xref: /openbmc/linux/fs/btrfs/bio.c (revision 236bdb88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /*
31  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
32  * is already initialized by the block layer.
33  */
34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_inode *inode,
35 		    btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->inode = inode;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 	atomic_set(&bbio->pending_ios, 1);
42 }
43 
44 /*
45  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
46  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
47  *
48  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
49  * a mempool.
50  */
51 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
52 			    struct btrfs_inode *inode,
53 			    btrfs_bio_end_io_t end_io, void *private)
54 {
55 	struct bio *bio;
56 
57 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
58 	btrfs_bio_init(btrfs_bio(bio), inode, end_io, private);
59 	return bio;
60 }
61 
62 static struct bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
63 				   struct bio *orig, u64 map_length,
64 				   bool use_append)
65 {
66 	struct btrfs_bio *orig_bbio = btrfs_bio(orig);
67 	struct bio *bio;
68 
69 	if (use_append) {
70 		unsigned int nr_segs;
71 
72 		bio = bio_split_rw(orig, &fs_info->limits, &nr_segs,
73 				   &btrfs_clone_bioset, map_length);
74 	} else {
75 		bio = bio_split(orig, map_length >> SECTOR_SHIFT, GFP_NOFS,
76 				&btrfs_clone_bioset);
77 	}
78 	btrfs_bio_init(btrfs_bio(bio), orig_bbio->inode, NULL, orig_bbio);
79 
80 	btrfs_bio(bio)->file_offset = orig_bbio->file_offset;
81 	if (!(orig->bi_opf & REQ_BTRFS_ONE_ORDERED))
82 		orig_bbio->file_offset += map_length;
83 
84 	atomic_inc(&orig_bbio->pending_ios);
85 	return bio;
86 }
87 
88 static void btrfs_orig_write_end_io(struct bio *bio);
89 
90 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
91 				       struct btrfs_bio *orig_bbio)
92 {
93 	/*
94 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
95 	 * just blindly propagate a write failure here.  Instead increment the
96 	 * error count in the original I/O context so that it is guaranteed to
97 	 * be larger than the error tolerance.
98 	 */
99 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
100 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
101 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
102 
103 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
104 	} else {
105 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
106 	}
107 }
108 
109 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
110 {
111 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
112 		struct btrfs_bio *orig_bbio = bbio->private;
113 
114 		if (bbio->bio.bi_status)
115 			btrfs_bbio_propagate_error(bbio, orig_bbio);
116 		bio_put(&bbio->bio);
117 		bbio = orig_bbio;
118 	}
119 
120 	if (atomic_dec_and_test(&bbio->pending_ios))
121 		bbio->end_io(bbio);
122 }
123 
124 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
125 {
126 	if (cur_mirror == fbio->num_copies)
127 		return cur_mirror + 1 - fbio->num_copies;
128 	return cur_mirror + 1;
129 }
130 
131 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
132 {
133 	if (cur_mirror == 1)
134 		return fbio->num_copies;
135 	return cur_mirror - 1;
136 }
137 
138 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
139 {
140 	if (atomic_dec_and_test(&fbio->repair_count)) {
141 		btrfs_orig_bbio_end_io(fbio->bbio);
142 		mempool_free(fbio, &btrfs_failed_bio_pool);
143 	}
144 }
145 
146 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
147 				 struct btrfs_device *dev)
148 {
149 	struct btrfs_failed_bio *fbio = repair_bbio->private;
150 	struct btrfs_inode *inode = repair_bbio->inode;
151 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
152 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
153 	int mirror = repair_bbio->mirror_num;
154 
155 	if (repair_bbio->bio.bi_status ||
156 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
157 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
158 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
159 
160 		mirror = next_repair_mirror(fbio, mirror);
161 		if (mirror == fbio->bbio->mirror_num) {
162 			btrfs_debug(fs_info, "no mirror left");
163 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
164 			goto done;
165 		}
166 
167 		btrfs_submit_bio(&repair_bbio->bio, mirror);
168 		return;
169 	}
170 
171 	do {
172 		mirror = prev_repair_mirror(fbio, mirror);
173 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
174 				  repair_bbio->file_offset, fs_info->sectorsize,
175 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
176 				  bv->bv_page, bv->bv_offset, mirror);
177 	} while (mirror != fbio->bbio->mirror_num);
178 
179 done:
180 	btrfs_repair_done(fbio);
181 	bio_put(&repair_bbio->bio);
182 }
183 
184 /*
185  * Try to kick off a repair read to the next available mirror for a bad sector.
