1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 /* Just an arbitrary number so we can be sure this happened */ 29 #define BACKREF_FOUND_SHARED 6 30 31 struct extent_inode_elem { 32 u64 inum; 33 u64 offset; 34 struct extent_inode_elem *next; 35 }; 36 37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 38 struct btrfs_file_extent_item *fi, 39 u64 extent_item_pos, 40 struct extent_inode_elem **eie) 41 { 42 u64 offset = 0; 43 struct extent_inode_elem *e; 44 45 if (!btrfs_file_extent_compression(eb, fi) && 46 !btrfs_file_extent_encryption(eb, fi) && 47 !btrfs_file_extent_other_encoding(eb, fi)) { 48 u64 data_offset; 49 u64 data_len; 50 51 data_offset = btrfs_file_extent_offset(eb, fi); 52 data_len = btrfs_file_extent_num_bytes(eb, fi); 53 54 if (extent_item_pos < data_offset || 55 extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset = extent_item_pos - data_offset; 58 } 59 60 e = kmalloc(sizeof(*e), GFP_NOFS); 61 if (!e) 62 return -ENOMEM; 63 64 e->next = *eie; 65 e->inum = key->objectid; 66 e->offset = key->offset + offset; 67 *eie = e; 68 69 return 0; 70 } 71 72 static void free_inode_elem_list(struct extent_inode_elem *eie) 73 { 74 struct extent_inode_elem *eie_next; 75 76 for (; eie; eie = eie_next) { 77 eie_next = eie->next; 78 kfree(eie); 79 } 80 } 81 82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 83 u64 extent_item_pos, 84 struct extent_inode_elem **eie) 85 { 86 u64 disk_byte; 87 struct btrfs_key key; 88 struct btrfs_file_extent_item *fi; 89 int slot; 90 int nritems; 91 int extent_type; 92 int ret; 93 94 /* 95 * from the shared data ref, we only have the leaf but we need 96 * the key. thus, we must look into all items and see that we 97 * find one (some) with a reference to our extent item. 98 */ 99 nritems = btrfs_header_nritems(eb); 100 for (slot = 0; slot < nritems; ++slot) { 101 btrfs_item_key_to_cpu(eb, &key, slot); 102 if (key.type != BTRFS_EXTENT_DATA_KEY) 103 continue; 104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 105 extent_type = btrfs_file_extent_type(eb, fi); 106 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 107 continue; 108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 110 if (disk_byte != wanted_disk_byte) 111 continue; 112 113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 114 if (ret < 0) 115 return ret; 116 } 117 118 return 0; 119 } 120 121 /* 122 * this structure records all encountered refs on the way up to the root 123 */ 124 struct __prelim_ref { 125 struct list_head list; 126 u64 root_id; 127 struct btrfs_key key_for_search; 128 int level; 129 int count; 130 struct extent_inode_elem *inode_list; 131 u64 parent; 132 u64 wanted_disk_byte; 133 }; 134 135 static struct kmem_cache *btrfs_prelim_ref_cache; 136 137 int __init btrfs_prelim_ref_init(void) 138 { 139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 140 sizeof(struct __prelim_ref), 141 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 143 NULL); 144 if (!btrfs_prelim_ref_cache) 145 return -ENOMEM; 146 return 0; 147 } 148 149 void btrfs_prelim_ref_exit(void) 150 { 151 if (btrfs_prelim_ref_cache) 152 kmem_cache_destroy(btrfs_prelim_ref_cache); 153 } 154 155 /* 156 * the rules for all callers of this function are: 157 * - obtaining the parent is the goal 158 * - if you add a key, you must know that it is a correct key 159 * - if you cannot add the parent or a correct key, then we will look into the 160 * block later to set a correct key 161 * 162 * delayed refs 163 * ============ 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | - | - 168 * key to resolve | - | y | y | y 169 * tree block logical | - | - | - | - 170 * root for resolving | y | y | y | y 171 * 172 * - column 1: we've the parent -> done 173 * - column 2, 3, 4: we use the key to find the parent 174 * 175 * on disk refs (inline or keyed) 176 * ============================== 177 * backref type | shared | indirect | shared | indirect 178 * information | tree | tree | data | data 179 * --------------------+--------+----------+--------+---------- 180 * parent logical | y | - | y | - 181 * key to resolve | - | - | - | y 182 * tree block logical | y | y | y | y 183 * root for resolving | - | y | y | y 184 * 185 * - column 1, 3: we've the parent -> done 186 * - column 2: we take the first key from the block to find the parent 187 * (see __add_missing_keys) 188 * - column 4: we use the key to find the parent 189 * 190 * additional information that's available but not required to find the parent 191 * block might help in merging entries to gain some speed. 192 */ 193 194 static int __add_prelim_ref(struct list_head *head, u64 root_id, 195 struct btrfs_key *key, int level, 196 u64 parent, u64 wanted_disk_byte, int count, 197 gfp_t gfp_mask) 198 { 199 struct __prelim_ref *ref; 200 201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 202 return 0; 203 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 205 if (!ref) 206 return -ENOMEM; 207 208 ref->root_id = root_id; 209 if (key) { 210 ref->key_for_search = *key; 211 /* 212 * We can often find data backrefs with an offset that is too 213 * large (>= LLONG_MAX, maximum allowed file offset) due to 214 * underflows when subtracting a file's offset with the data 215 * offset of its corresponding extent data item. This can 216 * happen for example in the clone ioctl. 217 * So if we detect such case we set the search key's offset to 218 * zero to make sure we will find the matching file extent item 219 * at add_all_parents(), otherwise we will miss it because the 220 * offset taken form the backref is much larger then the offset 221 * of the file extent item. This can make us scan a very large 222 * number of file extent items, but at least it will not make 223 * us miss any. 224 * This is an ugly workaround for a behaviour that should have 225 * never existed, but it does and a fix for the clone ioctl 226 * would touch a lot of places, cause backwards incompatibility 227 * and would not fix the problem for extents cloned with older 228 * kernels. 229 */ 230 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 231 ref->key_for_search.offset >= LLONG_MAX) 232 ref->key_for_search.offset = 0; 233 } else { 234 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 235 } 236 237 ref->inode_list = NULL; 238 ref->level = level; 239 ref->count = count; 240 ref->parent = parent; 241 ref->wanted_disk_byte = wanted_disk_byte; 242 list_add_tail(&ref->list, head); 243 244 return 0; 245 } 246 247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 248 struct ulist *parents, struct __prelim_ref *ref, 249 int level, u64 time_seq, const u64 *extent_item_pos, 250 u64 total_refs) 251 { 252 int ret = 0; 253 int slot; 254 struct extent_buffer *eb; 255 struct btrfs_key key; 256 struct btrfs_key *key_for_search = &ref->key_for_search; 257 struct btrfs_file_extent_item *fi; 258 struct extent_inode_elem *eie = NULL, *old = NULL; 259 u64 disk_byte; 260 u64 wanted_disk_byte = ref->wanted_disk_byte; 261 u64 count = 0; 262 263 if (level != 0) { 264 eb = path->nodes[level]; 265 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 266 if (ret < 0) 267 return ret; 268 return 0; 269 } 270 271 /* 272 * We normally enter this function with the path already pointing to 273 * the first item to check. But sometimes, we may enter it with 274 * slot==nritems. In that case, go to the next leaf before we continue. 