1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/rbtree.h> 21 #include <trace/events/btrfs.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "backref.h" 25 #include "ulist.h" 26 #include "transaction.h" 27 #include "delayed-ref.h" 28 #include "locking.h" 29 30 /* Just an arbitrary number so we can be sure this happened */ 31 #define BACKREF_FOUND_SHARED 6 32 33 struct extent_inode_elem { 34 u64 inum; 35 u64 offset; 36 struct extent_inode_elem *next; 37 }; 38 39 static int check_extent_in_eb(const struct btrfs_key *key, 40 const struct extent_buffer *eb, 41 const struct btrfs_file_extent_item *fi, 42 u64 extent_item_pos, 43 struct extent_inode_elem **eie, 44 bool ignore_offset) 45 { 46 u64 offset = 0; 47 struct extent_inode_elem *e; 48 49 if (!ignore_offset && 50 !btrfs_file_extent_compression(eb, fi) && 51 !btrfs_file_extent_encryption(eb, fi) && 52 !btrfs_file_extent_other_encoding(eb, fi)) { 53 u64 data_offset; 54 u64 data_len; 55 56 data_offset = btrfs_file_extent_offset(eb, fi); 57 data_len = btrfs_file_extent_num_bytes(eb, fi); 58 59 if (extent_item_pos < data_offset || 60 extent_item_pos >= data_offset + data_len) 61 return 1; 62 offset = extent_item_pos - data_offset; 63 } 64 65 e = kmalloc(sizeof(*e), GFP_NOFS); 66 if (!e) 67 return -ENOMEM; 68 69 e->next = *eie; 70 e->inum = key->objectid; 71 e->offset = key->offset + offset; 72 *eie = e; 73 74 return 0; 75 } 76 77 static void free_inode_elem_list(struct extent_inode_elem *eie) 78 { 79 struct extent_inode_elem *eie_next; 80 81 for (; eie; eie = eie_next) { 82 eie_next = eie->next; 83 kfree(eie); 84 } 85 } 86 87 static int find_extent_in_eb(const struct extent_buffer *eb, 88 u64 wanted_disk_byte, u64 extent_item_pos, 89 struct extent_inode_elem **eie, 90 bool ignore_offset) 91 { 92 u64 disk_byte; 93 struct btrfs_key key; 94 struct btrfs_file_extent_item *fi; 95 int slot; 96 int nritems; 97 int extent_type; 98 int ret; 99 100 /* 101 * from the shared data ref, we only have the leaf but we need 102 * the key. thus, we must look into all items and see that we 103 * find one (some) with a reference to our extent item. 104 */ 105 nritems = btrfs_header_nritems(eb); 106 for (slot = 0; slot < nritems; ++slot) { 107 btrfs_item_key_to_cpu(eb, &key, slot); 108 if (key.type != BTRFS_EXTENT_DATA_KEY) 109 continue; 110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 111 extent_type = btrfs_file_extent_type(eb, fi); 112 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 113 continue; 114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 116 if (disk_byte != wanted_disk_byte) 117 continue; 118 119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 120 if (ret < 0) 121 return ret; 122 } 123 124 return 0; 125 } 126 127 struct preftree { 128 struct rb_root root; 129 unsigned int count; 130 }; 131 132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 } 133 134 struct preftrees { 135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 137 struct preftree indirect_missing_keys; 138 }; 139 140 /* 141 * Checks for a shared extent during backref search. 142 * 143 * The share_count tracks prelim_refs (direct and indirect) having a 144 * ref->count >0: 145 * - incremented when a ref->count transitions to >0 146 * - decremented when a ref->count transitions to <1 147 */ 148 struct share_check { 149 u64 root_objectid; 150 u64 inum; 151 int share_count; 152 }; 153 154 static inline int extent_is_shared(struct share_check *sc) 155 { 156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 157 } 158 159 static struct kmem_cache *btrfs_prelim_ref_cache; 160 161 int __init btrfs_prelim_ref_init(void) 162 { 163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 164 sizeof(struct prelim_ref), 165 0, 166 SLAB_MEM_SPREAD, 167 NULL); 168 if (!btrfs_prelim_ref_cache) 169 return -ENOMEM; 170 return 0; 171 } 172 173 void __cold btrfs_prelim_ref_exit(void) 174 { 175 kmem_cache_destroy(btrfs_prelim_ref_cache); 176 } 177 178 static void free_pref(struct prelim_ref *ref) 179 { 180 kmem_cache_free(btrfs_prelim_ref_cache, ref); 181 } 182 183 /* 184 * Return 0 when both refs are for the same block (and can be merged). 185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 186 * indicates a 'higher' block. 187 */ 188 static int prelim_ref_compare(struct prelim_ref *ref1, 189 struct prelim_ref *ref2) 190 { 191 if (ref1->level < ref2->level) 192 return -1; 193 if (ref1->level > ref2->level) 194 return 1; 195 if (ref1->root_id < ref2->root_id) 196 return -1; 197 if (ref1->root_id > ref2->root_id) 198 return 1; 199 if (ref1->key_for_search.type < ref2->key_for_search.type) 200 return -1; 201 if (ref1->key_for_search.type > ref2->key_for_search.type) 202 return 1; 203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 204 return -1; 205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 206 return 1; 207 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 208 return -1; 209 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 210 return 1; 211 if (ref1->parent < ref2->parent) 212 return -1; 213 if (ref1->parent > ref2->parent) 214 return 1; 215 216 return 0; 217 } 218 219 static void update_share_count(struct share_check *sc, int oldcount, 220 int newcount) 221 { 222 if ((!sc) || (oldcount == 0 && newcount < 1)) 223 return; 224 225 if (oldcount > 0 && newcount < 1) 226 sc->share_count--; 227 else if (oldcount < 1 && newcount > 0) 228 sc->share_count++; 229 } 230 231 /* 232 * Add @newref to the @root rbtree, merging identical refs. 233 * 234 * Callers should assume that newref has been freed after calling. 235 */ 236 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 237 struct preftree *preftree, 238 struct prelim_ref *newref, 239 struct share_check *sc) 240 { 241 struct rb_root *root; 242 struct rb_node **p; 243 struct rb_node *parent = NULL; 244 struct prelim_ref *ref; 245 int result; 246 247 root = &preftree->root; 248 p = &root->rb_node; 249 250 while (*p) { 251 parent = *p; 252 ref = rb_entry(parent, struct prelim_ref, rbnode); 253 result = prelim_ref_compare(ref, newref); 254 if (result < 0) { 255 p = &(*p)->rb_left; 256 } else if (result > 0) { 257 p = &(*p)->rb_right; 258 } else { 259 /* Identical refs, merge them and free @newref */ 260 struct extent_inode_elem *eie = ref->inode_list; 261 262 while (eie && eie->next) 263 eie = eie->next; 264 265 if (!eie) 266 ref->inode_list = newref->inode_list; 267 else 268 eie->next = newref->inode_list; 269 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 270 preftree->count); 271 /* 272 * A delayed ref can have newref->count < 0. 273 * The ref->count is updated to follow any 274 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 275 */ 276 update_share_count(sc, ref->count, 277 ref->count + newref->count); 278 ref->count += newref->count; 279 free_pref(newref); 280 return; 281 } 282 } 283 284 update_share_count(sc, 0, newref->count); 285 preftree->count++; 286 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 287 rb_link_node(&newref->rbnode, parent, p); 288 rb_insert_color(&newref->rbnode, root); 289 } 290 291 /* 292 * Release the entire tree. We don't care about internal consistency so 293 * just free everything and then reset the tree root. 294 */ 295 static void prelim_release(struct preftree *preftree) 296 { 297 struct prelim_ref *ref, *next_ref; 298 299 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, 300 rbnode) 301 free_pref(ref); 302 303 preftree->root = RB_ROOT; 304 preftree->count = 0; 305 } 306 307 /* 308 * the rules for all callers of this function are: 309 * - obtaining the parent is the goal 310 * - if you add a key, you must know that it is a correct key 311 * - if you cannot add the parent or a correct key, then we will look into the 312 * block later to set a correct key 313 * 314 * delayed refs 315 * ============ 316 * backref type | shared | indirect | shared | indirect 317 * information | tree | tree | data | data 318 * --------------------+--------+----------+--------+---------- 319 * parent logical | y | - | - | - 320 * key to resolve | - | y | y | y 321 * tree block logical | - | - | - | - 322 * root for resolving | y | y | y | y 323 * 324 * - column 1: we've the parent -> done 325 * - column 2, 3, 4: we use the key to find the parent 326 * 327 * on disk refs (inline or keyed) 328 * ============================== 329 * backref type | shared | indirect | shared | indirect 330 * information | tree | tree | data | data 331 * --------------------+--------+----------+--------+---------- 332 * parent logical | y | - | y | - 333 * key to resolve | - | - | - | y 334 * tree block logical | y | y | y | y 335 * root for resolving | - | y | y | y 336 * 337 * - column 1, 3: we've the parent -> done 338 * - column 2: we take the first key from the block to find the parent 339 * (see add_missing_keys) 340 * - column 4: we use the key to find the parent 341 * 342 * additional information that's available but not required to find the parent 343 * block might help in merging entries to gain some speed. 