xref: /openbmc/linux/fs/btrfs/backref.h (revision e65e175b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_BACKREF_H
7 #define BTRFS_BACKREF_H
8 
9 #include <linux/btrfs.h>
10 #include "messages.h"
11 #include "ulist.h"
12 #include "disk-io.h"
13 #include "extent_io.h"
14 
15 /*
16  * Used by implementations of iterate_extent_inodes_t (see definition below) to
17  * signal that backref iteration can stop immediately and no error happened.
18  * The value must be non-negative and must not be 0, 1 (which is a common return
19  * value from things like btrfs_search_slot() and used internally in the backref
20  * walking code) and different from BACKREF_FOUND_SHARED and
21  * BACKREF_FOUND_NOT_SHARED
22  */
23 #define BTRFS_ITERATE_EXTENT_INODES_STOP 5
24 
25 /*
26  * Should return 0 if no errors happened and iteration of backrefs should
27  * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
28  * value to immediately stop iteration and possibly signal an error back to
29  * the caller.
30  */
31 typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
32 				      u64 root, void *ctx);
33 
34 /*
35  * Context and arguments for backref walking functions. Some of the fields are
36  * to be filled by the caller of such functions while other are filled by the
37  * functions themselves, as described below.
38  */
39 struct btrfs_backref_walk_ctx {
40 	/*
41 	 * The address of the extent for which we are doing backref walking.
42 	 * Can be either a data extent or a metadata extent.
43 	 *
44 	 * Must always be set by the top level caller.
45 	 */
46 	u64 bytenr;
47 	/*
48 	 * Offset relative to the target extent. This is only used for data
49 	 * extents, and it's meaningful because we can have file extent items
50 	 * that point only to a section of a data extent ("bookend" extents),
51 	 * and we want to filter out any that don't point to a section of the
52 	 * data extent containing the given offset.
53 	 *
54 	 * Must always be set by the top level caller.
55 	 */
56 	u64 extent_item_pos;
57 	/*
58 	 * If true and bytenr corresponds to a data extent, then references from
59 	 * all file extent items that point to the data extent are considered,
60 	 * @extent_item_pos is ignored.
61 	 */
62 	bool ignore_extent_item_pos;
63 	/* A valid transaction handle or NULL. */
64 	struct btrfs_trans_handle *trans;
65 	/*
66 	 * The file system's info object, can not be NULL.
67 	 *
68 	 * Must always be set by the top level caller.
69 	 */
70 	struct btrfs_fs_info *fs_info;
71 	/*
72 	 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
73 	 * caller joined the tree mod log to get a consistent view of b+trees
74 	 * while we do backref walking, or BTRFS_SEQ_LAST.
75 	 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
76 	 * commit roots when searching b+trees - this is a special case for
77 	 * qgroups used during a transaction commit.
78 	 */
79 	u64 time_seq;
80 	/*
81 	 * Used to collect the bytenr of metadata extents that point to the
82 	 * target extent.
83 	 */
84 	struct ulist *refs;
85 	/*
86 	 * List used to collect the IDs of the roots from which the target
87 	 * extent is accessible. Can be NULL in case the caller does not care
88 	 * about collecting root IDs.
89 	 */
90 	struct ulist *roots;
91 	/*
92 	 * Used by iterate_extent_inodes() and the main backref walk code
93 	 * (find_parent_nodes()). Lookup and store functions for an optional
94 	 * cache which maps the logical address (bytenr) of leaves to an array
95 	 * of root IDs.
96 	 */
97 	bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
98 			     const u64 **root_ids_ret, int *root_count_ret);
99 	void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
100 			    void *user_ctx);
101 	/*
102 	 * If this is not NULL, then the backref walking code will call this
103 	 * for each indirect data extent reference as soon as it finds one,
104 	 * before collecting all the remaining backrefs and before resolving
105 	 * indirect backrefs. This allows for the caller to terminate backref
106 	 * walking as soon as it finds one backref that matches some specific
107 	 * criteria. The @cache_lookup and @cache_store callbacks should not
108 	 * be NULL in order to use this callback.
109 	 */
110 	iterate_extent_inodes_t *indirect_ref_iterator;
111 	/*
112 	 * If this is not NULL, then the backref walking code will call this for
113 	 * each extent item it's meant to process before it actually starts
114 	 * processing it. If this returns anything other than 0, then it stops
115 	 * the backref walking code immediately.