275 */ 276 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 277 if (time_seq == (u64)-1) 278 ret = btrfs_next_leaf(root, path); 279 else 280 ret = btrfs_next_old_leaf(root, path, time_seq); 281 } 282 283 while (!ret && count < total_refs) { 284 eb = path->nodes[0]; 285 slot = path->slots[0]; 286 287 btrfs_item_key_to_cpu(eb, &key, slot); 288 289 if (key.objectid != key_for_search->objectid || 290 key.type != BTRFS_EXTENT_DATA_KEY) 291 break; 292 293 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 294 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 295 296 if (disk_byte == wanted_disk_byte) { 297 eie = NULL; 298 old = NULL; 299 count++; 300 if (extent_item_pos) { 301 ret = check_extent_in_eb(&key, eb, fi, 302 *extent_item_pos, 303 &eie); 304 if (ret < 0) 305 break; 306 } 307 if (ret > 0) 308 goto next; 309 ret = ulist_add_merge_ptr(parents, eb->start, 310 eie, (void **)&old, GFP_NOFS); 311 if (ret < 0) 312 break; 313 if (!ret && extent_item_pos) { 314 while (old->next) 315 old = old->next; 316 old->next = eie; 317 } 318 eie = NULL; 319 } 320 next: 321 if (time_seq == (u64)-1) 322 ret = btrfs_next_item(root, path); 323 else 324 ret = btrfs_next_old_item(root, path, time_seq); 325 } 326 327 if (ret > 0) 328 ret = 0; 329 else if (ret < 0) 330 free_inode_elem_list(eie); 331 return ret; 332 } 333 334 /* 335 * resolve an indirect backref in the form (root_id, key, level) 336 * to a logical address 337 */ 338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 339 struct btrfs_path *path, u64 time_seq, 340 struct __prelim_ref *ref, 341 struct ulist *parents, 342 const u64 *extent_item_pos, u64 total_refs) 343 { 344 struct btrfs_root *root; 345 struct btrfs_key root_key; 346 struct extent_buffer *eb; 347 int ret = 0; 348 int root_level; 349 int level = ref->level; 350 int index; 351 352 root_key.objectid = ref->root_id; 353 root_key.type = BTRFS_ROOT_ITEM_KEY; 354 root_key.offset = (u64)-1; 355 356 index = srcu_read_lock(&fs_info->subvol_srcu); 357 358 root = btrfs_get_fs_root(fs_info, &root_key, false); 359 if (IS_ERR(root)) { 360 srcu_read_unlock(&fs_info->subvol_srcu, index); 361 ret = PTR_ERR(root); 362 goto out; 363 } 364 365 if (btrfs_test_is_dummy_root(root)) { 366 srcu_read_unlock(&fs_info->subvol_srcu, index); 367 ret = -ENOENT; 368 goto out; 369 } 370 371 if (path->search_commit_root) 372 root_level = btrfs_header_level(root->commit_root); 373 else if (time_seq == (u64)-1) 374 root_level = btrfs_header_level(root->node); 375 else 376 root_level = btrfs_old_root_level(root, time_seq); 377 378 if (root_level + 1 == level) { 379 srcu_read_unlock(&fs_info->subvol_srcu, index); 380 goto out; 381 } 382 383 path->lowest_level = level; 384 if (time_seq == (u64)-1) 385 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 386 0, 0); 387 else 388 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 389 time_seq); 390 391 /* root node has been locked, we can release @subvol_srcu safely here */ 392 srcu_read_unlock(&fs_info->subvol_srcu, index); 393 394 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 395 "%d for key (%llu %u %llu)\n", 396 ref->root_id, level, ref->count, ret, 397 ref->key_for_search.objectid, ref->key_for_search.type, 398 ref->key_for_search.offset); 399 if (ret < 0) 400 goto out; 401 402 eb = path->nodes[level]; 403 while (!eb) { 404 if (WARN_ON(!level)) { 405 ret = 1; 406 goto out; 407 } 408 level--; 409 eb = path->nodes[level]; 410 } 411 412 ret = add_all_parents(root, path, parents, ref, level, time_seq, 413 extent_item_pos, total_refs); 414 out: 415 path->lowest_level = 0; 416 btrfs_release_path(path); 417 return ret; 418 } 419 420 /* 421 * resolve all indirect backrefs from the list 422 */ 423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 424 struct btrfs_path *path, u64 time_seq, 425 struct list_head *head, 426 const u64 *extent_item_pos, u64 total_refs, 427 u64 root_objectid) 428 { 429 int err; 430 int ret = 0; 431 struct __prelim_ref *ref; 432 struct __prelim_ref *ref_safe; 433 struct __prelim_ref *new_ref; 434 struct ulist *parents; 435 struct ulist_node *node; 436 struct ulist_iterator uiter; 437 438 parents = ulist_alloc(GFP_NOFS); 439 if (!parents) 440 return -ENOMEM; 441 442 /* 443 * _safe allows us to insert directly after the current item without 444 * iterating over the newly inserted items. 445 * we're also allowed to re-assign ref during iteration. 446 */ 447 list_for_each_entry_safe(ref, ref_safe, head, list) { 448 if (ref->parent) /* already direct */ 449 continue; 450 if (ref->count == 0) 451 continue; 452 if (root_objectid && ref->root_id != root_objectid) { 453 ret = BACKREF_FOUND_SHARED; 454 goto out; 455 } 456 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 457 parents, extent_item_pos, 458 total_refs); 459 /* 460 * we can only tolerate ENOENT,otherwise,we should catch error 461 * and return directly. 462 */ 463 if (err == -ENOENT) { 464 continue; 465 } else if (err) { 466 ret = err; 467 goto out; 468 } 469 470 /* we put the first parent into the ref at hand */ 471 ULIST_ITER_INIT(&uiter); 472 node = ulist_next(parents, &uiter); 473 ref->parent = node ? node->val : 0; 474 ref->inode_list = node ? 475 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 476 477 /* additional parents require new refs being added here */ 478 while ((node = ulist_next(parents, &uiter))) { 479 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 480 GFP_NOFS); 481 if (!new_ref) { 482 ret = -ENOMEM; 483 goto out; 484 } 485 memcpy(new_ref, ref, sizeof(*ref)); 486 new_ref->parent = node->val; 487 new_ref->inode_list = (struct extent_inode_elem *) 488 (uintptr_t)node->aux; 489 list_add(&new_ref->list, &ref->list); 490 } 491 ulist_reinit(parents); 492 } 493 out: 494 ulist_free(parents); 495 return ret; 496 } 497 498 static inline int ref_for_same_block(struct __prelim_ref *ref1, 499 struct __prelim_ref *ref2) 500 { 501 if (ref1->level != ref2->level) 502 return 0; 503 if (ref1->root_id != ref2->root_id) 504 return 0; 505 if (ref1->key_for_search.type != ref2->key_for_search.type) 506 return 0; 507 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 508 return 0; 509 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 510 return 0; 511 if (ref1->parent != ref2->parent) 512 return 0; 513 514 return 1; 515 } 516 517 /* 518 * read tree blocks and add keys where required. 