1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 /* Just an arbitrary number so we can be sure this happened */ 29 #define BACKREF_FOUND_SHARED 6 30 31 struct extent_inode_elem { 32 u64 inum; 33 u64 offset; 34 struct extent_inode_elem *next; 35 }; 36 37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 38 struct btrfs_file_extent_item *fi, 39 u64 extent_item_pos, 40 struct extent_inode_elem **eie) 41 { 42 u64 offset = 0; 43 struct extent_inode_elem *e; 44 45 if (!btrfs_file_extent_compression(eb, fi) && 46 !btrfs_file_extent_encryption(eb, fi) && 47 !btrfs_file_extent_other_encoding(eb, fi)) { 48 u64 data_offset; 49 u64 data_len; 50 51 data_offset = btrfs_file_extent_offset(eb, fi); 52 data_len = btrfs_file_extent_num_bytes(eb, fi); 53 54 if (extent_item_pos < data_offset || 55 extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset = extent_item_pos - data_offset; 58 } 59 60 e = kmalloc(sizeof(*e), GFP_NOFS); 61 if (!e) 62 return -ENOMEM; 63 64 e->next = *eie; 65 e->inum = key->objectid; 66 e->offset = key->offset + offset; 67 *eie = e; 68 69 return 0; 70 } 71 72 static void free_inode_elem_list(struct extent_inode_elem *eie) 73 { 74 struct extent_inode_elem *eie_next; 75 76 for (; eie; eie = eie_next) { 77 eie_next = eie->next; 78 kfree(eie); 79 } 80 } 81 82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 83 u64 extent_item_pos, 84 struct extent_inode_elem **eie) 85 { 86 u64 disk_byte; 87 struct btrfs_key key; 88 struct btrfs_file_extent_item *fi; 89 int slot; 90 int nritems; 91 int extent_type; 92 int ret; 93 94 /* 95 * from the shared data ref, we only have the leaf but we need 96 * the key. thus, we must look into all items and see that we 97 * find one (some) with a reference to our extent item. 98 */ 99 nritems = btrfs_header_nritems(eb); 100 for (slot = 0; slot < nritems; ++slot) { 101 btrfs_item_key_to_cpu(eb, &key, slot); 102 if (key.type != BTRFS_EXTENT_DATA_KEY) 103 continue; 104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 105 extent_type = btrfs_file_extent_type(eb, fi); 106 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 107 continue; 108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 110 if (disk_byte != wanted_disk_byte) 111 continue; 112 113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 114 if (ret < 0) 115 return ret; 116 } 117 118 return 0; 119 } 120 121 /* 122 * this structure records all encountered refs on the way up to the root 123 */ 124 struct __prelim_ref { 125 struct list_head list; 126 u64 root_id; 127 struct btrfs_key key_for_search; 128 int level; 129 int count; 130 struct extent_inode_elem *inode_list; 131 u64 parent; 132 u64 wanted_disk_byte; 133 }; 134 135 static struct kmem_cache *btrfs_prelim_ref_cache; 136 137 int __init btrfs_prelim_ref_init(void) 138 { 139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 140 sizeof(struct __prelim_ref), 141 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 143 NULL); 144 if (!btrfs_prelim_ref_cache) 145 return -ENOMEM; 146 return 0; 147 } 148 149 void btrfs_prelim_ref_exit(void) 150 { 151 if (btrfs_prelim_ref_cache) 152 kmem_cache_destroy(btrfs_prelim_ref_cache); 153 } 154 155 /* 156 * the rules for all callers of this function are: 157 * - obtaining the parent is the goal 158 * - if you add a key, you must know that it is a correct key 159 * - if you cannot add the parent or a correct key, then we will look into the 160 * block later to set a correct key 161 * 162 * delayed refs 163 * ============ 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | - | - 168 * key to resolve | - | y | y | y 169 * tree block logical | - | - | - | - 170 * root for resolving | y | y | y | y 171 * 172 * - column 1: we've the parent -> done 173 * - column 2, 3, 4: we use the key to find the parent 174 * 175 * on disk refs (inline or keyed) 176 * ============================== 177 * backref type | shared | indirect | shared | indirect 178 * information | tree | tree | data | data 179 * --------------------+--------+----------+--------+---------- 180 * parent logical | y | - | y | - 181 * key to resolve | - | - | - | y 182 * tree block logical | y | y | y | y 183 * root for resolving | - | y | y | y 184 * 185 * - column 1, 3: we've the parent -> done 186 * - column 2: we take the first key from the block to find the parent 187 * (see __add_missing_keys) 188 * - column 4: we use the key to find the parent 189 * 190 * additional information that's available but not required to find the parent 191 * block might help in merging entries to gain some speed. 192 */ 193 194 static int __add_prelim_ref(struct list_head *head, u64 root_id, 195 struct btrfs_key *key, int level, 196 u64 parent, u64 wanted_disk_byte, int count, 197 gfp_t gfp_mask) 198 { 199 struct __prelim_ref *ref; 200 201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 202 return 0; 203 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 205 if (!ref) 206 return -ENOMEM; 207 208 ref->root_id = root_id; 209 if (key) { 210 ref->key_for_search = *key; 211 /* 212 * We can often find data backrefs with an offset that is too 213 * large (>= LLONG_MAX, maximum allowed file offset) due to 214 * underflows when subtracting a file's offset with the data 215 * offset of its corresponding extent data item. This can 216 * happen for example in the clone ioctl. 217 * So if we detect such case we set the search key's offset to 218 * zero to make sure we will find the matching file extent item 219 * at add_all_parents(), otherwise we will miss it because the 220 * offset taken form the backref is much larger then the offset 221 * of the file extent item. This can make us scan a very large 222 * number of file extent items, but at least it will not make 223 * us miss any. 224 * This is an ugly workaround for a behaviour that should have 225 * never existed, but it does and a fix for the clone ioctl 226 * would touch a lot of places, cause backwards incompatibility 227 * and would not fix the problem for extents cloned with older 228 * kernels. 229 */ 230 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 231 ref->key_for_search.offset >= LLONG_MAX) 232 ref->key_for_search.offset = 0; 233 } else { 234 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 235 } 236 237 ref->inode_list = NULL; 238 ref->level = level; 239 ref->count = count; 240 ref->parent = parent; 241 ref->wanted_disk_byte = wanted_disk_byte; 242 list_add_tail(&ref->list, head); 243 244 return 0; 245 } 246 247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 248 struct ulist *parents, struct __prelim_ref *ref, 249 int level, u64 time_seq, const u64 *extent_item_pos, 250 u64 total_refs) 251 { 252 int ret = 0; 253 int slot; 254 struct extent_buffer *eb; 255 struct btrfs_key key; 256 struct btrfs_key *key_for_search = &ref->key_for_search; 257 struct btrfs_file_extent_item *fi; 258 struct extent_inode_elem *eie = NULL, *old = NULL; 259 u64 disk_byte; 260 u64 wanted_disk_byte = ref->wanted_disk_byte; 261 u64 count = 0; 262 263 if (level != 0) { 264 eb = path->nodes[level]; 265 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 266 if (ret < 0) 267 return ret; 268 return 0; 269 } 270 271 /* 272 * We normally enter this function with the path already pointing to 273 * the first item to check. But sometimes, we may enter it with 274 * slot==nritems. In that case, go to the next leaf before we continue. 