1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 19 /* Just an arbitrary number so we can be sure this happened */ 20 #define BACKREF_FOUND_SHARED 6 21 22 struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26 }; 27 28 static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34 { 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64 } 65 66 static void free_inode_elem_list(struct extent_inode_elem *eie) 67 { 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74 } 75 76 static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80 { 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114 } 115 116 struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119 }; 120 121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123 struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127 }; 128 129 /* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137 struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141 }; 142 143 static inline int extent_is_shared(struct share_check *sc) 144 { 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146 } 147 148 static struct kmem_cache *btrfs_prelim_ref_cache; 149 150 int __init btrfs_prelim_ref_init(void) 151 { 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160 } 161 162 void __cold btrfs_prelim_ref_exit(void) 163 { 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165 } 166 167 static void free_pref(struct prelim_ref *ref) 168 { 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170 } 171 172 /* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177 static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179 { 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206 } 207 208 static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210 { 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218 } 219 220 /* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229 { 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280 } 281 282 /* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286 static void prelim_release(struct preftree *preftree) 287 { 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296 } 297 298 /* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341 { 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364 } 365 366 /* direct refs use root == 0, key == NULL */ 367 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371 { 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374 } 375 376 /* indirect refs use parent == 0 */ 377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382 { 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389 } 390 391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392 { 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414 } 415 416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421 { 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517 next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529 } 530 531 /* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540 { 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634 out: 635 btrfs_put_root(root); 636 out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640 } 641 642 static struct extent_inode_elem * 643 unode_aux_to_inode_list(struct ulist_node *node) 644 { 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648 } 649 650 /* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671 { 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763 out: 764 ulist_free(parents); 765 return ret; 766 } 767 768 /* 769 * read tree blocks and add keys where required. 770 */ 771 static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773 { 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } else if (!extent_buffer_uptodate(eb)) { 793 free_pref(ref); 794 free_extent_buffer(eb); 795 return -EIO; 796 } 797 if (lock) 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 if (lock) 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 807 cond_resched(); 808 } 809 return 0; 810 } 811 812 /* 813 * add all currently queued delayed refs from this head whose seq nr is 814 * smaller or equal that seq to the list 815 */ 816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 817 struct btrfs_delayed_ref_head *head, u64 seq, 818 struct preftrees *preftrees, struct share_check *sc) 819 { 820 struct btrfs_delayed_ref_node *node; 821 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 822 struct btrfs_key key; 823 struct btrfs_key tmp_op_key; 824 struct rb_node *n; 825 int count; 826 int ret = 0; 827 828 if (extent_op && extent_op->update_key) 829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 830 831 spin_lock(&head->lock); 832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 833 node = rb_entry(n, struct btrfs_delayed_ref_node, 834 ref_node); 835 if (node->seq > seq) 836 continue; 837 838 switch (node->action) { 839 case BTRFS_ADD_DELAYED_EXTENT: 840 case BTRFS_UPDATE_DELAYED_HEAD: 841 WARN_ON(1); 842 continue; 843 case BTRFS_ADD_DELAYED_REF: 844 count = node->ref_mod; 845 break; 846 case BTRFS_DROP_DELAYED_REF: 847 count = node->ref_mod * -1; 848 break; 849 default: 850 BUG(); 851 } 852 switch (node->type) { 853 case BTRFS_TREE_BLOCK_REF_KEY: { 854 /* NORMAL INDIRECT METADATA backref */ 855 struct btrfs_delayed_tree_ref *ref; 856 857 ref = btrfs_delayed_node_to_tree_ref(node); 858 ret = add_indirect_ref(fs_info, preftrees, ref->root, 859 &tmp_op_key, ref->level + 1, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 case BTRFS_SHARED_BLOCK_REF_KEY: { 865 /* SHARED DIRECT METADATA backref */ 866 struct btrfs_delayed_tree_ref *ref; 867 868 ref = btrfs_delayed_node_to_tree_ref(node); 869 870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 871 ref->parent, node->bytenr, count, 872 sc, GFP_ATOMIC); 873 break; 874 } 875 case BTRFS_EXTENT_DATA_REF_KEY: { 876 /* NORMAL INDIRECT DATA backref */ 877 struct btrfs_delayed_data_ref *ref; 878 ref = btrfs_delayed_node_to_data_ref(node); 879 880 key.objectid = ref->objectid; 881 key.type = BTRFS_EXTENT_DATA_KEY; 882 key.offset = ref->offset; 883 884 /* 885 * Found a inum that doesn't match our known inum, we 886 * know it's shared. 887 */ 888 if (sc && sc->inum && ref->objectid != sc->inum) { 889 ret = BACKREF_FOUND_SHARED; 890 goto out; 891 } 892 893 ret = add_indirect_ref(fs_info, preftrees, ref->root, 894 &key, 0, node->bytenr, count, sc, 895 GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_SHARED_DATA_REF_KEY: { 899 /* SHARED DIRECT FULL backref */ 900 struct btrfs_delayed_data_ref *ref; 901 902 ref = btrfs_delayed_node_to_data_ref(node); 903 904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 905 node->bytenr, count, sc, 906 GFP_ATOMIC); 907 break; 908 } 909 default: 910 WARN_ON(1); 911 } 912 /* 913 * We must ignore BACKREF_FOUND_SHARED until all delayed 914 * refs have been checked. 915 */ 916 if (ret && (ret != BACKREF_FOUND_SHARED)) 917 break; 918 } 919 if (!ret) 920 ret = extent_is_shared(sc); 921 out: 922 spin_unlock(&head->lock); 923 return ret; 924 } 925 926 /* 927 * add all inline backrefs for bytenr to the list 928 * 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 930 */ 931 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 932 struct btrfs_path *path, u64 bytenr, 933 int *info_level, struct preftrees *preftrees, 934 struct share_check *sc) 935 { 936 int ret = 0; 937 int slot; 938 struct extent_buffer *leaf; 939 struct btrfs_key key; 940 struct btrfs_key found_key; 941 unsigned long ptr; 942 unsigned long end; 943 struct btrfs_extent_item *ei; 944 u64 flags; 945 u64 item_size; 946 947 /* 948 * enumerate all inline refs 949 */ 950 leaf = path->nodes[0]; 951 slot = path->slots[0]; 952 953 item_size = btrfs_item_size(leaf, slot); 954 BUG_ON(item_size < sizeof(*ei)); 955 956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 957 flags = btrfs_extent_flags(leaf, ei); 958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 959 960 ptr = (unsigned long)(ei + 1); 961 end = (unsigned long)ei + item_size; 962 963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 965 struct btrfs_tree_block_info *info; 966 967 info = (struct btrfs_tree_block_info *)ptr; 968 *info_level = btrfs_tree_block_level(leaf, info); 969 ptr += sizeof(struct btrfs_tree_block_info); 970 BUG_ON(ptr > end); 971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 972 *info_level = found_key.offset; 973 } else { 974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 975 } 976 977 while (ptr < end) { 978 struct btrfs_extent_inline_ref *iref; 979 u64 offset; 980 int type; 981 982 iref = (struct btrfs_extent_inline_ref *)ptr; 983 type = btrfs_get_extent_inline_ref_type(leaf, iref, 984 BTRFS_REF_TYPE_ANY); 985 if (type == BTRFS_REF_TYPE_INVALID) 986 return -EUCLEAN; 987 988 offset = btrfs_extent_inline_ref_offset(leaf, iref); 989 990 switch (type) { 991 case BTRFS_SHARED_BLOCK_REF_KEY: 992 ret = add_direct_ref(fs_info, preftrees, 993 *info_level + 1, offset, 994 bytenr, 1, NULL, GFP_NOFS); 995 break; 996 case