1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "check-integrity.h" 14 #include "dev-replace.h" 15 #include "rcu-string.h" 16 #include "zoned.h" 17 #include "file-item.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_clone_bioset; 21 static struct bio_set btrfs_repair_bioset; 22 static mempool_t btrfs_failed_bio_pool; 23 24 struct btrfs_failed_bio { 25 struct btrfs_bio *bbio; 26 int num_copies; 27 atomic_t repair_count; 28 }; 29 30 /* 31 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 32 * is already initialized by the block layer. 33 */ 34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_inode *inode, 35 btrfs_bio_end_io_t end_io, void *private) 36 { 37 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 38 bbio->inode = inode; 39 bbio->end_io = end_io; 40 bbio->private = private; 41 atomic_set(&bbio->pending_ios, 1); 42 } 43 44 /* 45 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 46 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 47 * 48 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 49 * a mempool. 50 */ 51 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 52 struct btrfs_inode *inode, 53 btrfs_bio_end_io_t end_io, void *private) 54 { 55 struct bio *bio; 56 57 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 58 btrfs_bio_init(btrfs_bio(bio), inode, end_io, private); 59 return bio; 60 } 61 62 static struct bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 63 struct bio *orig, u64 map_length, 64 bool use_append) 65 { 66 struct btrfs_bio *orig_bbio = btrfs_bio(orig); 67 struct bio *bio; 68 69 if (use_append) { 70 unsigned int nr_segs; 71 72 bio = bio_split_rw(orig, &fs_info->limits, &nr_segs, 73 &btrfs_clone_bioset, map_length); 74 } else { 75 bio = bio_split(orig, map_length >> SECTOR_SHIFT, GFP_NOFS, 76 &btrfs_clone_bioset); 77 } 78 btrfs_bio_init(btrfs_bio(bio), orig_bbio->inode, NULL, orig_bbio); 79 80 btrfs_bio(bio)->file_offset = orig_bbio->file_offset; 81 if (!(orig->bi_opf & REQ_BTRFS_ONE_ORDERED)) 82 orig_bbio->file_offset += map_length; 83 84 atomic_inc(&orig_bbio->pending_ios); 85 return bio; 86 } 87 88 static void btrfs_orig_write_end_io(struct bio *bio); 89 90 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 91 struct btrfs_bio *orig_bbio) 92 { 93 /* 94 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 95 * just blindly propagate a write failure here. Instead increment the 96 * error count in the original I/O context so that it is guaranteed to 97 * be larger than the error tolerance. 98 */ 99 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 100 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 101 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 102 103 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 104 } else { 105 orig_bbio->bio.bi_status = bbio->bio.bi_status; 106 } 107 } 108 109 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 110 { 111 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 112 struct btrfs_bio *orig_bbio = bbio->private; 113 114 if (bbio->bio.bi_status) 115 btrfs_bbio_propagate_error(bbio, orig_bbio); 116 bio_put(&bbio->bio); 117 bbio = orig_bbio; 118 } 119 120 if (atomic_dec_and_test(&bbio->pending_ios)) 121 bbio->end_io(bbio); 122 } 123 124 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 125 { 126 if (cur_mirror == fbio->num_copies) 127 return cur_mirror + 1 - fbio->num_copies; 128 return cur_mirror + 1; 129 } 130 131 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 132 { 133 if (cur_mirror == 1) 134 return fbio->num_copies; 135 return cur_mirror - 1; 136 } 137 138 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 139 { 140 if (atomic_dec_and_test(&fbio->repair_count)) { 141 btrfs_orig_bbio_end_io(fbio->bbio); 142 mempool_free(fbio, &btrfs_failed_bio_pool); 143 } 144 } 145 146 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 147 struct btrfs_device *dev) 148 { 149 struct btrfs_failed_bio *fbio = repair_bbio->private; 150 struct btrfs_inode *inode = repair_bbio->inode; 151 struct btrfs_fs_info *fs_info = inode->root->fs_info; 152 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 