1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include <linux/rbtree.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "backref.h" 24 #include "ulist.h" 25 #include "transaction.h" 26 #include "delayed-ref.h" 27 #include "locking.h" 28 29 /* Just an arbitrary number so we can be sure this happened */ 30 #define BACKREF_FOUND_SHARED 6 31 32 struct extent_inode_elem { 33 u64 inum; 34 u64 offset; 35 struct extent_inode_elem *next; 36 }; 37 38 /* 39 * ref_root is used as the root of the ref tree that hold a collection 40 * of unique references. 41 */ 42 struct ref_root { 43 struct rb_root rb_root; 44 45 /* 46 * The unique_refs represents the number of ref_nodes with a positive 47 * count stored in the tree. Even if a ref_node (the count is greater 48 * than one) is added, the unique_refs will only increase by one. 49 */ 50 unsigned int unique_refs; 51 }; 52 53 /* ref_node is used to store a unique reference to the ref tree. */ 54 struct ref_node { 55 struct rb_node rb_node; 56 57 /* For NORMAL_REF, otherwise all these fields should be set to 0 */ 58 u64 root_id; 59 u64 object_id; 60 u64 offset; 61 62 /* For SHARED_REF, otherwise parent field should be set to 0 */ 63 u64 parent; 64 65 /* Ref to the ref_mod of btrfs_delayed_ref_node */ 66 int ref_mod; 67 }; 68 69 /* Dynamically allocate and initialize a ref_root */ 70 static struct ref_root *ref_root_alloc(void) 71 { 72 struct ref_root *ref_tree; 73 74 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS); 75 if (!ref_tree) 76 return NULL; 77 78 ref_tree->rb_root = RB_ROOT; 79 ref_tree->unique_refs = 0; 80 81 return ref_tree; 82 } 83 84 /* Free all nodes in the ref tree, and reinit ref_root */ 85 static void ref_root_fini(struct ref_root *ref_tree) 86 { 87 struct ref_node *node; 88 struct rb_node *next; 89 90 while ((next = rb_first(&ref_tree->rb_root)) != NULL) { 91 node = rb_entry(next, struct ref_node, rb_node); 92 rb_erase(next, &ref_tree->rb_root); 93 kfree(node); 94 } 95 96 ref_tree->rb_root = RB_ROOT; 97 ref_tree->unique_refs = 0; 98 } 99 100 static void ref_root_free(struct ref_root *ref_tree) 101 { 102 if (!ref_tree) 103 return; 104 105 ref_root_fini(ref_tree); 106 kfree(ref_tree); 107 } 108 109 /* 110 * Compare ref_node with (root_id, object_id, offset, parent) 111 * 112 * The function compares two ref_node a and b. It returns an integer less 113 * than, equal to, or greater than zero , respectively, to be less than, to 114 * equal, or be greater than b. 115 */ 116 static int ref_node_cmp(struct ref_node *a, struct ref_node *b) 117 { 118 if (a->root_id < b->root_id) 119 return -1; 120 else if (a->root_id > b->root_id) 121 return 1; 122 123 if (a->object_id < b->object_id) 124 return -1; 125 else if (a->object_id > b->object_id) 126 return 1; 127 128 if (a->offset < b->offset) 129 return -1; 130 else if (a->offset > b->offset) 131 return 1; 132 133 if (a->parent < b->parent) 134 return -1; 135 else if (a->parent > b->parent) 136 return 1; 137 138 return 0; 139 } 140 141 /* 142 * Search ref_node with (root_id, object_id, offset, parent) in the tree 143 * 144 * if found, the pointer of the ref_node will be returned; 145 * if not found, NULL will be returned and pos will point to the rb_node for 146 * insert, pos_parent will point to pos'parent for insert; 147 */ 148 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree, 149 struct rb_node ***pos, 150 struct rb_node **pos_parent, 151 u64 root_id, u64 object_id, 152 u64 offset, u64 parent) 153 { 154 struct ref_node *cur = NULL; 155 struct ref_node entry; 156 int ret; 157 158 entry.root_id = root_id; 159 entry.object_id = object_id; 160 entry.offset = offset; 161 entry.parent = parent; 162 163 *pos = &ref_tree->rb_root.rb_node; 164 165 while (**pos) { 166 *pos_parent = **pos; 167 cur = rb_entry(*pos_parent, struct ref_node, rb_node); 168 169 ret = ref_node_cmp(cur, &entry); 170 if (ret > 0) 171 *pos = &(**pos)->rb_left; 172 else if (ret < 0) 173 *pos = &(**pos)->rb_right; 174 else 175 return cur; 176 } 177 178 return NULL; 179 } 180 181 /* 182 * Insert a ref_node to the ref tree 183 * @pos used for specifiy the position to insert 184 * @pos_parent for specifiy pos's parent 185 * 186 * success, return 0; 187 * ref_node already exists, return -EEXIST; 188 */ 189 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos, 190 struct rb_node *pos_parent, struct ref_node *ins) 191 { 192 struct rb_node **p = NULL; 193 struct rb_node *parent = NULL; 194 struct