1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 17 /* Just an arbitrary number so we can be sure this happened */ 18 #define BACKREF_FOUND_SHARED 6 19 20 struct extent_inode_elem { 21 u64 inum; 22 u64 offset; 23 struct extent_inode_elem *next; 24 }; 25 26 static int check_extent_in_eb(const struct btrfs_key *key, 27 const struct extent_buffer *eb, 28 const struct btrfs_file_extent_item *fi, 29 u64 extent_item_pos, 30 struct extent_inode_elem **eie, 31 bool ignore_offset) 32 { 33 u64 offset = 0; 34 struct extent_inode_elem *e; 35 36 if (!ignore_offset && 37 !btrfs_file_extent_compression(eb, fi) && 38 !btrfs_file_extent_encryption(eb, fi) && 39 !btrfs_file_extent_other_encoding(eb, fi)) { 40 u64 data_offset; 41 u64 data_len; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 offset = extent_item_pos - data_offset; 50 } 51 52 e = kmalloc(sizeof(*e), GFP_NOFS); 53 if (!e) 54 return -ENOMEM; 55 56 e->next = *eie; 57 e->inum = key->objectid; 58 e->offset = key->offset + offset; 59 *eie = e; 60 61 return 0; 62 } 63 64 static void free_inode_elem_list(struct extent_inode_elem *eie) 65 { 66 struct extent_inode_elem *eie_next; 67 68 for (; eie; eie = eie_next) { 69 eie_next = eie->next; 70 kfree(eie); 71 } 72 } 73 74 static int find_extent_in_eb(const struct extent_buffer *eb, 75 u64 wanted_disk_byte, u64 extent_item_pos, 76 struct extent_inode_elem **eie, 77 bool ignore_offset) 78 { 79 u64 disk_byte; 80 struct btrfs_key key; 81 struct btrfs_file_extent_item *fi; 82 int slot; 83 int nritems; 84 int extent_type; 85 int ret; 86 87 /* 88 * from the shared data ref, we only have the leaf but we need 89 * the key. thus, we must look into all items and see that we 90 * find one (some) with a reference to our extent item. 91 */ 92 nritems = btrfs_header_nritems(eb); 93 for (slot = 0; slot < nritems; ++slot) { 94 btrfs_item_key_to_cpu(eb, &key, slot); 95 if (key.type != BTRFS_EXTENT_DATA_KEY) 96 continue; 97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 98 extent_type = btrfs_file_extent_type(eb, fi); 99 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 100 continue; 101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 103 if (disk_byte != wanted_disk_byte) 104 continue; 105 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 107 if (ret < 0) 108 return ret; 109 } 110 111 return 0; 112 } 113 114 struct preftree { 115 struct rb_root_cached root; 116 unsigned int count; 117 }; 118 119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 120 121 struct preftrees { 122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 124 struct preftree indirect_missing_keys; 125 }; 126 127 /* 128 * Checks for a shared extent during backref search. 129 * 130 * The share_count tracks prelim_refs (direct and indirect) having a 131 * ref->count >0: 132 * - incremented when a ref->count transitions to >0 133 * - decremented when a ref->count transitions to <1 134 */ 135 struct share_check { 136 u64 root_objectid; 137 u64 inum; 138 int share_count; 139 }; 140 141 static inline int extent_is_shared(struct share_check *sc) 142 { 143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 144 } 145 146 static struct kmem_cache *btrfs_prelim_ref_cache; 147 148 int __init btrfs_prelim_ref_init(void) 149 { 150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 151 sizeof(struct prelim_ref), 152 0, 153 SLAB_MEM_SPREAD, 154 NULL); 155 if (!btrfs_prelim_ref_cache) 156 return -ENOMEM; 157 return 0; 158 } 159 160 void __cold btrfs_prelim_ref_exit(void) 161 { 162 kmem_cache_destroy(btrfs_prelim_ref_cache); 163 } 164 165 static void free_pref(struct prelim_ref *ref) 166 { 167 kmem_cache_free(btrfs_prelim_ref_cache, ref); 168 } 169 170 /* 171 * Return 0 when both refs are for the same block (and can be merged). 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 173 * indicates a 'higher' block. 174 */ 175 static int prelim_ref_compare(struct prelim_ref *ref1, 176 struct prelim_ref *ref2) 177 { 178 if (ref1->level < ref2->level) 179 return -1; 180 if (ref1->level > ref2->level) 181 return 1; 182 if (ref1->root_id < ref2->root_id) 183 return -1; 184 if (ref1->root_id > ref2->root_id) 185 return 1; 186 if (ref1->key_for_search.type < ref2->key_for_search.type) 187 return -1; 188 if (ref1->key_for_search.type > ref2->key_for_search.type) 189 return 1; 190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 191 return -1; 192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 193 return 1; 194 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 195 return -1; 196 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 197 return 1; 198 if (ref1->parent < ref2->parent) 199 return -1; 200 if (ref1->parent > ref2->parent) 201 return 1; 202 203 return 0; 204 } 205 206 static void update_share_count(struct share_check *sc, int oldcount, 207 int newcount) 208 { 209 if ((!sc) || (oldcount == 0 && newcount < 1)) 210 return; 211 212 if (oldcount > 0 && newcount < 1) 213 sc->share_count--; 214 else if (oldcount < 1 && newcount > 0) 215 sc->share_count++; 216 } 217 218 /* 219 * Add @newref to the @root rbtree, merging identical refs. 220 * 221 * Callers should assume that newref has been freed after calling. 222 */ 223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 224 struct preftree *preftree, 225 struct prelim_ref *newref, 226 struct share_check *sc) 227 { 228 struct rb_root_cached *root; 229 struct rb_node **p; 230 struct rb_node *parent = NULL; 231 struct prelim_ref *ref; 232 int result; 233 bool leftmost = true; 234 235 root = &preftree->root; 236 p = &root->rb_root.rb_node; 237 238 while (*p) { 239 parent = *p; 240 ref = rb_entry(parent, struct prelim_ref, rbnode); 241 result = prelim_ref_compare(ref, newref); 242 if (result < 0) { 243 p = &(*p)->rb_left; 244 } else if (result > 0) { 245 p = &(*p)->rb_right; 246 leftmost = false; 247 } else { 248 /* Identical refs, merge them and free @newref */ 249 struct extent_inode_elem *eie = ref->inode_list; 250 251 while (eie && eie->next) 252 eie = eie->next; 253 254 if (!eie) 255 ref->inode_list = newref->inode_list; 256 else 257 eie->next = newref->inode_list; 258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 259 preftree->count); 260 /* 261 * A delayed ref can have newref->count < 0. 262 * The ref->count is updated to follow any 263 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 264 */ 265 update_share_count(sc, ref->count, 266 ref->count + newref->count); 267 ref->count += newref->count; 268 free_pref(newref); 269 return; 270 } 271 } 272 273 update_share_count(sc, 0, newref->count); 274 preftree->count++; 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 276 rb_link_node(&newref->rbnode, parent, p); 277 rb_insert_color_cached(&newref->rbnode, root, leftmost); 278 } 279 280 /* 281 * Release the entire tree. We don't care about internal consistency so 282 * just free everything and then reset the tree root. 283 */ 284 static void prelim_release(struct preftree *preftree) 285 { 286 struct prelim_ref *ref, *next_ref; 287 288 rbtree_postorder_for_each_entry_safe(ref, next_ref, 289 &preftree->root.rb_root, rbnode) 290 free_pref(ref); 291 292 preftree->root = RB_ROOT_CACHED; 293 preftree->count = 0; 294 } 295 296 /* 297 * the rules for all callers of this function are: 298 * - obtaining the parent is the goal 299 * - if you add a key, you must know that it is a correct key 300 * - if you cannot add the parent or a correct key, then we will look into the 301 * block later to set a correct key 302 * 303 * delayed refs 304 * ============ 305 * backref type | shared | indirect | shared | indirect 306 * information | tree | tree | data | data 307 * --------------------+--------+----------+--------+---------- 308 * parent logical | y | - | - | - 309 * key to resolve | - | y | y | y 310 * tree block logical | - | - | - | - 311 * root for resolving | y | y | y | y 312 * 313 * - column 1: we've the parent -> done 314 * - column 2, 3, 4: we use the key to find the parent 315 * 316 * on disk refs (inline or keyed) 317 * ============================== 318 * backref type | shared | indirect | shared | indirect 319 * information | tree | tree | data | data 320 * --------------------+--------+----------+--------+---------- 321 * parent logical | y | - | y | - 322 * key to resolve | - | - | - | y 323 * tree block logical | y | y | y | y 324 * root for resolving | - | y | y | y 325 * 326 * - column 1, 3: we've the parent -> done 327 * - column 2: we take the first key from the block to find the parent 328 * (see add_missing_keys) 329 * - column 4: we use the key to find the parent 330 * 331 * additional information that's available but not required to find the parent 332 * block might help in merging entries to gain some speed. 