1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 data_offset; 40 u64 data_len; 41 struct extent_inode_elem *e; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 50 e = kmalloc(sizeof(*e), GFP_NOFS); 51 if (!e) 52 return -ENOMEM; 53 54 e->next = *eie; 55 e->inum = key->objectid; 56 e->offset = key->offset + (extent_item_pos - data_offset); 57 *eie = e; 58 59 return 0; 60 } 61 62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 63 u64 extent_item_pos, 64 struct extent_inode_elem **eie) 65 { 66 u64 disk_byte; 67 struct btrfs_key key; 68 struct btrfs_file_extent_item *fi; 69 int slot; 70 int nritems; 71 int extent_type; 72 int ret; 73 74 /* 75 * from the shared data ref, we only have the leaf but we need 76 * the key. thus, we must look into all items and see that we 77 * find one (some) with a reference to our extent item. 78 */ 79 nritems = btrfs_header_nritems(eb); 80 for (slot = 0; slot < nritems; ++slot) { 81 btrfs_item_key_to_cpu(eb, &key, slot); 82 if (key.type != BTRFS_EXTENT_DATA_KEY) 83 continue; 84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 85 extent_type = btrfs_file_extent_type(eb, fi); 86 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 87 continue; 88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 90 if (disk_byte != wanted_disk_byte) 91 continue; 92 93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 94 if (ret < 0) 95 return ret; 96 } 97 98 return 0; 99 } 100 101 /* 102 * this structure records all encountered refs on the way up to the root 103 */ 104 struct __prelim_ref { 105 struct list_head list; 106 u64 root_id; 107 struct btrfs_key key_for_search; 108 int level; 109 int count; 110 struct extent_inode_elem *inode_list; 111 u64 parent; 112 u64 wanted_disk_byte; 113 }; 114 115 /* 116 * the rules for all callers of this function are: 117 * - obtaining the parent is the goal 118 * - if you add a key, you must know that it is a correct key 119 * - if you cannot add the parent or a correct key, then we will look into the 120 * block later to set a correct key 121 * 122 * delayed refs 123 * ============ 124 * backref type | shared | indirect | shared | indirect 125 * information | tree | tree | data | data 126 * --------------------+--------+----------+--------+---------- 127 * parent logical | y | - | - | - 128 * key to resolve | - | y | y | y 129 * tree block logical | - | - | - | - 130 * root for resolving | y | y | y | y 131 * 132 * - column 1: we've the parent -> done 133 * - column 2, 3, 4: we use the key to find the parent 134 * 135 * on disk refs (inline or keyed) 136 * ============================== 137 * backref type | shared | indirect | shared | indirect 138 * information | tree | tree | data | data 139 * --------------------+--------+----------+--------+---------- 140 * parent logical | y | - | y | - 141 * key to resolve | - | - | - | y 142 * tree block logical | y | y | y | y 143 * root for resolving | - | y | y | y 144 * 145 * - column 1, 3: we've the parent -> done 146 * - column 2: we take the first key from the block to find the parent 147 * (see __add_missing_keys) 148 * - column 4: we use the key to find the parent 149 * 150 * additional information that's available but not required to find the parent 151 * block might help in merging entries to gain some speed. 152 */ 153 154 static int __add_prelim_ref(struct list_head *head, u64 root_id, 155 struct btrfs_key *key, int level, 156 u64 parent, u64 wanted_disk_byte, int count) 157 { 158 struct __prelim_ref *ref; 159 160 /* in case we're adding delayed refs, we're holding the refs spinlock */ 161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 162 if (!ref) 163 return -ENOMEM; 164 165 ref->root_id = root_id; 166 if (key) 167 ref->key_for_search = *key; 168 else 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 170 171 ref->inode_list = NULL; 172 ref->level = level; 173 ref->count = count; 174 ref->parent = parent; 175 ref->wanted_disk_byte = wanted_disk_byte; 176 list_add_tail(&ref->list, head); 177 178 return 0; 179 } 180 181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 182 struct ulist *parents, int level, 183 struct btrfs_key *key_for_search, u64 time_seq, 184 u64 wanted_disk_byte, 185 const u64 *extent_item_pos) 186 { 187 int ret = 0; 188 int slot; 189 struct extent_buffer *eb; 190 struct btrfs_key key; 191 struct btrfs_file_extent_item *fi; 192 struct extent_inode_elem *eie = NULL; 193 u64 disk_byte; 194 195 if (level != 0) { 196 eb = path->nodes[level]; 197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 198 if (ret < 0) 199 return ret; 200 return 0; 201 } 202 203 /* 204 * We normally enter this function with the path already pointing to 205 * the first item to check. But sometimes, we may enter it with 206 * slot==nritems. In that case, go to the next leaf before we continue. 207 */ 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 209 ret = btrfs_next_old_leaf(root, path, time_seq); 210 211 while (!ret) { 212 eb = path->nodes[0]; 213 slot = path->slots[0]; 214 215 btrfs_item_key_to_cpu(eb, &key, slot); 216 217 if (key.objectid != key_for_search->objectid || 218 key.type != BTRFS_EXTENT_DATA_KEY) 219 break; 220 221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 223 224 if (disk_byte == wanted_disk_byte) { 225 eie = NULL; 226 if (extent_item_pos) { 227 ret = check_extent_in_eb(&key, eb, fi, 228 *extent_item_pos, 229 &eie); 230 if (ret < 0) 231 break; 232 } 233 if (!ret) { 234 ret = ulist_add(parents, eb->start, 235 (uintptr_t)eie, GFP_NOFS); 236 if (ret < 0) 237 break; 238 if (!extent_item_pos) { 239 ret = btrfs_next_old_leaf(root, path, 240 time_seq); 241 continue; 242 } 243 } 244 } 245 ret = btrfs_next_old_item(root, path, time_seq); 246 } 247 248 if (ret > 0) 249 ret = 0; 250 return ret; 251 } 252 253 /* 254 * resolve an indirect backref in the form (root_id, key, level) 255 * to a logical address 256 */ 257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 258 int search_commit_root, 259 u64 time_seq, 260 struct __prelim_ref *ref, 261 struct ulist *parents, 262 const u64 *extent_item_pos) 263 { 264 struct btrfs_path *path; 265 struct