xref: /openbmc/linux/fs/btrfs/backref.c (revision ca5999fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20 
21 struct extent_inode_elem {
22 	u64 inum;
23 	u64 offset;
24 	struct extent_inode_elem *next;
25 };
26 
27 static int check_extent_in_eb(const struct btrfs_key *key,
28 			      const struct extent_buffer *eb,
29 			      const struct btrfs_file_extent_item *fi,
30 			      u64 extent_item_pos,
31 			      struct extent_inode_elem **eie,
32 			      bool ignore_offset)
33 {
34 	u64 offset = 0;
35 	struct extent_inode_elem *e;
36 
37 	if (!ignore_offset &&
38 	    !btrfs_file_extent_compression(eb, fi) &&
39 	    !btrfs_file_extent_encryption(eb, fi) &&
40 	    !btrfs_file_extent_other_encoding(eb, fi)) {
41 		u64 data_offset;
42 		u64 data_len;
43 
44 		data_offset = btrfs_file_extent_offset(eb, fi);
45 		data_len = btrfs_file_extent_num_bytes(eb, fi);
46 
47 		if (extent_item_pos < data_offset ||
48 		    extent_item_pos >= data_offset + data_len)
49 			return 1;
50 		offset = extent_item_pos - data_offset;
51 	}
52 
53 	e = kmalloc(sizeof(*e), GFP_NOFS);
54 	if (!e)
55 		return -ENOMEM;
56 
57 	e->next = *eie;
58 	e->inum = key->objectid;
59 	e->offset = key->offset + offset;
60 	*eie = e;
61 
62 	return 0;
63 }
64 
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 	struct extent_inode_elem *eie_next;
68 
69 	for (; eie; eie = eie_next) {
70 		eie_next = eie->next;
71 		kfree(eie);
72 	}
73 }
74 
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 			     u64 wanted_disk_byte, u64 extent_item_pos,
77 			     struct extent_inode_elem **eie,
78 			     bool ignore_offset)
79 {
80 	u64 disk_byte;
81 	struct btrfs_key key;
82 	struct btrfs_file_extent_item *fi;
83 	int slot;
84 	int nritems;
85 	int extent_type;
86 	int ret;
87 
88 	/*
89 	 * from the shared data ref, we only have the leaf but we need
90 	 * the key. thus, we must look into all items and see that we
91 	 * find one (some) with a reference to our extent item.
92 	 */
93 	nritems = btrfs_header_nritems(eb);
94 	for (slot = 0; slot < nritems; ++slot) {
95 		btrfs_item_key_to_cpu(eb, &key, slot);
96 		if (key.type != BTRFS_EXTENT_DATA_KEY)
97 			continue;
98 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 		extent_type = btrfs_file_extent_type(eb, fi);
100 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 			continue;
102 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 		if (disk_byte != wanted_disk_byte)
105 			continue;
106 
107 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 		if (ret < 0)
109 			return ret;
110 	}
111 
112 	return 0;
113 }
114 
115 struct preftree {
116 	struct rb_root_cached root;
117 	unsigned int count;
118 };
119 
120 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 
122 struct preftrees {
123 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 	struct preftree indirect_missing_keys;
126 };
127 
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137 	u64 root_objectid;
138 	u64 inum;
139 	int share_count;
140 };
141 
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146 
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148 
149 int __init btrfs_prelim_ref_init(void)
150 {
151 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 					sizeof(struct prelim_ref),
153 					0,
154 					SLAB_MEM_SPREAD,
155 					NULL);
156 	if (!btrfs_prelim_ref_cache)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165 
166 static void free_pref(struct prelim_ref *ref)
167 {
168 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170 
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 			      struct prelim_ref *ref2)
178 {
179 	if (ref1->level < ref2->level)
180 		return -1;
181 	if (ref1->level > ref2->level)
182 		return 1;
183 	if (ref1->root_id < ref2->root_id)
184 		return -1;
185 	if (ref1->root_id > ref2->root_id)
186 		return 1;
187 	if (ref1->key_for_search.type < ref2->key_for_search.type)
188 		return -1;
189 	if (ref1->key_for_search.type > ref2->key_for_search.type)
190 		return 1;
191 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 		return -1;
193 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 		return 1;
195 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 		return -1;
197 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 		return 1;
199 	if (ref1->parent < ref2->parent)
200 		return -1;
201 	if (ref1->parent > ref2->parent)
202 		return 1;
203 
204 	return 0;
205 }
206 
207 static void update_share_count(struct share_check *sc, int oldcount,
208 			       int newcount)
209 {
210 	if ((!sc) || (oldcount == 0 && newcount < 1))
211 		return;
212 
213 	if (oldcount > 0 && newcount < 1)
214 		sc->share_count--;
215 	else if (oldcount < 1 && newcount > 0)
216 		sc->share_count++;
217 }
218 
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 			      struct preftree *preftree,
226 			      struct prelim_ref *newref,
227 			      struct share_check *sc)
228 {
229 	struct rb_root_cached *root;
230 	struct rb_node **p;
231 	struct rb_node *parent = NULL;
232 	struct prelim_ref *ref;
233 	int result;
234 	bool leftmost = true;
235 
236 	root = &preftree->root;
237 	p = &root->rb_root.rb_node;
238 
239 	while (*p) {
240 		parent = *p;
241 		ref = rb_entry(parent, struct prelim_ref, rbnode);
242 		result = prelim_ref_compare(ref, newref);
243 		if (result < 0) {
244 			p = &(*p)->rb_left;
245 		} else if (result > 0) {
246 			p = &(*p)->rb_right;
247 			leftmost = false;
248 		} else {
249 			/* Identical refs, merge them and free @newref */
250 			struct extent_inode_elem *eie = ref->inode_list;
251 
252 			while (eie && eie->next)
253 				eie = eie->next;
254 
255 			if (!eie)
256 				ref->inode_list = newref->inode_list;
257 			else
258 				eie->next = newref->inode_list;
259 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 						     preftree->count);
261 			/*
262 			 * A delayed ref can have newref->count < 0.
263 			 * The ref->count is updated to follow any
264 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 			 */
266 			update_share_count(sc, ref->count,
267 					   ref->count + newref->count);
268 			ref->count += newref->count;
269 			free_pref(newref);
270 			return;
271 		}
272 	}
273 
274 	update_share_count(sc, 0, newref->count);
275 	preftree->count++;
276 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 	rb_link_node(&newref->rbnode, parent, p);
278 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280 
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
285 static void prelim_release(struct preftree *preftree)
286 {
287 	struct prelim_ref *ref, *next_ref;
288 
289 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 					     &preftree->root.rb_root, rbnode)
291 		free_pref(ref);
292 
293 	preftree->root = RB_ROOT_CACHED;
294 	preftree->count = 0;
295 }
296 
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 			  struct preftree *preftree, u64 root_id,
337 			  const struct btrfs_key *key, int level, u64 parent,
338 			  u64 wanted_disk_byte, int count,
339 			  struct share_check *sc, gfp_t gfp_mask)
340 {
341 	struct prelim_ref *ref;
342 
343 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 		return 0;
345 
346 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 	if (!ref)
348 		return -ENOMEM;
349 
350 	ref->root_id = root_id;
351 	if (key)
352 		ref->key_for_search = *key;
353 	else
354 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355 
356 	ref->inode_list = NULL;
357 	ref->level = level;
358 	ref->count = count;
359 	ref->parent = parent;
360 	ref->wanted_disk_byte = wanted_disk_byte;
361 	prelim_ref_insert(fs_info, preftree, ref, sc);
362 	return extent_is_shared(sc);
363 }
364 
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 			  struct preftrees *preftrees, int level, u64 parent,
368 			  u64 wanted_disk_byte, int count,
369 			  struct share_check *sc, gfp_t gfp_mask)
370 {
371 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 			      parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374 
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 			    struct preftrees *preftrees, u64 root_id,
378 			    const struct btrfs_key *key, int level,
379 			    u64 wanted_disk_byte, int count,
380 			    struct share_check *sc, gfp_t gfp_mask)
381 {
382 	struct preftree *tree = &preftrees->indirect;
383 
384 	if (!key)
385 		tree = &preftrees->indirect_missing_keys;
386 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 			      wanted_disk_byte, count, sc, gfp_mask);
388 }
389 
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 	struct rb_node *parent = NULL;
394 	struct prelim_ref *ref = NULL;
395 	struct prelim_ref target = {};
396 	int result;
397 
398 	target.parent = bytenr;
399 
400 	while (*p) {
401 		parent = *p;
402 		ref = rb_entry(parent, struct prelim_ref, rbnode);
403 		result = prelim_ref_compare(ref, &target);
404 
405 		if (result < 0)
406 			p = &(*p)->rb_left;
407 		else if (result > 0)
408 			p = &(*p)->rb_right;
409 		else
410 			return 1;
411 	}
412 	return 0;
413 }
414 
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 			   struct ulist *parents,
417 			   struct preftrees *preftrees, struct prelim_ref *ref,
418 			   int level, u64 time_seq, const u64 *extent_item_pos,
419 			   bool ignore_offset)
420 {
421 	int ret = 0;
422 	int slot;
423 	struct extent_buffer *eb;
424 	struct btrfs_key key;
425 	struct btrfs_key *key_for_search = &ref->key_for_search;
426 	struct btrfs_file_extent_item *fi;
427 	struct extent_inode_elem *eie = NULL, *old = NULL;
428 	u64 disk_byte;
429 	u64 wanted_disk_byte = ref->wanted_disk_byte;
430 	u64 count = 0;
431 	u64 data_offset;
432 
433 	if (level != 0) {
434 		eb = path->nodes[level];
435 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 		if (ret < 0)
437 			return ret;
438 		return 0;
439 	}
440 
441 	/*
442 	 * 1. We normally enter this function with the path already pointing to
443 	 *    the first item to check. But sometimes, we may enter it with
444 	 *    slot == nritems.
445 	 * 2. We are searching for normal backref but bytenr of this leaf
446 	 *    matches shared data backref
447 	 * 3. The leaf owner is not equal to the root we are searching
448 	 *
449 	 * For these cases, go to the next leaf before we continue.