275 */ 276 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 277 if (time_seq == (u64)-1) 278 ret = btrfs_next_leaf(root, path); 279 else 280 ret = btrfs_next_old_leaf(root, path, time_seq); 281 } 282 283 while (!ret && count < total_refs) { 284 eb = path->nodes[0]; 285 slot = path->slots[0]; 286 287 btrfs_item_key_to_cpu(eb, &key, slot); 288 289 if (key.objectid != key_for_search->objectid || 290 key.type != BTRFS_EXTENT_DATA_KEY) 291 break; 292 293 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 294 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 295 296 if (disk_byte == wanted_disk_byte) { 297 eie = NULL; 298 old = NULL; 299 count++; 300 if (extent_item_pos) { 301 ret = check_extent_in_eb(&key, eb, fi, 302 *extent_item_pos, 303 &eie); 304 if (ret < 0) 305 break; 306 } 307 if (ret > 0) 308 goto next; 309 ret = ulist_add_merge_ptr(parents, eb->start, 310 eie, (void **)&old, GFP_NOFS); 311 if (ret < 0) 312 break; 313 if (!ret && extent_item_pos) { 314 while (old->next) 315 old = old->next; 316 old->next = eie; 317 } 318 eie = NULL; 319 } 320 next: 321 if (time_seq == (u64)-1) 322 ret = btrfs_next_item(root, path); 323 else 324 ret = btrfs_next_old_item(root, path, time_seq); 325 } 326 327 if (ret > 0) 328 ret = 0; 329 else if (ret < 0) 330 free_inode_elem_list(eie); 331 return ret; 332 } 333 334 /* 335 * resolve an indirect backref in the form (root_id, key, level) 336 * to a logical address 337 */ 338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 339 struct btrfs_path *path, u64 time_seq, 340 struct __prelim_ref *ref, 341 struct ulist *parents, 342 const u64 *extent_item_pos, u64 total_refs) 343 { 344 struct btrfs_root *root; 345 struct btrfs_key root_key; 346 struct extent_buffer *eb; 347 int ret = 0; 348 int root_level; 349 int level = ref->level; 350 int index; 351 352 root_key.objectid = ref->root_id; 353 root_key.type = BTRFS_ROOT_ITEM_KEY; 354 root_key.offset = (u64)-1; 355 356 index = srcu_read_lock(&fs_info->subvol_srcu); 357 358 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 359 if (IS_ERR(root)) { 360 srcu_read_unlock(&fs_info->subvol_srcu, index); 361 ret = PTR_ERR(root); 362 goto out; 363 } 364 365 if (path->search_commit_root) 366 root_level = btrfs_header_level(root->commit_root); 367 else if (time_seq == (u64)-1) 368 root_level = btrfs_header_level(root->node); 369 else 370 root_level = btrfs_old_root_level(root, time_seq); 371 372 if (root_level + 1 == level) { 373 srcu_read_unlock(&fs_info->subvol_srcu, index); 374 goto out; 375 } 376 377 path->lowest_level = level; 378 if (time_seq == (u64)-1) 379 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 380 0, 0); 381 else 382 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 383 time_seq); 384 385 /* root node has been locked, we can release @subvol_srcu safely here */ 386 srcu_read_unlock(&fs_info->subvol_srcu, index); 387 388 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 389 "%d for key (%llu %u %llu)\n", 390 ref->root_id, level, ref->count, ret, 391 ref->key_for_search.objectid, ref->key_for_search.type, 392 ref->key_for_search.offset); 393 if (ret < 0) 394 goto out; 395 396 eb = path->nodes[level]; 397 while (!eb) { 398 if (WARN_ON(!level)) { 399 ret = 1; 400 goto out; 401 } 402 level--; 403 eb = path->nodes[level]; 404 } 405 406 ret = add_all_parents(root, path, parents, ref, level, time_seq, 407 extent_item_pos, total_refs); 408 out: 409 path->lowest_level = 0; 410 btrfs_release_path(path); 411 return ret; 412 } 413 414 /* 415 * resolve all indirect backrefs from the list 416 */ 417 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 418 struct btrfs_path *path, u64 time_seq, 419 struct list_head *head, 420 const u64 *extent_item_pos, u64 total_refs, 421 u64 root_objectid) 422 { 423 int err; 424 int ret = 0; 425 struct __prelim_ref *ref; 426 struct __prelim_ref *ref_safe; 427 struct __prelim_ref *new_ref; 428 struct ulist *parents; 429 struct ulist_node *node; 430 struct ulist_iterator uiter; 431 432 parents = ulist_alloc(GFP_NOFS); 433 if (!parents) 434 return -ENOMEM; 435 436 /* 437 * _safe allows us to insert directly after the current item without 438 * iterating over the newly inserted items. 439 * we're also allowed to re-assign ref during iteration. 440 */ 441 list_for_each_entry_safe(ref, ref_safe, head, list) { 442 if (ref->parent) /* already direct */ 443 continue; 444 if (ref->count == 0) 445 continue; 446 if (root_objectid && ref->root_id != root_objectid) { 447 ret = BACKREF_FOUND_SHARED; 448 goto out; 449 } 450 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 451 parents, extent_item_pos, 452 total_refs); 453 /* 454 * we can only tolerate ENOENT,otherwise,we should catch error 455 * and return directly. 456 */ 457 if (err == -ENOENT) { 458 continue; 459 } else if (err) { 460 ret = err; 461 goto out; 462 } 463 464 /* we put the first parent into the ref at hand */ 465 ULIST_ITER_INIT(&uiter); 466 node = ulist_next(parents, &uiter); 467 ref->parent = node ? node->val : 0; 468 ref->inode_list = node ? 469 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 470 471 /* additional parents require new refs being added here */ 472 while ((node = ulist_next(parents, &uiter))) { 473 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 474 GFP_NOFS); 475 if (!new_ref) { 476 ret = -ENOMEM; 477 goto out; 478 } 479 memcpy(new_ref, ref, sizeof(*ref)); 480 new_ref->parent = node->val; 481 new_ref->inode_list = (struct extent_inode_elem *) 482 (uintptr_t)node->aux; 483 list_add(&new_ref->list, &ref->list); 484 } 485 ulist_reinit(parents); 486 } 487 out: 488 ulist_free(parents); 489 return ret; 490 } 491 492 static inline int ref_for_same_block(struct __prelim_ref *ref1, 493 struct __prelim_ref *ref2) 494 { 495 if (ref1->level != ref2->level) 496 return 0; 497 if (ref1->root_id != ref2->root_id) 498 return 0; 499 if (ref1->key_for_search.type != ref2->key_for_search.type) 500 return 0; 501 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 502 return 0; 503 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 504 return 0; 505 if (ref1->parent != ref2->parent) 506 return 0; 507 508 return 1; 509 } 510 511 /* 512 * read tree blocks and add keys where required. 