btrfs_root *root; 266 struct btrfs_key root_key; 267 struct extent_buffer *eb; 268 int ret = 0; 269 int root_level; 270 int level = ref->level; 271 272 path = btrfs_alloc_path(); 273 if (!path) 274 return -ENOMEM; 275 path->search_commit_root = !!search_commit_root; 276 277 root_key.objectid = ref->root_id; 278 root_key.type = BTRFS_ROOT_ITEM_KEY; 279 root_key.offset = (u64)-1; 280 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 281 if (IS_ERR(root)) { 282 ret = PTR_ERR(root); 283 goto out; 284 } 285 286 root_level = btrfs_old_root_level(root, time_seq); 287 288 if (root_level + 1 == level) 289 goto out; 290 291 path->lowest_level = level; 292 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 293 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 294 "%d for key (%llu %u %llu)\n", 295 (unsigned long long)ref->root_id, level, ref->count, ret, 296 (unsigned long long)ref->key_for_search.objectid, 297 ref->key_for_search.type, 298 (unsigned long long)ref->key_for_search.offset); 299 if (ret < 0) 300 goto out; 301 302 eb = path->nodes[level]; 303 while (!eb) { 304 if (!level) { 305 WARN_ON(1); 306 ret = 1; 307 goto out; 308 } 309 level--; 310 eb = path->nodes[level]; 311 } 312 313 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 314 time_seq, ref->wanted_disk_byte, 315 extent_item_pos); 316 out: 317 btrfs_free_path(path); 318 return ret; 319 } 320 321 /* 322 * resolve all indirect backrefs from the list 323 */ 324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 325 int search_commit_root, u64 time_seq, 326 struct list_head *head, 327 const u64 *extent_item_pos) 328 { 329 int err; 330 int ret = 0; 331 struct __prelim_ref *ref; 332 struct __prelim_ref *ref_safe; 333 struct __prelim_ref *new_ref; 334 struct ulist *parents; 335 struct ulist_node *node; 336 struct ulist_iterator uiter; 337 338 parents = ulist_alloc(GFP_NOFS); 339 if (!parents) 340 return -ENOMEM; 341 342 /* 343 * _safe allows us to insert directly after the current item without 344 * iterating over the newly inserted items. 345 * we're also allowed to re-assign ref during iteration. 346 */ 347 list_for_each_entry_safe(ref, ref_safe, head, list) { 348 if (ref->parent) /* already direct */ 349 continue; 350 if (ref->count == 0) 351 continue; 352 err = __resolve_indirect_ref(fs_info, search_commit_root, 353 time_seq, ref, parents, 354 extent_item_pos); 355 if (err == -ENOMEM) 356 goto out; 357 if (err) 358 continue; 359 360 /* we put the first parent into the ref at hand */ 361 ULIST_ITER_INIT(&uiter); 362 node = ulist_next(parents, &uiter); 363 ref->parent = node ? node->val : 0; 364 ref->inode_list = node ? 365 (struct extent_inode_elem *)(uintptr_t)node->aux : 0; 366 367 /* additional parents require new refs being added here */ 368 while ((node = ulist_next(parents, &uiter))) { 369 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 370 if (!new_ref) { 371 ret = -ENOMEM; 372 goto out; 373 } 374 memcpy(new_ref, ref, sizeof(*ref)); 375 new_ref->parent = node->val; 376 new_ref->inode_list = (struct extent_inode_elem *) 377 (uintptr_t)node->aux; 378 list_add(&new_ref->list, &ref->list); 379 } 380 ulist_reinit(parents); 381 } 382 out: 383 ulist_free(parents); 384 return ret; 385 } 386 387 static inline int ref_for_same_block(struct __prelim_ref *ref1, 388 struct __prelim_ref *ref2) 389 { 390 if (ref1->level != ref2->level) 391 return 0; 392 if (ref1->root_id != ref2->root_id) 393 return 0; 394 if (ref1->key_for_search.type != ref2->key_for_search.type) 395 return 0; 396 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 397 return 0; 398 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 399 return 0; 400 if (ref1->parent != ref2->parent) 401 return 0; 402 403 return 1; 404 } 405 406 /* 407 * read tree blocks and add keys where required. 408 */ 409 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 410 struct list_head *head) 411 { 412 struct list_head *pos; 413 struct extent_buffer *eb; 414 415 list_for_each(pos, head) { 416 struct __prelim_ref *ref; 417 ref = list_entry(pos, struct __prelim_ref, list); 418 419 if (ref->parent) 420 continue; 421 if (ref->key_for_search.type) 422 continue; 423 BUG_ON(!ref->wanted_disk_byte); 424 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 425 fs_info->tree_root->leafsize, 0); 426 if (!eb || !extent_buffer_uptodate(eb)) { 427 free_extent_buffer(eb); 428 return -EIO; 429 } 430 btrfs_tree_read_lock(eb); 431 if (btrfs_header_level(eb) == 0) 432 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 433 else 434 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 435 btrfs_tree_read_unlock(eb); 436 free_extent_buffer(eb); 437 } 438 return 0; 439 } 440 441 /* 442 * merge two lists of backrefs and adjust counts accordingly 443 * 444 * mode = 1: merge identical keys, if key is set 445 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 446 * additionally, we could even add a key range for the blocks we 447 * looked into to merge even more (-> replace unresolved refs by those 448 * having a parent). 449 * mode = 2: merge identical parents 450 */ 451 static void __merge_refs(struct list_head *head, int mode) 452 { 453 struct list_head *pos1; 454 455 list_for_each(pos1, head) { 456 struct list_head *n2; 457 struct list_head *pos2; 458 struct __prelim_ref *ref1; 459 460 ref1 = list_entry(pos1, struct __prelim_ref, list); 461 462 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 463 pos2 = n2, n2 = pos2->next) { 464 struct __prelim_ref *ref2; 465 struct __prelim_ref *xchg; 466 struct extent_inode_elem *eie; 467 468 ref2 = list_entry(pos2, struct __prelim_ref, list); 469 470 if (mode == 1) { 471 if (!ref_for_same_block(ref1, ref2)) 472 continue; 473 if (!ref1->parent && ref2->parent) { 474 xchg = ref1; 475 ref1 = ref2; 476 ref2 = xchg; 477 } 478 } else { 479 if (ref1->parent != ref2->parent) 480 continue; 481 } 482 483 eie = ref1->inode_list; 484 while (eie && eie->next) 485 eie = eie->next; 486 if (eie) 487 eie->next = ref2->inode_list; 488 else 489 ref1->inode_list = ref2->inode_list; 490 ref1->count += ref2->count; 491 492 list_del(&ref2->list); 493 kfree(ref2); 494 } 495 