519 */ 520 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 521 struct list_head *head) 522 { 523 struct __prelim_ref *ref; 524 struct extent_buffer *eb; 525 526 list_for_each_entry(ref, head, list) { 527 if (ref->parent) 528 continue; 529 if (ref->key_for_search.type) 530 continue; 531 BUG_ON(!ref->wanted_disk_byte); 532 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 533 0); 534 if (IS_ERR(eb)) { 535 return PTR_ERR(eb); 536 } else if (!extent_buffer_uptodate(eb)) { 537 free_extent_buffer(eb); 538 return -EIO; 539 } 540 btrfs_tree_read_lock(eb); 541 if (btrfs_header_level(eb) == 0) 542 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 543 else 544 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 545 btrfs_tree_read_unlock(eb); 546 free_extent_buffer(eb); 547 } 548 return 0; 549 } 550 551 /* 552 * merge backrefs and adjust counts accordingly 553 * 554 * mode = 1: merge identical keys, if key is set 555 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 556 * additionally, we could even add a key range for the blocks we 557 * looked into to merge even more (-> replace unresolved refs by those 558 * having a parent). 559 * mode = 2: merge identical parents 560 */ 561 static void __merge_refs(struct list_head *head, int mode) 562 { 563 struct __prelim_ref *pos1; 564 565 list_for_each_entry(pos1, head, list) { 566 struct __prelim_ref *pos2 = pos1, *tmp; 567 568 list_for_each_entry_safe_continue(pos2, tmp, head, list) { 569 struct __prelim_ref *xchg, *ref1 = pos1, *ref2 = pos2; 570 struct extent_inode_elem *eie; 571 572 if (!ref_for_same_block(ref1, ref2)) 573 continue; 574 if (mode == 1) { 575 if (!ref1->parent && ref2->parent) { 576 xchg = ref1; 577 ref1 = ref2; 578 ref2 = xchg; 579 } 580 } else { 581 if (ref1->parent != ref2->parent) 582 continue; 583 } 584 585 eie = ref1->inode_list; 586 while (eie && eie->next) 587 eie = eie->next; 588 if (eie) 589 eie->next = ref2->inode_list; 590 else 591 ref1->inode_list = ref2->inode_list; 592 ref1->count += ref2->count; 593 594 list_del(&ref2->list); 595 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 596 } 597 598 } 599 } 600 601 /* 602 * add all currently queued delayed refs from this head whose seq nr is 603 * smaller or equal that seq to the list 604 */ 605 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 606 struct list_head *prefs, u64 *total_refs, 607 u64 inum) 608 { 609 struct btrfs_delayed_ref_node *node; 610 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 611 struct btrfs_key key; 612 struct btrfs_key op_key = {0}; 613 int sgn; 614 int ret = 0; 615 616 if (extent_op && extent_op->update_key) 617 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 618 619 spin_lock(&head->lock); 620 list_for_each_entry(node, &head->ref_list, list) { 621 if (node->seq > seq) 622 continue; 623 624 switch (node->action) { 625 case BTRFS_ADD_DELAYED_EXTENT: 626 case BTRFS_UPDATE_DELAYED_HEAD: 627 WARN_ON(1); 628 continue; 629 case BTRFS_ADD_DELAYED_REF: 630 sgn = 1; 631 break; 632 case BTRFS_DROP_DELAYED_REF: 633 sgn = -1; 634 break; 635 default: 636 BUG_ON(1); 637 } 638 *total_refs += (node->ref_mod * sgn); 639 switch (node->type) { 640 case BTRFS_TREE_BLOCK_REF_KEY: { 641 struct btrfs_delayed_tree_ref *ref; 642 643 ref = btrfs_delayed_node_to_tree_ref(node); 644 ret = __add_prelim_ref(prefs, ref->root, &op_key, 645 ref->level + 1, 0, node->bytenr, 646 node->ref_mod * sgn, GFP_ATOMIC); 647 break; 648 } 649 case BTRFS_SHARED_BLOCK_REF_KEY: { 650 struct btrfs_delayed_tree_ref *ref; 651 652 ref = btrfs_delayed_node_to_tree_ref(node); 653 ret = __add_prelim_ref(prefs, 0, NULL, 654 ref->level + 1, ref->parent, 655 node->bytenr, 656 node->ref_mod * sgn, GFP_ATOMIC); 657 break; 658 } 659 case BTRFS_EXTENT_DATA_REF_KEY: { 660 struct btrfs_delayed_data_ref *ref; 661 ref = btrfs_delayed_node_to_data_ref(node); 662 663 key.objectid = ref->objectid; 664 key.type = BTRFS_EXTENT_DATA_KEY; 665 key.offset = ref->offset; 666 667 /* 668 * Found a inum that doesn't match our known inum, we 669 * know it's shared. 670 */ 671 if (inum && ref->objectid != inum) { 672 ret = BACKREF_FOUND_SHARED; 673 break; 674 } 675 676 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 677 node->bytenr, 678 node->ref_mod * sgn, GFP_ATOMIC); 679 break; 680 } 681 case BTRFS_SHARED_DATA_REF_KEY: { 682 struct btrfs_delayed_data_ref *ref; 683 684 ref = btrfs_delayed_node_to_data_ref(node); 685 ret = __add_prelim_ref(prefs, 0, NULL, 0, 686 ref->parent, node->bytenr, 687 node->ref_mod * sgn, GFP_ATOMIC); 688 break; 689 } 690 default: 691 WARN_ON(1); 692 } 693 if (ret) 694 break; 695 } 696 spin_unlock(&head->lock); 697 return ret; 698 } 699 700 /* 701 * add all inline backrefs for bytenr to the list 702 */ 703 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 704 struct btrfs_path *path, u64 bytenr, 705 int *info_level, struct list_head *prefs, 706 u64 *total_refs, u64 inum) 707 { 708 int ret = 0; 709 int slot; 710 struct extent_buffer *leaf; 711 struct btrfs_key key; 712 struct btrfs_key found_key; 713 unsigned long ptr; 714 unsigned long end; 715 struct btrfs_extent_item *ei; 716 u64 flags; 717 u64 item_size; 718 719 /* 720 * enumerate all inline refs 721 */ 722 leaf = path->nodes[0]; 723 slot = path->slots[0]; 724 725 item_size = btrfs_item_size_nr(leaf, slot); 726 BUG_ON(item_size < sizeof(*ei)); 727 728 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 729 flags = btrfs_extent_flags(leaf, ei); 730 *total_refs += btrfs_extent_refs(leaf, ei); 731 btrfs_item_key_to_cpu(leaf, &found_key, slot); 732 733 ptr = (unsigned long)(ei + 1); 734 end = (unsigned long)ei + item_size; 735 736 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 737 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 738 struct btrfs_tree_block_info *info; 739 740 info = (struct btrfs_tree_block_info *)ptr; 741 *info_level = btrfs_tree_block_level(leaf, info); 742 ptr += sizeof(struct btrfs_tree_block_info); 743 BUG_ON(ptr > end); 744 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 745 *info_level = found_key.offset; 746 } else { 747 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 748 } 749 750 while (ptr < end) { 751 struct btrfs_extent_inline_ref *iref; 752 u64 offset; 753 int type; 754 755 iref = (struct btrfs_extent_inline_ref *)ptr; 756 type = btrfs_extent_inline_ref_type(leaf, iref); 757 offset = btrfs_extent_inline_ref_offset(leaf, iref); 758 759 switch (type) { 760 case BTRFS_SHARED_BLOCK_REF_KEY: 761 ret = __add_prelim_ref(prefs, 0, NULL, 762 *info_level + 1, offset, 763 bytenr, 1, GFP_NOFS); 764 break; 765 case BTRFS_SHARED_DATA_REF_KEY: { 766 struct btrfs_shared_data_ref *sdref; 767 int count; 768 769 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 770 count = btrfs_shared_data_ref_count(leaf, sdref); 771 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 772 bytenr, count, GFP_NOFS); 773 break; 774 } 775 case BTRFS_TREE_BLOCK_REF_KEY: 776 ret = __add_prelim_ref(prefs, offset, NULL, 777 *info_level + 1, 0, 778 bytenr, 1, GFP_NOFS); 779 break; 780 case BTRFS_EXTENT_DATA_REF_KEY: { 781 struct btrfs_extent_data_ref *dref; 782 int count; 783 u64 root; 784 785 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 786 count = btrfs_extent_data_ref_count(leaf, dref); 