BTRFS_SHARED_DATA_REF_KEY: { 997 struct btrfs_shared_data_ref *sdref; 998 int count; 999 1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1001 count = btrfs_shared_data_ref_count(leaf, sdref); 1002 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1004 bytenr, count, sc, GFP_NOFS); 1005 break; 1006 } 1007 case BTRFS_TREE_BLOCK_REF_KEY: 1008 ret = add_indirect_ref(fs_info, preftrees, offset, 1009 NULL, *info_level + 1, 1010 bytenr, 1, NULL, GFP_NOFS); 1011 break; 1012 case BTRFS_EXTENT_DATA_REF_KEY: { 1013 struct btrfs_extent_data_ref *dref; 1014 int count; 1015 u64 root; 1016 1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1018 count = btrfs_extent_data_ref_count(leaf, dref); 1019 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1020 dref); 1021 key.type = BTRFS_EXTENT_DATA_KEY; 1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1023 1024 if (sc && sc->inum && key.objectid != sc->inum) { 1025 ret = BACKREF_FOUND_SHARED; 1026 break; 1027 } 1028 1029 root = btrfs_extent_data_ref_root(leaf, dref); 1030 1031 ret = add_indirect_ref(fs_info, preftrees, root, 1032 &key, 0, bytenr, count, 1033 sc, GFP_NOFS); 1034 break; 1035 } 1036 default: 1037 WARN_ON(1); 1038 } 1039 if (ret) 1040 return ret; 1041 ptr += btrfs_extent_inline_ref_size(type); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * add all non-inline backrefs for bytenr to the list 1049 * 1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1051 */ 1052 static int add_keyed_refs(struct btrfs_root *extent_root, 1053 struct btrfs_path *path, u64 bytenr, 1054 int info_level, struct preftrees *preftrees, 1055 struct share_check *sc) 1056 { 1057 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1058 int ret; 1059 int slot; 1060 struct extent_buffer *leaf; 1061 struct btrfs_key key; 1062 1063 while (1) { 1064 ret = btrfs_next_item(extent_root, path); 1065 if (ret < 0) 1066 break; 1067 if (ret) { 1068 ret = 0; 1069 break; 1070 } 1071 1072 slot = path->slots[0]; 1073 leaf = path->nodes[0]; 1074 btrfs_item_key_to_cpu(leaf, &key, slot); 1075 1076 if (key.objectid != bytenr) 1077 break; 1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1079 continue; 1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1081 break; 1082 1083 switch (key.type) { 1084 case BTRFS_SHARED_BLOCK_REF_KEY: 1085 /* SHARED DIRECT METADATA backref */ 1086 ret = add_direct_ref(fs_info, preftrees, 1087 info_level + 1, key.offset, 1088 bytenr, 1, NULL, GFP_NOFS); 1089 break; 1090 case BTRFS_SHARED_DATA_REF_KEY: { 1091 /* SHARED DIRECT FULL backref */ 1092 struct btrfs_shared_data_ref *sdref; 1093 int count; 1094 1095 sdref = btrfs_item_ptr(leaf, slot, 1096 struct btrfs_shared_data_ref); 1097 count = btrfs_shared_data_ref_count(leaf, sdref); 1098 ret = add_direct_ref(fs_info, preftrees, 0, 1099 key.offset, bytenr, count, 1100 sc, GFP_NOFS); 1101 break; 1102 } 1103 case BTRFS_TREE_BLOCK_REF_KEY: 1104 /* NORMAL INDIRECT METADATA backref */ 1105 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1106 NULL, info_level + 1, bytenr, 1107 1, NULL, GFP_NOFS); 1108 break; 1109 case BTRFS_EXTENT_DATA_REF_KEY: { 1110 /* NORMAL INDIRECT DATA backref */ 1111 struct btrfs_extent_data_ref *dref; 1112 int count; 1113 u64 root; 1114 1115 dref = btrfs_item_ptr(leaf, slot, 1116 struct btrfs_extent_data_ref); 1117 count = btrfs_extent_data_ref_count(leaf, dref); 1118 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1119 dref); 1120 key.type = BTRFS_EXTENT_DATA_KEY; 1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1122 1123 if (sc && sc->inum && key.objectid != sc->inum) { 1124 ret = BACKREF_FOUND_SHARED; 1125 break; 1126 } 1127 1128 root = btrfs_extent_data_ref_root(leaf, dref); 1129 ret = add_indirect_ref(fs_info, preftrees, root, 1130 &key, 0, bytenr, count, 1131 sc, GFP_NOFS); 1132 break; 1133 } 1134 default: 1135 WARN_ON(1); 1136 } 1137 if (ret) 1138 return ret; 1139 1140 } 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1148 * indirect refs to their parent bytenr. 1149 * When roots are found, they're added to the roots list 1150 * 1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1152 * behave much like trans == NULL case, the difference only lies in it will not 1153 * commit root. 1154 * The special case is for qgroup to search roots in commit_transaction(). 1155 * 1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1157 * shared extent is detected. 1158 * 1159 * Otherwise this returns 0 for success and <0 for an error. 1160 * 1161 * If ignore_offset is set to false, only extent refs whose offsets match 1162 * extent_item_pos are returned. If true, every extent ref is returned 1163 * and extent_item_pos is ignored. 1164 * 1165 * FIXME some caching might speed things up 1166 */ 1167 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1168 struct btrfs_fs_info *fs_info, u64 bytenr, 1169 u64 time_seq, struct ulist *refs, 1170 struct ulist *roots, const u64 *extent_item_pos, 1171 struct share_check *sc, bool ignore_offset) 1172 { 1173 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 1174 struct btrfs_key key; 1175 struct btrfs_path *path; 1176 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1177 struct btrfs_delayed_ref_head *head; 1178 int info_level = 0; 1179 int ret; 1180 struct prelim_ref *ref; 1181 struct rb_node *node; 1182 struct extent_inode_elem *eie = NULL; 1183 struct preftrees preftrees = { 1184 .direct = PREFTREE_INIT, 1185 .indirect = PREFTREE_INIT, 1186 .indirect_missing_keys = PREFTREE_INIT 1187 }; 1188 1189 key.objectid = bytenr; 1190 key.offset = (u64)-1; 1191 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1192 key.type = BTRFS_METADATA_ITEM_KEY; 1193 else 1194 key.type = BTRFS_EXTENT_ITEM_KEY; 1195 1196 path = btrfs_alloc_path(); 1197 if (!path) 1198 return -ENOMEM; 1199 if (!trans) { 1200 path->search_commit_root = 1; 1201 path->skip_locking = 1; 1202 } 1203 1204 if (time_seq == BTRFS_SEQ_LAST) 1205 path->skip_locking = 1; 1206 1207 again: 1208 head = NULL; 1209 1210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1211 if (ret < 0) 1212 goto out; 1213 if (ret == 0) { 1214 /* This shouldn't happen, indicates a bug or fs corruption. */ 1215 ASSERT(ret != 0); 1216 ret = -EUCLEAN; 1217 goto out; 1218 } 1219 1220 if (trans && likely(trans->type != __TRANS_DUMMY) && 1221 time_seq != BTRFS_SEQ_LAST) { 1222 /* 1223 * We have a specific time_seq we care about and trans which 1224 * means we have the path lock, we need to grab the ref head and 1225 * lock it so we have a consistent view of the refs at the given 1226 * time. 1227 */ 1228 delayed_refs = &trans->transaction->delayed_refs; 1229 spin_lock(&delayed_refs->lock); 1230 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1231 if (head) { 1232 if (!mutex_trylock(&head->mutex)) { 1233 refcount_inc(&head->refs); 1234 spin_unlock(&delayed_refs->lock); 1235 1236 btrfs_release_path(path); 1237 1238 /* 1239 * Mutex was contended, block until it's 1240 * released and try again 1241 */ 1242 mutex_lock(&head->mutex); 1243 mutex_unlock(&head->mutex); 1244 btrfs_put_delayed_ref_head(head); 1245 goto again; 1246 } 1247 spin_unlock(&delayed_refs->lock); 1248 ret = add_delayed_refs(fs_info, head, time_seq, 1249 &preftrees, sc); 1250 mutex_unlock(&head->mutex); 1251 if (ret) 1252 goto out; 1253 } else { 1254 spin_unlock(&delayed_refs->lock); 1255 } 1256 } 1257 1258 if (path->slots[0]) { 1259 struct extent_buffer *leaf; 1260 int slot; 1261 1262 path->slots[0]--; 1263 leaf = path->nodes[0]; 1264 slot = path->slots[0]; 1265 btrfs_item_key_to_cpu(leaf, &key, slot); 1266 if (key.objectid == bytenr && 1267 (key.type == BTRFS_EXTENT_ITEM_KEY || 1268 key.type == BTRFS_METADATA_ITEM_KEY)) { 1269 ret = add_inline_refs(fs_info, path, bytenr, 1270 &info_level, &preftrees, sc); 1271 if (ret) 1272 goto out; 1273 ret = add_keyed_refs(root, path, bytenr, info_level, 1274 &preftrees, sc); 1275 if (ret) 1276 goto out; 1277 } 1278 } 1279 1280 btrfs_release_path(path); 1281 1282 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1283 if (ret) 1284 goto out; 1285 1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1287 1288 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1289 extent_item_pos, sc, ignore_offset); 1290 if (ret) 1291 goto out; 1292 1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1294 1295 /* 1296 * This walks the tree of merged and resolved refs. Tree blocks are 1297 * read in as needed. Unique entries are added to the ulist, and 1298 * the list of found roots is updated. 1299 * 1300 * We release the entire tree in one go before returning. 1301 */ 1302 node = rb_first_cached(&preftrees.direct.root); 1303 while (node) { 1304 ref = rb_entry(node, struct prelim_ref, rbnode); 1305 node = rb_next(&ref->rbnode); 1306 /* 1307 * ref->count < 0 can happen here if there are delayed 1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1309 * prelim_ref_insert() relies on this when merging 1310 * identical refs to keep the overall count correct. 