496 } 497 } 498 499 /* 500 * add all currently queued delayed refs from this head whose seq nr is 501 * smaller or equal that seq to the list 502 */ 503 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 504 struct list_head *prefs) 505 { 506 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 507 struct rb_node *n = &head->node.rb_node; 508 struct btrfs_key key; 509 struct btrfs_key op_key = {0}; 510 int sgn; 511 int ret = 0; 512 513 if (extent_op && extent_op->update_key) 514 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 515 516 while ((n = rb_prev(n))) { 517 struct btrfs_delayed_ref_node *node; 518 node = rb_entry(n, struct btrfs_delayed_ref_node, 519 rb_node); 520 if (node->bytenr != head->node.bytenr) 521 break; 522 WARN_ON(node->is_head); 523 524 if (node->seq > seq) 525 continue; 526 527 switch (node->action) { 528 case BTRFS_ADD_DELAYED_EXTENT: 529 case BTRFS_UPDATE_DELAYED_HEAD: 530 WARN_ON(1); 531 continue; 532 case BTRFS_ADD_DELAYED_REF: 533 sgn = 1; 534 break; 535 case BTRFS_DROP_DELAYED_REF: 536 sgn = -1; 537 break; 538 default: 539 BUG_ON(1); 540 } 541 switch (node->type) { 542 case BTRFS_TREE_BLOCK_REF_KEY: { 543 struct btrfs_delayed_tree_ref *ref; 544 545 ref = btrfs_delayed_node_to_tree_ref(node); 546 ret = __add_prelim_ref(prefs, ref->root, &op_key, 547 ref->level + 1, 0, node->bytenr, 548 node->ref_mod * sgn); 549 break; 550 } 551 case BTRFS_SHARED_BLOCK_REF_KEY: { 552 struct btrfs_delayed_tree_ref *ref; 553 554 ref = btrfs_delayed_node_to_tree_ref(node); 555 ret = __add_prelim_ref(prefs, ref->root, NULL, 556 ref->level + 1, ref->parent, 557 node->bytenr, 558 node->ref_mod * sgn); 559 break; 560 } 561 case BTRFS_EXTENT_DATA_REF_KEY: { 562 struct btrfs_delayed_data_ref *ref; 563 ref = btrfs_delayed_node_to_data_ref(node); 564 565 key.objectid = ref->objectid; 566 key.type = BTRFS_EXTENT_DATA_KEY; 567 key.offset = ref->offset; 568 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 569 node->bytenr, 570 node->ref_mod * sgn); 571 break; 572 } 573 case BTRFS_SHARED_DATA_REF_KEY: { 574 struct btrfs_delayed_data_ref *ref; 575 576 ref = btrfs_delayed_node_to_data_ref(node); 577 578 key.objectid = ref->objectid; 579 key.type = BTRFS_EXTENT_DATA_KEY; 580 key.offset = ref->offset; 581 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 582 ref->parent, node->bytenr, 583 node->ref_mod * sgn); 584 break; 585 } 586 default: 587 WARN_ON(1); 588 } 589 if (ret) 590 return ret; 591 } 592 593 return 0; 594 } 595 596 /* 597 * add all inline backrefs for bytenr to the list 598 */ 599 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 600 struct btrfs_path *path, u64 bytenr, 601 int *info_level, struct list_head *prefs) 602 { 603 int ret = 0; 604 int slot; 605 struct extent_buffer *leaf; 606 struct btrfs_key key; 607 unsigned long ptr; 608 unsigned long end; 609 struct btrfs_extent_item *ei; 610 u64 flags; 611 u64 item_size; 612 613 /* 614 * enumerate all inline refs 615 */ 616 leaf = path->nodes[0]; 617 slot = path->slots[0]; 618 619 item_size = btrfs_item_size_nr(leaf, slot); 620 BUG_ON(item_size < sizeof(*ei)); 621 622 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 623 flags = btrfs_extent_flags(leaf, ei); 624 625 ptr = (unsigned long)(ei + 1); 626 end = (unsigned long)ei + item_size; 627 628 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 629 struct btrfs_tree_block_info *info; 630 631 info = (struct btrfs_tree_block_info *)ptr; 632 *info_level = btrfs_tree_block_level(leaf, info); 633 ptr += sizeof(struct btrfs_tree_block_info); 634 BUG_ON(ptr > end); 635 } else { 636 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 637 } 638 639 while (ptr < end) { 640 struct btrfs_extent_inline_ref *iref; 641 u64 offset; 642 int type; 643 644 iref = (struct btrfs_extent_inline_ref *)ptr; 645 type = btrfs_extent_inline_ref_type(leaf, iref); 646 offset = btrfs_extent_inline_ref_offset(leaf, iref); 647 648 switch (type) { 649 case BTRFS_SHARED_BLOCK_REF_KEY: 650 ret = __add_prelim_ref(prefs, 0, NULL, 651 *info_level + 1, offset, 652 bytenr, 1); 653 break; 654 case BTRFS_SHARED_DATA_REF_KEY: { 655 struct btrfs_shared_data_ref *sdref; 656 int count; 657 658 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 659 count = btrfs_shared_data_ref_count(leaf, sdref); 660 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 661 bytenr, count); 662 break; 663 } 664 case BTRFS_TREE_BLOCK_REF_KEY: 665 ret = __add_prelim_ref(prefs, offset, NULL, 666 *info_level + 1, 0, 667 bytenr, 1); 668 break; 669 case BTRFS_EXTENT_DATA_REF_KEY: { 670 struct btrfs_extent_data_ref *dref; 671 int count; 672 u64 root; 673 674 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 675 count = btrfs_extent_data_ref_count(leaf, dref); 676 key.objectid = btrfs_extent_data_ref_objectid(leaf, 677 dref); 678 key.type = BTRFS_EXTENT_DATA_KEY; 679 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 680 root = btrfs_extent_data_ref_root(leaf, dref); 681 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 682 bytenr, count); 683 break; 684 } 685 default: 686 WARN_ON(1); 687 } 688 if (ret) 689 return ret; 690 ptr += btrfs_extent_inline_ref_size(type); 691 } 692 693 return 0; 694 } 695 696 /* 697 * add all non-inline backrefs for bytenr to the list 698 */ 699 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 700 struct btrfs_path *path, u64 bytenr, 701 int info_level, struct list_head *prefs) 702 { 703 struct btrfs_root *extent_root = fs_info->extent_root; 704 int ret; 705 int slot; 706 struct extent_buffer *leaf; 707 struct btrfs_key key; 708 709 while (1) { 710 ret = btrfs_next_item(extent_root, path); 711 if (ret < 0) 712 break; 713 if (ret) { 714 ret = 0; 715 break; 716 } 717 718 slot = path->slots[0]; 719 leaf = path->nodes[0]; 720 btrfs_item_key_to_cpu(leaf, &key, slot); 721 722 if (key.objectid != bytenr) 723 break; 724 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 725 continue; 726 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 727 break; 728 729 switch (key.type) { 730 case BTRFS_SHARED_BLOCK_REF_KEY: 731 ret = __add_prelim_ref(prefs, 0, NULL, 732 info_level + 1, key.offset, 733 