xref: /openbmc/linux/fs/btrfs/backref.c (revision ce6cc6f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!btrfs_file_extent_compression(eb, fi) &&
49 	    !btrfs_file_extent_encryption(eb, fi) &&
50 	    !btrfs_file_extent_other_encoding(eb, fi)) {
51 		u64 data_offset;
52 
53 		data_offset = btrfs_file_extent_offset(eb, fi);
54 
55 		if (ctx->extent_item_pos < data_offset ||
56 		    ctx->extent_item_pos >= data_offset + data_len)
57 			return 1;
58 		offset += ctx->extent_item_pos - data_offset;
59 	}
60 
61 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
62 		goto add_inode_elem;
63 
64 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
65 				   &root_count);
66 	if (!cached)
67 		goto add_inode_elem;
68 
69 	for (int i = 0; i < root_count; i++) {
70 		int ret;
71 
72 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
73 						 data_len, root_ids[i],
74 						 ctx->user_ctx);
75 		if (ret)
76 			return ret;
77 	}
78 
79 add_inode_elem:
80 	e = kmalloc(sizeof(*e), GFP_NOFS);
81 	if (!e)
82 		return -ENOMEM;
83 
84 	e->next = *eie;
85 	e->inum = key->objectid;
86 	e->offset = offset;
87 	e->num_bytes = data_len;
88 	*eie = e;
89 
90 	return 0;
91 }
92 
93 static void free_inode_elem_list(struct extent_inode_elem *eie)
94 {
95 	struct extent_inode_elem *eie_next;
96 
97 	for (; eie; eie = eie_next) {
98 		eie_next = eie->next;
99 		kfree(eie);
100 	}
101 }
102 
103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
104 			     const struct extent_buffer *eb,
105 			     struct extent_inode_elem **eie)
106 {
107 	u64 disk_byte;
108 	struct btrfs_key key;
109 	struct btrfs_file_extent_item *fi;
110 	int slot;
111 	int nritems;
112 	int extent_type;
113 	int ret;
114 
115 	/*
116 	 * from the shared data ref, we only have the leaf but we need
117 	 * the key. thus, we must look into all items and see that we
118 	 * find one (some) with a reference to our extent item.
119 	 */
120 	nritems = btrfs_header_nritems(eb);
121 	for (slot = 0; slot < nritems; ++slot) {
122 		btrfs_item_key_to_cpu(eb, &key, slot);
123 		if (key.type != BTRFS_EXTENT_DATA_KEY)
124 			continue;
125 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
126 		extent_type = btrfs_file_extent_type(eb, fi);
127 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
128 			continue;
129 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
130 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
131 		if (disk_byte != ctx->bytenr)
132 			continue;
133 
134 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
135 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
136 			return ret;
137 	}
138 
139 	return 0;
140 }
141 
142 struct preftree {
143 	struct rb_root_cached root;
144 	unsigned int count;
145 };
146 
147 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
148 
149 struct preftrees {
150 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
151 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
152 	struct preftree indirect_missing_keys;
153 };
154 
155 /*
156  * Checks for a shared extent during backref search.
157  *
158  * The share_count tracks prelim_refs (direct and indirect) having a
159  * ref->count >0:
160  *  - incremented when a ref->count transitions to >0
161  *  - decremented when a ref->count transitions to <1
162  */
163 struct share_check {
164 	struct btrfs_backref_share_check_ctx *ctx;
165 	struct btrfs_root *root;
166 	u64 inum;
167 	u64 data_bytenr;
168 	u64 data_extent_gen;
169 	/*
170 	 * Counts number of inodes that refer to an extent (different inodes in
171 	 * the same root or different roots) that we could find. The sharedness
172 	 * check typically stops once this counter gets greater than 1, so it
173 	 * may not reflect the total number of inodes.
174 	 */
175 	int share_count;
176 	/*
177 	 * The number of times we found our inode refers to the data extent we
178 	 * are determining the sharedness. In other words, how many file extent
179 	 * items we could find for our inode that point to our target data
180 	 * extent. The value we get here after finishing the extent sharedness
181 	 * check may be smaller than reality, but if it ends up being greater
182 	 * than 1, then we know for sure the inode has multiple file extent
183 	 * items that point to our inode, and we can safely assume it's useful
184 	 * to cache the sharedness check result.
185 	 */
186 	int self_ref_count;
187 	bool have_delayed_delete_refs;
188 };
189 
190 static inline int extent_is_shared(struct share_check *sc)
191 {
192 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
193 }
194 
195 static struct kmem_cache *btrfs_prelim_ref_cache;
196 
197 int __init btrfs_prelim_ref_init(void)
198 {
199 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
200 					sizeof(struct prelim_ref),
201 					0,
202 					SLAB_MEM_SPREAD,
203 					NULL);
204 	if (!btrfs_prelim_ref_cache)
205 		return -ENOMEM;
206 	return 0;
207 }
208 
209 void __cold btrfs_prelim_ref_exit(void)
210 {
211 	kmem_cache_destroy(btrfs_prelim_ref_cache);
212 }
213 
214 static void free_pref(struct prelim_ref *ref)
215 {
216 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
217 }
218 
219 /*
220  * Return 0 when both refs are for the same block (and can be merged).
221  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
222  * indicates a 'higher' block.
223  */
224 static int prelim_ref_compare(struct prelim_ref *ref1,
225 			      struct prelim_ref *ref2)
226 {
227 	if (ref1->level < ref2->level)
228 		return -1;
229 	if (ref1->level > ref2->level)
230 		return 1;
231 	if (ref1->root_id < ref2->root_id)
232 		return -1;
233 	if (ref1->root_id > ref2->root_id)
234 		return 1;
235 	if (ref1->key_for_search.type < ref2->key_for_search.type)
236 		return -1;
237 	if (ref1->key_for_search.type > ref2->key_for_search.type)
238 		return 1;
239 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
240 		return -1;
241 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
242 		return 1;
243 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
244 		return -1;
245 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
246 		return 1;
247 	if (ref1->parent < ref2->parent)
248 		return -1;
249 	if (ref1->parent > ref2->parent)
250 		return 1;
251 
252 	return 0;
253 }
254 
255 static void update_share_count(struct share_check *sc, int oldcount,
256 			       int newcount, struct prelim_ref *newref)
257 {
258 	if ((!sc) || (oldcount == 0 && newcount < 1))
259 		return;
260 
261 	if (oldcount > 0 && newcount < 1)
262 		sc->share_count--;
263 	else if (oldcount < 1 && newcount > 0)
264 		sc->share_count++;
265 
266 	if (newref->root_id == sc->root->root_key.objectid &&
267 	    newref->wanted_disk_byte == sc->data_bytenr &&
268 	    newref->key_for_search.objectid == sc->inum)
269 		sc->self_ref_count += newref->count;
270 }
271 
272 /*
273  * Add @newref to the @root rbtree, merging identical refs.
274  *
275  * Callers should assume that newref has been freed after calling.
276  */
277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
278 			      struct preftree *preftree,
279 			      struct prelim_ref *newref,
280 			      struct share_check *sc)
281 {
282 	struct rb_root_cached *root;
283 	struct rb_node **p;
284 	struct rb_node *parent = NULL;
285 	struct prelim_ref *ref;
286 	int result;
287 	bool leftmost = true;
288 
289 	root = &preftree->root;
290 	p = &root->rb_root.rb_node;
291 
292 	while (*p) {
293 		parent = *p;
294 		ref = rb_entry(parent, struct prelim_ref, rbnode);
295 		result = prelim_ref_compare(ref, newref);
296 		if (result < 0) {
297 			p = &(*p)->rb_left;
298 		} else if (result > 0) {
299 			p = &(*p)->rb_right;
300 			leftmost = false;
301 		} else {
302 			/* Identical refs, merge them and free @newref */
303 			struct extent_inode_elem *eie = ref->inode_list;
304 
305 			while (eie && eie->next)
306 				eie = eie->next;
307 
308 			if (!eie)
309 				ref->inode_list = newref->inode_list;
310 			else
311 				eie->next = newref->inode_list;
312 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 						     preftree->count);
314 			/*
315 			 * A delayed ref can have newref->count < 0.
316 			 * The ref->count is updated to follow any
317 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 			 */
319 			update_share_count(sc, ref->count,
320 					   ref->count + newref->count, newref);
321 			ref->count += newref->count;
322 			free_pref(newref);
323 			return;
324 		}
325 	}
326 
327 	update_share_count(sc, 0, newref->count, newref);
328 	preftree->count++;
329 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
330 	rb_link_node(&newref->rbnode, parent, p);
331 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
332 }
333 
334 /*
335  * Release the entire tree.  We don't care about internal consistency so
336  * just free everything and then reset the tree root.
337  */
338 static void prelim_release(struct preftree *preftree)
339 {
340 	struct prelim_ref *ref, *next_ref;
341 
342 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
343 					     &preftree->root.rb_root, rbnode) {
344 		free_inode_elem_list(ref->inode_list);
345 		free_pref(ref);
346 	}
347 
348 	preftree->root = RB_ROOT_CACHED;
349 	preftree->count = 0;
350 }
351 
352 /*
353  * the rules for all callers of this function are:
354  * - obtaining the parent is the goal
355  * - if you add a key, you must know that it is a correct key
356  * - if you cannot add the parent or a correct key, then we will look into the
357  *   block later to set a correct key
358  *
359  * delayed refs
360  * ============
361  *        backref type | shared | indirect | shared | indirect
362  * information         |   tree |     tree |   data |     data
363  * --------------------+--------+----------+--------+----------
364  *      parent logical |    y   |     -    |    -   |     -
365  *      key to resolve |    -   |     y    |    y   |     y
366  *  tree block logical |    -   |     -    |    -   |     -
367  *  root for resolving |    y   |     y    |    y   |     y
368  *
369  * - column 1:       we've the parent -> done
370  * - column 2, 3, 4: we use the key to find the parent
371  *
372  * on disk refs (inline or keyed)
373  * ==============================
374  *        backref type | shared | indirect | shared | indirect
375  * information         |   tree |     tree |   data |     data
376  * --------------------+--------+----------+--------+----------
377  *      parent logical |    y   |     -    |    y   |     -
378  *      key to resolve |    -   |     -    |    -   |     y
379  *  tree block logical |    y   |     y    |    y   |     y
380  *  root for resolving |    -   |     y    |    y   |     y
381  *
382  * - column 1, 3: we've the parent -> done
383  * - column 2:    we take the first key from the block to find the parent
384  *                (see add_missing_keys)
385  * - column 4:    we use the key to find the parent
386  *
387  * additional information that's available but not required to find the parent
388  * block might help in merging entries to gain some speed.
389  */
390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
391 			  struct preftree *preftree, u64 root_id,
392 			  const struct btrfs_key *key, int level, u64 parent,
393 			  u64 wanted_disk_byte, int count,
394 			  struct share_check *sc, gfp_t gfp_mask)
395 {
396 	struct prelim_ref *ref;
397 
398 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
399 		return 0;
400 
401 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
402 	if (!ref)
403 		return -ENOMEM;
404 
405 	ref->root_id = root_id;
406 	if (key)
407 		ref->key_for_search = *key;
408 	else
409 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
410 
411 	ref->inode_list = NULL;
412 	ref->level = level;
413 	ref->count = count;
414 	ref->parent = parent;
415 	ref->wanted_disk_byte = wanted_disk_byte;
416 	prelim_ref_insert(fs_info, preftree, ref, sc);
417 	return extent_is_shared(sc);
418 }
419 
420 /* direct refs use root == 0, key == NULL */
421 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
422 			  struct preftrees *preftrees, int level, u64 parent,
423 			  u64 wanted_disk_byte, int count,
424 			  struct share_check *sc, gfp_t gfp_mask)
425 {
426 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
427 			      parent, wanted_disk_byte, count, sc, gfp_mask);
428 }
429 
430 /* indirect refs use parent == 0 */
431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
432 			    struct preftrees *preftrees, u64 root_id,
433 			    const struct btrfs_key *key, int level,
434 			    u64 wanted_disk_byte, int count,
435 			    struct share_check *sc, gfp_t gfp_mask)
436 {
437 	struct preftree *tree = &preftrees->indirect;
438 
439 	if (!key)
440 		tree = &preftrees->indirect_missing_keys;
441 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
442 			      wanted_disk_byte, count, sc, gfp_mask);
443 }
444 
445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
446 {
447 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
448 	struct rb_node *parent = NULL;
449 	struct prelim_ref *ref = NULL;
450 	struct prelim_ref target = {};
451 	int result;
452 
453 	target.parent = bytenr;
454 
455 	while (*p) {
456 		parent = *p;
457 		ref = rb_entry(parent, struct prelim_ref, rbnode);
458 		result = prelim_ref_compare(ref, &target);
459 
460 		if (result < 0)
461 			p = &(*p)->rb_left;
462 		else if (result > 0)
463 			p = &(*p)->rb_right;
464 		else
465 			return 1;
466 	}
467 	return 0;
468 }
469 
470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
471 			   struct btrfs_root *root, struct btrfs_path *path,
472 			   struct ulist *parents,
473 			   struct preftrees *preftrees, struct prelim_ref *ref,
474 			   int level)
475 {
476 	int ret = 0;
477 	int slot;
478 	struct extent_buffer *eb;
479 	struct btrfs_key key;
480 	struct btrfs_key *key_for_search = &ref->key_for_search;
481 	struct btrfs_file_extent_item *fi;
482 	struct extent_inode_elem *eie = NULL, *old = NULL;
483 	u64 disk_byte;
484 	u64 wanted_disk_byte = ref->wanted_disk_byte;
485 	u64 count = 0;
486 	u64 data_offset;
487 	u8 type;
488 
489 	if (level != 0) {
490 		eb = path->nodes[level];
491 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
492 		if (ret < 0)
493 			return ret;
494 		return 0;
495 	}
496 
497 	/*
498 	 * 1. We normally enter this function with the path already pointing to
499 	 *    the first item to check. But sometimes, we may enter it with
500 	 *    slot == nritems.
