xref: /openbmc/linux/fs/btrfs/bio.c (revision 3480373e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /*
31  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
32  * is already initialized by the block layer.
33  */
34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_inode *inode,
35 		    btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->inode = inode;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 	atomic_set(&bbio->pending_ios, 1);
42 }
43 
44 /*
45  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
46  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
47  *
48  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
49  * a mempool.
50  */
51 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
52 				  struct btrfs_inode *inode,
53 				  btrfs_bio_end_io_t end_io, void *private)
54 {
55 	struct btrfs_bio *bbio;
56 	struct bio *bio;
57 
58 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
59 	bbio = btrfs_bio(bio);
60 	btrfs_bio_init(bbio, inode, end_io, private);
61 	return bbio;
62 }
63 
64 static blk_status_t btrfs_bio_extract_ordered_extent(struct btrfs_bio *bbio)
65 {
66 	struct btrfs_ordered_extent *ordered;
67 	int ret;
68 
69 	ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
70 	if (WARN_ON_ONCE(!ordered))
71 		return BLK_STS_IOERR;
72 	ret = btrfs_extract_ordered_extent(bbio, ordered);
73 	btrfs_put_ordered_extent(ordered);
74 
75 	return errno_to_blk_status(ret);
76 }
77 
78 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
79 					 struct btrfs_bio *orig_bbio,
80 					 u64 map_length, bool use_append)
81 {
82 	struct btrfs_bio *bbio;
83 	struct bio *bio;
84 
85 	if (use_append) {
86 		unsigned int nr_segs;
87 
88 		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
89 				   &btrfs_clone_bioset, map_length);
90 	} else {
91 		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
92 				GFP_NOFS, &btrfs_clone_bioset);
93 	}
94 	bbio = btrfs_bio(bio);
95 	btrfs_bio_init(bbio, orig_bbio->inode, NULL, orig_bbio);
96 
97 	bbio->file_offset = orig_bbio->file_offset;
98 	if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
99 		orig_bbio->file_offset += map_length;
100 
101 	atomic_inc(&orig_bbio->pending_ios);
102 	return bbio;
103 }
104 
105 static void btrfs_orig_write_end_io(struct bio *bio);
106 
107 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
108 				       struct btrfs_bio *orig_bbio)
109 {
110 	/*
111 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
112 	 * just blindly propagate a write failure here.  Instead increment the
113 	 * error count in the original I/O context so that it is guaranteed to
114 	 * be larger than the error tolerance.
115 	 */
116 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
117 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
118 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
119 
120 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
121 	} else {
122 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
123 	}
124 }
125 
126 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
127 {
128 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
129 		struct btrfs_bio *orig_bbio = bbio->private;
130 
131 		if (bbio->bio.bi_status)
132 			btrfs_bbio_propagate_error(bbio, orig_bbio);
133 		bio_put(&bbio->bio);
134 		bbio = orig_bbio;
135 	}
136 
137 	if (atomic_dec_and_test(&bbio->pending_ios))
138 		bbio->end_io(bbio);
139 }
140 
141 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
142 {
143 	if (cur_mirror == fbio->num_copies)
144 		return cur_mirror + 1 - fbio->num_copies;
145 	return cur_mirror + 1;
146 }
147 
148 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
149 {
150 	if (cur_mirror == 1)
151 		return fbio->num_copies;
152 	return cur_mirror - 1;
153 }
154 
155 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
156 {
157 	if (atomic_dec_and_test(&fbio->repair_count)) {
158 		btrfs_orig_bbio_end_io(fbio->bbio);
159 		mempool_free(fbio, &btrfs_failed_bio_pool);
160 	}
161 }
162 
163 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
164 				 struct btrfs_device *dev)
165 {
166 	struct btrfs_failed_bio *fbio = repair_bbio->private;
167 	struct btrfs_inode *inode = repair_bbio->inode;
168 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
169 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
170 	int mirror = repair_bbio->mirror_num;
171 
172 	if (repair_bbio->bio.bi_status ||
173 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
174 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
175 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
176 
177 		mirror = next_repair_mirror(fbio, mirror);
178 		if (mirror == fbio->bbio->mirror_num) {
179 			btrfs_debug(fs_info, "no mirror left");
180 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
181 			goto done;
182 		}
183 
184 		btrfs_submit_bio(repair_bbio, mirror);
185 		return;
186 	}
187 
188 	do {
189 		mirror = prev_repair_mirror(fbio, mirror);
190 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
191 				  repair_bbio->file_offset, fs_info->sectorsize,
192 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
193 				  bv->bv_page, bv->bv_offset, mirror);
194 	} while (mirror != fbio->bbio->mirror_num);
195 
196 done:
197 	btrfs_repair_done(fbio);
198 	bio_put(&repair_bbio->bio);
199 }
200 
201 /*
202  * Try to kick off a repair read to the next available mirror for a bad sector.
