xref: /openbmc/linux/fs/btrfs/bio.c (revision 078e4cf5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /*
31  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
32  * is already initialized by the block layer.
33  */
34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_inode *inode,
35 		    btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->inode = inode;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 	atomic_set(&bbio->pending_ios, 1);
42 }
43 
44 /*
45  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
46  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
47  *
48  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
49  * a mempool.
50  */
51 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
52 				  struct btrfs_inode *inode,
53 				  btrfs_bio_end_io_t end_io, void *private)
54 {
55 	struct btrfs_bio *bbio;
56 	struct bio *bio;
57 
58 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
59 	bbio = btrfs_bio(bio);
60 	btrfs_bio_init(bbio, inode, end_io, private);
61 	return bbio;
62 }
63 
64 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
65 					 struct btrfs_bio *orig_bbio,
66 					 u64 map_length, bool use_append)
67 {
68 	struct btrfs_bio *bbio;
69 	struct bio *bio;
70 
71 	if (use_append) {
72 		unsigned int nr_segs;
73 
74 		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
75 				   &btrfs_clone_bioset, map_length);
76 	} else {
77 		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
78 				GFP_NOFS, &btrfs_clone_bioset);
79 	}
80 	bbio = btrfs_bio(bio);
81 	btrfs_bio_init(bbio, orig_bbio->inode, NULL, orig_bbio);
82 
83 	bbio->file_offset = orig_bbio->file_offset;
84 	if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
85 		orig_bbio->file_offset += map_length;
86 
87 	atomic_inc(&orig_bbio->pending_ios);
88 	return bbio;
89 }
90 
91 static void btrfs_orig_write_end_io(struct bio *bio);
92 
93 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
94 				       struct btrfs_bio *orig_bbio)
95 {
96 	/*
97 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
98 	 * just blindly propagate a write failure here.  Instead increment the
99 	 * error count in the original I/O context so that it is guaranteed to
100 	 * be larger than the error tolerance.
101 	 */
102 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
103 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
104 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
105 
106 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
107 	} else {
108 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
109 	}
110 }
111 
112 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
113 {
114 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
115 		struct btrfs_bio *orig_bbio = bbio->private;
116 
117 		if (bbio->bio.bi_status)
118 			btrfs_bbio_propagate_error(bbio, orig_bbio);
119 		bio_put(&bbio->bio);
120 		bbio = orig_bbio;
121 	}
122 
123 	if (atomic_dec_and_test(&bbio->pending_ios))
124 		bbio->end_io(bbio);
125 }
126 
127 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
128 {
129 	if (cur_mirror == fbio->num_copies)
130 		return cur_mirror + 1 - fbio->num_copies;
131 	return cur_mirror + 1;
132 }
133 
134 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
135 {
136 	if (cur_mirror == 1)
137 		return fbio->num_copies;
138 	return cur_mirror - 1;
139 }
140 
141 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
142 {
143 	if (atomic_dec_and_test(&fbio->repair_count)) {
144 		btrfs_orig_bbio_end_io(fbio->bbio);
145 		mempool_free(fbio, &btrfs_failed_bio_pool);
146 	}
147 }
148 
149 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
150 				 struct btrfs_device *dev)
151 {
152 	struct btrfs_failed_bio *fbio = repair_bbio->private;
153 	struct btrfs_inode *inode = repair_bbio->inode;
154 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
155 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
156 	int mirror = repair_bbio->mirror_num;
157 
158 	if (repair_bbio->bio.bi_status ||
159 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
160 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
161 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
162 
163 		mirror = next_repair_mirror(fbio, mirror);
164 		if (mirror == fbio->bbio->mirror_num) {
165 			btrfs_debug(fs_info, "no mirror left");
166 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
167 			goto done;
168 		}
169 
170 		btrfs_submit_bio(repair_bbio, mirror);
171 		return;
172 	}
173 
174 	do {
175 		mirror = prev_repair_mirror(fbio, mirror);
176 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
177 				  repair_bbio->file_offset, fs_info->sectorsize,
178 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
179 				  bv->bv_page, bv->bv_offset, mirror);
180 	} while (mirror != fbio->bbio->mirror_num);
181 
182 done:
183 	btrfs_repair_done(fbio);
184 	bio_put(&repair_bbio->bio);
185 }
186 
187 /*
188  * Try to kick off a repair read to the next available mirror for a bad sector.