333 */ 334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 335 struct preftree *preftree, u64 root_id, 336 const struct btrfs_key *key, int level, u64 parent, 337 u64 wanted_disk_byte, int count, 338 struct share_check *sc, gfp_t gfp_mask) 339 { 340 struct prelim_ref *ref; 341 342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 343 return 0; 344 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 346 if (!ref) 347 return -ENOMEM; 348 349 ref->root_id = root_id; 350 if (key) { 351 ref->key_for_search = *key; 352 /* 353 * We can often find data backrefs with an offset that is too 354 * large (>= LLONG_MAX, maximum allowed file offset) due to 355 * underflows when subtracting a file's offset with the data 356 * offset of its corresponding extent data item. This can 357 * happen for example in the clone ioctl. 358 * So if we detect such case we set the search key's offset to 359 * zero to make sure we will find the matching file extent item 360 * at add_all_parents(), otherwise we will miss it because the 361 * offset taken form the backref is much larger then the offset 362 * of the file extent item. This can make us scan a very large 363 * number of file extent items, but at least it will not make 364 * us miss any. 365 * This is an ugly workaround for a behaviour that should have 366 * never existed, but it does and a fix for the clone ioctl 367 * would touch a lot of places, cause backwards incompatibility 368 * and would not fix the problem for extents cloned with older 369 * kernels. 370 */ 371 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 372 ref->key_for_search.offset >= LLONG_MAX) 373 ref->key_for_search.offset = 0; 374 } else { 375 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 376 } 377 378 ref->inode_list = NULL; 379 ref->level = level; 380 ref->count = count; 381 ref->parent = parent; 382 ref->wanted_disk_byte = wanted_disk_byte; 383 prelim_ref_insert(fs_info, preftree, ref, sc); 384 return extent_is_shared(sc); 385 } 386 387 /* direct refs use root == 0, key == NULL */ 388 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 389 struct preftrees *preftrees, int level, u64 parent, 390 u64 wanted_disk_byte, int count, 391 struct share_check *sc, gfp_t gfp_mask) 392 { 393 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 394 parent, wanted_disk_byte, count, sc, gfp_mask); 395 } 396 397 /* indirect refs use parent == 0 */ 398 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 399 struct preftrees *preftrees, u64 root_id, 400 const struct btrfs_key *key, int level, 401 u64 wanted_disk_byte, int count, 402 struct share_check *sc, gfp_t gfp_mask) 403 { 404 struct preftree *tree = &preftrees->indirect; 405 406 if (!key) 407 tree = &preftrees->indirect_missing_keys; 408 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 409 wanted_disk_byte, count, sc, gfp_mask); 410 } 411 412 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 413 struct ulist *parents, struct prelim_ref *ref, 414 int level, u64 time_seq, const u64 *extent_item_pos, 415 u64 total_refs, bool ignore_offset) 416 { 417 int ret = 0; 418 int slot; 419 struct extent_buffer *eb; 420 struct btrfs_key key; 421 struct btrfs_key *key_for_search = &ref->key_for_search; 422 struct btrfs_file_extent_item *fi; 423 struct extent_inode_elem *eie = NULL, *old = NULL; 424 u64 disk_byte; 425 u64 wanted_disk_byte = ref->wanted_disk_byte; 426 u64 count = 0; 427 428 if (level != 0) { 429 eb = path->nodes[level]; 430 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 431 if (ret < 0) 432 return ret; 433 return 0; 434 } 435 436 /* 437 * We normally enter this function with the path already pointing to 438 * the first item to check. But sometimes, we may enter it with 439 * slot==nritems. In that case, go to the next leaf before we continue. 440 */ 441 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 442 if (time_seq == SEQ_LAST) 443 ret = btrfs_next_leaf(root, path); 444 else 445 ret = btrfs_next_old_leaf(root, path, time_seq); 446 } 447 448 while (!ret && count < total_refs) { 449 eb = path->nodes[0]; 450 slot = path->slots[0]; 451 452 btrfs_item_key_to_cpu(eb, &key, slot); 453 454 if (key.objectid != key_for_search->objectid || 455 key.type != BTRFS_EXTENT_DATA_KEY) 456 break; 457 458 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 459 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 460 461 if (disk_byte == wanted_disk_byte) { 462 eie = NULL; 463 old = NULL; 464 count++; 465 if (extent_item_pos) { 466 ret = check_extent_in_eb(&key, eb, fi, 467 *extent_item_pos, 468 &eie, ignore_offset); 469 if (ret < 0) 470 break; 471 } 472 if (ret > 0) 473 goto next; 474 ret = ulist_add_merge_ptr(parents, eb->start, 475 eie, (void **)&old, GFP_NOFS); 476 if (ret < 0) 477 break; 478 if (!ret && extent_item_pos) { 479 while (old->next) 480 old = old->next; 481 old->next = eie; 482 } 483 eie = NULL; 484 } 485 next: 486 if (time_seq == SEQ_LAST) 487 ret = btrfs_next_item(root, path); 488 else 489 ret = btrfs_next_old_item(root, path, time_seq); 490 } 491 492 if (ret > 0) 493 ret = 0; 494 else if (ret < 0) 495 free_inode_elem_list(eie); 496 return ret; 497 } 498 499 /* 500 * resolve an indirect backref in the form (root_id, key, level) 501 * to a logical address 502 */ 503 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 504 struct btrfs_path *path, u64 time_seq, 505 struct prelim_ref *ref, struct ulist *parents, 506 const u64 *extent_item_pos, u64 total_refs, 507 bool ignore_offset) 508 { 509 struct btrfs_root *root; 510 struct btrfs_key root_key; 511 struct extent_buffer *eb; 512 int ret = 0; 513 int root_level; 514 int level = ref->level; 515 int index; 516 517 root_key.objectid = ref->root_id; 518 root_key.type = BTRFS_ROOT_ITEM_KEY; 519 root_key.offset = (u64)-1; 520 521 index = srcu_read_lock(&fs_info->subvol_srcu); 522 523 root = btrfs_get_fs_root(fs_info, &root_key, false); 524 if (IS_ERR(root)) { 525 srcu_read_unlock(&fs_info->subvol_srcu, index); 526 ret = PTR_ERR(root); 527 goto out; 528 } 529 530 if (btrfs_is_testing(fs_info)) { 531 srcu_read_unlock(&fs_info->subvol_srcu, index); 532 ret = -ENOENT; 533 goto out; 534 } 535 536 if (path->search_commit_root) 537 root_level = btrfs_header_level(root->commit_root); 538 else if (time_seq == SEQ_LAST) 539 root_level = btrfs_header_level(root->node); 540 else 541 root_level = btrfs_old_root_level(root, time_seq); 542 543 if (root_level + 1 == level) { 544 srcu_read_unlock(&fs_info->subvol_srcu, index); 545 goto out; 546 } 547 548 path->lowest_level = level; 549 if (time_seq == SEQ_LAST) 550 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 551 0, 0); 552 else 553 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 554 time_seq); 555 556 /* root node has been locked, we can release @subvol_srcu safely here */ 557 srcu_read_unlock(&fs_info->subvol_srcu, index); 558 559 btrfs_debug(fs_info, 560 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 561 ref->root_id, level, ref->count, ret, 562 ref->key_for_search.objectid, ref->key_for_search.type, 563 ref->key_for_search.offset); 564 if (ret < 0) 565 goto out; 566 567 eb = path->nodes[level]; 568 while (!eb) { 569 if (WARN_ON(!level)) { 570 ret = 1; 571 goto out; 572 } 573 level--; 574 eb = path->nodes[level]; 575 } 576 577 ret = add_all_parents(root, path, parents, ref, level, time_seq, 578 extent_item_pos, total_refs, ignore_offset); 579 out: 580 path->lowest_level = 0; 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static struct extent_inode_elem * 586 unode_aux_to_inode_list(struct ulist_node *node) 587 { 588 if (!node) 589 return NULL; 590 return (struct extent_inode_elem *)(uintptr_t)node->aux; 591 } 592 593 /* 594 * We maintain three separate rbtrees: one for direct refs, one for 595 * indirect refs which have a key, and one for indirect refs which do not 596 * have a key. Each tree does merge on insertion. 