203  *
204  * This primarily tries to recover good data to serve the actual read request,
205  * but also tries to write the good data back to the bad mirror(s) when a
206  * read succeeded to restore the redundancy.
207  */
208 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
209 						  u32 bio_offset,
210 						  struct bio_vec *bv,
211 						  struct btrfs_failed_bio *fbio)
212 {
213 	struct btrfs_inode *inode = failed_bbio->inode;
214 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
215 	const u32 sectorsize = fs_info->sectorsize;
216 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
217 	struct btrfs_bio *repair_bbio;
218 	struct bio *repair_bio;
219 	int num_copies;
220 	int mirror;
221 
222 	btrfs_debug(fs_info, "repair read error: read error at %llu",
223 		    failed_bbio->file_offset + bio_offset);
224 
225 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
226 	if (num_copies == 1) {
227 		btrfs_debug(fs_info, "no copy to repair from");
228 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
229 		return fbio;
230 	}
231 
232 	if (!fbio) {
233 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
234 		fbio->bbio = failed_bbio;
235 		fbio->num_copies = num_copies;
236 		atomic_set(&fbio->repair_count, 1);
237 	}
238 
239 	atomic_inc(&fbio->repair_count);
240 
241 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
242 				      &btrfs_repair_bioset);
243 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
244 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
245 
246 	repair_bbio = btrfs_bio(repair_bio);
247 	btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio);
248 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
249 
250 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
251 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
252 	btrfs_submit_bio(repair_bbio, mirror);
253 	return fbio;
254 }
255 
256 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
257 {
258 	struct btrfs_inode *inode = bbio->inode;
259 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
260 	u32 sectorsize = fs_info->sectorsize;
261 	struct bvec_iter *iter = &bbio->saved_iter;
262 	blk_status_t status = bbio->bio.bi_status;
263 	struct btrfs_failed_bio *fbio = NULL;
264 	u32 offset = 0;
265 
266 	/*
267 	 * Hand off repair bios to the repair code as there is no upper level
268 	 * submitter for them.
269 	 */
270 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
271 		btrfs_end_repair_bio(bbio, dev);
272 		return;
273 	}
274 
275 	/* Clear the I/O error. A failed repair will reset it. */
276 	bbio->bio.bi_status = BLK_STS_OK;
277 
278 	while (iter->bi_size) {
279 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
280 
281 		bv.bv_len = min(bv.bv_len, sectorsize);
282 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
283 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
284 
285 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
286 		offset += sectorsize;
287 	}
288 
289 	if (bbio->csum != bbio->csum_inline)
290 		kfree(bbio->csum);
291 
292 	if (fbio)
293 		btrfs_repair_done(fbio);
294 	else
295 		btrfs_orig_bbio_end_io(bbio);
296 }
297 
298 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
299 {
300 	if (!dev || !dev->bdev)
301 		return;
302 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
303 		return;
304 
305 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
306 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
307 	else if (!(bio->bi_opf & REQ_RAHEAD))
308 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
309 	if (bio->bi_opf & REQ_PREFLUSH)
310 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
311 }
312 
313 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
314 						struct bio *bio)
315 {
316 	if (bio->bi_opf & REQ_META)
317 		return fs_info->endio_meta_workers;
318 	return fs_info->endio_workers;
319 }
320 
321 static void btrfs_end_bio_work(struct work_struct *work)
322 {
323 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
324 