513 */ 514 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 515 struct list_head *head) 516 { 517 struct list_head *pos; 518 struct extent_buffer *eb; 519 520 list_for_each(pos, head) { 521 struct __prelim_ref *ref; 522 ref = list_entry(pos, struct __prelim_ref, list); 523 524 if (ref->parent) 525 continue; 526 if (ref->key_for_search.type) 527 continue; 528 BUG_ON(!ref->wanted_disk_byte); 529 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 530 0); 531 if (IS_ERR(eb)) { 532 return PTR_ERR(eb); 533 } else if (!extent_buffer_uptodate(eb)) { 534 free_extent_buffer(eb); 535 return -EIO; 536 } 537 btrfs_tree_read_lock(eb); 538 if (btrfs_header_level(eb) == 0) 539 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 540 else 541 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 542 btrfs_tree_read_unlock(eb); 543 free_extent_buffer(eb); 544 } 545 return 0; 546 } 547 548 /* 549 * merge backrefs and adjust counts accordingly 550 * 551 * mode = 1: merge identical keys, if key is set 552 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 553 * additionally, we could even add a key range for the blocks we 554 * looked into to merge even more (-> replace unresolved refs by those 555 * having a parent). 556 * mode = 2: merge identical parents 557 */ 558 static void __merge_refs(struct list_head *head, int mode) 559 { 560 struct list_head *pos1; 561 562 list_for_each(pos1, head) { 563 struct list_head *n2; 564 struct list_head *pos2; 565 struct __prelim_ref *ref1; 566 567 ref1 = list_entry(pos1, struct __prelim_ref, list); 568 569 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 570 pos2 = n2, n2 = pos2->next) { 571 struct __prelim_ref *ref2; 572 struct __prelim_ref *xchg; 573 struct extent_inode_elem *eie; 574 575 ref2 = list_entry(pos2, struct __prelim_ref, list); 576 577 if (!ref_for_same_block(ref1, ref2)) 578 continue; 579 if (mode == 1) { 580 if (!ref1->parent && ref2->parent) { 581 xchg = ref1; 582 ref1 = ref2; 583 ref2 = xchg; 584 } 585 } else { 586 if (ref1->parent != ref2->parent) 587 continue; 588 } 589 590 eie = ref1->inode_list; 591 while (eie && eie->next) 592 eie = eie->next; 593 if (eie) 594 eie->next = ref2->inode_list; 595 else 596 ref1->inode_list = ref2->inode_list; 597 ref1->count += ref2->count; 598 599 list_del(&ref2->list); 600 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 601 } 602 603 } 604 } 605 606 /* 607 * add all currently queued delayed refs from this head whose seq nr is 608 * smaller or equal that seq to the list 609 */ 610 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 611 struct list_head *prefs, u64 *total_refs, 612 u64 inum) 613 { 614 struct btrfs_delayed_ref_node *node; 615 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 616 struct btrfs_key key; 617 struct btrfs_key op_key = {0}; 618 int sgn; 619 int ret = 0; 620 621 if (extent_op && extent_op->update_key) 622 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 623 624 spin_lock(&head->lock); 625 list_for_each_entry(node, &head->ref_list, list) { 626 if (node->seq > seq) 627 continue; 628 629 switch (node->action) { 630 case BTRFS_ADD_DELAYED_EXTENT: 631 case BTRFS_UPDATE_DELAYED_HEAD: 632 WARN_ON(1); 633 continue; 634 case BTRFS_ADD_DELAYED_REF: 635 sgn = 1; 636 break; 637 case BTRFS_DROP_DELAYED_REF: 638 sgn = -1; 639 break; 640 default: 641 BUG_ON(1); 642 } 643 *total_refs += (node->ref_mod * sgn); 644 switch (node->type) { 645 case BTRFS_TREE_BLOCK_REF_KEY: { 646 struct btrfs_delayed_tree_ref *ref; 647 648 ref = btrfs_delayed_node_to_tree_ref(node); 649 ret = __add_prelim_ref(prefs, ref->root, &op_key, 650 ref->level + 1, 0, node->bytenr, 651 node->ref_mod * sgn, GFP_ATOMIC); 652 break; 653 } 654 case BTRFS_SHARED_BLOCK_REF_KEY: { 655 struct btrfs_delayed_tree_ref *ref; 656 657 ref = btrfs_delayed_node_to_tree_ref(node); 658 ret = __add_prelim_ref(prefs, 0, NULL, 659 ref->level + 1, ref->parent, 660 node->bytenr, 661 node->ref_mod * sgn, GFP_ATOMIC); 662 break; 663 } 664 case BTRFS_EXTENT_DATA_REF_KEY: { 665 struct btrfs_delayed_data_ref *ref; 666 ref = btrfs_delayed_node_to_data_ref(node); 667 668 key.objectid = ref->objectid; 669 key.type = BTRFS_EXTENT_DATA_KEY; 670 key.offset = ref->offset; 671 672 /* 673 * Found a inum that doesn't match our known inum, we 674 * know it's shared. 675 */ 676 if (inum && ref->objectid != inum) { 677 ret = BACKREF_FOUND_SHARED; 678 break; 679 } 680 681 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 682 node->bytenr, 683 node->ref_mod * sgn, GFP_ATOMIC); 684 break; 685 } 686 case BTRFS_SHARED_DATA_REF_KEY: { 687 struct btrfs_delayed_data_ref *ref; 688 689 ref = btrfs_delayed_node_to_data_ref(node); 690 ret = __add_prelim_ref(prefs, 0, NULL, 0, 691 ref->parent, node->bytenr, 692 node->ref_mod * sgn, GFP_ATOMIC); 693 break; 694 } 695 default: 696 WARN_ON(1); 697 } 698 if (ret) 699 break; 700 } 701 spin_unlock(&head->lock); 702 return ret; 703 } 704 705 /* 706 * add all inline backrefs for bytenr to the list 707 */ 708 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 709 struct btrfs_path *path, u64 bytenr, 710 int *info_level, struct list_head *prefs, 711 u64 *total_refs, u64 inum) 712 { 713 int ret = 0; 714 int slot; 715 struct extent_buffer *leaf; 716 struct btrfs_key key; 717 struct btrfs_key found_key; 718 unsigned long ptr; 719 unsigned long end; 720 struct btrfs_extent_item *ei; 721 u64 flags; 722 u64 item_size; 723 724 /* 725 * enumerate all inline refs 726 */ 727 leaf = path->nodes[0]; 728 slot = path->slots[0]; 729 730 item_size = btrfs_item_size_nr(leaf, slot); 731 BUG_ON(item_size < sizeof(*ei)); 732 733 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 734 flags = btrfs_extent_flags(leaf, ei); 735 *total_refs += btrfs_extent_refs(leaf, ei); 736 btrfs_item_key_to_cpu(leaf, &found_key, slot); 737 738 ptr = (unsigned long)(ei + 1); 739 end = (unsigned long)ei + item_size; 740 741 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 742 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 743 struct btrfs_tree_block_info *info; 744 745 info = (struct btrfs_tree_block_info *)ptr; 746 *info_level = btrfs_tree_block_level(leaf, info); 747 ptr += sizeof(struct btrfs_tree_block_info); 748 BUG_ON(ptr > end); 749 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 750 *info_level = found_key.offset; 751 } else { 752 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 753 } 754 755 while (ptr < end) { 756 struct btrfs_extent_inline_ref *iref; 757 u64 offset; 758 int type; 759 760 iref = (struct btrfs_extent_inline_ref *)ptr; 761 type = btrfs_extent_inline_ref_type(leaf, iref); 762 offset = btrfs_extent_inline_ref_offset(leaf, iref); 763 764 switch (type) { 765 case BTRFS_SHARED_BLOCK_REF_KEY: 766 ret = __add_prelim_ref(prefs, 0, NULL, 767 *info_level + 1, offset, 768 bytenr, 1, GFP_NOFS); 769 break; 770 case BTRFS_SHARED_DATA_REF_KEY: { 771 struct btrfs_shared_data_ref *sdref; 772 int count; 773 774 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 775 count = btrfs_shared_data_ref_count(leaf, sdref); 776 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 777 bytenr, count, GFP_NOFS); 778 break; 779 } 780 case BTRFS_TREE_BLOCK_REF_KEY: 781 ret = __add_prelim_ref(prefs, offset, NULL, 782 *info_level + 1, 0, 783 bytenr, 1, GFP_NOFS); 784 break; 785 case BTRFS_EXTENT_DATA_REF_KEY: { 786 struct btrfs_extent_data_ref *dref; 787 int count; 788 u64 root; 789 790 