344 */ 345 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 346 struct preftree *preftree, u64 root_id, 347 const struct btrfs_key *key, int level, u64 parent, 348 u64 wanted_disk_byte, int count, 349 struct share_check *sc, gfp_t gfp_mask) 350 { 351 struct prelim_ref *ref; 352 353 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 354 return 0; 355 356 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 357 if (!ref) 358 return -ENOMEM; 359 360 ref->root_id = root_id; 361 if (key) { 362 ref->key_for_search = *key; 363 /* 364 * We can often find data backrefs with an offset that is too 365 * large (>= LLONG_MAX, maximum allowed file offset) due to 366 * underflows when subtracting a file's offset with the data 367 * offset of its corresponding extent data item. This can 368 * happen for example in the clone ioctl. 369 * So if we detect such case we set the search key's offset to 370 * zero to make sure we will find the matching file extent item 371 * at add_all_parents(), otherwise we will miss it because the 372 * offset taken form the backref is much larger then the offset 373 * of the file extent item. This can make us scan a very large 374 * number of file extent items, but at least it will not make 375 * us miss any. 376 * This is an ugly workaround for a behaviour that should have 377 * never existed, but it does and a fix for the clone ioctl 378 * would touch a lot of places, cause backwards incompatibility 379 * and would not fix the problem for extents cloned with older 380 * kernels. 381 */ 382 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 383 ref->key_for_search.offset >= LLONG_MAX) 384 ref->key_for_search.offset = 0; 385 } else { 386 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 387 } 388 389 ref->inode_list = NULL; 390 ref->level = level; 391 ref->count = count; 392 ref->parent = parent; 393 ref->wanted_disk_byte = wanted_disk_byte; 394 prelim_ref_insert(fs_info, preftree, ref, sc); 395 return extent_is_shared(sc); 396 } 397 398 /* direct refs use root == 0, key == NULL */ 399 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 400 struct preftrees *preftrees, int level, u64 parent, 401 u64 wanted_disk_byte, int count, 402 struct share_check *sc, gfp_t gfp_mask) 403 { 404 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 405 parent, wanted_disk_byte, count, sc, gfp_mask); 406 } 407 408 /* indirect refs use parent == 0 */ 409 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 410 struct preftrees *preftrees, u64 root_id, 411 const struct btrfs_key *key, int level, 412 u64 wanted_disk_byte, int count, 413 struct share_check *sc, gfp_t gfp_mask) 414 { 415 struct preftree *tree = &preftrees->indirect; 416 417 if (!key) 418 tree = &preftrees->indirect_missing_keys; 419 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 420 wanted_disk_byte, count, sc, gfp_mask); 421 } 422 423 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 424 struct ulist *parents, struct prelim_ref *ref, 425 int level, u64 time_seq, const u64 *extent_item_pos, 426 u64 total_refs, bool ignore_offset) 427 { 428 int ret = 0; 429 int slot; 430 struct extent_buffer *eb; 431 struct btrfs_key key; 432 struct btrfs_key *key_for_search = &ref->key_for_search; 433 struct btrfs_file_extent_item *fi; 434 struct extent_inode_elem *eie = NULL, *old = NULL; 435 u64 disk_byte; 436 u64 wanted_disk_byte = ref->wanted_disk_byte; 437 u64 count = 0; 438 439 if (level != 0) { 440 eb = path->nodes[level]; 441 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 442 if (ret < 0) 443 return ret; 444 return 0; 445 } 446 447 /* 448 * We normally enter this function with the path already pointing to 449 * the first item to check. But sometimes, we may enter it with 450 * slot==nritems. In that case, go to the next leaf before we continue. 451 */ 452 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 453 if (time_seq == SEQ_LAST) 454 ret = btrfs_next_leaf(root, path); 455 else 456 ret = btrfs_next_old_leaf(root, path, time_seq); 457 } 458 459 while (!ret && count < total_refs) { 460 eb = path->nodes[0]; 461 slot = path->slots[0]; 462 463 btrfs_item_key_to_cpu(eb, &key, slot); 464 465 if (key.objectid != key_for_search->objectid || 466 key.type != BTRFS_EXTENT_DATA_KEY) 467 break; 468 469 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 470 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 471 472 if (disk_byte == wanted_disk_byte) { 473 eie = NULL; 474 old = NULL; 475 count++; 476 if (extent_item_pos) { 477 ret = check_extent_in_eb(&key, eb, fi, 478 *extent_item_pos, 479 &eie, ignore_offset); 480 if (ret < 0) 481 break; 482 } 483 if (ret > 0) 484 goto next; 485 ret = ulist_add_merge_ptr(parents, eb->start, 486 eie, (void **)&old, GFP_NOFS); 487 if (ret < 0) 488 break; 489 if (!ret && extent_item_pos) { 490 while (old->next) 491 old = old->next; 492 old->next = eie; 493 } 494 eie = NULL; 495 } 496 next: 497 if (time_seq == SEQ_LAST) 498 ret = btrfs_next_item(root, path); 499 else 500 ret = btrfs_next_old_item(root, path, time_seq); 501 } 502 503 if (ret > 0) 504 ret = 0; 505 else if (ret < 0) 506 free_inode_elem_list(eie); 507 return ret; 508 } 509 510 /* 511 * resolve an indirect backref in the form (root_id, key, level) 512 * to a logical address 513 */ 514 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 515 struct btrfs_path *path, u64 time_seq, 516 struct prelim_ref *ref, struct ulist *parents, 517 const u64 *extent_item_pos, u64 total_refs, 518 bool ignore_offset) 519 { 520 struct btrfs_root *root; 521 struct btrfs_key root_key; 522 struct extent_buffer *eb; 523 int ret = 0; 524 int root_level; 525 int level = ref->level; 526 int index; 527 528 root_key.objectid = ref->root_id; 529 root_key.type = BTRFS_ROOT_ITEM_KEY; 530 root_key.offset = (u64)-1; 531 532 index = srcu_read_lock(&fs_info->subvol_srcu); 533 534 root = btrfs_get_fs_root(fs_info, &root_key, false); 535 if (IS_ERR(root)) { 536 srcu_read_unlock(&fs_info->subvol_srcu, index); 537 ret = PTR_ERR(root); 538 goto out; 539 } 540 541 if (btrfs_is_testing(fs_info)) { 542 srcu_read_unlock(&fs_info->subvol_srcu, index); 543 ret = -ENOENT; 544 goto out; 545 } 546 547 if (path->search_commit_root) 548 root_level = btrfs_header_level(root->commit_root); 549 else if (time_seq == SEQ_LAST) 550 root_level = btrfs_header_level(root->node); 551 else 552 root_level = btrfs_old_root_level(root, time_seq); 553 554 if (root_level + 1 == level) { 555 srcu_read_unlock(&fs_info->subvol_srcu, index); 556 goto out; 557 } 558 559 path->lowest_level = level; 560 if (time_seq == SEQ_LAST) 561 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 562 0, 0); 563 else 564 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 565 time_seq); 566 567 /* root node has been locked, we can release @subvol_srcu safely here */ 568 srcu_read_unlock(&fs_info->subvol_srcu, index); 569 570 btrfs_debug(fs_info, 571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 572 ref->root_id, level, ref->count, ret, 573 ref->key_for_search.objectid, ref->key_for_search.type, 574 ref->key_for_search.offset); 575 if (ret < 0) 576 goto out; 577 578 eb = path->nodes[level]; 579 while (!eb) { 580 if (WARN_ON(!level)) { 581 ret = 1; 582 goto out; 583 } 584 level--; 585 eb = path->nodes[level]; 586 } 587 588 ret = add_all_parents(root, path, parents, ref, level, time_seq, 589 extent_item_pos, total_refs, ignore_offset); 590 out: 591 path->lowest_level = 0; 592 btrfs_release_path(path); 593 return ret; 594 } 595 596 static struct extent_inode_elem * 597 unode_aux_to_inode_list(struct ulist_node *node) 598 { 599 if (!node) 600 return NULL; 601 return (struct extent_inode_elem *)(uintptr_t)node->aux; 602 } 603 604 /* 605 * We maintain three seperate rbtrees: one for direct refs, one for 606 * indirect refs which have a key, and one for indirect refs which do not 607 * have a key. Each tree does merge on insertion. 