xref: /openbmc/linux/fs/btrfs/backref.h (revision fe4549b1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_BACKREF_H
7 #define BTRFS_BACKREF_H
8 
9 #include <linux/btrfs.h>
10 #include "messages.h"
11 #include "ulist.h"
12 #include "disk-io.h"
13 #include "extent_io.h"
14 
15 /*
16  * Used by implementations of iterate_extent_inodes_t (see definition below) to
17  * signal that backref iteration can stop immediately and no error happened.
18  * The value must be non-negative and must not be 0, 1 (which is a common return
19  * value from things like btrfs_search_slot() and used internally in the backref
20  * walking code) and different from BACKREF_FOUND_SHARED and
21  * BACKREF_FOUND_NOT_SHARED
22  */
23 #define BTRFS_ITERATE_EXTENT_INODES_STOP 5
24 
25 /*
26  * Should return 0 if no errors happened and iteration of backrefs should
27  * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
28  * value to immediately stop iteration and possibly signal an error back to
29  * the caller.
30  */
31 typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
32 				      u64 root, void *ctx);
33 
34 /*
35  * Context and arguments for backref walking functions. Some of the fields are
36  * to be filled by the caller of such functions while other are filled by the
37  * functions themselves, as described below.
38  */
39 struct btrfs_backref_walk_ctx {
40 	/*
41 	 * The address of the extent for which we are doing backref walking.
42 	 * Can be either a data extent or a metadata extent.
43 	 *
44 	 * Must always be set by the top level caller.
45 	 */
46 	u64 bytenr;
47 	/*
48 	 * Offset relative to the target extent. This is only used for data
49 	 * extents, and it's meaningful because we can have file extent items
50 	 * that point only to a section of a data extent ("bookend" extents),
51 	 * and we want to filter out any that don't point to a section of the
52 	 * data extent containing the given offset.
53 	 *
54 	 * Must always be set by the top level caller.
55 	 */
56 	u64 extent_item_pos;
57 	/*
58 	 * If true and bytenr corresponds to a data extent, then references from
59 	 * all file extent items that point to the data extent are considered,
60 	 * @extent_item_pos is ignored.
61 	 */
62 	bool ignore_extent_item_pos;
63 	/*
64 	 * If true and bytenr corresponds to a data extent, then the inode list
65 	 * (each member describing inode number, file offset and root) is not
66 	 * added to each reference added to the @refs ulist.
67 	 */
68 	bool skip_inode_ref_list;
69 	/* A valid transaction handle or NULL. */
70 	struct btrfs_trans_handle *trans;
71 	/*
72 	 * The file system's info object, can not be NULL.
73 	 *
74 	 * Must always be set by the top level caller.
75 	 */
76 	struct btrfs_fs_info *fs_info;
77 	/*
78 	 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
79 	 * caller joined the tree mod log to get a consistent view of b+trees
80 	 * while we do backref walking, or BTRFS_SEQ_LAST.
81 	 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
82 	 * commit roots when searching b+trees - this is a special case for
83 	 * qgroups used during a transaction commit.
84 	 */
85 	u64 time_seq;
86 	/*
87 	 * Used to collect the bytenr of metadata extents that point to the
88 	 * target extent.
89 	 */
90 	struct ulist *refs;
91 	/*
92 	 * List used to collect the IDs of the roots from which the target
93 	 * extent is accessible. Can be NULL in case the caller does not care
94 	 * about collecting root IDs.
95 	 */
96 	struct ulist *roots;
97 	/*
98 	 * Used by iterate_extent_inodes() and the main backref walk code
99 	 * (find_parent_nodes()). Lookup and store functions for an optional
100 	 * cache which maps the logical address (bytenr) of leaves to an array
101 	 * of root IDs.
102 	 */
103 	bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
104 			     const u64 **root_ids_ret, int *root_count_ret);
105 	void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
106 			    void *user_ctx);
107 	/*
108 	 * If this is not NULL, then the backref walking code will call this
109 	 * for each indirect data extent reference as soon as it finds one,
110 	 * before collecting all the remaining backrefs and before resolving
111 	 * indirect backrefs. This allows for the caller to terminate backref
112 	 * walking as soon as it finds one backref that matches some specific
113 	 * criteria. The @cache_lookup and @cache_store callbacks should not
114 	 * be NULL in order to use this callback.
115 	 */
116 	iterate_extent_inodes_t *indirect_ref_iterator;
117 	/*
118 	 * If this is not NULL, then the backref walking code will call this for
119 	 * each extent item it's meant to process before it actually starts
120 	 * processing it. If this returns anything other than 0, then it stops
121 	 * the backref walking code immediately.