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 791 count = btrfs_extent_data_ref_count(leaf, dref); 792 key.objectid = btrfs_extent_data_ref_objectid(leaf, 793 dref); 794 key.type = BTRFS_EXTENT_DATA_KEY; 795 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 796 797 if (inum && key.objectid != inum) { 798 ret = BACKREF_FOUND_SHARED; 799 break; 800 } 801 802 root = btrfs_extent_data_ref_root(leaf, dref); 803 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 804 bytenr, count, GFP_NOFS); 805 break; 806 } 807 default: 808 WARN_ON(1); 809 } 810 if (ret) 811 return ret; 812 ptr += btrfs_extent_inline_ref_size(type); 813 } 814 815 return 0; 816 } 817 818 /* 819 * add all non-inline backrefs for bytenr to the list 820 */ 821 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 822 struct btrfs_path *path, u64 bytenr, 823 int info_level, struct list_head *prefs, u64 inum) 824 { 825 struct btrfs_root *extent_root = fs_info->extent_root; 826 int ret; 827 int slot; 828 struct extent_buffer *leaf; 829 struct btrfs_key key; 830 831 while (1) { 832 ret = btrfs_next_item(extent_root, path); 833 if (ret < 0) 834 break; 835 if (ret) { 836 ret = 0; 837 break; 838 } 839 840 slot = path->slots[0]; 841 leaf = path->nodes[0]; 842 btrfs_item_key_to_cpu(leaf, &key, slot); 843 844 if (key.objectid != bytenr) 845 break; 846 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 847 continue; 848 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 849 break; 850 851 switch (key.type) { 852 case BTRFS_SHARED_BLOCK_REF_KEY: 853 ret = __add_prelim_ref(prefs, 0, NULL, 854 info_level + 1, key.offset, 855 bytenr, 1, GFP_NOFS); 856 break; 857 case BTRFS_SHARED_DATA_REF_KEY: { 858 struct btrfs_shared_data_ref *sdref; 859 int count; 860 861 sdref = btrfs_item_ptr(leaf, slot, 862 struct btrfs_shared_data_ref); 863 count = btrfs_shared_data_ref_count(leaf, sdref); 864 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 865 bytenr, count, GFP_NOFS); 866 break; 867 } 868 case BTRFS_TREE_BLOCK_REF_KEY: 869 ret = __add_prelim_ref(prefs, key.offset, NULL, 870 info_level + 1, 0, 871 bytenr, 1, GFP_NOFS); 872 break; 873 case BTRFS_EXTENT_DATA_REF_KEY: { 874 struct btrfs_extent_data_ref *dref; 875 int count; 876 u64 root; 877 878 dref = btrfs_item_ptr(leaf, slot, 879 struct btrfs_extent_data_ref); 880 count = btrfs_extent_data_ref_count(leaf, dref); 881 key.objectid = btrfs_extent_data_ref_objectid(leaf, 882 dref); 883 key.type = BTRFS_EXTENT_DATA_KEY; 884 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 885 886 if (inum && key.objectid != inum) { 887 ret = BACKREF_FOUND_SHARED; 888 break; 889 } 890 891 root = btrfs_extent_data_ref_root(leaf, dref); 892 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 893 bytenr, count, GFP_NOFS); 894 break; 895 } 896 default: 897 WARN_ON(1); 898 } 899 if (ret) 900 return ret; 901 902 } 903 904 return ret; 905 } 906 907 /* 908 * this adds all existing backrefs (inline backrefs, backrefs and delayed 909 * refs) for the given bytenr to the refs list, merges duplicates and resolves 910 * indirect refs to their parent bytenr. 911 * When roots are found, they're added to the roots list 912 * 913 * NOTE: This can return values > 0 914 * 915 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 916 * much like trans == NULL case, the difference only lies in it will not 917 * commit root. 918 * The special case is for qgroup to search roots in commit_transaction(). 919 * 920 * FIXME some caching might speed things up 921 */ 922 static int find_parent_nodes(struct btrfs_trans_handle *trans, 923 struct btrfs_fs_info *fs_info, u64 bytenr, 924 u64 time_seq, struct ulist *refs, 925 struct ulist *roots, const u64 *extent_item_pos, 926 u64 root_objectid, u64 inum) 927 { 928 struct btrfs_key key; 929 struct btrfs_path *path; 930 struct btrfs_delayed_ref_root *delayed_refs = NULL; 931 struct btrfs_delayed_ref_head *head; 932 int info_level = 0; 933 int ret; 934 struct list_head prefs_delayed; 935 struct list_head prefs; 936 struct __prelim_ref *ref; 937 struct extent_inode_elem *eie = NULL; 938 u64 total_refs = 0; 939 940 INIT_LIST_HEAD(&prefs); 941 INIT_LIST_HEAD(&prefs_delayed); 942 943 key.objectid = bytenr; 944 key.offset = (u64)-1; 945 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 946 key.type = BTRFS_METADATA_ITEM_KEY; 947 else 948 key.type = BTRFS_EXTENT_ITEM_KEY; 949 950 path = btrfs_alloc_path(); 951 if (!path) 952 return -ENOMEM; 953 if (!trans) { 954 path->search_commit_root = 1; 955 path->skip_locking = 1; 956 } 957 958 if (time_seq == (u64)-1) 959 path->skip_locking = 1; 960 961 /* 962 * grab both a lock on the path and a lock on the delayed ref head. 963 * We need both to get a consistent picture of how the refs look 964 * at a specified point in time 965 */ 966 again: 967 head = NULL; 968 969 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 970 if (ret < 0) 971 goto out; 972 BUG_ON(ret == 0); 973 974 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 975 if (trans && likely(trans->type != __TRANS_DUMMY) && 976 time_seq != (u64)-1) { 977 #else 978 if (trans && time_seq != (u64)-1) { 979 #endif 980 /* 981 * look if there are updates for this ref queued and lock the 982 * head 983 */ 984 delayed_refs = &trans->transaction->delayed_refs; 985 spin_lock(&delayed_refs->lock); 986 head = btrfs_find_delayed_ref_head(trans, bytenr); 987 if (head) { 988 if (!mutex_trylock(&head->mutex)) { 989 atomic_inc(&head->node.refs); 990 spin_unlock(&delayed_refs->lock); 991 992 btrfs_release_path(path); 993 994 /* 995 * Mutex was contended, block until it's 996 * released and try again 997 */ 998 mutex_lock(&head->mutex); 999 mutex_unlock(&head->mutex); 1000 btrfs_put_delayed_ref(&head->node); 1001 goto again; 1002 } 1003 spin_unlock(&delayed_refs->lock); 1004 ret = __add_delayed_refs(head, time_seq, 1005 &prefs_delayed, &total_refs, 1006 inum); 1007 mutex_unlock(&head->mutex); 1008 if (ret) 1009 goto out; 1010 } else { 1011 spin_unlock(&delayed_refs->lock); 1012 } 1013 } 1014 1015 if (path->slots[0]) { 1016 struct extent_buffer *leaf; 1017 int slot; 1018 1019 path->slots[0]--; 1020 leaf = path->nodes[0]; 1021 slot = path->slots[0]; 1022 btrfs_item_key_to_cpu(leaf, &key, slot); 1023 if (key.objectid == bytenr && 1024 (key.type == BTRFS_EXTENT_ITEM_KEY || 1025 key.type == BTRFS_METADATA_ITEM_KEY)) { 1026 ret = __add_inline_refs(fs_info, path, bytenr, 1027 &info_level, &prefs, 1028 &total_refs, inum); 1029 if (ret) 1030 goto out; 1031 ret = __add_keyed_refs(fs_info, path, bytenr, 1032 info_level, &prefs, inum); 1033 if (ret) 1034 goto out; 1035 } 1036 } 1037 btrfs_release_path(path); 1038 1039 list_splice_init(&prefs_delayed, &prefs); 1040 1041 ret = __add_missing_keys(fs_info, &prefs); 1042 if (ret) 1043 goto out; 1044 1045 __merge_refs(&prefs, 1); 1046 1047 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1048 extent_item_pos, total_refs, 1049 root_objectid); 1050 if (ret) 1051 goto out; 1052 1053 __merge_refs(&prefs, 2); 1054 1055 while (!list_empty(&prefs)) { 