325 	/* Metadata reads are checked and repaired by the submitter. */
326 	if (bbio->bio.bi_opf & REQ_META)
327 		bbio->end_io(bbio);
328 	else
329 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
330 }
331 
332 static void btrfs_simple_end_io(struct bio *bio)
333 {
334 	struct btrfs_bio *bbio = btrfs_bio(bio);
335 	struct btrfs_device *dev = bio->bi_private;
336 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
337 
338 	btrfs_bio_counter_dec(fs_info);
339 
340 	if (bio->bi_status)
341 		btrfs_log_dev_io_error(bio, dev);
342 
343 	if (bio_op(bio) == REQ_OP_READ) {
344 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
345 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
346 	} else {
347 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
348 			btrfs_record_physical_zoned(bbio);
349 		btrfs_orig_bbio_end_io(bbio);
350 	}
351 }
352 
353 static void btrfs_raid56_end_io(struct bio *bio)
354 {
355 	struct btrfs_io_context *bioc = bio->bi_private;
356 	struct btrfs_bio *bbio = btrfs_bio(bio);
357 
358 	btrfs_bio_counter_dec(bioc->fs_info);
359 	bbio->mirror_num = bioc->mirror_num;
360 	if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META))
361 		btrfs_check_read_bio(bbio, NULL);
362 	else
363 		btrfs_orig_bbio_end_io(bbio);
364 
365 	btrfs_put_bioc(bioc);
366 }
367 
368 static void btrfs_orig_write_end_io(struct bio *bio)
369 {
370 	struct btrfs_io_stripe *stripe = bio->bi_private;
371 	struct btrfs_io_context *bioc = stripe->bioc;
372 	struct btrfs_bio *bbio = btrfs_bio(bio);
373 
374 	btrfs_bio_counter_dec(bioc->fs_info);
375 
376 	if (bio->bi_status) {
377 		atomic_inc(&bioc->error);
378 		btrfs_log_dev_io_error(bio, stripe->dev);
379 	}
380 
381 	/*
382 	 * Only send an error to the higher layers if it is beyond the tolerance
383 	 * threshold.
384 	 */
385 	if (atomic_read(&bioc->error) > bioc->max_errors)
386 		bio->bi_status = BLK_STS_IOERR;
387 	else
388 		bio->bi_status = BLK_STS_OK;
389 
390 	btrfs_orig_bbio_end_io(bbio);
391 	btrfs_put_bioc(bioc);
392 }
393 
394 static void btrfs_clone_write_end_io(struct bio *bio)
395 {
396 	struct btrfs_io_stripe *stripe = bio->bi_private;
397 
398 	if (bio->bi_status) {
399 		atomic_inc(&stripe->bioc->error);
400 		btrfs_log_dev_io_error(bio, stripe->dev);
401 	}
402 
403 	/* Pass on control to the original bio this one was cloned from */
404 	bio_endio(stripe->bioc->orig_bio);
405 	bio_put(bio);
406 }
407 
408 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
409 {
410 	if (!dev || !dev->bdev ||
411 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
412 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
413 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
414 		bio_io_error(bio);
415 		return;
416 	}
417 
418 	bio_set_dev(bio, dev->bdev);
419 
420 	/*
421 	 * For zone append writing, bi_sector must point the beginning of the
422 	 * zone
423 	 */
424 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
425 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
426 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
427 
428 		ASSERT(btrfs_dev_is_sequential(dev, physical));
429 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
430 	}
431 	btrfs_debug_in_rcu(dev->fs_info,
432 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
433 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
434 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
435 		dev->devid, bio->bi_iter.bi_size);
436 
437 	btrfsic_check_bio(bio);
438 
439 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
440 		blkcg_punt_bio_submit(bio);
441 	else
442 		submit_bio(bio);
443 }
444 
445 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
446 {
447 	struct bio *orig_bio = bioc->orig_bio, *bio;
448 
449 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
450 
451 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
452 	if (dev_nr == bioc->num_stripes - 1) {
453 		bio = orig_bio;
454 		bio->bi_end_io = btrfs_orig_write_end_io;
455 	} else {
456 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