450 	 */
451 	eb = path->nodes[0];
452 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 	    is_shared_data_backref(preftrees, eb->start) ||
454 	    ref->root_id != btrfs_header_owner(eb)) {
455 		if (time_seq == SEQ_LAST)
456 			ret = btrfs_next_leaf(root, path);
457 		else
458 			ret = btrfs_next_old_leaf(root, path, time_seq);
459 	}
460 
461 	while (!ret && count < ref->count) {
462 		eb = path->nodes[0];
463 		slot = path->slots[0];
464 
465 		btrfs_item_key_to_cpu(eb, &key, slot);
466 
467 		if (key.objectid != key_for_search->objectid ||
468 		    key.type != BTRFS_EXTENT_DATA_KEY)
469 			break;
470 
471 		/*
472 		 * We are searching for normal backref but bytenr of this leaf
473 		 * matches shared data backref, OR
474 		 * the leaf owner is not equal to the root we are searching for
475 		 */
476 		if (slot == 0 &&
477 		    (is_shared_data_backref(preftrees, eb->start) ||
478 		     ref->root_id != btrfs_header_owner(eb))) {
479 			if (time_seq == SEQ_LAST)
480 				ret = btrfs_next_leaf(root, path);
481 			else
482 				ret = btrfs_next_old_leaf(root, path, time_seq);
483 			continue;
484 		}
485 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 		data_offset = btrfs_file_extent_offset(eb, fi);
488 
489 		if (disk_byte == wanted_disk_byte) {
490 			eie = NULL;
491 			old = NULL;
492 			if (ref->key_for_search.offset == key.offset - data_offset)
493 				count++;
494 			else
495 				goto next;
496 			if (extent_item_pos) {
497 				ret = check_extent_in_eb(&key, eb, fi,
498 						*extent_item_pos,
499 						&eie, ignore_offset);
500 				if (ret < 0)
501 					break;
502 			}
503 			if (ret > 0)
504 				goto next;
505 			ret = ulist_add_merge_ptr(parents, eb->start,
506 						  eie, (void **)&old, GFP_NOFS);
507 			if (ret < 0)
508 				break;
509 			if (!ret && extent_item_pos) {
510 				while (old->next)
511 					old = old->next;
512 				old->next = eie;
513 			}
514 			eie = NULL;
515 		}
516 next:
517 		if (time_seq == SEQ_LAST)
518 			ret = btrfs_next_item(root, path);
519 		else
520 			ret = btrfs_next_old_item(root, path, time_seq);
521 	}
522 
523 	if (ret > 0)
524 		ret = 0;
525 	else if (ret < 0)
526 		free_inode_elem_list(eie);
527 	return ret;
528 }
529 
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 				struct btrfs_path *path, u64 time_seq,
536 				struct preftrees *preftrees,
537 				struct prelim_ref *ref, struct ulist *parents,
538 				const u64 *extent_item_pos, bool ignore_offset)
539 {
540 	struct btrfs_root *root;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	root = btrfs_get_fs_root(fs_info, ref->root_id, false);
548 	if (IS_ERR(root)) {
549 		ret = PTR_ERR(root);
550 		goto out_free;
551 	}
552 
553 	if (!path->search_commit_root &&
554 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
555 		ret = -ENOENT;
556 		goto out;
557 	}
558 
559 	if (btrfs_is_testing(fs_info)) {
560 		ret = -ENOENT;
561 		goto out;
562 	}
563 
564 	if (path->search_commit_root)
565 		root_level = btrfs_header_level(root->commit_root);
566 	else if (time_seq == SEQ_LAST)
567 		root_level = btrfs_header_level(root->node);
568 	else
569 		root_level = btrfs_old_root_level(root, time_seq);
570 
571 	if (root_level + 1 == level)
572 		goto out;
573 
574 	/*
575 	 * We can often find data backrefs with an offset that is too large
576 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
577 	 * subtracting a file's offset with the data offset of its
578 	 * corresponding extent data item. This can happen for example in the
579 	 * clone ioctl.
580 	 *
581 	 * So if we detect such case we set the search key's offset to zero to
582 	 * make sure we will find the matching file extent item at
583 	 * add_all_parents(), otherwise we will miss it because the offset
584 	 * taken form the backref is much larger then the offset of the file
585 	 * extent item. This can make us scan a very large number of file
586 	 * extent items, but at least it will not make us miss any.
587 	 *
588 	 * This is an ugly workaround for a behaviour that should have never
589 	 * existed, but it does and a fix for the clone ioctl would touch a lot
590 	 * of places, cause backwards incompatibility and would not fix the
591 	 * problem for extents cloned with older kernels.
592 	 */
593 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
594 	    search_key.offset >= LLONG_MAX)
595 		search_key.offset = 0;
596 	path->lowest_level = level;
597 	if (time_seq == SEQ_LAST)
598 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
599 	else
600 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
601 
602 	btrfs_debug(fs_info,
603 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
604 		 ref->root_id, level, ref->count, ret,
605 		 ref->key_for_search.objectid, ref->key_for_search.type,
606 		 ref->key_for_search.offset);
607 	if (ret < 0)
608 		goto out;
609 
610 	eb = path->nodes[level];
611 	while (!eb) {
612 		if (WARN_ON(!level)) {
613 			ret = 1;
614 			goto out;
615 		}
616 		level--;
617 		eb = path->nodes[level];
618 	}
619 
620 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
621 			      time_seq, extent_item_pos, ignore_offset);
622 out:
623 	btrfs_put_root(root);
624 out_free:
625 	path->lowest_level = 0;
626 	btrfs_release_path(path);
627 	return ret;
628 }
629 
630 static struct extent_inode_elem *
631 unode_aux_to_inode_list(struct ulist_node *node)
632 {
633 	if (!node)
634 		return NULL;
635 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
636 }
637 
638 /*
639  * We maintain three separate rbtrees: one for direct refs, one for
640  * indirect refs which have a key, and one for indirect refs which do not
641  * have a key. Each tree does merge on insertion.
642  *
643  * Once all of the references are located, we iterate over the tree of
644  * indirect refs with missing keys. An appropriate key is located and
645  * the ref is moved onto the tree for indirect refs. After all missing
646  * keys are thus located, we iterate over the indirect ref tree, resolve
647  * each reference, and then insert the resolved reference onto the
648  * direct tree (merging there too).
649  *
650  * New backrefs (i.e., for parent nodes) are added to the appropriate
651  * rbtree as they are encountered. The new backrefs are subsequently
652  * resolved as above.
653  */
654 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
655 				 struct btrfs_path *path, u64 time_seq,
656 				 struct preftrees *preftrees,
657 				 const u64 *extent_item_pos,
658 				 struct share_check *sc, bool ignore_offset)
659 {
660 	int err;
661 	int ret = 0;
662 	struct ulist *parents;
663 	struct ulist_node *node;
664 	struct ulist_iterator uiter;
665 	struct rb_node *rnode;
666 
667 	parents = ulist_alloc(GFP_NOFS);
668 	if (!parents)
669 		return -ENOMEM;
670 
671 	/*
672 	 * We could trade memory usage for performance here by iterating
673 	 * the tree, allocating new refs for each insertion, and then
674 	 * freeing the entire indirect tree when we're done.  In some test
675 	 * cases, the tree can grow quite large (~200k objects).
676 	 */
677 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
678 		struct prelim_ref *ref;
679 
680 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
681 		if (WARN(ref->parent,
682 			 "BUG: direct ref found in indirect tree")) {
683 			ret = -EINVAL;
684 			goto out;
685 		}
686 
687 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
688 		preftrees->indirect.count--;
689 
690 		if (ref->count == 0) {
691 			free_pref(ref);
692 			continue;
693 		}
694 
695 		if (sc && sc->root_objectid &&
696 		    ref->root_id != sc->root_objectid) {
697 			free_pref(ref);
698 			ret = BACKREF_FOUND_SHARED;
699 			goto out;
700 		}
701 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
702 					   ref, parents, extent_item_pos,
703 					   ignore_offset);
704 		/*
705 		 * we can only tolerate ENOENT,otherwise,we should catch error
706 		 * and return directly.
707 		 */
708 		if (err == -ENOENT) {
709 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
710 					  NULL);
711 			continue;
712 		} else if (err) {
713 			free_pref(ref);
714 			ret = err;
715 			goto out;
716 		}
717 
718 		/* we put the first parent into the ref at hand */
719 		ULIST_ITER_INIT(&uiter);
720 		node = ulist_next(parents, &uiter);
721 		ref->parent = node ? node->val : 0;
722 		ref->inode_list = unode_aux_to_inode_list(node);
723 
724 		/* Add a prelim_ref(s) for any other parent(s). */
725 		while ((node = ulist_next(parents, &uiter))) {
726 			struct prelim_ref *new_ref;
727 
728 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
729 						   GFP_NOFS);
730 			if (!new_ref) {
731 				free_pref(ref);
732 				ret = -ENOMEM;
733 				goto out;
734 			}
735 			memcpy(new_ref, ref, sizeof(*ref));
736 			new_ref->parent = node->val;
737 			new_ref->inode_list = unode_aux_to_inode_list(node);
738 			prelim_ref_insert(fs_info, &preftrees->direct,
739 					  new_ref, NULL);
740 		}
741 
742 		/*
743 		 * Now it's a direct ref, put it in the direct tree. We must
744 		 * do this last because the ref could be merged/freed here.
745 		 */
746 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
747 
748 		ulist_reinit(parents);
749 		cond_resched();
750 	}
751 out:
752 	ulist_free(parents);
753 	return ret;
754 }
755 
756 /*
757  * read tree blocks and add keys where required.
758  */
759 static int add_missing_keys(struct btrfs_fs_info *fs_info,
760 			    struct preftrees *preftrees, bool lock)
761 {
762 	struct prelim_ref *ref;
763 	struct extent_buffer *eb;
764 	struct preftree *tree = &preftrees->indirect_missing_keys;
765 	struct rb_node *node;
766 
767 	while ((node = rb_first_cached(&tree->root))) {
768 		ref = rb_entry(node, struct prelim_ref, rbnode);
769 		rb_erase_cached(node, &tree->root);
770 
771 		BUG_ON(ref->parent);	/* should not be a direct ref */
772 		BUG_ON(ref->key_for_search.type);
773 		BUG_ON(!ref->wanted_disk_byte);
774 
775 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
776 				     ref->level - 1, NULL);
777 		if (IS_ERR(eb)) {
778 			free_pref(ref);
779 			return PTR_ERR(eb);
780 		} else if (!extent_buffer_uptodate(eb)) {
781 			free_pref(ref);
782 			free_extent_buffer(eb);
783 			return -EIO;
784 		}
785 		if (lock)
786 			btrfs_tree_read_lock(eb);
787 		if (btrfs_header_level(eb) == 0)
788 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
789 		else
790 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
791 		if (lock)
792 			btrfs_tree_read_unlock(eb);
793 		free_extent_buffer(eb);
794 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
795 		cond_resched();
796 	}
797 	return 0;
798 }
799 
800 /*
801  * add all currently queued delayed refs from this head whose seq nr is
802  * smaller or equal that seq to the list
803  */
804 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
805 			    struct btrfs_delayed_ref_head *head, u64 seq,
806 			    struct preftrees *preftrees, struct share_check *sc)
807 {
808 	struct btrfs_delayed_ref_node *node;
809 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
810 	struct btrfs_key key;
811 	struct btrfs_key tmp_op_key;
812 	struct rb_node *n;
813 	int count;
814 	int ret = 0;
815 
816 	if (extent_op && extent_op->update_key)
817 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
818 
819 	spin_lock(&head->lock);
820 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
821 		node = rb_entry(n, struct btrfs_delayed_ref_node,
822 				ref_node);
823 		if (node->seq > seq)
824 			continue;
825 
826 		switch (node->action) {
827 		case BTRFS_ADD_DELAYED_EXTENT:
828 		case BTRFS_UPDATE_DELAYED_HEAD:
829 			WARN_ON(1);
830 			continue;
831 		case BTRFS_ADD_DELAYED_REF:
832 			count = node->ref_mod;
833 			break;
834 		case BTRFS_DROP_DELAYED_REF:
835 			count = node->ref_mod * -1;
836 			break;
837 		default:
838 			BUG();
839 		}
840 		switch (node->type) {
841 		case BTRFS_TREE_BLOCK_REF_KEY: {
842 			/* NORMAL INDIRECT METADATA backref */
843 			struct btrfs_delayed_tree_ref *ref;
844 
845 			ref = btrfs_delayed_node_to_tree_ref(node);
846 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
847 					       &tmp_op_key, ref->level + 1,
848 					       node->bytenr, count, sc,
849 					       GFP_ATOMIC);
850 			break;
851 		}
852 		case BTRFS_SHARED_BLOCK_REF_KEY: {
853 			/* SHARED DIRECT METADATA backref */
854 			struct btrfs_delayed_tree_ref *ref;
855 
856 			ref = btrfs_delayed_node_to_tree_ref(node);
857 
858 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
859 					     ref->parent, node->bytenr, count,
860 					     sc, GFP_ATOMIC);
861 			break;
862 		}
863 		case BTRFS_EXTENT_DATA_REF_KEY: {
864 			/* NORMAL INDIRECT DATA backref */
865 			struct btrfs_delayed_data_ref *ref;
866 			ref = btrfs_delayed_node_to_data_ref(node);
867 
868 			key.objectid = ref->objectid;
869 			key.type = BTRFS_EXTENT_DATA_KEY;
870 			key.offset = ref->offset;
871 
872 			/*
873 			 * Found a inum that doesn't match our known inum, we
874 			 * know it's shared.