1311 * prelim_ref_insert() will merge only those refs 1312 * which compare identically. Any refs having 1313 * e.g. different offsets would not be merged, 1314 * and would retain their original ref->count < 0. 1315 */ 1316 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1317 if (sc && sc->root_objectid && 1318 ref->root_id != sc->root_objectid) { 1319 ret = BACKREF_FOUND_SHARED; 1320 goto out; 1321 } 1322 1323 /* no parent == root of tree */ 1324 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1325 if (ret < 0) 1326 goto out; 1327 } 1328 if (ref->count && ref->parent) { 1329 if (extent_item_pos && !ref->inode_list && 1330 ref->level == 0) { 1331 struct extent_buffer *eb; 1332 1333 eb = read_tree_block(fs_info, ref->parent, 0, 1334 0, ref->level, NULL); 1335 if (IS_ERR(eb)) { 1336 ret = PTR_ERR(eb); 1337 goto out; 1338 } else if (!extent_buffer_uptodate(eb)) { 1339 free_extent_buffer(eb); 1340 ret = -EIO; 1341 goto out; 1342 } 1343 1344 if (!path->skip_locking) 1345 btrfs_tree_read_lock(eb); 1346 ret = find_extent_in_eb(eb, bytenr, 1347 *extent_item_pos, &eie, ignore_offset); 1348 if (!path->skip_locking) 1349 btrfs_tree_read_unlock(eb); 1350 free_extent_buffer(eb); 1351 if (ret < 0) 1352 goto out; 1353 ref->inode_list = eie; 1354 } 1355 ret = ulist_add_merge_ptr(refs, ref->parent, 1356 ref->inode_list, 1357 (void **)&eie, GFP_NOFS); 1358 if (ret < 0) 1359 goto out; 1360 if (!ret && extent_item_pos) { 1361 /* 1362 * We've recorded that parent, so we must extend 1363 * its inode list here. 1364 * 1365 * However if there was corruption we may not 1366 * have found an eie, return an error in this 1367 * case. 1368 */ 1369 ASSERT(eie); 1370 if (!eie) { 1371 ret = -EUCLEAN; 1372 goto out; 1373 } 1374 while (eie->next) 1375 eie = eie->next; 1376 eie->next = ref->inode_list; 1377 } 1378 eie = NULL; 1379 } 1380 cond_resched(); 1381 } 1382 1383 out: 1384 btrfs_free_path(path); 1385 1386 prelim_release(&preftrees.direct); 1387 prelim_release(&preftrees.indirect); 1388 prelim_release(&preftrees.indirect_missing_keys); 1389 1390 if (ret < 0) 1391 free_inode_elem_list(eie); 1392 return ret; 1393 } 1394 1395 static void free_leaf_list(struct ulist *blocks) 1396 { 1397 struct ulist_node *node = NULL; 1398 struct extent_inode_elem *eie; 1399 struct ulist_iterator uiter; 1400 1401 ULIST_ITER_INIT(&uiter); 1402 while ((node = ulist_next(blocks, &uiter))) { 1403 if (!node->aux) 1404 continue; 1405 eie = unode_aux_to_inode_list(node); 1406 free_inode_elem_list(eie); 1407 node->aux = 0; 1408 } 1409 1410 ulist_free(blocks); 1411 } 1412 1413 /* 1414 * Finds all leafs with a reference to the specified combination of bytenr and 1415 * offset. key_list_head will point to a list of corresponding keys (caller must 1416 * free each list element). The leafs will be stored in the leafs ulist, which 1417 * must be freed with ulist_free. 1418 * 1419 * returns 0 on success, <0 on error 1420 */ 1421 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1422 struct btrfs_fs_info *fs_info, u64 bytenr, 1423 u64 time_seq, struct ulist **leafs, 1424 const u64 *extent_item_pos, bool ignore_offset) 1425 { 1426 int ret; 1427 1428 *leafs = ulist_alloc(GFP_NOFS); 1429 if (!*leafs) 1430 return -ENOMEM; 1431 1432 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1433 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1434 if (ret < 0 && ret != -ENOENT) { 1435 free_leaf_list(*leafs); 1436 return ret; 1437 } 1438 1439 return 0; 1440 } 1441 1442 /* 1443 * walk all backrefs for a given extent to find all roots that reference this 1444 * extent. Walking a backref means finding all extents that reference this 1445 * extent and in turn walk the backrefs of those, too. Naturally this is a 1446 * recursive process, but here it is implemented in an iterative fashion: We 1447 * find all referencing extents for the extent in question and put them on a 1448 * list. In turn, we find all referencing extents for those, further appending 1449 * to the list. The way we iterate the list allows adding more elements after 1450 * the current while iterating. The process stops when we reach the end of the 1451 * list. Found roots are added to the roots list. 1452 * 1453 * returns 0 on success, < 0 on error. 1454 */ 1455 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1456 struct btrfs_fs_info *fs_info, u64 bytenr, 1457 u64 time_seq, struct ulist **roots, 1458 bool ignore_offset) 1459 { 1460 struct ulist *tmp; 1461 struct ulist_node *node = NULL; 1462 struct ulist_iterator uiter; 1463 int ret; 1464 1465 tmp = ulist_alloc(GFP_NOFS); 1466 if (!tmp) 1467 return -ENOMEM; 1468 *roots = ulist_alloc(GFP_NOFS); 1469 if (!*roots) { 1470 ulist_free(tmp); 1471 return -ENOMEM; 1472 } 1473 1474 ULIST_ITER_INIT(&uiter); 1475 while (1) { 1476 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1477 tmp, *roots, NULL, NULL, ignore_offset); 1478 if (ret < 0 && ret != -ENOENT) { 1479 ulist_free(tmp); 1480 ulist_free(*roots); 1481 *roots = NULL; 1482 return ret; 1483 } 1484 node = ulist_next(tmp, &uiter); 1485 if (!node) 1486 break; 1487 bytenr = node->val; 1488 cond_resched(); 1489 } 1490 1491 ulist_free(tmp); 1492 return 0; 1493 } 1494 1495 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1496 struct btrfs_fs_info *fs_info, u64 bytenr, 1497 u64 time_seq, struct ulist **roots, 1498 bool skip_commit_root_sem) 1499 { 1500 int ret; 1501 1502 if (!trans && !skip_commit_root_sem) 1503 down_read(&fs_info->commit_root_sem); 1504 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1505 time_seq, roots, false); 1506 if (!trans && !skip_commit_root_sem) 1507 up_read(&fs_info->commit_root_sem); 1508 return ret; 1509 } 1510 1511 /** 1512 * Check if an extent is shared or not 1513 * 1514 * @root: root inode belongs to 1515 * @inum: inode number of the inode whose extent we are checking 1516 * @bytenr: logical bytenr of the extent we are checking 1517 * @roots: list of roots this extent is shared among 1518 * @tmp: temporary list used for iteration 1519 * 1520 * btrfs_check_shared uses the backref walking code but will short 1521 * circuit as soon as it finds a root or inode that doesn't match the 1522 * one passed in. This provides a significant performance benefit for 1523 * callers (such as fiemap) which want to know whether the extent is 1524 * shared but do not need a ref count. 1525 * 1526 * This attempts to attach to the running transaction in order to account for 1527 * delayed refs, but continues on even when no running transaction exists. 1528 * 1529 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1530 */ 1531 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1532 struct ulist *roots, struct ulist *tmp) 1533 { 1534 struct btrfs_fs_info *fs_info = root->fs_info; 1535 struct btrfs_trans_handle *trans; 1536 struct ulist_iterator uiter; 1537 struct ulist_node *node; 1538 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1539 int ret = 0; 1540 struct share_check shared = { 1541 .root_objectid = root->root_key.objectid, 1542 .inum = inum, 1543 .share_count = 0, 1544 }; 1545 1546 ulist_init(roots); 1547 ulist_init(tmp); 1548 1549 trans = btrfs_join_transaction_nostart(root); 1550 if (IS_ERR(trans)) { 1551 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1552 ret = PTR_ERR(trans); 1553 goto out; 1554 } 1555 trans = NULL; 1556 down_read(&fs_info->commit_root_sem); 1557 } else { 1558 btrfs_get_tree_mod_seq(fs_info, &elem); 1559 } 1560 1561 ULIST_ITER_INIT(&uiter); 1562 while (1) { 1563 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1564 roots, NULL, &shared, false); 1565 if (ret == BACKREF_FOUND_SHARED) { 1566 /* this is the only condition under which we return 1 */ 1567 ret = 1; 1568 break; 1569 } 1570 if (ret < 0 && ret != -ENOENT) 1571 break; 1572 ret = 0; 1573 node = ulist_next(tmp, &uiter); 1574 if (!node) 1575 break; 1576 bytenr = node->val; 1577 shared.share_count = 0; 1578 cond_resched(); 1579 } 1580 1581 if (trans) { 1582 btrfs_put_tree_mod_seq(fs_info, &elem); 1583 btrfs_end_transaction(trans); 1584 } else { 1585 up_read(&fs_info->commit_root_sem); 1586 } 1587 out: 1588 ulist_release(roots); 1589 ulist_release(tmp); 1590 return ret; 1591 } 1592 1593 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1594 u64 start_off, struct btrfs_path *path, 1595 struct btrfs_inode_extref **ret_extref, 1596 u64 *found_off) 1597 { 1598 int ret, slot; 1599 struct btrfs_key key; 1600 struct btrfs_key found_key; 1601 struct btrfs_inode_extref *extref; 1602 const struct extent_buffer *leaf; 1603 unsigned long ptr; 1604 1605 key.objectid = inode_objectid; 1606 key.type = BTRFS_INODE_EXTREF_KEY; 1607 key.offset = start_off; 1608 1609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1610 if (ret < 0) 1611 return ret; 1612 1613 while (1) { 1614 leaf = path->nodes[0]; 1615 slot = path->slots[0]; 1616 if (slot >= btrfs_header_nritems(leaf)) { 1617 /* 1618 * If the item at offset is not found, 