457 		bio_inc_remaining(orig_bio);
458 		bio->bi_end_io = btrfs_clone_write_end_io;
459 	}
460 
461 	bio->bi_private = &bioc->stripes[dev_nr];
462 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
463 	bioc->stripes[dev_nr].bioc = bioc;
464 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
465 }
466 
467 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
468 			       struct btrfs_io_stripe *smap, int mirror_num)
469 {
470 	/* Do not leak our private flag into the block layer. */
471 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
472 
473 	if (!bioc) {
474 		/* Single mirror read/write fast path. */
475 		btrfs_bio(bio)->mirror_num = mirror_num;
476 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
477 		bio->bi_private = smap->dev;
478 		bio->bi_end_io = btrfs_simple_end_io;
479 		btrfs_submit_dev_bio(smap->dev, bio);
480 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
481 		/* Parity RAID write or read recovery. */
482 		bio->bi_private = bioc;
483 		bio->bi_end_io = btrfs_raid56_end_io;
484 		if (bio_op(bio) == REQ_OP_READ)
485 			raid56_parity_recover(bio, bioc, mirror_num);
486 		else
487 			raid56_parity_write(bio, bioc);
488 	} else {
489 		/* Write to multiple mirrors. */
490 		int total_devs = bioc->num_stripes;
491 
492 		bioc->orig_bio = bio;
493 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
494 			btrfs_submit_mirrored_bio(bioc, dev_nr);
495 	}
496 }
497 
498 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
499 {
500 	if (bbio->bio.bi_opf & REQ_META)
501 		return btree_csum_one_bio(bbio);
502 	return btrfs_csum_one_bio(bbio);
503 }
504 
505 /*
506  * Async submit bios are used to offload expensive checksumming onto the worker
507  * threads.
508  */
509 struct async_submit_bio {
510 	struct btrfs_bio *bbio;
511 	struct btrfs_io_context *bioc;
512 	struct btrfs_io_stripe smap;
513 	int mirror_num;
514 	struct btrfs_work work;
515 };
516 
517 /*
518  * In order to insert checksums into the metadata in large chunks, we wait
519  * until bio submission time.   All the pages in the bio are checksummed and
520  * sums are attached onto the ordered extent record.
521  *
522  * At IO completion time the csums attached on the ordered extent record are
523  * inserted into the btree.
524  */
525 static void run_one_async_start(struct btrfs_work *work)
526 {
527 	struct async_submit_bio *async =
528 		container_of(work, struct async_submit_bio, work);
529 	blk_status_t ret;
530 
531 	ret = btrfs_bio_csum(async->bbio);
532 	if (ret)
533 		async->bbio->bio.bi_status = ret;
534 }
535 
536 /*
537  * In order to insert checksums into the metadata in large chunks, we wait
538  * until bio submission time.   All the pages in the bio are checksummed and
539  * sums are attached onto the ordered extent record.
540  *
541  * At IO completion time the csums attached on the ordered extent record are
542  * inserted into the tree.
543  */
544 static void run_one_async_done(struct btrfs_work *work)
545 {
546 	struct async_submit_bio *async =
547 		container_of(work, struct async_submit_bio, work);
548 	struct bio *bio = &async->bbio->bio;
549 
550 	/* If an error occurred we just want to clean up the bio and move on. */
551 	if (bio->bi_status) {
552 		btrfs_orig_bbio_end_io(async->bbio);
553 		return;
554 	}
555 
556 	/*
557 	 * All of the bios that pass through here are from async helpers.
558 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
559 	 * context.  This changes nothing when cgroups aren't in use.
560 	 */
561 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
562 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
563 }
564 
565 static void run_one_async_free(struct btrfs_work *work)
566 {
567 	kfree(container_of(work, struct async_submit_bio, work));
568 }
569 
570 static bool should_async_write(struct btrfs_bio *bbio)
571 {
572 	/*
573 	 * If the I/O is not issued by fsync and friends, (->sync_writers != 0),
574 	 * then try to defer the submission to a workqueue to parallelize the
575 	 * checksum calculation.