501 	 * 2. We are searching for normal backref but bytenr of this leaf
502 	 *    matches shared data backref
503 	 * 3. The leaf owner is not equal to the root we are searching
504 	 *
505 	 * For these cases, go to the next leaf before we continue.
506 	 */
507 	eb = path->nodes[0];
508 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
509 	    is_shared_data_backref(preftrees, eb->start) ||
510 	    ref->root_id != btrfs_header_owner(eb)) {
511 		if (ctx->time_seq == BTRFS_SEQ_LAST)
512 			ret = btrfs_next_leaf(root, path);
513 		else
514 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
515 	}
516 
517 	while (!ret && count < ref->count) {
518 		eb = path->nodes[0];
519 		slot = path->slots[0];
520 
521 		btrfs_item_key_to_cpu(eb, &key, slot);
522 
523 		if (key.objectid != key_for_search->objectid ||
524 		    key.type != BTRFS_EXTENT_DATA_KEY)
525 			break;
526 
527 		/*
528 		 * We are searching for normal backref but bytenr of this leaf
529 		 * matches shared data backref, OR
530 		 * the leaf owner is not equal to the root we are searching for
531 		 */
532 		if (slot == 0 &&
533 		    (is_shared_data_backref(preftrees, eb->start) ||
534 		     ref->root_id != btrfs_header_owner(eb))) {
535 			if (ctx->time_seq == BTRFS_SEQ_LAST)
536 				ret = btrfs_next_leaf(root, path);
537 			else
538 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
539 			continue;
540 		}
541 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
542 		type = btrfs_file_extent_type(eb, fi);
543 		if (type == BTRFS_FILE_EXTENT_INLINE)
544 			goto next;
545 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
546 		data_offset = btrfs_file_extent_offset(eb, fi);
547 
548 		if (disk_byte == wanted_disk_byte) {
549 			eie = NULL;
550 			old = NULL;
551 			if (ref->key_for_search.offset == key.offset - data_offset)
552 				count++;
553 			else
554 				goto next;
555 			if (!ctx->ignore_extent_item_pos) {
556 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
557 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
558 				    ret < 0)
559 					break;
560 			}
561 			if (ret > 0)
562 				goto next;
563 			ret = ulist_add_merge_ptr(parents, eb->start,
564 						  eie, (void **)&old, GFP_NOFS);
565 			if (ret < 0)
566 				break;
567 			if (!ret && !ctx->ignore_extent_item_pos) {
568 				while (old->next)
569 					old = old->next;
570 				old->next = eie;
571 			}
572 			eie = NULL;
573 		}
574 next:
575 		if (ctx->time_seq == BTRFS_SEQ_LAST)
576 			ret = btrfs_next_item(root, path);
577 		else
578 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
579 	}
580 
581 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
582 		free_inode_elem_list(eie);
583 	else if (ret > 0)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 /*
590  * resolve an indirect backref in the form (root_id, key, level)
591  * to a logical address
592  */
593 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
594 				struct btrfs_path *path,
595 				struct preftrees *preftrees,
596 				struct prelim_ref *ref, struct ulist *parents)
597 {
598 	struct btrfs_root *root;
599 	struct extent_buffer *eb;
600 	int ret = 0;
601 	int root_level;
602 	int level = ref->level;
603 	struct btrfs_key search_key = ref->key_for_search;
604 
605 	/*
606 	 * If we're search_commit_root we could possibly be holding locks on
607 	 * other tree nodes.  This happens when qgroups does backref walks when
608 	 * adding new delayed refs.  To deal with this we need to look in cache
609 	 * for the root, and if we don't find it then we need to search the
610 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
611 	 * here.
612 	 */
613 	if (path->search_commit_root)
614 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
615 	else
616 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
617 	if (IS_ERR(root)) {
618 		ret = PTR_ERR(root);
619 		goto out_free;
620 	}
621 
622 	if (!path->search_commit_root &&
623 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
624 		ret = -ENOENT;
625 		goto out;
626 	}
627 
628 	if (btrfs_is_testing(ctx->fs_info)) {
629 		ret = -ENOENT;
630 		goto out;
631 	}
632 
633 	if (path->search_commit_root)
634 		root_level = btrfs_header_level(root->commit_root);
635 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
636 		root_level = btrfs_header_level(root->node);
637 	else
638 		root_level = btrfs_old_root_level(root, ctx->time_seq);
639 
640 	if (root_level + 1 == level)
641 		goto out;
642 
643 	/*
644 	 * We can often find data backrefs with an offset that is too large
645 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
646 	 * subtracting a file's offset with the data offset of its
647 	 * corresponding extent data item. This can happen for example in the
648 	 * clone ioctl.
649 	 *
650 	 * So if we detect such case we set the search key's offset to zero to
651 	 * make sure we will find the matching file extent item at
652 	 * add_all_parents(), otherwise we will miss it because the offset
653 	 * taken form the backref is much larger then the offset of the file
654 	 * extent item. This can make us scan a very large number of file
655 	 * extent items, but at least it will not make us miss any.
656 	 *
657 	 * This is an ugly workaround for a behaviour that should have never
658 	 * existed, but it does and a fix for the clone ioctl would touch a lot
659 	 * of places, cause backwards incompatibility and would not fix the
660 	 * problem for extents cloned with older kernels.
661 	 */
662 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
663 	    search_key.offset >= LLONG_MAX)
664 		search_key.offset = 0;
665 	path->lowest_level = level;
666 	if (ctx->time_seq == BTRFS_SEQ_LAST)
667 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
668 	else
669 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
670 
671 	btrfs_debug(ctx->fs_info,
672 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
673 		 ref->root_id, level, ref->count, ret,
674 		 ref->key_for_search.objectid, ref->key_for_search.type,
675 		 ref->key_for_search.offset);
676 	if (ret < 0)
677 		goto out;
678 
679 	eb = path->nodes[level];
680 	while (!eb) {
681 		if (WARN_ON(!level)) {
682 			ret = 1;
683 			goto out;
684 		}
685 		level--;
686 		eb = path->nodes[level];
687 	}
688 
689 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
690 out:
691 	btrfs_put_root(root);
692 out_free:
693 	path->lowest_level = 0;
694 	btrfs_release_path(path);
695 	return ret;
696 }
697 
698 static struct extent_inode_elem *
699 unode_aux_to_inode_list(struct ulist_node *node)
700 {
701 	if (!node)
702 		return NULL;
703 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
704 }
705 
706 static void free_leaf_list(struct ulist *ulist)
707 {
708 	struct ulist_node *node;
709 	struct ulist_iterator uiter;
710 
711 	ULIST_ITER_INIT(&uiter);
712 	while ((node = ulist_next(ulist, &uiter)))
713 		free_inode_elem_list(unode_aux_to_inode_list(node));
714 
715 	ulist_free(ulist);
716 }
717 
718 /*
719  * We maintain three separate rbtrees: one for direct refs, one for
720  * indirect refs which have a key, and one for indirect refs which do not
721  * have a key. Each tree does merge on insertion.
722  *
723  * Once all of the references are located, we iterate over the tree of
724  * indirect refs with missing keys. An appropriate key is located and
725  * the ref is moved onto the tree for indirect refs. After all missing
726  * keys are thus located, we iterate over the indirect ref tree, resolve
727  * each reference, and then insert the resolved reference onto the
728  * direct tree (merging there too).
729  *
730  * New backrefs (i.e., for parent nodes) are added to the appropriate
731  * rbtree as they are encountered. The new backrefs are subsequently
732  * resolved as above.
733  */
734 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
735 				 struct btrfs_path *path,
736 				 struct preftrees *preftrees,
737 				 struct share_check *sc)
738 {
739 	int err;
740 	int ret = 0;
741 	struct ulist *parents;
742 	struct ulist_node *node;
743 	struct ulist_iterator uiter;
744 	struct rb_node *rnode;
745 
746 	parents = ulist_alloc(GFP_NOFS);
747 	if (!parents)
748 		return -ENOMEM;
749 
750 	/*
751 	 * We could trade memory usage for performance here by iterating
752 	 * the tree, allocating new refs for each insertion, and then
753 	 * freeing the entire indirect tree when we're done.  In some test
754 	 * cases, the tree can grow quite large (~200k objects).
755 	 */
756 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
757 		struct prelim_ref *ref;
758 
759 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
760 		if (WARN(ref->parent,
761 			 "BUG: direct ref found in indirect tree")) {
762 			ret = -EINVAL;
763 			goto out;
764 		}
765 
766 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
767 		preftrees->indirect.count--;
768 
769 		if (ref->count == 0) {
770 			free_pref(ref);
771 			continue;
772 		}
773 
774 		if (sc && ref->root_id != sc->root->root_key.objectid) {
775 			free_pref(ref);
776 			ret = BACKREF_FOUND_SHARED;
777 			goto out;
778 		}
779 		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
780 		/*
781 		 * we can only tolerate ENOENT,otherwise,we should catch error
782 		 * and return directly.
783 		 */
784 		if (err == -ENOENT) {
785 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
786 					  NULL);
787 			continue;
788 		} else if (err) {
789 			free_pref(ref);
790 			ret = err;
791 			goto out;
792 		}
793 
794 		/* we put the first parent into the ref at hand */
795 		ULIST_ITER_INIT(&uiter);
796 		node = ulist_next(parents, &uiter);
797 		ref->parent = node ? node->val : 0;
798 		ref->inode_list = unode_aux_to_inode_list(node);
799 
800 		/* Add a prelim_ref(s) for any other parent(s). */
801 		while ((node = ulist_next(parents, &uiter))) {
802 			struct prelim_ref *new_ref;
803 
804 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
805 						   GFP_NOFS);
806 			if (!new_ref) {
807 				free_pref(ref);
808 				ret = -ENOMEM;
809 				goto out;
810 			}
811 			memcpy(new_ref, ref, sizeof(*ref));
812 			new_ref->parent = node->val;
813 			new_ref->inode_list = unode_aux_to_inode_list(node);
814 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
815 					  new_ref, NULL);
816 		}
817 
818 		/*
819 		 * Now it's a direct ref, put it in the direct tree. We must
820 		 * do this last because the ref could be merged/freed here.
821 		 */
822 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
823 
824 		ulist_reinit(parents);
825 		cond_resched();
826 	}
827 out:
828 	/*
829 	 * We may have inode lists attached to refs in the parents ulist, so we
830 	 * must free them before freeing the ulist and its refs.
831 	 */
832 	free_leaf_list(parents);
833 	return ret;
834 }
835 
836 /*
837  * read tree blocks and add keys where required.
838  */
839 static int add_missing_keys(struct btrfs_fs_info *fs_info,
840 			    struct preftrees *preftrees, bool lock)
841 {
842 	struct prelim_ref *ref;
843 	struct extent_buffer *eb;
844 	struct preftree *tree = &preftrees->indirect_missing_keys;
845 	struct rb_node *node;
846 
847 	while ((node = rb_first_cached(&tree->root))) {
848 		struct btrfs_tree_parent_check check = { 0 };
849 
850 		ref = rb_entry(node, struct prelim_ref, rbnode);
851 		rb_erase_cached(node, &tree->root);
852 
853 		BUG_ON(ref->parent);	/* should not be a direct ref */
854 		BUG_ON(ref->key_for_search.type);
855 		BUG_ON(!ref->wanted_disk_byte);
856 
857 		check.level = ref->level - 1;
858 		check.owner_root = ref->root_id;
859 
860 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
861 		if (IS_ERR(eb)) {
862 			free_pref(ref);
863 			return PTR_ERR(eb);
864 		}
865 		if (!extent_buffer_uptodate(eb)) {
866 			free_pref(ref);
867 			free_extent_buffer(eb);
868 			return -EIO;
869 		}
870 
871 		if (lock)
872 			btrfs_tree_read_lock(eb);
873 		if (btrfs_header_level(eb) == 0)
874 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
875 		else
876 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
877 		if (lock)
878 			btrfs_tree_read_unlock(eb);
879 		free_extent_buffer(eb);
880 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
881 		cond_resched();
882 	}
883 	return 0;
884 }
885 
886 /*
887  * add all currently queued delayed refs from this head whose seq nr is
888  * smaller or equal that seq to the list
889  */
890 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
891 			    struct btrfs_delayed_ref_head *head, u64 seq,
892 			    struct preftrees *preftrees, struct share_check *sc)
893 {
894 	struct btrfs_delayed_ref_node *node;
895 	struct btrfs_key key;
896 	struct rb_node *n;
897 	int count;
898 	int ret = 0;
899 
900 	spin_lock(&head->lock);
901 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
902 		node = rb_entry(n, struct btrfs_delayed_ref_node,
903 				ref_node);
904 		if (node->seq > seq)
905 			continue;
906 
907 		switch (node->action) {
908 		case BTRFS_ADD_DELAYED_EXTENT:
909 		case BTRFS_UPDATE_DELAYED_HEAD:
910 			WARN_ON(1);
911 			continue;
912 		case BTRFS_ADD_DELAYED_REF:
913 			count = node->ref_mod;
914 			break;
915 		case BTRFS_DROP_DELAYED_REF:
916 			count = node->ref_mod * -1;
917 			break;
918 		default:
919 			BUG();
920 		}
921 		switch (node->type) {
922 		case BTRFS_TREE_BLOCK_REF_KEY: {
923 			/* NORMAL INDIRECT METADATA backref */
924 			struct btrfs_delayed_tree_ref *ref;
925 			struct btrfs_key *key_ptr = NULL;
926 
927 			if (head->extent_op && head->extent_op->update_key) {
928 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
929 				key_ptr = &key;
930 			}
931 
932 			ref = btrfs_delayed_node_to_tree_ref(node);
933 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
934 					       key_ptr, ref->level + 1,
935 					       node->bytenr, count, sc,
936 					       GFP_ATOMIC);
937 			break;
938 		}
939 		case BTRFS_SHARED_BLOCK_REF_KEY: {
940 			/* SHARED DIRECT METADATA backref */
941 			struct btrfs_delayed_tree_ref *ref;
942 
943 			ref = btrfs_delayed_node_to_tree_ref(node);
944 
945 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
946 					     ref->parent, node->bytenr, count,
947 					     sc, GFP_ATOMIC);
948 			break;
949 		}
950 		case BTRFS_EXTENT_DATA_REF_KEY: {
951 			/* NORMAL INDIRECT DATA backref */
952 			struct btrfs_delayed_data_ref *ref;
953 			ref = btrfs_delayed_node_to_data_ref(node);
954 
955 			key.objectid = ref->objectid;
956 			key.type = BTRFS_EXTENT_DATA_KEY;
957 			key.offset = ref->offset;
958 
959 			/*
960 			 * If we have a share check context and a reference for
961 			 * another inode, we can't exit immediately. This is
962 			 * because even if this is a BTRFS_ADD_DELAYED_REF
963 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
964 			 * which cancels out this ADD reference.
