opf &= ~REQ_OP_WRITE;
816 			bbio->bio.bi_opf |= REQ_OP_ZONE_APPEND;
817 		}
818 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
819 		smap.dev = fs_info->dev_replace.tgtdev;
820 	}
821 	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
822 	return;
823 
824 fail:
825 	btrfs_bio_counter_dec(fs_info);
826 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
827 }
828 
829 int __init btrfs_bioset_init(void)
830 {
831 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
832 			offsetof(struct btrfs_bio, bio),
833 			BIOSET_NEED_BVECS))
834 		return -ENOMEM;
835 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
836 			offsetof(struct btrfs_bio, bio), 0))
837 		goto out_free_bioset;
838 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
839 			offsetof(struct btrfs_bio, bio),
840 			BIOSET_NEED_BVECS))
841 		goto out_free_clone_bioset;
842 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
843 				      sizeof(struct btrfs_failed_bio)))
844 		goto out_free_repair_bioset;
845 	return 0;
846 
847 out_free_repair_bioset:
848 	bioset_exit(&btrfs_repair_bioset);
849 out_free_clone_bioset:
850 	bioset_exit(&btrfs_clone_bioset);
851 out_free_bioset:
852 	bioset_exit(&btrfs_bioset);
853 	return -ENOMEM;
854 }
855 
856 void __cold btrfs_bioset_exit(void)
857 {
858 	mempool_exit(&btrfs_failed_bio_pool);
859 	bioset_exit(&btrfs_repair_bioset);
860 	bioset_exit(&btrfs_clone_bioset);
861 	bioset_exit(&btrfs_bioset);
862 }
863