875 			 */
876 			if (sc && sc->inum && ref->objectid != sc->inum) {
877 				ret = BACKREF_FOUND_SHARED;
878 				goto out;
879 			}
880 
881 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
882 					       &key, 0, node->bytenr, count, sc,
883 					       GFP_ATOMIC);
884 			break;
885 		}
886 		case BTRFS_SHARED_DATA_REF_KEY: {
887 			/* SHARED DIRECT FULL backref */
888 			struct btrfs_delayed_data_ref *ref;
889 
890 			ref = btrfs_delayed_node_to_data_ref(node);
891 
892 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
893 					     node->bytenr, count, sc,
894 					     GFP_ATOMIC);
895 			break;
896 		}
897 		default:
898 			WARN_ON(1);
899 		}
900 		/*
901 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
902 		 * refs have been checked.
903 		 */
904 		if (ret && (ret != BACKREF_FOUND_SHARED))
905 			break;
906 	}
907 	if (!ret)
908 		ret = extent_is_shared(sc);
909 out:
910 	spin_unlock(&head->lock);
911 	return ret;
912 }
913 
914 /*
915  * add all inline backrefs for bytenr to the list
916  *
917  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
918  */
919 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
920 			   struct btrfs_path *path, u64 bytenr,
921 			   int *info_level, struct preftrees *preftrees,
922 			   struct share_check *sc)
923 {
924 	int ret = 0;
925 	int slot;
926 	struct extent_buffer *leaf;
927 	struct btrfs_key key;
928 	struct btrfs_key found_key;
929 	unsigned long ptr;
930 	unsigned long end;
931 	struct btrfs_extent_item *ei;
932 	u64 flags;
933 	u64 item_size;
934 
935 	/*
936 	 * enumerate all inline refs
937 	 */
938 	leaf = path->nodes[0];
939 	slot = path->slots[0];
940 
941 	item_size = btrfs_item_size_nr(leaf, slot);
942 	BUG_ON(item_size < sizeof(*ei));
943 
944 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
945 	flags = btrfs_extent_flags(leaf, ei);
946 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
947 
948 	ptr = (unsigned long)(ei + 1);
949 	end = (unsigned long)ei + item_size;
950 
951 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
952 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
953 		struct btrfs_tree_block_info *info;
954 
955 		info = (struct btrfs_tree_block_info *)ptr;
956 		*info_level = btrfs_tree_block_level(leaf, info);
957 		ptr += sizeof(struct btrfs_tree_block_info);
958 		BUG_ON(ptr > end);
959 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
960 		*info_level = found_key.offset;
961 	} else {
962 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
963 	}
964 
965 	while (ptr < end) {
966 		struct btrfs_extent_inline_ref *iref;
967 		u64 offset;
968 		int type;
969 
970 		iref = (struct btrfs_extent_inline_ref *)ptr;
971 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
972 							BTRFS_REF_TYPE_ANY);
973 		if (type == BTRFS_REF_TYPE_INVALID)
974 			return -EUCLEAN;
975 
976 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
977 
978 		switch (type) {
979 		case BTRFS_SHARED_BLOCK_REF_KEY:
980 			ret = add_direct_ref(fs_info, preftrees,
981 					     *info_level + 1, offset,
982 					     bytenr, 1, NULL, GFP_NOFS);
983 			break;
984 		case BTRFS_SHARED_DATA_REF_KEY: {
985 			struct btrfs_shared_data_ref *sdref;
986 			int count;
987 
988 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
989 			count = btrfs_shared_data_ref_count(leaf, sdref);
990 
991 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
992 					     bytenr, count, sc, GFP_NOFS);
993 			break;
994 		}
995 		case BTRFS_TREE_BLOCK_REF_KEY:
996 			ret = add_indirect_ref(fs_info, preftrees, offset,
997 					       NULL, *info_level + 1,
998 					       bytenr, 1, NULL, GFP_NOFS);
999 			break;
1000 		case BTRFS_EXTENT_DATA_REF_KEY: {
1001 			struct btrfs_extent_data_ref *dref;
1002 			int count;
1003 			u64 root;
1004 
1005 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1006 			count = btrfs_extent_data_ref_count(leaf, dref);
1007 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008 								      dref);
1009 			key.type = BTRFS_EXTENT_DATA_KEY;
1010 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011 
1012 			if (sc && sc->inum && key.objectid != sc->inum) {
1013 				ret = BACKREF_FOUND_SHARED;
1014 				break;
1015 			}
1016 
1017 			root = btrfs_extent_data_ref_root(leaf, dref);
1018 
1019 			ret = add_indirect_ref(fs_info, preftrees, root,
1020 					       &key, 0, bytenr, count,
1021 					       sc, GFP_NOFS);
1022 			break;
1023 		}
1024 		default:
1025 			WARN_ON(1);
1026 		}
1027 		if (ret)
1028 			return ret;
1029 		ptr += btrfs_extent_inline_ref_size(type);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /*
1036  * add all non-inline backrefs for bytenr to the list
1037  *
1038  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1039  */
1040 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1041 			  struct btrfs_path *path, u64 bytenr,
1042 			  int info_level, struct preftrees *preftrees,
1043 			  struct share_check *sc)
1044 {
1045 	struct btrfs_root *extent_root = fs_info->extent_root;
1046 	int ret;
1047 	int slot;
1048 	struct extent_buffer *leaf;
1049 	struct btrfs_key key;
1050 
1051 	while (1) {
1052 		ret = btrfs_next_item(extent_root, path);
1053 		if (ret < 0)
1054 			break;
1055 		if (ret) {
1056 			ret = 0;
1057 			break;
1058 		}
1059 
1060 		slot = path->slots[0];
1061 		leaf = path->nodes[0];
1062 		btrfs_item_key_to_cpu(leaf, &key, slot);
1063 
1064 		if (key.objectid != bytenr)
1065 			break;
1066 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1067 			continue;
1068 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1069 			break;
1070 
1071 		switch (key.type) {
1072 		case BTRFS_SHARED_BLOCK_REF_KEY:
1073 			/* SHARED DIRECT METADATA backref */
1074 			ret = add_direct_ref(fs_info, preftrees,
1075 					     info_level + 1, key.offset,
1076 					     bytenr, 1, NULL, GFP_NOFS);
1077 			break;
1078 		case BTRFS_SHARED_DATA_REF_KEY: {
1079 			/* SHARED DIRECT FULL backref */
1080 			struct btrfs_shared_data_ref *sdref;
1081 			int count;
1082 
1083 			sdref = btrfs_item_ptr(leaf, slot,
1084 					      struct btrfs_shared_data_ref);
1085 			count = btrfs_shared_data_ref_count(leaf, sdref);
1086 			ret = add_direct_ref(fs_info, preftrees, 0,
1087 					     key.offset, bytenr, count,
1088 					     sc, GFP_NOFS);
1089 			break;
1090 		}
1091 		case BTRFS_TREE_BLOCK_REF_KEY:
1092 			/* NORMAL INDIRECT METADATA backref */
1093 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1094 					       NULL, info_level + 1, bytenr,
1095 					       1, NULL, GFP_NOFS);
1096 			break;
1097 		case BTRFS_EXTENT_DATA_REF_KEY: {
1098 			/* NORMAL INDIRECT DATA backref */
1099 			struct btrfs_extent_data_ref *dref;
1100 			int count;
1101 			u64 root;
1102 
1103 			dref = btrfs_item_ptr(leaf, slot,
1104 					      struct btrfs_extent_data_ref);
1105 			count = btrfs_extent_data_ref_count(leaf, dref);
1106 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 								      dref);
1108 			key.type = BTRFS_EXTENT_DATA_KEY;
1109 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110 
1111 			if (sc && sc->inum && key.objectid != sc->inum) {
1112 				ret = BACKREF_FOUND_SHARED;
1113 				break;
1114 			}
1115 
1116 			root = btrfs_extent_data_ref_root(leaf, dref);
1117 			ret = add_indirect_ref(fs_info, preftrees, root,
1118 					       &key, 0, bytenr, count,
1119 					       sc, GFP_NOFS);
1120 			break;
1121 		}
1122 		default:
1123 			WARN_ON(1);
1124 		}
1125 		if (ret)
1126 			return ret;
1127 
1128 	}
1129 
1130 	return ret;
1131 }
1132 
1133 /*
1134  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1135  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1136  * indirect refs to their parent bytenr.
1137  * When roots are found, they're added to the roots list
1138  *
1139  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1140  * much like trans == NULL case, the difference only lies in it will not
1141  * commit root.
1142  * The special case is for qgroup to search roots in commit_transaction().
1143  *
1144  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1145  * shared extent is detected.
1146  *
1147  * Otherwise this returns 0 for success and <0 for an error.
1148  *
1149  * If ignore_offset is set to false, only extent refs whose offsets match
1150  * extent_item_pos are returned.  If true, every extent ref is returned
1151  * and extent_item_pos is ignored.
1152  *
1153  * FIXME some caching might speed things up
1154  */
1155 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1156 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1157 			     u64 time_seq, struct ulist *refs,
1158 			     struct ulist *roots, const u64 *extent_item_pos,
1159 			     struct share_check *sc, bool ignore_offset)
1160 {
1161 	struct btrfs_key key;
1162 	struct btrfs_path *path;
1163 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1164 	struct btrfs_delayed_ref_head *head;
1165 	int info_level = 0;
1166 	int ret;
1167 	struct prelim_ref *ref;
1168 	struct rb_node *node;
1169 	struct extent_inode_elem *eie = NULL;
1170 	struct preftrees preftrees = {
1171 		.direct = PREFTREE_INIT,
1172 		.indirect = PREFTREE_INIT,
1173 		.indirect_missing_keys = PREFTREE_INIT
1174 	};
1175 
1176 	key.objectid = bytenr;
1177 	key.offset = (u64)-1;
1178 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1179 		key.type = BTRFS_METADATA_ITEM_KEY;
1180 	else
1181 		key.type = BTRFS_EXTENT_ITEM_KEY;
1182 
1183 	path = btrfs_alloc_path();
1184 	if (!path)
1185 		return -ENOMEM;
1186 	if (!trans) {
1187 		path->search_commit_root = 1;
1188 		path->skip_locking = 1;
1189 	}
1190 
1191 	if (time_seq == SEQ_LAST)
1192 		path->skip_locking = 1;
1193 
1194 	/*
1195 	 * grab both a lock on the path and a lock on the delayed ref head.
1196 	 * We need both to get a consistent picture of how the refs look
1197 	 * at a specified point in time
1198 	 */
1199 again:
1200 	head = NULL;
1201 
1202 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1203 	if (ret < 0)
1204 		goto out;
1205 	BUG_ON(ret == 0);
1206 
1207 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1209 	    time_seq != SEQ_LAST) {
1210 #else
1211 	if (trans && time_seq != SEQ_LAST) {
1212 #endif
1213 		/*
1214 		 * look if there are updates for this ref queued and lock the
1215 		 * head
1216 		 */
1217 		delayed_refs = &trans->transaction->delayed_refs;
1218 		spin_lock(&delayed_refs->lock);
1219 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1220 		if (head) {
1221 			if (!mutex_trylock(&head->mutex)) {
1222 				refcount_inc(&head->refs);
1223 				spin_unlock(&delayed_refs->lock);
1224 
1225 				btrfs_release_path(path);
1226 
1227 				/*
1228 				 * Mutex was contended, block until it's
1229 				 * released and try again
1230 				 */
1231 				mutex_lock(&head->mutex);
1232 				mutex_unlock(&head->mutex);
1233 				btrfs_put_delayed_ref_head(head);
1234 				goto again;
1235 			}
1236 			spin_unlock(&delayed_refs->lock);
1237 			ret = add_delayed_refs(fs_info, head, time_seq,
1238 					       &preftrees, sc);
1239 			mutex_unlock(&head->mutex);
1240 			if (ret)
1241 				goto out;
1242 		} else {
1243 			spin_unlock(&delayed_refs->lock);
1244 		}
1245 	}
1246 
1247 	if (path->slots[0]) {
1248 		struct extent_buffer *leaf;
1249 		int slot;
1250 
1251 		path->slots[0]--;
1252 		leaf = path->nodes[0];
1253 		slot = path->slots[0];
1254 		btrfs_item_key_to_cpu(leaf, &key, slot);
1255 		if (key.objectid == bytenr &&
1256 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1257 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1258 			ret = add_inline_refs(fs_info, path, bytenr,
1259 					      &info_level, &preftrees, sc);
1260 			if (ret)
1261 				goto out;
1262 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1263 					     &preftrees, sc);
1264 			if (ret)
1265 				goto out;
1266 		}
1267 	}
1268 
1269 	btrfs_release_path(path);
1270 
1271 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1272 	if (ret)
1273 		goto out;
1274 
1275 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1276 
1277 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1278 				    extent_item_pos, sc, ignore_offset);
1279 	if (ret)
1280 		goto out;
1281 
1282 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1283 
1284 	/*
1285 	 * This walks the tree of merged and resolved refs. Tree blocks are
1286 	 * read in as needed. Unique entries are added to the ulist, and
1287 	 * the list of found roots is updated.