1056 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1057 WARN_ON(ref->count < 0); 1058 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1059 if (root_objectid && ref->root_id != root_objectid) { 1060 ret = BACKREF_FOUND_SHARED; 1061 goto out; 1062 } 1063 1064 /* no parent == root of tree */ 1065 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1066 if (ret < 0) 1067 goto out; 1068 } 1069 if (ref->count && ref->parent) { 1070 if (extent_item_pos && !ref->inode_list && 1071 ref->level == 0) { 1072 struct extent_buffer *eb; 1073 1074 eb = read_tree_block(fs_info->extent_root, 1075 ref->parent, 0); 1076 if (IS_ERR(eb)) { 1077 ret = PTR_ERR(eb); 1078 goto out; 1079 } else if (!extent_buffer_uptodate(eb)) { 1080 free_extent_buffer(eb); 1081 ret = -EIO; 1082 goto out; 1083 } 1084 btrfs_tree_read_lock(eb); 1085 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1086 ret = find_extent_in_eb(eb, bytenr, 1087 *extent_item_pos, &eie); 1088 btrfs_tree_read_unlock_blocking(eb); 1089 free_extent_buffer(eb); 1090 if (ret < 0) 1091 goto out; 1092 ref->inode_list = eie; 1093 } 1094 ret = ulist_add_merge_ptr(refs, ref->parent, 1095 ref->inode_list, 1096 (void **)&eie, GFP_NOFS); 1097 if (ret < 0) 1098 goto out; 1099 if (!ret && extent_item_pos) { 1100 /* 1101 * we've recorded that parent, so we must extend 1102 * its inode list here 1103 */ 1104 BUG_ON(!eie); 1105 while (eie->next) 1106 eie = eie->next; 1107 eie->next = ref->inode_list; 1108 } 1109 eie = NULL; 1110 } 1111 list_del(&ref->list); 1112 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1113 } 1114 1115 out: 1116 btrfs_free_path(path); 1117 while (!list_empty(&prefs)) { 1118 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1119 list_del(&ref->list); 1120 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1121 } 1122 while (!list_empty(&prefs_delayed)) { 1123 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1124 list); 1125 list_del(&ref->list); 1126 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1127 } 1128 if (ret < 0) 1129 free_inode_elem_list(eie); 1130 return ret; 1131 } 1132 1133 static void free_leaf_list(struct ulist *blocks) 1134 { 1135 struct ulist_node *node = NULL; 1136 struct extent_inode_elem *eie; 1137 struct ulist_iterator uiter; 1138 1139 ULIST_ITER_INIT(&uiter); 1140 while ((node = ulist_next(blocks, &uiter))) { 1141 if (!node->aux) 1142 continue; 1143 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1144 free_inode_elem_list(eie); 1145 node->aux = 0; 1146 } 1147 1148 ulist_free(blocks); 1149 } 1150 1151 /* 1152 * Finds all leafs with a reference to the specified combination of bytenr and 1153 * offset. key_list_head will point to a list of corresponding keys (caller must 1154 * free each list element). The leafs will be stored in the leafs ulist, which 1155 * must be freed with ulist_free. 1156 * 1157 * returns 0 on success, <0 on error 1158 */ 1159 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1160 struct btrfs_fs_info *fs_info, u64 bytenr, 1161 u64 time_seq, struct ulist **leafs, 1162 const u64 *extent_item_pos) 1163 { 1164 int ret; 1165 1166 *leafs = ulist_alloc(GFP_NOFS); 1167 if (!*leafs) 1168 return -ENOMEM; 1169 1170 ret = find_parent_nodes(trans, fs_info, bytenr, 1171 time_seq, *leafs, NULL, extent_item_pos, 0, 0); 1172 if (ret < 0 && ret != -ENOENT) { 1173 free_leaf_list(*leafs); 1174 return ret; 1175 } 1176 1177 return 0; 1178 } 1179 1180 /* 1181 * walk all backrefs for a given extent to find all roots that reference this 1182 * extent. Walking a backref means finding all extents that reference this 1183 * extent and in turn walk the backrefs of those, too. Naturally this is a 1184 * recursive process, but here it is implemented in an iterative fashion: We 1185 * find all referencing extents for the extent in question and put them on a 1186 * list. In turn, we find all referencing extents for those, further appending 1187 * to the list. The way we iterate the list allows adding more elements after 1188 * the current while iterating. The process stops when we reach the end of the 1189 * list. Found roots are added to the roots list. 1190 * 1191 * returns 0 on success, < 0 on error. 1192 */ 1193 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1194 struct btrfs_fs_info *fs_info, u64 bytenr, 1195 u64 time_seq, struct ulist **roots) 1196 { 1197 struct ulist *tmp; 1198 struct ulist_node *node = NULL; 1199 struct ulist_iterator uiter; 1200 int ret; 1201 1202 tmp = ulist_alloc(GFP_NOFS); 1203 if (!tmp) 1204 return -ENOMEM; 1205 *roots = ulist_alloc(GFP_NOFS); 1206 if (!*roots) { 1207 ulist_free(tmp); 1208 return -ENOMEM; 1209 } 1210 1211 ULIST_ITER_INIT(&uiter); 1212 while (1) { 1213 ret = find_parent_nodes(trans, fs_info, bytenr, 1214 time_seq, tmp, *roots, NULL, 0, 0); 1215 if (ret < 0 && ret != -ENOENT) { 1216 ulist_free(tmp); 1217 ulist_free(*roots); 1218 return ret; 1219 } 1220 node = ulist_next(tmp, &uiter); 1221 if (!node) 1222 break; 1223 bytenr = node->val; 1224 cond_resched(); 1225 } 1226 1227 ulist_free(tmp); 1228 return 0; 1229 } 1230 1231 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1232 struct btrfs_fs_info *fs_info, u64 bytenr, 1233 u64 time_seq, struct ulist **roots) 1234 { 1235 int ret; 1236 1237 if (!trans) 1238 down_read(&fs_info->commit_root_sem); 1239 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1240 if (!trans) 1241 up_read(&fs_info->commit_root_sem); 1242 return ret; 1243 } 1244 1245 /** 1246 * btrfs_check_shared - tell us whether an extent is shared 1247 * 1248 * @trans: optional trans handle 1249 * 1250 * btrfs_check_shared uses the backref walking code but will short 1251 * circuit as soon as it finds a root or inode that doesn't match the 1252 * one passed in. This provides a significant performance benefit for 1253 * callers (such as fiemap) which want to know whether the extent is 1254 * shared but do not need a ref count. 1255 * 1256 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1257 */ 1258 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1259 struct btrfs_fs_info *fs_info, u64 root_objectid, 1260 u64 inum, u64 bytenr) 1261 { 1262 struct ulist *tmp = NULL; 1263 struct ulist *roots = NULL; 1264 struct ulist_iterator uiter; 1265 struct ulist_node *node; 1266 struct seq_list elem = SEQ_LIST_INIT(elem); 1267 int ret = 0; 1268 1269 tmp = ulist_alloc(GFP_NOFS); 1270 roots = ulist_alloc(GFP_NOFS); 1271 if (!tmp || !roots) { 1272 ulist_free(tmp); 1273 ulist_free(roots); 1274 return -ENOMEM; 1275 } 1276 1277 if (trans) 1278 btrfs_get_tree_mod_seq(fs_info, &elem); 1279 else 1280 down_read(&fs_info->commit_root_sem); 1281 ULIST_ITER_INIT(&uiter); 1282 while (1) { 1283 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1284 roots, NULL, root_objectid, inum); 1285 if (ret == BACKREF_FOUND_SHARED) { 1286 /* this is the only condition under which we return 1 */ 1287 ret = 1; 1288 break; 1289 } 1290 if (ret < 0 && ret != -ENOENT) 1291 break; 1292 ret = 0; 1293 node = ulist_next(tmp, &uiter); 