597 * 598 * Once all of the references are located, we iterate over the tree of 599 * indirect refs with missing keys. An appropriate key is located and 600 * the ref is moved onto the tree for indirect refs. After all missing 601 * keys are thus located, we iterate over the indirect ref tree, resolve 602 * each reference, and then insert the resolved reference onto the 603 * direct tree (merging there too). 604 * 605 * New backrefs (i.e., for parent nodes) are added to the appropriate 606 * rbtree as they are encountered. The new backrefs are subsequently 607 * resolved as above. 608 */ 609 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 610 struct btrfs_path *path, u64 time_seq, 611 struct preftrees *preftrees, 612 const u64 *extent_item_pos, u64 total_refs, 613 struct share_check *sc, bool ignore_offset) 614 { 615 int err; 616 int ret = 0; 617 struct ulist *parents; 618 struct ulist_node *node; 619 struct ulist_iterator uiter; 620 struct rb_node *rnode; 621 622 parents = ulist_alloc(GFP_NOFS); 623 if (!parents) 624 return -ENOMEM; 625 626 /* 627 * We could trade memory usage for performance here by iterating 628 * the tree, allocating new refs for each insertion, and then 629 * freeing the entire indirect tree when we're done. In some test 630 * cases, the tree can grow quite large (~200k objects). 631 */ 632 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 633 struct prelim_ref *ref; 634 635 ref = rb_entry(rnode, struct prelim_ref, rbnode); 636 if (WARN(ref->parent, 637 "BUG: direct ref found in indirect tree")) { 638 ret = -EINVAL; 639 goto out; 640 } 641 642 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 643 preftrees->indirect.count--; 644 645 if (ref->count == 0) { 646 free_pref(ref); 647 continue; 648 } 649 650 if (sc && sc->root_objectid && 651 ref->root_id != sc->root_objectid) { 652 free_pref(ref); 653 ret = BACKREF_FOUND_SHARED; 654 goto out; 655 } 656 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 657 parents, extent_item_pos, 658 total_refs, ignore_offset); 659 /* 660 * we can only tolerate ENOENT,otherwise,we should catch error 661 * and return directly. 662 */ 663 if (err == -ENOENT) { 664 prelim_ref_insert(fs_info, &preftrees->direct, ref, 665 NULL); 666 continue; 667 } else if (err) { 668 free_pref(ref); 669 ret = err; 670 goto out; 671 } 672 673 /* we put the first parent into the ref at hand */ 674 ULIST_ITER_INIT(&uiter); 675 node = ulist_next(parents, &uiter); 676 ref->parent = node ? node->val : 0; 677 ref->inode_list = unode_aux_to_inode_list(node); 678 679 /* Add a prelim_ref(s) for any other parent(s). */ 680 while ((node = ulist_next(parents, &uiter))) { 681 struct prelim_ref *new_ref; 682 683 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 684 GFP_NOFS); 685 if (!new_ref) { 686 free_pref(ref); 687 ret = -ENOMEM; 688 goto out; 689 } 690 memcpy(new_ref, ref, sizeof(*ref)); 691 new_ref->parent = node->val; 692 new_ref->inode_list = unode_aux_to_inode_list(node); 693 prelim_ref_insert(fs_info, &preftrees->direct, 694 new_ref, NULL); 695 } 696 697 /* 698 * Now it's a direct ref, put it in the direct tree. We must 699 * do this last because the ref could be merged/freed here. 700 */ 701 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 702 703 ulist_reinit(parents); 704 cond_resched(); 705 } 706 out: 707 ulist_free(parents); 708 return ret; 709 } 710 711 /* 712 * read tree blocks and add keys where required. 713 */ 714 static int add_missing_keys(struct btrfs_fs_info *fs_info, 715 struct preftrees *preftrees) 716 { 717 struct prelim_ref *ref; 718 struct extent_buffer *eb; 719 struct preftree *tree = &preftrees->indirect_missing_keys; 720 struct rb_node *node; 721 722 while ((node = rb_first_cached(&tree->root))) { 723 ref = rb_entry(node, struct prelim_ref, rbnode); 724 rb_erase_cached(node, &tree->root); 725 726 BUG_ON(ref->parent); /* should not be a direct ref */ 727 BUG_ON(ref->key_for_search.type); 728 BUG_ON(!ref->wanted_disk_byte); 729 730 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 731 ref->level - 1, NULL); 732 if (IS_ERR(eb)) { 733 free_pref(ref); 734 return PTR_ERR(eb); 735 } else if (!extent_buffer_uptodate(eb)) { 736 free_pref(ref); 737 free_extent_buffer(eb); 738 return -EIO; 739 } 740 btrfs_tree_read_lock(eb); 741 if (btrfs_header_level(eb) == 0) 742 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 743 else 744 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 745 btrfs_tree_read_unlock(eb); 746 free_extent_buffer(eb); 747 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 748 cond_resched(); 749 } 750 return 0; 751 } 752 753 /* 754 * add all currently queued delayed refs from this head whose seq nr is 755 * smaller or equal that seq to the list 756 */ 757 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 758 struct btrfs_delayed_ref_head *head, u64 seq, 759 struct preftrees *preftrees, u64 *total_refs, 760 struct share_check *sc) 761 { 762 struct btrfs_delayed_ref_node *node; 763 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 764 struct btrfs_key key; 765 struct btrfs_key tmp_op_key; 766 struct rb_node *n; 767 int count; 768 int ret = 0; 769 770 if (extent_op && extent_op->update_key) 771 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 772 773 spin_lock(&head->lock); 774 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 775 node = rb_entry(n, struct btrfs_delayed_ref_node, 776 ref_node); 777 if (node->seq > seq) 778 continue; 779 780 switch (node->action) { 781 case BTRFS_ADD_DELAYED_EXTENT: 782 case BTRFS_UPDATE_DELAYED_HEAD: 783 WARN_ON(1); 784 continue; 785 case BTRFS_ADD_DELAYED_REF: 786 count = node->ref_mod; 787 break; 788 case BTRFS_DROP_DELAYED_REF: 789 count = node->ref_mod * -1; 790 break; 791 default: 792 BUG_ON(1); 793 } 794 *total_refs += count; 795 switch (node->type) { 796 case BTRFS_TREE_BLOCK_REF_KEY: { 797 /* NORMAL INDIRECT METADATA backref */ 798 struct btrfs_delayed_tree_ref *ref; 799 800 ref = btrfs_delayed_node_to_tree_ref(node); 801 ret = add_indirect_ref(fs_info, preftrees, ref->root, 802 &tmp_op_key, ref->level + 1, 803 node->bytenr, count, sc, 804 GFP_ATOMIC); 805 break; 806 } 807 case BTRFS_SHARED_BLOCK_REF_KEY: { 808 /* SHARED DIRECT METADATA backref */ 809 struct btrfs_delayed_tree_ref *ref; 810 811 ref = btrfs_delayed_node_to_tree_ref(node); 812 813 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 814 ref->parent, node->bytenr, count, 815 sc, GFP_ATOMIC); 816 break; 817 } 818 case BTRFS_EXTENT_DATA_REF_KEY: { 819 /* NORMAL INDIRECT DATA backref */ 820 struct btrfs_delayed_data_ref *ref; 821 ref = btrfs_delayed_node_to_data_ref(node); 822 823 key.objectid = ref->objectid; 824 key.type = BTRFS_EXTENT_DATA_KEY; 825 key.offset = ref->offset; 826 827 /* 828 * Found a inum that doesn't match our known inum, we 829 * know it's shared. 830 */ 831 if (sc && sc->inum && ref->objectid != sc->inum) { 832 ret = BACKREF_FOUND_SHARED; 833 goto out; 834 } 835 836 ret = add_indirect_ref(fs_info, preftrees, ref->root, 837 &key, 0, node->bytenr, count, sc, 838 GFP_ATOMIC); 839 break; 840 } 841 case BTRFS_SHARED_DATA_REF_KEY: { 842 /* SHARED DIRECT FULL backref */ 843 struct btrfs_delayed_data_ref *ref; 844 845 ref = btrfs_delayed_node_to_data_ref(node); 846 847 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 848 node->bytenr, count, sc, 849 GFP_ATOMIC); 850 break; 851 } 852 default: 853 WARN_ON(1); 854 } 855 /* 856 * We must ignore BACKREF_FOUND_SHARED until all delayed 857 * refs have been checked. 