608 * 609 * Once all of the references are located, we iterate over the tree of 610 * indirect refs with missing keys. An appropriate key is located and 611 * the ref is moved onto the tree for indirect refs. After all missing 612 * keys are thus located, we iterate over the indirect ref tree, resolve 613 * each reference, and then insert the resolved reference onto the 614 * direct tree (merging there too). 615 * 616 * New backrefs (i.e., for parent nodes) are added to the appropriate 617 * rbtree as they are encountered. The new backrefs are subsequently 618 * resolved as above. 619 */ 620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 621 struct btrfs_path *path, u64 time_seq, 622 struct preftrees *preftrees, 623 const u64 *extent_item_pos, u64 total_refs, 624 struct share_check *sc, bool ignore_offset) 625 { 626 int err; 627 int ret = 0; 628 struct ulist *parents; 629 struct ulist_node *node; 630 struct ulist_iterator uiter; 631 struct rb_node *rnode; 632 633 parents = ulist_alloc(GFP_NOFS); 634 if (!parents) 635 return -ENOMEM; 636 637 /* 638 * We could trade memory usage for performance here by iterating 639 * the tree, allocating new refs for each insertion, and then 640 * freeing the entire indirect tree when we're done. In some test 641 * cases, the tree can grow quite large (~200k objects). 642 */ 643 while ((rnode = rb_first(&preftrees->indirect.root))) { 644 struct prelim_ref *ref; 645 646 ref = rb_entry(rnode, struct prelim_ref, rbnode); 647 if (WARN(ref->parent, 648 "BUG: direct ref found in indirect tree")) { 649 ret = -EINVAL; 650 goto out; 651 } 652 653 rb_erase(&ref->rbnode, &preftrees->indirect.root); 654 preftrees->indirect.count--; 655 656 if (ref->count == 0) { 657 free_pref(ref); 658 continue; 659 } 660 661 if (sc && sc->root_objectid && 662 ref->root_id != sc->root_objectid) { 663 free_pref(ref); 664 ret = BACKREF_FOUND_SHARED; 665 goto out; 666 } 667 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 668 parents, extent_item_pos, 669 total_refs, ignore_offset); 670 /* 671 * we can only tolerate ENOENT,otherwise,we should catch error 672 * and return directly. 673 */ 674 if (err == -ENOENT) { 675 prelim_ref_insert(fs_info, &preftrees->direct, ref, 676 NULL); 677 continue; 678 } else if (err) { 679 free_pref(ref); 680 ret = err; 681 goto out; 682 } 683 684 /* we put the first parent into the ref at hand */ 685 ULIST_ITER_INIT(&uiter); 686 node = ulist_next(parents, &uiter); 687 ref->parent = node ? node->val : 0; 688 ref->inode_list = unode_aux_to_inode_list(node); 689 690 /* Add a prelim_ref(s) for any other parent(s). */ 691 while ((node = ulist_next(parents, &uiter))) { 692 struct prelim_ref *new_ref; 693 694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 695 GFP_NOFS); 696 if (!new_ref) { 697 free_pref(ref); 698 ret = -ENOMEM; 699 goto out; 700 } 701 memcpy(new_ref, ref, sizeof(*ref)); 702 new_ref->parent = node->val; 703 new_ref->inode_list = unode_aux_to_inode_list(node); 704 prelim_ref_insert(fs_info, &preftrees->direct, 705 new_ref, NULL); 706 } 707 708 /* 709 * Now it's a direct ref, put it in the the direct tree. We must 710 * do this last because the ref could be merged/freed here. 711 */ 712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 713 714 ulist_reinit(parents); 715 cond_resched(); 716 } 717 out: 718 ulist_free(parents); 719 return ret; 720 } 721 722 /* 723 * read tree blocks and add keys where required. 724 */ 725 static int add_missing_keys(struct btrfs_fs_info *fs_info, 726 struct preftrees *preftrees) 727 { 728 struct prelim_ref *ref; 729 struct extent_buffer *eb; 730 struct preftree *tree = &preftrees->indirect_missing_keys; 731 struct rb_node *node; 732 733 while ((node = rb_first(&tree->root))) { 734 ref = rb_entry(node, struct prelim_ref, rbnode); 735 rb_erase(node, &tree->root); 736 737 BUG_ON(ref->parent); /* should not be a direct ref */ 738 BUG_ON(ref->key_for_search.type); 739 BUG_ON(!ref->wanted_disk_byte); 740 741 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 742 ref->level - 1, NULL); 743 if (IS_ERR(eb)) { 744 free_pref(ref); 745 return PTR_ERR(eb); 746 } else if (!extent_buffer_uptodate(eb)) { 747 free_pref(ref); 748 free_extent_buffer(eb); 749 return -EIO; 750 } 751 btrfs_tree_read_lock(eb); 752 if (btrfs_header_level(eb) == 0) 753 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 754 else 755 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 756 btrfs_tree_read_unlock(eb); 757 free_extent_buffer(eb); 758 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 759 cond_resched(); 760 } 761 return 0; 762 } 763 764 /* 765 * add all currently queued delayed refs from this head whose seq nr is 766 * smaller or equal that seq to the list 767 */ 768 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 769 struct btrfs_delayed_ref_head *head, u64 seq, 770 struct preftrees *preftrees, u64 *total_refs, 771 struct share_check *sc) 772 { 773 struct btrfs_delayed_ref_node *node; 774 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 775 struct btrfs_key key; 776 struct btrfs_key tmp_op_key; 777 struct rb_node *n; 778 int count; 779 int ret = 0; 780 781 if (extent_op && extent_op->update_key) 782 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 783 784 spin_lock(&head->lock); 785 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { 786 node = rb_entry(n, struct btrfs_delayed_ref_node, 787 ref_node); 788 if (node->seq > seq) 789 continue; 790 791 switch (node->action) { 792 case BTRFS_ADD_DELAYED_EXTENT: 793 case BTRFS_UPDATE_DELAYED_HEAD: 794 WARN_ON(1); 795 continue; 796 case BTRFS_ADD_DELAYED_REF: 797 count = node->ref_mod; 798 break; 799 case BTRFS_DROP_DELAYED_REF: 800 count = node->ref_mod * -1; 801 break; 802 default: 803 BUG_ON(1); 804 } 805 *total_refs += count; 806 switch (node->type) { 807 case BTRFS_TREE_BLOCK_REF_KEY: { 808 /* NORMAL INDIRECT METADATA backref */ 809 struct btrfs_delayed_tree_ref *ref; 810 811 ref = btrfs_delayed_node_to_tree_ref(node); 812 ret = add_indirect_ref(fs_info, preftrees, ref->root, 813 &tmp_op_key, ref->level + 1, 814 node->bytenr, count, sc, 815 GFP_ATOMIC); 816 break; 817 } 818 case BTRFS_SHARED_BLOCK_REF_KEY: { 819 /* SHARED DIRECT METADATA backref */ 820 struct btrfs_delayed_tree_ref *ref; 821 822 ref = btrfs_delayed_node_to_tree_ref(node); 823 824 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 825 ref->parent, node->bytenr, count, 826 sc, GFP_ATOMIC); 827 break; 828 } 829 case BTRFS_EXTENT_DATA_REF_KEY: { 830 /* NORMAL INDIRECT DATA backref */ 831 struct btrfs_delayed_data_ref *ref; 832 ref = btrfs_delayed_node_to_data_ref(node); 833 834 key.objectid = ref->objectid; 835 key.type = BTRFS_EXTENT_DATA_KEY; 836 key.offset = ref->offset; 837 838 /* 839 * Found a inum that doesn't match our known inum, we 840 * know it's shared. 841 */ 842 if (sc && sc->inum && ref->objectid != sc->inum) { 843 ret = BACKREF_FOUND_SHARED; 844 goto out; 845 } 846 847 ret = add_indirect_ref(fs_info, preftrees, ref->root, 848 &key, 0, node->bytenr, count, sc, 849 GFP_ATOMIC); 850 break; 851 } 852 case BTRFS_SHARED_DATA_REF_KEY: { 853 /* SHARED DIRECT FULL backref */ 854 struct btrfs_delayed_data_ref *ref; 855 856 ref = btrfs_delayed_node_to_data_ref(node); 857 858 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 859 node->bytenr, count, sc, 860 GFP_ATOMIC); 861 break; 862 } 863 default: 864 WARN_ON(1); 865 } 866 /* 867 * We must ignore BACKREF_FOUND_SHARED until all delayed 868 * refs have been checked. 