189  *
190  * This primarily tries to recover good data to serve the actual read request,
191  * but also tries to write the good data back to the bad mirror(s) when a
192  * read succeeded to restore the redundancy.
193  */
194 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
195 						  u32 bio_offset,
196 						  struct bio_vec *bv,
197 						  struct btrfs_failed_bio *fbio)
198 {
199 	struct btrfs_inode *inode = failed_bbio->inode;
200 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
201 	const u32 sectorsize = fs_info->sectorsize;
202 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
203 	struct btrfs_bio *repair_bbio;
204 	struct bio *repair_bio;
205 	int num_copies;
206 	int mirror;
207 
208 	btrfs_debug(fs_info, "repair read error: read error at %llu",
209 		    failed_bbio->file_offset + bio_offset);
210 
211 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
212 	if (num_copies == 1) {
213 		btrfs_debug(fs_info, "no copy to repair from");
214 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
215 		return fbio;
216 	}
217 
218 	if (!fbio) {
219 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
220 		fbio->bbio = failed_bbio;
221 		fbio->num_copies = num_copies;
222 		atomic_set(&fbio->repair_count, 1);
223 	}
224 
225 	atomic_inc(&fbio->repair_count);
226 
227 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
228 				      &btrfs_repair_bioset);
229 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
230 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
231 
232 	repair_bbio = btrfs_bio(repair_bio);
233 	btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio);
234 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
235 
236 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
237 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
238 	btrfs_submit_bio(repair_bbio, mirror);
239 	return fbio;
240 }
241 
242 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
243 {
244 	struct btrfs_inode *inode = bbio->inode;
245 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
246 	u32 sectorsize = fs_info->sectorsize;
247 	struct bvec_iter *iter = &bbio->saved_iter;
248 	blk_status_t status = bbio->bio.bi_status;
249 	struct btrfs_failed_bio *fbio = NULL;
250 	u32 offset = 0;
251 
252 	/*
253 	 * Hand off repair bios to the repair code as there is no upper level
254 	 * submitter for them.
255 	 */
256 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
257 		btrfs_end_repair_bio(bbio, dev);
258 		return;
259 	}
260 
261 	/* Clear the I/O error. A failed repair will reset it. */
262 	bbio->bio.bi_status = BLK_STS_OK;
263 
264 	while (iter->bi_size) {
265 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
266 
267 		bv.bv_len = min(bv.bv_len, sectorsize);
268 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
269 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
270 
271 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
272 		offset += sectorsize;
273 	}
274 
275 	if (bbio->csum != bbio->csum_inline)
276 		kfree(bbio->csum);
277 
278 	if (fbio)
279 		btrfs_repair_done(fbio);
280 	else
281 		btrfs_orig_bbio_end_io(bbio);
282 }
283 
284 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
285 {
286 	if (!dev || !dev->bdev)
287 		return;
288 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
289 		return;
290 
291 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
292 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
293 	else if (!(bio->bi_opf & REQ_RAHEAD))
294 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
295 	if (bio->bi_opf & REQ_PREFLUSH)
296 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
297 }
298 
299 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
300 						struct bio *bio)
301 {
302 	if (bio->bi_opf & REQ_META)
303 		return fs_info->endio_meta_workers;
304 	return fs_info->endio_workers;
305 }
306 
307 static void btrfs_end_bio_work(struct work_struct *work)
308 {
309 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
310 
311 	/* Metadata reads are checked and repaired by the submitter. */