1619 * btrfs_search_slot will point us to the slot 1620 * where it should be inserted. In our case 1621 * that will be the slot directly before the 1622 * next INODE_REF_KEY_V2 item. In the case 1623 * that we're pointing to the last slot in a 1624 * leaf, we must move one leaf over. 1625 */ 1626 ret = btrfs_next_leaf(root, path); 1627 if (ret) { 1628 if (ret >= 1) 1629 ret = -ENOENT; 1630 break; 1631 } 1632 continue; 1633 } 1634 1635 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1636 1637 /* 1638 * Check that we're still looking at an extended ref key for 1639 * this particular objectid. If we have different 1640 * objectid or type then there are no more to be found 1641 * in the tree and we can exit. 1642 */ 1643 ret = -ENOENT; 1644 if (found_key.objectid != inode_objectid) 1645 break; 1646 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1647 break; 1648 1649 ret = 0; 1650 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1651 extref = (struct btrfs_inode_extref *)ptr; 1652 *ret_extref = extref; 1653 if (found_off) 1654 *found_off = found_key.offset; 1655 break; 1656 } 1657 1658 return ret; 1659 } 1660 1661 /* 1662 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1663 * Elements of the path are separated by '/' and the path is guaranteed to be 1664 * 0-terminated. the path is only given within the current file system. 1665 * Therefore, it never starts with a '/'. the caller is responsible to provide 1666 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1667 * the start point of the resulting string is returned. this pointer is within 1668 * dest, normally. 1669 * in case the path buffer would overflow, the pointer is decremented further 1670 * as if output was written to the buffer, though no more output is actually 1671 * generated. that way, the caller can determine how much space would be 1672 * required for the path to fit into the buffer. in that case, the returned 1673 * value will be smaller than dest. callers must check this! 1674 */ 1675 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1676 u32 name_len, unsigned long name_off, 1677 struct extent_buffer *eb_in, u64 parent, 1678 char *dest, u32 size) 1679 { 1680 int slot; 1681 u64 next_inum; 1682 int ret; 1683 s64 bytes_left = ((s64)size) - 1; 1684 struct extent_buffer *eb = eb_in; 1685 struct btrfs_key found_key; 1686 struct btrfs_inode_ref *iref; 1687 1688 if (bytes_left >= 0) 1689 dest[bytes_left] = '\0'; 1690 1691 while (1) { 1692 bytes_left -= name_len; 1693 if (bytes_left >= 0) 1694 read_extent_buffer(eb, dest + bytes_left, 1695 name_off, name_len); 1696 if (eb != eb_in) { 1697 if (!path->skip_locking) 1698 btrfs_tree_read_unlock(eb); 1699 free_extent_buffer(eb); 1700 } 1701 ret = btrfs_find_item(fs_root, path, parent, 0, 1702 BTRFS_INODE_REF_KEY, &found_key); 1703 if (ret > 0) 1704 ret = -ENOENT; 1705 if (ret) 1706 break; 1707 1708 next_inum = found_key.offset; 1709 1710 /* regular exit ahead */ 1711 if (parent == next_inum) 1712 break; 1713 1714 slot = path->slots[0]; 1715 eb = path->nodes[0]; 1716 /* make sure we can use eb after releasing the path */ 1717 if (eb != eb_in) { 1718 path->nodes[0] = NULL; 1719 path->locks[0] = 0; 1720 } 1721 btrfs_release_path(path); 1722 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1723 1724 name_len = btrfs_inode_ref_name_len(eb, iref); 1725 name_off = (unsigned long)(iref + 1); 1726 1727 parent = next_inum; 1728 --bytes_left; 1729 if (bytes_left >= 0) 1730 dest[bytes_left] = '/'; 1731 } 1732 1733 btrfs_release_path(path); 1734 1735 if (ret) 1736 return ERR_PTR(ret); 1737 1738 return dest + bytes_left; 1739 } 1740 1741 /* 1742 * this makes the path point to (logical EXTENT_ITEM *) 1743 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1744 * tree blocks and <0 on error. 1745 */ 1746 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1747 struct btrfs_path *path, struct btrfs_key *found_key, 1748 u64 *flags_ret) 1749 { 1750 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 1751 int ret; 1752 u64 flags; 1753 u64 size = 0; 1754 u32 item_size; 1755 const struct extent_buffer *eb; 1756 struct btrfs_extent_item *ei; 1757 struct btrfs_key key; 1758 1759 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1760 key.type = BTRFS_METADATA_ITEM_KEY; 1761 else 1762 key.type = BTRFS_EXTENT_ITEM_KEY; 1763 key.objectid = logical; 1764 key.offset = (u64)-1; 1765 1766 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1767 if (ret < 0) 1768 return ret; 1769 1770 ret = btrfs_previous_extent_item(extent_root, path, 0); 1771 if (ret) { 1772 if (ret > 0) 1773 ret = -ENOENT; 1774 return ret; 1775 } 1776 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1777 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1778 size = fs_info->nodesize; 1779 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1780 size = found_key->offset; 1781 1782 if (found_key->objectid > logical || 1783 found_key->objectid + size <= logical) { 1784 btrfs_debug(fs_info, 1785 "logical %llu is not within any extent", logical); 1786 return -ENOENT; 1787 } 1788 1789 eb = path->nodes[0]; 1790 item_size = btrfs_item_size(eb, path->slots[0]); 1791 BUG_ON(item_size < sizeof(*ei)); 1792 1793 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1794 flags = btrfs_extent_flags(eb, ei); 1795 1796 btrfs_debug(fs_info, 1797 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1798 logical, logical - found_key->objectid, found_key->objectid, 1799 found_key->offset, flags, item_size); 1800 1801 WARN_ON(!flags_ret); 1802 if (flags_ret) { 1803 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1804 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1805 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1806 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1807 else 1808 BUG(); 1809 return 0; 1810 } 1811 1812 return -EIO; 1813 } 1814 1815 /* 1816 * helper function to iterate extent inline refs. ptr must point to a 0 value 1817 * for the first call and may be modified. it is used to track state. 1818 * if more refs exist, 0 is returned and the next call to 1819 * get_extent_inline_ref must pass the modified ptr parameter to get the 1820 * next ref. after the last ref was processed, 1 is returned. 1821 * returns <0 on error 1822 */ 1823 static int get_extent_inline_ref(unsigned long *ptr, 1824 const struct extent_buffer *eb, 1825 const struct btrfs_key *key, 1826 const struct btrfs_extent_item *ei, 1827 u32 item_size, 1828 struct btrfs_extent_inline_ref **out_eiref, 1829 int *out_type) 1830 { 1831 unsigned long end; 1832 u64 flags; 1833 struct btrfs_tree_block_info *info; 1834 1835 if (!*ptr) { 1836 /* first call */ 1837 flags = btrfs_extent_flags(eb, ei); 1838 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1839 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1840 /* a skinny metadata extent */ 1841 *out_eiref = 1842 (struct btrfs_extent_inline_ref *)(ei + 1); 1843 } else { 1844 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1845 info = (struct btrfs_tree_block_info *)(ei + 1); 1846 *out_eiref = 1847 (struct btrfs_extent_inline_ref *)(info + 1); 1848 } 1849 } else { 1850 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1851 } 1852 *ptr = (unsigned long)*out_eiref; 1853 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1854 return -ENOENT; 1855 } 1856 1857 end = (unsigned long)ei + item_size; 1858 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1859 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1860 BTRFS_REF_TYPE_ANY); 1861 if (*out_type == BTRFS_REF_TYPE_INVALID) 1862 return -EUCLEAN; 1863 1864 *ptr += btrfs_extent_inline_ref_size(*out_type); 1865 WARN_ON(*ptr > end); 1866 if (*ptr == end) 1867 return 1; /* last */ 1868 1869 return 0; 1870 } 1871 1872 /* 1873 * reads the tree block backref for an extent. tree level and root are returned 1874 * through out_level and out_root. ptr must point to a 0 value for the first 1875 * call and may be modified (see get_extent_inline_ref comment). 1876 * returns 0 if data was provided, 1 if there was no more data to provide or 1877 * <0 on error. 