153 int mirror = repair_bbio->mirror_num; 154 155 if (repair_bbio->bio.bi_status || 156 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 157 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 158 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 159 160 mirror = next_repair_mirror(fbio, mirror); 161 if (mirror == fbio->bbio->mirror_num) { 162 btrfs_debug(fs_info, "no mirror left"); 163 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 164 goto done; 165 } 166 167 btrfs_submit_bio(&repair_bbio->bio, mirror); 168 return; 169 } 170 171 do { 172 mirror = prev_repair_mirror(fbio, mirror); 173 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 174 repair_bbio->file_offset, fs_info->sectorsize, 175 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 176 bv->bv_page, bv->bv_offset, mirror); 177 } while (mirror != fbio->bbio->mirror_num); 178 179 done: 180 btrfs_repair_done(fbio); 181 bio_put(&repair_bbio->bio); 182 } 183 184 /* 185 * Try to kick off a repair read to the next available mirror for a bad sector. 186 * 187 * This primarily tries to recover good data to serve the actual read request, 188 * but also tries to write the good data back to the bad mirror(s) when a 189 * read succeeded to restore the redundancy. 190 */ 191 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 192 u32 bio_offset, 193 struct bio_vec *bv, 194 struct btrfs_failed_bio *fbio) 195 { 196 struct btrfs_inode *inode = failed_bbio->inode; 197 struct btrfs_fs_info *fs_info = inode->root->fs_info; 198 const u32 sectorsize = fs_info->sectorsize; 199 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 200 struct btrfs_bio *repair_bbio; 201 struct bio *repair_bio; 202 int num_copies; 203 int mirror; 204 205 btrfs_debug(fs_info, "repair read error: read error at %llu", 206 failed_bbio->file_offset + bio_offset); 207 208 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 209 if (num_copies == 1) { 210 btrfs_debug(fs_info, "no copy to repair from"); 211 failed_bbio->bio.bi_status = BLK_STS_IOERR; 212 return fbio; 213 } 214 215 if (!fbio) { 216 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 217 fbio->bbio = failed_bbio; 218 fbio->num_copies = num_copies; 219 atomic_set(&fbio->repair_count, 1); 220 } 221 222 atomic_inc(&fbio->repair_count); 223 224 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 225 &btrfs_repair_bioset); 226 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 227 bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 228 229 repair_bbio = btrfs_bio(repair_bio); 230 btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio); 231 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 232 233 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 234 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 235 btrfs_submit_bio(repair_bio, mirror); 236 return fbio; 237 } 238 239 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 240 { 241 struct btrfs_inode *inode = bbio->inode; 242 struct btrfs_fs_info *fs_info = inode->root->fs_info; 243 u32 sectorsize = fs_info->sectorsize; 244 struct bvec_iter *iter = &bbio->saved_iter; 245 blk_status_t status = bbio->bio.bi_status; 246 struct btrfs_failed_bio *fbio = NULL; 247 u32 offset = 0; 248 249 /* 250 * Hand off repair bios to the repair code as there is no upper level 251 * submitter for them. 252 */ 253 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 254 btrfs_end_repair_bio(bbio, dev); 255 return; 256 } 257 258 /* Clear the I/O error. A failed repair will reset it. */ 259 bbio->bio.bi_status = BLK_STS_OK; 260 261 while (iter->bi_size) { 262 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 263 264 bv.bv_len = min(bv.bv_len, sectorsize); 265 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 266 fbio = repair_one_sector(bbio, offset, &bv, fbio); 267 268 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 269 offset += sectorsize; 270 } 271 272 if (bbio->csum != bbio->csum_inline) 273 kfree(bbio->csum); 274 275 if (fbio) 276 btrfs_repair_done(fbio); 277 else 278 btrfs_orig_bbio_end_io(bbio); 279 } 280 281 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 282 { 283 if (!dev || !dev->bdev) 284 return; 285 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 286 return; 287 288 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 289 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 290 else if (!