xref: /openbmc/linux/fs/btrfs/backref.c (revision ca481398)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
29 
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
32 
33 struct extent_inode_elem {
34 	u64 inum;
35 	u64 offset;
36 	struct extent_inode_elem *next;
37 };
38 
39 static int check_extent_in_eb(const struct btrfs_key *key,
40 			      const struct extent_buffer *eb,
41 			      const struct btrfs_file_extent_item *fi,
42 			      u64 extent_item_pos,
43 			      struct extent_inode_elem **eie)
44 {
45 	u64 offset = 0;
46 	struct extent_inode_elem *e;
47 
48 	if (!btrfs_file_extent_compression(eb, fi) &&
49 	    !btrfs_file_extent_encryption(eb, fi) &&
50 	    !btrfs_file_extent_other_encoding(eb, fi)) {
51 		u64 data_offset;
52 		u64 data_len;
53 
54 		data_offset = btrfs_file_extent_offset(eb, fi);
55 		data_len = btrfs_file_extent_num_bytes(eb, fi);
56 
57 		if (extent_item_pos < data_offset ||
58 		    extent_item_pos >= data_offset + data_len)
59 			return 1;
60 		offset = extent_item_pos - data_offset;
61 	}
62 
63 	e = kmalloc(sizeof(*e), GFP_NOFS);
64 	if (!e)
65 		return -ENOMEM;
66 
67 	e->next = *eie;
68 	e->inum = key->objectid;
69 	e->offset = key->offset + offset;
70 	*eie = e;
71 
72 	return 0;
73 }
74 
75 static void free_inode_elem_list(struct extent_inode_elem *eie)
76 {
77 	struct extent_inode_elem *eie_next;
78 
79 	for (; eie; eie = eie_next) {
80 		eie_next = eie->next;
81 		kfree(eie);
82 	}
83 }
84 
85 static int find_extent_in_eb(const struct extent_buffer *eb,
86 			     u64 wanted_disk_byte, u64 extent_item_pos,
87 			     struct extent_inode_elem **eie)
88 {
89 	u64 disk_byte;
90 	struct btrfs_key key;
91 	struct btrfs_file_extent_item *fi;
92 	int slot;
93 	int nritems;
94 	int extent_type;
95 	int ret;
96 
97 	/*
98 	 * from the shared data ref, we only have the leaf but we need
99 	 * the key. thus, we must look into all items and see that we
100 	 * find one (some) with a reference to our extent item.
101 	 */
102 	nritems = btrfs_header_nritems(eb);
103 	for (slot = 0; slot < nritems; ++slot) {
104 		btrfs_item_key_to_cpu(eb, &key, slot);
105 		if (key.type != BTRFS_EXTENT_DATA_KEY)
106 			continue;
107 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
108 		extent_type = btrfs_file_extent_type(eb, fi);
109 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
110 			continue;
111 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
112 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
113 		if (disk_byte != wanted_disk_byte)
114 			continue;
115 
116 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
117 		if (ret < 0)
118 			return ret;
119 	}
120 
121 	return 0;
122 }
123 
124 struct preftree {
125 	struct rb_root root;
126 	unsigned int count;
127 };
128 
129 #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
130 
131 struct preftrees {
132 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
133 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
134 	struct preftree indirect_missing_keys;
135 };
136 
137 /*
138  * Checks for a shared extent during backref search.
139  *
140  * The share_count tracks prelim_refs (direct and indirect) having a
141  * ref->count >0:
142  *  - incremented when a ref->count transitions to >0
143  *  - decremented when a ref->count transitions to <1
144  */
145 struct share_check {
146 	u64 root_objectid;
147 	u64 inum;
148 	int share_count;
149 };
150 
151 static inline int extent_is_shared(struct share_check *sc)
152 {
153 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
154 }
155 
156 static struct kmem_cache *btrfs_prelim_ref_cache;
157 
158 int __init btrfs_prelim_ref_init(void)
159 {
160 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
161 					sizeof(struct prelim_ref),
162 					0,
163 					SLAB_MEM_SPREAD,
164 					NULL);
165 	if (!btrfs_prelim_ref_cache)
166 		return -ENOMEM;
167 	return 0;
168 }
169 
170 void btrfs_prelim_ref_exit(void)
171 {
172 	kmem_cache_destroy(btrfs_prelim_ref_cache);
173 }
174 
175 static void free_pref(struct prelim_ref *ref)
176 {
177 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
178 }
179 
180 /*
181  * Return 0 when both refs are for the same block (and can be merged).
182  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
183  * indicates a 'higher' block.
184  */
185 static int prelim_ref_compare(struct prelim_ref *ref1,
186 			      struct prelim_ref *ref2)
187 {
188 	if (ref1->level < ref2->level)
189 		return -1;
190 	if (ref1->level > ref2->level)
191 		return 1;
192 	if (ref1->root_id < ref2->root_id)
193 		return -1;
194 	if (ref1->root_id > ref2->root_id)
195 		return 1;
196 	if (ref1->key_for_search.type < ref2->key_for_search.type)
197 		return -1;
198 	if (ref1->key_for_search.type > ref2->key_for_search.type)
199 		return 1;
200 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
201 		return -1;
202 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
203 		return 1;
204 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
205 		return -1;
206 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
207 		return 1;
208 	if (ref1->parent < ref2->parent)
209 		return -1;
210 	if (ref1->parent > ref2->parent)
211 		return 1;
212 
213 	return 0;
214 }
215 
216 void update_share_count(struct share_check *sc, int oldcount, int newcount)
217 {
218 	if ((!sc) || (oldcount == 0 && newcount < 1))
219 		return;
220 
221 	if (oldcount > 0 && newcount < 1)
222 		sc->share_count--;
223 	else if (oldcount < 1 && newcount > 0)
224 		sc->share_count++;
225 }
226 
227 /*
228  * Add @newref to the @root rbtree, merging identical refs.
229  *
230  * Callers should assume that newref has been freed after calling.
231  */
232 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
233 			      struct preftree *preftree,
234 			      struct prelim_ref *newref,
235 			      struct share_check *sc)
236 {
237 	struct rb_root *root;
238 	struct rb_node **p;
239 	struct rb_node *parent = NULL;
240 	struct prelim_ref *ref;
241 	int result;
242 
243 	root = &preftree->root;
244 	p = &root->rb_node;
245 
246 	while (*p) {
247 		parent = *p;
248 		ref = rb_entry(parent, struct prelim_ref, rbnode);
249 		result = prelim_ref_compare(ref, newref);
250 		if (result < 0) {
251 			p = &(*p)->rb_left;
252 		} else if (result > 0) {
253 			p = &(*p)->rb_right;
254 		} else {
255 			/* Identical refs, merge them and free @newref */
256 			struct extent_inode_elem *eie = ref->inode_list;
257 
258 			while (eie && eie->next)
259 				eie = eie->next;
260 
261 			if (!eie)
262 				ref->inode_list = newref->inode_list;
263 			else
264 				eie->next = newref->inode_list;
265 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
266 						     preftree->count);
267 			/*
268 			 * A delayed ref can have newref->count < 0.
269 			 * The ref->count is updated to follow any
270 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
271 			 */
272 			update_share_count(sc, ref->count,
273 					   ref->count + newref->count);
274 			ref->count += newref->count;
275 			free_pref(newref);
276 			return;
277 		}
278 	}
279 
280 	update_share_count(sc, 0, newref->count);
281 	preftree->count++;
282 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
283 	rb_link_node(&newref->rbnode, parent, p);
284 	rb_insert_color(&newref->rbnode, root);
285 }
286 
287 /*
288  * Release the entire tree.  We don't care about internal consistency so
289  * just free everything and then reset the tree root.
290  */
291 static void prelim_release(struct preftree *preftree)
292 {
293 	struct prelim_ref *ref, *next_ref;
294 
295 	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
296 					     rbnode)
297 		free_pref(ref);
298 
299 	preftree->root = RB_ROOT;
300 	preftree->count = 0;
301 }
302 
303 /*
304  * the rules for all callers of this function are:
305  * - obtaining the parent is the goal
306  * - if you add a key, you must know that it is a correct key
307  * - if you cannot add the parent or a correct key, then we will look into the
308  *   block later to set a correct key
309  *
310  * delayed refs
311  * ============
312  *        backref type | shared | indirect | shared | indirect
313  * information         |   tree |     tree |   data |     data
314  * --------------------+--------+----------+--------+----------
315  *      parent logical |    y   |     -    |    -   |     -
316  *      key to resolve |    -   |     y    |    y   |     y
317  *  tree block logical |    -   |     -    |    -   |     -
318  *  root for resolving |    y   |     y    |    y   |     y
319  *
320  * - column 1:       we've the parent -> done
321  * - column 2, 3, 4: we use the key to find the parent
322  *
323  * on disk refs (inline or keyed)
324  * ==============================
325  *        backref type | shared | indirect | shared | indirect
326  * information         |   tree |     tree |   data |     data
327  * --------------------+--------+----------+--------+----------
328  *      parent logical |    y   |     -    |    y   |     -
329  *      key to resolve |    -   |     -    |    -   |     y
330  *  tree block logical |    y   |     y    |    y   |     y
331  *  root for resolving |    -   |     y    |    y   |     y
332  *
333  * - column 1, 3: we've the parent -> done
334  * - column 2:    we take the first key from the block to find the parent
335  *                (see add_missing_keys)
336  * - column 4:    we use the key to find the parent
337  *
338  * additional information that's available but not required to find the parent
339  * block might help in merging entries to gain some speed.