312 	if (bbio->bio.bi_opf & REQ_META)
313 		bbio->end_io(bbio);
314 	else
315 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
316 }
317 
318 static void btrfs_simple_end_io(struct bio *bio)
319 {
320 	struct btrfs_bio *bbio = btrfs_bio(bio);
321 	struct btrfs_device *dev = bio->bi_private;
322 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
323 
324 	btrfs_bio_counter_dec(fs_info);
325 
326 	if (bio->bi_status)
327 		btrfs_log_dev_io_error(bio, dev);
328 
329 	if (bio_op(bio) == REQ_OP_READ) {
330 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
331 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
332 	} else {
333 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
334 			btrfs_record_physical_zoned(bbio);
335 		btrfs_orig_bbio_end_io(bbio);
336 	}
337 }
338 
339 static void btrfs_raid56_end_io(struct bio *bio)
340 {
341 	struct btrfs_io_context *bioc = bio->bi_private;
342 	struct btrfs_bio *bbio = btrfs_bio(bio);
343 
344 	btrfs_bio_counter_dec(bioc->fs_info);
345 	bbio->mirror_num = bioc->mirror_num;
346 	if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META))
347 		btrfs_check_read_bio(bbio, NULL);
348 	else
349 		btrfs_orig_bbio_end_io(bbio);
350 
351 	btrfs_put_bioc(bioc);
352 }
353 
354 static void btrfs_orig_write_end_io(struct bio *bio)
355 {
356 	struct btrfs_io_stripe *stripe = bio->bi_private;
357 	struct btrfs_io_context *bioc = stripe->bioc;
358 	struct btrfs_bio *bbio = btrfs_bio(bio);
359 
360 	btrfs_bio_counter_dec(bioc->fs_info);
361 
362 	if (bio->bi_status) {
363 		atomic_inc(&bioc->error);
364 		btrfs_log_dev_io_error(bio, stripe->dev);
365 	}
366 
367 	/*
368 	 * Only send an error to the higher layers if it is beyond the tolerance
369 	 * threshold.
370 	 */
371 	if (atomic_read(&bioc->error) > bioc->max_errors)
372 		bio->bi_status = BLK_STS_IOERR;
373 	else
374 		bio->bi_status = BLK_STS_OK;
375 
376 	btrfs_orig_bbio_end_io(bbio);
377 	btrfs_put_bioc(bioc);
378 }
379 
380 static void btrfs_clone_write_end_io(struct bio *bio)
381 {
382 	struct btrfs_io_stripe *stripe = bio->bi_private;
383 
384 	if (bio->bi_status) {
385 		atomic_inc(&stripe->bioc->error);
386 		btrfs_log_dev_io_error(bio, stripe->dev);
387 	}
388 
389 	/* Pass on control to the original bio this one was cloned from */
390 	bio_endio(stripe->bioc->orig_bio);
391 	bio_put(bio);
392 }
393 
394 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
395 {
396 	if (!dev || !dev->bdev ||
397 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
398 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
399 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
400 		bio_io_error(bio);
401 		return;
402 	}
403 
404 	bio_set_dev(bio, dev->bdev);
405 
406 	/*
407 	 * For zone append writing, bi_sector must point the beginning of the
408 	 * zone
409 	 */
410 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
411 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
412 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
413 
414 		ASSERT(btrfs_dev_is_sequential(dev, physical));
415 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
416 	}
417 	btrfs_debug_in_rcu(dev->fs_info,
418 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
419 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
420 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
421 		dev->devid, bio->bi_iter.bi_size);
422 
423 	btrfsic_check_bio(bio);
424 	submit_bio(bio);
425 }
426 
427 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
428 {
429 	struct bio *orig_bio = bioc->orig_bio, *bio;
430 
431 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
432 
433 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
434 	if (dev_nr == bioc->num_stripes - 1) {
435 		bio = orig_bio;
436 		bio->bi_end_io = btrfs_orig_write_end_io;
437 	} else {
438 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
439 		bio_inc_remaining(orig_bio);
440 		bio->bi_end_io = btrfs_clone_write_end_io;
441 	}
442 
443 	bio->bi_private = &bioc->stripes[dev_nr];
444 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