1294 if (!node) 1295 break; 1296 bytenr = node->val; 1297 cond_resched(); 1298 } 1299 if (trans) 1300 btrfs_put_tree_mod_seq(fs_info, &elem); 1301 else 1302 up_read(&fs_info->commit_root_sem); 1303 ulist_free(tmp); 1304 ulist_free(roots); 1305 return ret; 1306 } 1307 1308 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1309 u64 start_off, struct btrfs_path *path, 1310 struct btrfs_inode_extref **ret_extref, 1311 u64 *found_off) 1312 { 1313 int ret, slot; 1314 struct btrfs_key key; 1315 struct btrfs_key found_key; 1316 struct btrfs_inode_extref *extref; 1317 struct extent_buffer *leaf; 1318 unsigned long ptr; 1319 1320 key.objectid = inode_objectid; 1321 key.type = BTRFS_INODE_EXTREF_KEY; 1322 key.offset = start_off; 1323 1324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1325 if (ret < 0) 1326 return ret; 1327 1328 while (1) { 1329 leaf = path->nodes[0]; 1330 slot = path->slots[0]; 1331 if (slot >= btrfs_header_nritems(leaf)) { 1332 /* 1333 * If the item at offset is not found, 1334 * btrfs_search_slot will point us to the slot 1335 * where it should be inserted. In our case 1336 * that will be the slot directly before the 1337 * next INODE_REF_KEY_V2 item. In the case 1338 * that we're pointing to the last slot in a 1339 * leaf, we must move one leaf over. 1340 */ 1341 ret = btrfs_next_leaf(root, path); 1342 if (ret) { 1343 if (ret >= 1) 1344 ret = -ENOENT; 1345 break; 1346 } 1347 continue; 1348 } 1349 1350 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1351 1352 /* 1353 * Check that we're still looking at an extended ref key for 1354 * this particular objectid. If we have different 1355 * objectid or type then there are no more to be found 1356 * in the tree and we can exit. 1357 */ 1358 ret = -ENOENT; 1359 if (found_key.objectid != inode_objectid) 1360 break; 1361 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1362 break; 1363 1364 ret = 0; 1365 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1366 extref = (struct btrfs_inode_extref *)ptr; 1367 *ret_extref = extref; 1368 if (found_off) 1369 *found_off = found_key.offset; 1370 break; 1371 } 1372 1373 return ret; 1374 } 1375 1376 /* 1377 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1378 * Elements of the path are separated by '/' and the path is guaranteed to be 1379 * 0-terminated. the path is only given within the current file system. 1380 * Therefore, it never starts with a '/'. the caller is responsible to provide 1381 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1382 * the start point of the resulting string is returned. this pointer is within 1383 * dest, normally. 1384 * in case the path buffer would overflow, the pointer is decremented further 1385 * as if output was written to the buffer, though no more output is actually 1386 * generated. that way, the caller can determine how much space would be 1387 * required for the path to fit into the buffer. in that case, the returned 1388 * value will be smaller than dest. callers must check this! 1389 */ 1390 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1391 u32 name_len, unsigned long name_off, 1392 struct extent_buffer *eb_in, u64 parent, 1393 char *dest, u32 size) 1394 { 1395 int slot; 1396 u64 next_inum; 1397 int ret; 1398 s64 bytes_left = ((s64)size) - 1; 1399 struct extent_buffer *eb = eb_in; 1400 struct btrfs_key found_key; 1401 int leave_spinning = path->leave_spinning; 1402 struct btrfs_inode_ref *iref; 1403 1404 if (bytes_left >= 0) 1405 dest[bytes_left] = '\0'; 1406 1407 path->leave_spinning = 1; 1408 while (1) { 1409 bytes_left -= name_len; 1410 if (bytes_left >= 0) 1411 read_extent_buffer(eb, dest + bytes_left, 1412 name_off, name_len); 1413 if (eb != eb_in) { 1414 btrfs_tree_read_unlock_blocking(eb); 1415 free_extent_buffer(eb); 1416 } 1417 ret = btrfs_find_item(fs_root, path, parent, 0, 1418 BTRFS_INODE_REF_KEY, &found_key); 1419 if (ret > 0) 1420 ret = -ENOENT; 1421 if (ret) 1422 break; 1423 1424 next_inum = found_key.offset; 1425 1426 /* regular exit ahead */ 1427 if (parent == next_inum) 1428 break; 1429 1430 slot = path->slots[0]; 1431 eb = path->nodes[0]; 1432 /* make sure we can use eb after releasing the path */ 1433 if (eb != eb_in) { 1434 atomic_inc(&eb->refs); 1435 btrfs_tree_read_lock(eb); 1436 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1437 } 1438 btrfs_release_path(path); 1439 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1440 1441 name_len = btrfs_inode_ref_name_len(eb, iref); 1442 name_off = (unsigned long)(iref + 1); 1443 1444 parent = next_inum; 1445 --bytes_left; 1446 if (bytes_left >= 0) 1447 dest[bytes_left] = '/'; 1448 } 1449 1450 btrfs_release_path(path); 1451 path->leave_spinning = leave_spinning; 1452 1453 if (ret) 1454 return ERR_PTR(ret); 1455 1456 return dest + bytes_left; 1457 } 1458 1459 /* 1460 * this makes the path point to (logical EXTENT_ITEM *) 1461 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1462 * tree blocks and <0 on error. 1463 */ 1464 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1465 struct btrfs_path *path, struct btrfs_key *found_key, 1466 u64 *flags_ret) 1467 { 1468 int ret; 1469 u64 flags; 1470 u64 size = 0; 1471 u32 item_size; 1472 struct extent_buffer *eb; 1473 struct btrfs_extent_item *ei; 1474 struct btrfs_key key; 1475 1476 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1477 key.type = BTRFS_METADATA_ITEM_KEY; 1478 else 1479 key.type = BTRFS_EXTENT_ITEM_KEY; 1480 key.objectid = logical; 1481 key.offset = (u64)-1; 1482 1483 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1488 if (ret) { 1489 if (ret > 0) 1490 ret = -ENOENT; 1491 return ret; 1492 } 1493 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1494 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1495 size = fs_info->extent_root->nodesize; 1496 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1497 size = found_key->offset; 1498 1499 if (found_key->objectid > logical || 1500 found_key->objectid + size <= logical) { 1501 pr_debug("logical %llu is not within any extent\n", logical); 1502 return -ENOENT; 1503 } 1504 1505 eb = path->nodes[0]; 1506 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1507 BUG_ON(item_size < sizeof(*ei)); 1508 1509 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1510 flags = btrfs_extent_flags(eb, ei); 1511 1512 pr_debug("logical %llu is at position %llu within the extent (%llu " 1513 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1514 logical, logical - found_key->objectid, found_key->objectid, 1515 found_key->offset, flags, item_size); 1516 1517 WARN_ON(!flags_ret); 1518 if (flags_ret) { 1519 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1520 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1521 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1522 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1523 else 1524 BUG_ON(1); 1525 return 0; 1526 } 1527 1528 return -EIO; 1529 } 1530 1531 /* 1532 * helper function to iterate extent inline refs. ptr must point to a 0 value 1533 * for the first call and may be modified. it is used to track state. 