116 	 */
117 	int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
118 				 const struct extent_buffer *leaf, void *user_ctx);
119 	/*
120 	 * If this is not NULL, then the backref walking code will call this for
121 	 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
122 	 * processing that data ref. If this callback return false, then it will
123 	 * ignore this data ref and it will never resolve the indirect data ref,
124 	 * saving time searching for leaves in a fs tree with file extent items
125 	 * matching the data ref.
126 	 */
127 	bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
128 	/* Context object to pass to the callbacks defined above. */
129 	void *user_ctx;
130 };
131 
132 struct inode_fs_paths {
133 	struct btrfs_path		*btrfs_path;
134 	struct btrfs_root		*fs_root;
135 	struct btrfs_data_container	*fspath;
136 };
137 
138 struct btrfs_backref_shared_cache_entry {
139 	u64 bytenr;
140 	u64 gen;
141 	bool is_shared;
142 };
143 
144 #define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
145 
146 struct btrfs_backref_share_check_ctx {
147 	/* Ulists used during backref walking. */
148 	struct ulist refs;
149 	/*
150 	 * The current leaf the caller of btrfs_is_data_extent_shared() is at.
151 	 * Typically the caller (at the moment only fiemap) tries to determine
152 	 * the sharedness of data extents point by file extent items from entire
153 	 * leaves.
154 	 */
155 	u64 curr_leaf_bytenr;
156 	/*
157 	 * The previous leaf the caller was at in the previous call to
158 	 * btrfs_is_data_extent_shared(). This may be the same as the current
159 	 * leaf. On the first call it must be 0.
160 	 */
161 	u64 prev_leaf_bytenr;
162 	/*
163 	 * A path from a root to a leaf that has a file extent item pointing to
164 	 * a given data extent should never exceed the maximum b+tree height.
165 	 */
166 	struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
167 	bool use_path_cache;
168 	/*
169 	 * Cache the sharedness result for the last few extents we have found,
170 	 * but only for extents for which we have multiple file extent items
171 	 * that point to them.
172 	 * It's very common to have several file extent items that point to the
173 	 * same extent (bytenr) but with different offsets and lengths. This
174 	 * typically happens for COW writes, partial writes into prealloc
175 	 * extents, NOCOW writes after snapshoting a root, hole punching or
176 	 * reflinking within the same file (less common perhaps).
177 	 * So keep a small cache with the lookup results for the extent pointed
178 	 * by the last few file extent items. This cache is checked, with a
179 	 * linear scan, whenever btrfs_is_data_extent_shared() is called, so
180 	 * it must be small so that it does not negatively affect performance in
181 	 * case we don't have multiple file extent items that point to the same
182 	 * data extent.
183 	 */
184 	struct {
185 		u64 bytenr;
186 		bool is_shared;
187 	} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
188 	/*
189 	 * The slot in the prev_extents_cache array that will be used for
190 	 * storing the sharedness result of a new data extent.
191 	 */
192 	int prev_extents_cache_slot;
193 };
194 
195 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
196 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
197 
198 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
199 			struct btrfs_path *path, struct btrfs_key *found_key,
200 			u64 *flags);
201 
202 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
203 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
204 			    u32 item_size, u64 *out_root, u8 *out_level);
205 
206 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
207 			  bool search_commit_root,
208 			  iterate_extent_inodes_t *iterate, void *user_ctx);
209 
210 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
211 				struct btrfs_path *path, void *ctx,
212 				bool ignore_offset);
213 
214 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
215 
216 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
217 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
218 			 bool skip_commit_root_sem);
219 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
220 			u32 name_len, unsigned long name_off,
221 			struct extent_buffer *eb_in, u64 parent,
222 			char *dest, u32 size);
223 
224 struct btrfs_data_container *init_data_container(u32 total_bytes);
225 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
226 					struct btrfs_path *path);
227 void free_ipath(struct inode_fs_paths *ipath);
228 
229 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
230 			  u64 start_off, struct btrfs_path *path,
231 			  struct btrfs_inode_extref **ret_extref,
232 			  u64 *found_off);
233 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
234 				u64 extent_gen,
235 				struct btrfs_backref_share_check_ctx *ctx);
236 
237 int __init btrfs_prelim_ref_init(void);
238 void __cold btrfs_prelim_ref_exit(void);
239 
240 struct prelim_ref {
241 	struct rb_node rbnode;
242 	u64 root_id;
243 	struct btrfs_key key_for_search;
244 	int level;
245 	int count;
246 	struct extent_inode_elem *inode_list;
247 	u64 parent;
248 	u64 wanted_disk_byte;
249 };
250 
251 /*
252  * Iterate backrefs of one extent.