1878 */ 1879 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1880 struct btrfs_key *key, struct btrfs_extent_item *ei, 1881 u32 item_size, u64 *out_root, u8 *out_level) 1882 { 1883 int ret; 1884 int type; 1885 struct btrfs_extent_inline_ref *eiref; 1886 1887 if (*ptr == (unsigned long)-1) 1888 return 1; 1889 1890 while (1) { 1891 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1892 &eiref, &type); 1893 if (ret < 0) 1894 return ret; 1895 1896 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1897 type == BTRFS_SHARED_BLOCK_REF_KEY) 1898 break; 1899 1900 if (ret == 1) 1901 return 1; 1902 } 1903 1904 /* we can treat both ref types equally here */ 1905 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1906 1907 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1908 struct btrfs_tree_block_info *info; 1909 1910 info = (struct btrfs_tree_block_info *)(ei + 1); 1911 *out_level = btrfs_tree_block_level(eb, info); 1912 } else { 1913 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1914 *out_level = (u8)key->offset; 1915 } 1916 1917 if (ret == 1) 1918 *ptr = (unsigned long)-1; 1919 1920 return 0; 1921 } 1922 1923 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1924 struct extent_inode_elem *inode_list, 1925 u64 root, u64 extent_item_objectid, 1926 iterate_extent_inodes_t *iterate, void *ctx) 1927 { 1928 struct extent_inode_elem *eie; 1929 int ret = 0; 1930 1931 for (eie = inode_list; eie; eie = eie->next) { 1932 btrfs_debug(fs_info, 1933 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1934 extent_item_objectid, eie->inum, 1935 eie->offset, root); 1936 ret = iterate(eie->inum, eie->offset, root, ctx); 1937 if (ret) { 1938 btrfs_debug(fs_info, 1939 "stopping iteration for %llu due to ret=%d", 1940 extent_item_objectid, ret); 1941 break; 1942 } 1943 } 1944 1945 return ret; 1946 } 1947 1948 /* 1949 * calls iterate() for every inode that references the extent identified by 1950 * the given parameters. 1951 * when the iterator function returns a non-zero value, iteration stops. 1952 */ 1953 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1954 u64 extent_item_objectid, u64 extent_item_pos, 1955 int search_commit_root, 1956 iterate_extent_inodes_t *iterate, void *ctx, 1957 bool ignore_offset) 1958 { 1959 int ret; 1960 struct btrfs_trans_handle *trans = NULL; 1961 struct ulist *refs = NULL; 1962 struct ulist *roots = NULL; 1963 struct ulist_node *ref_node = NULL; 1964 struct ulist_node *root_node = NULL; 1965 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1966 struct ulist_iterator ref_uiter; 1967 struct ulist_iterator root_uiter; 1968 1969 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1970 extent_item_objectid); 1971 1972 if (!search_commit_root) { 1973 trans = btrfs_attach_transaction(fs_info->tree_root); 1974 if (IS_ERR(trans)) { 1975 if (PTR_ERR(trans) != -ENOENT && 1976 PTR_ERR(trans) != -EROFS) 1977 return PTR_ERR(trans); 1978 trans = NULL; 1979 } 1980 } 1981 1982 if (trans) 1983 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1984 else 1985 down_read(&fs_info->commit_root_sem); 1986 1987 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1988 seq_elem.seq, &refs, 1989 &extent_item_pos, ignore_offset); 1990 if (ret) 1991 goto out; 1992 1993 ULIST_ITER_INIT(&ref_uiter); 1994 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1995 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1996 seq_elem.seq, &roots, 1997 ignore_offset); 1998 if (ret) 1999 break; 2000 ULIST_ITER_INIT(&root_uiter); 2001 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2002 btrfs_debug(fs_info, 2003 "root %llu references leaf %llu, data list %#llx", 2004 root_node->val, ref_node->val, 2005 ref_node->aux); 2006 ret = iterate_leaf_refs(fs_info, 2007 (struct extent_inode_elem *) 2008 (uintptr_t)ref_node->aux, 2009 root_node->val, 2010 extent_item_objectid, 2011 iterate, ctx); 2012 } 2013 ulist_free(roots); 2014 } 2015 2016 free_leaf_list(refs); 2017 out: 2018 if (trans) { 2019 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2020 btrfs_end_transaction(trans); 2021 } else { 2022 up_read(&fs_info->commit_root_sem); 2023 } 2024 2025 return ret; 2026 } 2027 2028 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2029 struct btrfs_path *path, 2030 iterate_extent_inodes_t *iterate, void *ctx, 2031 bool ignore_offset) 2032 { 2033 int ret; 2034 u64 extent_item_pos; 2035 u64 flags = 0; 2036 struct btrfs_key found_key; 2037 int search_commit_root = path->search_commit_root; 2038 2039 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2040 btrfs_release_path(path); 2041 if (ret < 0) 2042 return ret; 2043 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2044 return -EINVAL; 2045 2046 extent_item_pos = logical - found_key.objectid; 2047 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2048 extent_item_pos, search_commit_root, 2049 iterate, ctx, ignore_offset); 2050 2051 return ret; 2052 } 2053 2054 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2055 struct extent_buffer *eb, void *ctx); 2056 2057 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2058 struct btrfs_path *path, 2059 iterate_irefs_t *iterate, void *ctx) 2060 { 2061 int ret = 0; 2062 int slot; 2063 u32 cur; 2064 u32 len; 2065 u32 name_len; 2066 u64 parent = 0; 2067 int found = 0; 2068 struct extent_buffer *eb; 2069 struct btrfs_inode_ref *iref; 2070 struct btrfs_key found_key; 2071 2072 while (!ret) { 2073 ret = btrfs_find_item(fs_root, path, inum, 2074 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2075 &found_key); 2076 2077 if (ret < 0) 2078 break; 2079 if (ret) { 2080 ret = found ? 0 : -ENOENT; 2081 break; 2082 } 2083 ++found; 2084 2085 parent = found_key.offset; 2086 slot = path->slots[0]; 2087 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2088 if (!eb) { 2089 ret = -ENOMEM; 2090 break; 2091 } 2092 btrfs_release_path(path); 2093 2094 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2095 2096 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2097 name_len = btrfs_inode_ref_name_len(eb, iref); 2098 /* path must be released before calling iterate()! */ 2099 btrfs_debug(fs_root->fs_info, 2100 "following ref at offset %u for inode %llu in tree %llu", 2101 cur, found_key.objectid, 2102 fs_root->root_key.objectid); 2103 ret = iterate(parent, name_len, 2104 (unsigned long)(iref + 1), eb, ctx); 2105 if (ret) 2106 break; 2107 len = sizeof(*iref) + name_len; 2108 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2109 } 2110 free_extent_buffer(eb); 2111 } 2112 2113 btrfs_release_path(path); 2114 2115 return ret; 2116 } 2117 2118 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2119 struct btrfs_path *path, 2120 iterate_irefs_t *iterate, void *ctx) 2121 { 2122 int ret; 2123 int slot; 2124 u64 offset = 0; 2125 u64 parent; 2126 int found = 0; 2127 struct extent_buffer *eb; 2128 struct btrfs_inode_extref *extref; 2129 u32 item_size; 2130 u32 cur_offset; 2131 unsigned long ptr; 2132 2133 while (1) { 2134 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2135 &offset); 2136 if (ret < 0) 2137 break; 2138 if (ret) { 2139 ret = found ? 0 : -ENOENT; 2140 break; 2141 } 2142 ++found; 2143 2144 slot = path->slots[0]; 2145 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2146 if (!eb) { 2147 ret = -ENOMEM; 2148 break; 2149 } 2150 btrfs_release_path(path); 2151 2152 item_size = btrfs_item_size(eb, slot); 2153 ptr = btrfs_item_ptr_offset(eb, slot); 2154 cur_offset = 0; 2155 2156 while (cur_offset < item_size) { 2157 u32 name_len; 2158 2159 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2160 parent = btrfs_inode_extref_parent(eb, extref); 2161 name_len = btrfs_inode_extref_name_len(eb, extref); 2162 ret = iterate(parent, name_len, 2163 (unsigned long)&extref->name, eb, ctx); 2164 if (ret) 2165 break; 2166 2167 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2168 cur_offset += sizeof(*extref); 2169 } 2170 free_extent_buffer(eb); 2171 2172 offset++; 2173 } 2174 2175 btrfs_release_path(path); 2176 2177 return ret; 2178 } 2179 2180 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2181 struct btrfs_path *path, iterate_irefs_t *iterate, 2182 void *ctx) 2183 { 2184 int ret; 2185 int found_refs = 0; 2186 2187 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2188 if (!ret) 2189 ++found_refs; 2190 else if (ret != -ENOENT) 2191 return ret; 2192 2193 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2194 if (ret == -ENOENT && found_refs) 2195 return 0; 2196 2197 return ret; 2198 } 2199 2200 /* 2201 * returns 0 if the path could be dumped (probably truncated) 2202 * returns <0 in case of an error 2203 */ 2204 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2205 struct extent_buffer *eb, void *ctx) 2206 { 2207 struct inode_fs_paths *ipath = ctx; 2208 char *fspath; 2209 char *fspath_min; 2210 int i = ipath->fspath->elem_cnt; 2211 const int s_ptr = sizeof(char *); 2212 u32 bytes_left; 2213 2214 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2215 ipath->fspath->bytes_left - s_ptr : 0; 2216 2217 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2218 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2219 name_off, eb, inum, fspath_min, bytes_left); 2220 if (IS_ERR(fspath)) 2221 return PTR_ERR(fspath); 2222 2223 if (fspath > fspath_min) { 2224 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2225 ++ipath->fspath->elem_cnt; 2226 ipath->fspath->bytes_left = fspath - fspath_min; 2227 } else { 2228 ++ipath->fspath->elem_missed; 2229 ipath->fspath->bytes_missing += fspath_min - fspath; 2230 ipath->fspath->bytes_left = 0; 2231 } 2232 2233 return 0; 2234 } 2235 2236 /* 2237 * this dumps all file system paths to the inode into the ipath struct, provided 2238 * is has been created large enough. each path is zero-terminated and accessed 2239 * from ipath->fspath->val[i]. 