869 */ 870 if (ret && (ret != BACKREF_FOUND_SHARED)) 871 break; 872 } 873 if (!ret) 874 ret = extent_is_shared(sc); 875 out: 876 spin_unlock(&head->lock); 877 return ret; 878 } 879 880 /* 881 * add all inline backrefs for bytenr to the list 882 * 883 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 884 */ 885 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 886 struct btrfs_path *path, u64 bytenr, 887 int *info_level, struct preftrees *preftrees, 888 u64 *total_refs, struct share_check *sc) 889 { 890 int ret = 0; 891 int slot; 892 struct extent_buffer *leaf; 893 struct btrfs_key key; 894 struct btrfs_key found_key; 895 unsigned long ptr; 896 unsigned long end; 897 struct btrfs_extent_item *ei; 898 u64 flags; 899 u64 item_size; 900 901 /* 902 * enumerate all inline refs 903 */ 904 leaf = path->nodes[0]; 905 slot = path->slots[0]; 906 907 item_size = btrfs_item_size_nr(leaf, slot); 908 BUG_ON(item_size < sizeof(*ei)); 909 910 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 911 flags = btrfs_extent_flags(leaf, ei); 912 *total_refs += btrfs_extent_refs(leaf, ei); 913 btrfs_item_key_to_cpu(leaf, &found_key, slot); 914 915 ptr = (unsigned long)(ei + 1); 916 end = (unsigned long)ei + item_size; 917 918 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 919 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 920 struct btrfs_tree_block_info *info; 921 922 info = (struct btrfs_tree_block_info *)ptr; 923 *info_level = btrfs_tree_block_level(leaf, info); 924 ptr += sizeof(struct btrfs_tree_block_info); 925 BUG_ON(ptr > end); 926 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 927 *info_level = found_key.offset; 928 } else { 929 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 930 } 931 932 while (ptr < end) { 933 struct btrfs_extent_inline_ref *iref; 934 u64 offset; 935 int type; 936 937 iref = (struct btrfs_extent_inline_ref *)ptr; 938 type = btrfs_get_extent_inline_ref_type(leaf, iref, 939 BTRFS_REF_TYPE_ANY); 940 if (type == BTRFS_REF_TYPE_INVALID) 941 return -EINVAL; 942 943 offset = btrfs_extent_inline_ref_offset(leaf, iref); 944 945 switch (type) { 946 case BTRFS_SHARED_BLOCK_REF_KEY: 947 ret = add_direct_ref(fs_info, preftrees, 948 *info_level + 1, offset, 949 bytenr, 1, NULL, GFP_NOFS); 950 break; 951 case BTRFS_SHARED_DATA_REF_KEY: { 952 struct btrfs_shared_data_ref *sdref; 953 int count; 954 955 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 956 count = btrfs_shared_data_ref_count(leaf, sdref); 957 958 ret = add_direct_ref(fs_info, preftrees, 0, offset, 959 bytenr, count, sc, GFP_NOFS); 960 break; 961 } 962 case BTRFS_TREE_BLOCK_REF_KEY: 963 ret = add_indirect_ref(fs_info, preftrees, offset, 964 NULL, *info_level + 1, 965 bytenr, 1, NULL, GFP_NOFS); 966 break; 967 case BTRFS_EXTENT_DATA_REF_KEY: { 968 struct btrfs_extent_data_ref *dref; 969 int count; 970 u64 root; 971 972 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 973 count = btrfs_extent_data_ref_count(leaf, dref); 974 key.objectid = btrfs_extent_data_ref_objectid(leaf, 975 dref); 976 key.type = BTRFS_EXTENT_DATA_KEY; 977 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 978 979 if (sc && sc->inum && key.objectid != sc->inum) { 980 ret = BACKREF_FOUND_SHARED; 981 break; 982 } 983 984 root = btrfs_extent_data_ref_root(leaf, dref); 985 986 ret = add_indirect_ref(fs_info, preftrees, root, 987 &key, 0, bytenr, count, 988 sc, GFP_NOFS); 989 break; 990 } 991 default: 992 WARN_ON(1); 993 } 994 if (ret) 995 return ret; 996 ptr += btrfs_extent_inline_ref_size(type); 997 } 998 999 return 0; 1000 } 1001 1002 /* 1003 * add all non-inline backrefs for bytenr to the list 1004 * 1005 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1006 */ 1007 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1008 struct btrfs_path *path, u64 bytenr, 1009 int info_level, struct preftrees *preftrees, 1010 struct share_check *sc) 1011 { 1012 struct btrfs_root *extent_root = fs_info->extent_root; 1013 int ret; 1014 int slot; 1015 struct extent_buffer *leaf; 1016 struct btrfs_key key; 1017 1018 while (1) { 1019 ret = btrfs_next_item(extent_root, path); 1020 if (ret < 0) 1021 break; 1022 if (ret) { 1023 ret = 0; 1024 break; 1025 } 1026 1027 slot = path->slots[0]; 1028 leaf = path->nodes[0]; 1029 btrfs_item_key_to_cpu(leaf, &key, slot); 1030 1031 if (key.objectid != bytenr) 1032 break; 1033 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1034 continue; 1035 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1036 break; 1037 1038 switch (key.type) { 1039 case BTRFS_SHARED_BLOCK_REF_KEY: 1040 /* SHARED DIRECT METADATA backref */ 1041 ret = add_direct_ref(fs_info, preftrees, 1042 info_level + 1, key.offset, 1043 bytenr, 1, NULL, GFP_NOFS); 1044 break; 1045 case BTRFS_SHARED_DATA_REF_KEY: { 1046 /* SHARED DIRECT FULL backref */ 1047 struct btrfs_shared_data_ref *sdref; 1048 int count; 1049 1050 sdref = btrfs_item_ptr(leaf, slot, 1051 struct btrfs_shared_data_ref); 1052 count = btrfs_shared_data_ref_count(leaf, sdref); 1053 ret = add_direct_ref(fs_info, preftrees, 0, 1054 key.offset, bytenr, count, 1055 sc, GFP_NOFS); 1056 break; 1057 } 1058 case BTRFS_TREE_BLOCK_REF_KEY: 1059 /* NORMAL INDIRECT METADATA backref */ 1060 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1061 NULL, info_level + 1, bytenr, 1062 1, NULL, GFP_NOFS); 1063 break; 1064 case BTRFS_EXTENT_DATA_REF_KEY: { 1065 /* NORMAL INDIRECT DATA backref */ 1066 struct btrfs_extent_data_ref *dref; 1067 int count; 1068 u64 root; 1069 1070 dref = btrfs_item_ptr(leaf, slot, 1071 struct btrfs_extent_data_ref); 1072 count = btrfs_extent_data_ref_count(leaf, dref); 1073 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1074 dref); 1075 key.type = BTRFS_EXTENT_DATA_KEY; 1076 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1077 1078 if (sc && sc->inum && key.objectid != sc->inum) { 1079 ret = BACKREF_FOUND_SHARED; 1080 break; 1081 } 1082 1083 root = btrfs_extent_data_ref_root(leaf, dref); 1084 ret = add_indirect_ref(fs_info, preftrees, root, 1085 &key, 0, bytenr, count, 1086 sc, GFP_NOFS); 1087 break; 1088 } 1089 default: 1090 WARN_ON(1); 1091 } 1092 if (ret) 1093 return ret; 1094 1095 } 1096 1097 return ret; 1098 } 1099 1100 /* 1101 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1102 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1103 * indirect refs to their parent bytenr. 1104 * When roots are found, they're added to the roots list 1105 * 1106 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1107 * much like trans == NULL case, the difference only lies in it will not 1108 * commit root. 1109 * The special case is for qgroup to search roots in commit_transaction(). 1110 * 1111 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1112 * shared extent is detected. 1113 * 1114 * Otherwise this returns 0 for success and <0 for an error. 1115 * 1116 * If ignore_offset is set to false, only extent refs whose offsets match 1117 * extent_item_pos are returned. If true, every extent ref is returned 1118 * and extent_item_pos is ignored. 