1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 offset = 0; 40 struct extent_inode_elem *e; 41 42 if (!btrfs_file_extent_compression(eb, fi) && 43 !btrfs_file_extent_encryption(eb, fi) && 44 !btrfs_file_extent_other_encoding(eb, fi)) { 45 u64 data_offset; 46 u64 data_len; 47 48 data_offset = btrfs_file_extent_offset(eb, fi); 49 data_len = btrfs_file_extent_num_bytes(eb, fi); 50 51 if (extent_item_pos < data_offset || 52 extent_item_pos >= data_offset + data_len) 53 return 1; 54 offset = extent_item_pos - data_offset; 55 } 56 57 e = kmalloc(sizeof(*e), GFP_NOFS); 58 if (!e) 59 return -ENOMEM; 60 61 e->next = *eie; 62 e->inum = key->objectid; 63 e->offset = key->offset + offset; 64 *eie = e; 65 66 return 0; 67 } 68 69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 70 u64 extent_item_pos, 71 struct extent_inode_elem **eie) 72 { 73 u64 disk_byte; 74 struct btrfs_key key; 75 struct btrfs_file_extent_item *fi; 76 int slot; 77 int nritems; 78 int extent_type; 79 int ret; 80 81 /* 82 * from the shared data ref, we only have the leaf but we need 83 * the key. thus, we must look into all items and see that we 84 * find one (some) with a reference to our extent item. 85 */ 86 nritems = btrfs_header_nritems(eb); 87 for (slot = 0; slot < nritems; ++slot) { 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 if (key.type != BTRFS_EXTENT_DATA_KEY) 90 continue; 91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 92 extent_type = btrfs_file_extent_type(eb, fi); 93 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 94 continue; 95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 97 if (disk_byte != wanted_disk_byte) 98 continue; 99 100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 101 if (ret < 0) 102 return ret; 103 } 104 105 return 0; 106 } 107 108 /* 109 * this structure records all encountered refs on the way up to the root 110 */ 111 struct __prelim_ref { 112 struct list_head list; 113 u64 root_id; 114 struct btrfs_key key_for_search; 115 int level; 116 int count; 117 struct extent_inode_elem *inode_list; 118 u64 parent; 119 u64 wanted_disk_byte; 120 }; 121 122 static struct kmem_cache *btrfs_prelim_ref_cache; 123 124 int __init btrfs_prelim_ref_init(void) 125 { 126 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 127 sizeof(struct __prelim_ref), 128 0, 129 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 130 NULL); 131 if (!btrfs_prelim_ref_cache) 132 return -ENOMEM; 133 return 0; 134 } 135 136 void btrfs_prelim_ref_exit(void) 137 { 138 if (btrfs_prelim_ref_cache) 139 kmem_cache_destroy(btrfs_prelim_ref_cache); 140 } 141 142 /* 143 * the rules for all callers of this function are: 144 * - obtaining the parent is the goal 145 * - if you add a key, you must know that it is a correct key 146 * - if you cannot add the parent or a correct key, then we will look into the 147 * block later to set a correct key 148 * 149 * delayed refs 150 * ============ 151 * backref type | shared | indirect | shared | indirect 152 * information | tree | tree | data | data 153 * --------------------+--------+----------+--------+---------- 154 * parent logical | y | - | - | - 155 * key to resolve | - | y | y | y 156 * tree block logical | - | - | - | - 157 * root for resolving | y | y | y | y 158 * 159 * - column 1: we've the parent -> done 160 * - column 2, 3, 4: we use the key to find the parent 161 * 162 * on disk refs (inline or keyed) 163 * ============================== 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | y | - 168 * key to resolve | - | - | - | y 169 * tree block logical | y | y | y | y 170 * root for resolving | - | y | y | y 171 * 172 * - column 1, 3: we've the parent -> done 173 * - column 2: we take the first key from the block to find the parent 174 * (see __add_missing_keys) 175 * - column 4: we use the key to find the parent 176 * 177 * additional information that's available but not required to find the parent 178 * block might help in merging entries to gain some speed. 179 */ 180 181 static int __add_prelim_ref(struct list_head *head, u64 root_id, 182 struct btrfs_key *key, int level, 183 u64 parent, u64 wanted_disk_byte, int count, 184 gfp_t gfp_mask) 185 { 186 struct __prelim_ref *ref; 187 188 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 189 if (!ref) 190 return -ENOMEM; 191 192 ref->root_id = root_id; 193 if (key) 194 ref->key_for_search = *key; 195 else 196 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 197 198 ref->inode_list = NULL; 199 ref->level = level; 200 ref->count = count; 201 ref->parent = parent; 202 ref->wanted_disk_byte = wanted_disk_byte; 203 list_add_tail(&ref->list, head); 204 205 return 0; 206 } 207 208 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 209 struct ulist *parents, int level, 210 struct btrfs_key *key_for_search, u64 time_seq, 211 u64 wanted_disk_byte, 212 const u64 *extent_item_pos) 213 { 214 int ret = 0; 215 int slot; 216 struct extent_buffer *eb; 217 struct btrfs_key key; 218 struct btrfs_file_extent_item *fi; 219 struct extent_inode_elem *eie = NULL, *old = NULL; 220 u64 disk_byte; 221 222 if (level != 0) { 223 eb = path->nodes[level]; 224 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 225 if (ret < 0) 226 return ret; 227 return 0; 228 } 229 230 /* 231 * We normally enter this function with the path already pointing to 232 * the first item to check. But sometimes, we may enter it with 233 * slot==nritems. In that case, go to the next leaf before we continue. 