445 	bioc->stripes[dev_nr].bioc = bioc;
446 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
447 }
448 
449 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
450 			       struct btrfs_io_stripe *smap, int mirror_num)
451 {
452 	/* Do not leak our private flag into the block layer. */
453 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
454 
455 	if (!bioc) {
456 		/* Single mirror read/write fast path. */
457 		btrfs_bio(bio)->mirror_num = mirror_num;
458 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
459 		bio->bi_private = smap->dev;
460 		bio->bi_end_io = btrfs_simple_end_io;
461 		btrfs_submit_dev_bio(smap->dev, bio);
462 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
463 		/* Parity RAID write or read recovery. */
464 		bio->bi_private = bioc;
465 		bio->bi_end_io = btrfs_raid56_end_io;
466 		if (bio_op(bio) == REQ_OP_READ)
467 			raid56_parity_recover(bio, bioc, mirror_num);
468 		else
469 			raid56_parity_write(bio, bioc);
470 	} else {
471 		/* Write to multiple mirrors. */
472 		int total_devs = bioc->num_stripes;
473 
474 		bioc->orig_bio = bio;
475 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
476 			btrfs_submit_mirrored_bio(bioc, dev_nr);
477 	}
478 }
479 
480 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
481 {
482 	if (bbio->bio.bi_opf & REQ_META)
483 		return btree_csum_one_bio(bbio);
484 	return btrfs_csum_one_bio(bbio);
485 }
486 
487 /*
488  * Async submit bios are used to offload expensive checksumming onto the worker
489  * threads.
490  */
491 struct async_submit_bio {
492 	struct btrfs_bio *bbio;
493 	struct btrfs_io_context *bioc;
494 	struct btrfs_io_stripe smap;
495 	int mirror_num;
496 	struct btrfs_work work;
497 };
498 
499 /*
500  * In order to insert checksums into the metadata in large chunks, we wait
501  * until bio submission time.   All the pages in the bio are checksummed and
502  * sums are attached onto the ordered extent record.
503  *
504  * At IO completion time the csums attached on the ordered extent record are
505  * inserted into the btree.
506  */
507 static void run_one_async_start(struct btrfs_work *work)
508 {
509 	struct async_submit_bio *async =
510 		container_of(work, struct async_submit_bio, work);
511 	blk_status_t ret;
512 
513 	ret = btrfs_bio_csum(async->bbio);
514 	if (ret)
515 		async->bbio->bio.bi_status = ret;
516 }
517 
518 /*
519  * In order to insert checksums into the metadata in large chunks, we wait
520  * until bio submission time.   All the pages in the bio are checksummed and
521  * sums are attached onto the ordered extent record.
522  *
523  * At IO completion time the csums attached on the ordered extent record are
524  * inserted into the tree.
525  */
526 static void run_one_async_done(struct btrfs_work *work)
527 {
528 	struct async_submit_bio *async =
529 		container_of(work, struct async_submit_bio, work);
530 	struct bio *bio = &async->bbio->bio;
531 
532 	/* If an error occurred we just want to clean up the bio and move on. */
533 	if (bio->bi_status) {
534 		btrfs_orig_bbio_end_io(async->bbio);
535 		return;
536 	}
537 
538 	/*
539 	 * All of the bios that pass through here are from async helpers.
540 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
541 	 * This changes nothing when cgroups aren't in use.
542 	 */
543 	bio->bi_opf |= REQ_CGROUP_PUNT;
544 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
545 }
546 
547 static void run_one_async_free(struct btrfs_work *work)
548 {
549 	kfree(container_of(work, struct async_submit_bio, work));
550 }
551 
552 static bool should_async_write(struct btrfs_bio *bbio)
553 {
554 	/*
555 	 * If the I/O is not issued by fsync and friends, (->sync_writers != 0),
556 	 * then try to defer the submission to a workqueue to parallelize the
557 	 * checksum calculation.
558 	 */
559 	if (atomic_read(&bbio->inode->sync_writers))
560 		return false;
561 
562 	/*
563 	 * Submit metadata writes synchronously if the checksum implementation
564 	 * is fast, or we are on a zoned device that wants I/O to be submitted
565 	 * in order.