1119 * 1120 * FIXME some caching might speed things up 1121 */ 1122 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1123 struct btrfs_fs_info *fs_info, u64 bytenr, 1124 u64 time_seq, struct ulist *refs, 1125 struct ulist *roots, const u64 *extent_item_pos, 1126 struct share_check *sc, bool ignore_offset) 1127 { 1128 struct btrfs_key key; 1129 struct btrfs_path *path; 1130 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1131 struct btrfs_delayed_ref_head *head; 1132 int info_level = 0; 1133 int ret; 1134 struct prelim_ref *ref; 1135 struct rb_node *node; 1136 struct extent_inode_elem *eie = NULL; 1137 /* total of both direct AND indirect refs! */ 1138 u64 total_refs = 0; 1139 struct preftrees preftrees = { 1140 .direct = PREFTREE_INIT, 1141 .indirect = PREFTREE_INIT, 1142 .indirect_missing_keys = PREFTREE_INIT 1143 }; 1144 1145 key.objectid = bytenr; 1146 key.offset = (u64)-1; 1147 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1148 key.type = BTRFS_METADATA_ITEM_KEY; 1149 else 1150 key.type = BTRFS_EXTENT_ITEM_KEY; 1151 1152 path = btrfs_alloc_path(); 1153 if (!path) 1154 return -ENOMEM; 1155 if (!trans) { 1156 path->search_commit_root = 1; 1157 path->skip_locking = 1; 1158 } 1159 1160 if (time_seq == SEQ_LAST) 1161 path->skip_locking = 1; 1162 1163 /* 1164 * grab both a lock on the path and a lock on the delayed ref head. 1165 * We need both to get a consistent picture of how the refs look 1166 * at a specified point in time 1167 */ 1168 again: 1169 head = NULL; 1170 1171 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1172 if (ret < 0) 1173 goto out; 1174 BUG_ON(ret == 0); 1175 1176 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1177 if (trans && likely(trans->type != __TRANS_DUMMY) && 1178 time_seq != SEQ_LAST) { 1179 #else 1180 if (trans && time_seq != SEQ_LAST) { 1181 #endif 1182 /* 1183 * look if there are updates for this ref queued and lock the 1184 * head 1185 */ 1186 delayed_refs = &trans->transaction->delayed_refs; 1187 spin_lock(&delayed_refs->lock); 1188 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1189 if (head) { 1190 if (!mutex_trylock(&head->mutex)) { 1191 refcount_inc(&head->refs); 1192 spin_unlock(&delayed_refs->lock); 1193 1194 btrfs_release_path(path); 1195 1196 /* 1197 * Mutex was contended, block until it's 1198 * released and try again 1199 */ 1200 mutex_lock(&head->mutex); 1201 mutex_unlock(&head->mutex); 1202 btrfs_put_delayed_ref_head(head); 1203 goto again; 1204 } 1205 spin_unlock(&delayed_refs->lock); 1206 ret = add_delayed_refs(fs_info, head, time_seq, 1207 &preftrees, &total_refs, sc); 1208 mutex_unlock(&head->mutex); 1209 if (ret) 1210 goto out; 1211 } else { 1212 spin_unlock(&delayed_refs->lock); 1213 } 1214 } 1215 1216 if (path->slots[0]) { 1217 struct extent_buffer *leaf; 1218 int slot; 1219 1220 path->slots[0]--; 1221 leaf = path->nodes[0]; 1222 slot = path->slots[0]; 1223 btrfs_item_key_to_cpu(leaf, &key, slot); 1224 if (key.objectid == bytenr && 1225 (key.type == BTRFS_EXTENT_ITEM_KEY || 1226 key.type == BTRFS_METADATA_ITEM_KEY)) { 1227 ret = add_inline_refs(fs_info, path, bytenr, 1228 &info_level, &preftrees, 1229 &total_refs, sc); 1230 if (ret) 1231 goto out; 1232 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1233 &preftrees, sc); 1234 if (ret) 1235 goto out; 1236 } 1237 } 1238 1239 btrfs_release_path(path); 1240 1241 ret = add_missing_keys(fs_info, &preftrees); 1242 if (ret) 1243 goto out; 1244 1245 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); 1246 1247 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1248 extent_item_pos, total_refs, sc, ignore_offset); 1249 if (ret) 1250 goto out; 1251 1252 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); 1253 1254 /* 1255 * This walks the tree of merged and resolved refs. Tree blocks are 1256 * read in as needed. Unique entries are added to the ulist, and 1257 * the list of found roots is updated. 1258 * 1259 * We release the entire tree in one go before returning. 1260 */ 1261 node = rb_first(&preftrees.direct.root); 1262 while (node) { 1263 ref = rb_entry(node, struct prelim_ref, rbnode); 1264 node = rb_next(&ref->rbnode); 1265 /* 1266 * ref->count < 0 can happen here if there are delayed 1267 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1268 * prelim_ref_insert() relies on this when merging 1269 * identical refs to keep the overall count correct. 1270 * prelim_ref_insert() will merge only those refs 1271 * which compare identically. Any refs having 1272 * e.g. different offsets would not be merged, 1273 * and would retain their original ref->count < 0. 1274 */ 1275 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1276 if (sc && sc->root_objectid && 1277 ref->root_id != sc->root_objectid) { 1278 ret = BACKREF_FOUND_SHARED; 1279 goto out; 1280 } 1281 1282 /* no parent == root of tree */ 1283 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1284 if (ret < 0) 1285 goto out; 1286 } 1287 if (ref->count && ref->parent) { 1288 if (extent_item_pos && !ref->inode_list && 1289 ref->level == 0) { 1290 struct extent_buffer *eb; 1291 1292 eb = read_tree_block(fs_info, ref->parent, 0, 1293 ref->level, NULL); 1294 if (IS_ERR(eb)) { 1295 ret = PTR_ERR(eb); 1296 goto out; 1297 } else if (!extent_buffer_uptodate(eb)) { 1298 free_extent_buffer(eb); 1299 ret = -EIO; 1300 goto out; 1301 } 1302 btrfs_tree_read_lock(eb); 1303 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1304 ret = find_extent_in_eb(eb, bytenr, 1305 *extent_item_pos, &eie, ignore_offset); 1306 btrfs_tree_read_unlock_blocking(eb); 1307 free_extent_buffer(eb); 1308 if (ret < 0) 1309 goto out; 1310 ref->inode_list = eie; 1311 } 1312 ret = ulist_add_merge_ptr(refs, ref->parent, 1313 ref->inode_list, 1314 (void **)&eie, GFP_NOFS); 1315 if (ret < 0) 1316 goto out; 1317 if (!ret && extent_item_pos) { 1318 /* 1319 * we've recorded that parent, so we must extend 1320 * its inode list here 1321 */ 1322 BUG_ON(!eie); 1323 while (eie->next) 1324 eie = eie->next; 1325 eie->next = ref->inode_list; 1326 } 1327 eie = NULL; 1328 } 1329 cond_resched(); 1330 } 1331 1332 out: 1333 btrfs_free_path(path); 1334 1335 prelim_release(&preftrees.direct); 1336 prelim_release(&preftrees.indirect); 1337 prelim_release(&preftrees.indirect_missing_keys); 1338 1339 if (ret < 0) 1340 free_inode_elem_list(eie); 1341 return ret; 1342 } 1343 1344 static void free_leaf_list(struct ulist *blocks) 1345 { 1346 struct ulist_node *node = NULL; 1347 struct extent_inode_elem *eie; 1348 struct ulist_iterator uiter; 1349 1350 ULIST_ITER_INIT(&uiter); 1351 while ((node = ulist_next(blocks, &uiter))) { 1352 if (!node->aux) 1353 continue; 1354 eie = unode_aux_to_inode_list(node); 1355 free_inode_elem_list(eie); 1356 node->aux = 0; 1357 } 1358 1359 ulist_free(blocks); 1360 } 1361 1362 /* 1363 * Finds all leafs with a reference to the specified combination of bytenr and 1364 * offset. key_list_head will point to a list of corresponding keys (caller must 1365 * free each list element). The leafs will be stored in the leafs ulist, which 1366 * must be freed with ulist_free. 1367 * 1368 * returns 0 on success, <0 on error 1369 */ 1370 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1371 struct btrfs_fs_info *fs_info, u64 bytenr, 1372 u64 time_seq, struct ulist **leafs, 1373 const u64 *extent_item_pos, bool ignore_offset) 1374 { 1375 int ret; 1376 1377 *leafs = ulist_alloc(GFP_NOFS); 1378 if (!*leafs) 1379 return -ENOMEM; 1380 1381 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1382 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1383 if (ret < 0 && ret != -ENOENT) { 1384 free_leaf_list(*leafs); 1385 return ret; 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * walk all backrefs for a given extent to find all roots that reference this 1393 * extent. Walking a backref means finding all extents that reference this 1394 * extent and in turn walk the backrefs of those, too. Naturally this is a 1395 * recursive process, but here it is implemented in an iterative fashion: We 1396 * find all referencing extents for the extent in question and put them on a 1397 * list. In turn, we find all referencing extents for those, further appending 1398 * to the list. The way we iterate the list allows adding more elements after 1399 * the current while iterating. The process stops when we reach the end of the 1400 * list. Found roots are added to the roots list. 1401 * 1402 * returns 0 on success, < 0 on error. 1403 */ 1404 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1405 struct btrfs_fs_info *fs_info, u64 bytenr, 1406 u64 time_seq, struct ulist **roots, 1407 bool ignore_offset) 1408 { 1409 struct ulist *tmp; 1410 struct ulist_node *node = NULL; 1411 struct ulist_iterator uiter; 1412 int ret; 1413 1414 tmp = ulist_alloc(GFP_NOFS); 1415 if (!tmp) 1416 return -ENOMEM; 1417 *roots = ulist_alloc(GFP_NOFS); 1418 if (!