234 */ 235 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 236 ret = btrfs_next_old_leaf(root, path, time_seq); 237 238 while (!ret) { 239 eb = path->nodes[0]; 240 slot = path->slots[0]; 241 242 btrfs_item_key_to_cpu(eb, &key, slot); 243 244 if (key.objectid != key_for_search->objectid || 245 key.type != BTRFS_EXTENT_DATA_KEY) 246 break; 247 248 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 249 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 250 251 if (disk_byte == wanted_disk_byte) { 252 eie = NULL; 253 old = NULL; 254 if (extent_item_pos) { 255 ret = check_extent_in_eb(&key, eb, fi, 256 *extent_item_pos, 257 &eie); 258 if (ret < 0) 259 break; 260 } 261 if (ret > 0) 262 goto next; 263 ret = ulist_add_merge(parents, eb->start, 264 (uintptr_t)eie, 265 (u64 *)&old, GFP_NOFS); 266 if (ret < 0) 267 break; 268 if (!ret && extent_item_pos) { 269 while (old->next) 270 old = old->next; 271 old->next = eie; 272 } 273 } 274 next: 275 ret = btrfs_next_old_item(root, path, time_seq); 276 } 277 278 if (ret > 0) 279 ret = 0; 280 return ret; 281 } 282 283 /* 284 * resolve an indirect backref in the form (root_id, key, level) 285 * to a logical address 286 */ 287 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 288 struct btrfs_path *path, u64 time_seq, 289 struct __prelim_ref *ref, 290 struct ulist *parents, 291 const u64 *extent_item_pos) 292 { 293 struct btrfs_root *root; 294 struct btrfs_key root_key; 295 struct extent_buffer *eb; 296 int ret = 0; 297 int root_level; 298 int level = ref->level; 299 300 root_key.objectid = ref->root_id; 301 root_key.type = BTRFS_ROOT_ITEM_KEY; 302 root_key.offset = (u64)-1; 303 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 304 if (IS_ERR(root)) { 305 ret = PTR_ERR(root); 306 goto out; 307 } 308 309 root_level = btrfs_old_root_level(root, time_seq); 310 311 if (root_level + 1 == level) 312 goto out; 313 314 path->lowest_level = level; 315 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 316 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 317 "%d for key (%llu %u %llu)\n", 318 ref->root_id, level, ref->count, ret, 319 ref->key_for_search.objectid, ref->key_for_search.type, 320 ref->key_for_search.offset); 321 if (ret < 0) 322 goto out; 323 324 eb = path->nodes[level]; 325 while (!eb) { 326 if (!level) { 327 WARN_ON(1); 328 ret = 1; 329 goto out; 330 } 331 level--; 332 eb = path->nodes[level]; 333 } 334 335 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 336 time_seq, ref->wanted_disk_byte, 337 extent_item_pos); 338 out: 339 path->lowest_level = 0; 340 btrfs_release_path(path); 341 return ret; 342 } 343 344 /* 345 * resolve all indirect backrefs from the list 346 */ 347 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 348 struct btrfs_path *path, u64 time_seq, 349 struct list_head *head, 350 const u64 *extent_item_pos) 351 { 352 int err; 353 int ret = 0; 354 struct __prelim_ref *ref; 355 struct __prelim_ref *ref_safe; 356 struct __prelim_ref *new_ref; 357 struct ulist *parents; 358 struct ulist_node *node; 359 struct ulist_iterator uiter; 360 361 parents = ulist_alloc(GFP_NOFS); 362 if (!parents) 363 return -ENOMEM; 364 365 /* 366 * _safe allows us to insert directly after the current item without 367 * iterating over the newly inserted items. 368 * we're also allowed to re-assign ref during iteration. 369 */ 370 list_for_each_entry_safe(ref, ref_safe, head, list) { 371 if (ref->parent) /* already direct */ 372 continue; 373 if (ref->count == 0) 374 continue; 375 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 376 parents, extent_item_pos); 377 if (err == -ENOMEM) 378 goto out; 379 if (err) 380 continue; 381 382 /* we put the first parent into the ref at hand */ 383 ULIST_ITER_INIT(&uiter); 384 node = ulist_next(parents, &uiter); 385 ref->parent = node ? node->val : 0; 386 ref->inode_list = node ? 387 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 388 389 /* additional parents require new refs being added here */ 390 while ((node = ulist_next(parents, &uiter))) { 391 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 392 GFP_NOFS); 393 if (!new_ref) { 394 ret = -ENOMEM; 395 goto out; 396 } 397 memcpy(new_ref, ref, sizeof(*ref)); 398 new_ref->parent = node->val; 399 new_ref->inode_list = (struct extent_inode_elem *) 400 (uintptr_t)node->aux; 401 list_add(&new_ref->list, &ref->list); 402 } 403 ulist_reinit(parents); 404 } 405 out: 406 ulist_free(parents); 407 return ret; 408 } 409 410 static inline int ref_for_same_block(struct __prelim_ref *ref1, 411 struct __prelim_ref *ref2) 412 { 413 if (ref1->level != ref2->level) 414 return 0; 415 if (ref1->root_id != ref2->root_id) 416 return 0; 417 if (ref1->key_for_search.type != ref2->key_for_search.type) 418 return 0; 419 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 420 return 0; 421 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 422 return 0; 423 if (ref1->parent != ref2->parent) 424 return 0; 425 426 return 1; 427 } 428 429 /* 430 * read tree blocks and add keys where required. 431 */ 432 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 433 struct list_head *head) 434 { 435 struct list_head *pos; 436 struct extent_buffer *eb; 437 438 list_for_each(pos, head) { 439 struct __prelim_ref *ref; 440 ref = list_entry(pos, struct __prelim_ref, list); 441 442 if (ref->parent) 443 continue; 444 if (ref->key_for_search.type) 445 continue; 446 BUG_ON(!ref->wanted_disk_byte); 447 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 448 fs_info->tree_root->leafsize, 0); 449 if (!eb || !extent_buffer_uptodate(eb)) { 450 free_extent_buffer(eb); 451 return -EIO; 452 } 453 btrfs_tree_read_lock(eb); 454 if (btrfs_header_level(eb) == 0) 455 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 456 else 457 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 458 btrfs_tree_read_unlock(eb); 459 free_extent_buffer(eb); 460 } 461 return 0; 462 } 463 464 /* 465 * merge two lists of backrefs and adjust counts accordingly 466 * 467 * mode = 1: merge identical keys, if key is set 468 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 469 * additionally, we could even add a key range for the blocks we 470 * looked into to merge even more (-> replace unresolved refs by those 471 * having a parent). 