787 key.objectid = btrfs_extent_data_ref_objectid(leaf, 788 dref); 789 key.type = BTRFS_EXTENT_DATA_KEY; 790 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 791 792 if (inum && key.objectid != inum) { 793 ret = BACKREF_FOUND_SHARED; 794 break; 795 } 796 797 root = btrfs_extent_data_ref_root(leaf, dref); 798 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 799 bytenr, count, GFP_NOFS); 800 break; 801 } 802 default: 803 WARN_ON(1); 804 } 805 if (ret) 806 return ret; 807 ptr += btrfs_extent_inline_ref_size(type); 808 } 809 810 return 0; 811 } 812 813 /* 814 * add all non-inline backrefs for bytenr to the list 815 */ 816 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 817 struct btrfs_path *path, u64 bytenr, 818 int info_level, struct list_head *prefs, u64 inum) 819 { 820 struct btrfs_root *extent_root = fs_info->extent_root; 821 int ret; 822 int slot; 823 struct extent_buffer *leaf; 824 struct btrfs_key key; 825 826 while (1) { 827 ret = btrfs_next_item(extent_root, path); 828 if (ret < 0) 829 break; 830 if (ret) { 831 ret = 0; 832 break; 833 } 834 835 slot = path->slots[0]; 836 leaf = path->nodes[0]; 837 btrfs_item_key_to_cpu(leaf, &key, slot); 838 839 if (key.objectid != bytenr) 840 break; 841 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 842 continue; 843 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 844 break; 845 846 switch (key.type) { 847 case BTRFS_SHARED_BLOCK_REF_KEY: 848 ret = __add_prelim_ref(prefs, 0, NULL, 849 info_level + 1, key.offset, 850 bytenr, 1, GFP_NOFS); 851 break; 852 case BTRFS_SHARED_DATA_REF_KEY: { 853 struct btrfs_shared_data_ref *sdref; 854 int count; 855 856 sdref = btrfs_item_ptr(leaf, slot, 857 struct btrfs_shared_data_ref); 858 count = btrfs_shared_data_ref_count(leaf, sdref); 859 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 860 bytenr, count, GFP_NOFS); 861 break; 862 } 863 case BTRFS_TREE_BLOCK_REF_KEY: 864 ret = __add_prelim_ref(prefs, key.offset, NULL, 865 info_level + 1, 0, 866 bytenr, 1, GFP_NOFS); 867 break; 868 case BTRFS_EXTENT_DATA_REF_KEY: { 869 struct btrfs_extent_data_ref *dref; 870 int count; 871 u64 root; 872 873 dref = btrfs_item_ptr(leaf, slot, 874 struct btrfs_extent_data_ref); 875 count = btrfs_extent_data_ref_count(leaf, dref); 876 key.objectid = btrfs_extent_data_ref_objectid(leaf, 877 dref); 878 key.type = BTRFS_EXTENT_DATA_KEY; 879 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 880 881 if (inum && key.objectid != inum) { 882 ret = BACKREF_FOUND_SHARED; 883 break; 884 } 885 886 root = btrfs_extent_data_ref_root(leaf, dref); 887 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 888 bytenr, count, GFP_NOFS); 889 break; 890 } 891 default: 892 WARN_ON(1); 893 } 894 if (ret) 895 return ret; 896 897 } 898 899 return ret; 900 } 901 902 /* 903 * this adds all existing backrefs (inline backrefs, backrefs and delayed 904 * refs) for the given bytenr to the refs list, merges duplicates and resolves 905 * indirect refs to their parent bytenr. 906 * When roots are found, they're added to the roots list 907 * 908 * NOTE: This can return values > 0 909 * 910 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 911 * much like trans == NULL case, the difference only lies in it will not 912 * commit root. 913 * The special case is for qgroup to search roots in commit_transaction(). 914 * 915 * FIXME some caching might speed things up 916 */ 917 static int find_parent_nodes(struct btrfs_trans_handle *trans, 918 struct btrfs_fs_info *fs_info, u64 bytenr, 919 u64 time_seq, struct ulist *refs, 920 struct ulist *roots, const u64 *extent_item_pos, 921 u64 root_objectid, u64 inum) 922 { 923 struct btrfs_key key; 924 struct btrfs_path *path; 925 struct btrfs_delayed_ref_root *delayed_refs = NULL; 926 struct btrfs_delayed_ref_head *head; 927 int info_level = 0; 928 int ret; 929 struct list_head prefs_delayed; 930 struct list_head prefs; 931 struct __prelim_ref *ref; 932 struct extent_inode_elem *eie = NULL; 933 u64 total_refs = 0; 934 935 INIT_LIST_HEAD(&prefs); 936 INIT_LIST_HEAD(&prefs_delayed); 937 938 key.objectid = bytenr; 939 key.offset = (u64)-1; 940 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 941 key.type = BTRFS_METADATA_ITEM_KEY; 942 else 943 key.type = BTRFS_EXTENT_ITEM_KEY; 944 945 path = btrfs_alloc_path(); 946 if (!path) 947 return -ENOMEM; 948 if (!trans) { 949 path->search_commit_root = 1; 950 path->skip_locking = 1; 951 } 952 953 if (time_seq == (u64)-1) 954 path->skip_locking = 1; 955 956 /* 957 * grab both a lock on the path and a lock on the delayed ref head. 958 * We need both to get a consistent picture of how the refs look 959 * at a specified point in time 960 */ 961 again: 962 head = NULL; 963 964 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 965 if (ret < 0) 966 goto out; 967 BUG_ON(ret == 0); 968 969 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 970 if (trans && likely(trans->type != __TRANS_DUMMY) && 971 time_seq != (u64)-1) { 972 #else 973 if (trans && time_seq != (u64)-1) { 974 #endif 975 /* 976 * look if there are updates for this ref queued and lock the 977 * head 978 */ 979 delayed_refs = &trans->transaction->delayed_refs; 980 spin_lock(&delayed_refs->lock); 981 head = btrfs_find_delayed_ref_head(trans, bytenr); 982 if (head) { 983 if (!mutex_trylock(&head->mutex)) { 984 atomic_inc(&head->node.refs); 985 spin_unlock(&delayed_refs->lock); 986 987 btrfs_release_path(path); 988 989 /* 990 * Mutex was contended, block until it's 991 * released and try again 992 */ 993 mutex_lock(&head->mutex); 994 mutex_unlock(&head->mutex); 995 btrfs_put_delayed_ref(&head->node); 996 goto again; 997 } 998 spin_unlock(&delayed_refs->lock); 999 ret = __add_delayed_refs(head, time_seq, 1000 &prefs_delayed, &total_refs, 1001 inum); 1002 mutex_unlock(&head->mutex); 1003 if (ret) 1004 goto out; 1005 } else { 1006 spin_unlock(&delayed_refs->lock); 1007 } 1008 } 1009 1010 if (path->slots[0]) { 1011 struct extent_buffer *leaf; 1012 int slot; 1013 1014 path->slots[0]--; 1015 leaf = path->nodes[0]; 1016 slot = path->slots[0]; 1017 btrfs_item_key_to_cpu(leaf, &key, slot); 1018 if (key.objectid == bytenr && 1019 (key.type == BTRFS_EXTENT_ITEM_KEY || 1020 key.type == BTRFS_METADATA_ITEM_KEY)) { 1021 ret = __add_inline_refs(fs_info, path, bytenr, 1022 &info_level, &prefs, 1023 &total_refs, inum); 1024 if (ret) 1025 goto out; 1026 ret = __add_keyed_refs(fs_info, path, bytenr, 1027 info_level, &prefs, inum); 1028 if (ret) 1029 goto out; 1030 } 1031 } 1032 btrfs_release_path(path); 1033 1034 list_splice_init(&prefs_delayed, &prefs); 1035 1036 ret = __add_missing_keys(fs_info, &prefs); 1037 if (ret) 1038 goto out; 1039 1040 __merge_refs(&prefs, 1); 1041 1042 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1043 extent_item_pos, total_refs, 1044 root_objectid); 1045 if (ret) 1046 goto out; 1047 1048 __merge_refs(&prefs, 2); 1049 1050 while (!list_empty(&prefs)) { 1051 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1052 WARN_ON(ref->count < 0); 1053 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1054 if (root_objectid && ref->root_id != root_objectid) { 1055 ret = BACKREF_FOUND_SHARED; 1056 goto out; 1057 } 1058 1059 /* no parent == root of tree */ 1060 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1061 if (ret < 0) 1062 goto out; 1063 } 1064 if (ref->count && ref->parent) { 1065 if (extent_item_pos && !ref->inode_list && 1066 ref->level == 0) { 1067 struct extent_buffer *eb; 1068 1069 eb = read_tree_block(fs_info->extent_root, 1070 ref->parent, 0); 1071 if (IS_ERR(eb)) { 1072 ret = PTR_ERR(eb); 1073 goto out; 1074 } else if (!extent_buffer_uptodate(eb)) { 1075 free_extent_buffer(eb); 1076 ret = -EIO; 1077 goto out; 1078 } 1079 btrfs_tree_read_lock(eb); 1080 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1081 ret = find_extent_in_eb(eb, bytenr, 1082 *extent_item_pos, &eie); 1083 btrfs_tree_read_unlock_blocking(eb); 1084 free_extent_buffer(eb); 1085 if (ret < 0) 1086 goto out; 1087 ref->inode_list = eie; 1088 } 1089 ret = ulist_add_merge_ptr(refs, ref->parent, 1090 ref->inode_list, 1091 (void **)&eie, GFP_NOFS); 1092 if (ret < 0) 1093 goto out; 1094 if (!ret && extent_item_pos) { 1095 /* 1096 * we've recorded that parent, so we must extend 1097 * its inode list here 1098 */ 1099 BUG_ON(!eie); 1100 while (eie->next) 1101 eie = eie->next; 1102 eie->next = ref->inode_list; 1103 } 1104 eie = NULL; 1105 } 1106 list_del(&ref->list); 1107 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1108 } 1109 1110 out: 1111 btrfs_free_path(path); 1112 while (!list_empty(&prefs)) { 1113 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1114 list_del(&ref->list); 1115 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1116 } 1117 while (!list_empty(&prefs_delayed)) { 1118 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1119 list); 1120 list_del(&ref->list); 1121 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1122 } 1123 if (ret < 0) 1124 free_inode_elem_list(eie); 1125 return ret; 1126 } 1127 1128 static void free_leaf_list(struct ulist *blocks) 1129 { 1130 struct ulist_node *node = NULL; 1131 struct extent_inode_elem *eie; 1132 struct ulist_iterator uiter; 1133 1134 ULIST_ITER_INIT(&uiter); 1135 while ((node = ulist_next(blocks, &uiter))) { 1136 if (!node->aux) 1137 continue; 1138 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1139 free_inode_elem_list(eie); 1140 node->aux = 0; 1141 } 1142 1143 ulist_free(blocks); 1144 } 1145 1146 /* 1147 * Finds all leafs with a reference to the specified combination of bytenr and 1148 * offset. key_list_head will point to a list of corresponding keys (caller must 1149 * free each list element). The leafs will be stored in the leafs ulist, which 1150 * must be freed with ulist_free. 1151 * 1152 * returns 0 on success, <0 on error 1153 */ 1154 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1155 struct btrfs_fs_info *fs_info, u64 bytenr, 1156 u64 time_seq, struct ulist **leafs, 1157 const u64 *extent_item_pos) 1158 { 1159 int ret; 1160 1161 *leafs = ulist_alloc(GFP_NOFS); 1162 if (!*leafs) 1163 return -ENOMEM; 1164 1165 ret = find_parent_nodes(trans, fs_info, bytenr, 1166 time_seq, *leafs, NULL, extent_item_pos, 0, 0); 1167 if (ret < 0 && ret != -ENOENT) { 1168 free_leaf_list(*leafs); 1169 return ret; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /* 1176 * walk all backrefs for a given extent to find all roots that reference this 1177 * extent. Walking a backref means finding all extents that reference this 1178 * extent and in turn walk the backrefs of those, too. Naturally this is a 1179 * recursive process, but here it is implemented in an iterative fashion: We 1180 * find all referencing extents for the extent in question and put them on a 1181 * list. In turn, we find all referencing extents for those, further appending 1182 * to the list. The way we iterate the list allows adding more elements after 1183 * the current while iterating. The process stops when we reach the end of the 1184 * list. Found roots are added to the roots list. 1185 * 1186 * returns 0 on success, < 0 on error. 1187 */ 1188 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1189 struct btrfs_fs_info *fs_info, u64 bytenr, 1190 u64 time_seq, struct ulist **roots) 1191 { 1192 struct ulist *tmp; 1193 struct ulist_node *node = NULL; 1194 struct ulist_iterator uiter; 1195 int ret; 1196 1197 tmp = ulist_alloc(GFP_NOFS); 1198 if (!tmp) 1199 return -ENOMEM; 1200 *roots = ulist_alloc(GFP_NOFS); 1201 if (!*roots) { 1202 ulist_free(tmp); 1203 return -ENOMEM; 1204 } 1205 1206 ULIST_ITER_INIT(&uiter); 1207 while (1) { 1208 ret = find_parent_nodes(trans, fs_info, bytenr, 1209 time_seq, tmp, *roots, NULL, 0, 0); 1210 if (ret < 0 && ret != -ENOENT) { 1211 ulist_free(tmp); 1212 ulist_free(*roots); 1213 return ret; 1214 } 1215 node = ulist_next(tmp, &uiter); 1216 if (!node) 1217 break; 1218 bytenr = node->val; 1219 cond_resched(); 1220 } 1221 1222 ulist_free(tmp); 1223 return 0; 1224 } 1225 1226 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1227 struct btrfs_fs_info *fs_info, u64 bytenr, 1228 u64 time_seq, struct ulist **roots) 1229 { 1230 int ret; 1231 1232 if (!trans) 1233 down_read(&fs_info->commit_root_sem); 1234 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1235 if (!trans) 1236 up_read(&fs_info->commit_root_sem); 1237 return ret; 1238 } 1239 1240 /** 1241 * btrfs_check_shared - tell us whether an extent is shared 1242 * 1243 * @trans: optional trans handle 1244 * 1245 * btrfs_check_shared uses the backref walking code but will short 1246 * circuit as soon as it finds a root or inode that doesn't match the 1247 * one passed in. This provides a significant performance benefit for 1248 * callers (such as fiemap) which want to know whether the extent is 1249 * shared but do not need a ref count. 1250 * 1251 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1252 */ 1253 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1254 struct btrfs_fs_info *fs_info, u64 root_objectid, 1255 u64 inum, u64 bytenr) 1256 { 1257 struct ulist *tmp = NULL; 1258 struct ulist *roots = NULL; 1259 struct ulist_iterator uiter; 1260 struct ulist_node *node; 1261 struct seq_list elem = SEQ_LIST_INIT(elem); 1262 int ret = 0; 1263 1264 tmp = ulist_alloc(GFP_NOFS); 1265 roots = ulist_alloc(GFP_NOFS); 1266 if (!tmp || !roots) { 1267 ulist_free(tmp); 1268 ulist_free(roots); 1269 return -ENOMEM; 1270 } 1271 1272 if (trans) 1273 btrfs_get_tree_mod_seq(fs_info, &elem); 1274 else 1275 down_read(&fs_info->commit_root_sem); 1276 ULIST_ITER_INIT(&uiter); 1277 while (1) { 1278 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1279 roots, NULL, root_objectid, inum); 1280 if (ret == BACKREF_FOUND_SHARED) { 1281 /* this is the only condition under which we return 1 */ 1282 ret = 1; 1283 break; 1284 } 1285 if (ret < 0 && ret != -ENOENT) 1286 break; 1287 ret = 0; 1288 node = ulist_next(tmp, &uiter); 1289 if (!node) 1290 break; 1291 bytenr = node->val; 1292 