965 			 *
966 			 * If this is a DROP reference and there was no previous
967 			 * ADD reference, then we need to signal that when we
968 			 * process references from the extent tree (through
969 			 * add_inline_refs() and add_keyed_refs()), we should
970 			 * not exit early if we find a reference for another
971 			 * inode, because one of the delayed DROP references
972 			 * may cancel that reference in the extent tree.
973 			 */
974 			if (sc && count < 0)
975 				sc->have_delayed_delete_refs = true;
976 
977 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
978 					       &key, 0, node->bytenr, count, sc,
979 					       GFP_ATOMIC);
980 			break;
981 		}
982 		case BTRFS_SHARED_DATA_REF_KEY: {
983 			/* SHARED DIRECT FULL backref */
984 			struct btrfs_delayed_data_ref *ref;
985 
986 			ref = btrfs_delayed_node_to_data_ref(node);
987 
988 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
989 					     node->bytenr, count, sc,
990 					     GFP_ATOMIC);
991 			break;
992 		}
993 		default:
994 			WARN_ON(1);
995 		}
996 		/*
997 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
998 		 * refs have been checked.
999 		 */
1000 		if (ret && (ret != BACKREF_FOUND_SHARED))
1001 			break;
1002 	}
1003 	if (!ret)
1004 		ret = extent_is_shared(sc);
1005 
1006 	spin_unlock(&head->lock);
1007 	return ret;
1008 }
1009 
1010 /*
1011  * add all inline backrefs for bytenr to the list
1012  *
1013  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1014  */
1015 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1016 			   struct btrfs_path *path,
1017 			   int *info_level, struct preftrees *preftrees,
1018 			   struct share_check *sc)
1019 {
1020 	int ret = 0;
1021 	int slot;
1022 	struct extent_buffer *leaf;
1023 	struct btrfs_key key;
1024 	struct btrfs_key found_key;
1025 	unsigned long ptr;
1026 	unsigned long end;
1027 	struct btrfs_extent_item *ei;
1028 	u64 flags;
1029 	u64 item_size;
1030 
1031 	/*
1032 	 * enumerate all inline refs
1033 	 */
1034 	leaf = path->nodes[0];
1035 	slot = path->slots[0];
1036 
1037 	item_size = btrfs_item_size(leaf, slot);
1038 	BUG_ON(item_size < sizeof(*ei));
1039 
1040 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1041 
1042 	if (ctx->check_extent_item) {
1043 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	flags = btrfs_extent_flags(leaf, ei);
1049 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1050 
1051 	ptr = (unsigned long)(ei + 1);
1052 	end = (unsigned long)ei + item_size;
1053 
1054 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1055 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1056 		struct btrfs_tree_block_info *info;
1057 
1058 		info = (struct btrfs_tree_block_info *)ptr;
1059 		*info_level = btrfs_tree_block_level(leaf, info);
1060 		ptr += sizeof(struct btrfs_tree_block_info);
1061 		BUG_ON(ptr > end);
1062 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1063 		*info_level = found_key.offset;
1064 	} else {
1065 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1066 	}
1067 
1068 	while (ptr < end) {
1069 		struct btrfs_extent_inline_ref *iref;
1070 		u64 offset;
1071 		int type;
1072 
1073 		iref = (struct btrfs_extent_inline_ref *)ptr;
1074 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1075 							BTRFS_REF_TYPE_ANY);
1076 		if (type == BTRFS_REF_TYPE_INVALID)
1077 			return -EUCLEAN;
1078 
1079 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1080 
1081 		switch (type) {
1082 		case BTRFS_SHARED_BLOCK_REF_KEY:
1083 			ret = add_direct_ref(ctx->fs_info, preftrees,
1084 					     *info_level + 1, offset,
1085 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1086 			break;
1087 		case BTRFS_SHARED_DATA_REF_KEY: {
1088 			struct btrfs_shared_data_ref *sdref;
1089 			int count;
1090 
1091 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1092 			count = btrfs_shared_data_ref_count(leaf, sdref);
1093 
1094 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1095 					     ctx->bytenr, count, sc, GFP_NOFS);
1096 			break;
1097 		}
1098 		case BTRFS_TREE_BLOCK_REF_KEY:
1099 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1100 					       NULL, *info_level + 1,
1101 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1102 			break;
1103 		case BTRFS_EXTENT_DATA_REF_KEY: {
1104 			struct btrfs_extent_data_ref *dref;
1105 			int count;
1106 			u64 root;
1107 
1108 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1109 			count = btrfs_extent_data_ref_count(leaf, dref);
1110 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1111 								      dref);
1112 			key.type = BTRFS_EXTENT_DATA_KEY;
1113 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1114 
1115 			if (sc && key.objectid != sc->inum &&
1116 			    !sc->have_delayed_delete_refs) {
1117 				ret = BACKREF_FOUND_SHARED;
1118 				break;
1119 			}
1120 
1121 			root = btrfs_extent_data_ref_root(leaf, dref);
1122 
1123 			if (!ctx->skip_data_ref ||
1124 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1125 						ctx->user_ctx))
1126 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1127 						       root, &key, 0, ctx->bytenr,
1128 						       count, sc, GFP_NOFS);
1129 			break;
1130 		}
1131 		default:
1132 			WARN_ON(1);
1133 		}
1134 		if (ret)
1135 			return ret;
1136 		ptr += btrfs_extent_inline_ref_size(type);
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * add all non-inline backrefs for bytenr to the list
1144  *
1145  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1146  */
1147 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1148 			  struct btrfs_root *extent_root,
1149 			  struct btrfs_path *path,
1150 			  int info_level, struct preftrees *preftrees,
1151 			  struct share_check *sc)
1152 {
1153 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1154 	int ret;
1155 	int slot;
1156 	struct extent_buffer *leaf;
1157 	struct btrfs_key key;
1158 
1159 	while (1) {
1160 		ret = btrfs_next_item(extent_root, path);
1161 		if (ret < 0)
1162 			break;
1163 		if (ret) {
1164 			ret = 0;
1165 			break;
1166 		}
1167 
1168 		slot = path->slots[0];
1169 		leaf = path->nodes[0];
1170 		btrfs_item_key_to_cpu(leaf, &key, slot);
1171 
1172 		if (key.objectid != ctx->bytenr)
1173 			break;
1174 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1175 			continue;
1176 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1177 			break;
1178 
1179 		switch (key.type) {
1180 		case BTRFS_SHARED_BLOCK_REF_KEY:
1181 			/* SHARED DIRECT METADATA backref */
1182 			ret = add_direct_ref(fs_info, preftrees,
1183 					     info_level + 1, key.offset,
1184 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1185 			break;
1186 		case BTRFS_SHARED_DATA_REF_KEY: {
1187 			/* SHARED DIRECT FULL backref */
1188 			struct btrfs_shared_data_ref *sdref;
1189 			int count;
1190 
1191 			sdref = btrfs_item_ptr(leaf, slot,
1192 					      struct btrfs_shared_data_ref);
1193 			count = btrfs_shared_data_ref_count(leaf, sdref);
1194 			ret = add_direct_ref(fs_info, preftrees, 0,
1195 					     key.offset, ctx->bytenr, count,
1196 					     sc, GFP_NOFS);
1197 			break;
1198 		}
1199 		case BTRFS_TREE_BLOCK_REF_KEY:
1200 			/* NORMAL INDIRECT METADATA backref */
1201 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1202 					       NULL, info_level + 1, ctx->bytenr,
1203 					       1, NULL, GFP_NOFS);
1204 			break;
1205 		case BTRFS_EXTENT_DATA_REF_KEY: {
1206 			/* NORMAL INDIRECT DATA backref */
1207 			struct btrfs_extent_data_ref *dref;
1208 			int count;
1209 			u64 root;
1210 
1211 			dref = btrfs_item_ptr(leaf, slot,
1212 					      struct btrfs_extent_data_ref);
1213 			count = btrfs_extent_data_ref_count(leaf, dref);
1214 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1215 								      dref);
1216 			key.type = BTRFS_EXTENT_DATA_KEY;
1217 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1218 
1219 			if (sc && key.objectid != sc->inum &&
1220 			    !sc->have_delayed_delete_refs) {
1221 				ret = BACKREF_FOUND_SHARED;
1222 				break;
1223 			}
1224 
1225 			root = btrfs_extent_data_ref_root(leaf, dref);
1226 
1227 			if (!ctx->skip_data_ref ||
1228 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1229 						ctx->user_ctx))
1230 				ret = add_indirect_ref(fs_info, preftrees, root,
1231 						       &key, 0, ctx->bytenr,
1232 						       count, sc, GFP_NOFS);
1233 			break;
1234 		}
1235 		default:
1236 			WARN_ON(1);
1237 		}
1238 		if (ret)
1239 			return ret;
1240 
1241 	}
1242 
1243 	return ret;
1244 }
1245 
1246 /*
1247  * The caller has joined a transaction or is holding a read lock on the
1248  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1249  * snapshot field changing while updating or checking the cache.
1250  */
1251 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1252 					struct btrfs_root *root,
1253 					u64 bytenr, int level, bool *is_shared)
1254 {
1255 	struct btrfs_backref_shared_cache_entry *entry;
1256 
1257 	if (!ctx->use_path_cache)
1258 		return false;
1259 
1260 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1261 		return false;
1262 
1263 	/*
1264 	 * Level -1 is used for the data extent, which is not reliable to cache
1265 	 * because its reference count can increase or decrease without us
1266 	 * realizing. We cache results only for extent buffers that lead from
1267 	 * the root node down to the leaf with the file extent item.
1268 	 */
1269 	ASSERT(level >= 0);
1270 
1271 	entry = &ctx->path_cache_entries[level];
1272 
1273 	/* Unused cache entry or being used for some other extent buffer. */
1274 	if (entry->bytenr != bytenr)
1275 		return false;
1276 
1277 	/*
1278 	 * We cached a false result, but the last snapshot generation of the
1279 	 * root changed, so we now have a snapshot. Don't trust the result.
1280 	 */
1281 	if (!entry->is_shared &&
1282 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1283 		return false;
1284 
1285 	/*
1286 	 * If we cached a true result and the last generation used for dropping
1287 	 * a root changed, we can not trust the result, because the dropped root
1288 	 * could be a snapshot sharing this extent buffer.
1289 	 */
1290 	if (entry->is_shared &&
1291 	    entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1292 		return false;
1293 
1294 	*is_shared = entry->is_shared;
1295 	/*
1296 	 * If the node at this level is shared, than all nodes below are also
1297 	 * shared. Currently some of the nodes below may be marked as not shared
1298 	 * because we have just switched from one leaf to another, and switched
1299 	 * also other nodes above the leaf and below the current level, so mark
1300 	 * them as shared.
1301 	 */
1302 	if (*is_shared) {
1303 		for (int i = 0; i < level; i++) {
1304 			ctx->path_cache_entries[i].is_shared = true;
1305 			ctx->path_cache_entries[i].gen = entry->gen;
1306 		}
1307 	}
1308 
1309 	return true;
1310 }
1311 
1312 /*
1313  * The caller has joined a transaction or is holding a read lock on the
1314  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1315  * snapshot field changing while updating or checking the cache.
1316  */
1317 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1318 				       struct btrfs_root *root,
1319 				       u64 bytenr, int level, bool is_shared)
1320 {
1321 	struct btrfs_backref_shared_cache_entry *entry;
1322 	u64 gen;
1323 
1324 	if (!ctx->use_path_cache)
1325 		return;
1326 
1327 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1328 		return;
1329 
1330 	/*
1331 	 * Level -1 is used for the data extent, which is not reliable to cache
1332 	 * because its reference count can increase or decrease without us
1333 	 * realizing. We cache results only for extent buffers that lead from
1334 	 * the root node down to the leaf with the file extent item.
1335 	 */
1336 	ASSERT(level >= 0);
1337 
1338 	if (is_shared)
1339 		gen = btrfs_get_last_root_drop_gen(root->fs_info);
1340 	else
1341 		gen = btrfs_root_last_snapshot(&root->root_item);
1342 
1343 	entry = &ctx->path_cache_entries[level];
1344 	entry->bytenr = bytenr;
1345 	entry->is_shared = is_shared;
1346 	entry->gen = gen;
1347 
1348 	/*
1349 	 * If we found an extent buffer is shared, set the cache result for all
1350 	 * extent buffers below it to true. As nodes in the path are COWed,
1351 	 * their sharedness is moved to their children, and if a leaf is COWed,
1352 	 * then the sharedness of a data extent becomes direct, the refcount of
1353 	 * data extent is increased in the extent item at the extent tree.
1354 	 */
1355 	if (is_shared) {
1356 		for (int i = 0; i < level; i++) {
1357 			entry = &ctx->path_cache_entries[i];
1358 			entry->is_shared = is_shared;
1359 			entry->gen = gen;
1360 		}
1361 	}
1362 }
1363 
1364 /*
1365  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1366  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1367  * indirect refs to their parent bytenr.
1368  * When roots are found, they're added to the roots list
1369  *
1370  * @ctx:     Backref walking context object, must be not NULL.
1371  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1372  *           shared extent is detected.
1373  *
1374  * Otherwise this returns 0 for success and <0 for an error.