253  *
254  * Now it only supports iteration of tree block in commit root.
255  */
256 struct btrfs_backref_iter {
257 	u64 bytenr;
258 	struct btrfs_path *path;
259 	struct btrfs_fs_info *fs_info;
260 	struct btrfs_key cur_key;
261 	u32 item_ptr;
262 	u32 cur_ptr;
263 	u32 end_ptr;
264 };
265 
266 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
267 
268 static inline void btrfs_backref_iter_free(struct btrfs_backref_iter *iter)
269 {
270 	if (!iter)
271 		return;
272 	btrfs_free_path(iter->path);
273 	kfree(iter);
274 }
275 
276 static inline struct extent_buffer *btrfs_backref_get_eb(
277 		struct btrfs_backref_iter *iter)
278 {
279 	if (!iter)
280 		return NULL;
281 	return iter->path->nodes[0];
282 }
283 
284 /*
285  * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
286  * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
287  *
288  * This helper determines if that's the case.
289  */
290 static inline bool btrfs_backref_has_tree_block_info(
291 		struct btrfs_backref_iter *iter)
292 {
293 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
294 	    iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
295 		return true;
296 	return false;
297 }
298 
299 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
300 
301 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
302 
303 static inline bool btrfs_backref_iter_is_inline_ref(
304 		struct btrfs_backref_iter *iter)
305 {
306 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
307 	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
308 		return true;
309 	return false;
310 }
311 
312 static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
313 {
314 	iter->bytenr = 0;
315 	iter->item_ptr = 0;
316 	iter->cur_ptr = 0;
317 	iter->end_ptr = 0;
318 	btrfs_release_path(iter->path);
319 	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
320 }
321 
322 /*
323  * Backref cache related structures
324  *
325  * The whole objective of backref_cache is to build a bi-directional map
326  * of tree blocks (represented by backref_node) and all their parents.
327  */
328 
329 /*
330  * Represent a tree block in the backref cache
331  */
332 struct btrfs_backref_node {
333 	struct {
334 		struct rb_node rb_node;
335 		u64 bytenr;
336 	}; /* Use rb_simple_node for search/insert */
337 
338 	u64 new_bytenr;
339 	/* Objectid of tree block owner, can be not uptodate */
340 	u64 owner;
341 	/* Link to pending, changed or detached list */
342 	struct list_head list;
343 
344 	/* List of upper level edges, which link this node to its parents */
345 	struct list_head upper;
346 	/* List of lower level edges, which link this node to its children */
347 	struct list_head lower;
348 
349 	/* NULL if this node is not tree root */
350 	struct btrfs_root *root;
351 	/* Extent buffer got by COWing the block */
352 	struct extent_buffer *eb;
353 	/* Level of the tree block */
354 	unsigned int level:8;
355 	/* Is the block in a non-shareable tree */
356 	unsigned int cowonly:1;
357 	/* 1 if no child node is in the cache */
358 	unsigned int lowest:1;
359 	/* Is the extent buffer locked */
360 	unsigned int locked:1;
361 	/* Has the block been processed */
362 	unsigned int processed:1;
363 	/* Have backrefs of this block been checked */
364 	unsigned int checked:1;
365 	/*
366 	 * 1 if corresponding block has been COWed but some upper level block
367 	 * pointers may not point to the new location
368 	 */
369 	unsigned int pending:1;
370 	/* 1 if the backref node isn't connected to any other backref node */
371 	unsigned int detached:1;
372 
373 	/*
374 	 * For generic purpose backref cache, where we only care if it's a reloc
375 	 * root, doesn't care the source subvolid.
376 	 */
377 	unsigned int is_reloc_root:1;
378 };
379 
380 #define LOWER	0
381 #define UPPER	1
382 
383 /*
384  * Represent an edge connecting upper and lower backref nodes.
385  */
386 struct btrfs_backref_edge {
387 	/*
388 	 * list[LOWER] is linked to btrfs_backref_node::upper of lower level
389 	 * node, and list[UPPER] is linked to btrfs_backref_node::lower of
390 	 * upper level node.
391 	 *
392 	 * Also, build_backref_tree() uses list[UPPER] for pending edges, before
393 	 * linking list[UPPER] to its upper level nodes.