bytenr, 1); 734 break; 735 case BTRFS_SHARED_DATA_REF_KEY: { 736 struct btrfs_shared_data_ref *sdref; 737 int count; 738 739 sdref = btrfs_item_ptr(leaf, slot, 740 struct btrfs_shared_data_ref); 741 count = btrfs_shared_data_ref_count(leaf, sdref); 742 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 743 bytenr, count); 744 break; 745 } 746 case BTRFS_TREE_BLOCK_REF_KEY: 747 ret = __add_prelim_ref(prefs, key.offset, NULL, 748 info_level + 1, 0, 749 bytenr, 1); 750 break; 751 case BTRFS_EXTENT_DATA_REF_KEY: { 752 struct btrfs_extent_data_ref *dref; 753 int count; 754 u64 root; 755 756 dref = btrfs_item_ptr(leaf, slot, 757 struct btrfs_extent_data_ref); 758 count = btrfs_extent_data_ref_count(leaf, dref); 759 key.objectid = btrfs_extent_data_ref_objectid(leaf, 760 dref); 761 key.type = BTRFS_EXTENT_DATA_KEY; 762 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 763 root = btrfs_extent_data_ref_root(leaf, dref); 764 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 765 bytenr, count); 766 break; 767 } 768 default: 769 WARN_ON(1); 770 } 771 if (ret) 772 return ret; 773 774 } 775 776 return ret; 777 } 778 779 /* 780 * this adds all existing backrefs (inline backrefs, backrefs and delayed 781 * refs) for the given bytenr to the refs list, merges duplicates and resolves 782 * indirect refs to their parent bytenr. 783 * When roots are found, they're added to the roots list 784 * 785 * FIXME some caching might speed things up 786 */ 787 static int find_parent_nodes(struct btrfs_trans_handle *trans, 788 struct btrfs_fs_info *fs_info, u64 bytenr, 789 u64 time_seq, struct ulist *refs, 790 struct ulist *roots, const u64 *extent_item_pos) 791 { 792 struct btrfs_key key; 793 struct btrfs_path *path; 794 struct btrfs_delayed_ref_root *delayed_refs = NULL; 795 struct btrfs_delayed_ref_head *head; 796 int info_level = 0; 797 int ret; 798 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT); 799 struct list_head prefs_delayed; 800 struct list_head prefs; 801 struct __prelim_ref *ref; 802 803 INIT_LIST_HEAD(&prefs); 804 INIT_LIST_HEAD(&prefs_delayed); 805 806 key.objectid = bytenr; 807 key.type = BTRFS_EXTENT_ITEM_KEY; 808 key.offset = (u64)-1; 809 810 path = btrfs_alloc_path(); 811 if (!path) 812 return -ENOMEM; 813 path->search_commit_root = !!search_commit_root; 814 815 /* 816 * grab both a lock on the path and a lock on the delayed ref head. 817 * We need both to get a consistent picture of how the refs look 818 * at a specified point in time 819 */ 820 again: 821 head = NULL; 822 823 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 824 if (ret < 0) 825 goto out; 826 BUG_ON(ret == 0); 827 828 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) { 829 /* 830 * look if there are updates for this ref queued and lock the 831 * head 832 */ 833 delayed_refs = &trans->transaction->delayed_refs; 834 spin_lock(&delayed_refs->lock); 835 head = btrfs_find_delayed_ref_head(trans, bytenr); 836 if (head) { 837 if (!mutex_trylock(&head->mutex)) { 838 atomic_inc(&head->node.refs); 839 spin_unlock(&delayed_refs->lock); 840 841 btrfs_release_path(path); 842 843 /* 844 * Mutex was contended, block until it's 845 * released and try again 846 */ 847 mutex_lock(&head->mutex); 848 mutex_unlock(&head->mutex); 849 btrfs_put_delayed_ref(&head->node); 850 goto again; 851 } 852 ret = __add_delayed_refs(head, time_seq, 853 &prefs_delayed); 854 mutex_unlock(&head->mutex); 855 if (ret) { 856 spin_unlock(&delayed_refs->lock); 857 goto out; 858 } 859 } 860 spin_unlock(&delayed_refs->lock); 861 } 862 863 if (path->slots[0]) { 864 struct extent_buffer *leaf; 865 int slot; 866 867 path->slots[0]--; 868 leaf = path->nodes[0]; 869 slot = path->slots[0]; 870 btrfs_item_key_to_cpu(leaf, &key, slot); 871 if (key.objectid == bytenr && 872 key.type == BTRFS_EXTENT_ITEM_KEY) { 873 ret = __add_inline_refs(fs_info, path, bytenr, 874 &info_level, &prefs); 875 if (ret) 876 goto out; 877 ret = __add_keyed_refs(fs_info, path, bytenr, 878 info_level, &prefs); 879 if (ret) 880 goto out; 881 } 882 } 883 btrfs_release_path(path); 884 885 list_splice_init(&prefs_delayed, &prefs); 886 887 ret = __add_missing_keys(fs_info, &prefs); 888 if (ret) 889 goto out; 890 891 __merge_refs(&prefs, 1); 892 893 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq, 894 &prefs, extent_item_pos); 895 if (ret) 896 goto out; 897 898 __merge_refs(&prefs, 2); 899 900 while (!list_empty(&prefs)) { 901 ref = list_first_entry(&prefs, struct __prelim_ref, list); 902 list_del(&ref->list); 903 WARN_ON(ref->count < 0); 904 if (ref->count && ref->root_id && ref->parent == 0) { 905 /* no parent == root of tree */ 906 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 907 if (ret < 0) 908 goto out; 909 } 910 if (ref->count && ref->parent) { 911 struct extent_inode_elem *eie = NULL; 912 if (extent_item_pos && !ref->inode_list) { 913 u32 bsz; 914 struct extent_buffer *eb; 915 bsz = btrfs_level_size(fs_info->extent_root, 916 info_level); 917 eb = read_tree_block(fs_info->extent_root, 918 ref->parent, bsz, 0); 919 if (!eb || !extent_buffer_uptodate(eb)) { 920 free_extent_buffer(eb); 921 return -EIO; 922 } 923 ret = find_extent_in_eb(eb, bytenr, 924 *extent_item_pos, &eie); 925 ref->inode_list = eie; 926 free_extent_buffer(eb); 927 } 928 ret = ulist_add_merge(refs, ref->parent, 929 (uintptr_t)ref->inode_list, 930 (u64 *)&eie, GFP_NOFS); 931 if (ret < 0) 932 goto out; 933 if (!ret && extent_item_pos) { 934 /* 935 * we've recorded that parent, so we must extend 936 * its inode list here 937 */ 938 BUG_ON(!eie); 939 while (eie->next) 940 eie = eie->next; 941 eie->next = ref->inode_list; 942 } 943 } 944 kfree(ref); 945 } 946 947 out: 948 btrfs_free_path(path); 949 while (!list_empty(&prefs)) { 950 ref = list_first_entry(&prefs, struct __prelim_ref, list); 951 list_del(&ref->list); 952 kfree(ref); 953 } 954 while (!list_empty(&prefs_delayed)) { 955 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 956 list); 957 list_del(&ref->list); 958 kfree(ref); 959 } 960 961 return ret; 962 } 963 964 static void free_leaf_list(struct ulist *blocks) 965 { 966 struct ulist_node *node = NULL; 