340  */
341 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
342 			  struct preftree *preftree, u64 root_id,
343 			  const struct btrfs_key *key, int level, u64 parent,
344 			  u64 wanted_disk_byte, int count,
345 			  struct share_check *sc, gfp_t gfp_mask)
346 {
347 	struct prelim_ref *ref;
348 
349 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
350 		return 0;
351 
352 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
353 	if (!ref)
354 		return -ENOMEM;
355 
356 	ref->root_id = root_id;
357 	if (key) {
358 		ref->key_for_search = *key;
359 		/*
360 		 * We can often find data backrefs with an offset that is too
361 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
362 		 * underflows when subtracting a file's offset with the data
363 		 * offset of its corresponding extent data item. This can
364 		 * happen for example in the clone ioctl.
365 		 * So if we detect such case we set the search key's offset to
366 		 * zero to make sure we will find the matching file extent item
367 		 * at add_all_parents(), otherwise we will miss it because the
368 		 * offset taken form the backref is much larger then the offset
369 		 * of the file extent item. This can make us scan a very large
370 		 * number of file extent items, but at least it will not make
371 		 * us miss any.
372 		 * This is an ugly workaround for a behaviour that should have
373 		 * never existed, but it does and a fix for the clone ioctl
374 		 * would touch a lot of places, cause backwards incompatibility
375 		 * and would not fix the problem for extents cloned with older
376 		 * kernels.
377 		 */
378 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
379 		    ref->key_for_search.offset >= LLONG_MAX)
380 			ref->key_for_search.offset = 0;
381 	} else {
382 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
383 	}
384 
385 	ref->inode_list = NULL;
386 	ref->level = level;
387 	ref->count = count;
388 	ref->parent = parent;
389 	ref->wanted_disk_byte = wanted_disk_byte;
390 	prelim_ref_insert(fs_info, preftree, ref, sc);
391 	return extent_is_shared(sc);
392 }
393 
394 /* direct refs use root == 0, key == NULL */
395 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
396 			  struct preftrees *preftrees, int level, u64 parent,
397 			  u64 wanted_disk_byte, int count,
398 			  struct share_check *sc, gfp_t gfp_mask)
399 {
400 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
401 			      parent, wanted_disk_byte, count, sc, gfp_mask);
402 }
403 
404 /* indirect refs use parent == 0 */
405 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
406 			    struct preftrees *preftrees, u64 root_id,
407 			    const struct btrfs_key *key, int level,
408 			    u64 wanted_disk_byte, int count,
409 			    struct share_check *sc, gfp_t gfp_mask)
410 {
411 	struct preftree *tree = &preftrees->indirect;
412 
413 	if (!key)
414 		tree = &preftrees->indirect_missing_keys;
415 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
416 			      wanted_disk_byte, count, sc, gfp_mask);
417 }
418 
419 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420 			   struct ulist *parents, struct prelim_ref *ref,
421 			   int level, u64 time_seq, const u64 *extent_item_pos,
422 			   u64 total_refs)
423 {
424 	int ret = 0;
425 	int slot;
426 	struct extent_buffer *eb;
427 	struct btrfs_key key;
428 	struct btrfs_key *key_for_search = &ref->key_for_search;
429 	struct btrfs_file_extent_item *fi;
430 	struct extent_inode_elem *eie = NULL, *old = NULL;
431 	u64 disk_byte;
432 	u64 wanted_disk_byte = ref->wanted_disk_byte;
433 	u64 count = 0;
434 
435 	if (level != 0) {
436 		eb = path->nodes[level];
437 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
438 		if (ret < 0)
439 			return ret;
440 		return 0;
441 	}
442 
443 	/*
444 	 * We normally enter this function with the path already pointing to
445 	 * the first item to check. But sometimes, we may enter it with
446 	 * slot==nritems. In that case, go to the next leaf before we continue.
447 	 */
448 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
449 		if (time_seq == SEQ_LAST)
450 			ret = btrfs_next_leaf(root, path);
451 		else
452 			ret = btrfs_next_old_leaf(root, path, time_seq);
453 	}
454 
455 	while (!ret && count < total_refs) {
456 		eb = path->nodes[0];
457 		slot = path->slots[0];
458 
459 		btrfs_item_key_to_cpu(eb, &key, slot);
460 
461 		if (key.objectid != key_for_search->objectid ||
462 		    key.type != BTRFS_EXTENT_DATA_KEY)
463 			break;
464 
465 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
466 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
467 
468 		if (disk_byte == wanted_disk_byte) {
469 			eie = NULL;
470 			old = NULL;
471 			count++;
472 			if (extent_item_pos) {
473 				ret = check_extent_in_eb(&key, eb, fi,
474 						*extent_item_pos,
475 						&eie);
476 				if (ret < 0)
477 					break;
478 			}
479 			if (ret > 0)
480 				goto next;
481 			ret = ulist_add_merge_ptr(parents, eb->start,
482 						  eie, (void **)&old, GFP_NOFS);
483 			if (ret < 0)
484 				break;
485 			if (!ret && extent_item_pos) {
486 				while (old->next)
487 					old = old->next;
488 				old->next = eie;
489 			}
490 			eie = NULL;
491 		}
492 next:
493 		if (time_seq == SEQ_LAST)
494 			ret = btrfs_next_item(root, path);
495 		else
496 			ret = btrfs_next_old_item(root, path, time_seq);
497 	}
498 
499 	if (ret > 0)
500 		ret = 0;
501 	else if (ret < 0)
502 		free_inode_elem_list(eie);
503 	return ret;
504 }
505 
506 /*
507  * resolve an indirect backref in the form (root_id, key, level)
508  * to a logical address
509  */
510 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
511 				struct btrfs_path *path, u64 time_seq,
512 				struct prelim_ref *ref, struct ulist *parents,
513 				const u64 *extent_item_pos, u64 total_refs)
514 {
515 	struct btrfs_root *root;
516 	struct btrfs_key root_key;
517 	struct extent_buffer *eb;
518 	int ret = 0;
519 	int root_level;
520 	int level = ref->level;
521 	int index;
522 
523 	root_key.objectid = ref->root_id;
524 	root_key.type = BTRFS_ROOT_ITEM_KEY;
525 	root_key.offset = (u64)-1;
526 
527 	index = srcu_read_lock(&fs_info->subvol_srcu);
528 
529 	root = btrfs_get_fs_root(fs_info, &root_key, false);
530 	if (IS_ERR(root)) {
531 		srcu_read_unlock(&fs_info->subvol_srcu, index);
532 		ret = PTR_ERR(root);
533 		goto out;
534 	}
535 
536 	if (btrfs_is_testing(fs_info)) {
537 		srcu_read_unlock(&fs_info->subvol_srcu, index);
538 		ret = -ENOENT;
539 		goto out;
540 	}
541 
542 	if (path->search_commit_root)
543 		root_level = btrfs_header_level(root->commit_root);
544 	else if (time_seq == SEQ_LAST)
545 		root_level = btrfs_header_level(root->node);
546 	else
547 		root_level = btrfs_old_root_level(root, time_seq);
548 
549 	if (root_level + 1 == level) {
550 		srcu_read_unlock(&fs_info->subvol_srcu, index);
551 		goto out;
552 	}
553 
554 	path->lowest_level = level;
555 	if (time_seq == SEQ_LAST)
556 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
557 					0, 0);
558 	else
559 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
560 					    time_seq);
561 
562 	/* root node has been locked, we can release @subvol_srcu safely here */
563 	srcu_read_unlock(&fs_info->subvol_srcu, index);
564 
565 	btrfs_debug(fs_info,
566 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
567 		 ref->root_id, level, ref->count, ret,
568 		 ref->key_for_search.objectid, ref->key_for_search.type,
569 		 ref->key_for_search.offset);
570 	if (ret < 0)
571 		goto out;
572 
573 	eb = path->nodes[level];
574 	while (!eb) {
575 		if (WARN_ON(!level)) {
576 			ret = 1;
577 			goto out;
578 		}
579 		level--;
580 		eb = path->nodes[level];
581 	}
582 
583 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
584 			      extent_item_pos, total_refs);
585 out:
586 	path->lowest_level = 0;
587 	btrfs_release_path(path);
588 	return ret;
589 }
590 
591 static struct extent_inode_elem *
592 unode_aux_to_inode_list(struct ulist_node *node)
593 {
594 	if (!node)
595 		return NULL;
596 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
597 }
598 
599 /*
600  * We maintain three seperate rbtrees: one for direct refs, one for
601  * indirect refs which have a key, and one for indirect refs which do not
602  * have a key. Each tree does merge on insertion.