858 */ 859 if (ret && (ret != BACKREF_FOUND_SHARED)) 860 break; 861 } 862 if (!ret) 863 ret = extent_is_shared(sc); 864 out: 865 spin_unlock(&head->lock); 866 return ret; 867 } 868 869 /* 870 * add all inline backrefs for bytenr to the list 871 * 872 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 873 */ 874 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 875 struct btrfs_path *path, u64 bytenr, 876 int *info_level, struct preftrees *preftrees, 877 u64 *total_refs, struct share_check *sc) 878 { 879 int ret = 0; 880 int slot; 881 struct extent_buffer *leaf; 882 struct btrfs_key key; 883 struct btrfs_key found_key; 884 unsigned long ptr; 885 unsigned long end; 886 struct btrfs_extent_item *ei; 887 u64 flags; 888 u64 item_size; 889 890 /* 891 * enumerate all inline refs 892 */ 893 leaf = path->nodes[0]; 894 slot = path->slots[0]; 895 896 item_size = btrfs_item_size_nr(leaf, slot); 897 BUG_ON(item_size < sizeof(*ei)); 898 899 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 900 flags = btrfs_extent_flags(leaf, ei); 901 *total_refs += btrfs_extent_refs(leaf, ei); 902 btrfs_item_key_to_cpu(leaf, &found_key, slot); 903 904 ptr = (unsigned long)(ei + 1); 905 end = (unsigned long)ei + item_size; 906 907 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 908 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 909 struct btrfs_tree_block_info *info; 910 911 info = (struct btrfs_tree_block_info *)ptr; 912 *info_level = btrfs_tree_block_level(leaf, info); 913 ptr += sizeof(struct btrfs_tree_block_info); 914 BUG_ON(ptr > end); 915 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 916 *info_level = found_key.offset; 917 } else { 918 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 919 } 920 921 while (ptr < end) { 922 struct btrfs_extent_inline_ref *iref; 923 u64 offset; 924 int type; 925 926 iref = (struct btrfs_extent_inline_ref *)ptr; 927 type = btrfs_get_extent_inline_ref_type(leaf, iref, 928 BTRFS_REF_TYPE_ANY); 929 if (type == BTRFS_REF_TYPE_INVALID) 930 return -EUCLEAN; 931 932 offset = btrfs_extent_inline_ref_offset(leaf, iref); 933 934 switch (type) { 935 case BTRFS_SHARED_BLOCK_REF_KEY: 936 ret = add_direct_ref(fs_info, preftrees, 937 *info_level + 1, offset, 938 bytenr, 1, NULL, GFP_NOFS); 939 break; 940 case BTRFS_SHARED_DATA_REF_KEY: { 941 struct btrfs_shared_data_ref *sdref; 942 int count; 943 944 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 945 count = btrfs_shared_data_ref_count(leaf, sdref); 946 947 ret = add_direct_ref(fs_info, preftrees, 0, offset, 948 bytenr, count, sc, GFP_NOFS); 949 break; 950 } 951 case BTRFS_TREE_BLOCK_REF_KEY: 952 ret = add_indirect_ref(fs_info, preftrees, offset, 953 NULL, *info_level + 1, 954 bytenr, 1, NULL, GFP_NOFS); 955 break; 956 case BTRFS_EXTENT_DATA_REF_KEY: { 957 struct btrfs_extent_data_ref *dref; 958 int count; 959 u64 root; 960 961 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 962 count = btrfs_extent_data_ref_count(leaf, dref); 963 key.objectid = btrfs_extent_data_ref_objectid(leaf, 964 dref); 965 key.type = BTRFS_EXTENT_DATA_KEY; 966 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 967 968 if (sc && sc->inum && key.objectid != sc->inum) { 969 ret = BACKREF_FOUND_SHARED; 970 break; 971 } 972 973 root = btrfs_extent_data_ref_root(leaf, dref); 974 975 ret = add_indirect_ref(fs_info, preftrees, root, 976 &key, 0, bytenr, count, 977 sc, GFP_NOFS); 978 break; 979 } 980 default: 981 WARN_ON(1); 982 } 983 if (ret) 984 return ret; 985 ptr += btrfs_extent_inline_ref_size(type); 986 } 987 988 return 0; 989 } 990 991 /* 992 * add all non-inline backrefs for bytenr to the list 993 * 994 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 995 */ 996 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 997 struct btrfs_path *path, u64 bytenr, 998 int info_level, struct preftrees *preftrees, 999 struct share_check *sc) 1000 { 1001 struct btrfs_root *extent_root = fs_info->extent_root; 1002 int ret; 1003 int slot; 1004 struct extent_buffer *leaf; 1005 struct btrfs_key key; 1006 1007 while (1) { 1008 ret = btrfs_next_item(extent_root, path); 1009 if (ret < 0) 1010 break; 1011 if (ret) { 1012 ret = 0; 1013 break; 1014 } 1015 1016 slot = path->slots[0]; 1017 leaf = path->nodes[0]; 1018 btrfs_item_key_to_cpu(leaf, &key, slot); 1019 1020 if (key.objectid != bytenr) 1021 break; 1022 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1023 continue; 1024 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1025 break; 1026 1027 switch (key.type) { 1028 case BTRFS_SHARED_BLOCK_REF_KEY: 1029 /* SHARED DIRECT METADATA backref */ 1030 ret = add_direct_ref(fs_info, preftrees, 1031 info_level + 1, key.offset, 1032 bytenr, 1, NULL, GFP_NOFS); 1033 break; 1034 case BTRFS_SHARED_DATA_REF_KEY: { 1035 /* SHARED DIRECT FULL backref */ 1036 struct btrfs_shared_data_ref *sdref; 1037 int count; 1038 1039 sdref = btrfs_item_ptr(leaf, slot, 1040 struct btrfs_shared_data_ref); 1041 count = btrfs_shared_data_ref_count(leaf, sdref); 1042 ret = add_direct_ref(fs_info, preftrees, 0, 1043 key.offset, bytenr, count, 1044 sc, GFP_NOFS); 1045 break; 1046 } 1047 case BTRFS_TREE_BLOCK_REF_KEY: 1048 /* NORMAL INDIRECT METADATA backref */ 1049 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1050 NULL, info_level + 1, bytenr, 1051 1, NULL, GFP_NOFS); 1052 break; 1053 case BTRFS_EXTENT_DATA_REF_KEY: { 1054 /* NORMAL INDIRECT DATA backref */ 1055 struct btrfs_extent_data_ref *dref; 1056 int count; 1057 u64 root; 1058 1059 dref = btrfs_item_ptr(leaf, slot, 1060 struct btrfs_extent_data_ref); 1061 count = btrfs_extent_data_ref_count(leaf, dref); 1062 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1063 dref); 1064 key.type = BTRFS_EXTENT_DATA_KEY; 1065 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1066 1067 if (sc && sc->inum && key.objectid != sc->inum) { 1068 ret = BACKREF_FOUND_SHARED; 1069 break; 1070 } 1071 1072 root = btrfs_extent_data_ref_root(leaf, dref); 1073 ret = add_indirect_ref(fs_info, preftrees, root, 1074 &key, 0, bytenr, count, 1075 sc, GFP_NOFS); 1076 break; 1077 } 1078 default: 1079 WARN_ON(1); 1080 } 1081 if (ret) 1082 return ret; 1083 1084 } 1085 1086 return ret; 1087 } 1088 1089 /* 1090 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1091 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1092 * indirect refs to their parent bytenr. 1093 * When roots are found, they're added to the roots list 1094 * 1095 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1096 * much like trans == NULL case, the difference only lies in it will not 1097 * commit root. 1098 * The special case is for qgroup to search roots in commit_transaction(). 1099 * 1100 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1101 * shared extent is detected. 1102 * 1103 * Otherwise this returns 0 for success and <0 for an error. 1104 * 1105 * If ignore_offset is set to false, only extent refs whose offsets match 1106 * extent_item_pos are returned. If true, every extent ref is returned 1107 * and extent_item_pos is ignored. 