967 struct extent_inode_elem *eie; 968 struct extent_inode_elem *eie_next; 969 struct ulist_iterator uiter; 970 971 ULIST_ITER_INIT(&uiter); 972 while ((node = ulist_next(blocks, &uiter))) { 973 if (!node->aux) 974 continue; 975 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 976 for (; eie; eie = eie_next) { 977 eie_next = eie->next; 978 kfree(eie); 979 } 980 node->aux = 0; 981 } 982 983 ulist_free(blocks); 984 } 985 986 /* 987 * Finds all leafs with a reference to the specified combination of bytenr and 988 * offset. key_list_head will point to a list of corresponding keys (caller must 989 * free each list element). The leafs will be stored in the leafs ulist, which 990 * must be freed with ulist_free. 991 * 992 * returns 0 on success, <0 on error 993 */ 994 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 995 struct btrfs_fs_info *fs_info, u64 bytenr, 996 u64 time_seq, struct ulist **leafs, 997 const u64 *extent_item_pos) 998 { 999 struct ulist *tmp; 1000 int ret; 1001 1002 tmp = ulist_alloc(GFP_NOFS); 1003 if (!tmp) 1004 return -ENOMEM; 1005 *leafs = ulist_alloc(GFP_NOFS); 1006 if (!*leafs) { 1007 ulist_free(tmp); 1008 return -ENOMEM; 1009 } 1010 1011 ret = find_parent_nodes(trans, fs_info, bytenr, 1012 time_seq, *leafs, tmp, extent_item_pos); 1013 ulist_free(tmp); 1014 1015 if (ret < 0 && ret != -ENOENT) { 1016 free_leaf_list(*leafs); 1017 return ret; 1018 } 1019 1020 return 0; 1021 } 1022 1023 /* 1024 * walk all backrefs for a given extent to find all roots that reference this 1025 * extent. Walking a backref means finding all extents that reference this 1026 * extent and in turn walk the backrefs of those, too. Naturally this is a 1027 * recursive process, but here it is implemented in an iterative fashion: We 1028 * find all referencing extents for the extent in question and put them on a 1029 * list. In turn, we find all referencing extents for those, further appending 1030 * to the list. The way we iterate the list allows adding more elements after 1031 * the current while iterating. The process stops when we reach the end of the 1032 * list. Found roots are added to the roots list. 1033 * 1034 * returns 0 on success, < 0 on error. 1035 */ 1036 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1037 struct btrfs_fs_info *fs_info, u64 bytenr, 1038 u64 time_seq, struct ulist **roots) 1039 { 1040 struct ulist *tmp; 1041 struct ulist_node *node = NULL; 1042 struct ulist_iterator uiter; 1043 int ret; 1044 1045 tmp = ulist_alloc(GFP_NOFS); 1046 if (!tmp) 1047 return -ENOMEM; 1048 *roots = ulist_alloc(GFP_NOFS); 1049 if (!*roots) { 1050 ulist_free(tmp); 1051 return -ENOMEM; 1052 } 1053 1054 ULIST_ITER_INIT(&uiter); 1055 while (1) { 1056 ret = find_parent_nodes(trans, fs_info, bytenr, 1057 time_seq, tmp, *roots, NULL); 1058 if (ret < 0 && ret != -ENOENT) { 1059 ulist_free(tmp); 1060 ulist_free(*roots); 1061 return ret; 1062 } 1063 node = ulist_next(tmp, &uiter); 1064 if (!node) 1065 break; 1066 bytenr = node->val; 1067 } 1068 1069 ulist_free(tmp); 1070 return 0; 1071 } 1072 1073 1074 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1075 struct btrfs_root *fs_root, struct btrfs_path *path, 1076 struct btrfs_key *found_key) 1077 { 1078 int ret; 1079 struct btrfs_key key; 1080 struct extent_buffer *eb; 1081 1082 key.type = key_type; 1083 key.objectid = inum; 1084 key.offset = ioff; 1085 1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1087 if (ret < 0) 1088 return ret; 1089 1090 eb = path->nodes[0]; 1091 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1092 ret = btrfs_next_leaf(fs_root, path); 1093 if (ret) 1094 return ret; 1095 eb = path->nodes[0]; 1096 } 1097 1098 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1099 if (found_key->type != key.type || found_key->objectid != key.objectid) 1100 return 1; 1101 1102 return 0; 1103 } 1104 1105 /* 1106 * this makes the path point to (inum INODE_ITEM ioff) 1107 */ 1108 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1109 struct btrfs_path *path) 1110 { 1111 struct btrfs_key key; 1112 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1113 &key); 1114 } 1115 1116 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1117 struct btrfs_path *path, 1118 struct btrfs_key *found_key) 1119 { 1120 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1121 found_key); 1122 } 1123 1124 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1125 u64 start_off, struct btrfs_path *path, 1126 struct btrfs_inode_extref **ret_extref, 1127 u64 *found_off) 1128 { 1129 int ret, slot; 1130 struct btrfs_key key; 1131 struct btrfs_key found_key; 1132 struct btrfs_inode_extref *extref; 1133 struct extent_buffer *leaf; 1134 unsigned long ptr; 1135 1136 key.objectid = inode_objectid; 1137 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1138 key.offset = start_off; 1139 1140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1141 if (ret < 0) 1142 return ret; 1143 1144 while (1) { 1145 leaf = path->nodes[0]; 1146 slot = path->slots[0]; 1147 if (slot >= btrfs_header_nritems(leaf)) { 1148 /* 1149 * If the item at offset is not found, 1150 * btrfs_search_slot will point us to the slot 1151 * where it should be inserted. In our case 1152 * that will be the slot directly before the 1153 * next INODE_REF_KEY_V2 item. In the case 1154 * that we're pointing to the last slot in a 1155 * leaf, we must move one leaf over. 1156 */ 1157 ret = btrfs_next_leaf(root, path); 1158 if (ret) { 1159 if (ret >= 1) 1160 ret = -ENOENT; 1161 break; 1162 } 1163 continue; 1164 } 1165 1166 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1167 1168 /* 1169 * Check that we're still looking at an extended ref key for 1170 * this particular objectid. If we have different 1171 * objectid or type then there are no more to be found 1172 * in the tree and we can exit. 1173 */ 1174 ret = -ENOENT; 1175 if (found_key.objectid != inode_objectid) 1176 break; 1177 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1178 break; 1179 1180 ret = 0; 1181 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1182 extref = (struct btrfs_inode_extref *)ptr; 1183 *ret_extref = extref; 1184 if (found_off) 1185 *found_off = found_key.offset; 1186 break; 1187 } 1188 1189 return ret; 1190 } 1191 1192 /* 1193 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1194 * Elements of the path are separated by '/' and the path is guaranteed to be 1195 * 0-terminated. the path is only given within the current file system. 