603  *
604  * Once all of the references are located, we iterate over the tree of
605  * indirect refs with missing keys. An appropriate key is located and
606  * the ref is moved onto the tree for indirect refs. After all missing
607  * keys are thus located, we iterate over the indirect ref tree, resolve
608  * each reference, and then insert the resolved reference onto the
609  * direct tree (merging there too).
610  *
611  * New backrefs (i.e., for parent nodes) are added to the appropriate
612  * rbtree as they are encountered. The new backrefs are subsequently
613  * resolved as above.
614  */
615 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
616 				 struct btrfs_path *path, u64 time_seq,
617 				 struct preftrees *preftrees,
618 				 const u64 *extent_item_pos, u64 total_refs,
619 				 struct share_check *sc)
620 {
621 	int err;
622 	int ret = 0;
623 	struct ulist *parents;
624 	struct ulist_node *node;
625 	struct ulist_iterator uiter;
626 	struct rb_node *rnode;
627 
628 	parents = ulist_alloc(GFP_NOFS);
629 	if (!parents)
630 		return -ENOMEM;
631 
632 	/*
633 	 * We could trade memory usage for performance here by iterating
634 	 * the tree, allocating new refs for each insertion, and then
635 	 * freeing the entire indirect tree when we're done.  In some test
636 	 * cases, the tree can grow quite large (~200k objects).
637 	 */
638 	while ((rnode = rb_first(&preftrees->indirect.root))) {
639 		struct prelim_ref *ref;
640 
641 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
642 		if (WARN(ref->parent,
643 			 "BUG: direct ref found in indirect tree")) {
644 			ret = -EINVAL;
645 			goto out;
646 		}
647 
648 		rb_erase(&ref->rbnode, &preftrees->indirect.root);
649 		preftrees->indirect.count--;
650 
651 		if (ref->count == 0) {
652 			free_pref(ref);
653 			continue;
654 		}
655 
656 		if (sc && sc->root_objectid &&
657 		    ref->root_id != sc->root_objectid) {
658 			free_pref(ref);
659 			ret = BACKREF_FOUND_SHARED;
660 			goto out;
661 		}
662 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
663 					   parents, extent_item_pos,
664 					   total_refs);
665 		/*
666 		 * we can only tolerate ENOENT,otherwise,we should catch error
667 		 * and return directly.
668 		 */
669 		if (err == -ENOENT) {
670 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
671 					  NULL);
672 			continue;
673 		} else if (err) {
674 			free_pref(ref);
675 			ret = err;
676 			goto out;
677 		}
678 
679 		/* we put the first parent into the ref at hand */
680 		ULIST_ITER_INIT(&uiter);
681 		node = ulist_next(parents, &uiter);
682 		ref->parent = node ? node->val : 0;
683 		ref->inode_list = unode_aux_to_inode_list(node);
684 
685 		/* Add a prelim_ref(s) for any other parent(s). */
686 		while ((node = ulist_next(parents, &uiter))) {
687 			struct prelim_ref *new_ref;
688 
689 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
690 						   GFP_NOFS);
691 			if (!new_ref) {
692 				free_pref(ref);
693 				ret = -ENOMEM;
694 				goto out;
695 			}
696 			memcpy(new_ref, ref, sizeof(*ref));
697 			new_ref->parent = node->val;
698 			new_ref->inode_list = unode_aux_to_inode_list(node);
699 			prelim_ref_insert(fs_info, &preftrees->direct,
700 					  new_ref, NULL);
701 		}
702 
703 		/*
704 		 * Now it's a direct ref, put it in the the direct tree. We must
705 		 * do this last because the ref could be merged/freed here.
706 		 */
707 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
708 
709 		ulist_reinit(parents);
710 		cond_resched();
711 	}
712 out:
713 	ulist_free(parents);
714 	return ret;
715 }
716 
717 /*
718  * read tree blocks and add keys where required.
719  */
720 static int add_missing_keys(struct btrfs_fs_info *fs_info,
721 			    struct preftrees *preftrees)
722 {
723 	struct prelim_ref *ref;
724 	struct extent_buffer *eb;
725 	struct preftree *tree = &preftrees->indirect_missing_keys;
726 	struct rb_node *node;
727 
728 	while ((node = rb_first(&tree->root))) {
729 		ref = rb_entry(node, struct prelim_ref, rbnode);
730 		rb_erase(node, &tree->root);
731 
732 		BUG_ON(ref->parent);	/* should not be a direct ref */
733 		BUG_ON(ref->key_for_search.type);
734 		BUG_ON(!ref->wanted_disk_byte);
735 
736 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
737 		if (IS_ERR(eb)) {
738 			free_pref(ref);
739 			return PTR_ERR(eb);
740 		} else if (!extent_buffer_uptodate(eb)) {
741 			free_pref(ref);
742 			free_extent_buffer(eb);
743 			return -EIO;
744 		}
745 		btrfs_tree_read_lock(eb);
746 		if (btrfs_header_level(eb) == 0)
747 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
748 		else
749 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
750 		btrfs_tree_read_unlock(eb);
751 		free_extent_buffer(eb);
752 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
753 		cond_resched();
754 	}
755 	return 0;
756 }
757 
758 /*
759  * add all currently queued delayed refs from this head whose seq nr is
760  * smaller or equal that seq to the list
761  */
762 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
763 			    struct btrfs_delayed_ref_head *head, u64 seq,
764 			    struct preftrees *preftrees, u64 *total_refs,
765 			    struct share_check *sc)
766 {
767 	struct btrfs_delayed_ref_node *node;
768 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
769 	struct btrfs_key key;
770 	struct btrfs_key tmp_op_key;
771 	struct btrfs_key *op_key = NULL;
772 	int count;
773 	int ret = 0;
774 
775 	if (extent_op && extent_op->update_key) {
776 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
777 		op_key = &tmp_op_key;
778 	}
779 
780 	spin_lock(&head->lock);
781 	list_for_each_entry(node, &head->ref_list, list) {
782 		if (node->seq > seq)
783 			continue;
784 
785 		switch (node->action) {
786 		case BTRFS_ADD_DELAYED_EXTENT:
787 		case BTRFS_UPDATE_DELAYED_HEAD:
788 			WARN_ON(1);
789 			continue;
790 		case BTRFS_ADD_DELAYED_REF:
791 			count = node->ref_mod;
792 			break;
793 		case BTRFS_DROP_DELAYED_REF:
794 			count = node->ref_mod * -1;
795 			break;
796 		default:
797 			BUG_ON(1);
798 		}
799 		*total_refs += count;
800 		switch (node->type) {
801 		case BTRFS_TREE_BLOCK_REF_KEY: {
802 			/* NORMAL INDIRECT METADATA backref */
803 			struct btrfs_delayed_tree_ref *ref;
804 
805 			ref = btrfs_delayed_node_to_tree_ref(node);
806 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
807 					       &tmp_op_key, ref->level + 1,
808 					       node->bytenr, count, sc,
809 					       GFP_ATOMIC);
810 			break;
811 		}
812 		case BTRFS_SHARED_BLOCK_REF_KEY: {
813 			/* SHARED DIRECT METADATA backref */
814 			struct btrfs_delayed_tree_ref *ref;
815 
816 			ref = btrfs_delayed_node_to_tree_ref(node);
817 
818 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
819 					     ref->parent, node->bytenr, count,
820 					     sc, GFP_ATOMIC);
821 			break;
822 		}
823 		case BTRFS_EXTENT_DATA_REF_KEY: {
824 			/* NORMAL INDIRECT DATA backref */
825 			struct btrfs_delayed_data_ref *ref;
826 			ref = btrfs_delayed_node_to_data_ref(node);
827 
828 			key.objectid = ref->objectid;
829 			key.type = BTRFS_EXTENT_DATA_KEY;
830 			key.offset = ref->offset;
831 
832 			/*
833 			 * Found a inum that doesn't match our known inum, we
834 			 * know it's shared.