(bio->bi_opf & REQ_RAHEAD)) 291 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 292 if (bio->bi_opf & REQ_PREFLUSH) 293 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 294 } 295 296 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 297 struct bio *bio) 298 { 299 if (bio->bi_opf & REQ_META) 300 return fs_info->endio_meta_workers; 301 return fs_info->endio_workers; 302 } 303 304 static void btrfs_end_bio_work(struct work_struct *work) 305 { 306 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 307 308 /* Metadata reads are checked and repaired by the submitter. */ 309 if (bbio->bio.bi_opf & REQ_META) 310 bbio->end_io(bbio); 311 else 312 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 313 } 314 315 static void btrfs_simple_end_io(struct bio *bio) 316 { 317 struct btrfs_bio *bbio = btrfs_bio(bio); 318 struct btrfs_device *dev = bio->bi_private; 319 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 320 321 btrfs_bio_counter_dec(fs_info); 322 323 if (bio->bi_status) 324 btrfs_log_dev_io_error(bio, dev); 325 326 if (bio_op(bio) == REQ_OP_READ) { 327 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 328 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 329 } else { 330 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 331 btrfs_record_physical_zoned(bbio); 332 btrfs_orig_bbio_end_io(bbio); 333 } 334 } 335 336 static void btrfs_raid56_end_io(struct bio *bio) 337 { 338 struct btrfs_io_context *bioc = bio->bi_private; 339 struct btrfs_bio *bbio = btrfs_bio(bio); 340 341 btrfs_bio_counter_dec(bioc->fs_info); 342 bbio->mirror_num = bioc->mirror_num; 343 if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META)) 344 btrfs_check_read_bio(bbio, NULL); 345 else 346 btrfs_orig_bbio_end_io(bbio); 347 348 btrfs_put_bioc(bioc); 349 } 350 351 static void btrfs_orig_write_end_io(struct bio *bio) 352 { 353 struct btrfs_io_stripe *stripe = bio->bi_private; 354 struct btrfs_io_context *bioc = stripe->bioc; 355 struct btrfs_bio *bbio = btrfs_bio(bio); 356 357 btrfs_bio_counter_dec(bioc->fs_info); 358 359 if (bio->bi_status) { 360 atomic_inc(&bioc->error); 361 btrfs_log_dev_io_error(bio, stripe->dev); 362 } 363 364 /* 365 * Only send an error to the higher layers if it is beyond the tolerance 366 * threshold. 367 */ 368 if (atomic_read(&bioc->error) > bioc->max_errors) 369 bio->bi_status = BLK_STS_IOERR; 370 else 371 bio->bi_status = BLK_STS_OK; 372 373 btrfs_orig_bbio_end_io(bbio); 374 btrfs_put_bioc(bioc); 375 } 376 377 static void btrfs_clone_write_end_io(struct bio *bio) 378 { 379 struct btrfs_io_stripe *stripe = bio->bi_private; 380 381 if (bio->bi_status) { 382 atomic_inc(&stripe->bioc->error); 383 btrfs_log_dev_io_error(bio, stripe->dev); 384 } 385 386 /* Pass on control to the original bio this one was cloned from */ 387 bio_endio(stripe->bioc->orig_bio); 388 bio_put(bio); 389 } 390 391 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 392 { 393 if (!dev || !dev->bdev || 394 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 395 (btrfs_op(bio) == BTRFS_MAP_WRITE && 396 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 397 bio_io_error(bio); 398 return; 399 } 400 401 bio_set_dev(bio, dev->bdev); 402 403 /* 404 * For zone append writing, bi_sector must point the beginning of the 405 * zone 406 */ 407 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 408 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 409 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 410 411 ASSERT(btrfs_dev_is_sequential(dev, physical)); 412 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 413 } 414 btrfs_debug_in_rcu(dev->fs_info, 415 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 416 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 417 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 418 dev->devid, bio->bi_iter.bi_size); 