122 	 */
123 	int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
124 				 const struct extent_buffer *leaf, void *user_ctx);
125 	/*
126 	 * If this is not NULL, then the backref walking code will call this for
127 	 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
128 	 * processing that data ref. If this callback return false, then it will
129 	 * ignore this data ref and it will never resolve the indirect data ref,
130 	 * saving time searching for leaves in a fs tree with file extent items
131 	 * matching the data ref.
132 	 */
133 	bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
134 	/* Context object to pass to the callbacks defined above. */
135 	void *user_ctx;
136 };
137 
138 struct inode_fs_paths {
139 	struct btrfs_path		*btrfs_path;
140 	struct btrfs_root		*fs_root;
141 	struct btrfs_data_container	*fspath;
142 };
143 
144 struct btrfs_backref_shared_cache_entry {
145 	u64 bytenr;
146 	u64 gen;
147 	bool is_shared;
148 };
149 
150 #define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
151 
152 struct btrfs_backref_share_check_ctx {
153 	/* Ulists used during backref walking. */
154 	struct ulist refs;
155 	/*
156 	 * The current leaf the caller of btrfs_is_data_extent_shared() is at.
157 	 * Typically the caller (at the moment only fiemap) tries to determine
158 	 * the sharedness of data extents point by file extent items from entire
159 	 * leaves.
160 	 */
161 	u64 curr_leaf_bytenr;
162 	/*
163 	 * The previous leaf the caller was at in the previous call to
164 	 * btrfs_is_data_extent_shared(). This may be the same as the current
165 	 * leaf. On the first call it must be 0.
166 	 */
167 	u64 prev_leaf_bytenr;
168 	/*
169 	 * A path from a root to a leaf that has a file extent item pointing to
170 	 * a given data extent should never exceed the maximum b+tree height.
171 	 */
172 	struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
173 	bool use_path_cache;
174 	/*
175 	 * Cache the sharedness result for the last few extents we have found,
176 	 * but only for extents for which we have multiple file extent items
177 	 * that point to them.
178 	 * It's very common to have several file extent items that point to the
179 	 * same extent (bytenr) but with different offsets and lengths. This
180 	 * typically happens for COW writes, partial writes into prealloc
181 	 * extents, NOCOW writes after snapshoting a root, hole punching or
182 	 * reflinking within the same file (less common perhaps).
183 	 * So keep a small cache with the lookup results for the extent pointed
184 	 * by the last few file extent items. This cache is checked, with a
185 	 * linear scan, whenever btrfs_is_data_extent_shared() is called, so
186 	 * it must be small so that it does not negatively affect performance in
187 	 * case we don't have multiple file extent items that point to the same
188 	 * data extent.
189 	 */
190 	struct {
191 		u64 bytenr;
192 		bool is_shared;
193 	} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
194 	/*
195 	 * The slot in the prev_extents_cache array that will be used for
196 	 * storing the sharedness result of a new data extent.
197 	 */
198 	int prev_extents_cache_slot;
199 };
200 
201 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
202 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
203 
204 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
205 			struct btrfs_path *path, struct btrfs_key *found_key,
206 			u64 *flags);
207 
208 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
209 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
210 			    u32 item_size, u64 *out_root, u8 *out_level);
211 
212 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
213 			  bool search_commit_root,
214 			  iterate_extent_inodes_t *iterate, void *user_ctx);
215 
216 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
217 				struct btrfs_path *path, void *ctx,
218 				bool ignore_offset);
219 
220 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
221 
222 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
223 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
224 			 bool skip_commit_root_sem);
225 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
226 			u32 name_len, unsigned long name_off,
227 			struct extent_buffer *eb_in, u64 parent,
228 			char *dest, u32 size);
229 
230 struct btrfs_data_container *init_data_container(u32 total_bytes);
231 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
232 					struct btrfs_path *path);
233 void free_ipath(struct inode_fs_paths *ipath);
234 
235 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
236 			  u64 start_off, struct btrfs_path *path,
237 			  struct btrfs_inode_extref **ret_extref,
238 			  u64 *found_off);
239 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
240 				u64 extent_gen,
241 				struct btrfs_backref_share_check_ctx *ctx);
242 
243 int __init btrfs_prelim_ref_init(void);
244 void __cold btrfs_prelim_ref_exit(void);
245 
246 struct prelim_ref {
247 	struct rb_node rbnode;
248 	u64 root_id;
249 	struct btrfs_key key_for_search;
250 	int level;
251 	int count;
252 	struct extent_inode_elem *inode_list;
253 	u64 parent;
254 	u64 wanted_disk_byte;
255 };
256 
257 /*
258  * Iterate backrefs of one extent.