472 * mode = 2: merge identical parents 473 */ 474 static void __merge_refs(struct list_head *head, int mode) 475 { 476 struct list_head *pos1; 477 478 list_for_each(pos1, head) { 479 struct list_head *n2; 480 struct list_head *pos2; 481 struct __prelim_ref *ref1; 482 483 ref1 = list_entry(pos1, struct __prelim_ref, list); 484 485 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 486 pos2 = n2, n2 = pos2->next) { 487 struct __prelim_ref *ref2; 488 struct __prelim_ref *xchg; 489 struct extent_inode_elem *eie; 490 491 ref2 = list_entry(pos2, struct __prelim_ref, list); 492 493 if (mode == 1) { 494 if (!ref_for_same_block(ref1, ref2)) 495 continue; 496 if (!ref1->parent && ref2->parent) { 497 xchg = ref1; 498 ref1 = ref2; 499 ref2 = xchg; 500 } 501 } else { 502 if (ref1->parent != ref2->parent) 503 continue; 504 } 505 506 eie = ref1->inode_list; 507 while (eie && eie->next) 508 eie = eie->next; 509 if (eie) 510 eie->next = ref2->inode_list; 511 else 512 ref1->inode_list = ref2->inode_list; 513 ref1->count += ref2->count; 514 515 list_del(&ref2->list); 516 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 517 } 518 519 } 520 } 521 522 /* 523 * add all currently queued delayed refs from this head whose seq nr is 524 * smaller or equal that seq to the list 525 */ 526 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 527 struct list_head *prefs) 528 { 529 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 530 struct rb_node *n = &head->node.rb_node; 531 struct btrfs_key key; 532 struct btrfs_key op_key = {0}; 533 int sgn; 534 int ret = 0; 535 536 if (extent_op && extent_op->update_key) 537 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 538 539 while ((n = rb_prev(n))) { 540 struct btrfs_delayed_ref_node *node; 541 node = rb_entry(n, struct btrfs_delayed_ref_node, 542 rb_node); 543 if (node->bytenr != head->node.bytenr) 544 break; 545 WARN_ON(node->is_head); 546 547 if (node->seq > seq) 548 continue; 549 550 switch (node->action) { 551 case BTRFS_ADD_DELAYED_EXTENT: 552 case BTRFS_UPDATE_DELAYED_HEAD: 553 WARN_ON(1); 554 continue; 555 case BTRFS_ADD_DELAYED_REF: 556 sgn = 1; 557 break; 558 case BTRFS_DROP_DELAYED_REF: 559 sgn = -1; 560 break; 561 default: 562 BUG_ON(1); 563 } 564 switch (node->type) { 565 case BTRFS_TREE_BLOCK_REF_KEY: { 566 struct btrfs_delayed_tree_ref *ref; 567 568 ref = btrfs_delayed_node_to_tree_ref(node); 569 ret = __add_prelim_ref(prefs, ref->root, &op_key, 570 ref->level + 1, 0, node->bytenr, 571 node->ref_mod * sgn, GFP_ATOMIC); 572 break; 573 } 574 case BTRFS_SHARED_BLOCK_REF_KEY: { 575 struct btrfs_delayed_tree_ref *ref; 576 577 ref = btrfs_delayed_node_to_tree_ref(node); 578 ret = __add_prelim_ref(prefs, ref->root, NULL, 579 ref->level + 1, ref->parent, 580 node->bytenr, 581 node->ref_mod * sgn, GFP_ATOMIC); 582 break; 583 } 584 case BTRFS_EXTENT_DATA_REF_KEY: { 585 struct btrfs_delayed_data_ref *ref; 586 ref = btrfs_delayed_node_to_data_ref(node); 587 588 key.objectid = ref->objectid; 589 key.type = BTRFS_EXTENT_DATA_KEY; 590 key.offset = ref->offset; 591 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 592 node->bytenr, 593 node->ref_mod * sgn, GFP_ATOMIC); 594 break; 595 } 596 case BTRFS_SHARED_DATA_REF_KEY: { 597 struct btrfs_delayed_data_ref *ref; 598 599 ref = btrfs_delayed_node_to_data_ref(node); 600 601 key.objectid = ref->objectid; 602 key.type = BTRFS_EXTENT_DATA_KEY; 603 key.offset = ref->offset; 604 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 605 ref->parent, node->bytenr, 606 node->ref_mod * sgn, GFP_ATOMIC); 607 break; 608 } 609 default: 610 WARN_ON(1); 611 } 612 if (ret) 613 return ret; 614 } 615 616 return 0; 617 } 618 619 /* 620 * add all inline backrefs for bytenr to the list 621 */ 622 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 623 struct btrfs_path *path, u64 bytenr, 624 int *info_level, struct list_head *prefs) 625 { 626 int ret = 0; 627 int slot; 628 struct extent_buffer *leaf; 629 struct btrfs_key key; 630 struct btrfs_key found_key; 631 unsigned long ptr; 632 unsigned long end; 633 struct btrfs_extent_item *ei; 634 u64 flags; 635 u64 item_size; 636 637 /* 638 * enumerate all inline refs 639 */ 640 leaf = path->nodes[0]; 641 slot = path->slots[0]; 642 643 item_size = btrfs_item_size_nr(leaf, slot); 644 BUG_ON(item_size < sizeof(*ei)); 645 646 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 647 flags = btrfs_extent_flags(leaf, ei); 648 btrfs_item_key_to_cpu(leaf, &found_key, slot); 649 650 ptr = (unsigned long)(ei + 1); 651 end = (unsigned long)ei + item_size; 652 653 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 654 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 655 struct btrfs_tree_block_info *info; 656 657 info = (struct btrfs_tree_block_info *)ptr; 658 *info_level = btrfs_tree_block_level(leaf, info); 659 ptr += sizeof(struct btrfs_tree_block_info); 660 BUG_ON(ptr > end); 661 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 662 *info_level = found_key.offset; 663 } else { 664 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 665 } 666 667 while (ptr < end) { 668 struct btrfs_extent_inline_ref *iref; 669 u64 offset; 670 int type; 671 672 iref = (struct btrfs_extent_inline_ref *)ptr; 673 type = btrfs_extent_inline_ref_type(leaf, iref); 674 offset = btrfs_extent_inline_ref_offset(leaf, iref); 675 676 switch (type) { 677 case BTRFS_SHARED_BLOCK_REF_KEY: 678 ret = __add_prelim_ref(prefs, 0, NULL, 679 *info_level + 1, offset, 680 bytenr, 1, GFP_NOFS); 681 break; 682 case BTRFS_SHARED_DATA_REF_KEY: { 683 struct btrfs_shared_data_ref *sdref; 684 int count; 685 686 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 687 count = btrfs_shared_data_ref_count(leaf, sdref); 688 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 689 bytenr, count, GFP_NOFS); 690 break; 691 } 692 case BTRFS_TREE_BLOCK_REF_KEY: 693 ret = __add_prelim_ref(prefs, offset, NULL, 694 *info_level + 1, 0, 695 bytenr, 1, GFP_NOFS); 696 break; 697 case BTRFS_EXTENT_DATA_REF_KEY: { 698 struct btrfs_extent_data_ref *dref; 699 int count; 700 u64 root; 701 702 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 703 count = btrfs_extent_data_ref_count(leaf, dref); 704 key.objectid = btrfs_extent_data_ref_objectid(leaf, 705 dref); 706 key.type = BTRFS_EXTENT_DATA_KEY; 707 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 708 root = btrfs_extent_data_ref_root(leaf, dref); 709 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 710 bytenr, count, GFP_NOFS); 711 break; 712 } 713 default: 714 WARN_ON(1); 715 } 716 if (ret) 717 return ret; 718 ptr += btrfs_extent_inline_ref_size(type); 719 } 720 721 return 0; 722 } 723 724 /* 725 * add all non-inline backrefs for bytenr to the list 726 */ 727 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 728 struct btrfs_path *path, u64 bytenr, 729 int info_level, struct list_head *prefs) 730 { 731 struct btrfs_root *extent_root = fs_info->extent_root; 732 int ret; 733 int slot; 734 struct extent_buffer *leaf; 735 struct btrfs_key key; 736 737 while (1) { 738 ret = btrfs_next_item(extent_root, path); 739 if (ret < 0) 740 break; 741 if (ret) { 742 ret = 0; 743 break; 744 } 745 746 slot = path->slots[0]; 747 leaf = path->nodes[0]; 748 btrfs_item_key_to_cpu(leaf, &key, slot); 749 750 if (key.objectid != bytenr) 751 break; 752 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 753 continue; 754 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 755 break; 756 757 switch (key.type) { 758 case BTRFS_SHARED_BLOCK_REF_KEY: 759 ret = __add_prelim_ref(prefs, 0, NULL, 760 info_level + 1, key.offset, 761 bytenr, 1, GFP_NOFS); 762 break; 763 case BTRFS_SHARED_DATA_REF_KEY: { 764 struct btrfs_shared_data_ref *sdref; 765 int count; 766 767 sdref = btrfs_item_ptr(leaf, slot, 768 struct btrfs_shared_data_ref); 769 count = btrfs_shared_data_ref_count(leaf, sdref); 770 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 771 bytenr, count, GFP_NOFS); 772 break; 773 } 774 case BTRFS_TREE_BLOCK_REF_KEY: 775 ret = __add_prelim_ref(prefs, key.offset, NULL, 776 info_level + 1, 0, 777 bytenr, 1, GFP_NOFS); 778 break; 779 case BTRFS_EXTENT_DATA_REF_KEY: { 780 struct btrfs_extent_data_ref *dref; 781 int count; 782 u64 root; 783 784 dref = btrfs_item_ptr(leaf, slot, 785 struct btrfs_extent_data_ref); 786 count = btrfs_extent_data_ref_count(leaf, dref); 787 key.objectid = btrfs_extent_data_ref_objectid(leaf, 788 dref); 789 key.type = BTRFS_EXTENT_DATA_KEY; 790 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 791 root = btrfs_extent_data_ref_root(leaf, dref); 792 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 793 bytenr, count, GFP_NOFS); 794 break; 795 } 796 default: 797 WARN_ON(1); 798 } 799 if (ret) 800 return ret; 801 802 } 803 804 return ret; 805 } 806 807 /* 808 * this adds all existing backrefs (inline backrefs, backrefs and delayed 809 * refs) for the given bytenr to the refs list, merges duplicates and resolves 810 * indirect refs to their parent bytenr. 811 * When roots are found, they're added to the roots list 812 * 813 * FIXME some caching might speed things up 814 */ 815 static int find_parent_nodes(struct btrfs_trans_handle *trans, 816 struct btrfs_fs_info *fs_info, u64 bytenr, 817 u64 time_seq, struct ulist *refs, 818 struct ulist *roots, const u64 *extent_item_pos) 819 { 820 struct btrfs_key key; 821 struct btrfs_path *path; 822 struct btrfs_delayed_ref_root *delayed_refs = NULL; 823 struct btrfs_delayed_ref_head *head; 824 int info_level = 0; 825 int ret; 826 struct list_head prefs_delayed; 827 struct list_head prefs; 828 struct __prelim_ref *ref; 829 830 INIT_LIST_HEAD(&prefs); 831 INIT_LIST_HEAD(&prefs_delayed); 832 833 key.objectid = bytenr; 834 key.offset = (u64)-1; 835 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 836 key.type = BTRFS_METADATA_ITEM_KEY; 837 else 838 key.type = BTRFS_EXTENT_ITEM_KEY; 839 840 path = btrfs_alloc_path(); 841 if (!path) 842 return -ENOMEM; 843 if (!trans) 844 path->search_commit_root = 1; 845 846 /* 847 * grab both a lock on the path and a lock on the delayed ref head. 848 * We need both to get a consistent picture of how the refs look 849 * at a specified point in time 850 */ 851 again: 852 head = NULL; 853 854 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 855 if (ret < 0) 856 goto out; 857 BUG_ON(ret == 0); 858 859 if (trans) { 860 /* 861 * look if there are updates for this ref queued and lock the 862 * head 863 */ 864 delayed_refs = &trans->transaction->delayed_refs; 865 spin_lock(&delayed_refs->lock); 866 head = btrfs_find_delayed_ref_head(trans, bytenr); 867 if (head) { 868 if (!mutex_trylock(&head->mutex)) { 869 atomic_inc(&head->node.refs); 870 spin_unlock(&delayed_refs->lock); 871 872 btrfs_release_path(path); 873 874 /* 875 * Mutex was contended, block until it's 876 * released and try again 877 */ 878 mutex_lock(&head->mutex); 879 mutex_unlock(&head->mutex); 880 btrfs_put_delayed_ref(&head->node); 881 goto again; 882 } 883 ret = __add_delayed_refs(head, time_seq, 884 &prefs_delayed); 885 mutex_unlock(&head->mutex); 886 if (ret) { 887 spin_unlock(&delayed_refs->lock); 888 goto out; 889 } 890 } 891 spin_unlock(&delayed_refs->lock); 892 } 893 894 if (path->slots[0]) { 895 struct extent_buffer *leaf; 896 int slot; 897 898 path->slots[0]--; 899 leaf = path->nodes[0]; 900 slot = path->slots[0]; 901 btrfs_item_key_to_cpu(leaf, &key, slot); 902 if (key.objectid == bytenr && 903 (key.type == BTRFS_EXTENT_ITEM_KEY || 904 key.type == BTRFS_METADATA_ITEM_KEY)) { 905 ret = __add_inline_refs(fs_info, path, bytenr, 906 &info_level, &prefs); 907 if (ret) 908 goto out; 909 ret = __add_keyed_refs(fs_info, path, bytenr, 910 info_level, &prefs); 911 if (ret) 912 goto out; 913 } 914 } 915 btrfs_release_path(path); 916 917 list_splice_init(&prefs_delayed, &prefs); 918 919 ret = __add_missing_keys(fs_info, &prefs); 920 if (ret) 921 goto out; 922 923 __merge_refs(&prefs, 1); 924 925 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 926 extent_item_pos); 927 if (ret) 928 goto out; 929 930 __merge_refs(&prefs, 2); 931 932 while (!list_empty(&prefs)) { 933 ref = list_first_entry(&prefs, struct __prelim_ref, list); 934 WARN_ON(ref->count < 0); 935 if (ref->count && ref->root_id && ref->parent == 0) { 936 /* no parent == root of tree */ 937 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 938 if (ret < 0) 939 goto out; 940 } 941 if (ref->count && ref->parent) { 942 struct extent_inode_elem *eie = NULL; 943 if (extent_item_pos && !ref->inode_list) { 944 u32 bsz; 945 struct extent_buffer *eb; 946 bsz = btrfs_level_size(fs_info->extent_root, 947 info_level); 948 eb = read_tree_block(fs_info->extent_root, 949 ref->parent, bsz, 0); 950 if (!eb || !extent_buffer_uptodate(eb)) { 951 free_extent_buffer(eb); 952 ret = -EIO; 953 goto out; 954 } 955 ret = find_extent_in_eb(eb, bytenr, 956 *extent_item_pos, &eie); 957 free_extent_buffer(eb); 958 if (ret < 0) 959 goto out; 960 ref->inode_list = eie; 961 } 962 ret = ulist_add_merge(refs, ref->parent, 963 (uintptr_t)ref->inode_list, 964 (u64 *)&eie, GFP_NOFS); 965 if (ret < 0) 966 goto out; 967 if (!ret && extent_item_pos) { 968 /* 969 * we've recorded that parent, so we must extend 970 * its inode list here 971 */ 972 BUG_ON(!eie); 973 while (eie->next) 974 eie = eie->next; 975 eie->next = ref->inode_list; 976 } 977 } 978 list_del(&ref->list); 979 kmem_cache_free(btrfs_prelim_ref_cache, ref); 980 } 