1108 * 1109 * FIXME some caching might speed things up 1110 */ 1111 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1112 struct btrfs_fs_info *fs_info, u64 bytenr, 1113 u64 time_seq, struct ulist *refs, 1114 struct ulist *roots, const u64 *extent_item_pos, 1115 struct share_check *sc, bool ignore_offset) 1116 { 1117 struct btrfs_key key; 1118 struct btrfs_path *path; 1119 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1120 struct btrfs_delayed_ref_head *head; 1121 int info_level = 0; 1122 int ret; 1123 struct prelim_ref *ref; 1124 struct rb_node *node; 1125 struct extent_inode_elem *eie = NULL; 1126 /* total of both direct AND indirect refs! */ 1127 u64 total_refs = 0; 1128 struct preftrees preftrees = { 1129 .direct = PREFTREE_INIT, 1130 .indirect = PREFTREE_INIT, 1131 .indirect_missing_keys = PREFTREE_INIT 1132 }; 1133 1134 key.objectid = bytenr; 1135 key.offset = (u64)-1; 1136 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1137 key.type = BTRFS_METADATA_ITEM_KEY; 1138 else 1139 key.type = BTRFS_EXTENT_ITEM_KEY; 1140 1141 path = btrfs_alloc_path(); 1142 if (!path) 1143 return -ENOMEM; 1144 if (!trans) { 1145 path->search_commit_root = 1; 1146 path->skip_locking = 1; 1147 } 1148 1149 if (time_seq == SEQ_LAST) 1150 path->skip_locking = 1; 1151 1152 /* 1153 * grab both a lock on the path and a lock on the delayed ref head. 1154 * We need both to get a consistent picture of how the refs look 1155 * at a specified point in time 1156 */ 1157 again: 1158 head = NULL; 1159 1160 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1161 if (ret < 0) 1162 goto out; 1163 BUG_ON(ret == 0); 1164 1165 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1166 if (trans && likely(trans->type != __TRANS_DUMMY) && 1167 time_seq != SEQ_LAST) { 1168 #else 1169 if (trans && time_seq != SEQ_LAST) { 1170 #endif 1171 /* 1172 * look if there are updates for this ref queued and lock the 1173 * head 1174 */ 1175 delayed_refs = &trans->transaction->delayed_refs; 1176 spin_lock(&delayed_refs->lock); 1177 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1178 if (head) { 1179 if (!mutex_trylock(&head->mutex)) { 1180 refcount_inc(&head->refs); 1181 spin_unlock(&delayed_refs->lock); 1182 1183 btrfs_release_path(path); 1184 1185 /* 1186 * Mutex was contended, block until it's 1187 * released and try again 1188 */ 1189 mutex_lock(&head->mutex); 1190 mutex_unlock(&head->mutex); 1191 btrfs_put_delayed_ref_head(head); 1192 goto again; 1193 } 1194 spin_unlock(&delayed_refs->lock); 1195 ret = add_delayed_refs(fs_info, head, time_seq, 1196 &preftrees, &total_refs, sc); 1197 mutex_unlock(&head->mutex); 1198 if (ret) 1199 goto out; 1200 } else { 1201 spin_unlock(&delayed_refs->lock); 1202 } 1203 } 1204 1205 if (path->slots[0]) { 1206 struct extent_buffer *leaf; 1207 int slot; 1208 1209 path->slots[0]--; 1210 leaf = path->nodes[0]; 1211 slot = path->slots[0]; 1212 btrfs_item_key_to_cpu(leaf, &key, slot); 1213 if (key.objectid == bytenr && 1214 (key.type == BTRFS_EXTENT_ITEM_KEY || 1215 key.type == BTRFS_METADATA_ITEM_KEY)) { 1216 ret = add_inline_refs(fs_info, path, bytenr, 1217 &info_level, &preftrees, 1218 &total_refs, sc); 1219 if (ret) 1220 goto out; 1221 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1222 &preftrees, sc); 1223 if (ret) 1224 goto out; 1225 } 1226 } 1227 1228 btrfs_release_path(path); 1229 1230 ret = add_missing_keys(fs_info, &preftrees); 1231 if (ret) 1232 goto out; 1233 1234 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1235 1236 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1237 extent_item_pos, total_refs, sc, ignore_offset); 1238 if (ret) 1239 goto out; 1240 1241 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1242 1243 /* 1244 * This walks the tree of merged and resolved refs. Tree blocks are 1245 * read in as needed. Unique entries are added to the ulist, and 1246 * the list of found roots is updated. 1247 * 1248 * We release the entire tree in one go before returning. 1249 */ 1250 node = rb_first_cached(&preftrees.direct.root); 1251 while (node) { 1252 ref = rb_entry(node, struct prelim_ref, rbnode); 1253 node = rb_next(&ref->rbnode); 1254 /* 1255 * ref->count < 0 can happen here if there are delayed 1256 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1257 * prelim_ref_insert() relies on this when merging 1258 * identical refs to keep the overall count correct. 1259 * prelim_ref_insert() will merge only those refs 1260 * which compare identically. Any refs having 1261 * e.g. different offsets would not be merged, 1262 * and would retain their original ref->count < 0. 1263 */ 1264 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1265 if (sc && sc->root_objectid && 1266 ref->root_id != sc->root_objectid) { 1267 ret = BACKREF_FOUND_SHARED; 1268 goto out; 1269 } 1270 1271 /* no parent == root of tree */ 1272 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1273 if (ret < 0) 1274 goto out; 1275 } 1276 if (ref->count && ref->parent) { 1277 if (extent_item_pos && !ref->inode_list && 1278 ref->level == 0) { 1279 struct extent_buffer *eb; 1280 1281 eb = read_tree_block(fs_info, ref->parent, 0, 1282 ref->level, NULL); 1283 if (IS_ERR(eb)) { 1284 ret = PTR_ERR(eb); 1285 goto out; 1286 } else if (!extent_buffer_uptodate(eb)) { 1287 free_extent_buffer(eb); 1288 ret = -EIO; 1289 goto out; 1290 } 1291 btrfs_tree_read_lock(eb); 1292 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1293 ret = find_extent_in_eb(eb, bytenr, 1294 *extent_item_pos, &eie, ignore_offset); 1295 btrfs_tree_read_unlock_blocking(eb); 1296 free_extent_buffer(eb); 1297 if (ret < 0) 1298 goto out; 1299 ref->inode_list = eie; 1300 } 1301 ret = ulist_add_merge_ptr(refs, ref->parent, 1302 ref->inode_list, 1303 (void **)&eie, GFP_NOFS); 1304 if (ret < 0) 1305 goto out; 1306 if (!ret && extent_item_pos) { 1307 /* 1308 * we've recorded that parent, so we must extend 1309 * its inode list here 1310 */ 1311 BUG_ON(!eie); 1312 while (eie->next) 1313 eie = eie->next; 1314 eie->next = ref->inode_list; 1315 } 1316 eie = NULL; 1317 } 1318 cond_resched(); 1319 } 1320 1321 out: 1322 btrfs_free_path(path); 1323 1324 prelim_release(&preftrees.direct); 1325 prelim_release(&preftrees.indirect); 1326 prelim_release(&preftrees.indirect_missing_keys); 1327 1328 if (ret < 0) 1329 free_inode_elem_list(eie); 1330 return ret; 1331 } 1332 1333 static void free_leaf_list(struct ulist *blocks) 1334 { 1335 struct ulist_node *node = NULL; 1336 struct extent_inode_elem *eie; 1337 struct ulist_iterator uiter; 1338 1339 ULIST_ITER_INIT(&uiter); 1340 while ((node = ulist_next(blocks, &uiter))) { 1341 if (!node->aux) 1342 continue; 1343 eie = unode_aux_to_inode_list(node); 1344 free_inode_elem_list(eie); 1345 node->aux = 0; 1346 } 1347 1348 ulist_free(blocks); 1349 } 1350 1351 /* 1352 * Finds all leafs with a reference to the specified combination of bytenr and 1353 * offset. key_list_head will point to a list of corresponding keys (caller must 1354 * free each list element). The leafs will be stored in the leafs ulist, which 1355 * must be freed with ulist_free. 1356 * 1357 * returns 0 on success, <0 on error 1358 */ 1359 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1360 struct btrfs_fs_info *fs_info, u64 bytenr, 1361 u64 time_seq, struct ulist **leafs, 1362 const u64 *extent_item_pos, bool ignore_offset) 1363 { 1364 int ret; 1365 1366 *leafs = ulist_alloc(GFP_NOFS); 1367 if (!*leafs) 1368 return -ENOMEM; 1369 1370 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1371 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1372 if (ret < 0 && ret != -ENOENT) { 1373 free_leaf_list(*leafs); 1374 return ret; 1375 } 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * walk all backrefs for a given extent to find all roots that reference this 1382 * extent. Walking a backref means finding all extents that reference this 1383 * extent and in turn walk the backrefs of those, too. Naturally this is a 1384 * recursive process, but here it is implemented in an iterative fashion: We 1385 * find all referencing extents for the extent in question and put them on a 1386 * list. In turn, we find all referencing extents for those, further appending 1387 * to the list. The way we iterate the list allows adding more elements after 1388 * the current while iterating. The process stops when we reach the end of the 1389 * list. Found roots are added to the roots list. 1390 * 1391 * returns 0 on success, < 0 on error. 1392 */ 1393 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info, u64 bytenr, 1395 u64 time_seq, struct ulist **roots, 1396 bool ignore_offset) 1397 { 1398 struct ulist *tmp; 1399 struct ulist_node *node = NULL; 1400 struct ulist_iterator uiter; 1401 int ret; 1402 1403 tmp = ulist_alloc(GFP_NOFS); 1404 if (!tmp) 1405 return -ENOMEM; 1406 *roots = ulist_alloc(GFP_NOFS); 1407 if (!