2240 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2241 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2242 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2243 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2244 * have been needed to return all paths. 2245 */ 2246 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2247 { 2248 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2249 inode_to_path, ipath); 2250 } 2251 2252 struct btrfs_data_container *init_data_container(u32 total_bytes) 2253 { 2254 struct btrfs_data_container *data; 2255 size_t alloc_bytes; 2256 2257 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2258 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2259 if (!data) 2260 return ERR_PTR(-ENOMEM); 2261 2262 if (total_bytes >= sizeof(*data)) { 2263 data->bytes_left = total_bytes - sizeof(*data); 2264 data->bytes_missing = 0; 2265 } else { 2266 data->bytes_missing = sizeof(*data) - total_bytes; 2267 data->bytes_left = 0; 2268 } 2269 2270 data->elem_cnt = 0; 2271 data->elem_missed = 0; 2272 2273 return data; 2274 } 2275 2276 /* 2277 * allocates space to return multiple file system paths for an inode. 2278 * total_bytes to allocate are passed, note that space usable for actual path 2279 * information will be total_bytes - sizeof(struct inode_fs_paths). 2280 * the returned pointer must be freed with free_ipath() in the end. 2281 */ 2282 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2283 struct btrfs_path *path) 2284 { 2285 struct inode_fs_paths *ifp; 2286 struct btrfs_data_container *fspath; 2287 2288 fspath = init_data_container(total_bytes); 2289 if (IS_ERR(fspath)) 2290 return ERR_CAST(fspath); 2291 2292 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2293 if (!ifp) { 2294 kvfree(fspath); 2295 return ERR_PTR(-ENOMEM); 2296 } 2297 2298 ifp->btrfs_path = path; 2299 ifp->fspath = fspath; 2300 ifp->fs_root = fs_root; 2301 2302 return ifp; 2303 } 2304 2305 void free_ipath(struct inode_fs_paths *ipath) 2306 { 2307 if (!ipath) 2308 return; 2309 kvfree(ipath->fspath); 2310 kfree(ipath); 2311 } 2312 2313 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2314 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2315 { 2316 struct btrfs_backref_iter *ret; 2317 2318 ret = kzalloc(sizeof(*ret), gfp_flag); 2319 if (!ret) 2320 return NULL; 2321 2322 ret->path = btrfs_alloc_path(); 2323 if (!ret->path) { 2324 kfree(ret); 2325 return NULL; 2326 } 2327 2328 /* Current backref iterator only supports iteration in commit root */ 2329 ret->path->search_commit_root = 1; 2330 ret->path->skip_locking = 1; 2331 ret->fs_info = fs_info; 2332 2333 return ret; 2334 } 2335 2336 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2337 { 2338 struct btrfs_fs_info *fs_info = iter->fs_info; 2339 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2340 struct btrfs_path *path = iter->path; 2341 struct btrfs_extent_item *ei; 2342 struct btrfs_key key; 2343 int ret; 2344 2345 key.objectid = bytenr; 2346 key.type = BTRFS_METADATA_ITEM_KEY; 2347 key.offset = (u64)-1; 2348 iter->bytenr = bytenr; 2349 2350 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2351 if (ret < 0) 2352 return ret; 2353 if (ret == 0) { 2354 ret = -EUCLEAN; 2355 goto release; 2356 } 2357 if (path->slots[0] == 0) { 2358 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2359 ret = -EUCLEAN; 2360 goto release; 2361 } 2362 path->slots[0]--; 2363 2364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2365 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2366 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2367 ret = -ENOENT; 2368 goto release; 2369 } 2370 memcpy(&iter->cur_key, &key, sizeof(key)); 2371 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2372 path->slots[0]); 2373 iter->end_ptr = (u32)(iter->item_ptr + 2374 btrfs_item_size(path->nodes[0], path->slots[0])); 2375 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2376 struct btrfs_extent_item); 2377 2378 /* 2379 * Only support iteration on tree backref yet. 2380 * 2381 * This is an extra precaution for non skinny-metadata, where 2382 * EXTENT_ITEM is also used for tree blocks, that we can only use 2383 * extent flags to determine if it's a tree block. 2384 */ 2385 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2386 ret = -ENOTSUPP; 2387 goto release; 2388 } 2389 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2390 2391 /* If there is no inline backref, go search for keyed backref */ 2392 if (iter->cur_ptr >= iter->end_ptr) { 2393 ret = btrfs_next_item(extent_root, path); 2394 2395 /* No inline nor keyed ref */ 2396 if (ret > 0) { 2397 ret = -ENOENT; 2398 goto release; 2399 } 2400 if (ret < 0) 2401 goto release; 2402 2403 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2404 path->slots[0]); 2405 if (iter->cur_key.objectid != bytenr || 2406 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2407 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2408 ret = -ENOENT; 2409 goto release; 2410 } 2411 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2412 path->slots[0]); 2413 iter->item_ptr = iter->cur_ptr; 2414 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2415 path->nodes[0], path->slots[0])); 2416 } 2417 2418 return 0; 2419 release: 2420 btrfs_backref_iter_release(iter); 2421 return ret; 2422 } 2423 2424 /* 2425 * Go to the next backref item of current bytenr, can be either inlined or 2426 * keyed. 2427 * 2428 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2429 * 2430 * Return 0 if we get next backref without problem. 2431 * Return >0 if there is no extra backref for this bytenr. 2432 * Return <0 if there is something wrong happened. 2433 */ 2434 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2435 { 2436 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2437 struct btrfs_root *extent_root; 2438 struct btrfs_path *path = iter->path; 2439 struct btrfs_extent_inline_ref *iref; 2440 int ret; 2441 u32 size; 2442 2443 if (btrfs_backref_iter_is_inline_ref(iter)) { 2444 /* We're still inside the inline refs */ 2445 ASSERT(iter->cur_ptr < iter->end_ptr); 2446 2447 if (btrfs_backref_has_tree_block_info(iter)) { 2448 /* First tree block info */ 2449 size = sizeof(struct btrfs_tree_block_info); 2450 } else { 2451 /* Use inline ref type to determine the size */ 2452 int type; 2453 2454 iref = (struct btrfs_extent_inline_ref *) 2455 ((unsigned long)iter->cur_ptr); 2456 type = btrfs_extent_inline_ref_type(eb, iref); 2457 2458 size = btrfs_extent_inline_ref_size(type); 2459 } 2460 iter->cur_ptr += size; 2461 if (iter->cur_ptr < iter->end_ptr) 2462 return 0; 2463 2464 /* All inline items iterated, fall through */ 2465 } 2466 2467 /* We're at keyed items, there is no inline item, go to the next one */ 2468 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2469 ret = btrfs_next_item(extent_root, iter->path); 2470 if (ret) 2471 return ret; 2472 2473 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2474 if (iter->cur_key.objectid != iter->bytenr || 2475 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2476 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2477 return 1; 2478 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2479 path->slots[0]); 2480 iter->cur_ptr = iter->item_ptr; 2481 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2482 path->slots[0]); 2483 return 0; 2484 } 2485 2486 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2487 struct btrfs_backref_cache *cache, int is_reloc) 2488 { 2489 int i; 2490 2491 cache->rb_root = RB_ROOT; 2492 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2493 INIT_LIST_HEAD(&cache->pending[i]); 2494 INIT_LIST_HEAD(&cache->changed); 2495 INIT_LIST_HEAD(&cache->detached); 2496 INIT_LIST_HEAD(&cache->leaves); 2497 INIT_LIST_HEAD(&cache->pending_edge); 2498 INIT_LIST_HEAD(&cache->useless_node); 2499 cache->fs_info = fs_info; 2500 cache->is_reloc = is_reloc; 2501 } 2502 2503 struct btrfs_backref_node *btrfs_backref_alloc_node( 2504 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2505 { 2506 struct btrfs_backref_node *node; 2507 2508 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2509 node = kzalloc(sizeof(*node), GFP_NOFS); 2510 if (!node) 2511 return node; 2512 2513 INIT_LIST_HEAD(&node->list); 2514 INIT_LIST_HEAD(&node->upper); 2515 INIT_LIST_HEAD(&node->lower); 2516 RB_CLEAR_NODE(&node->rb_node); 2517 cache->nr_nodes++; 2518 node->level = level; 2519 node->bytenr = bytenr; 2520 2521 return node; 2522 } 2523 2524 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2525 struct btrfs_backref_cache *cache) 2526 { 2527 struct btrfs_backref_edge *edge; 2528 2529 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2530 if (edge) 2531 cache->nr_edges++; 2532 return edge; 2533 } 2534 2535 /* 2536 * Drop the backref node from cache, also cleaning up all its 2537 * upper edges and any uncached nodes in the path. 2538 * 2539 * This cleanup happens bottom up, thus the node should either 2540 * be the lowest node in the cache or a detached node. 2541 */ 2542 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2543 struct btrfs_backref_node *node) 2544 { 2545 struct btrfs_backref_node *upper; 2546 struct btrfs_backref_edge *edge; 2547 2548 if (!node) 2549 return; 2550 2551 BUG_ON(!node->lowest && !node->detached); 2552 while (!list_empty(&node->upper)) { 2553 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2554 list[LOWER]); 2555 upper = edge->node[UPPER]; 2556 list_del(&edge->list[LOWER]); 2557 list_del(&edge->list[UPPER]); 2558 btrfs_backref_free_edge(cache, edge); 2559 2560 /* 2561 * Add the node to leaf node list if no other child block 2562 * cached. 