981 982 out: 983 btrfs_free_path(path); 984 while (!list_empty(&prefs)) { 985 ref = list_first_entry(&prefs, struct __prelim_ref, list); 986 list_del(&ref->list); 987 kmem_cache_free(btrfs_prelim_ref_cache, ref); 988 } 989 while (!list_empty(&prefs_delayed)) { 990 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 991 list); 992 list_del(&ref->list); 993 kmem_cache_free(btrfs_prelim_ref_cache, ref); 994 } 995 996 return ret; 997 } 998 999 static void free_leaf_list(struct ulist *blocks) 1000 { 1001 struct ulist_node *node = NULL; 1002 struct extent_inode_elem *eie; 1003 struct extent_inode_elem *eie_next; 1004 struct ulist_iterator uiter; 1005 1006 ULIST_ITER_INIT(&uiter); 1007 while ((node = ulist_next(blocks, &uiter))) { 1008 if (!node->aux) 1009 continue; 1010 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1011 for (; eie; eie = eie_next) { 1012 eie_next = eie->next; 1013 kfree(eie); 1014 } 1015 node->aux = 0; 1016 } 1017 1018 ulist_free(blocks); 1019 } 1020 1021 /* 1022 * Finds all leafs with a reference to the specified combination of bytenr and 1023 * offset. key_list_head will point to a list of corresponding keys (caller must 1024 * free each list element). The leafs will be stored in the leafs ulist, which 1025 * must be freed with ulist_free. 1026 * 1027 * returns 0 on success, <0 on error 1028 */ 1029 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1030 struct btrfs_fs_info *fs_info, u64 bytenr, 1031 u64 time_seq, struct ulist **leafs, 1032 const u64 *extent_item_pos) 1033 { 1034 struct ulist *tmp; 1035 int ret; 1036 1037 tmp = ulist_alloc(GFP_NOFS); 1038 if (!tmp) 1039 return -ENOMEM; 1040 *leafs = ulist_alloc(GFP_NOFS); 1041 if (!*leafs) { 1042 ulist_free(tmp); 1043 return -ENOMEM; 1044 } 1045 1046 ret = find_parent_nodes(trans, fs_info, bytenr, 1047 time_seq, *leafs, tmp, extent_item_pos); 1048 ulist_free(tmp); 1049 1050 if (ret < 0 && ret != -ENOENT) { 1051 free_leaf_list(*leafs); 1052 return ret; 1053 } 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * walk all backrefs for a given extent to find all roots that reference this 1060 * extent. Walking a backref means finding all extents that reference this 1061 * extent and in turn walk the backrefs of those, too. Naturally this is a 1062 * recursive process, but here it is implemented in an iterative fashion: We 1063 * find all referencing extents for the extent in question and put them on a 1064 * list. In turn, we find all referencing extents for those, further appending 1065 * to the list. The way we iterate the list allows adding more elements after 1066 * the current while iterating. The process stops when we reach the end of the 1067 * list. Found roots are added to the roots list. 1068 * 1069 * returns 0 on success, < 0 on error. 1070 */ 1071 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1072 struct btrfs_fs_info *fs_info, u64 bytenr, 1073 u64 time_seq, struct ulist **roots) 1074 { 1075 struct ulist *tmp; 1076 struct ulist_node *node = NULL; 1077 struct ulist_iterator uiter; 1078 int ret; 1079 1080 tmp = ulist_alloc(GFP_NOFS); 1081 if (!tmp) 1082 return -ENOMEM; 1083 *roots = ulist_alloc(GFP_NOFS); 1084 if (!*roots) { 1085 ulist_free(tmp); 1086 return -ENOMEM; 1087 } 1088 1089 ULIST_ITER_INIT(&uiter); 1090 while (1) { 1091 ret = find_parent_nodes(trans, fs_info, bytenr, 1092 time_seq, tmp, *roots, NULL); 1093 if (ret < 0 && ret != -ENOENT) { 1094 ulist_free(tmp); 1095 ulist_free(*roots); 1096 return ret; 1097 } 1098 node = ulist_next(tmp, &uiter); 1099 if (!node) 1100 break; 1101 bytenr = node->val; 1102 } 1103 1104 ulist_free(tmp); 1105 return 0; 1106 } 1107 1108 1109 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1110 struct btrfs_root *fs_root, struct btrfs_path *path, 1111 struct btrfs_key *found_key) 1112 { 1113 int ret; 1114 struct btrfs_key key; 1115 struct extent_buffer *eb; 1116 1117 key.type = key_type; 1118 key.objectid = inum; 1119 key.offset = ioff; 1120 1121 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1122 if (ret < 0) 1123 return ret; 1124 1125 eb = path->nodes[0]; 1126 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1127 ret = btrfs_next_leaf(fs_root, path); 1128 if (ret) 1129 return ret; 1130 eb = path->nodes[0]; 1131 } 1132 1133 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1134 if (found_key->type != key.type || found_key->objectid != key.objectid) 1135 return 1; 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * this makes the path point to (inum INODE_ITEM ioff) 1142 */ 1143 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1144 struct btrfs_path *path) 1145 { 1146 struct btrfs_key key; 1147 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1148 &key); 1149 } 1150 1151 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1152 struct btrfs_path *path, 1153 struct btrfs_key *found_key) 1154 { 1155 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1156 found_key); 1157 } 1158 1159 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1160 u64 start_off, struct btrfs_path *path, 1161 struct btrfs_inode_extref **ret_extref, 1162 u64 *found_off) 1163 { 1164 int ret, slot; 1165 struct btrfs_key key; 1166 struct btrfs_key found_key; 1167 struct btrfs_inode_extref *extref; 1168 struct extent_buffer *leaf; 1169 unsigned long ptr; 1170 1171 key.objectid = inode_objectid; 1172 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1173 key.offset = start_off; 1174 1175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1176 if (ret < 0) 1177 return ret; 1178 1179 while (1) { 1180 leaf = path->nodes[0]; 1181 slot = path->slots[0]; 1182 if (slot >= btrfs_header_nritems(leaf)) { 1183 /* 1184 * If the item at offset is not found, 1185 * btrfs_search_slot will point us to the slot 1186 * where it should be inserted. In our case 1187 * that will be the slot directly before the 1188 * next INODE_REF_KEY_V2 item. In the case 1189 * that we're pointing to the last slot in a 1190 * leaf, we must move one leaf over. 1191 */ 1192 ret = btrfs_next_leaf(root, path); 1193 if (ret) { 1194 if (ret >= 1) 1195 ret = -ENOENT; 1196 break; 1197 } 1198 continue; 1199 } 1200 1201 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1202 1203 /* 1204 * Check that we're still looking at an extended ref key for 1205 * this particular objectid. If we have different 1206 * objectid or type then there are no more to be found 1207 * in the tree and we can exit. 1208 */ 1209 ret = -ENOENT; 1210 if (found_key.objectid != inode_objectid) 1211 break; 1212 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1213 break; 1214 1215 ret = 0; 1216 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1217 extref = (struct btrfs_inode_extref *)ptr; 1218 *ret_extref = extref; 1219 if (found_off) 1220 *found_off = found_key.offset; 1221 break; 1222 } 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1229 * Elements of the path are separated by '/' and the path is guaranteed to be 1230 * 0-terminated. the path is only given within the current file system. 