576 	 */
577 	if (atomic_read(&bbio->inode->sync_writers))
578 		return false;
579 
580 	/*
581 	 * Submit metadata writes synchronously if the checksum implementation
582 	 * is fast, or we are on a zoned device that wants I/O to be submitted
583 	 * in order.
584 	 */
585 	if (bbio->bio.bi_opf & REQ_META) {
586 		struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
587 
588 		if (btrfs_is_zoned(fs_info))
589 			return false;
590 		if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
591 			return false;
592 	}
593 
594 	return true;
595 }
596 
597 /*
598  * Submit bio to an async queue.
599  *
600  * Return true if the work has been succesfuly submitted, else false.
601  */
602 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
603 				struct btrfs_io_context *bioc,
604 				struct btrfs_io_stripe *smap, int mirror_num)
605 {
606 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
607 	struct async_submit_bio *async;
608 
609 	async = kmalloc(sizeof(*async), GFP_NOFS);
610 	if (!async)
611 		return false;
612 
613 	async->bbio = bbio;
614 	async->bioc = bioc;
615 	async->smap = *smap;
616 	async->mirror_num = mirror_num;
617 
618 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
619 			run_one_async_free);
620 	if (op_is_sync(bbio->bio.bi_opf))
621 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
622 	else
623 		btrfs_queue_work(fs_info->workers, &async->work);
624 	return true;
625 }
626 
627 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
628 {
629 	struct btrfs_inode *inode = bbio->inode;
630 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
631 	struct btrfs_bio *orig_bbio = bbio;
632 	struct bio *bio = &bbio->bio;
633 	u64 logical = bio->bi_iter.bi_sector << 9;
634 	u64 length = bio->bi_iter.bi_size;
635 	u64 map_length = length;
636 	bool use_append = btrfs_use_zone_append(bbio);
637 	struct btrfs_io_context *bioc = NULL;
638 	struct btrfs_io_stripe smap;
639 	blk_status_t ret;
640 	int error;
641 
642 	btrfs_bio_counter_inc_blocked(fs_info);
643 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
644 				  &bioc, &smap, &mirror_num, 1);
645 	if (error) {
646 		ret = errno_to_blk_status(error);
647 		goto fail;
648 	}
649 
650 	map_length = min(map_length, length);
651 	if (use_append)
652 		map_length = min(map_length, fs_info->max_zone_append_size);
653 
654 	if (map_length < length) {
655 		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
656 		bio = &bbio->bio;
657 	}
658 
659 	/*
660 	 * Save the iter for the end_io handler and preload the checksums for
661 	 * data reads.
662 	 */
663 	if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) {
664 		bbio->saved_iter = bio->bi_iter;
665 		ret = btrfs_lookup_bio_sums(bbio);
666 		if (ret)
667 			goto fail_put_bio;
668 	}
669 
670 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
671 		if (use_append) {
672 			bio->bi_opf &= ~REQ_OP_WRITE;
673 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
674 			ret = btrfs_bio_extract_ordered_extent(bbio);
675 			if (ret)
676 				goto fail_put_bio;
677 		}
678 
679 		/*
680 		 * Csum items for reloc roots have already been cloned at this
681 		 * point, so they are handled as part of the no-checksum case.
682 		 */
683 		if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
684 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
685 		    !btrfs_is_data_reloc_root(inode->root)) {
686 			if (should_async_write(bbio) &&
687 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
688 				goto done;
689 
690 			ret = btrfs_bio_csum(bbio);
691 			if (ret)
692 				goto fail_put_bio;
693 		}
694 	}
695 
696 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
697 done:
698 	return map_length == length;
699 
700 fail_put_bio:
701 	if (map_length < length)
702 		bio_put(bio);
703 fail:
704 	btrfs_bio_counter_dec(fs_info);
705 	btrfs_bio_end_io(orig_bbio, ret);
706 	/* Do not submit another chunk */
707 	return true;
708 }
709 
710 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
711 {
712 	while (!btrfs_submit_chunk(bbio, mirror_num))
713 		;
714 }
715 
716 /*
717  * Submit a repair write.
718  *
719  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
720  * RAID setup.  Here we only want to write the one bad copy, so we do the
721  * mapping ourselves and submit the bio directly.