1375  *
1376  * FIXME some caching might speed things up
1377  */
1378 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1379 			     struct share_check *sc)
1380 {
1381 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1382 	struct btrfs_key key;
1383 	struct btrfs_path *path;
1384 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1385 	struct btrfs_delayed_ref_head *head;
1386 	int info_level = 0;
1387 	int ret;
1388 	struct prelim_ref *ref;
1389 	struct rb_node *node;
1390 	struct extent_inode_elem *eie = NULL;
1391 	struct preftrees preftrees = {
1392 		.direct = PREFTREE_INIT,
1393 		.indirect = PREFTREE_INIT,
1394 		.indirect_missing_keys = PREFTREE_INIT
1395 	};
1396 
1397 	/* Roots ulist is not needed when using a sharedness check context. */
1398 	if (sc)
1399 		ASSERT(ctx->roots == NULL);
1400 
1401 	key.objectid = ctx->bytenr;
1402 	key.offset = (u64)-1;
1403 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1404 		key.type = BTRFS_METADATA_ITEM_KEY;
1405 	else
1406 		key.type = BTRFS_EXTENT_ITEM_KEY;
1407 
1408 	path = btrfs_alloc_path();
1409 	if (!path)
1410 		return -ENOMEM;
1411 	if (!ctx->trans) {
1412 		path->search_commit_root = 1;
1413 		path->skip_locking = 1;
1414 	}
1415 
1416 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1417 		path->skip_locking = 1;
1418 
1419 again:
1420 	head = NULL;
1421 
1422 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423 	if (ret < 0)
1424 		goto out;
1425 	if (ret == 0) {
1426 		/* This shouldn't happen, indicates a bug or fs corruption. */
1427 		ASSERT(ret != 0);
1428 		ret = -EUCLEAN;
1429 		goto out;
1430 	}
1431 
1432 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1433 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1434 		/*
1435 		 * We have a specific time_seq we care about and trans which
1436 		 * means we have the path lock, we need to grab the ref head and
1437 		 * lock it so we have a consistent view of the refs at the given
1438 		 * time.
1439 		 */
1440 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1441 		spin_lock(&delayed_refs->lock);
1442 		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1443 		if (head) {
1444 			if (!mutex_trylock(&head->mutex)) {
1445 				refcount_inc(&head->refs);
1446 				spin_unlock(&delayed_refs->lock);
1447 
1448 				btrfs_release_path(path);
1449 
1450 				/*
1451 				 * Mutex was contended, block until it's
1452 				 * released and try again
1453 				 */
1454 				mutex_lock(&head->mutex);
1455 				mutex_unlock(&head->mutex);
1456 				btrfs_put_delayed_ref_head(head);
1457 				goto again;
1458 			}
1459 			spin_unlock(&delayed_refs->lock);
1460 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1461 					       &preftrees, sc);
1462 			mutex_unlock(&head->mutex);
1463 			if (ret)
1464 				goto out;
1465 		} else {
1466 			spin_unlock(&delayed_refs->lock);
1467 		}
1468 	}
1469 
1470 	if (path->slots[0]) {
1471 		struct extent_buffer *leaf;
1472 		int slot;
1473 
1474 		path->slots[0]--;
1475 		leaf = path->nodes[0];
1476 		slot = path->slots[0];
1477 		btrfs_item_key_to_cpu(leaf, &key, slot);
1478 		if (key.objectid == ctx->bytenr &&
1479 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1480 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1481 			ret = add_inline_refs(ctx, path, &info_level,
1482 					      &preftrees, sc);
1483 			if (ret)
1484 				goto out;
1485 			ret = add_keyed_refs(ctx, root, path, info_level,
1486 					     &preftrees, sc);
1487 			if (ret)
1488 				goto out;
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * If we have a share context and we reached here, it means the extent
1494 	 * is not directly shared (no multiple reference items for it),
1495 	 * otherwise we would have exited earlier with a return value of
1496 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1497 	 * processing inline or keyed references from the extent tree.
1498 	 * The extent may however be indirectly shared through shared subtrees
1499 	 * as a result from creating snapshots, so we determine below what is
1500 	 * its parent node, in case we are dealing with a metadata extent, or
1501 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1502 	 * item pointing to it in case we are dealing with a data extent.
1503 	 */
1504 	ASSERT(extent_is_shared(sc) == 0);
1505 
1506 	/*
1507 	 * If we are here for a data extent and we have a share_check structure
1508 	 * it means the data extent is not directly shared (does not have
1509 	 * multiple reference items), so we have to check if a path in the fs
1510 	 * tree (going from the root node down to the leaf that has the file
1511 	 * extent item pointing to the data extent) is shared, that is, if any
1512 	 * of the extent buffers in the path is referenced by other trees.
1513 	 */
1514 	if (sc && ctx->bytenr == sc->data_bytenr) {
1515 		/*
1516 		 * If our data extent is from a generation more recent than the
1517 		 * last generation used to snapshot the root, then we know that
1518 		 * it can not be shared through subtrees, so we can skip
1519 		 * resolving indirect references, there's no point in
1520 		 * determining the extent buffers for the path from the fs tree
1521 		 * root node down to the leaf that has the file extent item that
1522 		 * points to the data extent.
1523 		 */
1524 		if (sc->data_extent_gen >
1525 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1526 			ret = BACKREF_FOUND_NOT_SHARED;
1527 			goto out;
1528 		}
1529 
1530 		/*
1531 		 * If we are only determining if a data extent is shared or not
1532 		 * and the corresponding file extent item is located in the same
1533 		 * leaf as the previous file extent item, we can skip resolving
1534 		 * indirect references for a data extent, since the fs tree path
1535 		 * is the same (same leaf, so same path). We skip as long as the
1536 		 * cached result for the leaf is valid and only if there's only
1537 		 * one file extent item pointing to the data extent, because in
1538 		 * the case of multiple file extent items, they may be located
1539 		 * in different leaves and therefore we have multiple paths.
1540 		 */
1541 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1542 		    sc->self_ref_count == 1) {
1543 			bool cached;
1544 			bool is_shared;
1545 
1546 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1547 						     sc->ctx->curr_leaf_bytenr,
1548 						     0, &is_shared);
1549 			if (cached) {
1550 				if (is_shared)
1551 					ret = BACKREF_FOUND_SHARED;
1552 				else
1553 					ret = BACKREF_FOUND_NOT_SHARED;
1554 				goto out;
1555 			}
1556 		}
1557 	}
1558 
1559 	btrfs_release_path(path);
1560 
1561 	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1562 	if (ret)
1563 		goto out;
1564 
1565 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1566 
1567 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1568 	if (ret)
1569 		goto out;
1570 
1571 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1572 
1573 	/*
1574 	 * This walks the tree of merged and resolved refs. Tree blocks are
1575 	 * read in as needed. Unique entries are added to the ulist, and
1576 	 * the list of found roots is updated.
1577 	 *
1578 	 * We release the entire tree in one go before returning.
1579 	 */
1580 	node = rb_first_cached(&preftrees.direct.root);
1581 	while (node) {
1582 		ref = rb_entry(node, struct prelim_ref, rbnode);
1583 		node = rb_next(&ref->rbnode);
1584 		/*
1585 		 * ref->count < 0 can happen here if there are delayed
1586 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1587 		 * prelim_ref_insert() relies on this when merging
1588 		 * identical refs to keep the overall count correct.
1589 		 * prelim_ref_insert() will merge only those refs
1590 		 * which compare identically.  Any refs having
1591 		 * e.g. different offsets would not be merged,
1592 		 * and would retain their original ref->count < 0.
1593 		 */
1594 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1595 			/* no parent == root of tree */
1596 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1597 			if (ret < 0)
1598 				goto out;
1599 		}
1600 		if (ref->count && ref->parent) {
1601 			if (!ctx->ignore_extent_item_pos && !ref->inode_list &&
1602 			    ref->level == 0) {
1603 				struct btrfs_tree_parent_check check = { 0 };
1604 				struct extent_buffer *eb;
1605 
1606 				check.level = ref->level;
1607 
1608 				eb = read_tree_block(ctx->fs_info, ref->parent,
1609 						     &check);
1610 				if (IS_ERR(eb)) {
1611 					ret = PTR_ERR(eb);
1612 					goto out;
1613 				}
1614 				if (!extent_buffer_uptodate(eb)) {
1615 					free_extent_buffer(eb);
1616 					ret = -EIO;
1617 					goto out;
1618 				}
1619 
1620 				if (!path->skip_locking)
1621 					btrfs_tree_read_lock(eb);
1622 				ret = find_extent_in_eb(ctx, eb, &eie);
1623 				if (!path->skip_locking)
1624 					btrfs_tree_read_unlock(eb);
1625 				free_extent_buffer(eb);
1626 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1627 				    ret < 0)
1628 					goto out;
1629 				ref->inode_list = eie;
1630 				/*
1631 				 * We transferred the list ownership to the ref,
1632 				 * so set to NULL to avoid a double free in case
1633 				 * an error happens after this.
1634 				 */
1635 				eie = NULL;
1636 			}
1637 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1638 						  ref->inode_list,
1639 						  (void **)&eie, GFP_NOFS);
1640 			if (ret < 0)
1641 				goto out;
1642 			if (!ret && !ctx->ignore_extent_item_pos) {
1643 				/*
1644 				 * We've recorded that parent, so we must extend
1645 				 * its inode list here.
1646 				 *
1647 				 * However if there was corruption we may not
1648 				 * have found an eie, return an error in this
1649 				 * case.
1650 				 */
1651 				ASSERT(eie);
1652 				if (!eie) {
1653 					ret = -EUCLEAN;
1654 					goto out;
1655 				}
1656 				while (eie->next)
1657 					eie = eie->next;
1658 				eie->next = ref->inode_list;
1659 			}
1660 			eie = NULL;
1661 			/*
1662 			 * We have transferred the inode list ownership from
1663 			 * this ref to the ref we added to the 'refs' ulist.
1664 			 * So set this ref's inode list to NULL to avoid
1665 			 * use-after-free when our caller uses it or double
1666 			 * frees in case an error happens before we return.
1667 			 */
1668 			ref->inode_list = NULL;
1669 		}
1670 		cond_resched();
1671 	}
1672 
1673 out:
1674 	btrfs_free_path(path);
1675 
1676 	prelim_release(&preftrees.direct);
1677 	prelim_release(&preftrees.indirect);
1678 	prelim_release(&preftrees.indirect_missing_keys);
1679 
1680 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1681 		free_inode_elem_list(eie);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Finds all leaves with a reference to the specified combination of
1687  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1688  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1689  * function. The caller should free the ulist with free_leaf_list() if
1690  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1691  * enough.
1692  *
1693  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1694  */
1695 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1696 {
1697 	int ret;
1698 
1699 	ASSERT(ctx->refs == NULL);
1700 
1701 	ctx->refs = ulist_alloc(GFP_NOFS);
1702 	if (!ctx->refs)
1703 		return -ENOMEM;
1704 
1705 	ret = find_parent_nodes(ctx, NULL);
1706 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1707 	    (ret < 0 && ret != -ENOENT)) {
1708 		free_leaf_list(ctx->refs);
1709 		ctx->refs = NULL;
1710 		return ret;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /*
1717  * Walk all backrefs for a given extent to find all roots that reference this
1718  * extent. Walking a backref means finding all extents that reference this
1719  * extent and in turn walk the backrefs of those, too. Naturally this is a
1720  * recursive process, but here it is implemented in an iterative fashion: We
1721  * find all referencing extents for the extent in question and put them on a
1722  * list. In turn, we find all referencing extents for those, further appending
1723  * to the list. The way we iterate the list allows adding more elements after
1724  * the current while iterating. The process stops when we reach the end of the
1725  * list.
1726  *
1727  * Found roots are added to @ctx->roots, which is allocated by this function if
1728  * it points to NULL, in which case the caller is responsible for freeing it
1729  * after it's not needed anymore.
1730  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1731  * ulist to do temporary work, and frees it before returning.
1732  *
1733  * Returns 0 on success, < 0 on error.
1734  */
1735 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1736 {
1737 	const u64 orig_bytenr = ctx->bytenr;
1738 	const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos;
1739 	bool roots_ulist_allocated = false;
1740 	struct ulist_iterator uiter;
1741 	int ret = 0;
1742 
1743 	ASSERT(ctx->refs == NULL);
1744 
1745 	ctx->refs = ulist_alloc(GFP_NOFS);
1746 	if (!ctx->refs)
1747 		return -ENOMEM;
1748 
1749 	if (!ctx->roots) {
1750 		ctx->roots = ulist_alloc(GFP_NOFS);
1751 		if (!ctx->roots) {
1752 			ulist_free(ctx->refs);
1753 			ctx->refs = NULL;
1754 			return -ENOMEM;
1755 		}
1756 		roots_ulist_allocated = true;
1757 	}
1758 
1759 	ctx->ignore_extent_item_pos = true;
1760 
1761 	ULIST_ITER_INIT(&uiter);
1762 	while (1) {
1763 		struct ulist_node *node;
1764 
1765 		ret = find_parent_nodes(ctx, NULL);
1766 		if (ret < 0 && ret != -ENOENT) {
1767 			if (roots_ulist_allocated) {
1768 				ulist_free(ctx->roots);
1769 				ctx->roots = NULL;
1770 			}
1771 			break;
1772 		}
1773 		ret = 0;
1774 		node = ulist_next(ctx->refs, &uiter);
1775 		if (!node)
1776 			break;
1777 		ctx->bytenr = node->val;
1778 		cond_resched();
1779 	}
1780 
1781 	ulist_free(ctx->refs);
1782 	ctx->refs = NULL;
1783 	ctx->bytenr = orig_bytenr;
1784 	ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos;
1785 
1786 	return ret;
1787 }
1788 
1789 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1790 			 bool skip_commit_root_sem)
1791 {
1792 	int ret;
1793 
1794 	if (!ctx->trans && !skip_commit_root_sem)
1795 		down_read(&ctx->fs_info->commit_root_sem);
1796 	ret = btrfs_find_all_roots_safe(ctx);
1797 	if (!ctx->trans && !skip_commit_root_sem)
1798 		up_read(&ctx->fs_info->commit_root_sem);
1799 	return ret;
1800 }
1801 
1802 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1803 {
1804 	struct btrfs_backref_share_check_ctx *ctx;
1805 
1806 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1807 	if (!ctx)
1808 		return NULL;
1809 
1810 	ulist_init(&ctx->refs);
1811 
1812 	return ctx;
1813 }
1814 
1815 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1816 {
1817 	if (!ctx)
1818 		return;
1819 
1820 	ulist_release(&ctx->refs);
1821 	kfree(ctx);
1822 }
1823 
1824 /*
1825  * Check if a data extent is shared or not.