1231 * Therefore, it never starts with a '/'. the caller is responsible to provide 1232 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1233 * the start point of the resulting string is returned. this pointer is within 1234 * dest, normally. 1235 * in case the path buffer would overflow, the pointer is decremented further 1236 * as if output was written to the buffer, though no more output is actually 1237 * generated. that way, the caller can determine how much space would be 1238 * required for the path to fit into the buffer. in that case, the returned 1239 * value will be smaller than dest. callers must check this! 1240 */ 1241 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1242 u32 name_len, unsigned long name_off, 1243 struct extent_buffer *eb_in, u64 parent, 1244 char *dest, u32 size) 1245 { 1246 int slot; 1247 u64 next_inum; 1248 int ret; 1249 s64 bytes_left = ((s64)size) - 1; 1250 struct extent_buffer *eb = eb_in; 1251 struct btrfs_key found_key; 1252 int leave_spinning = path->leave_spinning; 1253 struct btrfs_inode_ref *iref; 1254 1255 if (bytes_left >= 0) 1256 dest[bytes_left] = '\0'; 1257 1258 path->leave_spinning = 1; 1259 while (1) { 1260 bytes_left -= name_len; 1261 if (bytes_left >= 0) 1262 read_extent_buffer(eb, dest + bytes_left, 1263 name_off, name_len); 1264 if (eb != eb_in) { 1265 btrfs_tree_read_unlock_blocking(eb); 1266 free_extent_buffer(eb); 1267 } 1268 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1269 if (ret > 0) 1270 ret = -ENOENT; 1271 if (ret) 1272 break; 1273 1274 next_inum = found_key.offset; 1275 1276 /* regular exit ahead */ 1277 if (parent == next_inum) 1278 break; 1279 1280 slot = path->slots[0]; 1281 eb = path->nodes[0]; 1282 /* make sure we can use eb after releasing the path */ 1283 if (eb != eb_in) { 1284 atomic_inc(&eb->refs); 1285 btrfs_tree_read_lock(eb); 1286 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1287 } 1288 btrfs_release_path(path); 1289 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1290 1291 name_len = btrfs_inode_ref_name_len(eb, iref); 1292 name_off = (unsigned long)(iref + 1); 1293 1294 parent = next_inum; 1295 --bytes_left; 1296 if (bytes_left >= 0) 1297 dest[bytes_left] = '/'; 1298 } 1299 1300 btrfs_release_path(path); 1301 path->leave_spinning = leave_spinning; 1302 1303 if (ret) 1304 return ERR_PTR(ret); 1305 1306 return dest + bytes_left; 1307 } 1308 1309 /* 1310 * this makes the path point to (logical EXTENT_ITEM *) 1311 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1312 * tree blocks and <0 on error. 1313 */ 1314 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1315 struct btrfs_path *path, struct btrfs_key *found_key, 1316 u64 *flags_ret) 1317 { 1318 int ret; 1319 u64 flags; 1320 u64 size = 0; 1321 u32 item_size; 1322 struct extent_buffer *eb; 1323 struct btrfs_extent_item *ei; 1324 struct btrfs_key key; 1325 1326 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1327 key.type = BTRFS_METADATA_ITEM_KEY; 1328 else 1329 key.type = BTRFS_EXTENT_ITEM_KEY; 1330 key.objectid = logical; 1331 key.offset = (u64)-1; 1332 1333 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1334 if (ret < 0) 1335 return ret; 1336 ret = btrfs_previous_item(fs_info->extent_root, path, 1337 0, BTRFS_EXTENT_ITEM_KEY); 1338 if (ret < 0) 1339 return ret; 1340 1341 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1342 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1343 size = fs_info->extent_root->leafsize; 1344 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1345 size = found_key->offset; 1346 1347 if ((found_key->type != BTRFS_EXTENT_ITEM_KEY && 1348 found_key->type != BTRFS_METADATA_ITEM_KEY) || 1349 found_key->objectid > logical || 1350 found_key->objectid + size <= logical) { 1351 pr_debug("logical %llu is not within any extent\n", logical); 1352 return -ENOENT; 1353 } 1354 1355 eb = path->nodes[0]; 1356 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1357 BUG_ON(item_size < sizeof(*ei)); 1358 1359 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1360 flags = btrfs_extent_flags(eb, ei); 1361 1362 pr_debug("logical %llu is at position %llu within the extent (%llu " 1363 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1364 logical, logical - found_key->objectid, found_key->objectid, 1365 found_key->offset, flags, item_size); 1366 1367 WARN_ON(!flags_ret); 1368 if (flags_ret) { 1369 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1370 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1371 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1372 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1373 else 1374 BUG_ON(1); 1375 return 0; 1376 } 1377 1378 return -EIO; 1379 } 1380 1381 /* 1382 * helper function to iterate extent inline refs. ptr must point to a 0 value 1383 * for the first call and may be modified. it is used to track state. 1384 * if more refs exist, 0 is returned and the next call to 1385 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1386 * next ref. after the last ref was processed, 1 is returned. 1387 * returns <0 on error 1388 */ 1389 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1390 struct btrfs_extent_item *ei, u32 item_size, 1391 struct btrfs_extent_inline_ref **out_eiref, 1392 int *out_type) 1393 { 1394 unsigned long end; 1395 u64 flags; 1396 struct btrfs_tree_block_info *info; 1397 1398 if (!