1196 * Therefore, it never starts with a '/'. the caller is responsible to provide 1197 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1198 * the start point of the resulting string is returned. this pointer is within 1199 * dest, normally. 1200 * in case the path buffer would overflow, the pointer is decremented further 1201 * as if output was written to the buffer, though no more output is actually 1202 * generated. that way, the caller can determine how much space would be 1203 * required for the path to fit into the buffer. in that case, the returned 1204 * value will be smaller than dest. callers must check this! 1205 */ 1206 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1207 u32 name_len, unsigned long name_off, 1208 struct extent_buffer *eb_in, u64 parent, 1209 char *dest, u32 size) 1210 { 1211 int slot; 1212 u64 next_inum; 1213 int ret; 1214 s64 bytes_left = ((s64)size) - 1; 1215 struct extent_buffer *eb = eb_in; 1216 struct btrfs_key found_key; 1217 int leave_spinning = path->leave_spinning; 1218 struct btrfs_inode_ref *iref; 1219 1220 if (bytes_left >= 0) 1221 dest[bytes_left] = '\0'; 1222 1223 path->leave_spinning = 1; 1224 while (1) { 1225 bytes_left -= name_len; 1226 if (bytes_left >= 0) 1227 read_extent_buffer(eb, dest + bytes_left, 1228 name_off, name_len); 1229 if (eb != eb_in) { 1230 btrfs_tree_read_unlock_blocking(eb); 1231 free_extent_buffer(eb); 1232 } 1233 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1234 if (ret > 0) 1235 ret = -ENOENT; 1236 if (ret) 1237 break; 1238 1239 next_inum = found_key.offset; 1240 1241 /* regular exit ahead */ 1242 if (parent == next_inum) 1243 break; 1244 1245 slot = path->slots[0]; 1246 eb = path->nodes[0]; 1247 /* make sure we can use eb after releasing the path */ 1248 if (eb != eb_in) { 1249 atomic_inc(&eb->refs); 1250 btrfs_tree_read_lock(eb); 1251 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1252 } 1253 btrfs_release_path(path); 1254 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1255 1256 name_len = btrfs_inode_ref_name_len(eb, iref); 1257 name_off = (unsigned long)(iref + 1); 1258 1259 parent = next_inum; 1260 --bytes_left; 1261 if (bytes_left >= 0) 1262 dest[bytes_left] = '/'; 1263 } 1264 1265 btrfs_release_path(path); 1266 path->leave_spinning = leave_spinning; 1267 1268 if (ret) 1269 return ERR_PTR(ret); 1270 1271 return dest + bytes_left; 1272 } 1273 1274 /* 1275 * this makes the path point to (logical EXTENT_ITEM *) 1276 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1277 * tree blocks and <0 on error. 1278 */ 1279 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1280 struct btrfs_path *path, struct btrfs_key *found_key, 1281 u64 *flags_ret) 1282 { 1283 int ret; 1284 u64 flags; 1285 u32 item_size; 1286 struct extent_buffer *eb; 1287 struct btrfs_extent_item *ei; 1288 struct btrfs_key key; 1289 1290 key.type = BTRFS_EXTENT_ITEM_KEY; 1291 key.objectid = logical; 1292 key.offset = (u64)-1; 1293 1294 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1295 if (ret < 0) 1296 return ret; 1297 ret = btrfs_previous_item(fs_info->extent_root, path, 1298 0, BTRFS_EXTENT_ITEM_KEY); 1299 if (ret < 0) 1300 return ret; 1301 1302 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1303 if (found_key->type != BTRFS_EXTENT_ITEM_KEY || 1304 found_key->objectid > logical || 1305 found_key->objectid + found_key->offset <= logical) { 1306 pr_debug("logical %llu is not within any extent\n", 1307 (unsigned long long)logical); 1308 return -ENOENT; 1309 } 1310 1311 eb = path->nodes[0]; 1312 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1313 BUG_ON(item_size < sizeof(*ei)); 1314 1315 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1316 flags = btrfs_extent_flags(eb, ei); 1317 1318 pr_debug("logical %llu is at position %llu within the extent (%llu " 1319 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1320 (unsigned long long)logical, 1321 (unsigned long long)(logical - found_key->objectid), 1322 (unsigned long long)found_key->objectid, 1323 (unsigned long long)found_key->offset, 1324 (unsigned long long)flags, item_size); 1325 1326 WARN_ON(!flags_ret); 1327 if (flags_ret) { 1328 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1329 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1330 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1331 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1332 else 1333 BUG_ON(1); 1334 return 0; 1335 } 1336 1337 return -EIO; 1338 } 1339 1340 /* 1341 * helper function to iterate extent inline refs. ptr must point to a 0 value 1342 * for the first call and may be modified. it is used to track state. 1343 * if more refs exist, 0 is returned and the next call to 1344 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1345 * next ref. after the last ref was processed, 1 is returned. 1346 * returns <0 on error 1347 */ 1348 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1349 struct btrfs_extent_item *ei, u32 item_size, 1350 struct btrfs_extent_inline_ref **out_eiref, 1351 int *out_type) 1352 { 1353 unsigned long end; 1354 u64 flags; 1355 struct btrfs_tree_block_info *info; 1356 1357 if (!*ptr) { 1358 /* first call */ 1359 flags = btrfs_extent_flags(eb, ei); 1360 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1361 info = (struct btrfs_tree_block_info *)(ei + 1); 1362 *out_eiref = 1363 (struct btrfs_extent_inline_ref *)(info + 1); 1364 } else { 1365 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1366 } 1367 *ptr = (unsigned long)*out_eiref; 1368 if ((void *)*ptr >= (void *)ei + item_size) 1369 return -ENOENT; 1370 } 1371 1372 end = (unsigned long)ei + item_size; 1373 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1374 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1375 1376 *ptr += btrfs_extent_inline_ref_size(*out_type); 1377 WARN_ON(*ptr > end); 1378 if (*ptr == end) 1379 return 1; /* last */ 1380 1381 return 0; 1382 } 1383 1384 /* 1385 * reads the tree block backref for an extent. tree level and root are returned 1386 * through out_level and out_root. ptr must point to a 0 value for the first 1387 * call and may be modified (see __get_extent_inline_ref comment). 