ref_node *cur = NULL; 195 196 if (!pos) { 197 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id, 198 ins->object_id, ins->offset, 199 ins->parent); 200 if (cur) 201 return -EEXIST; 202 } else { 203 p = pos; 204 parent = pos_parent; 205 } 206 207 rb_link_node(&ins->rb_node, parent, p); 208 rb_insert_color(&ins->rb_node, &ref_tree->rb_root); 209 210 return 0; 211 } 212 213 /* Erase and free ref_node, caller should update ref_root->unique_refs */ 214 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node) 215 { 216 rb_erase(&node->rb_node, &ref_tree->rb_root); 217 kfree(node); 218 } 219 220 /* 221 * Update ref_root->unique_refs 222 * 223 * Call __ref_tree_search 224 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update 225 * ref_root->unique_refs: 226 * if ref_node->ref_mod > 0, ref_root->unique_refs++; 227 * if ref_node->ref_mod < 0, do noting; 228 * 229 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update 230 * ref_node->ref_mod. 231 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove 232 * 233 * according to origin_mod and new_mod, update ref_root->items 234 * +----------------+--------------+-------------+ 235 * | |new_count <= 0|new_count > 0| 236 * +----------------+--------------+-------------+ 237 * |origin_count < 0| 0 | 1 | 238 * +----------------+--------------+-------------+ 239 * |origin_count > 0| -1 | 0 | 240 * +----------------+--------------+-------------+ 241 * 242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays 243 * unaltered. 244 * Success, return 0 245 */ 246 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id, 247 u64 offset, u64 parent, int count) 248 { 249 struct ref_node *node = NULL; 250 struct rb_node **pos = NULL; 251 struct rb_node *pos_parent = NULL; 252 int origin_count; 253 int ret; 254 255 if (!count) 256 return 0; 257 258 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id, 259 object_id, offset, parent); 260 if (node == NULL) { 261 node = kmalloc(sizeof(*node), GFP_NOFS); 262 if (!node) 263 return -ENOMEM; 264 265 node->root_id = root_id; 266 node->object_id = object_id; 267 node->offset = offset; 268 node->parent = parent; 269 node->ref_mod = count; 270 271 ret = ref_tree_insert(ref_tree, pos, pos_parent, node); 272 ASSERT(!ret); 273 if (ret) { 274 kfree(node); 275 return ret; 276 } 277 278 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0; 279 280 return 0; 281 } 282 283 origin_count = node->ref_mod; 284 node->ref_mod += count; 285 286 if (node->ref_mod > 0) 287 ref_tree->unique_refs += origin_count > 0 ? 0 : 1; 288 else if (node->ref_mod <= 0) 289 ref_tree->unique_refs += origin_count > 0 ? -1 : 0; 290 291 if (!node->ref_mod) 292 ref_tree_remove(ref_tree, node); 293 294 return 0; 295 } 296 297 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 298 struct btrfs_file_extent_item *fi, 299 u64 extent_item_pos, 300 struct extent_inode_elem **eie) 301 { 302 u64 offset = 0; 303 struct extent_inode_elem *e; 304 305 if (!btrfs_file_extent_compression(eb, fi) && 306 !btrfs_file_extent_encryption(eb, fi) && 307 !btrfs_file_extent_other_encoding(eb, fi)) { 308 u64 data_offset; 309 u64 data_len; 310 311 data_offset = btrfs_file_extent_offset(eb, fi); 312 data_len = btrfs_file_extent_num_bytes(eb, fi); 313 314 if (extent_item_pos < data_offset || 315 extent_item_pos >= data_offset + data_len) 316 return 1; 317 offset = extent_item_pos - data_offset; 318 } 319 320 e = kmalloc(sizeof(*e), GFP_NOFS); 321 if (!e) 322 return -ENOMEM; 323 324 e->next = *eie; 325 e->inum = key->objectid; 326 e->offset = key->offset + offset; 327 *eie = e; 328 329 return 0; 330 } 331 332 static void free_inode_elem_list(struct extent_inode_elem *eie) 333 { 334 struct extent_inode_elem *eie_next; 335 336 for (; eie; eie = eie_next) { 337 eie_next = eie->next; 338 kfree(eie); 339 } 340 } 341 342 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 343 u64 extent_item_pos, 344 struct extent_inode_elem **eie) 345 { 346 u64 disk_byte; 347 struct btrfs_key key; 348 struct btrfs_file_extent_item *fi; 349 int slot; 350 int nritems; 351 int extent_type; 352 int ret; 353 354 /* 355 * from the shared data ref, we only have the leaf but we need 356 * the key. thus, we must look into all items and see that we 357 * find one (some) with a reference to our extent item. 358 */ 359 nritems = btrfs_header_nritems(eb); 360 for (slot = 0; slot < nritems; ++slot) { 361 btrfs_item_key_to_cpu(eb, &key, slot); 362 if (key.type != BTRFS_EXTENT_DATA_KEY) 363 continue; 364 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 365 extent_type = btrfs_file_extent_type(eb, fi); 366 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 367 continue; 368 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 370 if (disk_byte != wanted_disk_byte) 371 continue; 372 373 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 374 if (ret < 0) 375 return ret; 376 } 377 378 return 0; 379 } 380 381 /* 382 * this structure records all encountered refs on the way up to the root 383 */ 384 struct __prelim_ref { 385 struct list_head list; 386 u64 root_id; 387 struct btrfs_key key_for_search; 388 int level; 389 int count; 390 struct extent_inode_elem *inode_list; 391 u64 parent; 392 u64 wanted_disk_byte; 393 }; 394 395 static struct kmem_cache *btrfs_prelim_ref_cache; 396 397 int __init btrfs_prelim_ref_init(void) 398 { 399 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 400 sizeof(struct __prelim_ref), 401 0, 402 SLAB_MEM_SPREAD, 403 NULL); 404 if (!btrfs_prelim_ref_cache) 405 return -ENOMEM; 406 return 0; 407 } 408 409 void btrfs_prelim_ref_exit(void) 410 { 411 kmem_cache_destroy(btrfs_prelim_ref_cache); 412 } 413 414 /* 415 * the rules for all callers of this function are: 416 * - obtaining the parent is the goal 417 * - if you add a key, you must know that it is a correct key 418 * - if you cannot add the parent or a correct key, then we will look into the 419 * block later to set a correct key 420 * 421 * delayed refs 422 * ============ 423 * backref type | shared | indirect | shared | indirect 424 * information | tree | tree | data | data 425 * --------------------+--------+----------+--------+---------- 426 * parent logical | y | - | - | - 427 * key to resolve | - | y | y | y 428 * tree block logical | - | - | - | - 429 * root for resolving | y | y | y | y 430 * 431 * - column 1: we've the parent -> done 432 * - column 2, 3, 4: we use the key to find the parent 433 * 434 * on disk refs (inline or keyed) 435 * ============================== 436 * backref type | shared | indirect | shared | indirect 437 * information | tree | tree | data | data 438 * --------------------+--------+----------+--------+---------- 439 * parent logical | y | - | y | - 440 * key to resolve | - | - | - | y 441 * tree block logical | y | y | y | y 442 * root for resolving | - | y | y | y 443 * 444 * - column 1, 3: we've the parent -> done 445 * - column 2: we take the first key from the block to find the parent 446 * (see __add_missing_keys) 447 * - column 4: we use the key to find the parent 448 * 449 * additional information that's available but not required to find the parent 450 * block might help in merging entries to gain some speed. 451 */ 452 453 static int __add_prelim_ref(struct list_head *head, u64 root_id, 454 struct btrfs_key *key, int level, 455 u64 parent, u64 wanted_disk_byte, int count, 456 gfp_t gfp_mask) 457 { 458 struct __prelim_ref *ref; 459 460 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 461 return 0; 462 463 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 464 if (!ref) 465 return -ENOMEM; 466 467 ref->root_id = root_id; 468 if (key) { 469 ref->key_for_search = *key; 470 /* 471 * We can often find data backrefs with an offset that is too 472 * large (>= LLONG_MAX, maximum allowed file offset) due to 473 * underflows when subtracting a file's offset with the data 474 * offset of its corresponding extent data item. This can 475 * happen for example in the clone ioctl. 476 * So if we detect such case we set the search key's offset to 477 * zero to make sure we will find the matching file extent item 478 * at add_all_parents(), otherwise we will miss it because the 479 * offset taken form the backref is much larger then the offset 480 * of the file extent item. This can make us scan a very large 481 * number of file extent items, but at least it will not make 482 * us miss any. 483 * This is an ugly workaround for a behaviour that should have 484 * never existed, but it does and a fix for the clone ioctl 485 * would touch a lot of places, cause backwards incompatibility 486 * and would not fix the problem for extents cloned with older 487 * kernels. 