186  *
187  * This primarily tries to recover good data to serve the actual read request,
188  * but also tries to write the good data back to the bad mirror(s) when a
189  * read succeeded to restore the redundancy.
190  */
191 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
192 						  u32 bio_offset,
193 						  struct bio_vec *bv,
194 						  struct btrfs_failed_bio *fbio)
195 {
196 	struct btrfs_inode *inode = failed_bbio->inode;
197 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
198 	const u32 sectorsize = fs_info->sectorsize;
199 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
200 	struct btrfs_bio *repair_bbio;
201 	struct bio *repair_bio;
202 	int num_copies;
203 	int mirror;
204 
205 	btrfs_debug(fs_info, "repair read error: read error at %llu",
206 		    failed_bbio->file_offset + bio_offset);
207 
208 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
209 	if (num_copies == 1) {
210 		btrfs_debug(fs_info, "no copy to repair from");
211 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
212 		return fbio;
213 	}
214 
215 	if (!fbio) {
216 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
217 		fbio->bbio = failed_bbio;
218 		fbio->num_copies = num_copies;
219 		atomic_set(&fbio->repair_count, 1);
220 	}
221 
222 	atomic_inc(&fbio->repair_count);
223 
224 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
225 				      &btrfs_repair_bioset);
226 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
227 	bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
228 
229 	repair_bbio = btrfs_bio(repair_bio);
230 	btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio);
231 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
232 
233 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
234 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
235 	btrfs_submit_bio(repair_bio, mirror);
236 	return fbio;
237 }
238 
239 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
240 {
241 	struct btrfs_inode *inode = bbio->inode;
242 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
243 	u32 sectorsize = fs_info->sectorsize;
244 	struct bvec_iter *iter = &bbio->saved_iter;
245 	blk_status_t status = bbio->bio.bi_status;
246 	struct btrfs_failed_bio *fbio = NULL;
247 	u32 offset = 0;
248 
249 	/*
250 	 * Hand off repair bios to the repair code as there is no upper level
251 	 * submitter for them.
252 	 */
253 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
254 		btrfs_end_repair_bio(bbio, dev);
255 		return;
256 	}
257 
258 	/* Clear the I/O error. A failed repair will reset it. */
259 	bbio->bio.bi_status = BLK_STS_OK;
260 
261 	while (iter->bi_size) {
262 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
263 
264 		bv.bv_len = min(bv.bv_len, sectorsize);
265 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
266 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
267 
268 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
269 		offset += sectorsize;
270 	}
271 
272 	if (bbio->csum != bbio->csum_inline)
273 		kfree(bbio->csum);
274 
275 	if (fbio)
276 		btrfs_repair_done(fbio);
277 	else
278 		btrfs_orig_bbio_end_io(bbio);
279 }
280 
281 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
282 {
283 	if (!dev || !dev->bdev)
284 		return;
285 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
286 		return;
287 
288 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
289 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
290 	if (!(bio->bi_opf & REQ_RAHEAD))
291 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
292 	if (bio->bi_opf & REQ_PREFLUSH)
293 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
294 }
295 
296 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
297 						struct bio *bio)
298 {
299 	if (bio->bi_opf & REQ_META)
300 		return fs_info->endio_meta_workers;
301 	return fs_info->endio_workers;
302 }
303 
304 static void btrfs_end_bio_work(struct work_struct *work)
305 {
306 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
307 
308 	/* Metadata reads are checked and repaired by the submitter. */