*roots) { 1408 ulist_free(tmp); 1409 return -ENOMEM; 1410 } 1411 1412 ULIST_ITER_INIT(&uiter); 1413 while (1) { 1414 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1415 tmp, *roots, NULL, NULL, ignore_offset); 1416 if (ret < 0 && ret != -ENOENT) { 1417 ulist_free(tmp); 1418 ulist_free(*roots); 1419 return ret; 1420 } 1421 node = ulist_next(tmp, &uiter); 1422 if (!node) 1423 break; 1424 bytenr = node->val; 1425 cond_resched(); 1426 } 1427 1428 ulist_free(tmp); 1429 return 0; 1430 } 1431 1432 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1433 struct btrfs_fs_info *fs_info, u64 bytenr, 1434 u64 time_seq, struct ulist **roots, 1435 bool ignore_offset) 1436 { 1437 int ret; 1438 1439 if (!trans) 1440 down_read(&fs_info->commit_root_sem); 1441 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1442 time_seq, roots, ignore_offset); 1443 if (!trans) 1444 up_read(&fs_info->commit_root_sem); 1445 return ret; 1446 } 1447 1448 /** 1449 * btrfs_check_shared - tell us whether an extent is shared 1450 * 1451 * btrfs_check_shared uses the backref walking code but will short 1452 * circuit as soon as it finds a root or inode that doesn't match the 1453 * one passed in. This provides a significant performance benefit for 1454 * callers (such as fiemap) which want to know whether the extent is 1455 * shared but do not need a ref count. 1456 * 1457 * This attempts to allocate a transaction in order to account for 1458 * delayed refs, but continues on even when the alloc fails. 1459 * 1460 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1461 */ 1462 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1463 { 1464 struct btrfs_fs_info *fs_info = root->fs_info; 1465 struct btrfs_trans_handle *trans; 1466 struct ulist *tmp = NULL; 1467 struct ulist *roots = NULL; 1468 struct ulist_iterator uiter; 1469 struct ulist_node *node; 1470 struct seq_list elem = SEQ_LIST_INIT(elem); 1471 int ret = 0; 1472 struct share_check shared = { 1473 .root_objectid = root->root_key.objectid, 1474 .inum = inum, 1475 .share_count = 0, 1476 }; 1477 1478 tmp = ulist_alloc(GFP_NOFS); 1479 roots = ulist_alloc(GFP_NOFS); 1480 if (!tmp || !roots) { 1481 ulist_free(tmp); 1482 ulist_free(roots); 1483 return -ENOMEM; 1484 } 1485 1486 trans = btrfs_join_transaction(root); 1487 if (IS_ERR(trans)) { 1488 trans = NULL; 1489 down_read(&fs_info->commit_root_sem); 1490 } else { 1491 btrfs_get_tree_mod_seq(fs_info, &elem); 1492 } 1493 1494 ULIST_ITER_INIT(&uiter); 1495 while (1) { 1496 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1497 roots, NULL, &shared, false); 1498 if (ret == BACKREF_FOUND_SHARED) { 1499 /* this is the only condition under which we return 1 */ 1500 ret = 1; 1501 break; 1502 } 1503 if (ret < 0 && ret != -ENOENT) 1504 break; 1505 ret = 0; 1506 node = ulist_next(tmp, &uiter); 1507 if (!node) 1508 break; 1509 bytenr = node->val; 1510 shared.share_count = 0; 1511 cond_resched(); 1512 } 1513 1514 if (trans) { 1515 btrfs_put_tree_mod_seq(fs_info, &elem); 1516 btrfs_end_transaction(trans); 1517 } else { 1518 up_read(&fs_info->commit_root_sem); 1519 } 1520 ulist_free(tmp); 1521 ulist_free(roots); 1522 return ret; 1523 } 1524 1525 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1526 u64 start_off, struct btrfs_path *path, 1527 struct btrfs_inode_extref **ret_extref, 1528 u64 *found_off) 1529 { 1530 int ret, slot; 1531 struct btrfs_key key; 1532 struct btrfs_key found_key; 1533 struct btrfs_inode_extref *extref; 1534 const struct extent_buffer *leaf; 1535 unsigned long ptr; 1536 1537 key.objectid = inode_objectid; 1538 key.type = BTRFS_INODE_EXTREF_KEY; 1539 key.offset = start_off; 1540 1541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1542 if (ret < 0) 1543 return ret; 1544 1545 while (1) { 1546 leaf = path->nodes[0]; 1547 slot = path->slots[0]; 1548 if (slot >= btrfs_header_nritems(leaf)) { 1549 /* 1550 * If the item at offset is not found, 1551 * btrfs_search_slot will point us to the slot 1552 * where it should be inserted. In our case 1553 * that will be the slot directly before the 1554 * next INODE_REF_KEY_V2 item. In the case 1555 * that we're pointing to the last slot in a 1556 * leaf, we must move one leaf over. 1557 */ 1558 ret = btrfs_next_leaf(root, path); 1559 if (ret) { 1560 if (ret >= 1) 1561 ret = -ENOENT; 1562 break; 1563 } 1564 continue; 1565 } 1566 1567 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1568 1569 /* 1570 * Check that we're still looking at an extended ref key for 1571 * this particular objectid. If we have different 1572 * objectid or type then there are no more to be found 1573 * in the tree and we can exit. 1574 */ 1575 ret = -ENOENT; 1576 if (found_key.objectid != inode_objectid) 1577 break; 1578 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1579 break; 1580 1581 ret = 0; 1582 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1583 extref = (struct btrfs_inode_extref *)ptr; 1584 *ret_extref = extref; 1585 if (found_off) 1586 *found_off = found_key.offset; 1587 break; 1588 } 1589 1590 return ret; 1591 } 1592 1593 /* 1594 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1595 * Elements of the path are separated by '/' and the path is guaranteed to be 1596 * 0-terminated. the path is only given within the current file system. 1597 * Therefore, it never starts with a '/'. the caller is responsible to provide 1598 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1599 * the start point of the resulting string is returned. this pointer is within 1600 * dest, normally. 1601 * in case the path buffer would overflow, the pointer is decremented further 1602 * as if output was written to the buffer, though no more output is actually 1603 * generated. that way, the caller can determine how much space would be 1604 * required for the path to fit into the buffer. in that case, the returned 1605 * value will be smaller than dest. callers must check this! 1606 */ 1607 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1608 u32 name_len, unsigned long name_off, 1609 struct extent_buffer *eb_in, u64 parent, 1610 char *dest, u32 size) 1611 { 1612 int slot; 1613 u64 next_inum; 1614 int ret; 1615 s64 bytes_left = ((s64)size) - 1; 1616 struct extent_buffer *eb = eb_in; 1617 struct btrfs_key found_key; 1618 int leave_spinning = path->leave_spinning; 1619 struct btrfs_inode_ref *iref; 1620 1621 if (bytes_left >= 0) 1622 dest[bytes_left] = '\0'; 1623 1624 path->leave_spinning = 1; 1625 while (1) { 1626 bytes_left -= name_len; 1627 if (bytes_left >= 0) 1628 read_extent_buffer(eb, dest + bytes_left, 1629 name_off, name_len); 1630 if (eb != eb_in) { 1631 if (!path->skip_locking) 1632 btrfs_tree_read_unlock_blocking(eb); 1633 free_extent_buffer(eb); 1634 } 1635 ret = btrfs_find_item(fs_root, path, parent, 0, 1636 BTRFS_INODE_REF_KEY, &found_key); 1637 if (ret > 0) 1638 ret = -ENOENT; 1639 if (ret) 1640 break; 1641 1642 next_inum = found_key.offset; 1643 1644 /* regular exit ahead */ 1645 if (parent == next_inum) 1646 break; 1647 1648 slot = path->slots[0]; 1649 eb = path->nodes[0]; 1650 /* make sure we can use eb after releasing the path */ 1651 if (eb != eb_in) { 1652 if (!path->skip_locking) 1653 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1654 path->nodes[0] = NULL; 1655 path->locks[0] = 0; 1656 } 1657 btrfs_release_path(path); 1658 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1659 1660 name_len = btrfs_inode_ref_name_len(eb, iref); 1661 name_off = (unsigned long)(iref + 1); 1662 1663 parent = next_inum; 1664 --bytes_left; 1665 if (bytes_left >= 0) 1666 dest[bytes_left] = '/'; 1667 } 1668 1669 btrfs_release_path(path); 1670 path->leave_spinning = leave_spinning; 1671 1672 if (ret) 1673 return ERR_PTR(ret); 1674 1675 return dest + bytes_left; 1676 } 1677 1678 /* 1679 * this makes the path point to (logical EXTENT_ITEM *) 1680 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1681 * tree blocks and <0 on error. 