1826  *
1827  * @inode:       The inode whose extent we are checking.
1828  * @bytenr:      Logical bytenr of the extent we are checking.
1829  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1830  *               not known.
1831  * @ctx:         A backref sharedness check context.
1832  *
1833  * btrfs_is_data_extent_shared uses the backref walking code but will short
1834  * circuit as soon as it finds a root or inode that doesn't match the
1835  * one passed in. This provides a significant performance benefit for
1836  * callers (such as fiemap) which want to know whether the extent is
1837  * shared but do not need a ref count.
1838  *
1839  * This attempts to attach to the running transaction in order to account for
1840  * delayed refs, but continues on even when no running transaction exists.
1841  *
1842  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1843  */
1844 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1845 				u64 extent_gen,
1846 				struct btrfs_backref_share_check_ctx *ctx)
1847 {
1848 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1849 	struct btrfs_root *root = inode->root;
1850 	struct btrfs_fs_info *fs_info = root->fs_info;
1851 	struct btrfs_trans_handle *trans;
1852 	struct ulist_iterator uiter;
1853 	struct ulist_node *node;
1854 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1855 	int ret = 0;
1856 	struct share_check shared = {
1857 		.ctx = ctx,
1858 		.root = root,
1859 		.inum = btrfs_ino(inode),
1860 		.data_bytenr = bytenr,
1861 		.data_extent_gen = extent_gen,
1862 		.share_count = 0,
1863 		.self_ref_count = 0,
1864 		.have_delayed_delete_refs = false,
1865 	};
1866 	int level;
1867 
1868 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1869 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1870 			return ctx->prev_extents_cache[i].is_shared;
1871 	}
1872 
1873 	ulist_init(&ctx->refs);
1874 
1875 	trans = btrfs_join_transaction_nostart(root);
1876 	if (IS_ERR(trans)) {
1877 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1878 			ret = PTR_ERR(trans);
1879 			goto out;
1880 		}
1881 		trans = NULL;
1882 		down_read(&fs_info->commit_root_sem);
1883 	} else {
1884 		btrfs_get_tree_mod_seq(fs_info, &elem);
1885 		walk_ctx.time_seq = elem.seq;
1886 	}
1887 
1888 	walk_ctx.ignore_extent_item_pos = true;
1889 	walk_ctx.trans = trans;
1890 	walk_ctx.fs_info = fs_info;
1891 	walk_ctx.refs = &ctx->refs;
1892 
1893 	/* -1 means we are in the bytenr of the data extent. */
1894 	level = -1;
1895 	ULIST_ITER_INIT(&uiter);
1896 	ctx->use_path_cache = true;
1897 	while (1) {
1898 		bool is_shared;
1899 		bool cached;
1900 
1901 		walk_ctx.bytenr = bytenr;
1902 		ret = find_parent_nodes(&walk_ctx, &shared);
1903 		if (ret == BACKREF_FOUND_SHARED ||
1904 		    ret == BACKREF_FOUND_NOT_SHARED) {
1905 			/* If shared must return 1, otherwise return 0. */
1906 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1907 			if (level >= 0)
1908 				store_backref_shared_cache(ctx, root, bytenr,
1909 							   level, ret == 1);
1910 			break;
1911 		}
1912 		if (ret < 0 && ret != -ENOENT)
1913 			break;
1914 		ret = 0;
1915 
1916 		/*
1917 		 * If our data extent was not directly shared (without multiple
1918 		 * reference items), than it might have a single reference item
1919 		 * with a count > 1 for the same offset, which means there are 2
1920 		 * (or more) file extent items that point to the data extent -
1921 		 * this happens when a file extent item needs to be split and
1922 		 * then one item gets moved to another leaf due to a b+tree leaf
1923 		 * split when inserting some item. In this case the file extent
1924 		 * items may be located in different leaves and therefore some
1925 		 * of the leaves may be referenced through shared subtrees while
1926 		 * others are not. Since our extent buffer cache only works for
1927 		 * a single path (by far the most common case and simpler to
1928 		 * deal with), we can not use it if we have multiple leaves
1929 		 * (which implies multiple paths).
1930 		 */
1931 		if (level == -1 && ctx->refs.nnodes > 1)
1932 			ctx->use_path_cache = false;
1933 
1934 		if (level >= 0)
1935 			store_backref_shared_cache(ctx, root, bytenr,
1936 						   level, false);
1937 		node = ulist_next(&ctx->refs, &uiter);
1938 		if (!node)
1939 			break;
1940 		bytenr = node->val;
1941 		level++;
1942 		cached = lookup_backref_shared_cache(ctx, root, bytenr, level,
1943 						     &is_shared);
1944 		if (cached) {
1945 			ret = (is_shared ? 1 : 0);
1946 			break;
1947 		}
1948 		shared.share_count = 0;
1949 		shared.have_delayed_delete_refs = false;
1950 		cond_resched();
1951 	}
1952 
1953 	/*
1954 	 * Cache the sharedness result for the data extent if we know our inode
1955 	 * has more than 1 file extent item that refers to the data extent.
1956 	 */
1957 	if (ret >= 0 && shared.self_ref_count > 1) {
1958 		int slot = ctx->prev_extents_cache_slot;
1959 
1960 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
1961 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
1962 
1963 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
1964 		ctx->prev_extents_cache_slot = slot;
1965 	}
1966 
1967 	if (trans) {
1968 		btrfs_put_tree_mod_seq(fs_info, &elem);
1969 		btrfs_end_transaction(trans);
1970 	} else {
1971 		up_read(&fs_info->commit_root_sem);
1972 	}
1973 out:
1974 	ulist_release(&ctx->refs);
1975 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
1976 
1977 	return ret;
1978 }
1979 
1980 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1981 			  u64 start_off, struct btrfs_path *path,
1982 			  struct btrfs_inode_extref **ret_extref,
1983 			  u64 *found_off)
1984 {
1985 	int ret, slot;
1986 	struct btrfs_key key;
1987 	struct btrfs_key found_key;
1988 	struct btrfs_inode_extref *extref;
1989 	const struct extent_buffer *leaf;
1990 	unsigned long ptr;
1991 
1992 	key.objectid = inode_objectid;
1993 	key.type = BTRFS_INODE_EXTREF_KEY;
1994 	key.offset = start_off;
1995 
1996 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1997 	if (ret < 0)
1998 		return ret;
1999 
2000 	while (1) {
2001 		leaf = path->nodes[0];
2002 		slot = path->slots[0];
2003 		if (slot >= btrfs_header_nritems(leaf)) {
2004 			/*
2005 			 * If the item at offset is not found,
2006 			 * btrfs_search_slot will point us to the slot
2007 			 * where it should be inserted. In our case
2008 			 * that will be the slot directly before the
2009 			 * next INODE_REF_KEY_V2 item. In the case
2010 			 * that we're pointing to the last slot in a
2011 			 * leaf, we must move one leaf over.
2012 			 */
2013 			ret = btrfs_next_leaf(root, path);
2014 			if (ret) {
2015 				if (ret >= 1)
2016 					ret = -ENOENT;
2017 				break;
2018 			}
2019 			continue;
2020 		}
2021 
2022 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2023 
2024 		/*
2025 		 * Check that we're still looking at an extended ref key for
2026 		 * this particular objectid. If we have different
2027 		 * objectid or type then there are no more to be found
2028 		 * in the tree and we can exit.
2029 		 */
2030 		ret = -ENOENT;
2031 		if (found_key.objectid != inode_objectid)
2032 			break;
2033 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2034 			break;
2035 
2036 		ret = 0;
2037 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2038 		extref = (struct btrfs_inode_extref *)ptr;
2039 		*ret_extref = extref;
2040 		if (found_off)
2041 			*found_off = found_key.offset;
2042 		break;
2043 	}
2044 
2045 	return ret;
2046 }
2047 
2048 /*
2049  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2050  * Elements of the path are separated by '/' and the path is guaranteed to be
2051  * 0-terminated. the path is only given within the current file system.
2052  * Therefore, it never starts with a '/'. the caller is responsible to provide
2053  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2054  * the start point of the resulting string is returned. this pointer is within
2055  * dest, normally.
2056  * in case the path buffer would overflow, the pointer is decremented further
2057  * as if output was written to the buffer, though no more output is actually
2058  * generated. that way, the caller can determine how much space would be
2059  * required for the path to fit into the buffer. in that case, the returned
2060  * value will be smaller than dest. callers must check this!
2061  */
2062 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2063 			u32 name_len, unsigned long name_off,
2064 			struct extent_buffer *eb_in, u64 parent,
2065 			char *dest, u32 size)
2066 {
2067 	int slot;
2068 	u64 next_inum;
2069 	int ret;
2070 	s64 bytes_left = ((s64)size) - 1;
2071 	struct extent_buffer *eb = eb_in;
2072 	struct btrfs_key found_key;
2073 	struct btrfs_inode_ref *iref;
2074 
2075 	if (bytes_left >= 0)
2076 		dest[bytes_left] = '\0';
2077 
2078 	while (1) {
2079 		bytes_left -= name_len;
2080 		if (bytes_left >= 0)
2081 			read_extent_buffer(eb, dest + bytes_left,
2082 					   name_off, name_len);
2083 		if (eb != eb_in) {
2084 			if (!path->skip_locking)
2085 				btrfs_tree_read_unlock(eb);
2086 			free_extent_buffer(eb);
2087 		}
2088 		ret = btrfs_find_item(fs_root, path, parent, 0,
2089 				BTRFS_INODE_REF_KEY, &found_key);
2090 		if (ret > 0)
2091 			ret = -ENOENT;
2092 		if (ret)
2093 			break;
2094 
2095 		next_inum = found_key.offset;
2096 
2097 		/* regular exit ahead */
2098 		if (parent == next_inum)
2099 			break;
2100 
2101 		slot = path->slots[0];
2102 		eb = path->nodes[0];
2103 		/* make sure we can use eb after releasing the path */
2104 		if (eb != eb_in) {
2105 			path->nodes[0] = NULL;
2106 			path->locks[0] = 0;
2107 		}
2108 		btrfs_release_path(path);
2109 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2110 
2111 		name_len = btrfs_inode_ref_name_len(eb, iref);
2112 		name_off = (unsigned long)(iref + 1);
2113 
2114 		parent = next_inum;
2115 		--bytes_left;
2116 		if (bytes_left >= 0)
2117 			dest[bytes_left] = '/';
2118 	}
2119 
2120 	btrfs_release_path(path);
2121 
2122 	if (ret)
2123 		return ERR_PTR(ret);
2124 
2125 	return dest + bytes_left;
2126 }
2127 
2128 /*
2129  * this makes the path point to (logical EXTENT_ITEM *)
2130  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2131  * tree blocks and <0 on error.
2132  */
2133 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2134 			struct btrfs_path *path, struct btrfs_key *found_key,
2135 			u64 *flags_ret)
2136 {
2137 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2138 	int ret;
2139 	u64 flags;
2140 	u64 size = 0;
2141 	u32 item_size;
2142 	const struct extent_buffer *eb;
2143 	struct btrfs_extent_item *ei;
2144 	struct btrfs_key key;
2145 
2146 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2147 		key.type = BTRFS_METADATA_ITEM_KEY;
2148 	else
2149 		key.type = BTRFS_EXTENT_ITEM_KEY;
2150 	key.objectid = logical;
2151 	key.offset = (u64)-1;
2152 
2153 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2154 	if (ret < 0)
2155 		return ret;
2156 
2157 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2158 	if (ret) {
2159 		if (ret > 0)
2160 			ret = -ENOENT;
2161 		return ret;
2162 	}
2163 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2164 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2165 		size = fs_info->nodesize;
2166 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2167 		size = found_key->offset;
2168 
2169 	if (found_key->objectid > logical ||
2170 	    found_key->objectid + size <= logical) {
2171 		btrfs_debug(fs_info,
2172 			"logical %llu is not within any extent", logical);
2173 		return -ENOENT;
2174 	}
2175 
2176 	eb = path->nodes[0];
2177 	item_size = btrfs_item_size(eb, path->slots[0]);
2178 	BUG_ON(item_size < sizeof(*ei));
2179 
2180 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2181 	flags = btrfs_extent_flags(eb, ei);
2182 
2183 	btrfs_debug(fs_info,
2184 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2185 		 logical, logical - found_key->objectid, found_key->objectid,
2186 		 found_key->offset, flags, item_size);
2187 
2188 	WARN_ON(!flags_ret);
2189 	if (flags_ret) {
2190 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2191 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2192 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2193 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2194 		else
2195 			BUG();
2196 		return 0;
2197 	}
2198 
2199 	return -EIO;
2200 }
2201 
2202 /*
2203  * helper function to iterate extent inline refs. ptr must point to a 0 value
2204  * for the first call and may be modified. it is used to track state.
2205  * if more refs exist, 0 is returned and the next call to
2206  * get_extent_inline_ref must pass the modified ptr parameter to get the
2207  * next ref. after the last ref was processed, 1 is returned.