835 			 */
836 			if (sc && sc->inum && ref->objectid != sc->inum) {
837 				ret = BACKREF_FOUND_SHARED;
838 				goto out;
839 			}
840 
841 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
842 					       &key, 0, node->bytenr, count, sc,
843 					       GFP_ATOMIC);
844 			break;
845 		}
846 		case BTRFS_SHARED_DATA_REF_KEY: {
847 			/* SHARED DIRECT FULL backref */
848 			struct btrfs_delayed_data_ref *ref;
849 
850 			ref = btrfs_delayed_node_to_data_ref(node);
851 
852 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
853 					     node->bytenr, count, sc,
854 					     GFP_ATOMIC);
855 			break;
856 		}
857 		default:
858 			WARN_ON(1);
859 		}
860 		/*
861 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
862 		 * refs have been checked.
863 		 */
864 		if (ret && (ret != BACKREF_FOUND_SHARED))
865 			break;
866 	}
867 	if (!ret)
868 		ret = extent_is_shared(sc);
869 out:
870 	spin_unlock(&head->lock);
871 	return ret;
872 }
873 
874 /*
875  * add all inline backrefs for bytenr to the list
876  *
877  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
878  */
879 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
880 			   struct btrfs_path *path, u64 bytenr,
881 			   int *info_level, struct preftrees *preftrees,
882 			   u64 *total_refs, struct share_check *sc)
883 {
884 	int ret = 0;
885 	int slot;
886 	struct extent_buffer *leaf;
887 	struct btrfs_key key;
888 	struct btrfs_key found_key;
889 	unsigned long ptr;
890 	unsigned long end;
891 	struct btrfs_extent_item *ei;
892 	u64 flags;
893 	u64 item_size;
894 
895 	/*
896 	 * enumerate all inline refs
897 	 */
898 	leaf = path->nodes[0];
899 	slot = path->slots[0];
900 
901 	item_size = btrfs_item_size_nr(leaf, slot);
902 	BUG_ON(item_size < sizeof(*ei));
903 
904 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
905 	flags = btrfs_extent_flags(leaf, ei);
906 	*total_refs += btrfs_extent_refs(leaf, ei);
907 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
908 
909 	ptr = (unsigned long)(ei + 1);
910 	end = (unsigned long)ei + item_size;
911 
912 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
913 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
914 		struct btrfs_tree_block_info *info;
915 
916 		info = (struct btrfs_tree_block_info *)ptr;
917 		*info_level = btrfs_tree_block_level(leaf, info);
918 		ptr += sizeof(struct btrfs_tree_block_info);
919 		BUG_ON(ptr > end);
920 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
921 		*info_level = found_key.offset;
922 	} else {
923 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
924 	}
925 
926 	while (ptr < end) {
927 		struct btrfs_extent_inline_ref *iref;
928 		u64 offset;
929 		int type;
930 
931 		iref = (struct btrfs_extent_inline_ref *)ptr;
932 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
933 							BTRFS_REF_TYPE_ANY);
934 		if (type == BTRFS_REF_TYPE_INVALID)
935 			return -EINVAL;
936 
937 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
938 
939 		switch (type) {
940 		case BTRFS_SHARED_BLOCK_REF_KEY:
941 			ret = add_direct_ref(fs_info, preftrees,
942 					     *info_level + 1, offset,
943 					     bytenr, 1, NULL, GFP_NOFS);
944 			break;
945 		case BTRFS_SHARED_DATA_REF_KEY: {
946 			struct btrfs_shared_data_ref *sdref;
947 			int count;
948 
949 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
950 			count = btrfs_shared_data_ref_count(leaf, sdref);
951 
952 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
953 					     bytenr, count, sc, GFP_NOFS);
954 			break;
955 		}
956 		case BTRFS_TREE_BLOCK_REF_KEY:
957 			ret = add_indirect_ref(fs_info, preftrees, offset,
958 					       NULL, *info_level + 1,
959 					       bytenr, 1, NULL, GFP_NOFS);
960 			break;
961 		case BTRFS_EXTENT_DATA_REF_KEY: {
962 			struct btrfs_extent_data_ref *dref;
963 			int count;
964 			u64 root;
965 
966 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
967 			count = btrfs_extent_data_ref_count(leaf, dref);
968 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
969 								      dref);
970 			key.type = BTRFS_EXTENT_DATA_KEY;
971 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
972 
973 			if (sc && sc->inum && key.objectid != sc->inum) {
974 				ret = BACKREF_FOUND_SHARED;
975 				break;
976 			}
977 
978 			root = btrfs_extent_data_ref_root(leaf, dref);
979 
980 			ret = add_indirect_ref(fs_info, preftrees, root,
981 					       &key, 0, bytenr, count,
982 					       sc, GFP_NOFS);
983 			break;
984 		}
985 		default:
986 			WARN_ON(1);
987 		}
988 		if (ret)
989 			return ret;
990 		ptr += btrfs_extent_inline_ref_size(type);
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * add all non-inline backrefs for bytenr to the list
998  *
999  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1000  */
1001 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1002 			  struct btrfs_path *path, u64 bytenr,
1003 			  int info_level, struct preftrees *preftrees,
1004 			  struct share_check *sc)
1005 {
1006 	struct btrfs_root *extent_root = fs_info->extent_root;
1007 	int ret;
1008 	int slot;
1009 	struct extent_buffer *leaf;
1010 	struct btrfs_key key;
1011 
1012 	while (1) {
1013 		ret = btrfs_next_item(extent_root, path);
1014 		if (ret < 0)
1015 			break;
1016 		if (ret) {
1017 			ret = 0;
1018 			break;
1019 		}
1020 
1021 		slot = path->slots[0];
1022 		leaf = path->nodes[0];
1023 		btrfs_item_key_to_cpu(leaf, &key, slot);
1024 
1025 		if (key.objectid != bytenr)
1026 			break;
1027 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1028 			continue;
1029 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1030 			break;
1031 
1032 		switch (key.type) {
1033 		case BTRFS_SHARED_BLOCK_REF_KEY:
1034 			/* SHARED DIRECT METADATA backref */
1035 			ret = add_direct_ref(fs_info, preftrees,
1036 					     info_level + 1, key.offset,
1037 					     bytenr, 1, NULL, GFP_NOFS);
1038 			break;
1039 		case BTRFS_SHARED_DATA_REF_KEY: {
1040 			/* SHARED DIRECT FULL backref */
1041 			struct btrfs_shared_data_ref *sdref;
1042 			int count;
1043 
1044 			sdref = btrfs_item_ptr(leaf, slot,
1045 					      struct btrfs_shared_data_ref);
1046 			count = btrfs_shared_data_ref_count(leaf, sdref);
1047 			ret = add_direct_ref(fs_info, preftrees, 0,
1048 					     key.offset, bytenr, count,
1049 					     sc, GFP_NOFS);
1050 			break;
1051 		}
1052 		case BTRFS_TREE_BLOCK_REF_KEY:
1053 			/* NORMAL INDIRECT METADATA backref */
1054 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1055 					       NULL, info_level + 1, bytenr,
1056 					       1, NULL, GFP_NOFS);
1057 			break;
1058 		case BTRFS_EXTENT_DATA_REF_KEY: {
1059 			/* NORMAL INDIRECT DATA backref */
1060 			struct btrfs_extent_data_ref *dref;
1061 			int count;
1062 			u64 root;
1063 
1064 			dref = btrfs_item_ptr(leaf, slot,
1065 					      struct btrfs_extent_data_ref);
1066 			count = btrfs_extent_data_ref_count(leaf, dref);
1067 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1068 								      dref);
1069 			key.type = BTRFS_EXTENT_DATA_KEY;
1070 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1071 
1072 			if (sc && sc->inum && key.objectid != sc->inum) {
1073 				ret = BACKREF_FOUND_SHARED;
1074 				break;
1075 			}
1076 
1077 			root = btrfs_extent_data_ref_root(leaf, dref);
1078 			ret = add_indirect_ref(fs_info, preftrees, root,
1079 					       &key, 0, bytenr, count,
1080 					       sc, GFP_NOFS);
1081 			break;
1082 		}
1083 		default:
1084 			WARN_ON(1);
1085 		}
1086 		if (ret)
1087 			return ret;
1088 
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1096  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1097  * indirect refs to their parent bytenr.
1098  * When roots are found, they're added to the roots list
1099  *
1100  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1101  * much like trans == NULL case, the difference only lies in it will not
1102  * commit root.
1103  * The special case is for qgroup to search roots in commit_transaction().
1104  *
1105  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1106  * shared extent is detected.
1107  *
1108  * Otherwise this returns 0 for success and <0 for an error.