1288 	 *
1289 	 * We release the entire tree in one go before returning.
1290 	 */
1291 	node = rb_first_cached(&preftrees.direct.root);
1292 	while (node) {
1293 		ref = rb_entry(node, struct prelim_ref, rbnode);
1294 		node = rb_next(&ref->rbnode);
1295 		/*
1296 		 * ref->count < 0 can happen here if there are delayed
1297 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1298 		 * prelim_ref_insert() relies on this when merging
1299 		 * identical refs to keep the overall count correct.
1300 		 * prelim_ref_insert() will merge only those refs
1301 		 * which compare identically.  Any refs having
1302 		 * e.g. different offsets would not be merged,
1303 		 * and would retain their original ref->count < 0.
1304 		 */
1305 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1306 			if (sc && sc->root_objectid &&
1307 			    ref->root_id != sc->root_objectid) {
1308 				ret = BACKREF_FOUND_SHARED;
1309 				goto out;
1310 			}
1311 
1312 			/* no parent == root of tree */
1313 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1314 			if (ret < 0)
1315 				goto out;
1316 		}
1317 		if (ref->count && ref->parent) {
1318 			if (extent_item_pos && !ref->inode_list &&
1319 			    ref->level == 0) {
1320 				struct extent_buffer *eb;
1321 
1322 				eb = read_tree_block(fs_info, ref->parent, 0,
1323 						     ref->level, NULL);
1324 				if (IS_ERR(eb)) {
1325 					ret = PTR_ERR(eb);
1326 					goto out;
1327 				} else if (!extent_buffer_uptodate(eb)) {
1328 					free_extent_buffer(eb);
1329 					ret = -EIO;
1330 					goto out;
1331 				}
1332 
1333 				if (!path->skip_locking) {
1334 					btrfs_tree_read_lock(eb);
1335 					btrfs_set_lock_blocking_read(eb);
1336 				}
1337 				ret = find_extent_in_eb(eb, bytenr,
1338 							*extent_item_pos, &eie, ignore_offset);
1339 				if (!path->skip_locking)
1340 					btrfs_tree_read_unlock_blocking(eb);
1341 				free_extent_buffer(eb);
1342 				if (ret < 0)
1343 					goto out;
1344 				ref->inode_list = eie;
1345 			}
1346 			ret = ulist_add_merge_ptr(refs, ref->parent,
1347 						  ref->inode_list,
1348 						  (void **)&eie, GFP_NOFS);
1349 			if (ret < 0)
1350 				goto out;
1351 			if (!ret && extent_item_pos) {
1352 				/*
1353 				 * we've recorded that parent, so we must extend
1354 				 * its inode list here
1355 				 */
1356 				BUG_ON(!eie);
1357 				while (eie->next)
1358 					eie = eie->next;
1359 				eie->next = ref->inode_list;
1360 			}
1361 			eie = NULL;
1362 		}
1363 		cond_resched();
1364 	}
1365 
1366 out:
1367 	btrfs_free_path(path);
1368 
1369 	prelim_release(&preftrees.direct);
1370 	prelim_release(&preftrees.indirect);
1371 	prelim_release(&preftrees.indirect_missing_keys);
1372 
1373 	if (ret < 0)
1374 		free_inode_elem_list(eie);
1375 	return ret;
1376 }
1377 
1378 static void free_leaf_list(struct ulist *blocks)
1379 {
1380 	struct ulist_node *node = NULL;
1381 	struct extent_inode_elem *eie;
1382 	struct ulist_iterator uiter;
1383 
1384 	ULIST_ITER_INIT(&uiter);
1385 	while ((node = ulist_next(blocks, &uiter))) {
1386 		if (!node->aux)
1387 			continue;
1388 		eie = unode_aux_to_inode_list(node);
1389 		free_inode_elem_list(eie);
1390 		node->aux = 0;
1391 	}
1392 
1393 	ulist_free(blocks);
1394 }
1395 
1396 /*
1397  * Finds all leafs with a reference to the specified combination of bytenr and
1398  * offset. key_list_head will point to a list of corresponding keys (caller must
1399  * free each list element). The leafs will be stored in the leafs ulist, which
1400  * must be freed with ulist_free.
1401  *
1402  * returns 0 on success, <0 on error
1403  */
1404 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1405 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1406 			 u64 time_seq, struct ulist **leafs,
1407 			 const u64 *extent_item_pos, bool ignore_offset)
1408 {
1409 	int ret;
1410 
1411 	*leafs = ulist_alloc(GFP_NOFS);
1412 	if (!*leafs)
1413 		return -ENOMEM;
1414 
1415 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1416 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1417 	if (ret < 0 && ret != -ENOENT) {
1418 		free_leaf_list(*leafs);
1419 		return ret;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * walk all backrefs for a given extent to find all roots that reference this
1427  * extent. Walking a backref means finding all extents that reference this
1428  * extent and in turn walk the backrefs of those, too. Naturally this is a
1429  * recursive process, but here it is implemented in an iterative fashion: We
1430  * find all referencing extents for the extent in question and put them on a
1431  * list. In turn, we find all referencing extents for those, further appending
1432  * to the list. The way we iterate the list allows adding more elements after
1433  * the current while iterating. The process stops when we reach the end of the
1434  * list. Found roots are added to the roots list.
1435  *
1436  * returns 0 on success, < 0 on error.
1437  */
1438 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1439 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1440 				     u64 time_seq, struct ulist **roots,
1441 				     bool ignore_offset)
1442 {
1443 	struct ulist *tmp;
1444 	struct ulist_node *node = NULL;
1445 	struct ulist_iterator uiter;
1446 	int ret;
1447 
1448 	tmp = ulist_alloc(GFP_NOFS);
1449 	if (!tmp)
1450 		return -ENOMEM;
1451 	*roots = ulist_alloc(GFP_NOFS);
1452 	if (!*roots) {
1453 		ulist_free(tmp);
1454 		return -ENOMEM;
1455 	}
1456 
1457 	ULIST_ITER_INIT(&uiter);
1458 	while (1) {
1459 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1460 					tmp, *roots, NULL, NULL, ignore_offset);
1461 		if (ret < 0 && ret != -ENOENT) {
1462 			ulist_free(tmp);
1463 			ulist_free(*roots);
1464 			return ret;
1465 		}
1466 		node = ulist_next(tmp, &uiter);
1467 		if (!node)
1468 			break;
1469 		bytenr = node->val;
1470 		cond_resched();
1471 	}
1472 
1473 	ulist_free(tmp);
1474 	return 0;
1475 }
1476 
1477 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1478 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1479 			 u64 time_seq, struct ulist **roots,
1480 			 bool ignore_offset)
1481 {
1482 	int ret;
1483 
1484 	if (!trans)
1485 		down_read(&fs_info->commit_root_sem);
1486 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1487 					time_seq, roots, ignore_offset);
1488 	if (!trans)
1489 		up_read(&fs_info->commit_root_sem);
1490 	return ret;
1491 }
1492 
1493 /**
1494  * btrfs_check_shared - tell us whether an extent is shared
1495  *
1496  * btrfs_check_shared uses the backref walking code but will short
1497  * circuit as soon as it finds a root or inode that doesn't match the
1498  * one passed in. This provides a significant performance benefit for
1499  * callers (such as fiemap) which want to know whether the extent is
1500  * shared but do not need a ref count.
1501  *
1502  * This attempts to attach to the running transaction in order to account for
1503  * delayed refs, but continues on even when no running transaction exists.
1504  *
1505  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1506  */
1507 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1508 		struct ulist *roots, struct ulist *tmp)
1509 {
1510 	struct btrfs_fs_info *fs_info = root->fs_info;
1511 	struct btrfs_trans_handle *trans;
1512 	struct ulist_iterator uiter;
1513 	struct ulist_node *node;
1514 	struct seq_list elem = SEQ_LIST_INIT(elem);
1515 	int ret = 0;
1516 	struct share_check shared = {
1517 		.root_objectid = root->root_key.objectid,
1518 		.inum = inum,
1519 		.share_count = 0,
1520 	};
1521 
1522 	ulist_init(roots);
1523 	ulist_init(tmp);
1524 
1525 	trans = btrfs_join_transaction_nostart(root);
1526 	if (IS_ERR(trans)) {
1527 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1528 			ret = PTR_ERR(trans);
1529 			goto out;
1530 		}
1531 		trans = NULL;
1532 		down_read(&fs_info->commit_root_sem);
1533 	} else {
1534 		btrfs_get_tree_mod_seq(fs_info, &elem);
1535 	}
1536 
1537 	ULIST_ITER_INIT(&uiter);
1538 	while (1) {
1539 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1540 					roots, NULL, &shared, false);
1541 		if (ret == BACKREF_FOUND_SHARED) {
1542 			/* this is the only condition under which we return 1 */
1543 			ret = 1;
1544 			break;
1545 		}
1546 		if (ret < 0 && ret != -ENOENT)
1547 			break;
1548 		ret = 0;
1549 		node = ulist_next(tmp, &uiter);
1550 		if (!node)
1551 			break;
1552 		bytenr = node->val;
1553 		shared.share_count = 0;
1554 		cond_resched();
1555 	}
1556 
1557 	if (trans) {
1558 		btrfs_put_tree_mod_seq(fs_info, &elem);
1559 		btrfs_end_transaction(trans);
1560 	} else {
1561 		up_read(&fs_info->commit_root_sem);
1562 	}
1563 out:
1564 	ulist_release(roots);
1565 	ulist_release(tmp);
1566 	return ret;
1567 }
1568 
1569 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1570 			  u64 start_off, struct btrfs_path *path,
1571 			  struct btrfs_inode_extref **ret_extref,
1572 			  u64 *found_off)
1573 {
1574 	int ret, slot;
1575 	struct btrfs_key key;
1576 	struct btrfs_key found_key;
1577 	struct btrfs_inode_extref *extref;
1578 	const struct extent_buffer *leaf;
1579 	unsigned long ptr;
1580 
1581 	key.objectid = inode_objectid;
1582 	key.type = BTRFS_INODE_EXTREF_KEY;
1583 	key.offset = start_off;
1584 
1585 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1586 	if (ret < 0)
1587 		return ret;
1588 
1589 	while (1) {
1590 		leaf = path->nodes[0];
1591 		slot = path->slots[0];
1592 		if (slot >= btrfs_header_nritems(leaf)) {
1593 			/*
1594 			 * If the item at offset is not found,
1595 			 * btrfs_search_slot will point us to the slot
1596 			 * where it should be inserted. In our case
1597 			 * that will be the slot directly before the
1598 			 * next INODE_REF_KEY_V2 item. In the case
1599 			 * that we're pointing to the last slot in a
1600 			 * leaf, we must move one leaf over.