488 */ 489 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 490 ref->key_for_search.offset >= LLONG_MAX) 491 ref->key_for_search.offset = 0; 492 } else { 493 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 494 } 495 496 ref->inode_list = NULL; 497 ref->level = level; 498 ref->count = count; 499 ref->parent = parent; 500 ref->wanted_disk_byte = wanted_disk_byte; 501 list_add_tail(&ref->list, head); 502 503 return 0; 504 } 505 506 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 507 struct ulist *parents, struct __prelim_ref *ref, 508 int level, u64 time_seq, const u64 *extent_item_pos, 509 u64 total_refs) 510 { 511 int ret = 0; 512 int slot; 513 struct extent_buffer *eb; 514 struct btrfs_key key; 515 struct btrfs_key *key_for_search = &ref->key_for_search; 516 struct btrfs_file_extent_item *fi; 517 struct extent_inode_elem *eie = NULL, *old = NULL; 518 u64 disk_byte; 519 u64 wanted_disk_byte = ref->wanted_disk_byte; 520 u64 count = 0; 521 522 if (level != 0) { 523 eb = path->nodes[level]; 524 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 525 if (ret < 0) 526 return ret; 527 return 0; 528 } 529 530 /* 531 * We normally enter this function with the path already pointing to 532 * the first item to check. But sometimes, we may enter it with 533 * slot==nritems. In that case, go to the next leaf before we continue. 534 */ 535 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 536 if (time_seq == (u64)-1) 537 ret = btrfs_next_leaf(root, path); 538 else 539 ret = btrfs_next_old_leaf(root, path, time_seq); 540 } 541 542 while (!ret && count < total_refs) { 543 eb = path->nodes[0]; 544 slot = path->slots[0]; 545 546 btrfs_item_key_to_cpu(eb, &key, slot); 547 548 if (key.objectid != key_for_search->objectid || 549 key.type != BTRFS_EXTENT_DATA_KEY) 550 break; 551 552 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 553 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 554 555 if (disk_byte == wanted_disk_byte) { 556 eie = NULL; 557 old = NULL; 558 count++; 559 if (extent_item_pos) { 560 ret = check_extent_in_eb(&key, eb, fi, 561 *extent_item_pos, 562 &eie); 563 if (ret < 0) 564 break; 565 } 566 if (ret > 0) 567 goto next; 568 ret = ulist_add_merge_ptr(parents, eb->start, 569 eie, (void **)&old, GFP_NOFS); 570 if (ret < 0) 571 break; 572 if (!ret && extent_item_pos) { 573 while (old->next) 574 old = old->next; 575 old->next = eie; 576 } 577 eie = NULL; 578 } 579 next: 580 if (time_seq == (u64)-1) 581 ret = btrfs_next_item(root, path); 582 else 583 ret = btrfs_next_old_item(root, path, time_seq); 584 } 585 586 if (ret > 0) 587 ret = 0; 588 else if (ret < 0) 589 free_inode_elem_list(eie); 590 return ret; 591 } 592 593 /* 594 * resolve an indirect backref in the form (root_id, key, level) 595 * to a logical address 596 */ 597 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 598 struct btrfs_path *path, u64 time_seq, 599 struct __prelim_ref *ref, 600 struct ulist *parents, 601 const u64 *extent_item_pos, u64 total_refs) 602 { 603 struct btrfs_root *root; 604 struct btrfs_key root_key; 605 struct extent_buffer *eb; 606 int ret = 0; 607 int root_level; 608 int level = ref->level; 609 int index; 610 611 root_key.objectid = ref->root_id; 612 root_key.type = BTRFS_ROOT_ITEM_KEY; 613 root_key.offset = (u64)-1; 614 615 index = srcu_read_lock(&fs_info->subvol_srcu); 616 617 root = btrfs_get_fs_root(fs_info, &root_key, false); 618 if (IS_ERR(root)) { 619 srcu_read_unlock(&fs_info->subvol_srcu, index); 620 ret = PTR_ERR(root); 621 goto out; 622 } 623 624 if (btrfs_is_testing(fs_info)) { 625 srcu_read_unlock(&fs_info->subvol_srcu, index); 626 ret = -ENOENT; 627 goto out; 628 } 629 630 if (path->search_commit_root) 631 root_level = btrfs_header_level(root->commit_root); 632 else if (time_seq == (u64)-1) 633 root_level = btrfs_header_level(root->node); 634 else 635 root_level = btrfs_old_root_level(root, time_seq); 636 637 if (root_level + 1 == level) { 638 srcu_read_unlock(&fs_info->subvol_srcu, index); 639 goto out; 640 } 641 642 path->lowest_level = level; 643 if (time_seq == (u64)-1) 644 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 645 0, 0); 646 else 647 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 648 time_seq); 649 650 /* root node has been locked, we can release @subvol_srcu safely here */ 651 srcu_read_unlock(&fs_info->subvol_srcu, index); 652 653 btrfs_debug(fs_info, 654 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 655 ref->root_id, level, ref->count, ret, 656 ref->key_for_search.objectid, ref->key_for_search.type, 657 ref->key_for_search.offset); 658 if (ret < 0) 659 goto out; 660 661 eb = path->nodes[level]; 662 while (!eb) { 663 if (WARN_ON(!level)) { 664 ret = 