566 	 */
567 	if (bbio->bio.bi_opf & REQ_META) {
568 		struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
569 
570 		if (btrfs_is_zoned(fs_info))
571 			return false;
572 		if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
573 			return false;
574 	}
575 
576 	return true;
577 }
578 
579 /*
580  * Submit bio to an async queue.
581  *
582  * Return true if the work has been succesfuly submitted, else false.
583  */
584 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
585 				struct btrfs_io_context *bioc,
586 				struct btrfs_io_stripe *smap, int mirror_num)
587 {
588 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
589 	struct async_submit_bio *async;
590 
591 	async = kmalloc(sizeof(*async), GFP_NOFS);
592 	if (!async)
593 		return false;
594 
595 	async->bbio = bbio;
596 	async->bioc = bioc;
597 	async->smap = *smap;
598 	async->mirror_num = mirror_num;
599 
600 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
601 			run_one_async_free);
602 	if (op_is_sync(bbio->bio.bi_opf))
603 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
604 	else
605 		btrfs_queue_work(fs_info->workers, &async->work);
606 	return true;
607 }
608 
609 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
610 {
611 	struct btrfs_inode *inode = bbio->inode;
612 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
613 	struct btrfs_bio *orig_bbio = bbio;
614 	struct bio *bio = &bbio->bio;
615 	u64 logical = bio->bi_iter.bi_sector << 9;
616 	u64 length = bio->bi_iter.bi_size;
617 	u64 map_length = length;
618 	bool use_append = btrfs_use_zone_append(bbio);
619 	struct btrfs_io_context *bioc = NULL;
620 	struct btrfs_io_stripe smap;
621 	blk_status_t ret;
622 	int error;
623 
624 	btrfs_bio_counter_inc_blocked(fs_info);
625 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
626 				  &bioc, &smap, &mirror_num, 1);
627 	if (error) {
628 		ret = errno_to_blk_status(error);
629 		goto fail;
630 	}
631 
632 	map_length = min(map_length, length);
633 	if (use_append)
634 		map_length = min(map_length, fs_info->max_zone_append_size);
635 
636 	if (map_length < length) {
637 		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
638 		bio = &bbio->bio;
639 	}
640 
641 	/*
642 	 * Save the iter for the end_io handler and preload the checksums for
643 	 * data reads.
644 	 */
645 	if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) {
646 		bbio->saved_iter = bio->bi_iter;
647 		ret = btrfs_lookup_bio_sums(bbio);
648 		if (ret)
649 			goto fail_put_bio;
650 	}
651 
652 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
653 		if (use_append) {
654 			bio->bi_opf &= ~REQ_OP_WRITE;
655 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
656 			ret = btrfs_extract_ordered_extent(bbio);
657 			if (ret)
658 				goto fail_put_bio;
659 		}
660 
661 		/*
662 		 * Csum items for reloc roots have already been cloned at this
663 		 * point, so they are handled as part of the no-checksum case.
664 		 */
665 		if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
666 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
667 		    !btrfs_is_data_reloc_root(inode->root)) {
668 			if (should_async_write(bbio) &&
669 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
670 				goto done;
671 
672 			ret = btrfs_bio_csum(bbio);
673 			if (ret)
674 				goto fail_put_bio;
675 		}
676 	}
677 
678 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
679 done:
680 	return map_length == length;
681 
682 fail_put_bio:
683 	if (map_length < length)
684 		bio_put(bio);
685 fail:
686 	btrfs_bio_counter_dec(fs_info);
687 	btrfs_bio_end_io(orig_bbio, ret);
688 	/* Do not submit another chunk */
689 	return true;
690 }
691 
692 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
693 {
694 	while (!btrfs_submit_chunk(bbio, mirror_num))
695 		;
696 }
697 
698 /*
699  * Submit a repair write.
700  *
701  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
702  * RAID setup.  Here we only want to write the one bad copy, so we do the
703  * mapping ourselves and submit the bio directly.