1601 			 */
1602 			ret = btrfs_next_leaf(root, path);
1603 			if (ret) {
1604 				if (ret >= 1)
1605 					ret = -ENOENT;
1606 				break;
1607 			}
1608 			continue;
1609 		}
1610 
1611 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1612 
1613 		/*
1614 		 * Check that we're still looking at an extended ref key for
1615 		 * this particular objectid. If we have different
1616 		 * objectid or type then there are no more to be found
1617 		 * in the tree and we can exit.
1618 		 */
1619 		ret = -ENOENT;
1620 		if (found_key.objectid != inode_objectid)
1621 			break;
1622 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1623 			break;
1624 
1625 		ret = 0;
1626 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1627 		extref = (struct btrfs_inode_extref *)ptr;
1628 		*ret_extref = extref;
1629 		if (found_off)
1630 			*found_off = found_key.offset;
1631 		break;
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 /*
1638  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1639  * Elements of the path are separated by '/' and the path is guaranteed to be
1640  * 0-terminated. the path is only given within the current file system.
1641  * Therefore, it never starts with a '/'. the caller is responsible to provide
1642  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1643  * the start point of the resulting string is returned. this pointer is within
1644  * dest, normally.
1645  * in case the path buffer would overflow, the pointer is decremented further
1646  * as if output was written to the buffer, though no more output is actually
1647  * generated. that way, the caller can determine how much space would be
1648  * required for the path to fit into the buffer. in that case, the returned
1649  * value will be smaller than dest. callers must check this!
1650  */
1651 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1652 			u32 name_len, unsigned long name_off,
1653 			struct extent_buffer *eb_in, u64 parent,
1654 			char *dest, u32 size)
1655 {
1656 	int slot;
1657 	u64 next_inum;
1658 	int ret;
1659 	s64 bytes_left = ((s64)size) - 1;
1660 	struct extent_buffer *eb = eb_in;
1661 	struct btrfs_key found_key;
1662 	int leave_spinning = path->leave_spinning;
1663 	struct btrfs_inode_ref *iref;
1664 
1665 	if (bytes_left >= 0)
1666 		dest[bytes_left] = '\0';
1667 
1668 	path->leave_spinning = 1;
1669 	while (1) {
1670 		bytes_left -= name_len;
1671 		if (bytes_left >= 0)
1672 			read_extent_buffer(eb, dest + bytes_left,
1673 					   name_off, name_len);
1674 		if (eb != eb_in) {
1675 			if (!path->skip_locking)
1676 				btrfs_tree_read_unlock_blocking(eb);
1677 			free_extent_buffer(eb);
1678 		}
1679 		ret = btrfs_find_item(fs_root, path, parent, 0,
1680 				BTRFS_INODE_REF_KEY, &found_key);
1681 		if (ret > 0)
1682 			ret = -ENOENT;
1683 		if (ret)
1684 			break;
1685 
1686 		next_inum = found_key.offset;
1687 
1688 		/* regular exit ahead */
1689 		if (parent == next_inum)
1690 			break;
1691 
1692 		slot = path->slots[0];
1693 		eb = path->nodes[0];
1694 		/* make sure we can use eb after releasing the path */
1695 		if (eb != eb_in) {
1696 			if (!path->skip_locking)
1697 				btrfs_set_lock_blocking_read(eb);
1698 			path->nodes[0] = NULL;
1699 			path->locks[0] = 0;
1700 		}
1701 		btrfs_release_path(path);
1702 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1703 
1704 		name_len = btrfs_inode_ref_name_len(eb, iref);
1705 		name_off = (unsigned long)(iref + 1);
1706 
1707 		parent = next_inum;
1708 		--bytes_left;
1709 		if (bytes_left >= 0)
1710 			dest[bytes_left] = '/';
1711 	}
1712 
1713 	btrfs_release_path(path);
1714 	path->leave_spinning = leave_spinning;
1715 
1716 	if (ret)
1717 		return ERR_PTR(ret);
1718 
1719 	return dest + bytes_left;
1720 }
1721 
1722 /*
1723  * this makes the path point to (logical EXTENT_ITEM *)
1724  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1725  * tree blocks and <0 on error.
1726  */
1727 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1728 			struct btrfs_path *path, struct btrfs_key *found_key,
1729 			u64 *flags_ret)
1730 {
1731 	int ret;
1732 	u64 flags;
1733 	u64 size = 0;
1734 	u32 item_size;
1735 	const struct extent_buffer *eb;
1736 	struct btrfs_extent_item *ei;
1737 	struct btrfs_key key;
1738 
1739 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1740 		key.type = BTRFS_METADATA_ITEM_KEY;
1741 	else
1742 		key.type = BTRFS_EXTENT_ITEM_KEY;
1743 	key.objectid = logical;
1744 	key.offset = (u64)-1;
1745 
1746 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1747 	if (ret < 0)
1748 		return ret;
1749 
1750 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1751 	if (ret) {
1752 		if (ret > 0)
1753 			ret = -ENOENT;
1754 		return ret;
1755 	}
1756 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1757 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1758 		size = fs_info->nodesize;
1759 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1760 		size = found_key->offset;
1761 
1762 	if (found_key->objectid > logical ||
1763 	    found_key->objectid + size <= logical) {
1764 		btrfs_debug(fs_info,
1765 			"logical %llu is not within any extent", logical);
1766 		return -ENOENT;
1767 	}
1768 
1769 	eb = path->nodes[0];
1770 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1771 	BUG_ON(item_size < sizeof(*ei));
1772 
1773 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1774 	flags = btrfs_extent_flags(eb, ei);
1775 
1776 	btrfs_debug(fs_info,
1777 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1778 		 logical, logical - found_key->objectid, found_key->objectid,
1779 		 found_key->offset, flags, item_size);
1780 
1781 	WARN_ON(!flags_ret);
1782 	if (flags_ret) {
1783 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1784 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1785 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1786 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1787 		else
1788 			BUG();
1789 		return 0;
1790 	}
1791 
1792 	return -EIO;
1793 }
1794 
1795 /*
1796  * helper function to iterate extent inline refs. ptr must point to a 0 value
1797  * for the first call and may be modified. it is used to track state.
1798  * if more refs exist, 0 is returned and the next call to
1799  * get_extent_inline_ref must pass the modified ptr parameter to get the
1800  * next ref. after the last ref was processed, 1 is returned.
1801  * returns <0 on error
1802  */
1803 static int get_extent_inline_ref(unsigned long *ptr,
1804 				 const struct extent_buffer *eb,
1805 				 const struct btrfs_key *key,
1806 				 const struct btrfs_extent_item *ei,
1807 				 u32 item_size,
1808 				 struct btrfs_extent_inline_ref **out_eiref,
1809 				 int *out_type)
1810 {
1811 	unsigned long end;
1812 	u64 flags;
1813 	struct btrfs_tree_block_info *info;
1814 
1815 	if (!*ptr) {
1816 		/* first call */
1817 		flags = btrfs_extent_flags(eb, ei);
1818 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1819 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1820 				/* a skinny metadata extent */
1821 				*out_eiref =
1822 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1823 			} else {
1824 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1825 				info = (struct btrfs_tree_block_info *)(ei + 1);
1826 				*out_eiref =
1827 				   (struct btrfs_extent_inline_ref *)(info + 1);
1828 			}
1829 		} else {
1830 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1831 		}
1832 		*ptr = (unsigned long)*out_eiref;
1833 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1834 			return -ENOENT;
1835 	}
1836 
1837 	end = (unsigned long)ei + item_size;
1838 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1839 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1840 						     BTRFS_REF_TYPE_ANY);
1841 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1842 		return -EUCLEAN;
1843 
1844 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1845 	WARN_ON(*ptr > end);
1846 	if (*ptr == end)
1847 		return 1; /* last */
1848 
1849 	return 0;
1850 }
1851 
1852 /*
1853  * reads the tree block backref for an extent. tree level and root are returned
1854  * through out_level and out_root. ptr must point to a 0 value for the first
1855  * call and may be modified (see get_extent_inline_ref comment).
1856  * returns 0 if data was provided, 1 if there was no more data to provide or
1857  * <0 on error.
1858  */
1859 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1860 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1861 			    u32 item_size, u64 *out_root, u8 *out_level)
1862 {
1863 	int ret;
1864 	int type;
1865 	struct btrfs_extent_inline_ref *eiref;
1866 
1867 	if (*ptr == (unsigned long)-1)
1868 		return 1;
1869 
1870 	while (1) {
1871 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1872 					      &eiref, &type);
1873 		if (ret < 0)
1874 			return ret;
1875 
1876 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1877 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1878 			break;
1879 
1880 		if (ret == 1)
1881 			return 1;
1882 	}
1883 
1884 	/* we can treat both ref types equally here */
1885 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1886 
1887 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1888 		struct btrfs_tree_block_info *info;
1889 
1890 		info = (struct btrfs_tree_block_info *)(ei + 1);
1891 		*out_level = btrfs_tree_block_level(eb, info);
1892 	} else {
1893 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1894 		*out_level = (u8)key->offset;
1895 	}
1896 
1897 	if (ret == 1)
1898 		*ptr = (unsigned long)-1;
1899 
1900 	return 0;
1901 }
1902 
1903 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1904 			     struct extent_inode_elem *inode_list,
1905 			     u64 root, u64 extent_item_objectid,
1906 			     iterate_extent_inodes_t *iterate, void *ctx)
1907 {
1908 	struct extent_inode_elem *eie;
1909 	int ret = 0;
1910 
1911 	for (eie = inode_list; eie; eie = eie->next) {
1912 		btrfs_debug(fs_info,
1913 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1914 			    extent_item_objectid, eie->inum,
1915 			    eie->offset, root);
1916 		ret = iterate(eie->inum, eie->offset, root, ctx);
1917 		if (ret) {
1918 			btrfs_debug(fs_info,
1919 				    "stopping iteration for %llu due to ret=%d",
1920 				    extent_item_objectid, ret);
1921 			break;
1922 		}
1923 	}
1924 
1925 	return ret;
1926 }
1927 
1928 /*
1929  * calls iterate() for every inode that references the extent identified by
1930  * the given parameters.
1931  * when the iterator function returns a non-zero value, iteration stops.