1; 665 goto out; 666 } 667 level--; 668 eb = path->nodes[level]; 669 } 670 671 ret = add_all_parents(root, path, parents, ref, level, time_seq, 672 extent_item_pos, total_refs); 673 out: 674 path->lowest_level = 0; 675 btrfs_release_path(path); 676 return ret; 677 } 678 679 /* 680 * resolve all indirect backrefs from the list 681 */ 682 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 683 struct btrfs_path *path, u64 time_seq, 684 struct list_head *head, 685 const u64 *extent_item_pos, u64 total_refs, 686 u64 root_objectid) 687 { 688 int err; 689 int ret = 0; 690 struct __prelim_ref *ref; 691 struct __prelim_ref *ref_safe; 692 struct __prelim_ref *new_ref; 693 struct ulist *parents; 694 struct ulist_node *node; 695 struct ulist_iterator uiter; 696 697 parents = ulist_alloc(GFP_NOFS); 698 if (!parents) 699 return -ENOMEM; 700 701 /* 702 * _safe allows us to insert directly after the current item without 703 * iterating over the newly inserted items. 704 * we're also allowed to re-assign ref during iteration. 705 */ 706 list_for_each_entry_safe(ref, ref_safe, head, list) { 707 if (ref->parent) /* already direct */ 708 continue; 709 if (ref->count == 0) 710 continue; 711 if (root_objectid && ref->root_id != root_objectid) { 712 ret = BACKREF_FOUND_SHARED; 713 goto out; 714 } 715 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 716 parents, extent_item_pos, 717 total_refs); 718 /* 719 * we can only tolerate ENOENT,otherwise,we should catch error 720 * and return directly. 721 */ 722 if (err == -ENOENT) { 723 continue; 724 } else if (err) { 725 ret = err; 726 goto out; 727 } 728 729 /* we put the first parent into the ref at hand */ 730 ULIST_ITER_INIT(&uiter); 731 node = ulist_next(parents, &uiter); 732 ref->parent = node ? node->val : 0; 733 ref->inode_list = node ? 734 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 735 736 /* additional parents require new refs being added here */ 737 while ((node = ulist_next(parents, &uiter))) { 738 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 739 GFP_NOFS); 740 if (!new_ref) { 741 ret = -ENOMEM; 742 goto out; 743 } 744 memcpy(new_ref, ref, sizeof(*ref)); 745 new_ref->parent = node->val; 746 new_ref->inode_list = (struct extent_inode_elem *) 747 (uintptr_t)node->aux; 748 list_add(&new_ref->list, &ref->list); 749 } 750 ulist_reinit(parents); 751 } 752 out: 753 ulist_free(parents); 754 return ret; 755 } 756 757 static inline int ref_for_same_block(struct __prelim_ref *ref1, 758 struct __prelim_ref *ref2) 759 { 760 if (ref1->level != ref2->level) 761 return 0; 762 if (ref1->root_id != ref2->root_id) 763 return 0; 764 if (ref1->key_for_search.type != ref2->key_for_search.type) 765 return 0; 766 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 767 return 0; 768 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 769 return 0; 770 if (ref1->parent != ref2->parent) 771 return 0; 772 773 return 1; 774 } 775 776 /* 777 * read tree blocks and add keys where required. 778 */ 779 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 780 struct list_head *head) 781 { 782 struct __prelim_ref *ref; 783 struct extent_buffer *eb; 784 785 list_for_each_entry(ref, head, list) { 786 if (ref->parent) 787 continue; 788 if (ref->key_for_search.type) 789 continue; 790 BUG_ON(!ref->wanted_disk_byte); 791 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0); 792 if (IS_ERR(eb)) { 793 return PTR_ERR(eb); 794 } else if (!extent_buffer_uptodate(eb)) { 795 free_extent_buffer(eb); 796 return -EIO; 797 } 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 btrfs_tree_read_unlock(eb); 804 free_extent_buffer(eb); 805 } 806 return 0; 807 } 808 809 /* 810 * merge backrefs and adjust counts accordingly 811 * 812 * mode = 1: merge identical keys, if key is set 813 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 814 * additionally, we could even add a key range for the blocks we 815 * looked into to merge even more (-> replace unresolved refs by those 816 * having a parent). 