1109  *
1110  * FIXME some caching might speed things up
1111  */
1112 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1113 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1114 			     u64 time_seq, struct ulist *refs,
1115 			     struct ulist *roots, const u64 *extent_item_pos,
1116 			     struct share_check *sc)
1117 {
1118 	struct btrfs_key key;
1119 	struct btrfs_path *path;
1120 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1121 	struct btrfs_delayed_ref_head *head;
1122 	int info_level = 0;
1123 	int ret;
1124 	struct prelim_ref *ref;
1125 	struct rb_node *node;
1126 	struct extent_inode_elem *eie = NULL;
1127 	/* total of both direct AND indirect refs! */
1128 	u64 total_refs = 0;
1129 	struct preftrees preftrees = {
1130 		.direct = PREFTREE_INIT,
1131 		.indirect = PREFTREE_INIT,
1132 		.indirect_missing_keys = PREFTREE_INIT
1133 	};
1134 
1135 	key.objectid = bytenr;
1136 	key.offset = (u64)-1;
1137 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1138 		key.type = BTRFS_METADATA_ITEM_KEY;
1139 	else
1140 		key.type = BTRFS_EXTENT_ITEM_KEY;
1141 
1142 	path = btrfs_alloc_path();
1143 	if (!path)
1144 		return -ENOMEM;
1145 	if (!trans) {
1146 		path->search_commit_root = 1;
1147 		path->skip_locking = 1;
1148 	}
1149 
1150 	if (time_seq == SEQ_LAST)
1151 		path->skip_locking = 1;
1152 
1153 	/*
1154 	 * grab both a lock on the path and a lock on the delayed ref head.
1155 	 * We need both to get a consistent picture of how the refs look
1156 	 * at a specified point in time
1157 	 */
1158 again:
1159 	head = NULL;
1160 
1161 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1162 	if (ret < 0)
1163 		goto out;
1164 	BUG_ON(ret == 0);
1165 
1166 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1168 	    time_seq != SEQ_LAST) {
1169 #else
1170 	if (trans && time_seq != SEQ_LAST) {
1171 #endif
1172 		/*
1173 		 * look if there are updates for this ref queued and lock the
1174 		 * head
1175 		 */
1176 		delayed_refs = &trans->transaction->delayed_refs;
1177 		spin_lock(&delayed_refs->lock);
1178 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1179 		if (head) {
1180 			if (!mutex_trylock(&head->mutex)) {
1181 				refcount_inc(&head->node.refs);
1182 				spin_unlock(&delayed_refs->lock);
1183 
1184 				btrfs_release_path(path);
1185 
1186 				/*
1187 				 * Mutex was contended, block until it's
1188 				 * released and try again
1189 				 */
1190 				mutex_lock(&head->mutex);
1191 				mutex_unlock(&head->mutex);
1192 				btrfs_put_delayed_ref(&head->node);
1193 				goto again;
1194 			}
1195 			spin_unlock(&delayed_refs->lock);
1196 			ret = add_delayed_refs(fs_info, head, time_seq,
1197 					       &preftrees, &total_refs, sc);
1198 			mutex_unlock(&head->mutex);
1199 			if (ret)
1200 				goto out;
1201 		} else {
1202 			spin_unlock(&delayed_refs->lock);
1203 		}
1204 	}
1205 
1206 	if (path->slots[0]) {
1207 		struct extent_buffer *leaf;
1208 		int slot;
1209 
1210 		path->slots[0]--;
1211 		leaf = path->nodes[0];
1212 		slot = path->slots[0];
1213 		btrfs_item_key_to_cpu(leaf, &key, slot);
1214 		if (key.objectid == bytenr &&
1215 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1216 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1217 			ret = add_inline_refs(fs_info, path, bytenr,
1218 					      &info_level, &preftrees,
1219 					      &total_refs, sc);
1220 			if (ret)
1221 				goto out;
1222 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1223 					     &preftrees, sc);
1224 			if (ret)
1225 				goto out;
1226 		}
1227 	}
1228 
1229 	btrfs_release_path(path);
1230 
1231 	ret = add_missing_keys(fs_info, &preftrees);
1232 	if (ret)
1233 		goto out;
1234 
1235 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1236 
1237 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1238 				    extent_item_pos, total_refs, sc);
1239 	if (ret)
1240 		goto out;
1241 
1242 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1243 
1244 	/*
1245 	 * This walks the tree of merged and resolved refs. Tree blocks are
1246 	 * read in as needed. Unique entries are added to the ulist, and
1247 	 * the list of found roots is updated.
1248 	 *
1249 	 * We release the entire tree in one go before returning.
1250 	 */
1251 	node = rb_first(&preftrees.direct.root);
1252 	while (node) {
1253 		ref = rb_entry(node, struct prelim_ref, rbnode);
1254 		node = rb_next(&ref->rbnode);
1255 		WARN_ON(ref->count < 0);
1256 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1257 			if (sc && sc->root_objectid &&
1258 			    ref->root_id != sc->root_objectid) {
1259 				ret = BACKREF_FOUND_SHARED;
1260 				goto out;
1261 			}
1262 
1263 			/* no parent == root of tree */
1264 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1265 			if (ret < 0)
1266 				goto out;
1267 		}
1268 		if (ref->count && ref->parent) {
1269 			if (extent_item_pos && !ref->inode_list &&
1270 			    ref->level == 0) {
1271 				struct extent_buffer *eb;
1272 
1273 				eb = read_tree_block(fs_info, ref->parent, 0);
1274 				if (IS_ERR(eb)) {
1275 					ret = PTR_ERR(eb);
1276 					goto out;
1277 				} else if (!extent_buffer_uptodate(eb)) {
1278 					free_extent_buffer(eb);
1279 					ret = -EIO;
1280 					goto out;
1281 				}
1282 				btrfs_tree_read_lock(eb);
1283 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1284 				ret = find_extent_in_eb(eb, bytenr,
1285 							*extent_item_pos, &eie);
1286 				btrfs_tree_read_unlock_blocking(eb);
1287 				free_extent_buffer(eb);
1288 				if (ret < 0)
1289 					goto out;
1290 				ref->inode_list = eie;
1291 			}
1292 			ret = ulist_add_merge_ptr(refs, ref->parent,
1293 						  ref->inode_list,
1294 						  (void **)&eie, GFP_NOFS);
1295 			if (ret < 0)
1296 				goto out;
1297 			if (!ret && extent_item_pos) {
1298 				/*
1299 				 * we've recorded that parent, so we must extend
1300 				 * its inode list here
1301 				 */
1302 				BUG_ON(!eie);
1303 				while (eie->next)
1304 					eie = eie->next;
1305 				eie->next = ref->inode_list;
1306 			}
1307 			eie = NULL;
1308 		}
1309 		cond_resched();
1310 	}
1311 
1312 out:
1313 	btrfs_free_path(path);
1314 
1315 	prelim_release(&preftrees.direct);
1316 	prelim_release(&preftrees.indirect);
1317 	prelim_release(&preftrees.indirect_missing_keys);
1318 
1319 	if (ret < 0)
1320 		free_inode_elem_list(eie);
1321 	return ret;
1322 }
1323 
1324 static void free_leaf_list(struct ulist *blocks)
1325 {
1326 	struct ulist_node *node = NULL;
1327 	struct extent_inode_elem *eie;
1328 	struct ulist_iterator uiter;
1329 
1330 	ULIST_ITER_INIT(&uiter);
1331 	while ((node = ulist_next(blocks, &uiter))) {
1332 		if (!node->aux)
1333 			continue;
1334 		eie = unode_aux_to_inode_list(node);
1335 		free_inode_elem_list(eie);
1336 		node->aux = 0;
1337 	}
1338 
1339 	ulist_free(blocks);
1340 }
1341 
1342 /*
1343  * Finds all leafs with a reference to the specified combination of bytenr and
1344  * offset. key_list_head will point to a list of corresponding keys (caller must
1345  * free each list element). The leafs will be stored in the leafs ulist, which
1346  * must be freed with ulist_free.
1347  *
1348  * returns 0 on success, <0 on error
1349  */
1350 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1351 				struct btrfs_fs_info *fs_info, u64 bytenr,
1352 				u64 time_seq, struct ulist **leafs,
1353 				const u64 *extent_item_pos)
1354 {
1355 	int ret;
1356 
1357 	*leafs = ulist_alloc(GFP_NOFS);
1358 	if (!*leafs)
1359 		return -ENOMEM;
1360 
1361 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1362 				*leafs, NULL, extent_item_pos, NULL);
1363 	if (ret < 0 && ret != -ENOENT) {
1364 		free_leaf_list(*leafs);
1365 		return ret;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * walk all backrefs for a given extent to find all roots that reference this
1373  * extent. Walking a backref means finding all extents that reference this
1374  * extent and in turn walk the backrefs of those, too. Naturally this is a
1375  * recursive process, but here it is implemented in an iterative fashion: We
1376  * find all referencing extents for the extent in question and put them on a
1377  * list. In turn, we find all referencing extents for those, further appending
1378  * to the list. The way we iterate the list allows adding more elements after
1379  * the current while iterating. The process stops when we reach the end of the
1380  * list. Found roots are added to the roots list.
1381  *
1382  * returns 0 on success, < 0 on error.