cond_resched(); 1293 } 1294 if (trans) 1295 btrfs_put_tree_mod_seq(fs_info, &elem); 1296 else 1297 up_read(&fs_info->commit_root_sem); 1298 ulist_free(tmp); 1299 ulist_free(roots); 1300 return ret; 1301 } 1302 1303 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1304 u64 start_off, struct btrfs_path *path, 1305 struct btrfs_inode_extref **ret_extref, 1306 u64 *found_off) 1307 { 1308 int ret, slot; 1309 struct btrfs_key key; 1310 struct btrfs_key found_key; 1311 struct btrfs_inode_extref *extref; 1312 struct extent_buffer *leaf; 1313 unsigned long ptr; 1314 1315 key.objectid = inode_objectid; 1316 key.type = BTRFS_INODE_EXTREF_KEY; 1317 key.offset = start_off; 1318 1319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1320 if (ret < 0) 1321 return ret; 1322 1323 while (1) { 1324 leaf = path->nodes[0]; 1325 slot = path->slots[0]; 1326 if (slot >= btrfs_header_nritems(leaf)) { 1327 /* 1328 * If the item at offset is not found, 1329 * btrfs_search_slot will point us to the slot 1330 * where it should be inserted. In our case 1331 * that will be the slot directly before the 1332 * next INODE_REF_KEY_V2 item. In the case 1333 * that we're pointing to the last slot in a 1334 * leaf, we must move one leaf over. 1335 */ 1336 ret = btrfs_next_leaf(root, path); 1337 if (ret) { 1338 if (ret >= 1) 1339 ret = -ENOENT; 1340 break; 1341 } 1342 continue; 1343 } 1344 1345 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1346 1347 /* 1348 * Check that we're still looking at an extended ref key for 1349 * this particular objectid. If we have different 1350 * objectid or type then there are no more to be found 1351 * in the tree and we can exit. 1352 */ 1353 ret = -ENOENT; 1354 if (found_key.objectid != inode_objectid) 1355 break; 1356 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1357 break; 1358 1359 ret = 0; 1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1361 extref = (struct btrfs_inode_extref *)ptr; 1362 *ret_extref = extref; 1363 if (found_off) 1364 *found_off = found_key.offset; 1365 break; 1366 } 1367 1368 return ret; 1369 } 1370 1371 /* 1372 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1373 * Elements of the path are separated by '/' and the path is guaranteed to be 1374 * 0-terminated. the path is only given within the current file system. 1375 * Therefore, it never starts with a '/'. the caller is responsible to provide 1376 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1377 * the start point of the resulting string is returned. this pointer is within 1378 * dest, normally. 1379 * in case the path buffer would overflow, the pointer is decremented further 1380 * as if output was written to the buffer, though no more output is actually 1381 * generated. that way, the caller can determine how much space would be 1382 * required for the path to fit into the buffer. in that case, the returned 1383 * value will be smaller than dest. callers must check this! 1384 */ 1385 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1386 u32 name_len, unsigned long name_off, 1387 struct extent_buffer *eb_in, u64 parent, 1388 char *dest, u32 size) 1389 { 1390 int slot; 1391 u64 next_inum; 1392 int ret; 1393 s64 bytes_left = ((s64)size) - 1; 1394 struct extent_buffer *eb = eb_in; 1395 struct btrfs_key found_key; 1396 int leave_spinning = path->leave_spinning; 1397 struct btrfs_inode_ref *iref; 1398 1399 if (bytes_left >= 0) 1400 dest[bytes_left] = '\0'; 1401 1402 path->leave_spinning = 1; 1403 while (1) { 1404 bytes_left -= name_len; 1405 if (bytes_left >= 0) 1406 read_extent_buffer(eb, dest + bytes_left, 1407 name_off, name_len); 1408 if (eb != eb_in) { 1409 btrfs_tree_read_unlock_blocking(eb); 1410 free_extent_buffer(eb); 1411 } 1412 ret = btrfs_find_item(fs_root, path, parent, 0, 1413 BTRFS_INODE_REF_KEY, &found_key); 1414 if (ret > 0) 1415 ret = -ENOENT; 1416 if (ret) 1417 break; 1418 1419 next_inum = found_key.offset; 1420 1421 /* regular exit ahead */ 1422 if (parent == next_inum) 1423 break; 1424 1425 slot = path->slots[0]; 1426 eb = path->nodes[0]; 1427 /* make sure we can use eb after releasing the path */ 1428 if (eb != eb_in) { 1429 atomic_inc(&eb->refs); 1430 btrfs_tree_read_lock(eb); 1431 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1432 } 1433 btrfs_release_path(path); 1434 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1435 1436 name_len = btrfs_inode_ref_name_len(eb, iref); 1437 name_off = (unsigned long)(iref + 1); 1438 1439 parent = next_inum; 1440 --bytes_left; 1441 if (bytes_left >= 0) 1442 dest[bytes_left] = '/'; 1443 } 1444 1445 btrfs_release_path(path); 1446 path->leave_spinning = leave_spinning; 1447 1448 if (ret) 1449 return ERR_PTR(ret); 1450 1451 return dest + bytes_left; 1452 } 1453 1454 /* 1455 * this makes the path point to (logical EXTENT_ITEM *) 1456 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1457 * tree blocks and <0 on error. 1458 */ 1459 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1460 struct btrfs_path *path, struct btrfs_key *found_key, 1461 u64 *flags_ret) 1462 { 1463 int ret; 1464 u64 flags; 1465 u64 size = 0; 1466 u32 item_size; 1467 struct extent_buffer *eb; 1468 struct btrfs_extent_item *ei; 1469 struct btrfs_key key; 1470 1471 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1472 key.type = BTRFS_METADATA_ITEM_KEY; 1473 else 1474 key.type = BTRFS_EXTENT_ITEM_KEY; 1475 key.objectid = logical; 1476 key.offset = (u64)-1; 1477 1478 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1479 if (ret < 0) 1480 return ret; 1481 1482 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1483 if (ret) { 1484 if (ret > 0) 1485 ret = -ENOENT; 1486 return ret; 1487 } 1488 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1489 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1490 size = fs_info->extent_root->nodesize; 1491 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1492 size = found_key->offset; 1493 1494 if (found_key->objectid > logical || 1495 found_key->objectid + size <= logical) { 1496 pr_debug("logical %llu is not within any extent\n", logical); 1497 return -ENOENT; 1498 } 1499 1500 eb = path->nodes[0]; 1501 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1502 BUG_ON(item_size < sizeof(*ei)); 1503 1504 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1505 flags = btrfs_extent_flags(eb, ei); 1506 1507 pr_debug("logical %llu is at position %llu within the extent (%llu " 1508 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1509 logical, logical - found_key->objectid, found_key->objectid, 1510 found_key->offset, flags, item_size); 1511 1512 WARN_ON(!flags_ret); 1513 if (flags_ret) { 1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1515 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1516 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1517 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1518 else 1519 BUG_ON(1); 1520 return 0; 1521 } 1522 1523 return -EIO; 1524 } 1525 1526 /* 1527 * helper function to iterate extent inline refs. ptr must point to a 0 value 1528 * for the first call and may be modified. it is used to track state. 