817 * mode = 2: merge identical parents 818 */ 819 static void __merge_refs(struct list_head *head, int mode) 820 { 821 struct __prelim_ref *pos1; 822 823 list_for_each_entry(pos1, head, list) { 824 struct __prelim_ref *pos2 = pos1, *tmp; 825 826 list_for_each_entry_safe_continue(pos2, tmp, head, list) { 827 struct __prelim_ref *ref1 = pos1, *ref2 = pos2; 828 struct extent_inode_elem *eie; 829 830 if (!ref_for_same_block(ref1, ref2)) 831 continue; 832 if (mode == 1) { 833 if (!ref1->parent && ref2->parent) 834 swap(ref1, ref2); 835 } else { 836 if (ref1->parent != ref2->parent) 837 continue; 838 } 839 840 eie = ref1->inode_list; 841 while (eie && eie->next) 842 eie = eie->next; 843 if (eie) 844 eie->next = ref2->inode_list; 845 else 846 ref1->inode_list = ref2->inode_list; 847 ref1->count += ref2->count; 848 849 list_del(&ref2->list); 850 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 851 cond_resched(); 852 } 853 854 } 855 } 856 857 /* 858 * add all currently queued delayed refs from this head whose seq nr is 859 * smaller or equal that seq to the list 860 */ 861 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 862 struct list_head *prefs, u64 *total_refs, 863 u64 inum) 864 { 865 struct btrfs_delayed_ref_node *node; 866 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 867 struct btrfs_key key; 868 struct btrfs_key op_key = {0}; 869 int sgn; 870 int ret = 0; 871 872 if (extent_op && extent_op->update_key) 873 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 874 875 spin_lock(&head->lock); 876 list_for_each_entry(node, &head->ref_list, list) { 877 if (node->seq > seq) 878 continue; 879 880 switch (node->action) { 881 case BTRFS_ADD_DELAYED_EXTENT: 882 case BTRFS_UPDATE_DELAYED_HEAD: 883 WARN_ON(1); 884 continue; 885 case BTRFS_ADD_DELAYED_REF: 886 sgn = 1; 887 break; 888 case BTRFS_DROP_DELAYED_REF: 889 sgn = -1; 890 break; 891 default: 892 BUG_ON(1); 893 } 894 *total_refs += (node->ref_mod * sgn); 895 switch (node->type) { 896 case BTRFS_TREE_BLOCK_REF_KEY: { 897 struct btrfs_delayed_tree_ref *ref; 898 899 ref = btrfs_delayed_node_to_tree_ref(node); 900 ret = __add_prelim_ref(prefs, ref->root, &op_key, 901 ref->level + 1, 0, node->bytenr, 902 node->ref_mod * sgn, GFP_ATOMIC); 903 break; 904 } 905 case BTRFS_SHARED_BLOCK_REF_KEY: { 906 struct btrfs_delayed_tree_ref *ref; 907 908 ref = btrfs_delayed_node_to_tree_ref(node); 909 ret = __add_prelim_ref(prefs, 0, NULL, 910 ref->level + 1, ref->parent, 911 node->bytenr, 912 node->ref_mod * sgn, GFP_ATOMIC); 913 break; 914 } 915 case BTRFS_EXTENT_DATA_REF_KEY: { 916 struct btrfs_delayed_data_ref *ref; 917 ref = btrfs_delayed_node_to_data_ref(node); 918 919 key.objectid = ref->objectid; 920 key.type = BTRFS_EXTENT_DATA_KEY; 921 key.offset = ref->offset; 922 923 /* 924 * Found a inum that doesn't match our known inum, we 925 * know it's shared. 926 */ 927 if (inum && ref->objectid != inum) { 928 ret = BACKREF_FOUND_SHARED; 929 break; 930 } 931 932 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 933 node->bytenr, 934 node->ref_mod * sgn, GFP_ATOMIC); 935 break; 936 } 937 case BTRFS_SHARED_DATA_REF_KEY: { 938 struct btrfs_delayed_data_ref *ref; 939 940 ref = btrfs_delayed_node_to_data_ref(node); 941 ret = __add_prelim_ref(prefs, 0, NULL, 0, 942 ref->parent, node->bytenr, 943 node->ref_mod * sgn, GFP_ATOMIC); 944 break; 945 } 946 default: 947 WARN_ON(1); 948 } 949 if (ret) 950 break; 951 } 952 spin_unlock(&head->lock); 953 return ret; 954 } 955 956 /* 957 * add all inline backrefs for bytenr to the list 958 */ 959 static int __add_inline_refs(struct btrfs_path *path, u64 bytenr, 960 int *info_level, struct list_head *prefs, 961 struct ref_root *ref_tree, 962 u64 *total_refs, u64 inum) 963 { 964 int ret = 0; 965 int slot; 966 struct extent_buffer *leaf; 967 struct btrfs_key key; 968 struct btrfs_key found_key; 969 unsigned long ptr; 970 unsigned long end; 971 struct btrfs_extent_item *ei; 972 u64 flags; 973 u64 item_size; 974 975 /* 976 * enumerate all inline refs 977 */ 978 leaf = path->nodes[0]; 979 slot = path->slots[0]; 980 981 item_size = btrfs_item_size_nr(leaf, slot); 982 BUG_ON(item_size < sizeof(*ei)); 983 984 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 985 flags = btrfs_extent_flags(leaf, ei); 986 *total_refs += btrfs_extent_refs(leaf, ei); 987 btrfs_item_key_to_cpu(leaf, &found_key, slot); 988 989 ptr = (unsigned long)(ei + 1); 990 end = (unsigned long)ei + item_size; 991 992 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 993 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 994 struct btrfs_tree_block_info *info; 995 996 info = (struct btrfs_tree_block_info *)ptr; 997 *info_level = btrfs_tree_block_level(leaf, info); 998 ptr += sizeof(struct btrfs_tree_block_info); 999 BUG_ON(ptr > end); 1000 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1001 *info_level = found_key.offset; 1002 } else { 1003 