259  *
260  * Now it only supports iteration of tree block in commit root.
261  */
262 struct btrfs_backref_iter {
263 	u64 bytenr;
264 	struct btrfs_path *path;
265 	struct btrfs_fs_info *fs_info;
266 	struct btrfs_key cur_key;
267 	u32 item_ptr;
268 	u32 cur_ptr;
269 	u32 end_ptr;
270 };
271 
272 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
273 
274 static inline void btrfs_backref_iter_free(struct btrfs_backref_iter *iter)
275 {
276 	if (!iter)
277 		return;
278 	btrfs_free_path(iter->path);
279 	kfree(iter);
280 }
281 
282 static inline struct extent_buffer *btrfs_backref_get_eb(
283 		struct btrfs_backref_iter *iter)
284 {
285 	if (!iter)
286 		return NULL;
287 	return iter->path->nodes[0];
288 }
289 
290 /*
291  * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
292  * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
293  *
294  * This helper determines if that's the case.
295  */
296 static inline bool btrfs_backref_has_tree_block_info(
297 		struct btrfs_backref_iter *iter)
298 {
299 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
300 	    iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
301 		return true;
302 	return false;
303 }
304 
305 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
306 
307 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
308 
309 static inline bool btrfs_backref_iter_is_inline_ref(
310 		struct btrfs_backref_iter *iter)
311 {
312 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
313 	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
314 		return true;
315 	return false;
316 }
317 
318 static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
319 {
320 	iter->bytenr = 0;
321 	iter->item_ptr = 0;
322 	iter->cur_ptr = 0;
323 	iter->end_ptr = 0;
324 	btrfs_release_path(iter->path);
325 	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
326 }
327 
328 /*
329  * Backref cache related structures
330  *
331  * The whole objective of backref_cache is to build a bi-directional map
332  * of tree blocks (represented by backref_node) and all their parents.
333  */
334 
335 /*
336  * Represent a tree block in the backref cache
337  */
338 struct btrfs_backref_node {
339 	struct {
340 		struct rb_node rb_node;
341 		u64 bytenr;
342 	}; /* Use rb_simple_node for search/insert */
343 
344 	u64 new_bytenr;
345 	/* Objectid of tree block owner, can be not uptodate */
346 	u64 owner;
347 	/* Link to pending, changed or detached list */
348 	struct list_head list;
349 
350 	/* List of upper level edges, which link this node to its parents */
351 	struct list_head upper;
352 	/* List of lower level edges, which link this node to its children */
353 	struct list_head lower;
354 
355 	/* NULL if this node is not tree root */
356 	struct btrfs_root *root;
357 	/* Extent buffer got by COWing the block */
358 	struct extent_buffer *eb;
359 	/* Level of the tree block */
360 	unsigned int level:8;
361 	/* Is the block in a non-shareable tree */
362 	unsigned int cowonly:1;
363 	/* 1 if no child node is in the cache */
364 	unsigned int lowest:1;
365 	/* Is the extent buffer locked */
366 	unsigned int locked:1;
367 	/* Has the block been processed */
368 	unsigned int processed:1;
369 	/* Have backrefs of this block been checked */
370 	unsigned int checked:1;
371 	/*
372 	 * 1 if corresponding block has been COWed but some upper level block
373 	 * pointers may not point to the new location
374 	 */
375 	unsigned int pending:1;
376 	/* 1 if the backref node isn't connected to any other backref node */
377 	unsigned int detached:1;
378 
379 	/*
380 	 * For generic purpose backref cache, where we only care if it's a reloc
381 	 * root, doesn't care the source subvolid.
382 	 */
383 	unsigned int is_reloc_root:1;
384 };
385 
386 #define LOWER	0
387 #define UPPER	1
388 
389 /*
390  * Represent an edge connecting upper and lower backref nodes.
391  */
392 struct btrfs_backref_edge {
393 	/*
394 	 * list[LOWER] is linked to btrfs_backref_node::upper of lower level
395 	 * node, and list[UPPER] is linked to btrfs_backref_node::lower of
396 	 * upper level node.
397 	 *
398 	 * Also, build_backref_tree() uses list[UPPER] for pending edges, before
399 	 * linking list[UPPER] to its upper level nodes.