1529 * if more refs exist, 0 is returned and the next call to 1530 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1531 * next ref. after the last ref was processed, 1 is returned. 1532 * returns <0 on error 1533 */ 1534 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1535 struct btrfs_key *key, 1536 struct btrfs_extent_item *ei, u32 item_size, 1537 struct btrfs_extent_inline_ref **out_eiref, 1538 int *out_type) 1539 { 1540 unsigned long end; 1541 u64 flags; 1542 struct btrfs_tree_block_info *info; 1543 1544 if (!*ptr) { 1545 /* first call */ 1546 flags = btrfs_extent_flags(eb, ei); 1547 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1548 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1549 /* a skinny metadata extent */ 1550 *out_eiref = 1551 (struct btrfs_extent_inline_ref *)(ei + 1); 1552 } else { 1553 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1554 info = (struct btrfs_tree_block_info *)(ei + 1); 1555 *out_eiref = 1556 (struct btrfs_extent_inline_ref *)(info + 1); 1557 } 1558 } else { 1559 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1560 } 1561 *ptr = (unsigned long)*out_eiref; 1562 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1563 return -ENOENT; 1564 } 1565 1566 end = (unsigned long)ei + item_size; 1567 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1568 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1569 1570 *ptr += btrfs_extent_inline_ref_size(*out_type); 1571 WARN_ON(*ptr > end); 1572 if (*ptr == end) 1573 return 1; /* last */ 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * reads the tree block backref for an extent. tree level and root are returned 1580 * through out_level and out_root. ptr must point to a 0 value for the first 1581 * call and may be modified (see __get_extent_inline_ref comment). 1582 * returns 0 if data was provided, 1 if there was no more data to provide or 1583 * <0 on error. 1584 */ 1585 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1586 struct btrfs_key *key, struct btrfs_extent_item *ei, 1587 u32 item_size, u64 *out_root, u8 *out_level) 1588 { 1589 int ret; 1590 int type; 1591 struct btrfs_extent_inline_ref *eiref; 1592 1593 if (*ptr == (unsigned long)-1) 1594 return 1; 1595 1596 while (1) { 1597 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1598 &eiref, &type); 1599 if (ret < 0) 1600 return ret; 1601 1602 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1603 type == BTRFS_SHARED_BLOCK_REF_KEY) 1604 break; 1605 1606 if (ret == 1) 1607 return 1; 1608 } 1609 1610 /* we can treat both ref types equally here */ 1611 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1612 1613 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1614 struct btrfs_tree_block_info *info; 1615 1616 info = (struct btrfs_tree_block_info *)(ei + 1); 1617 *out_level = btrfs_tree_block_level(eb, info); 1618 } else { 1619 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1620 *out_level = (u8)key->offset; 1621 } 1622 1623 if (ret == 1) 1624 *ptr = (unsigned long)-1; 1625 1626 return 0; 1627 } 1628 1629 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1630 u64 root, u64 extent_item_objectid, 1631 iterate_extent_inodes_t *iterate, void *ctx) 1632 { 1633 struct extent_inode_elem *eie; 1634 int ret = 0; 1635 1636 for (eie = inode_list; eie; eie = eie->next) { 1637 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1638 "root %llu\n", extent_item_objectid, 1639 eie->inum, eie->offset, root); 1640 ret = iterate(eie->inum, eie->offset, root, ctx); 1641 if (ret) { 1642 pr_debug("stopping iteration for %llu due to ret=%d\n", 1643 extent_item_objectid, ret); 1644 break; 1645 } 1646 } 1647 1648 return ret; 1649 } 1650 1651 /* 1652 * calls iterate() for every inode that references the extent identified by 1653 * the given parameters. 1654 * when the iterator function returns a non-zero value, iteration stops. 1655 */ 1656 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1657 u64 extent_item_objectid, u64 extent_item_pos, 1658 int search_commit_root, 1659 iterate_extent_inodes_t *iterate, void *ctx) 1660 { 1661 int ret; 1662 struct btrfs_trans_handle *trans = NULL; 1663 struct ulist *refs = NULL; 1664 struct ulist *roots = NULL; 1665 struct ulist_node *ref_node = NULL; 1666 struct ulist_node *root_node = NULL; 1667 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1668 struct ulist_iterator ref_uiter; 1669 struct ulist_iterator root_uiter; 1670 1671 pr_debug("resolving all inodes for extent %llu\n", 1672 extent_item_objectid); 1673 1674 if (!search_commit_root) { 1675 trans = btrfs_join_transaction(fs_info->extent_root); 1676 if (IS_ERR(trans)) 1677 return PTR_ERR(trans); 1678 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1679 } else { 1680 down_read(&fs_info->commit_root_sem); 1681 } 1682 1683 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1684 tree_mod_seq_elem.seq, &refs, 1685 &extent_item_pos); 1686 if (ret) 1687 goto out; 1688 1689 ULIST_ITER_INIT(&ref_uiter); 1690 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1691 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1692 tree_mod_seq_elem.seq, &roots); 1693 if (ret) 1694 break; 1695 ULIST_ITER_INIT(&root_uiter); 1696 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1697 pr_debug("root %llu references leaf %llu, data list " 1698 "%#llx\n", root_node->val, ref_node->val, 1699 ref_node->aux); 1700 ret = iterate_leaf_refs((struct extent_inode_elem *) 1701 (uintptr_t)ref_node->aux, 1702 root_node->val, 1703 extent_item_objectid, 1704 iterate, ctx); 1705 } 1706 ulist_free(roots); 1707 } 1708 1709 free_leaf_list(refs); 1710 out: 1711 if (!search_commit_root) { 1712 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1713 btrfs_end_transaction(trans, fs_info->extent_root); 1714 } else { 1715 up_read(&fs_info->commit_root_sem); 1716 } 1717 1718 return ret; 1719 } 1720 1721 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1722 struct btrfs_path *path, 1723 iterate_extent_inodes_t *iterate, void *ctx) 1724 { 1725 int ret; 1726 u64 extent_item_pos; 1727 u64 flags = 0; 1728 struct btrfs_key found_key; 1729 int search_commit_root = path->search_commit_root; 1730 1731 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1732 btrfs_release_path(path); 1733 if (ret < 0) 1734 return ret; 1735 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1736 return -EINVAL; 1737 1738 extent_item_pos = logical - found_key.objectid; 1739 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1740 extent_item_pos, search_commit_root, 1741 iterate, ctx); 1742 1743 return ret; 1744 } 1745 1746 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1747 struct extent_buffer *eb, void *ctx); 1748 1749 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1750 struct btrfs_path *path, 1751 iterate_irefs_t *iterate, void *ctx) 1752 { 1753 int ret = 0; 1754 int slot; 1755 u32 cur; 1756 u32 len; 1757 u32 name_len; 1758 u64 parent = 0; 1759 int found = 0; 1760 struct extent_buffer *eb; 1761 struct btrfs_item *item; 1762 struct btrfs_inode_ref *iref; 1763 struct btrfs_key found_key; 1764 1765 while (!ret) { 1766 ret = btrfs_find_item(fs_root, path, inum, 1767 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 1768 &found_key); 1769 1770 if (ret < 0) 1771 break; 1772 if (ret) { 1773 ret = found ? 