2208  * returns <0 on error
2209  */
2210 static int get_extent_inline_ref(unsigned long *ptr,
2211 				 const struct extent_buffer *eb,
2212 				 const struct btrfs_key *key,
2213 				 const struct btrfs_extent_item *ei,
2214 				 u32 item_size,
2215 				 struct btrfs_extent_inline_ref **out_eiref,
2216 				 int *out_type)
2217 {
2218 	unsigned long end;
2219 	u64 flags;
2220 	struct btrfs_tree_block_info *info;
2221 
2222 	if (!*ptr) {
2223 		/* first call */
2224 		flags = btrfs_extent_flags(eb, ei);
2225 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2226 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2227 				/* a skinny metadata extent */
2228 				*out_eiref =
2229 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2230 			} else {
2231 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2232 				info = (struct btrfs_tree_block_info *)(ei + 1);
2233 				*out_eiref =
2234 				   (struct btrfs_extent_inline_ref *)(info + 1);
2235 			}
2236 		} else {
2237 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2238 		}
2239 		*ptr = (unsigned long)*out_eiref;
2240 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2241 			return -ENOENT;
2242 	}
2243 
2244 	end = (unsigned long)ei + item_size;
2245 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2246 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2247 						     BTRFS_REF_TYPE_ANY);
2248 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2249 		return -EUCLEAN;
2250 
2251 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2252 	WARN_ON(*ptr > end);
2253 	if (*ptr == end)
2254 		return 1; /* last */
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * reads the tree block backref for an extent. tree level and root are returned
2261  * through out_level and out_root. ptr must point to a 0 value for the first
2262  * call and may be modified (see get_extent_inline_ref comment).
2263  * returns 0 if data was provided, 1 if there was no more data to provide or
2264  * <0 on error.
2265  */
2266 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2267 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2268 			    u32 item_size, u64 *out_root, u8 *out_level)
2269 {
2270 	int ret;
2271 	int type;
2272 	struct btrfs_extent_inline_ref *eiref;
2273 
2274 	if (*ptr == (unsigned long)-1)
2275 		return 1;
2276 
2277 	while (1) {
2278 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2279 					      &eiref, &type);
2280 		if (ret < 0)
2281 			return ret;
2282 
2283 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 			break;
2286 
2287 		if (ret == 1)
2288 			return 1;
2289 	}
2290 
2291 	/* we can treat both ref types equally here */
2292 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2293 
2294 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2295 		struct btrfs_tree_block_info *info;
2296 
2297 		info = (struct btrfs_tree_block_info *)(ei + 1);
2298 		*out_level = btrfs_tree_block_level(eb, info);
2299 	} else {
2300 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2301 		*out_level = (u8)key->offset;
2302 	}
2303 
2304 	if (ret == 1)
2305 		*ptr = (unsigned long)-1;
2306 
2307 	return 0;
2308 }
2309 
2310 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2311 			     struct extent_inode_elem *inode_list,
2312 			     u64 root, u64 extent_item_objectid,
2313 			     iterate_extent_inodes_t *iterate, void *ctx)
2314 {
2315 	struct extent_inode_elem *eie;
2316 	int ret = 0;
2317 
2318 	for (eie = inode_list; eie; eie = eie->next) {
2319 		btrfs_debug(fs_info,
2320 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2321 			    extent_item_objectid, eie->inum,
2322 			    eie->offset, root);
2323 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2324 		if (ret) {
2325 			btrfs_debug(fs_info,
2326 				    "stopping iteration for %llu due to ret=%d",
2327 				    extent_item_objectid, ret);
2328 			break;
2329 		}
2330 	}
2331 
2332 	return ret;
2333 }
2334 
2335 /*
2336  * calls iterate() for every inode that references the extent identified by
2337  * the given parameters.
2338  * when the iterator function returns a non-zero value, iteration stops.
2339  */
2340 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2341 			  bool search_commit_root,
2342 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2343 {
2344 	int ret;
2345 	struct ulist *refs;
2346 	struct ulist_node *ref_node;
2347 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2348 	struct ulist_iterator ref_uiter;
2349 
2350 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2351 		    ctx->bytenr);
2352 
2353 	ASSERT(ctx->trans == NULL);
2354 	ASSERT(ctx->roots == NULL);
2355 
2356 	if (!search_commit_root) {
2357 		struct btrfs_trans_handle *trans;
2358 
2359 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2360 		if (IS_ERR(trans)) {
2361 			if (PTR_ERR(trans) != -ENOENT &&
2362 			    PTR_ERR(trans) != -EROFS)
2363 				return PTR_ERR(trans);
2364 			trans = NULL;
2365 		}
2366 		ctx->trans = trans;
2367 	}
2368 
2369 	if (ctx->trans) {
2370 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2371 		ctx->time_seq = seq_elem.seq;
2372 	} else {
2373 		down_read(&ctx->fs_info->commit_root_sem);
2374 	}
2375 
2376 	ret = btrfs_find_all_leafs(ctx);
2377 	if (ret)
2378 		goto out;
2379 	refs = ctx->refs;
2380 	ctx->refs = NULL;
2381 
2382 	ULIST_ITER_INIT(&ref_uiter);
2383 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2384 		const u64 leaf_bytenr = ref_node->val;
2385 		struct ulist_node *root_node;
2386 		struct ulist_iterator root_uiter;
2387 		struct extent_inode_elem *inode_list;
2388 
2389 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2390 
2391 		if (ctx->cache_lookup) {
2392 			const u64 *root_ids;
2393 			int root_count;
2394 			bool cached;
2395 
2396 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2397 						   &root_ids, &root_count);
2398 			if (cached) {
2399 				for (int i = 0; i < root_count; i++) {
2400 					ret = iterate_leaf_refs(ctx->fs_info,
2401 								inode_list,
2402 								root_ids[i],
2403 								leaf_bytenr,
2404 								iterate,
2405 								user_ctx);
2406 					if (ret)
2407 						break;
2408 				}
2409 				continue;
2410 			}
2411 		}
2412 
2413 		if (!ctx->roots) {
2414 			ctx->roots = ulist_alloc(GFP_NOFS);
2415 			if (!ctx->roots) {
2416 				ret = -ENOMEM;
2417 				break;
2418 			}
2419 		}
2420 
2421 		ctx->bytenr = leaf_bytenr;
2422 		ret = btrfs_find_all_roots_safe(ctx);
2423 		if (ret)
2424 			break;
2425 
2426 		if (ctx->cache_store)
2427 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2428 
2429 		ULIST_ITER_INIT(&root_uiter);
2430 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2431 			btrfs_debug(ctx->fs_info,
2432 				    "root %llu references leaf %llu, data list %#llx",
2433 				    root_node->val, ref_node->val,
2434 				    ref_node->aux);
2435 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2436 						root_node->val, ctx->bytenr,
2437 						iterate, user_ctx);
2438 		}
2439 		ulist_reinit(ctx->roots);
2440 	}
2441 
2442 	free_leaf_list(refs);
2443 out:
2444 	if (ctx->trans) {
2445 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2446 		btrfs_end_transaction(ctx->trans);
2447 		ctx->trans = NULL;
2448 	} else {
2449 		up_read(&ctx->fs_info->commit_root_sem);
2450 	}
2451 
2452 	ulist_free(ctx->roots);
2453 	ctx->roots = NULL;
2454 
2455 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2456 		ret = 0;
2457 
2458 	return ret;
2459 }
2460 
2461 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2462 {
2463 	struct btrfs_data_container *inodes = ctx;
2464 	const size_t c = 3 * sizeof(u64);
2465 
2466 	if (inodes->bytes_left >= c) {
2467 		inodes->bytes_left -= c;
2468 		inodes->val[inodes->elem_cnt] = inum;
2469 		inodes->val[inodes->elem_cnt + 1] = offset;
2470 		inodes->val[inodes->elem_cnt + 2] = root;
2471 		inodes->elem_cnt += 3;
2472 	} else {
2473 		inodes->bytes_missing += c - inodes->bytes_left;
2474 		inodes->bytes_left = 0;
2475 		inodes->elem_missed += 3;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2482 				struct btrfs_path *path,
2483 				void *ctx, bool ignore_offset)
2484 {
2485 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2486 	int ret;
2487 	u64 flags = 0;
2488 	struct btrfs_key found_key;
2489 	int search_commit_root = path->search_commit_root;
2490 
2491 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2492 	btrfs_release_path(path);
2493 	if (ret < 0)
2494 		return ret;
2495 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2496 		return -EINVAL;
2497 
2498 	walk_ctx.bytenr = found_key.objectid;
2499 	if (ignore_offset)
2500 		walk_ctx.ignore_extent_item_pos = true;
2501 	else
2502 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2503 	walk_ctx.fs_info = fs_info;
2504 
2505 	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2506 				     build_ino_list, ctx);
2507 }
2508 
2509 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2510 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2511 
2512 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2513 {
2514 	int ret = 0;
2515 	int slot;
2516 	u32 cur;
2517 	u32 len;
2518 	u32 name_len;
2519 	u64 parent = 0;
2520 	int found = 0;
2521 	struct btrfs_root *fs_root = ipath->fs_root;
2522 	struct btrfs_path *path = ipath->btrfs_path;
2523 	struct extent_buffer *eb;
2524 	struct btrfs_inode_ref *iref;
2525 	struct btrfs_key found_key;
2526 
2527 	while (!ret) {
2528 		ret = btrfs_find_item(fs_root, path, inum,
2529 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2530 				&found_key);
2531 
2532 		if (ret < 0)
2533 			break;
2534 		if (ret) {
2535 			ret = found ? 0 : -ENOENT;
2536 			break;
2537 		}
2538 		++found;
2539 
2540 		parent = found_key.offset;
2541 		slot = path->slots[0];
2542 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2543 		if (!eb) {
2544 			ret = -ENOMEM;
2545 			break;
2546 		}
2547 		btrfs_release_path(path);
2548 
2549 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2550 
2551 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2552 			name_len = btrfs_inode_ref_name_len(eb, iref);
2553 			/* path must be released before calling iterate()! */
2554 			btrfs_debug(fs_root->fs_info,
2555 				"following ref at offset %u for inode %llu in tree %llu",
2556 				cur, found_key.objectid,
2557 				fs_root->root_key.objectid);
2558 			ret = inode_to_path(parent, name_len,
2559 				      (unsigned long)(iref + 1), eb, ipath);
2560 			if (ret)
2561 				break;
2562 			len = sizeof(*iref) + name_len;
2563 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2564 		}
2565 		free_extent_buffer(eb);
2566 	}
2567 
2568 	btrfs_release_path(path);
2569 
2570 	return ret;
2571 }
2572 
2573 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2574 {
2575 	int ret;
2576 	int slot;
2577 	u64 offset = 0;
2578 	u64 parent;
2579 	int found = 0;
2580 	struct btrfs_root *fs_root = ipath->fs_root;
2581 	struct btrfs_path *path = ipath->btrfs_path;
2582 	struct extent_buffer *eb;
2583 	struct btrfs_inode_extref *extref;
2584 	u32 item_size;
2585 	u32 cur_offset;
2586 	unsigned long ptr;
2587 
2588 	while (1) {
2589 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2590 					    &offset);
2591 		if (ret < 0)
2592 			break;
2593 		if (ret) {
2594 			ret = found ? 0 : -ENOENT;
2595 			break;
2596 		}
2597 		++found;
2598 
2599 		slot = path->slots[0];
2600 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2601 		if (!eb) {
2602 			ret = -ENOMEM;
2603 			break;
2604 		}
2605 		btrfs_release_path(path);
2606 
2607 		item_size = btrfs_item_size(eb, slot);
2608 		ptr = btrfs_item_ptr_offset(eb, slot);
2609 		cur_offset = 0;
2610 
2611 		while (cur_offset < item_size) {
2612 			u32 name_len;
2613 
2614 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2615 			parent = btrfs_inode_extref_parent(eb, extref);
2616 			name_len = btrfs_inode_extref_name_len(eb, extref);
2617 			ret = inode_to_path(parent, name_len,
2618 				      (unsigned long)&extref->name, eb, ipath);
2619 			if (ret)
2620 				break;
2621 
2622 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2623 			cur_offset += sizeof(*extref);
2624 		}
2625 		free_extent_buffer(eb);
2626 
2627 		offset++;
2628 	}
2629 
2630 	btrfs_release_path(path);
2631 
2632 	return ret;
2633 }
2634 
2635 /*
2636  * returns 0 if the path could be dumped (probably truncated)
2637  * returns <0 in case of an error
2638  */
2639 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2640 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2641 {
2642 	char *fspath;
2643 	char *fspath_min;
2644 	int i = ipath->fspath->elem_cnt;
2645 	const int s_ptr = sizeof(char *);
2646 	u32 bytes_left;
2647 
2648 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2649 					ipath->fspath->bytes_left - s_ptr : 0;
2650 
2651 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2652 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2653 				   name_off, eb, inum, fspath_min, bytes_left);
2654 	if (IS_ERR(fspath))
2655 		return PTR_ERR(fspath);
2656 
2657 	if (fspath > fspath_min) {
2658 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2659 		++ipath->fspath->elem_cnt;
2660 		ipath->fspath->bytes_left = fspath - fspath_min;
2661 	} else {
2662 		++ipath->fspath->elem_missed;
2663 		ipath->fspath->bytes_missing += fspath_min - fspath;
2664 		ipath->fspath->bytes_left = 0;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /*
2671  * this dumps all file system paths to the inode into the ipath struct, provided
2672  * is has been created large enough. each path is zero-terminated and accessed
2673  * from ipath->fspath->val[i].
2674  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2675  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2676  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2677  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2678  * have been needed to return all paths.
2679  */
2680 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2681 {
2682 	int ret;
2683 	int found_refs = 0;
2684 
2685 	ret = iterate_inode_refs(inum, ipath);
2686 	if (!ret)
2687 		++found_refs;
2688 	else if (ret != -ENOENT)
2689 		return ret;
2690 
2691 	ret = iterate_inode_extrefs(inum, ipath);
2692 	if (ret == -ENOENT && found_refs)
2693 		return 0;
2694 
2695 	return ret;
2696 }
2697 
2698 struct btrfs_data_container *init_data_container(u32 total_bytes)
2699 {
2700 	struct btrfs_data_container *data;
2701 	size_t alloc_bytes;
2702 
2703 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2704 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2705 	if (!data)
2706 		return ERR_PTR(-ENOMEM);
2707 
2708 	if (total_bytes >= sizeof(*data)) {
2709 		data->bytes_left = total_bytes - sizeof(*data);
2710 		data->bytes_missing = 0;
2711 	} else {
2712 		data->bytes_missing = sizeof(*data) - total_bytes;
2713 		data->bytes_left = 0;
2714 	}
2715 
2716 	data->elem_cnt = 0;
2717 	data->elem_missed = 0;
2718 
2719 	return data;
2720 }
2721 
2722 /*
2723  * allocates space to return multiple file system paths for an inode.