1932  */
1933 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1934 				u64 extent_item_objectid, u64 extent_item_pos,
1935 				int search_commit_root,
1936 				iterate_extent_inodes_t *iterate, void *ctx,
1937 				bool ignore_offset)
1938 {
1939 	int ret;
1940 	struct btrfs_trans_handle *trans = NULL;
1941 	struct ulist *refs = NULL;
1942 	struct ulist *roots = NULL;
1943 	struct ulist_node *ref_node = NULL;
1944 	struct ulist_node *root_node = NULL;
1945 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1946 	struct ulist_iterator ref_uiter;
1947 	struct ulist_iterator root_uiter;
1948 
1949 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1950 			extent_item_objectid);
1951 
1952 	if (!search_commit_root) {
1953 		trans = btrfs_attach_transaction(fs_info->extent_root);
1954 		if (IS_ERR(trans)) {
1955 			if (PTR_ERR(trans) != -ENOENT &&
1956 			    PTR_ERR(trans) != -EROFS)
1957 				return PTR_ERR(trans);
1958 			trans = NULL;
1959 		}
1960 	}
1961 
1962 	if (trans)
1963 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1964 	else
1965 		down_read(&fs_info->commit_root_sem);
1966 
1967 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1968 				   tree_mod_seq_elem.seq, &refs,
1969 				   &extent_item_pos, ignore_offset);
1970 	if (ret)
1971 		goto out;
1972 
1973 	ULIST_ITER_INIT(&ref_uiter);
1974 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1975 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1976 						tree_mod_seq_elem.seq, &roots,
1977 						ignore_offset);
1978 		if (ret)
1979 			break;
1980 		ULIST_ITER_INIT(&root_uiter);
1981 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1982 			btrfs_debug(fs_info,
1983 				    "root %llu references leaf %llu, data list %#llx",
1984 				    root_node->val, ref_node->val,
1985 				    ref_node->aux);
1986 			ret = iterate_leaf_refs(fs_info,
1987 						(struct extent_inode_elem *)
1988 						(uintptr_t)ref_node->aux,
1989 						root_node->val,
1990 						extent_item_objectid,
1991 						iterate, ctx);
1992 		}
1993 		ulist_free(roots);
1994 	}
1995 
1996 	free_leaf_list(refs);
1997 out:
1998 	if (trans) {
1999 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2000 		btrfs_end_transaction(trans);
2001 	} else {
2002 		up_read(&fs_info->commit_root_sem);
2003 	}
2004 
2005 	return ret;
2006 }
2007 
2008 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2009 				struct btrfs_path *path,
2010 				iterate_extent_inodes_t *iterate, void *ctx,
2011 				bool ignore_offset)
2012 {
2013 	int ret;
2014 	u64 extent_item_pos;
2015 	u64 flags = 0;
2016 	struct btrfs_key found_key;
2017 	int search_commit_root = path->search_commit_root;
2018 
2019 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2020 	btrfs_release_path(path);
2021 	if (ret < 0)
2022 		return ret;
2023 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2024 		return -EINVAL;
2025 
2026 	extent_item_pos = logical - found_key.objectid;
2027 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2028 					extent_item_pos, search_commit_root,
2029 					iterate, ctx, ignore_offset);
2030 
2031 	return ret;
2032 }
2033 
2034 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2035 			      struct extent_buffer *eb, void *ctx);
2036 
2037 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2038 			      struct btrfs_path *path,
2039 			      iterate_irefs_t *iterate, void *ctx)
2040 {
2041 	int ret = 0;
2042 	int slot;
2043 	u32 cur;
2044 	u32 len;
2045 	u32 name_len;
2046 	u64 parent = 0;
2047 	int found = 0;
2048 	struct extent_buffer *eb;
2049 	struct btrfs_item *item;
2050 	struct btrfs_inode_ref *iref;
2051 	struct btrfs_key found_key;
2052 
2053 	while (!ret) {
2054 		ret = btrfs_find_item(fs_root, path, inum,
2055 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2056 				&found_key);
2057 
2058 		if (ret < 0)
2059 			break;
2060 		if (ret) {
2061 			ret = found ? 0 : -ENOENT;
2062 			break;
2063 		}
2064 		++found;
2065 
2066 		parent = found_key.offset;
2067 		slot = path->slots[0];
2068 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2069 		if (!eb) {
2070 			ret = -ENOMEM;
2071 			break;
2072 		}
2073 		btrfs_release_path(path);
2074 
2075 		item = btrfs_item_nr(slot);
2076 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2077 
2078 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2079 			name_len = btrfs_inode_ref_name_len(eb, iref);
2080 			/* path must be released before calling iterate()! */
2081 			btrfs_debug(fs_root->fs_info,
2082 				"following ref at offset %u for inode %llu in tree %llu",
2083 				cur, found_key.objectid,
2084 				fs_root->root_key.objectid);
2085 			ret = iterate(parent, name_len,
2086 				      (unsigned long)(iref + 1), eb, ctx);
2087 			if (ret)
2088 				break;
2089 			len = sizeof(*iref) + name_len;
2090 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2091 		}
2092 		free_extent_buffer(eb);
2093 	}
2094 
2095 	btrfs_release_path(path);
2096 
2097 	return ret;
2098 }
2099 
2100 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2101 				 struct btrfs_path *path,
2102 				 iterate_irefs_t *iterate, void *ctx)
2103 {
2104 	int ret;
2105 	int slot;
2106 	u64 offset = 0;
2107 	u64 parent;
2108 	int found = 0;
2109 	struct extent_buffer *eb;
2110 	struct btrfs_inode_extref *extref;
2111 	u32 item_size;
2112 	u32 cur_offset;
2113 	unsigned long ptr;
2114 
2115 	while (1) {
2116 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2117 					    &offset);
2118 		if (ret < 0)
2119 			break;
2120 		if (ret) {
2121 			ret = found ? 0 : -ENOENT;
2122 			break;
2123 		}
2124 		++found;
2125 
2126 		slot = path->slots[0];
2127 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2128 		if (!eb) {
2129 			ret = -ENOMEM;
2130 			break;
2131 		}
2132 		btrfs_release_path(path);
2133 
2134 		item_size = btrfs_item_size_nr(eb, slot);
2135 		ptr = btrfs_item_ptr_offset(eb, slot);
2136 		cur_offset = 0;
2137 
2138 		while (cur_offset < item_size) {
2139 			u32 name_len;
2140 
2141 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2142 			parent = btrfs_inode_extref_parent(eb, extref);
2143 			name_len = btrfs_inode_extref_name_len(eb, extref);
2144 			ret = iterate(parent, name_len,
2145 				      (unsigned long)&extref->name, eb, ctx);
2146 			if (ret)
2147 				break;
2148 
2149 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2150 			cur_offset += sizeof(*extref);
2151 		}
2152 		free_extent_buffer(eb);
2153 
2154 		offset++;
2155 	}
2156 
2157 	btrfs_release_path(path);
2158 
2159 	return ret;
2160 }
2161 
2162 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2163 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2164 			 void *ctx)
2165 {
2166 	int ret;
2167 	int found_refs = 0;
2168 
2169 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2170 	if (!ret)
2171 		++found_refs;
2172 	else if (ret != -ENOENT)
2173 		return ret;
2174 
2175 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2176 	if (ret == -ENOENT && found_refs)
2177 		return 0;
2178 
2179 	return ret;
2180 }
2181 
2182 /*
2183  * returns 0 if the path could be dumped (probably truncated)
2184  * returns <0 in case of an error
2185  */
2186 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2187 			 struct extent_buffer *eb, void *ctx)
2188 {
2189 	struct inode_fs_paths *ipath = ctx;
2190 	char *fspath;
2191 	char *fspath_min;
2192 	int i = ipath->fspath->elem_cnt;
2193 	const int s_ptr = sizeof(char *);
2194 	u32 bytes_left;
2195 
2196 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2197 					ipath->fspath->bytes_left - s_ptr : 0;
2198 
2199 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2200 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2201 				   name_off, eb, inum, fspath_min, bytes_left);
2202 	if (IS_ERR(fspath))
2203 		return PTR_ERR(fspath);
2204 
2205 	if (fspath > fspath_min) {
2206 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2207 		++ipath->fspath->elem_cnt;
2208 		ipath->fspath->bytes_left = fspath - fspath_min;
2209 	} else {
2210 		++ipath->fspath->elem_missed;
2211 		ipath->fspath->bytes_missing += fspath_min - fspath;
2212 		ipath->fspath->bytes_left = 0;
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /*
2219  * this dumps all file system paths to the inode into the ipath struct, provided
2220  * is has been created large enough. each path is zero-terminated and accessed
2221  * from ipath->fspath->val[i].
2222  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2223  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2224  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2225  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2226  * have been needed to return all paths.
2227  */
2228 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2229 {
2230 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2231 			     inode_to_path, ipath);
2232 }
2233 
2234 struct btrfs_data_container *init_data_container(u32 total_bytes)
2235 {
2236 	struct btrfs_data_container *data;
2237 	size_t alloc_bytes;
2238 
2239 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2240 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2241 	if (!data)
2242 		return ERR_PTR(-ENOMEM);
2243 
2244 	if (total_bytes >= sizeof(*data)) {
2245 		data->bytes_left = total_bytes - sizeof(*data);
2246 		data->bytes_missing = 0;
2247 	} else {
2248 		data->bytes_missing = sizeof(*data) - total_bytes;
2249 		data->bytes_left = 0;
2250 	}
2251 
2252 	data->elem_cnt = 0;
2253 	data->elem_missed = 0;
2254 
2255 	return data;
2256 }
2257 
2258 /*
2259  * allocates space to return multiple file system paths for an inode.
2260  * total_bytes to allocate are passed, note that space usable for actual path
2261  * information will be total_bytes - sizeof(struct inode_fs_paths).
2262  * the returned pointer must be freed with free_ipath() in the end.
2263  */
2264 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2265 					struct btrfs_path *path)
2266 {
2267 	struct inode_fs_paths *ifp;
2268 	struct btrfs_data_container *fspath;
2269 
2270 	fspath = init_data_container(total_bytes);
2271 	if (IS_ERR(fspath))
2272 		return ERR_CAST(fspath);
2273 
2274 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2275 	if (!ifp) {
2276 		kvfree(fspath);
2277 		return ERR_PTR(-ENOMEM);
2278 	}
2279 
2280 	ifp->btrfs_path = path;
2281 	ifp->fspath = fspath;
2282 	ifp->fs_root = fs_root;
2283 
2284 	return ifp;
2285 }
2286 
2287 void free_ipath(struct inode_fs_paths *ipath)
2288 {
2289 	if (!ipath)
2290 		return;
2291 	kvfree(ipath->fspath);
2292 	kfree(ipath);
2293 }
2294 
2295 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2296 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2297 {
2298 	struct btrfs_backref_iter *ret;
2299 
2300 	ret = kzalloc(sizeof(*ret), gfp_flag);
2301 	if (!ret)
2302 		return NULL;
2303 
2304 	ret->path = btrfs_alloc_path();
2305 	if (!ret) {
2306 		kfree(ret);
2307 		return NULL;
2308 	}
2309 
2310 	/* Current backref iterator only supports iteration in commit root */
2311 	ret->path->search_commit_root = 1;
2312 	ret->path->skip_locking = 1;
2313 	ret->fs_info = fs_info;
2314 
2315 	return ret;
2316 }
2317 
2318 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2319 {
2320 	struct btrfs_fs_info *fs_info = iter->fs_info;
2321 	struct btrfs_path *path = iter->path;
2322 	struct btrfs_extent_item *ei;
2323 	struct btrfs_key key;
2324 	int ret;
2325 
2326 	key.objectid = bytenr;
2327 	key.type = BTRFS_METADATA_ITEM_KEY;
2328 	key.offset = (u64)-1;
2329 	iter->bytenr = bytenr;
2330 
2331 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2332 	if (ret < 0)
2333 		return ret;
2334 	if (ret == 0) {
2335 		ret = -EUCLEAN;
2336 		goto release;
2337 	}
2338 	if (path->slots[0] == 0) {
2339 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2340 		ret = -EUCLEAN;
2341 		goto release;
2342 	}
2343 	path->slots[0]--;
2344 
2345 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2346 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2347 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2348 		ret = -ENOENT;
2349 		goto release;
2350 	}
2351 	memcpy(&iter->cur_key, &key, sizeof(key));
2352 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2353 						    path->slots[0]);
2354 	iter->end_ptr = (u32)(iter->item_ptr +
2355 			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2356 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2357 			    struct btrfs_extent_item);
2358 
2359 	/*
2360 	 * Only support iteration on tree backref yet.
2361 	 *
2362 	 * This is an extra precaution for non skinny-metadata, where
2363 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2364 	 * extent flags to determine if it's a tree block.
2365 	 */
2366 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2367 		ret = -ENOTSUPP;
2368 		goto release;
2369 	}
2370 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2371 
2372 	/* If there is no inline backref, go search for keyed backref */
2373 	if (iter->cur_ptr >= iter->end_ptr) {
2374 		ret = btrfs_next_item(fs_info->extent_root, path);
2375 
2376 		/* No inline nor keyed ref */
2377 		if (ret > 0) {
2378 			ret = -ENOENT;
2379 			goto release;
2380 		}
2381 		if (ret < 0)
2382 			goto release;
2383 
2384 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2385 				path->slots[0]);
2386 		if (iter->cur_key.objectid != bytenr ||
2387 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2388 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2389 			ret = -ENOENT;
2390 			goto release;
2391 		}
2392 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2393 							   path->slots[0]);
2394 		iter->item_ptr = iter->cur_ptr;
2395 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2396 				      path->nodes[0], path->slots[0]));
2397 	}
2398 
2399 	return 0;
2400 release:
2401 	btrfs_backref_iter_release(iter);
2402 	return ret;
2403 }
2404 
2405 /*
2406  * Go to the next backref item of current bytenr, can be either inlined or
2407  * keyed.