2563 */ 2564 if (list_empty(&upper->lower)) { 2565 list_add_tail(&upper->lower, &cache->leaves); 2566 upper->lowest = 1; 2567 } 2568 } 2569 2570 btrfs_backref_drop_node(cache, node); 2571 } 2572 2573 /* 2574 * Release all nodes/edges from current cache 2575 */ 2576 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2577 { 2578 struct btrfs_backref_node *node; 2579 int i; 2580 2581 while (!list_empty(&cache->detached)) { 2582 node = list_entry(cache->detached.next, 2583 struct btrfs_backref_node, list); 2584 btrfs_backref_cleanup_node(cache, node); 2585 } 2586 2587 while (!list_empty(&cache->leaves)) { 2588 node = list_entry(cache->leaves.next, 2589 struct btrfs_backref_node, lower); 2590 btrfs_backref_cleanup_node(cache, node); 2591 } 2592 2593 cache->last_trans = 0; 2594 2595 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2596 ASSERT(list_empty(&cache->pending[i])); 2597 ASSERT(list_empty(&cache->pending_edge)); 2598 ASSERT(list_empty(&cache->useless_node)); 2599 ASSERT(list_empty(&cache->changed)); 2600 ASSERT(list_empty(&cache->detached)); 2601 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2602 ASSERT(!cache->nr_nodes); 2603 ASSERT(!cache->nr_edges); 2604 } 2605 2606 /* 2607 * Handle direct tree backref 2608 * 2609 * Direct tree backref means, the backref item shows its parent bytenr 2610 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2611 * 2612 * @ref_key: The converted backref key. 2613 * For keyed backref, it's the item key. 2614 * For inlined backref, objectid is the bytenr, 2615 * type is btrfs_inline_ref_type, offset is 2616 * btrfs_inline_ref_offset. 2617 */ 2618 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2619 struct btrfs_key *ref_key, 2620 struct btrfs_backref_node *cur) 2621 { 2622 struct btrfs_backref_edge *edge; 2623 struct btrfs_backref_node *upper; 2624 struct rb_node *rb_node; 2625 2626 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2627 2628 /* Only reloc root uses backref pointing to itself */ 2629 if (ref_key->objectid == ref_key->offset) { 2630 struct btrfs_root *root; 2631 2632 cur->is_reloc_root = 1; 2633 /* Only reloc backref cache cares about a specific root */ 2634 if (cache->is_reloc) { 2635 root = find_reloc_root(cache->fs_info, cur->bytenr); 2636 if (!root) 2637 return -ENOENT; 2638 cur->root = root; 2639 } else { 2640 /* 2641 * For generic purpose backref cache, reloc root node 2642 * is useless. 2643 */ 2644 list_add(&cur->list, &cache->useless_node); 2645 } 2646 return 0; 2647 } 2648 2649 edge = btrfs_backref_alloc_edge(cache); 2650 if (!edge) 2651 return -ENOMEM; 2652 2653 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2654 if (!rb_node) { 2655 /* Parent node not yet cached */ 2656 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2657 cur->level + 1); 2658 if (!upper) { 2659 btrfs_backref_free_edge(cache, edge); 2660 return -ENOMEM; 2661 } 2662 2663 /* 2664 * Backrefs for the upper level block isn't cached, add the 2665 * block to pending list 2666 */ 2667 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2668 } else { 2669 /* Parent node already cached */ 2670 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2671 ASSERT(upper->checked); 2672 INIT_LIST_HEAD(&edge->list[UPPER]); 2673 } 2674 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2675 return 0; 2676 } 2677 2678 /* 2679 * Handle indirect tree backref 2680 * 2681 * Indirect tree backref means, we only know which tree the node belongs to. 2682 * We still need to do a tree search to find out the parents. This is for 2683 * TREE_BLOCK_REF backref (keyed or inlined). 2684 * 2685 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2686 * @tree_key: The first key of this tree block. 2687 * @path: A clean (released) path, to avoid allocating path every time 2688 * the function get called. 2689 */ 2690 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2691 struct btrfs_path *path, 2692 struct btrfs_key *ref_key, 2693 struct btrfs_key *tree_key, 2694 struct btrfs_backref_node *cur) 2695 { 2696 struct btrfs_fs_info *fs_info = cache->fs_info; 2697 struct btrfs_backref_node *upper; 2698 struct btrfs_backref_node *lower; 2699 struct btrfs_backref_edge *edge; 2700 struct extent_buffer *eb; 2701 struct btrfs_root *root; 2702 struct rb_node *rb_node; 2703 int level; 2704 bool need_check = true; 2705 int ret; 2706 2707 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2708 if (IS_ERR(root)) 2709 return PTR_ERR(root); 2710 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2711 cur->cowonly = 1; 2712 2713 if (btrfs_root_level(&root->root_item) == cur->level) { 2714 /* Tree root */ 2715 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2716 /* 2717 * For reloc backref cache, we may ignore reloc root. But for 2718 * general purpose backref cache, we can't rely on 2719 * btrfs_should_ignore_reloc_root() as it may conflict with 2720 * current running relocation and lead to missing root. 2721 * 2722 * For general purpose backref cache, reloc root detection is 2723 * completely relying on direct backref (key->offset is parent 2724 * bytenr), thus only do such check for reloc cache. 2725 */ 2726 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2727 btrfs_put_root(root); 2728 list_add(&cur->list, &cache->useless_node); 2729 } else { 2730 cur->root = root; 2731 } 2732 return 0; 2733 } 2734 2735 level = cur->level + 1; 2736 2737 /* Search the tree to find parent blocks referring to the block */ 2738 path->search_commit_root = 1; 2739 path->skip_locking = 1; 2740 path->lowest_level = level; 2741 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2742 path->lowest_level = 0; 2743 if (ret < 0) { 2744 btrfs_put_root(root); 2745 return ret; 2746 } 2747 if (ret > 0 && path->slots[level] > 0) 2748 path->slots[level]--; 2749 2750 eb = path->nodes[level]; 2751 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2752 btrfs_err(fs_info, 2753 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2754 cur->bytenr, level - 1, root->root_key.objectid, 2755 tree_key->objectid, tree_key->type, tree_key->offset); 2756 btrfs_put_root(root); 2757 ret = -ENOENT; 2758 goto out; 2759 } 2760 lower = cur; 2761 2762 /* Add all nodes and edges in the path */ 2763 for (; level < BTRFS_MAX_LEVEL; level++) { 2764 if (!path->nodes[level]) { 2765 ASSERT(btrfs_root_bytenr(&root->root_item) == 2766 lower->bytenr); 2767 /* Same as previous should_ignore_reloc_root() call */ 2768 if (btrfs_should_ignore_reloc_root(root) && 2769 cache->is_reloc) { 2770 btrfs_put_root(root); 2771 list_add(&lower->list, &cache->useless_node); 2772 } else { 2773 lower->root = root; 2774 } 2775 break; 2776 } 2777 2778 edge = btrfs_backref_alloc_edge(cache); 2779 if (!edge) { 2780 btrfs_put_root(root); 2781 ret = -ENOMEM; 2782 goto out; 2783 } 2784 2785 eb = path->nodes[level]; 2786 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2787 if (!rb_node) { 2788 upper = btrfs_backref_alloc_node(cache, eb->start, 2789 lower->level + 1); 2790 if (!upper) { 2791 btrfs_put_root(root); 2792 btrfs_backref_free_edge(cache, edge); 2793 ret = -ENOMEM; 2794 goto out; 2795 } 2796 upper->owner = btrfs_header_owner(eb); 2797 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2798 upper->cowonly = 1; 2799 2800 /* 2801 * If we know the block isn't shared we can avoid 2802 * checking its backrefs. 2803 */ 2804 if (btrfs_block_can_be_shared(root, eb)) 2805 upper->checked = 0; 2806 else 2807 upper->checked = 1; 2808 2809 /* 2810 * Add the block to pending list if we need to check its 2811 * backrefs, we only do this once while walking up a 2812 * tree as we will catch anything else later on. 2813 */ 2814 if (!upper->checked && need_check) { 2815 need_check = false; 2816 list_add_tail(&edge->list[UPPER], 2817 &cache->pending_edge); 2818 } else { 2819 if (upper->checked) 2820 need_check = true; 2821 INIT_LIST_HEAD(&edge->list[UPPER]); 2822 } 2823 } else { 2824 upper = rb_entry(rb_node, struct btrfs_backref_node, 2825 rb_node); 2826 ASSERT(upper->checked); 2827 INIT_LIST_HEAD(&edge->list[UPPER]); 2828 if (!upper->owner) 2829 upper->owner = btrfs_header_owner(eb); 2830 } 2831 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2832 2833 if (rb_node) { 2834 btrfs_put_root(root); 2835 break; 2836 } 2837 lower = upper; 2838 upper = NULL; 2839 } 2840 out: 2841 btrfs_release_path(path); 2842 return ret; 2843 } 2844 2845 /* 2846 * Add backref node @cur into @cache. 