2724  * total_bytes to allocate are passed, note that space usable for actual path
2725  * information will be total_bytes - sizeof(struct inode_fs_paths).
2726  * the returned pointer must be freed with free_ipath() in the end.
2727  */
2728 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2729 					struct btrfs_path *path)
2730 {
2731 	struct inode_fs_paths *ifp;
2732 	struct btrfs_data_container *fspath;
2733 
2734 	fspath = init_data_container(total_bytes);
2735 	if (IS_ERR(fspath))
2736 		return ERR_CAST(fspath);
2737 
2738 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2739 	if (!ifp) {
2740 		kvfree(fspath);
2741 		return ERR_PTR(-ENOMEM);
2742 	}
2743 
2744 	ifp->btrfs_path = path;
2745 	ifp->fspath = fspath;
2746 	ifp->fs_root = fs_root;
2747 
2748 	return ifp;
2749 }
2750 
2751 void free_ipath(struct inode_fs_paths *ipath)
2752 {
2753 	if (!ipath)
2754 		return;
2755 	kvfree(ipath->fspath);
2756 	kfree(ipath);
2757 }
2758 
2759 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2760 {
2761 	struct btrfs_backref_iter *ret;
2762 
2763 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2764 	if (!ret)
2765 		return NULL;
2766 
2767 	ret->path = btrfs_alloc_path();
2768 	if (!ret->path) {
2769 		kfree(ret);
2770 		return NULL;
2771 	}
2772 
2773 	/* Current backref iterator only supports iteration in commit root */
2774 	ret->path->search_commit_root = 1;
2775 	ret->path->skip_locking = 1;
2776 	ret->fs_info = fs_info;
2777 
2778 	return ret;
2779 }
2780 
2781 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2782 {
2783 	struct btrfs_fs_info *fs_info = iter->fs_info;
2784 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2785 	struct btrfs_path *path = iter->path;
2786 	struct btrfs_extent_item *ei;
2787 	struct btrfs_key key;
2788 	int ret;
2789 
2790 	key.objectid = bytenr;
2791 	key.type = BTRFS_METADATA_ITEM_KEY;
2792 	key.offset = (u64)-1;
2793 	iter->bytenr = bytenr;
2794 
2795 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2796 	if (ret < 0)
2797 		return ret;
2798 	if (ret == 0) {
2799 		ret = -EUCLEAN;
2800 		goto release;
2801 	}
2802 	if (path->slots[0] == 0) {
2803 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2804 		ret = -EUCLEAN;
2805 		goto release;
2806 	}
2807 	path->slots[0]--;
2808 
2809 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2810 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2811 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2812 		ret = -ENOENT;
2813 		goto release;
2814 	}
2815 	memcpy(&iter->cur_key, &key, sizeof(key));
2816 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2817 						    path->slots[0]);
2818 	iter->end_ptr = (u32)(iter->item_ptr +
2819 			btrfs_item_size(path->nodes[0], path->slots[0]));
2820 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2821 			    struct btrfs_extent_item);
2822 
2823 	/*
2824 	 * Only support iteration on tree backref yet.
2825 	 *
2826 	 * This is an extra precaution for non skinny-metadata, where
2827 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2828 	 * extent flags to determine if it's a tree block.
2829 	 */
2830 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2831 		ret = -ENOTSUPP;
2832 		goto release;
2833 	}
2834 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2835 
2836 	/* If there is no inline backref, go search for keyed backref */
2837 	if (iter->cur_ptr >= iter->end_ptr) {
2838 		ret = btrfs_next_item(extent_root, path);
2839 
2840 		/* No inline nor keyed ref */
2841 		if (ret > 0) {
2842 			ret = -ENOENT;
2843 			goto release;
2844 		}
2845 		if (ret < 0)
2846 			goto release;
2847 
2848 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2849 				path->slots[0]);
2850 		if (iter->cur_key.objectid != bytenr ||
2851 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2852 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2853 			ret = -ENOENT;
2854 			goto release;
2855 		}
2856 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2857 							   path->slots[0]);
2858 		iter->item_ptr = iter->cur_ptr;
2859 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2860 				      path->nodes[0], path->slots[0]));
2861 	}
2862 
2863 	return 0;
2864 release:
2865 	btrfs_backref_iter_release(iter);
2866 	return ret;
2867 }
2868 
2869 /*
2870  * Go to the next backref item of current bytenr, can be either inlined or
2871  * keyed.
2872  *
2873  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2874  *
2875  * Return 0 if we get next backref without problem.
2876  * Return >0 if there is no extra backref for this bytenr.
2877  * Return <0 if there is something wrong happened.
2878  */
2879 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2880 {
2881 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2882 	struct btrfs_root *extent_root;
2883 	struct btrfs_path *path = iter->path;
2884 	struct btrfs_extent_inline_ref *iref;
2885 	int ret;
2886 	u32 size;
2887 
2888 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2889 		/* We're still inside the inline refs */
2890 		ASSERT(iter->cur_ptr < iter->end_ptr);
2891 
2892 		if (btrfs_backref_has_tree_block_info(iter)) {
2893 			/* First tree block info */
2894 			size = sizeof(struct btrfs_tree_block_info);
2895 		} else {
2896 			/* Use inline ref type to determine the size */
2897 			int type;
2898 
2899 			iref = (struct btrfs_extent_inline_ref *)
2900 				((unsigned long)iter->cur_ptr);
2901 			type = btrfs_extent_inline_ref_type(eb, iref);
2902 
2903 			size = btrfs_extent_inline_ref_size(type);
2904 		}
2905 		iter->cur_ptr += size;
2906 		if (iter->cur_ptr < iter->end_ptr)
2907 			return 0;
2908 
2909 		/* All inline items iterated, fall through */
2910 	}
2911 
2912 	/* We're at keyed items, there is no inline item, go to the next one */
2913 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2914 	ret = btrfs_next_item(extent_root, iter->path);
2915 	if (ret)
2916 		return ret;
2917 
2918 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2919 	if (iter->cur_key.objectid != iter->bytenr ||
2920 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2921 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2922 		return 1;
2923 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2924 					path->slots[0]);
2925 	iter->cur_ptr = iter->item_ptr;
2926 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2927 						path->slots[0]);
2928 	return 0;
2929 }
2930 
2931 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2932 			      struct btrfs_backref_cache *cache, int is_reloc)
2933 {
2934 	int i;
2935 
2936 	cache->rb_root = RB_ROOT;
2937 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2938 		INIT_LIST_HEAD(&cache->pending[i]);
2939 	INIT_LIST_HEAD(&cache->changed);
2940 	INIT_LIST_HEAD(&cache->detached);
2941 	INIT_LIST_HEAD(&cache->leaves);
2942 	INIT_LIST_HEAD(&cache->pending_edge);
2943 	INIT_LIST_HEAD(&cache->useless_node);
2944 	cache->fs_info = fs_info;
2945 	cache->is_reloc = is_reloc;
2946 }
2947 
2948 struct btrfs_backref_node *btrfs_backref_alloc_node(
2949 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2950 {
2951 	struct btrfs_backref_node *node;
2952 
2953 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2954 	node = kzalloc(sizeof(*node), GFP_NOFS);
2955 	if (!node)
2956 		return node;
2957 
2958 	INIT_LIST_HEAD(&node->list);
2959 	INIT_LIST_HEAD(&node->upper);
2960 	INIT_LIST_HEAD(&node->lower);
2961 	RB_CLEAR_NODE(&node->rb_node);
2962 	cache->nr_nodes++;
2963 	node->level = level;
2964 	node->bytenr = bytenr;
2965 
2966 	return node;
2967 }
2968 
2969 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2970 		struct btrfs_backref_cache *cache)
2971 {
2972 	struct btrfs_backref_edge *edge;
2973 
2974 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2975 	if (edge)
2976 		cache->nr_edges++;
2977 	return edge;
2978 }
2979 
2980 /*
2981  * Drop the backref node from cache, also cleaning up all its
2982  * upper edges and any uncached nodes in the path.
2983  *
2984  * This cleanup happens bottom up, thus the node should either
2985  * be the lowest node in the cache or a detached node.
2986  */
2987 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2988 				struct btrfs_backref_node *node)
2989 {
2990 	struct btrfs_backref_node *upper;
2991 	struct btrfs_backref_edge *edge;
2992 
2993 	if (!node)
2994 		return;
2995 
2996 	BUG_ON(!node->lowest && !node->detached);
2997 	while (!list_empty(&node->upper)) {
2998 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2999 				  list[LOWER]);
3000 		upper = edge->node[UPPER];
3001 		list_del(&edge->list[LOWER]);
3002 		list_del(&edge->list[UPPER]);
3003 		btrfs_backref_free_edge(cache, edge);
3004 
3005 		/*
3006 		 * Add the node to leaf node list if no other child block
3007 		 * cached.
3008 		 */
3009 		if (list_empty(&upper->lower)) {
3010 			list_add_tail(&upper->lower, &cache->leaves);
3011 			upper->lowest = 1;
3012 		}
3013 	}
3014 
3015 	btrfs_backref_drop_node(cache, node);
3016 }
3017 
3018 /*
3019  * Release all nodes/edges from current cache
3020  */
3021 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3022 {
3023 	struct btrfs_backref_node *node;
3024 	int i;
3025 
3026 	while (!list_empty(&cache->detached)) {
3027 		node = list_entry(cache->detached.next,
3028 				  struct btrfs_backref_node, list);
3029 		btrfs_backref_cleanup_node(cache, node);
3030 	}
3031 
3032 	while (!list_empty(&cache->leaves)) {
3033 		node = list_entry(cache->leaves.next,
3034 				  struct btrfs_backref_node, lower);
3035 		btrfs_backref_cleanup_node(cache, node);
3036 	}
3037 
3038 	cache->last_trans = 0;
3039 
3040 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3041 		ASSERT(list_empty(&cache->pending[i]));
3042 	ASSERT(list_empty(&cache->pending_edge));
3043 	ASSERT(list_empty(&cache->useless_node));
3044 	ASSERT(list_empty(&cache->changed));
3045 	ASSERT(list_empty(&cache->detached));
3046 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3047 	ASSERT(!cache->nr_nodes);
3048 	ASSERT(!cache->nr_edges);
3049 }
3050 
3051 /*
3052  * Handle direct tree backref
3053  *
3054  * Direct tree backref means, the backref item shows its parent bytenr
3055  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3056  *
3057  * @ref_key:	The converted backref key.
3058  *		For keyed backref, it's the item key.
3059  *		For inlined backref, objectid is the bytenr,
3060  *		type is btrfs_inline_ref_type, offset is
3061  *		btrfs_inline_ref_offset.
3062  */
3063 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3064 				      struct btrfs_key *ref_key,
3065 				      struct btrfs_backref_node *cur)
3066 {
3067 	struct btrfs_backref_edge *edge;
3068 	struct btrfs_backref_node *upper;
3069 	struct rb_node *rb_node;
3070 
3071 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3072 
3073 	/* Only reloc root uses backref pointing to itself */
3074 	if (ref_key->objectid == ref_key->offset) {
3075 		struct btrfs_root *root;
3076 
3077 		cur->is_reloc_root = 1;
3078 		/* Only reloc backref cache cares about a specific root */
3079 		if (cache->is_reloc) {
3080 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3081 			if (!root)
3082 				return -ENOENT;
3083 			cur->root = root;
3084 		} else {
3085 			/*
3086 			 * For generic purpose backref cache, reloc root node
3087 			 * is useless.
3088 			 */
3089 			list_add(&cur->list, &cache->useless_node);
3090 		}
3091 		return 0;
3092 	}
3093 
3094 	edge = btrfs_backref_alloc_edge(cache);
3095 	if (!edge)
3096 		return -ENOMEM;
3097 
3098 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3099 	if (!rb_node) {
3100 		/* Parent node not yet cached */
3101 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3102 					   cur->level + 1);
3103 		if (!upper) {
3104 			btrfs_backref_free_edge(cache, edge);
3105 			return -ENOMEM;
3106 		}
3107 
3108 		/*
3109 		 *  Backrefs for the upper level block isn't cached, add the
3110 		 *  block to pending list
3111 		 */
3112 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3113 	} else {
3114 		/* Parent node already cached */
3115 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3116 		ASSERT(upper->checked);
3117 		INIT_LIST_HEAD(&edge->list[UPPER]);
3118 	}
3119 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3120 	return 0;
3121 }
3122 
3123 /*
3124  * Handle indirect tree backref
3125  *
3126  * Indirect tree backref means, we only know which tree the node belongs to.
3127  * We still need to do a tree search to find out the parents. This is for
3128  * TREE_BLOCK_REF backref (keyed or inlined).
3129  *
3130  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3131  * @tree_key:	The first key of this tree block.
3132  * @path:	A clean (released) path, to avoid allocating path every time
3133  *		the function get called.
3134  */
3135 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
3136 					struct btrfs_path *path,
3137 					struct btrfs_key *ref_key,
3138 					struct btrfs_key *tree_key,
3139 					struct btrfs_backref_node *cur)
3140 {
3141 	struct btrfs_fs_info *fs_info = cache->fs_info;
3142 	struct btrfs_backref_node *upper;
3143 	struct btrfs_backref_node *lower;
3144 	struct btrfs_backref_edge *edge;
3145 	struct extent_buffer *eb;
3146 	struct btrfs_root *root;
3147 	struct rb_node *rb_node;
3148 	int level;
3149 	bool need_check = true;
3150 	int ret;
3151 
3152 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3153 	if (IS_ERR(root))
3154 		return PTR_ERR(root);
3155 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3156 		cur->cowonly = 1;
3157 
3158 	if (btrfs_root_level(&root->root_item) == cur->level) {
3159 		/* Tree root */
3160 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3161 		/*
3162 		 * For reloc backref cache, we may ignore reloc root.  But for
3163 		 * general purpose backref cache, we can't rely on
3164 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3165 		 * current running relocation and lead to missing root.