309 	if (bbio->bio.bi_opf & REQ_META)
310 		bbio->end_io(bbio);
311 	else
312 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
313 }
314 
315 static void btrfs_simple_end_io(struct bio *bio)
316 {
317 	struct btrfs_bio *bbio = btrfs_bio(bio);
318 	struct btrfs_device *dev = bio->bi_private;
319 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
320 
321 	btrfs_bio_counter_dec(fs_info);
322 
323 	if (bio->bi_status)
324 		btrfs_log_dev_io_error(bio, dev);
325 
326 	if (bio_op(bio) == REQ_OP_READ) {
327 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
328 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
329 	} else {
330 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
331 			btrfs_record_physical_zoned(bbio);
332 		btrfs_orig_bbio_end_io(bbio);
333 	}
334 }
335 
336 static void btrfs_raid56_end_io(struct bio *bio)
337 {
338 	struct btrfs_io_context *bioc = bio->bi_private;
339 	struct btrfs_bio *bbio = btrfs_bio(bio);
340 
341 	btrfs_bio_counter_dec(bioc->fs_info);
342 	bbio->mirror_num = bioc->mirror_num;
343 	if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META))
344 		btrfs_check_read_bio(bbio, NULL);
345 	else
346 		btrfs_orig_bbio_end_io(bbio);
347 
348 	btrfs_put_bioc(bioc);
349 }
350 
351 static void btrfs_orig_write_end_io(struct bio *bio)
352 {
353 	struct btrfs_io_stripe *stripe = bio->bi_private;
354 	struct btrfs_io_context *bioc = stripe->bioc;
355 	struct btrfs_bio *bbio = btrfs_bio(bio);
356 
357 	btrfs_bio_counter_dec(bioc->fs_info);
358 
359 	if (bio->bi_status) {
360 		atomic_inc(&bioc->error);
361 		btrfs_log_dev_io_error(bio, stripe->dev);
362 	}
363 
364 	/*
365 	 * Only send an error to the higher layers if it is beyond the tolerance
366 	 * threshold.
367 	 */
368 	if (atomic_read(&bioc->error) > bioc->max_errors)
369 		bio->bi_status = BLK_STS_IOERR;
370 	else
371 		bio->bi_status = BLK_STS_OK;
372 
373 	btrfs_orig_bbio_end_io(bbio);
374 	btrfs_put_bioc(bioc);
375 }
376 
377 static void btrfs_clone_write_end_io(struct bio *bio)
378 {
379 	struct btrfs_io_stripe *stripe = bio->bi_private;
380 
381 	if (bio->bi_status) {
382 		atomic_inc(&stripe->bioc->error);
383 		btrfs_log_dev_io_error(bio, stripe->dev);
384 	}
385 
386 	/* Pass on control to the original bio this one was cloned from */
387 	bio_endio(stripe->bioc->orig_bio);
388 	bio_put(bio);
389 }
390 
391 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
392 {
393 	if (!dev || !dev->bdev ||
394 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
395 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
396 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
397 		bio_io_error(bio);
398 		return;
399 	}
400 
401 	bio_set_dev(bio, dev->bdev);
402 
403 	/*
404 	 * For zone append writing, bi_sector must point the beginning of the
405 	 * zone
406 	 */
407 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
408 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
409 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
410 
411 		ASSERT(btrfs_dev_is_sequential(dev, physical));
412 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
413 	}
414 	btrfs_debug_in_rcu(dev->fs_info,
415 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
416 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
417 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
418 		dev->devid, bio->bi_iter.bi_size);
419 
420 	btrfsic_check_bio(bio);
421 	submit_bio(bio);
422 }
423 
424 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
425 {
426 	struct bio *orig_bio = bioc->orig_bio, *bio;
427 
428 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
429 
430 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
431 	if (dev_nr == bioc->num_stripes - 1) {
432 		bio = orig_bio;
433 		bio->bi_end_io = btrfs_orig_write_end_io;
434 	} else {
435 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
436 		bio_inc_remaining(orig_bio);
437 		bio->bi_end_io = btrfs_clone_write_end_io;
438 	}
439 
440 	bio->bi_private = &bioc->stripes[dev_nr];
441 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