394 	 */
395 	struct list_head list[2];
396 
397 	/* Two related nodes */
398 	struct btrfs_backref_node *node[2];
399 };
400 
401 struct btrfs_backref_cache {
402 	/* Red black tree of all backref nodes in the cache */
403 	struct rb_root rb_root;
404 	/* For passing backref nodes to btrfs_reloc_cow_block */
405 	struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
406 	/*
407 	 * List of blocks that have been COWed but some block pointers in upper
408 	 * level blocks may not reflect the new location
409 	 */
410 	struct list_head pending[BTRFS_MAX_LEVEL];
411 	/* List of backref nodes with no child node */
412 	struct list_head leaves;
413 	/* List of blocks that have been COWed in current transaction */
414 	struct list_head changed;
415 	/* List of detached backref node. */
416 	struct list_head detached;
417 
418 	u64 last_trans;
419 
420 	int nr_nodes;
421 	int nr_edges;
422 
423 	/* List of unchecked backref edges during backref cache build */
424 	struct list_head pending_edge;
425 
426 	/* List of useless backref nodes during backref cache build */
427 	struct list_head useless_node;
428 
429 	struct btrfs_fs_info *fs_info;
430 
431 	/*
432 	 * Whether this cache is for relocation
433 	 *
434 	 * Reloction backref cache require more info for reloc root compared
435 	 * to generic backref cache.
436 	 */
437 	unsigned int is_reloc;
438 };
439 
440 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
441 			      struct btrfs_backref_cache *cache, int is_reloc);
442 struct btrfs_backref_node *btrfs_backref_alloc_node(
443 		struct btrfs_backref_cache *cache, u64 bytenr, int level);
444 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
445 		struct btrfs_backref_cache *cache);
446 
447 #define		LINK_LOWER	(1 << 0)
448 #define		LINK_UPPER	(1 << 1)
449 static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
450 					   struct btrfs_backref_node *lower,
451 					   struct btrfs_backref_node *upper,
452 					   int link_which)
453 {
454 	ASSERT(upper && lower && upper->level == lower->level + 1);
455 	edge->node[LOWER] = lower;
456 	edge->node[UPPER] = upper;
457 	if (link_which & LINK_LOWER)
458 		list_add_tail(&edge->list[LOWER], &lower->upper);
459 	if (link_which & LINK_UPPER)
460 		list_add_tail(&edge->list[UPPER], &upper->lower);
461 }
462 
463 static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
464 					   struct btrfs_backref_node *node)
465 {
466 	if (node) {
467 		ASSERT(list_empty(&node->list));
468 		ASSERT(list_empty(&node->lower));
469 		ASSERT(node->eb == NULL);
470 		cache->nr_nodes--;
471 		btrfs_put_root(node->root);
472 		kfree(node);
473 	}
474 }
475 
476 static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
477 					   struct btrfs_backref_edge *edge)
478 {
479 	if (edge) {
480 		cache->nr_edges--;
481 		kfree(edge);
482 	}
483 }
484 
485 static inline void btrfs_backref_unlock_node_buffer(
486 		struct btrfs_backref_node *node)
487 {
488 	if (node->locked) {
489 		btrfs_tree_unlock(node->eb);
490 		node->locked = 0;
491 	}
492 }
493 
494 static inline void btrfs_backref_drop_node_buffer(
495 		struct btrfs_backref_node *node)
496 {
497 	if (node->eb) {
498 		btrfs_backref_unlock_node_buffer(node);
499 		free_extent_buffer(node->eb);
500 		node->eb = NULL;
501 	}
502 }
503 
504 /*
505  * Drop the backref node from cache without cleaning up its children
506  * edges.
507  *
508  * This can only be called on node without parent edges.
509  * The children edges are still kept as is.
510  */
511 static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
512 					   struct btrfs_backref_node *node)
513 {
514 	ASSERT(list_empty(&node->upper));
515 
516 	btrfs_backref_drop_node_buffer(node);
517 	list_del_init(&node->list);
518 	list_del_init(&node->lower);
519 	if (!RB_EMPTY_NODE(&node->rb_node))
520 		rb_erase(&node->rb_node, &tree->rb_root);
521 	btrfs_backref_free_node(tree, node);
522 }
523 
524 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
525 				struct btrfs_backref_node *node);
526 
527 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
528 
529 static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
530 				       u64 bytenr, int errno)
531 {
532 	btrfs_panic(fs_info, errno,
533 		    "Inconsistency in backref cache found at offset %llu",
534 		    bytenr);
535 }
536 
537 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
538 				struct btrfs_path *path,
539 				struct btrfs_backref_iter *iter,
540 				struct btrfs_key *node_key,
541 				struct btrfs_backref_node *cur);
542 
543 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
544 				     struct btrfs_backref_node *start);
545 
546 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
547 				 struct btrfs_backref_node *node);
548 
549 #endif
550