1383  */
1384 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1385 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1386 				     u64 time_seq, struct ulist **roots)
1387 {
1388 	struct ulist *tmp;
1389 	struct ulist_node *node = NULL;
1390 	struct ulist_iterator uiter;
1391 	int ret;
1392 
1393 	tmp = ulist_alloc(GFP_NOFS);
1394 	if (!tmp)
1395 		return -ENOMEM;
1396 	*roots = ulist_alloc(GFP_NOFS);
1397 	if (!*roots) {
1398 		ulist_free(tmp);
1399 		return -ENOMEM;
1400 	}
1401 
1402 	ULIST_ITER_INIT(&uiter);
1403 	while (1) {
1404 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1405 					tmp, *roots, NULL, NULL);
1406 		if (ret < 0 && ret != -ENOENT) {
1407 			ulist_free(tmp);
1408 			ulist_free(*roots);
1409 			return ret;
1410 		}
1411 		node = ulist_next(tmp, &uiter);
1412 		if (!node)
1413 			break;
1414 		bytenr = node->val;
1415 		cond_resched();
1416 	}
1417 
1418 	ulist_free(tmp);
1419 	return 0;
1420 }
1421 
1422 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1423 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1424 			 u64 time_seq, struct ulist **roots)
1425 {
1426 	int ret;
1427 
1428 	if (!trans)
1429 		down_read(&fs_info->commit_root_sem);
1430 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1431 					time_seq, roots);
1432 	if (!trans)
1433 		up_read(&fs_info->commit_root_sem);
1434 	return ret;
1435 }
1436 
1437 /**
1438  * btrfs_check_shared - tell us whether an extent is shared
1439  *
1440  * btrfs_check_shared uses the backref walking code but will short
1441  * circuit as soon as it finds a root or inode that doesn't match the
1442  * one passed in. This provides a significant performance benefit for
1443  * callers (such as fiemap) which want to know whether the extent is
1444  * shared but do not need a ref count.
1445  *
1446  * This attempts to allocate a transaction in order to account for
1447  * delayed refs, but continues on even when the alloc fails.
1448  *
1449  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1450  */
1451 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1452 {
1453 	struct btrfs_fs_info *fs_info = root->fs_info;
1454 	struct btrfs_trans_handle *trans;
1455 	struct ulist *tmp = NULL;
1456 	struct ulist *roots = NULL;
1457 	struct ulist_iterator uiter;
1458 	struct ulist_node *node;
1459 	struct seq_list elem = SEQ_LIST_INIT(elem);
1460 	int ret = 0;
1461 	struct share_check shared = {
1462 		.root_objectid = root->objectid,
1463 		.inum = inum,
1464 		.share_count = 0,
1465 	};
1466 
1467 	tmp = ulist_alloc(GFP_NOFS);
1468 	roots = ulist_alloc(GFP_NOFS);
1469 	if (!tmp || !roots) {
1470 		ulist_free(tmp);
1471 		ulist_free(roots);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	trans = btrfs_join_transaction(root);
1476 	if (IS_ERR(trans)) {
1477 		trans = NULL;
1478 		down_read(&fs_info->commit_root_sem);
1479 	} else {
1480 		btrfs_get_tree_mod_seq(fs_info, &elem);
1481 	}
1482 
1483 	ULIST_ITER_INIT(&uiter);
1484 	while (1) {
1485 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1486 					roots, NULL, &shared);
1487 		if (ret == BACKREF_FOUND_SHARED) {
1488 			/* this is the only condition under which we return 1 */
1489 			ret = 1;
1490 			break;
1491 		}
1492 		if (ret < 0 && ret != -ENOENT)
1493 			break;
1494 		ret = 0;
1495 		node = ulist_next(tmp, &uiter);
1496 		if (!node)
1497 			break;
1498 		bytenr = node->val;
1499 		cond_resched();
1500 	}
1501 
1502 	if (trans) {
1503 		btrfs_put_tree_mod_seq(fs_info, &elem);
1504 		btrfs_end_transaction(trans);
1505 	} else {
1506 		up_read(&fs_info->commit_root_sem);
1507 	}
1508 	ulist_free(tmp);
1509 	ulist_free(roots);
1510 	return ret;
1511 }
1512 
1513 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1514 			  u64 start_off, struct btrfs_path *path,
1515 			  struct btrfs_inode_extref **ret_extref,
1516 			  u64 *found_off)
1517 {
1518 	int ret, slot;
1519 	struct btrfs_key key;
1520 	struct btrfs_key found_key;
1521 	struct btrfs_inode_extref *extref;
1522 	const struct extent_buffer *leaf;
1523 	unsigned long ptr;
1524 
1525 	key.objectid = inode_objectid;
1526 	key.type = BTRFS_INODE_EXTREF_KEY;
1527 	key.offset = start_off;
1528 
1529 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1530 	if (ret < 0)
1531 		return ret;
1532 
1533 	while (1) {
1534 		leaf = path->nodes[0];
1535 		slot = path->slots[0];
1536 		if (slot >= btrfs_header_nritems(leaf)) {
1537 			/*
1538 			 * If the item at offset is not found,
1539 			 * btrfs_search_slot will point us to the slot
1540 			 * where it should be inserted. In our case
1541 			 * that will be the slot directly before the
1542 			 * next INODE_REF_KEY_V2 item. In the case
1543 			 * that we're pointing to the last slot in a
1544 			 * leaf, we must move one leaf over.
1545 			 */
1546 			ret = btrfs_next_leaf(root, path);
1547 			if (ret) {
1548 				if (ret >= 1)
1549 					ret = -ENOENT;
1550 				break;
1551 			}
1552 			continue;
1553 		}
1554 
1555 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1556 
1557 		/*
1558 		 * Check that we're still looking at an extended ref key for
1559 		 * this particular objectid. If we have different
1560 		 * objectid or type then there are no more to be found
1561 		 * in the tree and we can exit.
1562 		 */
1563 		ret = -ENOENT;
1564 		if (found_key.objectid != inode_objectid)
1565 			break;
1566 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1567 			break;
1568 
1569 		ret = 0;
1570 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1571 		extref = (struct btrfs_inode_extref *)ptr;
1572 		*ret_extref = extref;
1573 		if (found_off)
1574 			*found_off = found_key.offset;
1575 		break;
1576 	}
1577 
1578 	return ret;
1579 }
1580 
1581 /*
1582  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1583  * Elements of the path are separated by '/' and the path is guaranteed to be
1584  * 0-terminated. the path is only given within the current file system.
1585  * Therefore, it never starts with a '/'. the caller is responsible to provide
1586  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1587  * the start point of the resulting string is returned. this pointer is within
1588  * dest, normally.
1589  * in case the path buffer would overflow, the pointer is decremented further
1590  * as if output was written to the buffer, though no more output is actually
1591  * generated. that way, the caller can determine how much space would be
1592  * required for the path to fit into the buffer. in that case, the returned
1593  * value will be smaller than dest. callers must check this!
1594  */
1595 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1596 			u32 name_len, unsigned long name_off,
1597 			struct extent_buffer *eb_in, u64 parent,
1598 			char *dest, u32 size)
1599 {
1600 	int slot;
1601 	u64 next_inum;
1602 	int ret;
1603 	s64 bytes_left = ((s64)size) - 1;
1604 	struct extent_buffer *eb = eb_in;
1605 	struct btrfs_key found_key;
1606 	int leave_spinning = path->leave_spinning;
1607 	struct btrfs_inode_ref *iref;
1608 
1609 	if (bytes_left >= 0)
1610 		dest[bytes_left] = '\0';
1611 
1612 	path->leave_spinning = 1;
1613 	while (1) {
1614 		bytes_left -= name_len;
1615 		if (bytes_left >= 0)
1616 			read_extent_buffer(eb, dest + bytes_left,
1617 					   name_off, name_len);
1618 		if (eb != eb_in) {
1619 			if (!path->skip_locking)
1620 				btrfs_tree_read_unlock_blocking(eb);
1621 			free_extent_buffer(eb);
1622 		}
1623 		ret = btrfs_find_item(fs_root, path, parent, 0,
1624 				BTRFS_INODE_REF_KEY, &found_key);
1625 		if (ret > 0)
1626 			ret = -ENOENT;
1627 		if (ret)
1628 			break;
1629 
1630 		next_inum = found_key.offset;
1631 
1632 		/* regular exit ahead */
1633 		if (parent == next_inum)
1634 			break;
1635 
1636 		slot = path->slots[0];
1637 		eb = path->nodes[0];
1638 		/* make sure we can use eb after releasing the path */
1639 		if (eb != eb_in) {
1640 			if (!path->skip_locking)
1641 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1642 			path->nodes[0] = NULL;
1643 			path->locks[0] = 0;
1644 		}
1645 		btrfs_release_path(path);
1646 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1647 
1648 		name_len = btrfs_inode_ref_name_len(eb, iref);
1649 		name_off = (unsigned long)(iref + 1);
1650 
1651 		parent = next_inum;
1652 		--bytes_left;
1653 		if (bytes_left >= 0)
1654 			dest[bytes_left] = '/';
1655 	}
1656 
1657 	btrfs_release_path(path);
1658 	path->leave_spinning = leave_spinning;
1659 
1660 	if (ret)
1661 		return ERR_PTR(ret);
1662 
1663 	return dest + bytes_left;
1664 }
1665 
1666 /*
1667  * this makes the path point to (logical EXTENT_ITEM *)
1668  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1669  * tree blocks and <0 on error.