*roots) { 1419 ulist_free(tmp); 1420 return -ENOMEM; 1421 } 1422 1423 ULIST_ITER_INIT(&uiter); 1424 while (1) { 1425 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1426 tmp, *roots, NULL, NULL, ignore_offset); 1427 if (ret < 0 && ret != -ENOENT) { 1428 ulist_free(tmp); 1429 ulist_free(*roots); 1430 return ret; 1431 } 1432 node = ulist_next(tmp, &uiter); 1433 if (!node) 1434 break; 1435 bytenr = node->val; 1436 cond_resched(); 1437 } 1438 1439 ulist_free(tmp); 1440 return 0; 1441 } 1442 1443 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1444 struct btrfs_fs_info *fs_info, u64 bytenr, 1445 u64 time_seq, struct ulist **roots, 1446 bool ignore_offset) 1447 { 1448 int ret; 1449 1450 if (!trans) 1451 down_read(&fs_info->commit_root_sem); 1452 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1453 time_seq, roots, ignore_offset); 1454 if (!trans) 1455 up_read(&fs_info->commit_root_sem); 1456 return ret; 1457 } 1458 1459 /** 1460 * btrfs_check_shared - tell us whether an extent is shared 1461 * 1462 * btrfs_check_shared uses the backref walking code but will short 1463 * circuit as soon as it finds a root or inode that doesn't match the 1464 * one passed in. This provides a significant performance benefit for 1465 * callers (such as fiemap) which want to know whether the extent is 1466 * shared but do not need a ref count. 1467 * 1468 * This attempts to allocate a transaction in order to account for 1469 * delayed refs, but continues on even when the alloc fails. 1470 * 1471 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1472 */ 1473 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1474 { 1475 struct btrfs_fs_info *fs_info = root->fs_info; 1476 struct btrfs_trans_handle *trans; 1477 struct ulist *tmp = NULL; 1478 struct ulist *roots = NULL; 1479 struct ulist_iterator uiter; 1480 struct ulist_node *node; 1481 struct seq_list elem = SEQ_LIST_INIT(elem); 1482 int ret = 0; 1483 struct share_check shared = { 1484 .root_objectid = root->objectid, 1485 .inum = inum, 1486 .share_count = 0, 1487 }; 1488 1489 tmp = ulist_alloc(GFP_NOFS); 1490 roots = ulist_alloc(GFP_NOFS); 1491 if (!tmp || !roots) { 1492 ulist_free(tmp); 1493 ulist_free(roots); 1494 return -ENOMEM; 1495 } 1496 1497 trans = btrfs_join_transaction(root); 1498 if (IS_ERR(trans)) { 1499 trans = NULL; 1500 down_read(&fs_info->commit_root_sem); 1501 } else { 1502 btrfs_get_tree_mod_seq(fs_info, &elem); 1503 } 1504 1505 ULIST_ITER_INIT(&uiter); 1506 while (1) { 1507 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1508 roots, NULL, &shared, false); 1509 if (ret == BACKREF_FOUND_SHARED) { 1510 /* this is the only condition under which we return 1 */ 1511 ret = 1; 1512 break; 1513 } 1514 if (ret < 0 && ret != -ENOENT) 1515 break; 1516 ret = 0; 1517 node = ulist_next(tmp, &uiter); 1518 if (!node) 1519 break; 1520 bytenr = node->val; 1521 shared.share_count = 0; 1522 cond_resched(); 1523 } 1524 1525 if (trans) { 1526 btrfs_put_tree_mod_seq(fs_info, &elem); 1527 btrfs_end_transaction(trans); 1528 } else { 1529 up_read(&fs_info->commit_root_sem); 1530 } 1531 ulist_free(tmp); 1532 ulist_free(roots); 1533 return ret; 1534 } 1535 1536 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1537 u64 start_off, struct btrfs_path *path, 1538 struct btrfs_inode_extref **ret_extref, 1539 u64 *found_off) 1540 { 1541 int ret, slot; 1542 struct btrfs_key key; 1543 struct btrfs_key found_key; 1544 struct btrfs_inode_extref *extref; 1545 const struct extent_buffer *leaf; 1546 unsigned long ptr; 1547 1548 key.objectid = inode_objectid; 1549 key.type = BTRFS_INODE_EXTREF_KEY; 1550 key.offset = start_off; 1551 1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1553 if (ret < 0) 1554 return ret; 1555 1556 while (1) { 1557 leaf = path->nodes[0]; 1558 slot = path->slots[0]; 1559 if (slot >= btrfs_header_nritems(leaf)) { 1560 /* 1561 * If the item at offset is not found, 1562 * btrfs_search_slot will point us to the slot 1563 * where it should be inserted. In our case 1564 * that will be the slot directly before the 1565 * next INODE_REF_KEY_V2 item. In the case 1566 * that we're pointing to the last slot in a 1567 * leaf, we must move one leaf over. 1568 */ 1569 ret = btrfs_next_leaf(root, path); 1570 if (ret) { 1571 if (ret >= 1) 1572 ret = -ENOENT; 1573 break; 1574 } 1575 continue; 1576 } 1577 1578 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1579 1580 /* 1581 * Check that we're still looking at an extended ref key for 1582 * this particular objectid. If we have different 1583 * objectid or type then there are no more to be found 1584 * in the tree and we can exit. 1585 */ 1586 ret = -ENOENT; 1587 if (found_key.objectid != inode_objectid) 1588 break; 1589 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1590 break; 1591 1592 ret = 0; 1593 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1594 extref = (struct btrfs_inode_extref *)ptr; 1595 *ret_extref = extref; 1596 if (found_off) 1597 *found_off = found_key.offset; 1598 break; 1599 } 1600 1601 return ret; 1602 } 1603 1604 /* 1605 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1606 * Elements of the path are separated by '/' and the path is guaranteed to be 1607 * 0-terminated. the path is only given within the current file system. 1608 * Therefore, it never starts with a '/'. the caller is responsible to provide 1609 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1610 * the start point of the resulting string is returned. this pointer is within 1611 * dest, normally. 1612 * in case the path buffer would overflow, the pointer is decremented further 1613 * as if output was written to the buffer, though no more output is actually 1614 * generated. that way, the caller can determine how much space would be 1615 * required for the path to fit into the buffer. in that case, the returned 1616 * value will be smaller than dest. callers must check this! 1617 */ 1618 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1619 u32 name_len, unsigned long name_off, 1620 struct extent_buffer *eb_in, u64 parent, 1621 char *dest, u32 size) 1622 { 1623 int slot; 1624 u64 next_inum; 1625 int ret; 1626 s64 bytes_left = ((s64)size) - 1; 1627 struct extent_buffer *eb = eb_in; 1628 struct btrfs_key found_key; 1629 int leave_spinning = path->leave_spinning; 1630 struct btrfs_inode_ref *iref; 1631 1632 if (bytes_left >= 0) 1633 dest[bytes_left] = '\0'; 1634 1635 path->leave_spinning = 1; 1636 while (1) { 1637 bytes_left -= name_len; 1638 if (bytes_left >= 0) 1639 read_extent_buffer(eb, dest + bytes_left, 1640 name_off, name_len); 1641 if (eb != eb_in) { 1642 if (!path->skip_locking) 1643 btrfs_tree_read_unlock_blocking(eb); 1644 free_extent_buffer(eb); 1645 } 1646 ret = btrfs_find_item(fs_root, path, parent, 0, 1647 BTRFS_INODE_REF_KEY, &found_key); 1648 if (ret > 0) 1649 ret = -ENOENT; 1650 if (ret) 1651 break; 1652 1653 next_inum = found_key.offset; 1654 1655 /* regular exit ahead */ 1656 if (parent == next_inum) 1657 break; 1658 1659 slot = path->slots[0]; 1660 eb = path->nodes[0]; 1661 /* make sure we can use eb after releasing the path */ 1662 if (eb != eb_in) { 1663 if (!path->skip_locking) 1664 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1665 path->nodes[0] = NULL; 1666 path->locks[0] = 0; 1667 } 1668 btrfs_release_path(path); 1669 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1670 1671 name_len = btrfs_inode_ref_name_len(eb, iref); 1672 name_off = (unsigned long)(iref + 1); 1673 1674 parent = next_inum; 1675 --bytes_left; 1676 if (bytes_left >= 0) 1677 dest[bytes_left] = '/'; 1678 } 1679 1680 btrfs_release_path(path); 1681 path->leave_spinning = leave_spinning; 1682 1683 if (ret) 1684 return ERR_PTR(ret); 1685 1686 return dest + bytes_left; 1687 } 1688 1689 /* 1690 * this makes the path point to (logical EXTENT_ITEM *) 1691 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1692 * tree blocks and <0 on error. 