0 : -ENOENT; 1774 break; 1775 } 1776 ++found; 1777 1778 parent = found_key.offset; 1779 slot = path->slots[0]; 1780 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1781 if (!eb) { 1782 ret = -ENOMEM; 1783 break; 1784 } 1785 extent_buffer_get(eb); 1786 btrfs_tree_read_lock(eb); 1787 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1788 btrfs_release_path(path); 1789 1790 item = btrfs_item_nr(slot); 1791 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1792 1793 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1794 name_len = btrfs_inode_ref_name_len(eb, iref); 1795 /* path must be released before calling iterate()! */ 1796 pr_debug("following ref at offset %u for inode %llu in " 1797 "tree %llu\n", cur, found_key.objectid, 1798 fs_root->objectid); 1799 ret = iterate(parent, name_len, 1800 (unsigned long)(iref + 1), eb, ctx); 1801 if (ret) 1802 break; 1803 len = sizeof(*iref) + name_len; 1804 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1805 } 1806 btrfs_tree_read_unlock_blocking(eb); 1807 free_extent_buffer(eb); 1808 } 1809 1810 btrfs_release_path(path); 1811 1812 return ret; 1813 } 1814 1815 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1816 struct btrfs_path *path, 1817 iterate_irefs_t *iterate, void *ctx) 1818 { 1819 int ret; 1820 int slot; 1821 u64 offset = 0; 1822 u64 parent; 1823 int found = 0; 1824 struct extent_buffer *eb; 1825 struct btrfs_inode_extref *extref; 1826 u32 item_size; 1827 u32 cur_offset; 1828 unsigned long ptr; 1829 1830 while (1) { 1831 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1832 &offset); 1833 if (ret < 0) 1834 break; 1835 if (ret) { 1836 ret = found ? 0 : -ENOENT; 1837 break; 1838 } 1839 ++found; 1840 1841 slot = path->slots[0]; 1842 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1843 if (!eb) { 1844 ret = -ENOMEM; 1845 break; 1846 } 1847 extent_buffer_get(eb); 1848 1849 btrfs_tree_read_lock(eb); 1850 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1851 btrfs_release_path(path); 1852 1853 item_size = btrfs_item_size_nr(eb, slot); 1854 ptr = btrfs_item_ptr_offset(eb, slot); 1855 cur_offset = 0; 1856 1857 while (cur_offset < item_size) { 1858 u32 name_len; 1859 1860 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1861 parent = btrfs_inode_extref_parent(eb, extref); 1862 name_len = btrfs_inode_extref_name_len(eb, extref); 1863 ret = iterate(parent, name_len, 1864 (unsigned long)&extref->name, eb, ctx); 1865 if (ret) 1866 break; 1867 1868 cur_offset += btrfs_inode_extref_name_len(eb, extref); 1869 cur_offset += sizeof(*extref); 1870 } 1871 btrfs_tree_read_unlock_blocking(eb); 1872 free_extent_buffer(eb); 1873 1874 offset++; 1875 } 1876 1877 btrfs_release_path(path); 1878 1879 return ret; 1880 } 1881 1882 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1883 struct btrfs_path *path, iterate_irefs_t *iterate, 1884 void *ctx) 1885 { 1886 int ret; 1887 int found_refs = 0; 1888 1889 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1890 if (!ret) 1891 ++found_refs; 1892 else if (ret != -ENOENT) 1893 return ret; 1894 1895 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1896 if (ret == -ENOENT && found_refs) 1897 return 0; 1898 1899 return ret; 1900 } 1901 1902 /* 1903 * returns 0 if the path could be dumped (probably truncated) 1904 * returns <0 in case of an error 1905 */ 1906 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1907 struct extent_buffer *eb, void *ctx) 1908 { 1909 struct inode_fs_paths *ipath = ctx; 1910 char *fspath; 1911 char *fspath_min; 1912 int i = ipath->fspath->elem_cnt; 1913 const int s_ptr = sizeof(char *); 1914 u32 bytes_left; 1915 1916 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1917 ipath->fspath->bytes_left - s_ptr : 0; 1918 1919 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1920 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1921 name_off, eb, inum, fspath_min, bytes_left); 1922 if (IS_ERR(fspath)) 1923 return PTR_ERR(fspath); 1924 1925 if (fspath > fspath_min) { 1926 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1927 ++ipath->fspath->elem_cnt; 1928 ipath->fspath->bytes_left = fspath - fspath_min; 1929 } else { 1930 ++ipath->fspath->elem_missed; 1931 ipath->fspath->bytes_missing += fspath_min - fspath; 1932 ipath->fspath->bytes_left = 0; 1933 } 1934 1935 return 0; 1936 } 1937 1938 /* 1939 * this dumps all file system paths to the inode into the ipath struct, provided 1940 * is has been created large enough. each path is zero-terminated and accessed 1941 * from ipath->fspath->val[i]. 1942 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1943 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1944 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1945 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1946 * have been needed to return all paths. 1947 */ 1948 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1949 { 1950 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1951 inode_to_path, ipath); 1952 } 1953 1954 struct btrfs_data_container *init_data_container(u32 total_bytes) 1955 { 1956 struct btrfs_data_container *data; 1957 size_t alloc_bytes; 1958 1959 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1960 data = vmalloc(alloc_bytes); 1961 if (!data) 1962 return ERR_PTR(-ENOMEM); 1963 1964 if (total_bytes >= sizeof(*data)) { 1965 data->bytes_left = total_bytes - sizeof(*data); 1966 data->bytes_missing = 0; 1967 } else { 1968 data->bytes_missing = sizeof(*data) - total_bytes; 1969 data->bytes_left = 0; 1970 } 1971 1972 data->elem_cnt = 0; 1973 data->elem_missed = 0; 1974 1975 return data; 1976 } 1977 1978 /* 1979 * allocates space to return multiple file system paths for an inode. 1980 * total_bytes to allocate are passed, note that space usable for actual path 1981 * information will be total_bytes - sizeof(struct inode_fs_paths). 1982 * the returned pointer must be freed with free_ipath() in the end. 1983 */ 1984 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1985 struct btrfs_path *path) 1986 { 1987 struct inode_fs_paths *ifp; 1988 struct btrfs_data_container *fspath; 1989 1990 fspath = init_data_container(total_bytes); 1991 if (IS_ERR(fspath)) 1992 return (void *)fspath; 1993 1994 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1995 if (!ifp) { 1996 kfree(fspath); 1997 return ERR_PTR(-ENOMEM); 1998 } 1999 2000 ifp->btrfs_path = path; 2001 ifp->fspath = fspath; 2002 ifp->fs_root = fs_root; 2003 2004 return ifp; 2005 } 2006 2007 void free_ipath(struct inode_fs_paths *ipath) 2008 { 2009 if (!ipath) 2010 return; 2011 vfree(ipath->fspath); 2012 kfree(ipath); 2013 } 2014