1388 * returns 0 if data was provided, 1 if there was no more data to provide or 1389 * <0 on error. 1390 */ 1391 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1392 struct btrfs_extent_item *ei, u32 item_size, 1393 u64 *out_root, u8 *out_level) 1394 { 1395 int ret; 1396 int type; 1397 struct btrfs_tree_block_info *info; 1398 struct btrfs_extent_inline_ref *eiref; 1399 1400 if (*ptr == (unsigned long)-1) 1401 return 1; 1402 1403 while (1) { 1404 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1405 &eiref, &type); 1406 if (ret < 0) 1407 return ret; 1408 1409 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1410 type == BTRFS_SHARED_BLOCK_REF_KEY) 1411 break; 1412 1413 if (ret == 1) 1414 return 1; 1415 } 1416 1417 /* we can treat both ref types equally here */ 1418 info = (struct btrfs_tree_block_info *)(ei + 1); 1419 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1420 *out_level = btrfs_tree_block_level(eb, info); 1421 1422 if (ret == 1) 1423 *ptr = (unsigned long)-1; 1424 1425 return 0; 1426 } 1427 1428 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1429 u64 root, u64 extent_item_objectid, 1430 iterate_extent_inodes_t *iterate, void *ctx) 1431 { 1432 struct extent_inode_elem *eie; 1433 int ret = 0; 1434 1435 for (eie = inode_list; eie; eie = eie->next) { 1436 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1437 "root %llu\n", extent_item_objectid, 1438 eie->inum, eie->offset, root); 1439 ret = iterate(eie->inum, eie->offset, root, ctx); 1440 if (ret) { 1441 pr_debug("stopping iteration for %llu due to ret=%d\n", 1442 extent_item_objectid, ret); 1443 break; 1444 } 1445 } 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * calls iterate() for every inode that references the extent identified by 1452 * the given parameters. 1453 * when the iterator function returns a non-zero value, iteration stops. 1454 */ 1455 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1456 u64 extent_item_objectid, u64 extent_item_pos, 1457 int search_commit_root, 1458 iterate_extent_inodes_t *iterate, void *ctx) 1459 { 1460 int ret; 1461 struct btrfs_trans_handle *trans; 1462 struct ulist *refs = NULL; 1463 struct ulist *roots = NULL; 1464 struct ulist_node *ref_node = NULL; 1465 struct ulist_node *root_node = NULL; 1466 struct seq_list tree_mod_seq_elem = {}; 1467 struct ulist_iterator ref_uiter; 1468 struct ulist_iterator root_uiter; 1469 1470 pr_debug("resolving all inodes for extent %llu\n", 1471 extent_item_objectid); 1472 1473 if (search_commit_root) { 1474 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT; 1475 } else { 1476 trans = btrfs_join_transaction(fs_info->extent_root); 1477 if (IS_ERR(trans)) 1478 return PTR_ERR(trans); 1479 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1480 } 1481 1482 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1483 tree_mod_seq_elem.seq, &refs, 1484 &extent_item_pos); 1485 if (ret) 1486 goto out; 1487 1488 ULIST_ITER_INIT(&ref_uiter); 1489 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1490 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1491 tree_mod_seq_elem.seq, &roots); 1492 if (ret) 1493 break; 1494 ULIST_ITER_INIT(&root_uiter); 1495 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1496 pr_debug("root %llu references leaf %llu, data list " 1497 "%#llx\n", root_node->val, ref_node->val, 1498 (long long)ref_node->aux); 1499 ret = iterate_leaf_refs((struct extent_inode_elem *) 1500 (uintptr_t)ref_node->aux, 1501 root_node->val, 1502 extent_item_objectid, 1503 iterate, ctx); 1504 } 1505 ulist_free(roots); 1506 } 1507 1508 free_leaf_list(refs); 1509 out: 1510 if (!search_commit_root) { 1511 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1512 btrfs_end_transaction(trans, fs_info->extent_root); 1513 } 1514 1515 return ret; 1516 } 1517 1518 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1519 struct btrfs_path *path, 1520 iterate_extent_inodes_t *iterate, void *ctx) 1521 { 1522 int ret; 1523 u64 extent_item_pos; 1524 u64 flags = 0; 1525 struct btrfs_key found_key; 1526 int search_commit_root = path->search_commit_root; 1527 1528 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1529 btrfs_release_path(path); 1530 if (ret < 0) 1531 return ret; 1532 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1533 return -EINVAL; 1534 1535 extent_item_pos = logical - found_key.objectid; 1536 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1537 extent_item_pos, search_commit_root, 1538 iterate, ctx); 1539 1540 return ret; 1541 } 1542 1543 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1544 struct extent_buffer *eb, void *ctx); 1545 1546 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1547 struct btrfs_path *path, 1548 iterate_irefs_t *iterate, void *ctx) 1549 { 1550 int ret = 0; 1551 int slot; 1552 u32 cur; 1553 u32 len; 1554 u32 name_len; 1555 u64 parent = 0; 1556 int found = 0; 1557 struct extent_buffer *eb; 1558 struct btrfs_item *item; 1559 struct btrfs_inode_ref *iref; 1560 struct btrfs_key found_key; 1561 1562 while (!ret) { 1563 path->leave_spinning = 1; 1564 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1565 &found_key); 1566 if (ret < 0) 1567 break; 1568 if (ret) { 1569 ret = found ? 