442 	bioc->stripes[dev_nr].bioc = bioc;
443 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
444 }
445 
446 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
447 			       struct btrfs_io_stripe *smap, int mirror_num)
448 {
449 	/* Do not leak our private flag into the block layer. */
450 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
451 
452 	if (!bioc) {
453 		/* Single mirror read/write fast path. */
454 		btrfs_bio(bio)->mirror_num = mirror_num;
455 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
456 		bio->bi_private = smap->dev;
457 		bio->bi_end_io = btrfs_simple_end_io;
458 		btrfs_submit_dev_bio(smap->dev, bio);
459 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
460 		/* Parity RAID write or read recovery. */
461 		bio->bi_private = bioc;
462 		bio->bi_end_io = btrfs_raid56_end_io;
463 		if (bio_op(bio) == REQ_OP_READ)
464 			raid56_parity_recover(bio, bioc, mirror_num);
465 		else
466 			raid56_parity_write(bio, bioc);
467 	} else {
468 		/* Write to multiple mirrors. */
469 		int total_devs = bioc->num_stripes;
470 
471 		bioc->orig_bio = bio;
472 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
473 			btrfs_submit_mirrored_bio(bioc, dev_nr);
474 	}
475 }
476 
477 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
478 {
479 	if (bbio->bio.bi_opf & REQ_META)
480 		return btree_csum_one_bio(bbio);
481 	return btrfs_csum_one_bio(bbio);
482 }
483 
484 /*
485  * Async submit bios are used to offload expensive checksumming onto the worker
486  * threads.
487  */
488 struct async_submit_bio {
489 	struct btrfs_bio *bbio;
490 	struct btrfs_io_context *bioc;
491 	struct btrfs_io_stripe smap;
492 	int mirror_num;
493 	struct btrfs_work work;
494 };
495 
496 /*
497  * In order to insert checksums into the metadata in large chunks, we wait
498  * until bio submission time.   All the pages in the bio are checksummed and
499  * sums are attached onto the ordered extent record.
500  *
501  * At IO completion time the csums attached on the ordered extent record are
502  * inserted into the btree.
503  */
504 static void run_one_async_start(struct btrfs_work *work)
505 {
506 	struct async_submit_bio *async =
507 		container_of(work, struct async_submit_bio, work);
508 	blk_status_t ret;
509 
510 	ret = btrfs_bio_csum(async->bbio);
511 	if (ret)
512 		async->bbio->bio.bi_status = ret;
513 }
514 
515 /*
516  * In order to insert checksums into the metadata in large chunks, we wait
517  * until bio submission time.   All the pages in the bio are checksummed and
518  * sums are attached onto the ordered extent record.
519  *
520  * At IO completion time the csums attached on the ordered extent record are
521  * inserted into the tree.
522  */
523 static void run_one_async_done(struct btrfs_work *work)
524 {
525 	struct async_submit_bio *async =
526 		container_of(work, struct async_submit_bio, work);
527 	struct bio *bio = &async->bbio->bio;
528 
529 	/* If an error occurred we just want to clean up the bio and move on. */
530 	if (bio->bi_status) {
531 		btrfs_orig_bbio_end_io(async->bbio);
532 		return;
533 	}
534 
535 	/*
536 	 * All of the bios that pass through here are from async helpers.
537 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
538 	 * This changes nothing when cgroups aren't in use.
539 	 */
540 	bio->bi_opf |= REQ_CGROUP_PUNT;
541 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
542 }
543 
544 static void run_one_async_free(struct btrfs_work *work)
545 {
546 	kfree(container_of(work, struct async_submit_bio, work));
547 }
548 
549 static bool should_async_write(struct btrfs_bio *bbio)
550 {
551 	/*
552 	 * If the I/O is not issued by fsync and friends, (->sync_writers != 0),
553 	 * then try to defer the submission to a workqueue to parallelize the
554 	 * checksum calculation.
555 	 */
556 	if (atomic_read(&bbio->inode->sync_writers))
557 		return false;
558 
559 	/*
560 	 * Submit metadata writes synchronously if the checksum implementation
561 	 * is fast, or we are on a zoned device that wants I/O to be submitted
562 	 * in order.