1534 * if more refs exist, 0 is returned and the next call to 1535 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1536 * next ref. after the last ref was processed, 1 is returned. 1537 * returns <0 on error 1538 */ 1539 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1540 struct btrfs_key *key, 1541 struct btrfs_extent_item *ei, u32 item_size, 1542 struct btrfs_extent_inline_ref **out_eiref, 1543 int *out_type) 1544 { 1545 unsigned long end; 1546 u64 flags; 1547 struct btrfs_tree_block_info *info; 1548 1549 if (!*ptr) { 1550 /* first call */ 1551 flags = btrfs_extent_flags(eb, ei); 1552 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1553 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1554 /* a skinny metadata extent */ 1555 *out_eiref = 1556 (struct btrfs_extent_inline_ref *)(ei + 1); 1557 } else { 1558 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1559 info = (struct btrfs_tree_block_info *)(ei + 1); 1560 *out_eiref = 1561 (struct btrfs_extent_inline_ref *)(info + 1); 1562 } 1563 } else { 1564 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1565 } 1566 *ptr = (unsigned long)*out_eiref; 1567 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1568 return -ENOENT; 1569 } 1570 1571 end = (unsigned long)ei + item_size; 1572 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1573 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1574 1575 *ptr += btrfs_extent_inline_ref_size(*out_type); 1576 WARN_ON(*ptr > end); 1577 if (*ptr == end) 1578 return 1; /* last */ 1579 1580 return 0; 1581 } 1582 1583 /* 1584 * reads the tree block backref for an extent. tree level and root are returned 1585 * through out_level and out_root. ptr must point to a 0 value for the first 1586 * call and may be modified (see __get_extent_inline_ref comment). 1587 * returns 0 if data was provided, 1 if there was no more data to provide or 1588 * <0 on error. 1589 */ 1590 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1591 struct btrfs_key *key, struct btrfs_extent_item *ei, 1592 u32 item_size, u64 *out_root, u8 *out_level) 1593 { 1594 int ret; 1595 int type; 1596 struct btrfs_extent_inline_ref *eiref; 1597 1598 if (*ptr == (unsigned long)-1) 1599 return 1; 1600 1601 while (1) { 1602 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1603 &eiref, &type); 1604 if (ret < 0) 1605 return ret; 1606 1607 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1608 type == BTRFS_SHARED_BLOCK_REF_KEY) 1609 break; 1610 1611 if (ret == 1) 1612 return 1; 1613 } 1614 1615 /* we can treat both ref types equally here */ 1616 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1617 1618 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1619 struct btrfs_tree_block_info *info; 1620 1621 info = (struct btrfs_tree_block_info *)(ei + 1); 1622 *out_level = btrfs_tree_block_level(eb, info); 1623 } else { 1624 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1625 *out_level = (u8)key->offset; 1626 } 1627 1628 if (ret == 1) 1629 *ptr = (unsigned long)-1; 1630 1631 return 0; 1632 } 1633 1634 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1635 u64 root, u64 extent_item_objectid, 1636 iterate_extent_inodes_t *iterate, void *ctx) 1637 { 1638 struct extent_inode_elem *eie; 1639 int ret = 0; 1640 1641 for (eie = inode_list; eie; eie = eie->next) { 1642 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1643 "root %llu\n", extent_item_objectid, 1644 eie->inum, eie->offset, root); 1645 ret = iterate(eie->inum, eie->offset, root, ctx); 1646 if (ret) { 1647 pr_debug("stopping iteration for %llu due to ret=%d\n", 1648 extent_item_objectid, ret); 1649 break; 1650 } 1651 } 1652 1653 return ret; 1654 } 1655 1656 /* 1657 * calls iterate() for every inode that references the extent identified by 1658 * the given parameters. 1659 * when the iterator function returns a non-zero value, iteration stops. 1660 */ 1661 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1662 u64 extent_item_objectid, u64 extent_item_pos, 1663 int search_commit_root, 1664 iterate_extent_inodes_t *iterate, void *ctx) 1665 { 1666 int ret; 1667 struct btrfs_trans_handle *trans = NULL; 1668 struct ulist *refs = NULL; 1669 struct ulist *roots = NULL; 1670 struct ulist_node *ref_node = NULL; 1671 struct ulist_node *root_node = NULL; 1672 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1673 struct ulist_iterator ref_uiter; 1674 struct ulist_iterator root_uiter; 1675 1676 pr_debug("resolving all inodes for extent %llu\n", 1677 extent_item_objectid); 1678 1679 if (!search_commit_root) { 1680 trans = btrfs_join_transaction(fs_info->extent_root); 1681 if (IS_ERR(trans)) 1682 return PTR_ERR(trans); 1683 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1684 } else { 1685 down_read(&fs_info->commit_root_sem); 1686 } 1687 1688 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1689 tree_mod_seq_elem.seq, &refs, 1690 &extent_item_pos); 1691 if (ret) 1692 goto out; 1693 1694 ULIST_ITER_INIT(&ref_uiter); 1695 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1696 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1697 tree_mod_seq_elem.seq, &roots); 1698 if (ret) 1699 break; 1700 ULIST_ITER_INIT(&root_uiter); 1701 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1702 pr_debug("root %llu references leaf %llu, data list " 1703 "%#llx\n", root_node->val, ref_node->val, 1704 ref_node->aux); 1705 ret = iterate_leaf_refs((struct extent_inode_elem *) 1706 (uintptr_t)ref_node->aux, 1707 root_node->val, 1708 extent_item_objectid, 1709 iterate, ctx); 1710 } 1711 ulist_free(roots); 1712 } 1713 1714 free_leaf_list(refs); 1715 out: 1716 if (!search_commit_root) { 1717 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1718 btrfs_end_transaction(trans, fs_info->extent_root); 1719 } else { 1720 up_read(&fs_info->commit_root_sem); 1721 } 1722 1723 return ret; 1724 } 1725 1726 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1727 struct btrfs_path *path, 1728 iterate_extent_inodes_t *iterate, void *ctx) 1729 { 1730 int ret; 1731 u64 extent_item_pos; 1732 u64 flags = 0; 1733 struct btrfs_key found_key; 1734 int search_commit_root = path->search_commit_root; 1735 1736 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1737 btrfs_release_path(path); 1738 if (ret < 0) 1739 return ret; 1740 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1741 return -EINVAL; 1742 1743 extent_item_pos = logical - found_key.objectid; 1744 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1745 extent_item_pos, search_commit_root, 1746 iterate, ctx); 1747 1748 return ret; 1749 } 1750 1751 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1752 struct extent_buffer *eb, void *ctx); 1753 1754 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1755 struct btrfs_path *path, 1756 iterate_irefs_t *iterate, void *ctx) 1757 { 1758 int ret = 0; 1759 int slot; 1760 u32 cur; 1761 u32 len; 1762 u32 name_len; 1763 u64 parent = 0; 1764 int found = 0; 1765 struct extent_buffer *eb; 1766 struct btrfs_item *item; 1767 struct btrfs_inode_ref *iref; 1768 struct btrfs_key found_key; 1769 1770 while (!ret) { 1771 ret = btrfs_find_item(fs_root, path, inum, 1772 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 1773 &found_key); 1774 1775 if (ret < 0) 1776 break; 1777 if (ret) { 1778 ret = found ? 