2408  *
2409  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2410  *
2411  * Return 0 if we get next backref without problem.
2412  * Return >0 if there is no extra backref for this bytenr.
2413  * Return <0 if there is something wrong happened.
2414  */
2415 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2416 {
2417 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2418 	struct btrfs_path *path = iter->path;
2419 	struct btrfs_extent_inline_ref *iref;
2420 	int ret;
2421 	u32 size;
2422 
2423 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2424 		/* We're still inside the inline refs */
2425 		ASSERT(iter->cur_ptr < iter->end_ptr);
2426 
2427 		if (btrfs_backref_has_tree_block_info(iter)) {
2428 			/* First tree block info */
2429 			size = sizeof(struct btrfs_tree_block_info);
2430 		} else {
2431 			/* Use inline ref type to determine the size */
2432 			int type;
2433 
2434 			iref = (struct btrfs_extent_inline_ref *)
2435 				((unsigned long)iter->cur_ptr);
2436 			type = btrfs_extent_inline_ref_type(eb, iref);
2437 
2438 			size = btrfs_extent_inline_ref_size(type);
2439 		}
2440 		iter->cur_ptr += size;
2441 		if (iter->cur_ptr < iter->end_ptr)
2442 			return 0;
2443 
2444 		/* All inline items iterated, fall through */
2445 	}
2446 
2447 	/* We're at keyed items, there is no inline item, go to the next one */
2448 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2449 	if (ret)
2450 		return ret;
2451 
2452 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2453 	if (iter->cur_key.objectid != iter->bytenr ||
2454 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2455 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2456 		return 1;
2457 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2458 					path->slots[0]);
2459 	iter->cur_ptr = iter->item_ptr;
2460 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2461 						path->slots[0]);
2462 	return 0;
2463 }
2464 
2465 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2466 			      struct btrfs_backref_cache *cache, int is_reloc)
2467 {
2468 	int i;
2469 
2470 	cache->rb_root = RB_ROOT;
2471 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2472 		INIT_LIST_HEAD(&cache->pending[i]);
2473 	INIT_LIST_HEAD(&cache->changed);
2474 	INIT_LIST_HEAD(&cache->detached);
2475 	INIT_LIST_HEAD(&cache->leaves);
2476 	INIT_LIST_HEAD(&cache->pending_edge);
2477 	INIT_LIST_HEAD(&cache->useless_node);
2478 	cache->fs_info = fs_info;
2479 	cache->is_reloc = is_reloc;
2480 }
2481 
2482 struct btrfs_backref_node *btrfs_backref_alloc_node(
2483 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2484 {
2485 	struct btrfs_backref_node *node;
2486 
2487 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2488 	node = kzalloc(sizeof(*node), GFP_NOFS);
2489 	if (!node)
2490 		return node;
2491 
2492 	INIT_LIST_HEAD(&node->list);
2493 	INIT_LIST_HEAD(&node->upper);
2494 	INIT_LIST_HEAD(&node->lower);
2495 	RB_CLEAR_NODE(&node->rb_node);
2496 	cache->nr_nodes++;
2497 	node->level = level;
2498 	node->bytenr = bytenr;
2499 
2500 	return node;
2501 }
2502 
2503 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2504 		struct btrfs_backref_cache *cache)
2505 {
2506 	struct btrfs_backref_edge *edge;
2507 
2508 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2509 	if (edge)
2510 		cache->nr_edges++;
2511 	return edge;
2512 }
2513 
2514 /*
2515  * Drop the backref node from cache, also cleaning up all its
2516  * upper edges and any uncached nodes in the path.
2517  *
2518  * This cleanup happens bottom up, thus the node should either
2519  * be the lowest node in the cache or a detached node.
2520  */
2521 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2522 				struct btrfs_backref_node *node)
2523 {
2524 	struct btrfs_backref_node *upper;
2525 	struct btrfs_backref_edge *edge;
2526 
2527 	if (!node)
2528 		return;
2529 
2530 	BUG_ON(!node->lowest && !node->detached);
2531 	while (!list_empty(&node->upper)) {
2532 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2533 				  list[LOWER]);
2534 		upper = edge->node[UPPER];
2535 		list_del(&edge->list[LOWER]);
2536 		list_del(&edge->list[UPPER]);
2537 		btrfs_backref_free_edge(cache, edge);
2538 
2539 		if (RB_EMPTY_NODE(&upper->rb_node)) {
2540 			BUG_ON(!list_empty(&node->upper));
2541 			btrfs_backref_drop_node(cache, node);
2542 			node = upper;
2543 			node->lowest = 1;
2544 			continue;
2545 		}
2546 		/*
2547 		 * Add the node to leaf node list if no other child block
2548 		 * cached.
2549 		 */
2550 		if (list_empty(&upper->lower)) {
2551 			list_add_tail(&upper->lower, &cache->leaves);
2552 			upper->lowest = 1;
2553 		}
2554 	}
2555 
2556 	btrfs_backref_drop_node(cache, node);
2557 }
2558 
2559 /*
2560  * Release all nodes/edges from current cache
2561  */
2562 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2563 {
2564 	struct btrfs_backref_node *node;
2565 	int i;
2566 
2567 	while (!list_empty(&cache->detached)) {
2568 		node = list_entry(cache->detached.next,
2569 				  struct btrfs_backref_node, list);
2570 		btrfs_backref_cleanup_node(cache, node);
2571 	}
2572 
2573 	while (!list_empty(&cache->leaves)) {
2574 		node = list_entry(cache->leaves.next,
2575 				  struct btrfs_backref_node, lower);
2576 		btrfs_backref_cleanup_node(cache, node);
2577 	}
2578 
2579 	cache->last_trans = 0;
2580 
2581 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2582 		ASSERT(list_empty(&cache->pending[i]));
2583 	ASSERT(list_empty(&cache->pending_edge));
2584 	ASSERT(list_empty(&cache->useless_node));
2585 	ASSERT(list_empty(&cache->changed));
2586 	ASSERT(list_empty(&cache->detached));
2587 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2588 	ASSERT(!cache->nr_nodes);
2589 	ASSERT(!cache->nr_edges);
2590 }
2591 
2592 /*
2593  * Handle direct tree backref
2594  *
2595  * Direct tree backref means, the backref item shows its parent bytenr
2596  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2597  *
2598  * @ref_key:	The converted backref key.
2599  *		For keyed backref, it's the item key.
2600  *		For inlined backref, objectid is the bytenr,
2601  *		type is btrfs_inline_ref_type, offset is
2602  *		btrfs_inline_ref_offset.
2603  */
2604 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2605 				      struct btrfs_key *ref_key,
2606 				      struct btrfs_backref_node *cur)
2607 {
2608 	struct btrfs_backref_edge *edge;
2609 	struct btrfs_backref_node *upper;
2610 	struct rb_node *rb_node;
2611 
2612 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2613 
2614 	/* Only reloc root uses backref pointing to itself */
2615 	if (ref_key->objectid == ref_key->offset) {
2616 		struct btrfs_root *root;
2617 
2618 		cur->is_reloc_root = 1;
2619 		/* Only reloc backref cache cares about a specific root */
2620 		if (cache->is_reloc) {
2621 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2622 			if (WARN_ON(!root))
2623 				return -ENOENT;
2624 			cur->root = root;
2625 		} else {
2626 			/*
2627 			 * For generic purpose backref cache, reloc root node
2628 			 * is useless.
2629 			 */
2630 			list_add(&cur->list, &cache->useless_node);
2631 		}
2632 		return 0;
2633 	}
2634 
2635 	edge = btrfs_backref_alloc_edge(cache);
2636 	if (!edge)
2637 		return -ENOMEM;
2638 
2639 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2640 	if (!rb_node) {
2641 		/* Parent node not yet cached */
2642 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2643 					   cur->level + 1);
2644 		if (!upper) {
2645 			btrfs_backref_free_edge(cache, edge);
2646 			return -ENOMEM;
2647 		}
2648 
2649 		/*
2650 		 *  Backrefs for the upper level block isn't cached, add the
2651 		 *  block to pending list
2652 		 */
2653 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2654 	} else {
2655 		/* Parent node already cached */
2656 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2657 		ASSERT(upper->checked);
2658 		INIT_LIST_HEAD(&edge->list[UPPER]);
2659 	}
2660 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2661 	return 0;
2662 }
2663 
2664 /*
2665  * Handle indirect tree backref
2666  *
2667  * Indirect tree backref means, we only know which tree the node belongs to.
2668  * We still need to do a tree search to find out the parents. This is for
2669  * TREE_BLOCK_REF backref (keyed or inlined).
2670  *
2671  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2672  * @tree_key:	The first key of this tree block.
2673  * @path:	A clean (released) path, to avoid allocating path everytime
2674  *		the function get called.
2675  */
2676 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2677 					struct btrfs_path *path,
2678 					struct btrfs_key *ref_key,
2679 					struct btrfs_key *tree_key,
2680 					struct btrfs_backref_node *cur)
2681 {
2682 	struct btrfs_fs_info *fs_info = cache->fs_info;
2683 	struct btrfs_backref_node *upper;
2684 	struct btrfs_backref_node *lower;
2685 	struct btrfs_backref_edge *edge;
2686 	struct extent_buffer *eb;
2687 	struct btrfs_root *root;
2688 	struct rb_node *rb_node;
2689 	int level;
2690 	bool need_check = true;
2691 	int ret;
2692 
2693 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2694 	if (IS_ERR(root))
2695 		return PTR_ERR(root);
2696 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2697 		cur->cowonly = 1;
2698 
2699 	if (btrfs_root_level(&root->root_item) == cur->level) {
2700 		/* Tree root */
2701 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2702 		/*
2703 		 * For reloc backref cache, we may ignore reloc root.  But for
2704 		 * general purpose backref cache, we can't rely on
2705 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2706 		 * current running relocation and lead to missing root.
2707 		 *
2708 		 * For general purpose backref cache, reloc root detection is
2709 		 * completely relying on direct backref (key->offset is parent
2710 		 * bytenr), thus only do such check for reloc cache.
2711 		 */
2712 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2713 			btrfs_put_root(root);
2714 			list_add(&cur->list, &cache->useless_node);
2715 		} else {
2716 			cur->root = root;
2717 		}
2718 		return 0;
2719 	}
2720 
2721 	level = cur->level + 1;
2722 
2723 	/* Search the tree to find parent blocks referring to the block */
2724 	path->search_commit_root = 1;
2725 	path->skip_locking = 1;
2726 	path->lowest_level = level;
2727 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2728 	path->lowest_level = 0;
2729 	if (ret < 0) {
2730 		btrfs_put_root(root);
2731 		return ret;
2732 	}
2733 	if (ret > 0 && path->slots[level] > 0)
2734 		path->slots[level]--;
2735 
2736 	eb = path->nodes[level];
2737 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2738 		btrfs_err(fs_info,
2739 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2740 			  cur->bytenr, level - 1, root->root_key.objectid,
2741 			  tree_key->objectid, tree_key->type, tree_key->offset);
2742 		btrfs_put_root(root);
2743 		ret = -ENOENT;
2744 		goto out;
2745 	}
2746 	lower = cur;
2747 
2748 	/* Add all nodes and edges in the path */
2749 	for (; level < BTRFS_MAX_LEVEL; level++) {
2750 		if (!path->nodes[level]) {
2751 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2752 			       lower->bytenr);
2753 			/* Same as previous should_ignore_reloc_root() call */
2754 			if (btrfs_should_ignore_reloc_root(root) &&
2755 			    cache->is_reloc) {
2756 				btrfs_put_root(root);
2757 				list_add(&lower->list, &cache->useless_node);
2758 			} else {
2759 				lower->root = root;
2760 			}
2761 			break;
2762 		}
2763 
2764 		edge = btrfs_backref_alloc_edge(cache);
2765 		if (!edge) {
2766 			btrfs_put_root(root);
2767 			ret = -ENOMEM;
2768 			goto out;
2769 		}
2770 
2771 		eb = path->nodes[level];
2772 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2773 		if (!rb_node) {
2774 			upper = btrfs_backref_alloc_node(cache, eb->start,
2775 							 lower->level + 1);
2776 			if (!upper) {
2777 				btrfs_put_root(root);
2778 				btrfs_backref_free_edge(cache, edge);
2779 				ret = -ENOMEM;
2780 				goto out;
2781 			}
2782 			upper->owner = btrfs_header_owner(eb);
2783 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2784 				upper->cowonly = 1;
2785 
2786 			/*
2787 			 * If we know the block isn't shared we can avoid
2788 			 * checking its backrefs.