563 	 */
564 	if (bbio->bio.bi_opf & REQ_META) {
565 		struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
566 
567 		if (btrfs_is_zoned(fs_info))
568 			return false;
569 		if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
570 			return false;
571 	}
572 
573 	return true;
574 }
575 
576 /*
577  * Submit bio to an async queue.
578  *
579  * Return true if the work has been succesfuly submitted, else false.
580  */
581 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
582 				struct btrfs_io_context *bioc,
583 				struct btrfs_io_stripe *smap, int mirror_num)
584 {
585 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
586 	struct async_submit_bio *async;
587 
588 	async = kmalloc(sizeof(*async), GFP_NOFS);
589 	if (!async)
590 		return false;
591 
592 	async->bbio = bbio;
593 	async->bioc = bioc;
594 	async->smap = *smap;
595 	async->mirror_num = mirror_num;
596 
597 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
598 			run_one_async_free);
599 	if (op_is_sync(bbio->bio.bi_opf))
600 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
601 	else
602 		btrfs_queue_work(fs_info->workers, &async->work);
603 	return true;
604 }
605 
606 static bool btrfs_submit_chunk(struct bio *bio, int mirror_num)
607 {
608 	struct btrfs_bio *bbio = btrfs_bio(bio);
609 	struct btrfs_inode *inode = bbio->inode;
610 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
611 	struct btrfs_bio *orig_bbio = bbio;
612 	u64 logical = bio->bi_iter.bi_sector << 9;
613 	u64 length = bio->bi_iter.bi_size;
614 	u64 map_length = length;
615 	bool use_append = btrfs_use_zone_append(bbio);
616 	struct btrfs_io_context *bioc = NULL;
617 	struct btrfs_io_stripe smap;
618 	blk_status_t ret;
619 	int error;
620 
621 	btrfs_bio_counter_inc_blocked(fs_info);
622 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
623 				  &bioc, &smap, &mirror_num, 1);
624 	if (error) {
625 		ret = errno_to_blk_status(error);
626 		goto fail;
627 	}
628 
629 	map_length = min(map_length, length);
630 	if (use_append)
631 		map_length = min(map_length, fs_info->max_zone_append_size);
632 
633 	if (map_length < length) {
634 		bio = btrfs_split_bio(fs_info, bio, map_length, use_append);
635 		bbio = btrfs_bio(bio);
636 	}
637 
638 	/*
639 	 * Save the iter for the end_io handler and preload the checksums for
640 	 * data reads.
641 	 */
642 	if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) {
643 		bbio->saved_iter = bio->bi_iter;
644 		ret = btrfs_lookup_bio_sums(bbio);
645 		if (ret)
646 			goto fail_put_bio;
647 	}
648 
649 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
650 		if (use_append) {
651 			bio->bi_opf &= ~REQ_OP_WRITE;
652 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
653 			ret = btrfs_extract_ordered_extent(btrfs_bio(bio));
654 			if (ret)
655 				goto fail_put_bio;
656 		}
657 
658 		/*
659 		 * Csum items for reloc roots have already been cloned at this
660 		 * point, so they are handled as part of the no-checksum case.
661 		 */
662 		if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
663 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
664 		    !btrfs_is_data_reloc_root(inode->root)) {
665 			if (should_async_write(bbio) &&
666 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
667 				goto done;
668 
669 			ret = btrfs_bio_csum(bbio);
670 			if (ret)
671 				goto fail_put_bio;
672 		}
673 	}
674 
675 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
676 done:
677 	return map_length == length;
678 
679 fail_put_bio:
680 	if (map_length < length)
681 		bio_put(bio);
682 fail:
683 	btrfs_bio_counter_dec(fs_info);
684 	btrfs_bio_end_io(orig_bbio, ret);
685 	/* Do not submit another chunk */
686 	return true;
687 }
688 
689 void btrfs_submit_bio(struct bio *bio, int mirror_num)
690 {
691 	while (!btrfs_submit_chunk(bio, mirror_num))
692 		;
693 }
694 
695 /*
696  * Submit a repair write.
697  *
698  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
699  * RAID setup.  Here we only want to write the one bad copy, so we do the
700  * mapping ourselves and submit the bio directly.