2847 * 2848 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2849 * links aren't yet bi-directional. Needs to finish such links. 2850 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2851 * 2852 * @path: Released path for indirect tree backref lookup 2853 * @iter: Released backref iter for extent tree search 2854 * @node_key: The first key of the tree block 2855 */ 2856 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2857 struct btrfs_path *path, 2858 struct btrfs_backref_iter *iter, 2859 struct btrfs_key *node_key, 2860 struct btrfs_backref_node *cur) 2861 { 2862 struct btrfs_fs_info *fs_info = cache->fs_info; 2863 struct btrfs_backref_edge *edge; 2864 struct btrfs_backref_node *exist; 2865 int ret; 2866 2867 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2868 if (ret < 0) 2869 return ret; 2870 /* 2871 * We skip the first btrfs_tree_block_info, as we don't use the key 2872 * stored in it, but fetch it from the tree block 2873 */ 2874 if (btrfs_backref_has_tree_block_info(iter)) { 2875 ret = btrfs_backref_iter_next(iter); 2876 if (ret < 0) 2877 goto out; 2878 /* No extra backref? This means the tree block is corrupted */ 2879 if (ret > 0) { 2880 ret = -EUCLEAN; 2881 goto out; 2882 } 2883 } 2884 WARN_ON(cur->checked); 2885 if (!list_empty(&cur->upper)) { 2886 /* 2887 * The backref was added previously when processing backref of 2888 * type BTRFS_TREE_BLOCK_REF_KEY 2889 */ 2890 ASSERT(list_is_singular(&cur->upper)); 2891 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2892 list[LOWER]); 2893 ASSERT(list_empty(&edge->list[UPPER])); 2894 exist = edge->node[UPPER]; 2895 /* 2896 * Add the upper level block to pending list if we need check 2897 * its backrefs 2898 */ 2899 if (!exist->checked) 2900 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2901 } else { 2902 exist = NULL; 2903 } 2904 2905 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2906 struct extent_buffer *eb; 2907 struct btrfs_key key; 2908 int type; 2909 2910 cond_resched(); 2911 eb = btrfs_backref_get_eb(iter); 2912 2913 key.objectid = iter->bytenr; 2914 if (btrfs_backref_iter_is_inline_ref(iter)) { 2915 struct btrfs_extent_inline_ref *iref; 2916 2917 /* Update key for inline backref */ 2918 iref = (struct btrfs_extent_inline_ref *) 2919 ((unsigned long)iter->cur_ptr); 2920 type = btrfs_get_extent_inline_ref_type(eb, iref, 2921 BTRFS_REF_TYPE_BLOCK); 2922 if (type == BTRFS_REF_TYPE_INVALID) { 2923 ret = -EUCLEAN; 2924 goto out; 2925 } 2926 key.type = type; 2927 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2928 } else { 2929 key.type = iter->cur_key.type; 2930 key.offset = iter->cur_key.offset; 2931 } 2932 2933 /* 2934 * Parent node found and matches current inline ref, no need to 2935 * rebuild this node for this inline ref 2936 */ 2937 if (exist && 2938 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2939 exist->owner == key.offset) || 2940 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2941 exist->bytenr == key.offset))) { 2942 exist = NULL; 2943 continue; 2944 } 2945 2946 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2947 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2948 ret = handle_direct_tree_backref(cache, &key, cur); 2949 if (ret < 0) 2950 goto out; 2951 continue; 2952 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2953 ret = -EINVAL; 2954 btrfs_print_v0_err(fs_info); 2955 btrfs_handle_fs_error(fs_info, ret, NULL); 2956 goto out; 2957 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2958 continue; 2959 } 2960 2961 /* 2962 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2963 * means the root objectid. We need to search the tree to get 2964 * its parent bytenr. 2965 */ 2966 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2967 cur); 2968 if (ret < 0) 2969 goto out; 2970 } 2971 ret = 0; 2972 cur->checked = 1; 2973 WARN_ON(exist); 2974 out: 2975 btrfs_backref_iter_release(iter); 2976 return ret; 2977 } 2978 2979 /* 2980 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2981 */ 2982 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2983 struct btrfs_backref_node *start) 2984 { 2985 struct list_head *useless_node = &cache->useless_node; 2986 struct btrfs_backref_edge *edge; 2987 struct rb_node *rb_node; 2988 LIST_HEAD(pending_edge); 2989 2990 ASSERT(start->checked); 2991 2992 /* Insert this node to cache if it's not COW-only */ 2993 if (!start->cowonly) { 2994 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2995 &start->rb_node); 2996 if (rb_node) 2997 btrfs_backref_panic(cache->fs_info, start->bytenr, 2998 -EEXIST); 2999 list_add_tail(&start->lower, &cache->leaves); 3000 } 3001 3002 /* 3003 * Use breadth first search to iterate all related edges. 3004 * 3005 * The starting points are all the edges of this node 3006 */ 3007 list_for_each_entry(edge, &start->upper, list[LOWER]) 3008 list_add_tail(&edge->list[UPPER], &pending_edge); 3009 3010 while (!list_empty(&pending_edge)) { 3011 struct btrfs_backref_node *upper; 3012 struct btrfs_backref_node *lower; 3013 3014 edge = list_first_entry(&pending_edge, 3015 struct btrfs_backref_edge, list[UPPER]); 3016 list_del_init(&edge->list[UPPER]); 3017 upper = edge->node[UPPER]; 3018 lower = edge->node[LOWER]; 3019 3020 /* Parent is detached, no need to keep any edges */ 3021 if (upper->detached) { 3022 list_del(&edge->list[LOWER]); 3023 btrfs_backref_free_edge(cache, edge); 3024 3025 /* Lower node is orphan, queue for cleanup */ 3026 if (list_empty(&lower->upper)) 3027 list_add(&lower->list, useless_node); 3028 continue; 3029 } 3030 3031 /* 3032 * All new nodes added in current build_backref_tree() haven't 3033 * been linked to the cache rb tree. 3034 * So if we have upper->rb_node populated, this means a cache 3035 * hit. We only need to link the edge, as @upper and all its 3036 * parents have already been linked. 3037 */ 3038 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3039 if (upper->lowest) { 3040 list_del_init(&upper->lower); 3041 upper->lowest = 0; 3042 } 3043 3044 list_add_tail(&edge->list[UPPER], &upper->lower); 3045 continue; 3046 } 3047 3048 /* Sanity check, we shouldn't have any unchecked nodes */ 3049 if (!upper->checked) { 3050 ASSERT(0); 3051 return -EUCLEAN; 3052 } 3053 3054 /* Sanity check, COW-only node has non-COW-only parent */ 3055 if (start->cowonly != upper->cowonly) { 3056 ASSERT(0); 3057 return -EUCLEAN; 3058 } 3059 3060 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3061 if (!upper->cowonly) { 3062 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3063 &upper->rb_node); 3064 if (rb_node) { 3065 btrfs_backref_panic(cache->fs_info, 3066 upper->bytenr, -EEXIST); 3067 return -EUCLEAN; 3068 } 3069 } 3070 3071 list_add_tail(&edge->list[UPPER], &upper->lower); 3072 3073 /* 3074 * Also queue all the parent edges of this uncached node 3075 * to finish the upper linkage 3076 */ 3077 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3078 list_add_tail(&edge->list[UPPER], &pending_edge); 3079 } 3080 return 0; 3081 } 3082 3083 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3084 struct btrfs_backref_node *node) 3085 { 3086 struct btrfs_backref_node *lower; 3087 struct btrfs_backref_node *upper; 3088 struct btrfs_backref_edge *edge; 3089 3090 while (!list_empty(&cache->useless_node)) { 3091 lower = list_first_entry(&cache->useless_node, 3092 struct btrfs_backref_node, list); 3093 list_del_init(&lower->list); 3094 } 3095 while (!list_empty(&cache->pending_edge)) { 3096 edge = list_first_entry(&cache->pending_edge, 3097 struct btrfs_backref_edge, list[UPPER]); 3098 list_del(&edge->list[UPPER]); 3099 list_del(&edge->list[LOWER]); 3100 lower = edge->node[LOWER]; 3101 upper = edge->node[UPPER]; 3102 btrfs_backref_free_edge(cache, edge); 3103 3104 /* 3105 * Lower is no longer linked to any upper backref nodes and 3106 * isn't in the cache, we can free it ourselves. 3107 */ 3108 if (list_empty(&lower->upper) && 3109 RB_EMPTY_NODE(&lower->rb_node)) 3110 list_add(&lower->list, &cache->useless_node); 3111 3112 if (!RB_EMPTY_NODE(&upper->rb_node)) 3113 continue; 3114 3115 /* Add this guy's upper edges to the list to process */ 3116 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3117 list_add_tail(&edge->list[UPPER], 3118 &cache->pending_edge); 3119 if (list_empty(&upper->upper)) 3120 list_add(&upper->list, &cache->useless_node); 3121 } 3122 3123 while (!list_empty(&cache->useless_node)) { 3124 lower = list_first_entry(&cache->useless_node, 3125 struct btrfs_backref_node, list); 3126 list_del_init(&lower->list); 3127 if (lower == node) 3128 node = NULL; 3129 btrfs_backref_drop_node(cache, lower); 3130 } 3131 3132 btrfs_backref_cleanup_node(cache, node); 3133 ASSERT(list_empty(&cache->useless_node) && 3134 list_empty(&cache->pending_edge)); 3135 } 3136