1693 */ 1694 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1695 struct btrfs_path *path, struct btrfs_key *found_key, 1696 u64 *flags_ret) 1697 { 1698 int ret; 1699 u64 flags; 1700 u64 size = 0; 1701 u32 item_size; 1702 const struct extent_buffer *eb; 1703 struct btrfs_extent_item *ei; 1704 struct btrfs_key key; 1705 1706 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1707 key.type = BTRFS_METADATA_ITEM_KEY; 1708 else 1709 key.type = BTRFS_EXTENT_ITEM_KEY; 1710 key.objectid = logical; 1711 key.offset = (u64)-1; 1712 1713 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1714 if (ret < 0) 1715 return ret; 1716 1717 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1718 if (ret) { 1719 if (ret > 0) 1720 ret = -ENOENT; 1721 return ret; 1722 } 1723 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1724 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1725 size = fs_info->nodesize; 1726 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1727 size = found_key->offset; 1728 1729 if (found_key->objectid > logical || 1730 found_key->objectid + size <= logical) { 1731 btrfs_debug(fs_info, 1732 "logical %llu is not within any extent", logical); 1733 return -ENOENT; 1734 } 1735 1736 eb = path->nodes[0]; 1737 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1738 BUG_ON(item_size < sizeof(*ei)); 1739 1740 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1741 flags = btrfs_extent_flags(eb, ei); 1742 1743 btrfs_debug(fs_info, 1744 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1745 logical, logical - found_key->objectid, found_key->objectid, 1746 found_key->offset, flags, item_size); 1747 1748 WARN_ON(!flags_ret); 1749 if (flags_ret) { 1750 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1751 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1752 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1753 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1754 else 1755 BUG_ON(1); 1756 return 0; 1757 } 1758 1759 return -EIO; 1760 } 1761 1762 /* 1763 * helper function to iterate extent inline refs. ptr must point to a 0 value 1764 * for the first call and may be modified. it is used to track state. 1765 * if more refs exist, 0 is returned and the next call to 1766 * get_extent_inline_ref must pass the modified ptr parameter to get the 1767 * next ref. after the last ref was processed, 1 is returned. 1768 * returns <0 on error 1769 */ 1770 static int get_extent_inline_ref(unsigned long *ptr, 1771 const struct extent_buffer *eb, 1772 const struct btrfs_key *key, 1773 const struct btrfs_extent_item *ei, 1774 u32 item_size, 1775 struct btrfs_extent_inline_ref **out_eiref, 1776 int *out_type) 1777 { 1778 unsigned long end; 1779 u64 flags; 1780 struct btrfs_tree_block_info *info; 1781 1782 if (!*ptr) { 1783 /* first call */ 1784 flags = btrfs_extent_flags(eb, ei); 1785 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1786 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1787 /* a skinny metadata extent */ 1788 *out_eiref = 1789 (struct btrfs_extent_inline_ref *)(ei + 1); 1790 } else { 1791 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1792 info = (struct btrfs_tree_block_info *)(ei + 1); 1793 *out_eiref = 1794 (struct btrfs_extent_inline_ref *)(info + 1); 1795 } 1796 } else { 1797 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1798 } 1799 *ptr = (unsigned long)*out_eiref; 1800 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1801 return -ENOENT; 1802 } 1803 1804 end = (unsigned long)ei + item_size; 1805 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1806 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1807 BTRFS_REF_TYPE_ANY); 1808 if (*out_type == BTRFS_REF_TYPE_INVALID) 1809 return -EINVAL; 1810 1811 *ptr += btrfs_extent_inline_ref_size(*out_type); 1812 WARN_ON(*ptr > end); 1813 if (*ptr == end) 1814 return 1; /* last */ 1815 1816 return 0; 1817 } 1818 1819 /* 1820 * reads the tree block backref for an extent. tree level and root are returned 1821 * through out_level and out_root. ptr must point to a 0 value for the first 1822 * call and may be modified (see get_extent_inline_ref comment). 1823 * returns 0 if data was provided, 1 if there was no more data to provide or 1824 * <0 on error. 1825 */ 1826 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1827 struct btrfs_key *key, struct btrfs_extent_item *ei, 1828 u32 item_size, u64 *out_root, u8 *out_level) 1829 { 1830 int ret; 1831 int type; 1832 struct btrfs_extent_inline_ref *eiref; 1833 1834 if (*ptr == (unsigned long)-1) 1835 return 1; 1836 1837 while (1) { 1838 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1839 &eiref, &type); 1840 if (ret < 0) 1841 return ret; 1842 1843 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1844 type == BTRFS_SHARED_BLOCK_REF_KEY) 1845 break; 1846 1847 if (ret == 1) 1848 return 1; 1849 } 1850 1851 /* we can treat both ref types equally here */ 1852 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1853 1854 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1855 struct btrfs_tree_block_info *info; 1856 1857 info = (struct btrfs_tree_block_info *)(ei + 1); 1858 *out_level = btrfs_tree_block_level(eb, info); 1859 } else { 1860 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1861 *out_level = (u8)key->offset; 1862 } 1863 1864 if (ret == 1) 1865 *ptr = (unsigned long)-1; 1866 1867 return 0; 1868 } 1869 1870 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1871 struct extent_inode_elem *inode_list, 1872 u64 root, u64 extent_item_objectid, 1873 iterate_extent_inodes_t *iterate, void *ctx) 1874 { 1875 struct extent_inode_elem *eie; 1876 int ret = 0; 1877 1878 for (eie = inode_list; eie; eie = eie->next) { 1879 btrfs_debug(fs_info, 1880 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1881 extent_item_objectid, eie->inum, 1882 eie->offset, root); 1883 ret = iterate(eie->inum, eie->offset, root, ctx); 1884 if (ret) { 1885 btrfs_debug(fs_info, 1886 "stopping iteration for %llu due to ret=%d", 1887 extent_item_objectid, ret); 1888 break; 1889 } 1890 } 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * calls iterate() for every inode that references the extent identified by 1897 * the given parameters. 1898 * when the iterator function returns a non-zero value, iteration stops. 1899 */ 1900 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1901 u64 extent_item_objectid, u64 extent_item_pos, 1902 int search_commit_root, 1903 iterate_extent_inodes_t *iterate, void *ctx, 1904 bool ignore_offset) 1905 { 1906 int ret; 1907 struct btrfs_trans_handle *trans = NULL; 1908 struct ulist *refs = NULL; 1909 struct ulist *roots = NULL; 1910 struct ulist_node *ref_node = NULL; 1911 struct ulist_node *root_node = NULL; 1912 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1913 struct ulist_iterator ref_uiter; 1914 struct ulist_iterator root_uiter; 1915 1916 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1917 extent_item_objectid); 1918 1919 if (!search_commit_root) { 1920 trans = btrfs_join_transaction(fs_info->extent_root); 1921 if (IS_ERR(trans)) 1922 return PTR_ERR(trans); 1923 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1924 } else { 1925 down_read(&fs_info->commit_root_sem); 1926 } 1927 1928 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1929 tree_mod_seq_elem.seq, &refs, 1930 &extent_item_pos, ignore_offset); 1931 if (ret) 1932 goto out; 1933 1934 ULIST_ITER_INIT(&ref_uiter); 1935 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1936 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1937 tree_mod_seq_elem.seq, &roots, 1938 ignore_offset); 1939 if (ret) 1940 break; 1941 ULIST_ITER_INIT(&root_uiter); 1942 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1943 btrfs_debug(fs_info, 1944 "root %llu references leaf %llu, data list %#llx", 1945 root_node->val, ref_node->val, 1946 ref_node->aux); 1947 ret = iterate_leaf_refs(fs_info, 1948 (struct extent_inode_elem *) 1949 (uintptr_t)ref_node->aux, 1950 root_node->val, 1951 extent_item_objectid, 1952 iterate, ctx); 1953 } 1954 ulist_free(roots); 1955 } 1956 1957 free_leaf_list(refs); 1958 out: 1959 if (!search_commit_root) { 1960 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1961 btrfs_end_transaction(trans); 1962 } else { 1963 up_read(&fs_info->commit_root_sem); 1964 } 1965 1966 return ret; 1967 } 1968 1969 