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1004 } 1005 1006 while (ptr < end) { 1007 struct btrfs_extent_inline_ref *iref; 1008 u64 offset; 1009 int type; 1010 1011 iref = (struct btrfs_extent_inline_ref *)ptr; 1012 type = btrfs_extent_inline_ref_type(leaf, iref); 1013 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1014 1015 switch (type) { 1016 case BTRFS_SHARED_BLOCK_REF_KEY: 1017 ret = __add_prelim_ref(prefs, 0, NULL, 1018 *info_level + 1, offset, 1019 bytenr, 1, GFP_NOFS); 1020 break; 1021 case BTRFS_SHARED_DATA_REF_KEY: { 1022 struct btrfs_shared_data_ref *sdref; 1023 int count; 1024 1025 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1026 count = btrfs_shared_data_ref_count(leaf, sdref); 1027 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 1028 bytenr, count, GFP_NOFS); 1029 if (ref_tree) { 1030 if (!ret) 1031 ret = ref_tree_add(ref_tree, 0, 0, 0, 1032 bytenr, count); 1033 if (!ret && ref_tree->unique_refs > 1) 1034 ret = BACKREF_FOUND_SHARED; 1035 } 1036 break; 1037 } 1038 case BTRFS_TREE_BLOCK_REF_KEY: 1039 ret = __add_prelim_ref(prefs, offset, NULL, 1040 *info_level + 1, 0, 1041 bytenr, 1, GFP_NOFS); 1042 break; 1043 case BTRFS_EXTENT_DATA_REF_KEY: { 1044 struct btrfs_extent_data_ref *dref; 1045 int count; 1046 u64 root; 1047 1048 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1049 count = btrfs_extent_data_ref_count(leaf, dref); 1050 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1051 dref); 1052 key.type = BTRFS_EXTENT_DATA_KEY; 1053 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1054 1055 if (inum && key.objectid != inum) { 1056 ret = BACKREF_FOUND_SHARED; 1057 break; 1058 } 1059 1060 root = btrfs_extent_data_ref_root(leaf, dref); 1061 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1062 bytenr, count, GFP_NOFS); 1063 if (ref_tree) { 1064 if (!ret) 1065 ret = ref_tree_add(ref_tree, root, 1066 key.objectid, 1067 key.offset, 0, 1068 count); 1069 if (!ret && ref_tree->unique_refs > 1) 1070 ret = BACKREF_FOUND_SHARED; 1071 } 1072 break; 1073 } 1074 default: 1075 WARN_ON(1); 1076 } 1077 if (ret) 1078 return ret; 1079 ptr += btrfs_extent_inline_ref_size(type); 1080 } 1081 1082 return 0; 1083 } 1084 1085 /* 1086 * add all non-inline backrefs for bytenr to the list 1087 */ 1088 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 1089 struct btrfs_path *path, u64 bytenr, 1090 int info_level, struct list_head *prefs, 1091 struct ref_root *ref_tree, u64 inum) 1092 { 1093 struct btrfs_root *extent_root = fs_info->extent_root; 1094 int ret; 1095 int slot; 1096 struct extent_buffer *leaf; 1097 struct btrfs_key key; 1098 1099 while (1) { 1100 ret = btrfs_next_item(extent_root, path); 1101 if (ret < 0) 1102 break; 1103 if (ret) { 1104 ret = 0; 1105 break; 1106 } 1107 1108 slot = path->slots[0]; 1109 leaf = path->nodes[0]; 1110 btrfs_item_key_to_cpu(leaf, &key, slot); 1111 1112 if (key.objectid != bytenr) 1113 break; 1114 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1115 continue; 1116 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1117 break; 1118 1119 switch (key.type) { 1120 case BTRFS_SHARED_BLOCK_REF_KEY: 1121 ret = __add_prelim_ref(prefs, 0, NULL, 1122 info_level + 1, key.offset, 1123 bytenr, 1, GFP_NOFS); 1124 break; 1125 case BTRFS_SHARED_DATA_REF_KEY: { 1126 struct btrfs_shared_data_ref *sdref; 1127 int count; 1128 1129 sdref = btrfs_item_ptr(leaf, slot, 1130 struct btrfs_shared_data_ref); 1131 count = btrfs_shared_data_ref_count(leaf, sdref); 1132 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 1133 bytenr, count, GFP_NOFS); 1134 if (ref_tree) { 1135 if (!ret) 1136 ret = ref_tree_add(ref_tree, 0, 0, 0, 1137 bytenr, count); 1138 if (!ret && ref_tree->unique_refs > 1) 1139 ret = BACKREF_FOUND_SHARED; 1140 } 1141 break; 1142 } 1143 case BTRFS_TREE_BLOCK_REF_KEY: 1144 ret = __add_prelim_ref(prefs, key.offset, NULL, 1145 info_level + 1, 0, 1146 bytenr, 1, GFP_NOFS); 1147 break; 1148 case BTRFS_EXTENT_DATA_REF_KEY: { 1149 struct btrfs_extent_data_ref *dref; 1150 int count; 1151 u64 root; 1152 1153 dref = btrfs_item_ptr(leaf, slot, 1154 struct btrfs_extent_data_ref); 1155 count = btrfs_extent_data_ref_count(leaf, dref); 1156 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1157 dref); 1158 key.type = BTRFS_EXTENT_DATA_KEY; 1159 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1160 1161 if (inum && key.objectid != inum) { 1162 ret = BACKREF_FOUND_SHARED; 1163 break; 1164 } 1165 1166 root = btrfs_extent_data_ref_root(leaf, dref); 1167 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1168 bytenr, count, GFP_NOFS); 1169 if (ref_tree) { 1170 if (!ret) 1171 ret = ref_tree_add(ref_tree, root, 1172 key.objectid, 1173 key.offset, 0, 1174 count); 1175 if (!ret && ref_tree->unique_refs > 1) 1176 ret = BACKREF_FOUND_SHARED; 1177 } 1178 break; 1179 } 1180 default: 1181 WARN_ON(1); 1182 } 1183 if (ret) 1184 return ret; 1185 1186 } 1187 1188 return ret; 1189 } 1190 1191 /* 1192 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1193 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1194 * indirect refs to their parent bytenr. 