*ptr) { 1399 /* first call */ 1400 flags = btrfs_extent_flags(eb, ei); 1401 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1402 info = (struct btrfs_tree_block_info *)(ei + 1); 1403 *out_eiref = 1404 (struct btrfs_extent_inline_ref *)(info + 1); 1405 } else { 1406 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1407 } 1408 *ptr = (unsigned long)*out_eiref; 1409 if ((void *)*ptr >= (void *)ei + item_size) 1410 return -ENOENT; 1411 } 1412 1413 end = (unsigned long)ei + item_size; 1414 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1415 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1416 1417 *ptr += btrfs_extent_inline_ref_size(*out_type); 1418 WARN_ON(*ptr > end); 1419 if (*ptr == end) 1420 return 1; /* last */ 1421 1422 return 0; 1423 } 1424 1425 /* 1426 * reads the tree block backref for an extent. tree level and root are returned 1427 * through out_level and out_root. ptr must point to a 0 value for the first 1428 * call and may be modified (see __get_extent_inline_ref comment). 1429 * returns 0 if data was provided, 1 if there was no more data to provide or 1430 * <0 on error. 1431 */ 1432 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1433 struct btrfs_extent_item *ei, u32 item_size, 1434 u64 *out_root, u8 *out_level) 1435 { 1436 int ret; 1437 int type; 1438 struct btrfs_tree_block_info *info; 1439 struct btrfs_extent_inline_ref *eiref; 1440 1441 if (*ptr == (unsigned long)-1) 1442 return 1; 1443 1444 while (1) { 1445 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1446 &eiref, &type); 1447 if (ret < 0) 1448 return ret; 1449 1450 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1451 type == BTRFS_SHARED_BLOCK_REF_KEY) 1452 break; 1453 1454 if (ret == 1) 1455 return 1; 1456 } 1457 1458 /* we can treat both ref types equally here */ 1459 info = (struct btrfs_tree_block_info *)(ei + 1); 1460 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1461 *out_level = btrfs_tree_block_level(eb, info); 1462 1463 if (ret == 1) 1464 *ptr = (unsigned long)-1; 1465 1466 return 0; 1467 } 1468 1469 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1470 u64 root, u64 extent_item_objectid, 1471 iterate_extent_inodes_t *iterate, void *ctx) 1472 { 1473 struct extent_inode_elem *eie; 1474 int ret = 0; 1475 1476 for (eie = inode_list; eie; eie = eie->next) { 1477 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1478 "root %llu\n", extent_item_objectid, 1479 eie->inum, eie->offset, root); 1480 ret = iterate(eie->inum, eie->offset, root, ctx); 1481 if (ret) { 1482 pr_debug("stopping iteration for %llu due to ret=%d\n", 1483 extent_item_objectid, ret); 1484 break; 1485 } 1486 } 1487 1488 return ret; 1489 } 1490 1491 /* 1492 * calls iterate() for every inode that references the extent identified by 1493 * the given parameters. 1494 * when the iterator function returns a non-zero value, iteration stops. 1495 */ 1496 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1497 u64 extent_item_objectid, u64 extent_item_pos, 1498 int search_commit_root, 1499 iterate_extent_inodes_t *iterate, void *ctx) 1500 { 1501 int ret; 1502 struct btrfs_trans_handle *trans = NULL; 1503 struct ulist *refs = NULL; 1504 struct ulist *roots = NULL; 1505 struct ulist_node *ref_node = NULL; 1506 struct ulist_node *root_node = NULL; 1507 struct seq_list tree_mod_seq_elem = {}; 1508 struct ulist_iterator ref_uiter; 1509 struct ulist_iterator root_uiter; 1510 1511 pr_debug("resolving all inodes for extent %llu\n", 1512 extent_item_objectid); 1513 1514 if (!search_commit_root) { 1515 trans = btrfs_join_transaction(fs_info->extent_root); 1516 if (IS_ERR(trans)) 1517 return PTR_ERR(trans); 1518 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1519 } 1520 1521 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1522 tree_mod_seq_elem.seq, &refs, 1523 &extent_item_pos); 1524 if (ret) 1525 goto out; 1526 1527 ULIST_ITER_INIT(&ref_uiter); 1528 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1529 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1530 tree_mod_seq_elem.seq, &roots); 1531 if (ret) 1532 break; 1533 ULIST_ITER_INIT(&root_uiter); 1534 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1535 pr_debug("root %llu references leaf %llu, data list " 1536 "%#llx\n", root_node->val, ref_node->val, 1537 ref_node->aux); 1538 ret = iterate_leaf_refs((struct extent_inode_elem *) 1539 (uintptr_t)ref_node->aux, 1540 root_node->val, 1541 extent_item_objectid, 1542 iterate, ctx); 1543 } 1544 ulist_free(roots); 1545 } 1546 1547 free_leaf_list(refs); 1548 out: 1549 if (!search_commit_root) { 1550 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1551 btrfs_end_transaction(trans, fs_info->extent_root); 1552 } 1553 1554 return ret; 1555 } 1556 1557 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1558 struct btrfs_path *path, 1559 iterate_extent_inodes_t *iterate, void *ctx) 1560 { 1561 int ret; 1562 u64 extent_item_pos; 1563 u64 flags = 0; 1564 struct btrfs_key found_key; 1565 int search_commit_root = path->search_commit_root; 1566 1567 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1568 btrfs_release_path(path); 1569 if (ret < 0) 1570 return ret; 1571 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1572 return -EINVAL; 1573 1574 extent_item_pos = logical - found_key.objectid; 1575 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1576 extent_item_pos, search_commit_root, 1577 iterate, ctx); 1578 1579 return ret; 1580 } 1581 1582 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1583 struct extent_buffer *eb, void *ctx); 1584 1585 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1586 struct btrfs_path *path, 1587 iterate_irefs_t *iterate, void *ctx) 1588 { 1589 int ret = 0; 1590 int slot; 1591 u32 cur; 1592 u32 len; 1593 u32 name_len; 1594 u64 parent = 0; 1595 int found = 0; 1596 struct extent_buffer *eb; 1597 struct btrfs_item *item; 1598 struct btrfs_inode_ref *iref; 1599 struct btrfs_key found_key; 1600 1601 while (!ret) { 1602 path->leave_spinning = 1; 1603 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1604 &found_key); 1605 if (ret < 0) 1606 break; 1607 if (ret) { 1608 ret = found ? 