419 420 btrfsic_check_bio(bio); 421 submit_bio(bio); 422 } 423 424 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 425 { 426 struct bio *orig_bio = bioc->orig_bio, *bio; 427 428 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 429 430 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 431 if (dev_nr == bioc->num_stripes - 1) { 432 bio = orig_bio; 433 bio->bi_end_io = btrfs_orig_write_end_io; 434 } else { 435 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 436 bio_inc_remaining(orig_bio); 437 bio->bi_end_io = btrfs_clone_write_end_io; 438 } 439 440 bio->bi_private = &bioc->stripes[dev_nr]; 441 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 442 bioc->stripes[dev_nr].bioc = bioc; 443 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 444 } 445 446 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 447 struct btrfs_io_stripe *smap, int mirror_num) 448 { 449 /* Do not leak our private flag into the block layer. */ 450 bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED; 451 452 if (!bioc) { 453 /* Single mirror read/write fast path. */ 454 btrfs_bio(bio)->mirror_num = mirror_num; 455 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 456 bio->bi_private = smap->dev; 457 bio->bi_end_io = btrfs_simple_end_io; 458 btrfs_submit_dev_bio(smap->dev, bio); 459 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 460 /* Parity RAID write or read recovery. */ 461 bio->bi_private = bioc; 462 bio->bi_end_io = btrfs_raid56_end_io; 463 if (bio_op(bio) == REQ_OP_READ) 464 raid56_parity_recover(bio, bioc, mirror_num); 465 else 466 raid56_parity_write(bio, bioc); 467 } else { 468 /* Write to multiple mirrors. */ 469 int total_devs = bioc->num_stripes; 470 471 bioc->orig_bio = bio; 472 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 473 btrfs_submit_mirrored_bio(bioc, dev_nr); 474 } 475 } 476 477 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 478 { 479 if (bbio->bio.bi_opf & REQ_META) 480 return btree_csum_one_bio(bbio); 481 return btrfs_csum_one_bio(bbio); 482 } 483 484 /* 485 * Async submit bios are used to offload expensive checksumming onto the worker 486 * threads. 487 */ 488 struct async_submit_bio { 489 struct btrfs_bio *bbio; 490 struct btrfs_io_context *bioc; 491 struct btrfs_io_stripe smap; 492 int mirror_num; 493 struct btrfs_work work; 494 }; 495 496 /* 497 * In order to insert checksums into the metadata in large chunks, we wait 498 * until bio submission time. All the pages in the bio are checksummed and 499 * sums are attached onto the ordered extent record. 500 * 501 * At IO completion time the csums attached on the ordered extent record are 502 * inserted into the btree. 503 */ 504 static void run_one_async_start(struct btrfs_work *work) 505 { 506 struct async_submit_bio *async = 507 container_of(work, struct async_submit_bio, work); 508 blk_status_t ret; 509 510 ret = btrfs_bio_csum(async->bbio); 511 if (ret) 512 async->bbio->bio.bi_status = ret; 513 } 514 515 /* 516 * In order to insert checksums into the metadata in large chunks, we wait 517 * until bio submission time. All the pages in the bio are checksummed and 518 * sums are attached onto the ordered extent record. 519 * 520 * At IO completion time the csums attached on the ordered extent record are 521 * inserted into the tree. 522 */ 523 static void run_one_async_done(struct btrfs_work *work) 524 { 525 struct async_submit_bio *async = 526 container_of(work, struct async_submit_bio, work); 527 struct bio *bio = &async->bbio->bio; 528 529 /* If an error occurred we just want to clean up the bio and move on. */ 530 if (bio->bi_status) { 531 btrfs_orig_bbio_end_io(async->bbio); 532 return; 533 } 534 535 /* 536 * All of the bios that pass through here are from async helpers. 537 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 538 * This changes nothing when cgroups aren't in use. 539 */ 540 bio->bi_opf |= REQ_CGROUP_PUNT; 541 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 542 } 543 544 static void run_one_async_free(struct btrfs_work *work) 545 { 546 kfree(container_of(work, struct async_submit_bio, work)); 547 } 548 549 static bool should_async_write(struct btrfs_bio *bbio) 550 { 551 /* 552 * If the I/O is not issued by fsync and friends, (->sync_writers != 0), 553 * then try to defer the submission to a workqueue to parallelize the 554 * checksum calculation. 