1670  */
1671 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1672 			struct btrfs_path *path, struct btrfs_key *found_key,
1673 			u64 *flags_ret)
1674 {
1675 	int ret;
1676 	u64 flags;
1677 	u64 size = 0;
1678 	u32 item_size;
1679 	const struct extent_buffer *eb;
1680 	struct btrfs_extent_item *ei;
1681 	struct btrfs_key key;
1682 
1683 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1684 		key.type = BTRFS_METADATA_ITEM_KEY;
1685 	else
1686 		key.type = BTRFS_EXTENT_ITEM_KEY;
1687 	key.objectid = logical;
1688 	key.offset = (u64)-1;
1689 
1690 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1691 	if (ret < 0)
1692 		return ret;
1693 
1694 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1695 	if (ret) {
1696 		if (ret > 0)
1697 			ret = -ENOENT;
1698 		return ret;
1699 	}
1700 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1701 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1702 		size = fs_info->nodesize;
1703 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1704 		size = found_key->offset;
1705 
1706 	if (found_key->objectid > logical ||
1707 	    found_key->objectid + size <= logical) {
1708 		btrfs_debug(fs_info,
1709 			"logical %llu is not within any extent", logical);
1710 		return -ENOENT;
1711 	}
1712 
1713 	eb = path->nodes[0];
1714 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1715 	BUG_ON(item_size < sizeof(*ei));
1716 
1717 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1718 	flags = btrfs_extent_flags(eb, ei);
1719 
1720 	btrfs_debug(fs_info,
1721 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1722 		 logical, logical - found_key->objectid, found_key->objectid,
1723 		 found_key->offset, flags, item_size);
1724 
1725 	WARN_ON(!flags_ret);
1726 	if (flags_ret) {
1727 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1728 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1729 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1730 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1731 		else
1732 			BUG_ON(1);
1733 		return 0;
1734 	}
1735 
1736 	return -EIO;
1737 }
1738 
1739 /*
1740  * helper function to iterate extent inline refs. ptr must point to a 0 value
1741  * for the first call and may be modified. it is used to track state.
1742  * if more refs exist, 0 is returned and the next call to
1743  * get_extent_inline_ref must pass the modified ptr parameter to get the
1744  * next ref. after the last ref was processed, 1 is returned.
1745  * returns <0 on error
1746  */
1747 static int get_extent_inline_ref(unsigned long *ptr,
1748 				 const struct extent_buffer *eb,
1749 				 const struct btrfs_key *key,
1750 				 const struct btrfs_extent_item *ei,
1751 				 u32 item_size,
1752 				 struct btrfs_extent_inline_ref **out_eiref,
1753 				 int *out_type)
1754 {
1755 	unsigned long end;
1756 	u64 flags;
1757 	struct btrfs_tree_block_info *info;
1758 
1759 	if (!*ptr) {
1760 		/* first call */
1761 		flags = btrfs_extent_flags(eb, ei);
1762 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1763 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1764 				/* a skinny metadata extent */
1765 				*out_eiref =
1766 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1767 			} else {
1768 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1769 				info = (struct btrfs_tree_block_info *)(ei + 1);
1770 				*out_eiref =
1771 				   (struct btrfs_extent_inline_ref *)(info + 1);
1772 			}
1773 		} else {
1774 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1775 		}
1776 		*ptr = (unsigned long)*out_eiref;
1777 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1778 			return -ENOENT;
1779 	}
1780 
1781 	end = (unsigned long)ei + item_size;
1782 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1783 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1784 						     BTRFS_REF_TYPE_ANY);
1785 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1786 		return -EINVAL;
1787 
1788 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1789 	WARN_ON(*ptr > end);
1790 	if (*ptr == end)
1791 		return 1; /* last */
1792 
1793 	return 0;
1794 }
1795 
1796 /*
1797  * reads the tree block backref for an extent. tree level and root are returned
1798  * through out_level and out_root. ptr must point to a 0 value for the first
1799  * call and may be modified (see get_extent_inline_ref comment).
1800  * returns 0 if data was provided, 1 if there was no more data to provide or
1801  * <0 on error.
1802  */
1803 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1804 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1805 			    u32 item_size, u64 *out_root, u8 *out_level)
1806 {
1807 	int ret;
1808 	int type;
1809 	struct btrfs_extent_inline_ref *eiref;
1810 
1811 	if (*ptr == (unsigned long)-1)
1812 		return 1;
1813 
1814 	while (1) {
1815 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1816 					      &eiref, &type);
1817 		if (ret < 0)
1818 			return ret;
1819 
1820 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1821 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1822 			break;
1823 
1824 		if (ret == 1)
1825 			return 1;
1826 	}
1827 
1828 	/* we can treat both ref types equally here */
1829 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1830 
1831 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1832 		struct btrfs_tree_block_info *info;
1833 
1834 		info = (struct btrfs_tree_block_info *)(ei + 1);
1835 		*out_level = btrfs_tree_block_level(eb, info);
1836 	} else {
1837 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1838 		*out_level = (u8)key->offset;
1839 	}
1840 
1841 	if (ret == 1)
1842 		*ptr = (unsigned long)-1;
1843 
1844 	return 0;
1845 }
1846 
1847 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1848 			     struct extent_inode_elem *inode_list,
1849 			     u64 root, u64 extent_item_objectid,
1850 			     iterate_extent_inodes_t *iterate, void *ctx)
1851 {
1852 	struct extent_inode_elem *eie;
1853 	int ret = 0;
1854 
1855 	for (eie = inode_list; eie; eie = eie->next) {
1856 		btrfs_debug(fs_info,
1857 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1858 			    extent_item_objectid, eie->inum,
1859 			    eie->offset, root);
1860 		ret = iterate(eie->inum, eie->offset, root, ctx);
1861 		if (ret) {
1862 			btrfs_debug(fs_info,
1863 				    "stopping iteration for %llu due to ret=%d",
1864 				    extent_item_objectid, ret);
1865 			break;
1866 		}
1867 	}
1868 
1869 	return ret;
1870 }
1871 
1872 /*
1873  * calls iterate() for every inode that references the extent identified by
1874  * the given parameters.
1875  * when the iterator function returns a non-zero value, iteration stops.