701  *
702  * The I/O is issued synchronously to block the repair read completion from
703  * freeing the bio.
704  */
705 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
706 			    u64 length, u64 logical, struct page *page,
707 			    unsigned int pg_offset, int mirror_num)
708 {
709 	struct btrfs_device *dev;
710 	struct bio_vec bvec;
711 	struct bio bio;
712 	u64 map_length = 0;
713 	u64 sector;
714 	struct btrfs_io_context *bioc = NULL;
715 	int ret = 0;
716 
717 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
718 	BUG_ON(!mirror_num);
719 
720 	if (btrfs_repair_one_zone(fs_info, logical))
721 		return 0;
722 
723 	map_length = length;
724 
725 	/*
726 	 * Avoid races with device replace and make sure our bioc has devices
727 	 * associated to its stripes that don't go away while we are doing the
728 	 * read repair operation.
729 	 */
730 	btrfs_bio_counter_inc_blocked(fs_info);
731 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
732 		/*
733 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
734 		 * to update all raid stripes, but here we just want to correct
735 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
736 		 * stripe's dev and sector.
737 		 */
738 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
739 				      &map_length, &bioc, 0);
740 		if (ret)
741 			goto out_counter_dec;
742 		ASSERT(bioc->mirror_num == 1);
743 	} else {
744 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
745 				      &map_length, &bioc, mirror_num);
746 		if (ret)
747 			goto out_counter_dec;
748 		/*
749 		 * This happens when dev-replace is also running, and the
750 		 * mirror_num indicates the dev-replace target.
751 		 *
752 		 * In this case, we don't need to do anything, as the read
753 		 * error just means the replace progress hasn't reached our
754 		 * read range, and later replace routine would handle it well.
755 		 */
756 		if (mirror_num != bioc->mirror_num)
757 			goto out_counter_dec;
758 	}
759 
760 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
761 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
762 	btrfs_put_bioc(bioc);
763 
764 	if (!dev || !dev->bdev ||
765 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
766 		ret = -EIO;
767 		goto out_counter_dec;
768 	}
769 
770 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
771 	bio.bi_iter.bi_sector = sector;
772 	__bio_add_page(&bio, page, length, pg_offset);
773 
774 	btrfsic_check_bio(&bio);
775 	ret = submit_bio_wait(&bio);
776 	if (ret) {
777 		/* try to remap that extent elsewhere? */
778 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
779 		goto out_bio_uninit;
780 	}
781 
782 	btrfs_info_rl_in_rcu(fs_info,
783 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
784 			     ino, start, btrfs_dev_name(dev), sector);
785 	ret = 0;
786 
787 out_bio_uninit:
788 	bio_uninit(&bio);
789 out_counter_dec:
790 	btrfs_bio_counter_dec(fs_info);
791 	return ret;
792 }
793 
794 int __init btrfs_bioset_init(void)
795 {
796 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
797 			offsetof(struct btrfs_bio, bio),
798 			BIOSET_NEED_BVECS))
799 		return -ENOMEM;
800 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
801 			offsetof(struct btrfs_bio, bio), 0))
802 		goto out_free_bioset;
803 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
804 			offsetof(struct btrfs_bio, bio),
805 			BIOSET_NEED_BVECS))
806 		goto out_free_clone_bioset;
807 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
808 				      sizeof(struct btrfs_failed_bio)))
809 		goto out_free_repair_bioset;
810 	return 0;
811 
812 out_free_repair_bioset:
813 	bioset_exit(&btrfs_repair_bioset);
814 out_free_clone_bioset:
815 	bioset_exit(&btrfs_clone_bioset);
816 out_free_bioset:
817 	bioset_exit(&btrfs_bioset);
818 	return -ENOMEM;
819 }
820 
821 void __cold btrfs_bioset_exit(void)
822 {
823 	mempool_exit(&btrfs_failed_bio_pool);
824 	bioset_exit(&btrfs_repair_bioset);
825 	bioset_exit(&btrfs_clone_bioset);
826 	bioset_exit(&btrfs_bioset);
827 }
828