0 : -ENOENT; 1609 break; 1610 } 1611 ++found; 1612 1613 parent = found_key.offset; 1614 slot = path->slots[0]; 1615 eb = path->nodes[0]; 1616 /* make sure we can use eb after releasing the path */ 1617 atomic_inc(&eb->refs); 1618 btrfs_tree_read_lock(eb); 1619 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1620 btrfs_release_path(path); 1621 1622 item = btrfs_item_nr(eb, slot); 1623 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1624 1625 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1626 name_len = btrfs_inode_ref_name_len(eb, iref); 1627 /* path must be released before calling iterate()! */ 1628 pr_debug("following ref at offset %u for inode %llu in " 1629 "tree %llu\n", cur, found_key.objectid, 1630 fs_root->objectid); 1631 ret = iterate(parent, name_len, 1632 (unsigned long)(iref + 1), eb, ctx); 1633 if (ret) 1634 break; 1635 len = sizeof(*iref) + name_len; 1636 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1637 } 1638 btrfs_tree_read_unlock_blocking(eb); 1639 free_extent_buffer(eb); 1640 } 1641 1642 btrfs_release_path(path); 1643 1644 return ret; 1645 } 1646 1647 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1648 struct btrfs_path *path, 1649 iterate_irefs_t *iterate, void *ctx) 1650 { 1651 int ret; 1652 int slot; 1653 u64 offset = 0; 1654 u64 parent; 1655 int found = 0; 1656 struct extent_buffer *eb; 1657 struct btrfs_inode_extref *extref; 1658 struct extent_buffer *leaf; 1659 u32 item_size; 1660 u32 cur_offset; 1661 unsigned long ptr; 1662 1663 while (1) { 1664 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1665 &offset); 1666 if (ret < 0) 1667 break; 1668 if (ret) { 1669 ret = found ? 0 : -ENOENT; 1670 break; 1671 } 1672 ++found; 1673 1674 slot = path->slots[0]; 1675 eb = path->nodes[0]; 1676 /* make sure we can use eb after releasing the path */ 1677 atomic_inc(&eb->refs); 1678 1679 btrfs_tree_read_lock(eb); 1680 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1681 btrfs_release_path(path); 1682 1683 leaf = path->nodes[0]; 1684 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1685 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1686 cur_offset = 0; 1687 1688 while (cur_offset < item_size) { 1689 u32 name_len; 1690 1691 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1692 parent = btrfs_inode_extref_parent(eb, extref); 1693 name_len = btrfs_inode_extref_name_len(eb, extref); 1694 ret = iterate(parent, name_len, 1695 (unsigned long)&extref->name, eb, ctx); 1696 if (ret) 1697 break; 1698 1699 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1700 cur_offset += sizeof(*extref); 1701 } 1702 btrfs_tree_read_unlock_blocking(eb); 1703 free_extent_buffer(eb); 1704 1705 offset++; 1706 } 1707 1708 btrfs_release_path(path); 1709 1710 return ret; 1711 } 1712 1713 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1714 struct btrfs_path *path, iterate_irefs_t *iterate, 1715 void *ctx) 1716 { 1717 int ret; 1718 int found_refs = 0; 1719 1720 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1721 if (!ret) 1722 ++found_refs; 1723 else if (ret != -ENOENT) 1724 return ret; 1725 1726 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1727 if (ret == -ENOENT && found_refs) 1728 return 0; 1729 1730 return ret; 1731 } 1732 1733 /* 1734 * returns 0 if the path could be dumped (probably truncated) 1735 * returns <0 in case of an error 1736 */ 1737 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1738 struct extent_buffer *eb, void *ctx) 1739 { 1740 struct inode_fs_paths *ipath = ctx; 1741 char *fspath; 1742 char *fspath_min; 1743 int i = ipath->fspath->elem_cnt; 1744 const int s_ptr = sizeof(char *); 1745 u32 bytes_left; 1746 1747 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1748 ipath->fspath->bytes_left - s_ptr : 0; 1749 1750 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1751 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1752 name_off, eb, inum, fspath_min, bytes_left); 1753 if (IS_ERR(fspath)) 1754 return PTR_ERR(fspath); 1755 1756 if (fspath > fspath_min) { 1757 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1758 ++ipath->fspath->elem_cnt; 1759 ipath->fspath->bytes_left = fspath - fspath_min; 1760 } else { 1761 ++ipath->fspath->elem_missed; 1762 ipath->fspath->bytes_missing += fspath_min - fspath; 1763 ipath->fspath->bytes_left = 0; 1764 } 1765 1766 return 0; 1767 } 1768 1769 /* 1770 * this dumps all file system paths to the inode into the ipath struct, provided 1771 * is has been created large enough. each path is zero-terminated and accessed 1772 * from ipath->fspath->val[i]. 1773 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1774 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1775 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1776 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1777 * have been needed to return all paths. 1778 */ 1779 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1780 { 1781 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1782 inode_to_path, ipath); 1783 } 1784 1785 struct btrfs_data_container *init_data_container(u32 total_bytes) 1786 { 1787 struct btrfs_data_container *data; 1788 size_t alloc_bytes; 1789 1790 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1791 data = vmalloc(alloc_bytes); 1792 if (!data) 1793 return ERR_PTR(-ENOMEM); 1794 1795 if (total_bytes >= sizeof(*data)) { 1796 data->bytes_left = total_bytes - sizeof(*data); 1797 data->bytes_missing = 0; 1798 } else { 1799 data->bytes_missing = sizeof(*data) - total_bytes; 1800 data->bytes_left = 0; 1801 } 1802 1803 data->elem_cnt = 0; 1804 data->elem_missed = 0; 1805 1806 return data; 1807 } 1808 1809 /* 1810 * allocates space to return multiple file system paths for an inode. 1811 * total_bytes to allocate are passed, note that space usable for actual path 1812 * information will be total_bytes - sizeof(struct inode_fs_paths). 1813 * the returned pointer must be freed with free_ipath() in the end. 1814 */ 1815 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1816 struct btrfs_path *path) 1817 { 1818 struct inode_fs_paths *ifp; 1819 struct btrfs_data_container *fspath; 1820 1821 fspath = init_data_container(total_bytes); 1822 if (IS_ERR(fspath)) 1823 return (void *)fspath; 1824 1825 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1826 if (!ifp) { 1827 kfree(fspath); 1828 return ERR_PTR(-ENOMEM); 1829 } 1830 1831 ifp->btrfs_path = path; 1832 ifp->fspath = fspath; 1833 ifp->fs_root = fs_root; 1834 1835 return ifp; 1836 } 1837 1838 void free_ipath(struct inode_fs_paths *ipath) 1839 { 1840 if (!ipath) 1841 return; 1842 vfree(ipath->fspath); 1843 kfree(ipath); 1844 } 1845