1876  */
1877 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1878 				u64 extent_item_objectid, u64 extent_item_pos,
1879 				int search_commit_root,
1880 				iterate_extent_inodes_t *iterate, void *ctx)
1881 {
1882 	int ret;
1883 	struct btrfs_trans_handle *trans = NULL;
1884 	struct ulist *refs = NULL;
1885 	struct ulist *roots = NULL;
1886 	struct ulist_node *ref_node = NULL;
1887 	struct ulist_node *root_node = NULL;
1888 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1889 	struct ulist_iterator ref_uiter;
1890 	struct ulist_iterator root_uiter;
1891 
1892 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1893 			extent_item_objectid);
1894 
1895 	if (!search_commit_root) {
1896 		trans = btrfs_join_transaction(fs_info->extent_root);
1897 		if (IS_ERR(trans))
1898 			return PTR_ERR(trans);
1899 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1900 	} else {
1901 		down_read(&fs_info->commit_root_sem);
1902 	}
1903 
1904 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1905 				   tree_mod_seq_elem.seq, &refs,
1906 				   &extent_item_pos);
1907 	if (ret)
1908 		goto out;
1909 
1910 	ULIST_ITER_INIT(&ref_uiter);
1911 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1912 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1913 						tree_mod_seq_elem.seq, &roots);
1914 		if (ret)
1915 			break;
1916 		ULIST_ITER_INIT(&root_uiter);
1917 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1918 			btrfs_debug(fs_info,
1919 				    "root %llu references leaf %llu, data list %#llx",
1920 				    root_node->val, ref_node->val,
1921 				    ref_node->aux);
1922 			ret = iterate_leaf_refs(fs_info,
1923 						(struct extent_inode_elem *)
1924 						(uintptr_t)ref_node->aux,
1925 						root_node->val,
1926 						extent_item_objectid,
1927 						iterate, ctx);
1928 		}
1929 		ulist_free(roots);
1930 	}
1931 
1932 	free_leaf_list(refs);
1933 out:
1934 	if (!search_commit_root) {
1935 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1936 		btrfs_end_transaction(trans);
1937 	} else {
1938 		up_read(&fs_info->commit_root_sem);
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1945 				struct btrfs_path *path,
1946 				iterate_extent_inodes_t *iterate, void *ctx)
1947 {
1948 	int ret;
1949 	u64 extent_item_pos;
1950 	u64 flags = 0;
1951 	struct btrfs_key found_key;
1952 	int search_commit_root = path->search_commit_root;
1953 
1954 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1955 	btrfs_release_path(path);
1956 	if (ret < 0)
1957 		return ret;
1958 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1959 		return -EINVAL;
1960 
1961 	extent_item_pos = logical - found_key.objectid;
1962 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1963 					extent_item_pos, search_commit_root,
1964 					iterate, ctx);
1965 
1966 	return ret;
1967 }
1968 
1969 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1970 			      struct extent_buffer *eb, void *ctx);
1971 
1972 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1973 			      struct btrfs_path *path,
1974 			      iterate_irefs_t *iterate, void *ctx)
1975 {
1976 	int ret = 0;
1977 	int slot;
1978 	u32 cur;
1979 	u32 len;
1980 	u32 name_len;
1981 	u64 parent = 0;
1982 	int found = 0;
1983 	struct extent_buffer *eb;
1984 	struct btrfs_item *item;
1985 	struct btrfs_inode_ref *iref;
1986 	struct btrfs_key found_key;
1987 
1988 	while (!ret) {
1989 		ret = btrfs_find_item(fs_root, path, inum,
1990 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1991 				&found_key);
1992 
1993 		if (ret < 0)
1994 			break;
1995 		if (ret) {
1996 			ret = found ? 0 : -ENOENT;
1997 			break;
1998 		}
1999 		++found;
2000 
2001 		parent = found_key.offset;
2002 		slot = path->slots[0];
2003 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2004 		if (!eb) {
2005 			ret = -ENOMEM;
2006 			break;
2007 		}
2008 		extent_buffer_get(eb);
2009 		btrfs_tree_read_lock(eb);
2010 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2011 		btrfs_release_path(path);
2012 
2013 		item = btrfs_item_nr(slot);
2014 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2015 
2016 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2017 			name_len = btrfs_inode_ref_name_len(eb, iref);
2018 			/* path must be released before calling iterate()! */
2019 			btrfs_debug(fs_root->fs_info,
2020 				"following ref at offset %u for inode %llu in tree %llu",
2021 				cur, found_key.objectid, fs_root->objectid);
2022 			ret = iterate(parent, name_len,
2023 				      (unsigned long)(iref + 1), eb, ctx);
2024 			if (ret)
2025 				break;
2026 			len = sizeof(*iref) + name_len;
2027 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2028 		}
2029 		btrfs_tree_read_unlock_blocking(eb);
2030 		free_extent_buffer(eb);
2031 	}
2032 
2033 	btrfs_release_path(path);
2034 
2035 	return ret;
2036 }
2037 
2038 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2039 				 struct btrfs_path *path,
2040 				 iterate_irefs_t *iterate, void *ctx)
2041 {
2042 	int ret;
2043 	int slot;
2044 	u64 offset = 0;
2045 	u64 parent;
2046 	int found = 0;
2047 	struct extent_buffer *eb;
2048 	struct btrfs_inode_extref *extref;
2049 	u32 item_size;
2050 	u32 cur_offset;
2051 	unsigned long ptr;
2052 
2053 	while (1) {
2054 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2055 					    &offset);
2056 		if (ret < 0)
2057 			break;
2058 		if (ret) {
2059 			ret = found ? 0 : -ENOENT;
2060 			break;
2061 		}
2062 		++found;
2063 
2064 		slot = path->slots[0];
2065 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2066 		if (!eb) {
2067 			ret = -ENOMEM;
2068 			break;
2069 		}
2070 		extent_buffer_get(eb);
2071 
2072 		btrfs_tree_read_lock(eb);
2073 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2074 		btrfs_release_path(path);
2075 
2076 		item_size = btrfs_item_size_nr(eb, slot);
2077 		ptr = btrfs_item_ptr_offset(eb, slot);
2078 		cur_offset = 0;
2079 
2080 		while (cur_offset < item_size) {
2081 			u32 name_len;
2082 
2083 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2084 			parent = btrfs_inode_extref_parent(eb, extref);
2085 			name_len = btrfs_inode_extref_name_len(eb, extref);
2086 			ret = iterate(parent, name_len,
2087 				      (unsigned long)&extref->name, eb, ctx);
2088 			if (ret)
2089 				break;
2090 
2091 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2092 			cur_offset += sizeof(*extref);
2093 		}
2094 		btrfs_tree_read_unlock_blocking(eb);
2095 		free_extent_buffer(eb);
2096 
2097 		offset++;
2098 	}
2099 
2100 	btrfs_release_path(path);
2101 
2102 	return ret;
2103 }
2104 
2105 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2106 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2107 			 void *ctx)
2108 {
2109 	int ret;
2110 	int found_refs = 0;
2111 
2112 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2113 	if (!ret)
2114 		++found_refs;
2115 	else if (ret != -ENOENT)
2116 		return ret;
2117 
2118 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2119 	if (ret == -ENOENT && found_refs)
2120 		return 0;
2121 
2122 	return ret;
2123 }
2124 
2125 /*
2126  * returns 0 if the path could be dumped (probably truncated)
2127  * returns <0 in case of an error
2128  */
2129 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2130 			 struct extent_buffer *eb, void *ctx)
2131 {
2132 	struct inode_fs_paths *ipath = ctx;
2133 	char *fspath;
2134 	char *fspath_min;
2135 	int i = ipath->fspath->elem_cnt;
2136 	const int s_ptr = sizeof(char *);
2137 	u32 bytes_left;
2138 
2139 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2140 					ipath->fspath->bytes_left - s_ptr : 0;
2141 
2142 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2143 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2144 				   name_off, eb, inum, fspath_min, bytes_left);
2145 	if (IS_ERR(fspath))
2146 		return PTR_ERR(fspath);
2147 
2148 	if (fspath > fspath_min) {
2149 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2150 		++ipath->fspath->elem_cnt;
2151 		ipath->fspath->bytes_left = fspath - fspath_min;
2152 	} else {
2153 		++ipath->fspath->elem_missed;
2154 		ipath->fspath->bytes_missing += fspath_min - fspath;
2155 		ipath->fspath->bytes_left = 0;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 /*
2162  * this dumps all file system paths to the inode into the ipath struct, provided
2163  * is has been created large enough. each path is zero-terminated and accessed
2164  * from ipath->fspath->val[i].
2165  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2166  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2167  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2168  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2169  * have been needed to return all paths.
2170  */
2171 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2172 {
2173 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2174 			     inode_to_path, ipath);
2175 }
2176 
2177 struct btrfs_data_container *init_data_container(u32 total_bytes)
2178 {
2179 	struct btrfs_data_container *data;
2180 	size_t alloc_bytes;
2181 
2182 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2183 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2184 	if (!data)
2185 		return ERR_PTR(-ENOMEM);
2186 
2187 	if (total_bytes >= sizeof(*data)) {
2188 		data->bytes_left = total_bytes - sizeof(*data);
2189 		data->bytes_missing = 0;
2190 	} else {
2191 		data->bytes_missing = sizeof(*data) - total_bytes;
2192 		data->bytes_left = 0;
2193 	}
2194 
2195 	data->elem_cnt = 0;
2196 	data->elem_missed = 0;
2197 
2198 	return data;
2199 }
2200 
2201 /*
2202  * allocates space to return multiple file system paths for an inode.
2203  * total_bytes to allocate are passed, note that space usable for actual path
2204  * information will be total_bytes - sizeof(struct inode_fs_paths).
2205  * the returned pointer must be freed with free_ipath() in the end.
2206  */
2207 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2208 					struct btrfs_path *path)
2209 {
2210 	struct inode_fs_paths *ifp;
2211 	struct btrfs_data_container *fspath;
2212 
2213 	fspath = init_data_container(total_bytes);
2214 	if (IS_ERR(fspath))
2215 		return (void *)fspath;
2216 
2217 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2218 	if (!ifp) {
2219 		kvfree(fspath);
2220 		return ERR_PTR(-ENOMEM);
2221 	}
2222 
2223 	ifp->btrfs_path = path;
2224 	ifp->fspath = fspath;
2225 	ifp->fs_root = fs_root;
2226 
2227 	return ifp;
2228 }
2229 
2230 void free_ipath(struct inode_fs_paths *ipath)
2231 {
2232 	if (!ipath)
2233 		return;
2234 	kvfree(ipath->fspath);
2235 	kfree(ipath);
2236 }
2237