1682 */ 1683 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1684 struct btrfs_path *path, struct btrfs_key *found_key, 1685 u64 *flags_ret) 1686 { 1687 int ret; 1688 u64 flags; 1689 u64 size = 0; 1690 u32 item_size; 1691 const struct extent_buffer *eb; 1692 struct btrfs_extent_item *ei; 1693 struct btrfs_key key; 1694 1695 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1696 key.type = BTRFS_METADATA_ITEM_KEY; 1697 else 1698 key.type = BTRFS_EXTENT_ITEM_KEY; 1699 key.objectid = logical; 1700 key.offset = (u64)-1; 1701 1702 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1703 if (ret < 0) 1704 return ret; 1705 1706 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1707 if (ret) { 1708 if (ret > 0) 1709 ret = -ENOENT; 1710 return ret; 1711 } 1712 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1713 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1714 size = fs_info->nodesize; 1715 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1716 size = found_key->offset; 1717 1718 if (found_key->objectid > logical || 1719 found_key->objectid + size <= logical) { 1720 btrfs_debug(fs_info, 1721 "logical %llu is not within any extent", logical); 1722 return -ENOENT; 1723 } 1724 1725 eb = path->nodes[0]; 1726 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1727 BUG_ON(item_size < sizeof(*ei)); 1728 1729 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1730 flags = btrfs_extent_flags(eb, ei); 1731 1732 btrfs_debug(fs_info, 1733 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1734 logical, logical - found_key->objectid, found_key->objectid, 1735 found_key->offset, flags, item_size); 1736 1737 WARN_ON(!flags_ret); 1738 if (flags_ret) { 1739 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1740 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1741 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1742 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1743 else 1744 BUG_ON(1); 1745 return 0; 1746 } 1747 1748 return -EIO; 1749 } 1750 1751 /* 1752 * helper function to iterate extent inline refs. ptr must point to a 0 value 1753 * for the first call and may be modified. it is used to track state. 1754 * if more refs exist, 0 is returned and the next call to 1755 * get_extent_inline_ref must pass the modified ptr parameter to get the 1756 * next ref. after the last ref was processed, 1 is returned. 1757 * returns <0 on error 1758 */ 1759 static int get_extent_inline_ref(unsigned long *ptr, 1760 const struct extent_buffer *eb, 1761 const struct btrfs_key *key, 1762 const struct btrfs_extent_item *ei, 1763 u32 item_size, 1764 struct btrfs_extent_inline_ref **out_eiref, 1765 int *out_type) 1766 { 1767 unsigned long end; 1768 u64 flags; 1769 struct btrfs_tree_block_info *info; 1770 1771 if (!*ptr) { 1772 /* first call */ 1773 flags = btrfs_extent_flags(eb, ei); 1774 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1775 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1776 /* a skinny metadata extent */ 1777 *out_eiref = 1778 (struct btrfs_extent_inline_ref *)(ei + 1); 1779 } else { 1780 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1781 info = (struct btrfs_tree_block_info *)(ei + 1); 1782 *out_eiref = 1783 (struct btrfs_extent_inline_ref *)(info + 1); 1784 } 1785 } else { 1786 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1787 } 1788 *ptr = (unsigned long)*out_eiref; 1789 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1790 return -ENOENT; 1791 } 1792 1793 end = (unsigned long)ei + item_size; 1794 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1795 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1796 BTRFS_REF_TYPE_ANY); 1797 if (*out_type == BTRFS_REF_TYPE_INVALID) 1798 return -EUCLEAN; 1799 1800 *ptr += btrfs_extent_inline_ref_size(*out_type); 1801 WARN_ON(*ptr > end); 1802 if (*ptr == end) 1803 return 1; /* last */ 1804 1805 return 0; 1806 } 1807 1808 /* 1809 * reads the tree block backref for an extent. tree level and root are returned 1810 * through out_level and out_root. ptr must point to a 0 value for the first 1811 * call and may be modified (see get_extent_inline_ref comment). 1812 * returns 0 if data was provided, 1 if there was no more data to provide or 1813 * <0 on error. 1814 */ 1815 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1816 struct btrfs_key *key, struct btrfs_extent_item *ei, 1817 u32 item_size, u64 *out_root, u8 *out_level) 1818 { 1819 int ret; 1820 int type; 1821 struct btrfs_extent_inline_ref *eiref; 1822 1823 if (*ptr == (unsigned long)-1) 1824 return 1; 1825 1826 while (1) { 1827 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1828 &eiref, &type); 1829 if (ret < 0) 1830 return ret; 1831 1832 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1833 type == BTRFS_SHARED_BLOCK_REF_KEY) 1834 break; 1835 1836 if (ret == 1) 1837 return 1; 1838 } 1839 1840 /* we can treat both ref types equally here */ 1841 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1842 1843 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1844 struct btrfs_tree_block_info *info; 1845 1846 info = (struct btrfs_tree_block_info *)(ei + 1); 1847 *out_level = btrfs_tree_block_level(eb, info); 1848 } else { 1849 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1850 *out_level = (u8)key->offset; 1851 } 1852 1853 if (ret == 1) 1854 *ptr = (unsigned long)-1; 1855 1856 return 0; 1857 } 1858 1859 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1860 struct extent_inode_elem *inode_list, 1861 u64 root, u64 extent_item_objectid, 1862 iterate_extent_inodes_t *iterate, void *ctx) 1863 { 1864 struct extent_inode_elem *eie; 1865 int ret = 0; 1866 1867 for (eie = inode_list; eie; eie = eie->next) { 1868 btrfs_debug(fs_info, 1869 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1870 extent_item_objectid, eie->inum, 1871 eie->offset, root); 1872 ret = iterate(eie->inum, eie->offset, root, ctx); 1873 if (ret) { 1874 btrfs_debug(fs_info, 1875 "stopping iteration for %llu due to ret=%d", 1876 extent_item_objectid, ret); 1877 break; 1878 } 1879 } 1880 1881 return ret; 1882 } 1883 1884 /* 1885 * calls iterate() for every inode that references the extent identified by 1886 * the given parameters. 1887 * when the iterator function returns a non-zero value, iteration stops. 1888 */ 1889 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1890 u64 extent_item_objectid, u64 extent_item_pos, 1891 int search_commit_root, 1892 iterate_extent_inodes_t *iterate, void *ctx, 1893 bool ignore_offset) 1894 { 1895 int ret; 1896 struct btrfs_trans_handle *trans = NULL; 1897 struct ulist *refs = NULL; 1898 struct ulist *roots = NULL; 1899 struct ulist_node *ref_node = NULL; 1900 struct ulist_node *root_node = NULL; 1901 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1902 struct ulist_iterator ref_uiter; 1903 struct ulist_iterator root_uiter; 1904 1905 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1906 extent_item_objectid); 1907 1908 if (!search_commit_root) { 1909 trans = btrfs_join_transaction(fs_info->extent_root); 1910 if (IS_ERR(trans)) 1911 return PTR_ERR(trans); 1912 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1913 } else { 1914 down_read(&fs_info->commit_root_sem); 1915 } 1916 1917 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1918 tree_mod_seq_elem.seq, &refs, 1919 &extent_item_pos, ignore_offset); 1920 if (ret) 1921 goto out; 1922 1923 ULIST_ITER_INIT(&ref_uiter); 1924 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1925 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1926 tree_mod_seq_elem.seq, &roots, 1927 ignore_offset); 1928 if (ret) 1929 break; 1930 ULIST_ITER_INIT(&root_uiter); 1931 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1932 btrfs_debug(fs_info, 1933 "root %llu references leaf %llu, data list %#llx", 1934 root_node->val, ref_node->val, 1935 ref_node->aux); 1936 ret = iterate_leaf_refs(fs_info, 1937 (struct extent_inode_elem *) 1938 (uintptr_t)ref_node->aux, 1939 root_node->val, 1940 extent_item_objectid, 1941 iterate, ctx); 1942 } 1943 ulist_free(roots); 1944 } 1945 1946 free_leaf_list(refs); 1947 out: 1948 if (!search_commit_root) { 1949 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1950 btrfs_end_transaction(trans); 1951 } else { 1952 up_read(&fs_info->commit_root_sem); 1953 } 1954 1955 return ret; 1956 } 1957 1958 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1959 struct btrfs_path *path, 1960 iterate_extent_inodes_t *iterate, void *ctx, 1961 bool ignore_offset) 1962 { 1963 int ret; 1964 u64 extent_item_pos; 1965 u64 flags = 0; 1966 struct btrfs_key found_key; 1967 int search_commit_root = path->search_commit_root; 1968 1969 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1970 btrfs_release_path(path); 1971 if (ret < 0) 1972 return ret; 1973 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1974 return -EINVAL; 1975 1976 extent_item_pos = logical - found_key.objectid; 1977 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1978 extent_item_pos, search_commit_root, 1979 iterate, ctx, ignore_offset); 1980 1981 return ret; 1982 } 1983 1984 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1985 struct extent_buffer *eb, void *ctx); 1986 1987 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1988 struct btrfs_path *path, 1989 iterate_irefs_t *iterate, void *ctx) 1990 { 1991 int ret = 0; 1992 int slot; 1993 u32 cur; 1994 u32 len; 1995 u32 name_len; 1996 u64 parent = 0; 1997 int found = 0; 1998 struct extent_buffer *eb; 1999 struct btrfs_item *item; 2000 struct btrfs_inode_ref *iref; 2001 struct btrfs_key found_key; 2002 2003 while (!ret) { 2004 ret = btrfs_find_item(fs_root, path, inum, 2005 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2006 &found_key); 2007 2008 if (ret < 0) 2009 break; 2010 if (ret) { 2011 ret = found ? 0 : -ENOENT; 2012 break; 2013 } 2014 ++found; 2015 2016 parent = found_key.offset; 2017 slot = path->slots[0]; 2018 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2019 if (!eb) { 2020 ret = -ENOMEM; 2021 break; 2022 } 2023 btrfs_release_path(path); 2024 2025 item = btrfs_item_nr(slot); 2026 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2027 2028 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2029 name_len = btrfs_inode_ref_name_len(eb, iref); 2030 /* path must be released before calling iterate()! */ 2031 btrfs_debug(fs_root->fs_info, 2032 "following ref at offset %u for inode %llu in tree %llu", 2033 cur, found_key.objectid, 2034 fs_root->root_key.objectid); 2035 ret = iterate(parent, name_len, 2036 (unsigned long)(iref + 1), eb, ctx); 2037 if (ret) 2038 break; 2039 len = sizeof(*iref) + name_len; 2040 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2041 } 2042 free_extent_buffer(eb); 2043 } 2044 2045 btrfs_release_path(path); 2046 2047 return ret; 2048 } 2049 2050 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2051 struct btrfs_path *path, 2052 iterate_irefs_t *iterate, void *ctx) 2053 { 2054 int ret; 2055 int slot; 2056 u64 offset = 0; 2057 u64 parent; 2058 int found = 0; 2059 struct extent_buffer *eb; 2060 struct btrfs_inode_extref *extref; 2061 u32 item_size; 2062 u32 cur_offset; 2063 unsigned long ptr; 2064 2065 while (1) { 2066 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2067 &offset); 2068 if (ret < 0) 2069 break; 2070 if (ret) { 2071 ret = found ? 0 : -ENOENT; 2072 break; 2073 } 2074 ++found; 2075 2076 slot = path->slots[0]; 2077 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2078 if (!eb) { 2079 ret = -ENOMEM; 2080 break; 2081 } 2082 btrfs_release_path(path); 2083 2084 item_size = btrfs_item_size_nr(eb, slot); 2085 ptr = btrfs_item_ptr_offset(eb, slot); 2086 cur_offset = 0; 2087 2088 while (cur_offset < item_size) { 2089 u32 name_len; 2090 2091 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2092 parent = btrfs_inode_extref_parent(eb, extref); 2093 name_len = btrfs_inode_extref_name_len(eb, extref); 2094 ret = iterate(parent, name_len, 2095 (unsigned long)&extref->name, eb, ctx); 2096 if (ret) 2097 break; 2098 2099 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2100 cur_offset += sizeof(*extref); 2101 } 2102 free_extent_buffer(eb); 2103 2104 offset++; 2105 } 2106 2107 btrfs_release_path(path); 2108 2109 return ret; 2110 } 2111 2112 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2113 struct btrfs_path *path, iterate_irefs_t *iterate, 2114 void *ctx) 2115 { 2116 int ret; 2117 int found_refs = 0; 2118 2119 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2120 if (!ret) 2121 ++found_refs; 2122 else if (ret != -ENOENT) 2123 return ret; 2124 2125 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2126 if (ret == -ENOENT && found_refs) 2127 return 0; 2128 2129 return ret; 2130 } 2131 2132 /* 2133 * returns 0 if the path could be dumped (probably truncated) 2134 * returns <0 in case of an error 2135 */ 2136 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2137 struct extent_buffer *eb, void *ctx) 2138 { 2139 struct inode_fs_paths *ipath = ctx; 2140 char *fspath; 2141 char *fspath_min; 2142 int i = ipath->fspath->elem_cnt; 2143 const int s_ptr = sizeof(char *); 2144 u32 bytes_left; 2145 2146 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2147 ipath->fspath->bytes_left - s_ptr : 0; 2148 2149 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2150 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2151 name_off, eb, inum, fspath_min, bytes_left); 2152 if (IS_ERR(fspath)) 2153 return PTR_ERR(fspath); 2154 2155 if (fspath > fspath_min) { 2156 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2157 ++ipath->fspath->elem_cnt; 2158 ipath->fspath->bytes_left = fspath - fspath_min; 2159 } else { 2160 ++ipath->fspath->elem_missed; 2161 ipath->fspath->bytes_missing += fspath_min - fspath; 2162 ipath->fspath->bytes_left = 0; 2163 } 2164 2165 return 0; 2166 } 2167 2168 /* 2169 * this dumps all file system paths to the inode into the ipath struct, provided 2170 * is has been created large enough. each path is zero-terminated and accessed 2171 * from ipath->fspath->val[i]. 2172 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2173 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2174 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2175 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2176 * have been needed to return all paths. 2177 */ 2178 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2179 { 2180 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2181 inode_to_path, ipath); 2182 } 2183 2184 struct btrfs_data_container *init_data_container(u32 total_bytes) 2185 { 2186 struct btrfs_data_container *data; 2187 size_t alloc_bytes; 2188 2189 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2190 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2191 if (!data) 2192 return ERR_PTR(-ENOMEM); 2193 2194 if (total_bytes >= sizeof(*data)) { 2195 data->bytes_left = total_bytes - sizeof(*data); 2196 data->bytes_missing = 0; 2197 } else { 2198 data->bytes_missing = sizeof(*data) - total_bytes; 2199 data->bytes_left = 0; 2200 } 2201 2202 data->elem_cnt = 0; 2203 data->elem_missed = 0; 2204 2205 return data; 2206 } 2207 2208 /* 2209 * allocates space to return multiple file system paths for an inode. 2210 * total_bytes to allocate are passed, note that space usable for actual path 2211 * information will be total_bytes - sizeof(struct inode_fs_paths). 2212 * the returned pointer must be freed with free_ipath() in the end. 2213 */ 2214 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2215 struct btrfs_path *path) 2216 { 2217 struct inode_fs_paths *ifp; 2218 struct btrfs_data_container *fspath; 2219 2220 fspath = init_data_container(total_bytes); 2221 if (IS_ERR(fspath)) 2222 return ERR_CAST(fspath); 2223 2224 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2225 if (!ifp) { 2226 kvfree(fspath); 2227 return ERR_PTR(-ENOMEM); 2228 } 2229 2230 ifp->btrfs_path = path; 2231 ifp->fspath = fspath; 2232 ifp->fs_root = fs_root; 2233 2234 return ifp; 2235 } 2236 2237 void free_ipath(struct inode_fs_paths *ipath) 2238 { 2239 if (!ipath) 2240 return; 2241 kvfree(ipath->fspath); 2242 kfree(ipath); 2243 } 2244