555 */ 556 if (atomic_read(&bbio->inode->sync_writers)) 557 return false; 558 559 /* 560 * Submit metadata writes synchronously if the checksum implementation 561 * is fast, or we are on a zoned device that wants I/O to be submitted 562 * in order. 563 */ 564 if (bbio->bio.bi_opf & REQ_META) { 565 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 566 567 if (btrfs_is_zoned(fs_info)) 568 return false; 569 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 570 return false; 571 } 572 573 return true; 574 } 575 576 /* 577 * Submit bio to an async queue. 578 * 579 * Return true if the work has been succesfuly submitted, else false. 580 */ 581 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 582 struct btrfs_io_context *bioc, 583 struct btrfs_io_stripe *smap, int mirror_num) 584 { 585 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 586 struct async_submit_bio *async; 587 588 async = kmalloc(sizeof(*async), GFP_NOFS); 589 if (!async) 590 return false; 591 592 async->bbio = bbio; 593 async->bioc = bioc; 594 async->smap = *smap; 595 async->mirror_num = mirror_num; 596 597 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 598 run_one_async_free); 599 if (op_is_sync(bbio->bio.bi_opf)) 600 btrfs_queue_work(fs_info->hipri_workers, &async->work); 601 else 602 btrfs_queue_work(fs_info->workers, &async->work); 603 return true; 604 } 605 606 static bool btrfs_submit_chunk(struct bio *bio, int mirror_num) 607 { 608 struct btrfs_bio *bbio = btrfs_bio(bio); 609 struct btrfs_inode *inode = bbio->inode; 610 struct btrfs_fs_info *fs_info = inode->root->fs_info; 611 struct btrfs_bio *orig_bbio = bbio; 612 u64 logical = bio->bi_iter.bi_sector << 9; 613 u64 length = bio->bi_iter.bi_size; 614 u64 map_length = length; 615 bool use_append = btrfs_use_zone_append(bbio); 616 struct btrfs_io_context *bioc = NULL; 617 struct btrfs_io_stripe smap; 618 blk_status_t ret; 619 int error; 620 621 btrfs_bio_counter_inc_blocked(fs_info); 622 error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 623 &bioc, &smap, &mirror_num, 1); 624 if (error) { 625 ret = errno_to_blk_status(error); 626 goto fail; 627 } 628 629 map_length = min(map_length, length); 630 if (use_append) 631 map_length = min(map_length, fs_info->max_zone_append_size); 632 633 if (map_length < length) { 634 bio = btrfs_split_bio(fs_info, bio, map_length, use_append); 635 bbio = btrfs_bio(bio); 636 } 637 638 /* 639 * Save the iter for the end_io handler and preload the checksums for 640 * data reads. 641 */ 642 if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) { 643 bbio->saved_iter = bio->bi_iter; 644 ret = btrfs_lookup_bio_sums(bbio); 645 if (ret) 646 goto fail_put_bio; 647 } 648 649 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 650 if (use_append) { 651 bio->bi_opf &= ~REQ_OP_WRITE; 652 bio->bi_opf |= REQ_OP_ZONE_APPEND; 653 ret = btrfs_extract_ordered_extent(btrfs_bio(bio)); 654 if (ret) 655 goto fail_put_bio; 656 } 657 658 /* 659 * Csum items for reloc roots have already been cloned at this 660 * point, so they are handled as part of the no-checksum case. 661 */ 662 if (!(inode->flags & BTRFS_INODE_NODATASUM) && 663 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 664 !btrfs_is_data_reloc_root(inode->root)) { 665 if (should_async_write(bbio) && 666 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 667 goto done; 668 669 ret = btrfs_bio_csum(bbio); 670 if (ret) 671 goto fail_put_bio; 672 } 673 } 674 675 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 676 done: 677 return map_length == length; 678 679 fail_put_bio: 680 if (map_length < length) 681 bio_put(bio); 682 fail: 683 btrfs_bio_counter_dec(fs_info); 684 btrfs_bio_end_io(orig_bbio, ret); 685 /* Do not submit another chunk */ 686 return true; 687 } 688 689 void btrfs_submit_bio(struct bio *bio, int mirror_num) 690 { 691 while (!btrfs_submit_chunk(bio, mirror_num)) 692 ; 693 } 694 695 /* 696 * Submit a repair write. 