3166 		 *
3167 		 * For general purpose backref cache, reloc root detection is
3168 		 * completely relying on direct backref (key->offset is parent
3169 		 * bytenr), thus only do such check for reloc cache.
3170 		 */
3171 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3172 			btrfs_put_root(root);
3173 			list_add(&cur->list, &cache->useless_node);
3174 		} else {
3175 			cur->root = root;
3176 		}
3177 		return 0;
3178 	}
3179 
3180 	level = cur->level + 1;
3181 
3182 	/* Search the tree to find parent blocks referring to the block */
3183 	path->search_commit_root = 1;
3184 	path->skip_locking = 1;
3185 	path->lowest_level = level;
3186 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3187 	path->lowest_level = 0;
3188 	if (ret < 0) {
3189 		btrfs_put_root(root);
3190 		return ret;
3191 	}
3192 	if (ret > 0 && path->slots[level] > 0)
3193 		path->slots[level]--;
3194 
3195 	eb = path->nodes[level];
3196 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3197 		btrfs_err(fs_info,
3198 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3199 			  cur->bytenr, level - 1, root->root_key.objectid,
3200 			  tree_key->objectid, tree_key->type, tree_key->offset);
3201 		btrfs_put_root(root);
3202 		ret = -ENOENT;
3203 		goto out;
3204 	}
3205 	lower = cur;
3206 
3207 	/* Add all nodes and edges in the path */
3208 	for (; level < BTRFS_MAX_LEVEL; level++) {
3209 		if (!path->nodes[level]) {
3210 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3211 			       lower->bytenr);
3212 			/* Same as previous should_ignore_reloc_root() call */
3213 			if (btrfs_should_ignore_reloc_root(root) &&
3214 			    cache->is_reloc) {
3215 				btrfs_put_root(root);
3216 				list_add(&lower->list, &cache->useless_node);
3217 			} else {
3218 				lower->root = root;
3219 			}
3220 			break;
3221 		}
3222 
3223 		edge = btrfs_backref_alloc_edge(cache);
3224 		if (!edge) {
3225 			btrfs_put_root(root);
3226 			ret = -ENOMEM;
3227 			goto out;
3228 		}
3229 
3230 		eb = path->nodes[level];
3231 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3232 		if (!rb_node) {
3233 			upper = btrfs_backref_alloc_node(cache, eb->start,
3234 							 lower->level + 1);
3235 			if (!upper) {
3236 				btrfs_put_root(root);
3237 				btrfs_backref_free_edge(cache, edge);
3238 				ret = -ENOMEM;
3239 				goto out;
3240 			}
3241 			upper->owner = btrfs_header_owner(eb);
3242 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3243 				upper->cowonly = 1;
3244 
3245 			/*
3246 			 * If we know the block isn't shared we can avoid
3247 			 * checking its backrefs.
3248 			 */
3249 			if (btrfs_block_can_be_shared(root, eb))
3250 				upper->checked = 0;
3251 			else
3252 				upper->checked = 1;
3253 
3254 			/*
3255 			 * Add the block to pending list if we need to check its
3256 			 * backrefs, we only do this once while walking up a
3257 			 * tree as we will catch anything else later on.
3258 			 */
3259 			if (!upper->checked && need_check) {
3260 				need_check = false;
3261 				list_add_tail(&edge->list[UPPER],
3262 					      &cache->pending_edge);
3263 			} else {
3264 				if (upper->checked)
3265 					need_check = true;
3266 				INIT_LIST_HEAD(&edge->list[UPPER]);
3267 			}
3268 		} else {
3269 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3270 					 rb_node);
3271 			ASSERT(upper->checked);
3272 			INIT_LIST_HEAD(&edge->list[UPPER]);
3273 			if (!upper->owner)
3274 				upper->owner = btrfs_header_owner(eb);
3275 		}
3276 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3277 
3278 		if (rb_node) {
3279 			btrfs_put_root(root);
3280 			break;
3281 		}
3282 		lower = upper;
3283 		upper = NULL;
3284 	}
3285 out:
3286 	btrfs_release_path(path);
3287 	return ret;
3288 }
3289 
3290 /*
3291  * Add backref node @cur into @cache.
3292  *
3293  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3294  *	 links aren't yet bi-directional. Needs to finish such links.
3295  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3296  *
3297  * @path:	Released path for indirect tree backref lookup
3298  * @iter:	Released backref iter for extent tree search
3299  * @node_key:	The first key of the tree block
3300  */
3301 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3302 				struct btrfs_path *path,
3303 				struct btrfs_backref_iter *iter,
3304 				struct btrfs_key *node_key,
3305 				struct btrfs_backref_node *cur)
3306 {
3307 	struct btrfs_fs_info *fs_info = cache->fs_info;
3308 	struct btrfs_backref_edge *edge;
3309 	struct btrfs_backref_node *exist;
3310 	int ret;
3311 
3312 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3313 	if (ret < 0)
3314 		return ret;
3315 	/*
3316 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3317 	 * stored in it, but fetch it from the tree block
3318 	 */
3319 	if (btrfs_backref_has_tree_block_info(iter)) {
3320 		ret = btrfs_backref_iter_next(iter);
3321 		if (ret < 0)
3322 			goto out;
3323 		/* No extra backref? This means the tree block is corrupted */
3324 		if (ret > 0) {
3325 			ret = -EUCLEAN;
3326 			goto out;
3327 		}
3328 	}
3329 	WARN_ON(cur->checked);
3330 	if (!list_empty(&cur->upper)) {
3331 		/*
3332 		 * The backref was added previously when processing backref of
3333 		 * type BTRFS_TREE_BLOCK_REF_KEY
3334 		 */
3335 		ASSERT(list_is_singular(&cur->upper));
3336 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3337 				  list[LOWER]);
3338 		ASSERT(list_empty(&edge->list[UPPER]));
3339 		exist = edge->node[UPPER];
3340 		/*
3341 		 * Add the upper level block to pending list if we need check
3342 		 * its backrefs
3343 		 */
3344 		if (!exist->checked)
3345 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3346 	} else {
3347 		exist = NULL;
3348 	}
3349 
3350 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3351 		struct extent_buffer *eb;
3352 		struct btrfs_key key;
3353 		int type;
3354 
3355 		cond_resched();
3356 		eb = btrfs_backref_get_eb(iter);
3357 
3358 		key.objectid = iter->bytenr;
3359 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3360 			struct btrfs_extent_inline_ref *iref;
3361 
3362 			/* Update key for inline backref */
3363 			iref = (struct btrfs_extent_inline_ref *)
3364 				((unsigned long)iter->cur_ptr);
3365 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3366 							BTRFS_REF_TYPE_BLOCK);
3367 			if (type == BTRFS_REF_TYPE_INVALID) {
3368 				ret = -EUCLEAN;
3369 				goto out;
3370 			}
3371 			key.type = type;
3372 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3373 		} else {
3374 			key.type = iter->cur_key.type;
3375 			key.offset = iter->cur_key.offset;
3376 		}
3377 
3378 		/*
3379 		 * Parent node found and matches current inline ref, no need to
3380 		 * rebuild this node for this inline ref
3381 		 */
3382 		if (exist &&
3383 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3384 		      exist->owner == key.offset) ||
3385 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3386 		      exist->bytenr == key.offset))) {
3387 			exist = NULL;
3388 			continue;
3389 		}
3390 
3391 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3392 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3393 			ret = handle_direct_tree_backref(cache, &key, cur);
3394 			if (ret < 0)
3395 				goto out;
3396 			continue;
3397 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3398 			ret = -EINVAL;
3399 			btrfs_print_v0_err(fs_info);
3400 			btrfs_handle_fs_error(fs_info, ret, NULL);
3401 			goto out;
3402 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3403 			continue;
3404 		}
3405 
3406 		/*
3407 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3408 		 * means the root objectid. We need to search the tree to get
3409 		 * its parent bytenr.
3410 		 */
3411 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3412 						   cur);
3413 		if (ret < 0)
3414 			goto out;
3415 	}
3416 	ret = 0;
3417 	cur->checked = 1;
3418 	WARN_ON(exist);
3419 out:
3420 	btrfs_backref_iter_release(iter);
3421 	return ret;
3422 }
3423 
3424 /*
3425  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3426  */
3427 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3428 				     struct btrfs_backref_node *start)
3429 {
3430 	struct list_head *useless_node = &cache->useless_node;
3431 	struct btrfs_backref_edge *edge;
3432 	struct rb_node *rb_node;
3433 	LIST_HEAD(pending_edge);
3434 
3435 	ASSERT(start->checked);
3436 
3437 	/* Insert this node to cache if it's not COW-only */
3438 	if (!start->cowonly) {
3439 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3440 					   &start->rb_node);
3441 		if (rb_node)
3442 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3443 					    -EEXIST);
3444 		list_add_tail(&start->lower, &cache->leaves);
3445 	}
3446 
3447 	/*
3448 	 * Use breadth first search to iterate all related edges.
3449 	 *
3450 	 * The starting points are all the edges of this node
3451 	 */
3452 	list_for_each_entry(edge, &start->upper, list[LOWER])
3453 		list_add_tail(&edge->list[UPPER], &pending_edge);
3454 
3455 	while (!list_empty(&pending_edge)) {
3456 		struct btrfs_backref_node *upper;
3457 		struct btrfs_backref_node *lower;
3458 
3459 		edge = list_first_entry(&pending_edge,
3460 				struct btrfs_backref_edge, list[UPPER]);
3461 		list_del_init(&edge->list[UPPER]);
3462 		upper = edge->node[UPPER];
3463 		lower = edge->node[LOWER];
3464 
3465 		/* Parent is detached, no need to keep any edges */
3466 		if (upper->detached) {
3467 			list_del(&edge->list[LOWER]);
3468 			btrfs_backref_free_edge(cache, edge);
3469 
3470 			/* Lower node is orphan, queue for cleanup */
3471 			if (list_empty(&lower->upper))
3472 				list_add(&lower->list, useless_node);
3473 			continue;
3474 		}
3475 
3476 		/*
3477 		 * All new nodes added in current build_backref_tree() haven't
3478 		 * been linked to the cache rb tree.
3479 		 * So if we have upper->rb_node populated, this means a cache
3480 		 * hit. We only need to link the edge, as @upper and all its
3481 		 * parents have already been linked.
3482 		 */
3483 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3484 			if (upper->lowest) {
3485 				list_del_init(&upper->lower);
3486 				upper->lowest = 0;
3487 			}
3488 
3489 			list_add_tail(&edge->list[UPPER], &upper->lower);
3490 			continue;
3491 		}
3492 
3493 		/* Sanity check, we shouldn't have any unchecked nodes */
3494 		if (!upper->checked) {
3495 			ASSERT(0);
3496 			return -EUCLEAN;
3497 		}
3498 
3499 		/* Sanity check, COW-only node has non-COW-only parent */
3500 		if (start->cowonly != upper->cowonly) {
3501 			ASSERT(0);
3502 			return -EUCLEAN;
3503 		}
3504 
3505 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3506 		if (!upper->cowonly) {
3507 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3508 						   &upper->rb_node);
3509 			if (rb_node) {
3510 				btrfs_backref_panic(cache->fs_info,
3511 						upper->bytenr, -EEXIST);
3512 				return -EUCLEAN;
3513 			}
3514 		}
3515 
3516 		list_add_tail(&edge->list[UPPER], &upper->lower);
3517 
3518 		/*
3519 		 * Also queue all the parent edges of this uncached node
3520 		 * to finish the upper linkage
3521 		 */
3522 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3523 			list_add_tail(&edge->list[UPPER], &pending_edge);
3524 	}
3525 	return 0;
3526 }
3527 
3528 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3529 				 struct btrfs_backref_node *node)
3530 {
3531 	struct btrfs_backref_node *lower;
3532 	struct btrfs_backref_node *upper;
3533 	struct btrfs_backref_edge *edge;
3534 
3535 	while (!list_empty(&cache->useless_node)) {
3536 		lower = list_first_entry(&cache->useless_node,
3537 				   struct btrfs_backref_node, list);
3538 		list_del_init(&lower->list);
3539 	}
3540 	while (!list_empty(&cache->pending_edge)) {
3541 		edge = list_first_entry(&cache->pending_edge,
3542 				struct btrfs_backref_edge, list[UPPER]);
3543 		list_del(&edge->list[UPPER]);
3544 		list_del(&edge->list[LOWER]);
3545 		lower = edge->node[LOWER];
3546 		upper = edge->node[UPPER];
3547 		btrfs_backref_free_edge(cache, edge);
3548 
3549 		/*
3550 		 * Lower is no longer linked to any upper backref nodes and
3551 		 * isn't in the cache, we can free it ourselves.
3552 		 */
3553 		if (list_empty(&lower->upper) &&
3554 		    RB_EMPTY_NODE(&lower->rb_node))
3555 			list_add(&lower->list, &cache->useless_node);
3556 
3557 		if (!RB_EMPTY_NODE(&upper->rb_node))
3558 			continue;
3559 
3560 		/* Add this guy's upper edges to the list to process */
3561 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3562 			list_add_tail(&edge->list[UPPER],
3563 				      &cache->pending_edge);
3564 		if (list_empty(&upper->upper))
3565 			list_add(&upper->list, &cache->useless_node);
3566 	}
3567 
3568 	while (!list_empty(&cache->useless_node)) {
3569 		lower = list_first_entry(&cache->useless_node,
3570 				   struct btrfs_backref_node, list);
3571 		list_del_init(&lower->list);
3572 		if (lower == node)
3573 			node = NULL;
3574 		btrfs_backref_drop_node(cache, lower);
3575 	}
3576 
3577 	btrfs_backref_cleanup_node(cache, node);
3578 	ASSERT(list_empty(&cache->useless_node) &&
3579 	       list_empty(&cache->pending_edge));
3580 }
3581