704  *
705  * The I/O is issued synchronously to block the repair read completion from
706  * freeing the bio.
707  */
708 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
709 			    u64 length, u64 logical, struct page *page,
710 			    unsigned int pg_offset, int mirror_num)
711 {
712 	struct btrfs_device *dev;
713 	struct bio_vec bvec;
714 	struct bio bio;
715 	u64 map_length = 0;
716 	u64 sector;
717 	struct btrfs_io_context *bioc = NULL;
718 	int ret = 0;
719 
720 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
721 	BUG_ON(!mirror_num);
722 
723 	if (btrfs_repair_one_zone(fs_info, logical))
724 		return 0;
725 
726 	map_length = length;
727 
728 	/*
729 	 * Avoid races with device replace and make sure our bioc has devices
730 	 * associated to its stripes that don't go away while we are doing the
731 	 * read repair operation.
732 	 */
733 	btrfs_bio_counter_inc_blocked(fs_info);
734 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
735 		/*
736 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
737 		 * to update all raid stripes, but here we just want to correct
738 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
739 		 * stripe's dev and sector.
740 		 */
741 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
742 				      &map_length, &bioc, 0);
743 		if (ret)
744 			goto out_counter_dec;
745 		ASSERT(bioc->mirror_num == 1);
746 	} else {
747 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
748 				      &map_length, &bioc, mirror_num);
749 		if (ret)
750 			goto out_counter_dec;
751 		/*
752 		 * This happens when dev-replace is also running, and the
753 		 * mirror_num indicates the dev-replace target.
754 		 *
755 		 * In this case, we don't need to do anything, as the read
756 		 * error just means the replace progress hasn't reached our
757 		 * read range, and later replace routine would handle it well.
758 		 */
759 		if (mirror_num != bioc->mirror_num)
760 			goto out_counter_dec;
761 	}
762 
763 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
764 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
765 	btrfs_put_bioc(bioc);
766 
767 	if (!dev || !dev->bdev ||
768 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
769 		ret = -EIO;
770 		goto out_counter_dec;
771 	}
772 
773 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
774 	bio.bi_iter.bi_sector = sector;
775 	__bio_add_page(&bio, page, length, pg_offset);
776 
777 	btrfsic_check_bio(&bio);
778 	ret = submit_bio_wait(&bio);
779 	if (ret) {
780 		/* try to remap that extent elsewhere? */
781 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
782 		goto out_bio_uninit;
783 	}
784 
785 	btrfs_info_rl_in_rcu(fs_info,
786 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
787 			     ino, start, btrfs_dev_name(dev), sector);
788 	ret = 0;
789 
790 out_bio_uninit:
791 	bio_uninit(&bio);
792 out_counter_dec:
793 	btrfs_bio_counter_dec(fs_info);
794 	return ret;
795 }
796 
797 int __init btrfs_bioset_init(void)
798 {
799 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
800 			offsetof(struct btrfs_bio, bio),
801 			BIOSET_NEED_BVECS))
802 		return -ENOMEM;
803 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
804 			offsetof(struct btrfs_bio, bio), 0))
805 		goto out_free_bioset;
806 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
807 			offsetof(struct btrfs_bio, bio),
808 			BIOSET_NEED_BVECS))
809 		goto out_free_clone_bioset;
810 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
811 				      sizeof(struct btrfs_failed_bio)))
812 		goto out_free_repair_bioset;
813 	return 0;
814 
815 out_free_repair_bioset:
816 	bioset_exit(&btrfs_repair_bioset);
817 out_free_clone_bioset:
818 	bioset_exit(&btrfs_clone_bioset);
819 out_free_bioset:
820 	bioset_exit(&btrfs_bioset);
821 	return -ENOMEM;
822 }
823 
824 void __cold btrfs_bioset_exit(void)
825 {
826 	mempool_exit(&btrfs_failed_bio_pool);
827 	bioset_exit(&btrfs_repair_bioset);
828 	bioset_exit(&btrfs_clone_bioset);
829 	bioset_exit(&btrfs_bioset);
830 }
831