0 : -ENOENT; 1779 break; 1780 } 1781 ++found; 1782 1783 parent = found_key.offset; 1784 slot = path->slots[0]; 1785 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1786 if (!eb) { 1787 ret = -ENOMEM; 1788 break; 1789 } 1790 extent_buffer_get(eb); 1791 btrfs_tree_read_lock(eb); 1792 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1793 btrfs_release_path(path); 1794 1795 item = btrfs_item_nr(slot); 1796 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1797 1798 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1799 name_len = btrfs_inode_ref_name_len(eb, iref); 1800 /* path must be released before calling iterate()! */ 1801 pr_debug("following ref at offset %u for inode %llu in " 1802 "tree %llu\n", cur, found_key.objectid, 1803 fs_root->objectid); 1804 ret = iterate(parent, name_len, 1805 (unsigned long)(iref + 1), eb, ctx); 1806 if (ret) 1807 break; 1808 len = sizeof(*iref) + name_len; 1809 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1810 } 1811 btrfs_tree_read_unlock_blocking(eb); 1812 free_extent_buffer(eb); 1813 } 1814 1815 btrfs_release_path(path); 1816 1817 return ret; 1818 } 1819 1820 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1821 struct btrfs_path *path, 1822 iterate_irefs_t *iterate, void *ctx) 1823 { 1824 int ret; 1825 int slot; 1826 u64 offset = 0; 1827 u64 parent; 1828 int found = 0; 1829 struct extent_buffer *eb; 1830 struct btrfs_inode_extref *extref; 1831 struct extent_buffer *leaf; 1832 u32 item_size; 1833 u32 cur_offset; 1834 unsigned long ptr; 1835 1836 while (1) { 1837 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1838 &offset); 1839 if (ret < 0) 1840 break; 1841 if (ret) { 1842 ret = found ? 0 : -ENOENT; 1843 break; 1844 } 1845 ++found; 1846 1847 slot = path->slots[0]; 1848 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1849 if (!eb) { 1850 ret = -ENOMEM; 1851 break; 1852 } 1853 extent_buffer_get(eb); 1854 1855 btrfs_tree_read_lock(eb); 1856 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1857 btrfs_release_path(path); 1858 1859 leaf = path->nodes[0]; 1860 item_size = btrfs_item_size_nr(leaf, slot); 1861 ptr = btrfs_item_ptr_offset(leaf, slot); 1862 cur_offset = 0; 1863 1864 while (cur_offset < item_size) { 1865 u32 name_len; 1866 1867 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1868 parent = btrfs_inode_extref_parent(eb, extref); 1869 name_len = btrfs_inode_extref_name_len(eb, extref); 1870 ret = iterate(parent, name_len, 1871 (unsigned long)&extref->name, eb, ctx); 1872 if (ret) 1873 break; 1874 1875 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1876 cur_offset += sizeof(*extref); 1877 } 1878 btrfs_tree_read_unlock_blocking(eb); 1879 free_extent_buffer(eb); 1880 1881 offset++; 1882 } 1883 1884 btrfs_release_path(path); 1885 1886 return ret; 1887 } 1888 1889 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1890 struct btrfs_path *path, iterate_irefs_t *iterate, 1891 void *ctx) 1892 { 1893 int ret; 1894 int found_refs = 0; 1895 1896 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1897 if (!ret) 1898 ++found_refs; 1899 else if (ret != -ENOENT) 1900 return ret; 1901 1902 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1903 if (ret == -ENOENT && found_refs) 1904 return 0; 1905 1906 return ret; 1907 } 1908 1909 /* 1910 * returns 0 if the path could be dumped (probably truncated) 1911 * returns <0 in case of an error 1912 */ 1913 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1914 struct extent_buffer *eb, void *ctx) 1915 { 1916 struct inode_fs_paths *ipath = ctx; 1917 char *fspath; 1918 char *fspath_min; 1919 int i = ipath->fspath->elem_cnt; 1920 const int s_ptr = sizeof(char *); 1921 u32 bytes_left; 1922 1923 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1924 ipath->fspath->bytes_left - s_ptr : 0; 1925 1926 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1927 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1928 name_off, eb, inum, fspath_min, bytes_left); 1929 if (IS_ERR(fspath)) 1930 return PTR_ERR(fspath); 1931 1932 if (fspath > fspath_min) { 1933 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1934 ++ipath->fspath->elem_cnt; 1935 ipath->fspath->bytes_left = fspath - fspath_min; 1936 } else { 1937 ++ipath->fspath->elem_missed; 1938 ipath->fspath->bytes_missing += fspath_min - fspath; 1939 ipath->fspath->bytes_left = 0; 1940 } 1941 1942 return 0; 1943 } 1944 1945 /* 1946 * this dumps all file system paths to the inode into the ipath struct, provided 1947 * is has been created large enough. each path is zero-terminated and accessed 1948 * from ipath->fspath->val[i]. 1949 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1950 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1951 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1952 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1953 * have been needed to return all paths. 1954 */ 1955 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1956 { 1957 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1958 inode_to_path, ipath); 1959 } 1960 1961 struct btrfs_data_container *init_data_container(u32 total_bytes) 1962 { 1963 struct btrfs_data_container *data; 1964 size_t alloc_bytes; 1965 1966 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1967 data = vmalloc(alloc_bytes); 1968 if (!data) 1969 return ERR_PTR(-ENOMEM); 1970 1971 if (total_bytes >= sizeof(*data)) { 1972 data->bytes_left = total_bytes - sizeof(*data); 1973 data->bytes_missing = 0; 1974 } else { 1975 data->bytes_missing = sizeof(*data) - total_bytes; 1976 data->bytes_left = 0; 1977 } 1978 1979 data->elem_cnt = 0; 1980 data->elem_missed = 0; 1981 1982 return data; 1983 } 1984 1985 /* 1986 * allocates space to return multiple file system paths for an inode. 1987 * total_bytes to allocate are passed, note that space usable for actual path 1988 * information will be total_bytes - sizeof(struct inode_fs_paths). 1989 * the returned pointer must be freed with free_ipath() in the end. 1990 */ 1991 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1992 struct btrfs_path *path) 1993 { 1994 struct inode_fs_paths *ifp; 1995 struct btrfs_data_container *fspath; 1996 1997 fspath = init_data_container(total_bytes); 1998 if (IS_ERR(fspath)) 1999 return (void *)fspath; 2000 2001 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 2002 if (!ifp) { 2003 kfree(fspath); 2004 return ERR_PTR(-ENOMEM); 2005 } 2006 2007 ifp->btrfs_path = path; 2008 ifp->fspath = fspath; 2009 ifp->fs_root = fs_root; 2010 2011 return ifp; 2012 } 2013 2014 void free_ipath(struct inode_fs_paths *ipath) 2015 { 2016 if (!ipath) 2017 return; 2018 vfree(ipath->fspath); 2019 kfree(ipath); 2020 } 2021