0 : -ENOENT; 1570 break; 1571 } 1572 ++found; 1573 1574 parent = found_key.offset; 1575 slot = path->slots[0]; 1576 eb = path->nodes[0]; 1577 /* make sure we can use eb after releasing the path */ 1578 atomic_inc(&eb->refs); 1579 btrfs_tree_read_lock(eb); 1580 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1581 btrfs_release_path(path); 1582 1583 item = btrfs_item_nr(eb, slot); 1584 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1585 1586 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1587 name_len = btrfs_inode_ref_name_len(eb, iref); 1588 /* path must be released before calling iterate()! */ 1589 pr_debug("following ref at offset %u for inode %llu in " 1590 "tree %llu\n", cur, 1591 (unsigned long long)found_key.objectid, 1592 (unsigned long long)fs_root->objectid); 1593 ret = iterate(parent, name_len, 1594 (unsigned long)(iref + 1), eb, ctx); 1595 if (ret) 1596 break; 1597 len = sizeof(*iref) + name_len; 1598 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1599 } 1600 btrfs_tree_read_unlock_blocking(eb); 1601 free_extent_buffer(eb); 1602 } 1603 1604 btrfs_release_path(path); 1605 1606 return ret; 1607 } 1608 1609 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1610 struct btrfs_path *path, 1611 iterate_irefs_t *iterate, void *ctx) 1612 { 1613 int ret; 1614 int slot; 1615 u64 offset = 0; 1616 u64 parent; 1617 int found = 0; 1618 struct extent_buffer *eb; 1619 struct btrfs_inode_extref *extref; 1620 struct extent_buffer *leaf; 1621 u32 item_size; 1622 u32 cur_offset; 1623 unsigned long ptr; 1624 1625 while (1) { 1626 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1627 &offset); 1628 if (ret < 0) 1629 break; 1630 if (ret) { 1631 ret = found ? 0 : -ENOENT; 1632 break; 1633 } 1634 ++found; 1635 1636 slot = path->slots[0]; 1637 eb = path->nodes[0]; 1638 /* make sure we can use eb after releasing the path */ 1639 atomic_inc(&eb->refs); 1640 1641 btrfs_tree_read_lock(eb); 1642 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1643 btrfs_release_path(path); 1644 1645 leaf = path->nodes[0]; 1646 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1647 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1648 cur_offset = 0; 1649 1650 while (cur_offset < item_size) { 1651 u32 name_len; 1652 1653 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1654 parent = btrfs_inode_extref_parent(eb, extref); 1655 name_len = btrfs_inode_extref_name_len(eb, extref); 1656 ret = iterate(parent, name_len, 1657 (unsigned long)&extref->name, eb, ctx); 1658 if (ret) 1659 break; 1660 1661 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1662 cur_offset += sizeof(*extref); 1663 } 1664 btrfs_tree_read_unlock_blocking(eb); 1665 free_extent_buffer(eb); 1666 1667 offset++; 1668 } 1669 1670 btrfs_release_path(path); 1671 1672 return ret; 1673 } 1674 1675 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1676 struct btrfs_path *path, iterate_irefs_t *iterate, 1677 void *ctx) 1678 { 1679 int ret; 1680 int found_refs = 0; 1681 1682 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1683 if (!ret) 1684 ++found_refs; 1685 else if (ret != -ENOENT) 1686 return ret; 1687 1688 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1689 if (ret == -ENOENT && found_refs) 1690 return 0; 1691 1692 return ret; 1693 } 1694 1695 /* 1696 * returns 0 if the path could be dumped (probably truncated) 1697 * returns <0 in case of an error 1698 */ 1699 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1700 struct extent_buffer *eb, void *ctx) 1701 { 1702 struct inode_fs_paths *ipath = ctx; 1703 char *fspath; 1704 char *fspath_min; 1705 int i = ipath->fspath->elem_cnt; 1706 const int s_ptr = sizeof(char *); 1707 u32 bytes_left; 1708 1709 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1710 ipath->fspath->bytes_left - s_ptr : 0; 1711 1712 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1713 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1714 name_off, eb, inum, fspath_min, bytes_left); 1715 if (IS_ERR(fspath)) 1716 return PTR_ERR(fspath); 1717 1718 if (fspath > fspath_min) { 1719 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1720 ++ipath->fspath->elem_cnt; 1721 ipath->fspath->bytes_left = fspath - fspath_min; 1722 } else { 1723 ++ipath->fspath->elem_missed; 1724 ipath->fspath->bytes_missing += fspath_min - fspath; 1725 ipath->fspath->bytes_left = 0; 1726 } 1727 1728 return 0; 1729 } 1730 1731 /* 1732 * this dumps all file system paths to the inode into the ipath struct, provided 1733 * is has been created large enough. each path is zero-terminated and accessed 1734 * from ipath->fspath->val[i]. 1735 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1736 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1737 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1738 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1739 * have been needed to return all paths. 1740 */ 1741 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1742 { 1743 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1744 inode_to_path, ipath); 1745 } 1746 1747 struct btrfs_data_container *init_data_container(u32 total_bytes) 1748 { 1749 struct btrfs_data_container *data; 1750 size_t alloc_bytes; 1751 1752 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1753 data = vmalloc(alloc_bytes); 1754 if (!data) 1755 return ERR_PTR(-ENOMEM); 1756 1757 if (total_bytes >= sizeof(*data)) { 1758 data->bytes_left = total_bytes - sizeof(*data); 1759 data->bytes_missing = 0; 1760 } else { 1761 data->bytes_missing = sizeof(*data) - total_bytes; 1762 data->bytes_left = 0; 1763 } 1764 1765 data->elem_cnt = 0; 1766 data->elem_missed = 0; 1767 1768 return data; 1769 } 1770 1771 /* 1772 * allocates space to return multiple file system paths for an inode. 1773 * total_bytes to allocate are passed, note that space usable for actual path 1774 * information will be total_bytes - sizeof(struct inode_fs_paths). 1775 * the returned pointer must be freed with free_ipath() in the end. 1776 */ 1777 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1778 struct btrfs_path *path) 1779 { 1780 struct inode_fs_paths *ifp; 1781 struct btrfs_data_container *fspath; 1782 1783 fspath = init_data_container(total_bytes); 1784 if (IS_ERR(fspath)) 1785 return (void *)fspath; 1786 1787 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1788 if (!ifp) { 1789 kfree(fspath); 1790 return ERR_PTR(-ENOMEM); 1791 } 1792 1793 ifp->btrfs_path = path; 1794 ifp->fspath = fspath; 1795 ifp->fs_root = fs_root; 1796 1797 return ifp; 1798 } 1799 1800 void free_ipath(struct inode_fs_paths *ipath) 1801 { 1802 if (!ipath) 1803 return; 1804 vfree(ipath->fspath); 1805 kfree(ipath); 1806 } 1807