2789 			 */
2790 			if (btrfs_block_can_be_shared(root, eb))
2791 				upper->checked = 0;
2792 			else
2793 				upper->checked = 1;
2794 
2795 			/*
2796 			 * Add the block to pending list if we need to check its
2797 			 * backrefs, we only do this once while walking up a
2798 			 * tree as we will catch anything else later on.
2799 			 */
2800 			if (!upper->checked && need_check) {
2801 				need_check = false;
2802 				list_add_tail(&edge->list[UPPER],
2803 					      &cache->pending_edge);
2804 			} else {
2805 				if (upper->checked)
2806 					need_check = true;
2807 				INIT_LIST_HEAD(&edge->list[UPPER]);
2808 			}
2809 		} else {
2810 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2811 					 rb_node);
2812 			ASSERT(upper->checked);
2813 			INIT_LIST_HEAD(&edge->list[UPPER]);
2814 			if (!upper->owner)
2815 				upper->owner = btrfs_header_owner(eb);
2816 		}
2817 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2818 
2819 		if (rb_node) {
2820 			btrfs_put_root(root);
2821 			break;
2822 		}
2823 		lower = upper;
2824 		upper = NULL;
2825 	}
2826 out:
2827 	btrfs_release_path(path);
2828 	return ret;
2829 }
2830 
2831 /*
2832  * Add backref node @cur into @cache.
2833  *
2834  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2835  *	 links aren't yet bi-directional. Needs to finish such links.
2836  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2837  *
2838  * @path:	Released path for indirect tree backref lookup
2839  * @iter:	Released backref iter for extent tree search
2840  * @node_key:	The first key of the tree block
2841  */
2842 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2843 				struct btrfs_path *path,
2844 				struct btrfs_backref_iter *iter,
2845 				struct btrfs_key *node_key,
2846 				struct btrfs_backref_node *cur)
2847 {
2848 	struct btrfs_fs_info *fs_info = cache->fs_info;
2849 	struct btrfs_backref_edge *edge;
2850 	struct btrfs_backref_node *exist;
2851 	int ret;
2852 
2853 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2854 	if (ret < 0)
2855 		return ret;
2856 	/*
2857 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2858 	 * stored in it, but fetch it from the tree block
2859 	 */
2860 	if (btrfs_backref_has_tree_block_info(iter)) {
2861 		ret = btrfs_backref_iter_next(iter);
2862 		if (ret < 0)
2863 			goto out;
2864 		/* No extra backref? This means the tree block is corrupted */
2865 		if (ret > 0) {
2866 			ret = -EUCLEAN;
2867 			goto out;
2868 		}
2869 	}
2870 	WARN_ON(cur->checked);
2871 	if (!list_empty(&cur->upper)) {
2872 		/*
2873 		 * The backref was added previously when processing backref of
2874 		 * type BTRFS_TREE_BLOCK_REF_KEY
2875 		 */
2876 		ASSERT(list_is_singular(&cur->upper));
2877 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2878 				  list[LOWER]);
2879 		ASSERT(list_empty(&edge->list[UPPER]));
2880 		exist = edge->node[UPPER];
2881 		/*
2882 		 * Add the upper level block to pending list if we need check
2883 		 * its backrefs
2884 		 */
2885 		if (!exist->checked)
2886 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2887 	} else {
2888 		exist = NULL;
2889 	}
2890 
2891 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2892 		struct extent_buffer *eb;
2893 		struct btrfs_key key;
2894 		int type;
2895 
2896 		cond_resched();
2897 		eb = btrfs_backref_get_eb(iter);
2898 
2899 		key.objectid = iter->bytenr;
2900 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2901 			struct btrfs_extent_inline_ref *iref;
2902 
2903 			/* Update key for inline backref */
2904 			iref = (struct btrfs_extent_inline_ref *)
2905 				((unsigned long)iter->cur_ptr);
2906 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2907 							BTRFS_REF_TYPE_BLOCK);
2908 			if (type == BTRFS_REF_TYPE_INVALID) {
2909 				ret = -EUCLEAN;
2910 				goto out;
2911 			}
2912 			key.type = type;
2913 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2914 		} else {
2915 			key.type = iter->cur_key.type;
2916 			key.offset = iter->cur_key.offset;
2917 		}
2918 
2919 		/*
2920 		 * Parent node found and matches current inline ref, no need to
2921 		 * rebuild this node for this inline ref
2922 		 */
2923 		if (exist &&
2924 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2925 		      exist->owner == key.offset) ||
2926 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2927 		      exist->bytenr == key.offset))) {
2928 			exist = NULL;
2929 			continue;
2930 		}
2931 
2932 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2933 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2934 			ret = handle_direct_tree_backref(cache, &key, cur);
2935 			if (ret < 0)
2936 				goto out;
2937 			continue;
2938 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2939 			ret = -EINVAL;
2940 			btrfs_print_v0_err(fs_info);
2941 			btrfs_handle_fs_error(fs_info, ret, NULL);
2942 			goto out;
2943 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2944 			continue;
2945 		}
2946 
2947 		/*
2948 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2949 		 * means the root objectid. We need to search the tree to get
2950 		 * its parent bytenr.
2951 		 */
2952 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2953 						   cur);
2954 		if (ret < 0)
2955 			goto out;
2956 	}
2957 	ret = 0;
2958 	cur->checked = 1;
2959 	WARN_ON(exist);
2960 out:
2961 	btrfs_backref_iter_release(iter);
2962 	return ret;
2963 }
2964 
2965 /*
2966  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2967  */
2968 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2969 				     struct btrfs_backref_node *start)
2970 {
2971 	struct list_head *useless_node = &cache->useless_node;
2972 	struct btrfs_backref_edge *edge;
2973 	struct rb_node *rb_node;
2974 	LIST_HEAD(pending_edge);
2975 
2976 	ASSERT(start->checked);
2977 
2978 	/* Insert this node to cache if it's not COW-only */
2979 	if (!start->cowonly) {
2980 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2981 					   &start->rb_node);
2982 		if (rb_node)
2983 			btrfs_backref_panic(cache->fs_info, start->bytenr,
2984 					    -EEXIST);
2985 		list_add_tail(&start->lower, &cache->leaves);
2986 	}
2987 
2988 	/*
2989 	 * Use breadth first search to iterate all related edges.
2990 	 *
2991 	 * The starting points are all the edges of this node
2992 	 */
2993 	list_for_each_entry(edge, &start->upper, list[LOWER])
2994 		list_add_tail(&edge->list[UPPER], &pending_edge);
2995 
2996 	while (!list_empty(&pending_edge)) {
2997 		struct btrfs_backref_node *upper;
2998 		struct btrfs_backref_node *lower;
2999 		struct rb_node *rb_node;
3000 
3001 		edge = list_first_entry(&pending_edge,
3002 				struct btrfs_backref_edge, list[UPPER]);
3003 		list_del_init(&edge->list[UPPER]);
3004 		upper = edge->node[UPPER];
3005 		lower = edge->node[LOWER];
3006 
3007 		/* Parent is detached, no need to keep any edges */
3008 		if (upper->detached) {
3009 			list_del(&edge->list[LOWER]);
3010 			btrfs_backref_free_edge(cache, edge);
3011 
3012 			/* Lower node is orphan, queue for cleanup */
3013 			if (list_empty(&lower->upper))
3014 				list_add(&lower->list, useless_node);
3015 			continue;
3016 		}
3017 
3018 		/*
3019 		 * All new nodes added in current build_backref_tree() haven't
3020 		 * been linked to the cache rb tree.
3021 		 * So if we have upper->rb_node populated, this means a cache
3022 		 * hit. We only need to link the edge, as @upper and all its
3023 		 * parents have already been linked.
3024 		 */
3025 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3026 			if (upper->lowest) {
3027 				list_del_init(&upper->lower);
3028 				upper->lowest = 0;
3029 			}
3030 
3031 			list_add_tail(&edge->list[UPPER], &upper->lower);
3032 			continue;
3033 		}
3034 
3035 		/* Sanity check, we shouldn't have any unchecked nodes */
3036 		if (!upper->checked) {
3037 			ASSERT(0);
3038 			return -EUCLEAN;
3039 		}
3040 
3041 		/* Sanity check, COW-only node has non-COW-only parent */
3042 		if (start->cowonly != upper->cowonly) {
3043 			ASSERT(0);
3044 			return -EUCLEAN;
3045 		}
3046 
3047 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3048 		if (!upper->cowonly) {
3049 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3050 						   &upper->rb_node);
3051 			if (rb_node) {
3052 				btrfs_backref_panic(cache->fs_info,
3053 						upper->bytenr, -EEXIST);
3054 				return -EUCLEAN;
3055 			}
3056 		}
3057 
3058 		list_add_tail(&edge->list[UPPER], &upper->lower);
3059 
3060 		/*
3061 		 * Also queue all the parent edges of this uncached node
3062 		 * to finish the upper linkage
3063 		 */
3064 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3065 			list_add_tail(&edge->list[UPPER], &pending_edge);
3066 	}
3067 	return 0;
3068 }
3069 
3070 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3071 				 struct btrfs_backref_node *node)
3072 {
3073 	struct btrfs_backref_node *lower;
3074 	struct btrfs_backref_node *upper;
3075 	struct btrfs_backref_edge *edge;
3076 
3077 	while (!list_empty(&cache->useless_node)) {
3078 		lower = list_first_entry(&cache->useless_node,
3079 				   struct btrfs_backref_node, list);
3080 		list_del_init(&lower->list);
3081 	}
3082 	while (!list_empty(&cache->pending_edge)) {
3083 		edge = list_first_entry(&cache->pending_edge,
3084 				struct btrfs_backref_edge, list[UPPER]);
3085 		list_del(&edge->list[UPPER]);
3086 		list_del(&edge->list[LOWER]);
3087 		lower = edge->node[LOWER];
3088 		upper = edge->node[UPPER];
3089 		btrfs_backref_free_edge(cache, edge);
3090 
3091 		/*
3092 		 * Lower is no longer linked to any upper backref nodes and
3093 		 * isn't in the cache, we can free it ourselves.
3094 		 */
3095 		if (list_empty(&lower->upper) &&
3096 		    RB_EMPTY_NODE(&lower->rb_node))
3097 			list_add(&lower->list, &cache->useless_node);
3098 
3099 		if (!RB_EMPTY_NODE(&upper->rb_node))
3100 			continue;
3101 
3102 		/* Add this guy's upper edges to the list to process */
3103 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3104 			list_add_tail(&edge->list[UPPER],
3105 				      &cache->pending_edge);
3106 		if (list_empty(&upper->upper))
3107 			list_add(&upper->list, &cache->useless_node);
3108 	}
3109 
3110 	while (!list_empty(&cache->useless_node)) {
3111 		lower = list_first_entry(&cache->useless_node,
3112 				   struct btrfs_backref_node, list);
3113 		list_del_init(&lower->list);
3114 		if (lower == node)
3115 			node = NULL;
3116 		btrfs_backref_free_node(cache, lower);
3117 	}
3118 
3119 	btrfs_backref_cleanup_node(cache, node);
3120 	ASSERT(list_empty(&cache->useless_node) &&
3121 	       list_empty(&cache->pending_edge));
3122 }
3123