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1970 struct btrfs_path *path, 1971 iterate_extent_inodes_t *iterate, void *ctx, 1972 bool ignore_offset) 1973 { 1974 int ret; 1975 u64 extent_item_pos; 1976 u64 flags = 0; 1977 struct btrfs_key found_key; 1978 int search_commit_root = path->search_commit_root; 1979 1980 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1981 btrfs_release_path(path); 1982 if (ret < 0) 1983 return ret; 1984 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1985 return -EINVAL; 1986 1987 extent_item_pos = logical - found_key.objectid; 1988 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1989 extent_item_pos, search_commit_root, 1990 iterate, ctx, ignore_offset); 1991 1992 return ret; 1993 } 1994 1995 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1996 struct extent_buffer *eb, void *ctx); 1997 1998 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1999 struct btrfs_path *path, 2000 iterate_irefs_t *iterate, void *ctx) 2001 { 2002 int ret = 0; 2003 int slot; 2004 u32 cur; 2005 u32 len; 2006 u32 name_len; 2007 u64 parent = 0; 2008 int found = 0; 2009 struct extent_buffer *eb; 2010 struct btrfs_item *item; 2011 struct btrfs_inode_ref *iref; 2012 struct btrfs_key found_key; 2013 2014 while (!ret) { 2015 ret = btrfs_find_item(fs_root, path, inum, 2016 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2017 &found_key); 2018 2019 if (ret < 0) 2020 break; 2021 if (ret) { 2022 ret = found ? 0 : -ENOENT; 2023 break; 2024 } 2025 ++found; 2026 2027 parent = found_key.offset; 2028 slot = path->slots[0]; 2029 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2030 if (!eb) { 2031 ret = -ENOMEM; 2032 break; 2033 } 2034 extent_buffer_get(eb); 2035 btrfs_tree_read_lock(eb); 2036 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2037 btrfs_release_path(path); 2038 2039 item = btrfs_item_nr(slot); 2040 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2041 2042 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2043 name_len = btrfs_inode_ref_name_len(eb, iref); 2044 /* path must be released before calling iterate()! */ 2045 btrfs_debug(fs_root->fs_info, 2046 "following ref at offset %u for inode %llu in tree %llu", 2047 cur, found_key.objectid, fs_root->objectid); 2048 ret = iterate(parent, name_len, 2049 (unsigned long)(iref + 1), eb, ctx); 2050 if (ret) 2051 break; 2052 len = sizeof(*iref) + name_len; 2053 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2054 } 2055 btrfs_tree_read_unlock_blocking(eb); 2056 free_extent_buffer(eb); 2057 } 2058 2059 btrfs_release_path(path); 2060 2061 return ret; 2062 } 2063 2064 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2065 struct btrfs_path *path, 2066 iterate_irefs_t *iterate, void *ctx) 2067 { 2068 int ret; 2069 int slot; 2070 u64 offset = 0; 2071 u64 parent; 2072 int found = 0; 2073 struct extent_buffer *eb; 2074 struct btrfs_inode_extref *extref; 2075 u32 item_size; 2076 u32 cur_offset; 2077 unsigned long ptr; 2078 2079 while (1) { 2080 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2081 &offset); 2082 if (ret < 0) 2083 break; 2084 if (ret) { 2085 ret = found ? 0 : -ENOENT; 2086 break; 2087 } 2088 ++found; 2089 2090 slot = path->slots[0]; 2091 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2092 if (!eb) { 2093 ret = -ENOMEM; 2094 break; 2095 } 2096 extent_buffer_get(eb); 2097 2098 btrfs_tree_read_lock(eb); 2099 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2100 btrfs_release_path(path); 2101 2102 item_size = btrfs_item_size_nr(eb, slot); 2103 ptr = btrfs_item_ptr_offset(eb, slot); 2104 cur_offset = 0; 2105 2106 while (cur_offset < item_size) { 2107 u32 name_len; 2108 2109 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2110 parent = btrfs_inode_extref_parent(eb, extref); 2111 name_len = btrfs_inode_extref_name_len(eb, extref); 2112 ret = iterate(parent, name_len, 2113 (unsigned long)&extref->name, eb, ctx); 2114 if (ret) 2115 break; 2116 2117 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2118 cur_offset += sizeof(*extref); 2119 } 2120 btrfs_tree_read_unlock_blocking(eb); 2121 free_extent_buffer(eb); 2122 2123 offset++; 2124 } 2125 2126 btrfs_release_path(path); 2127 2128 return ret; 2129 } 2130 2131 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2132 struct btrfs_path *path, iterate_irefs_t *iterate, 2133 void *ctx) 2134 { 2135 int ret; 2136 int found_refs = 0; 2137 2138 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2139 if (!ret) 2140 ++found_refs; 2141 else if (ret != -ENOENT) 2142 return ret; 2143 2144 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2145 if (ret == -ENOENT && found_refs) 2146 return 0; 2147 2148 return ret; 2149 } 2150 2151 /* 2152 * returns 0 if the path could be dumped (probably truncated) 2153 * returns <0 in case of an error 2154 */ 2155 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2156 struct extent_buffer *eb, void *ctx) 2157 { 2158 struct inode_fs_paths *ipath = ctx; 2159 char *fspath; 2160 char *fspath_min; 2161 int i = ipath->fspath->elem_cnt; 2162 const int s_ptr = sizeof(char *); 2163 u32 bytes_left; 2164 2165 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2166 ipath->fspath->bytes_left - s_ptr : 0; 2167 2168 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2169 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2170 name_off, eb, inum, fspath_min, bytes_left); 2171 if (IS_ERR(fspath)) 2172 return PTR_ERR(fspath); 2173 2174 if (fspath > fspath_min) { 2175 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2176 ++ipath->fspath->elem_cnt; 2177 ipath->fspath->bytes_left = fspath - fspath_min; 2178 } else { 2179 ++ipath->fspath->elem_missed; 2180 ipath->fspath->bytes_missing += fspath_min - fspath; 2181 ipath->fspath->bytes_left = 0; 2182 } 2183 2184 return 0; 2185 } 2186 2187 /* 2188 * this dumps all file system paths to the inode into the ipath struct, provided 2189 * is has been created large enough. each path is zero-terminated and accessed 2190 * from ipath->fspath->val[i]. 2191 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2192 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2193 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2194 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2195 * have been needed to return all paths. 2196 */ 2197 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2198 { 2199 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2200 inode_to_path, ipath); 2201 } 2202 2203 struct btrfs_data_container *init_data_container(u32 total_bytes) 2204 { 2205 struct btrfs_data_container *data; 2206 size_t alloc_bytes; 2207 2208 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2209 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2210 if (!data) 2211 return ERR_PTR(-ENOMEM); 2212 2213 if (total_bytes >= sizeof(*data)) { 2214 data->bytes_left = total_bytes - sizeof(*data); 2215 data->bytes_missing = 0; 2216 } else { 2217 data->bytes_missing = sizeof(*data) - total_bytes; 2218 data->bytes_left = 0; 2219 } 2220 2221 data->elem_cnt = 0; 2222 data->elem_missed = 0; 2223 2224 return data; 2225 } 2226 2227 /* 2228 * allocates space to return multiple file system paths for an inode. 2229 * total_bytes to allocate are passed, note that space usable for actual path 2230 * information will be total_bytes - sizeof(struct inode_fs_paths). 2231 * the returned pointer must be freed with free_ipath() in the end. 2232 */ 2233 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2234 struct btrfs_path *path) 2235 { 2236 struct inode_fs_paths *ifp; 2237 struct btrfs_data_container *fspath; 2238 2239 fspath = init_data_container(total_bytes); 2240 if (IS_ERR(fspath)) 2241 return (void *)fspath; 2242 2243 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2244 if (!ifp) { 2245 kvfree(fspath); 2246 return ERR_PTR(-ENOMEM); 2247 } 2248 2249 ifp->btrfs_path = path; 2250 ifp->fspath = fspath; 2251 ifp->fs_root = fs_root; 2252 2253 return ifp; 2254 } 2255 2256 void free_ipath(struct inode_fs_paths *ipath) 2257 { 2258 if (!ipath) 2259 return; 2260 kvfree(ipath->fspath); 2261 kfree(ipath); 2262 } 2263