722  *
723  * The I/O is issued synchronously to block the repair read completion from
724  * freeing the bio.
725  */
726 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
727 			    u64 length, u64 logical, struct page *page,
728 			    unsigned int pg_offset, int mirror_num)
729 {
730 	struct btrfs_device *dev;
731 	struct bio_vec bvec;
732 	struct bio bio;
733 	u64 map_length = 0;
734 	u64 sector;
735 	struct btrfs_io_context *bioc = NULL;
736 	int ret = 0;
737 
738 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
739 	BUG_ON(!mirror_num);
740 
741 	if (btrfs_repair_one_zone(fs_info, logical))
742 		return 0;
743 
744 	map_length = length;
745 
746 	/*
747 	 * Avoid races with device replace and make sure our bioc has devices
748 	 * associated to its stripes that don't go away while we are doing the
749 	 * read repair operation.
750 	 */
751 	btrfs_bio_counter_inc_blocked(fs_info);
752 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
753 		/*
754 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
755 		 * to update all raid stripes, but here we just want to correct
756 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
757 		 * stripe's dev and sector.
758 		 */
759 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
760 				      &map_length, &bioc, 0);
761 		if (ret)
762 			goto out_counter_dec;
763 		ASSERT(bioc->mirror_num == 1);
764 	} else {
765 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
766 				      &map_length, &bioc, mirror_num);
767 		if (ret)
768 			goto out_counter_dec;
769 		/*
770 		 * This happens when dev-replace is also running, and the
771 		 * mirror_num indicates the dev-replace target.
772 		 *
773 		 * In this case, we don't need to do anything, as the read
774 		 * error just means the replace progress hasn't reached our
775 		 * read range, and later replace routine would handle it well.
776 		 */
777 		if (mirror_num != bioc->mirror_num)
778 			goto out_counter_dec;
779 	}
780 
781 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
782 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
783 	btrfs_put_bioc(bioc);
784 
785 	if (!dev || !dev->bdev ||
786 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
787 		ret = -EIO;
788 		goto out_counter_dec;
789 	}
790 
791 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
792 	bio.bi_iter.bi_sector = sector;
793 	__bio_add_page(&bio, page, length, pg_offset);
794 
795 	btrfsic_check_bio(&bio);
796 	ret = submit_bio_wait(&bio);
797 	if (ret) {
798 		/* try to remap that extent elsewhere? */
799 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
800 		goto out_bio_uninit;
801 	}
802 
803 	btrfs_info_rl_in_rcu(fs_info,
804 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
805 			     ino, start, btrfs_dev_name(dev), sector);
806 	ret = 0;
807 
808 out_bio_uninit:
809 	bio_uninit(&bio);
810 out_counter_dec:
811 	btrfs_bio_counter_dec(fs_info);
812 	return ret;
813 }
814 
815 int __init btrfs_bioset_init(void)
816 {
817 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
818 			offsetof(struct btrfs_bio, bio),
819 			BIOSET_NEED_BVECS))
820 		return -ENOMEM;
821 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
822 			offsetof(struct btrfs_bio, bio), 0))
823 		goto out_free_bioset;
824 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
825 			offsetof(struct btrfs_bio, bio),
826 			BIOSET_NEED_BVECS))
827 		goto out_free_clone_bioset;
828 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
829 				      sizeof(struct btrfs_failed_bio)))
830 		goto out_free_repair_bioset;
831 	return 0;
832 
833 out_free_repair_bioset:
834 	bioset_exit(&btrfs_repair_bioset);
835 out_free_clone_bioset:
836 	bioset_exit(&btrfs_clone_bioset);
837 out_free_bioset:
838 	bioset_exit(&btrfs_bioset);
839 	return -ENOMEM;
840 }
841 
842 void __cold btrfs_bioset_exit(void)
843 {
844 	mempool_exit(&btrfs_failed_bio_pool);
845 	bioset_exit(&btrfs_repair_bioset);
846 	bioset_exit(&btrfs_clone_bioset);
847 	bioset_exit(&btrfs_bioset);
848 }
849