697 * 698 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 699 * RAID setup. Here we only want to write the one bad copy, so we do the 700 * mapping ourselves and submit the bio directly. 701 * 702 * The I/O is issued synchronously to block the repair read completion from 703 * freeing the bio. 704 */ 705 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 706 u64 length, u64 logical, struct page *page, 707 unsigned int pg_offset, int mirror_num) 708 { 709 struct btrfs_device *dev; 710 struct bio_vec bvec; 711 struct bio bio; 712 u64 map_length = 0; 713 u64 sector; 714 struct btrfs_io_context *bioc = NULL; 715 int ret = 0; 716 717 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 718 BUG_ON(!mirror_num); 719 720 if (btrfs_repair_one_zone(fs_info, logical)) 721 return 0; 722 723 map_length = length; 724 725 /* 726 * Avoid races with device replace and make sure our bioc has devices 727 * associated to its stripes that don't go away while we are doing the 728 * read repair operation. 729 */ 730 btrfs_bio_counter_inc_blocked(fs_info); 731 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 732 /* 733 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 734 * to update all raid stripes, but here we just want to correct 735 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 736 * stripe's dev and sector. 737 */ 738 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 739 &map_length, &bioc, 0); 740 if (ret) 741 goto out_counter_dec; 742 ASSERT(bioc->mirror_num == 1); 743 } else { 744 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 745 &map_length, &bioc, mirror_num); 746 if (ret) 747 goto out_counter_dec; 748 /* 749 * This happens when dev-replace is also running, and the 750 * mirror_num indicates the dev-replace target. 751 * 752 * In this case, we don't need to do anything, as the read 753 * error just means the replace progress hasn't reached our 754 * read range, and later replace routine would handle it well. 755 */ 756 if (mirror_num != bioc->mirror_num) 757 goto out_counter_dec; 758 } 759 760 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 761 dev = bioc->stripes[bioc->mirror_num - 1].dev; 762 btrfs_put_bioc(bioc); 763 764 if (!dev || !dev->bdev || 765 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 766 ret = -EIO; 767 goto out_counter_dec; 768 } 769 770 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 771 bio.bi_iter.bi_sector = sector; 772 __bio_add_page(&bio, page, length, pg_offset); 773 774 btrfsic_check_bio(&bio); 775 ret = submit_bio_wait(&bio); 776 if (ret) { 777 /* try to remap that extent elsewhere? */ 778 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 779 goto out_bio_uninit; 780 } 781 782 btrfs_info_rl_in_rcu(fs_info, 783 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 784 ino, start, btrfs_dev_name(dev), sector); 785 ret = 0; 786 787 out_bio_uninit: 788 bio_uninit(&bio); 789 out_counter_dec: 790 btrfs_bio_counter_dec(fs_info); 791 return ret; 792 } 793 794 int __init btrfs_bioset_init(void) 795 { 796 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 797 offsetof(struct btrfs_bio, bio), 798 BIOSET_NEED_BVECS)) 799 return -ENOMEM; 800 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 801 offsetof(struct btrfs_bio, bio), 0)) 802 goto out_free_bioset; 803 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 804 offsetof(struct btrfs_bio, bio), 805 BIOSET_NEED_BVECS)) 806 goto out_free_clone_bioset; 807 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 808 sizeof(struct btrfs_failed_bio))) 809 goto out_free_repair_bioset; 810 return 0; 811 812 out_free_repair_bioset: 813 bioset_exit(&btrfs_repair_bioset); 814 out_free_clone_bioset: 815 bioset_exit(&btrfs_clone_bioset); 816 out_free_bioset: 817 bioset_exit(&btrfs_bioset); 818 return -ENOMEM; 819 } 820 821 void __cold btrfs_bioset_exit(void) 822 { 823 mempool_exit(&btrfs_failed_bio_pool); 824 bioset_exit(&btrfs_repair_bioset); 825 bioset_exit(&btrfs_clone_bioset); 826 bioset_exit(&btrfs_bioset); 827 } 828