400 	 */
401 	struct list_head list[2];
402 
403 	/* Two related nodes */
404 	struct btrfs_backref_node *node[2];
405 };
406 
407 struct btrfs_backref_cache {
408 	/* Red black tree of all backref nodes in the cache */
409 	struct rb_root rb_root;
410 	/* For passing backref nodes to btrfs_reloc_cow_block */
411 	struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
412 	/*
413 	 * List of blocks that have been COWed but some block pointers in upper
414 	 * level blocks may not reflect the new location
415 	 */
416 	struct list_head pending[BTRFS_MAX_LEVEL];
417 	/* List of backref nodes with no child node */
418 	struct list_head leaves;
419 	/* List of blocks that have been COWed in current transaction */
420 	struct list_head changed;
421 	/* List of detached backref node. */
422 	struct list_head detached;
423 
424 	u64 last_trans;
425 
426 	int nr_nodes;
427 	int nr_edges;
428 
429 	/* List of unchecked backref edges during backref cache build */
430 	struct list_head pending_edge;
431 
432 	/* List of useless backref nodes during backref cache build */
433 	struct list_head useless_node;
434 
435 	struct btrfs_fs_info *fs_info;
436 
437 	/*
438 	 * Whether this cache is for relocation
439 	 *
440 	 * Reloction backref cache require more info for reloc root compared
441 	 * to generic backref cache.
442 	 */
443 	unsigned int is_reloc;
444 };
445 
446 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
447 			      struct btrfs_backref_cache *cache, int is_reloc);
448 struct btrfs_backref_node *btrfs_backref_alloc_node(
449 		struct btrfs_backref_cache *cache, u64 bytenr, int level);
450 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
451 		struct btrfs_backref_cache *cache);
452 
453 #define		LINK_LOWER	(1 << 0)
454 #define		LINK_UPPER	(1 << 1)
455 static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
456 					   struct btrfs_backref_node *lower,
457 					   struct btrfs_backref_node *upper,
458 					   int link_which)
459 {
460 	ASSERT(upper && lower && upper->level == lower->level + 1);
461 	edge->node[LOWER] = lower;
462 	edge->node[UPPER] = upper;
463 	if (link_which & LINK_LOWER)
464 		list_add_tail(&edge->list[LOWER], &lower->upper);
465 	if (link_which & LINK_UPPER)
466 		list_add_tail(&edge->list[UPPER], &upper->lower);
467 }
468 
469 static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
470 					   struct btrfs_backref_node *node)
471 {
472 	if (node) {
473 		ASSERT(list_empty(&node->list));
474 		ASSERT(list_empty(&node->lower));
475 		ASSERT(node->eb == NULL);
476 		cache->nr_nodes--;
477 		btrfs_put_root(node->root);
478 		kfree(node);
479 	}
480 }
481 
482 static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
483 					   struct btrfs_backref_edge *edge)
484 {
485 	if (edge) {
486 		cache->nr_edges--;
487 		kfree(edge);
488 	}
489 }
490 
491 static inline void btrfs_backref_unlock_node_buffer(
492 		struct btrfs_backref_node *node)
493 {
494 	if (node->locked) {
495 		btrfs_tree_unlock(node->eb);
496 		node->locked = 0;
497 	}
498 }
499 
500 static inline void btrfs_backref_drop_node_buffer(
501 		struct btrfs_backref_node *node)
502 {
503 	if (node->eb) {
504 		btrfs_backref_unlock_node_buffer(node);
505 		free_extent_buffer(node->eb);
506 		node->eb = NULL;
507 	}
508 }
509 
510 /*
511  * Drop the backref node from cache without cleaning up its children
512  * edges.
513  *
514  * This can only be called on node without parent edges.
515  * The children edges are still kept as is.
516  */
517 static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
518 					   struct btrfs_backref_node *node)
519 {
520 	ASSERT(list_empty(&node->upper));
521 
522 	btrfs_backref_drop_node_buffer(node);
523 	list_del_init(&node->list);
524 	list_del_init(&node->lower);
525 	if (!RB_EMPTY_NODE(&node->rb_node))
526 		rb_erase(&node->rb_node, &tree->rb_root);
527 	btrfs_backref_free_node(tree, node);
528 }
529 
530 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
531 				struct btrfs_backref_node *node);
532 
533 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
534 
535 static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
536 				       u64 bytenr, int errno)
537 {
538 	btrfs_panic(fs_info, errno,
539 		    "Inconsistency in backref cache found at offset %llu",
540 		    bytenr);
541 }
542 
543 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
544 				struct btrfs_backref_cache *cache,
545 				struct btrfs_path *path,
546 				struct btrfs_backref_iter *iter,
547 				struct btrfs_key *node_key,
548 				struct btrfs_backref_node *cur);
549 
550 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
551 				     struct btrfs_backref_node *start);
552 
553 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
554 				 struct btrfs_backref_node *node);
555 
556 #endif
557