1195 * When roots are found, they're added to the roots list 1196 * 1197 * NOTE: This can return values > 0 1198 * 1199 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 1200 * much like trans == NULL case, the difference only lies in it will not 1201 * commit root. 1202 * The special case is for qgroup to search roots in commit_transaction(). 1203 * 1204 * If check_shared is set to 1, any extent has more than one ref item, will 1205 * be returned BACKREF_FOUND_SHARED immediately. 1206 * 1207 * FIXME some caching might speed things up 1208 */ 1209 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1210 struct btrfs_fs_info *fs_info, u64 bytenr, 1211 u64 time_seq, struct ulist *refs, 1212 struct ulist *roots, const u64 *extent_item_pos, 1213 u64 root_objectid, u64 inum, int check_shared) 1214 { 1215 struct btrfs_key key; 1216 struct btrfs_path *path; 1217 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1218 struct btrfs_delayed_ref_head *head; 1219 int info_level = 0; 1220 int ret; 1221 struct list_head prefs_delayed; 1222 struct list_head prefs; 1223 struct __prelim_ref *ref; 1224 struct extent_inode_elem *eie = NULL; 1225 struct ref_root *ref_tree = NULL; 1226 u64 total_refs = 0; 1227 1228 INIT_LIST_HEAD(&prefs); 1229 INIT_LIST_HEAD(&prefs_delayed); 1230 1231 key.objectid = bytenr; 1232 key.offset = (u64)-1; 1233 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1234 key.type = BTRFS_METADATA_ITEM_KEY; 1235 else 1236 key.type = BTRFS_EXTENT_ITEM_KEY; 1237 1238 path = btrfs_alloc_path(); 1239 if (!path) 1240 return -ENOMEM; 1241 if (!trans) { 1242 path->search_commit_root = 1; 1243 path->skip_locking = 1; 1244 } 1245 1246 if (time_seq == (u64)-1) 1247 path->skip_locking = 1; 1248 1249 /* 1250 * grab both a lock on the path and a lock on the delayed ref head. 1251 * We need both to get a consistent picture of how the refs look 1252 * at a specified point in time 1253 */ 1254 again: 1255 head = NULL; 1256 1257 if (check_shared) { 1258 if (!ref_tree) { 1259 ref_tree = ref_root_alloc(); 1260 if (!ref_tree) { 1261 ret = -ENOMEM; 1262 goto out; 1263 } 1264 } else { 1265 ref_root_fini(ref_tree); 1266 } 1267 } 1268 1269 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1270 if (ret < 0) 1271 goto out; 1272 BUG_ON(ret == 0); 1273 1274 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1275 if (trans && likely(trans->type != __TRANS_DUMMY) && 1276 time_seq != (u64)-1) { 1277 #else 1278 if (trans && time_seq != (u64)-1) { 1279 #endif 1280 /* 1281 * look if there are updates for this ref queued and lock the 1282 * head 1283 */ 1284 delayed_refs = &trans->transaction->delayed_refs; 1285 spin_lock(&delayed_refs->lock); 1286 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1287 if (head) { 1288 if (!mutex_trylock(&head->mutex)) { 1289 atomic_inc(&head->node.refs); 1290 spin_unlock(&delayed_refs->lock); 1291 1292 btrfs_release_path(path); 1293 1294 /* 1295 * Mutex was contended, block until it's 1296 * released and try again 1297 */ 1298 mutex_lock(&head->mutex); 1299 mutex_unlock(&head->mutex); 1300 btrfs_put_delayed_ref(&head->node); 1301 goto again; 1302 } 1303 spin_unlock(&delayed_refs->lock); 1304 ret = __add_delayed_refs(head, time_seq, 1305 &prefs_delayed, &total_refs, 1306 inum); 1307 mutex_unlock(&head->mutex); 1308 if (ret) 1309 goto out; 1310 } else { 1311 spin_unlock(&delayed_refs->lock); 1312 } 1313 1314 if (check_shared && !list_empty(&prefs_delayed)) { 1315 /* 1316 * Add all delay_ref to the ref_tree and check if there 1317 * are multiple ref items added. 1318 */ 1319 list_for_each_entry(ref, &prefs_delayed, list) { 1320 if (ref->key_for_search.type) { 1321 ret = ref_tree_add(ref_tree, 1322 ref->root_id, 1323 ref->key_for_search.objectid, 1324 ref->key_for_search.offset, 1325 0, ref->count); 1326 if (ret) 1327 goto out; 1328 } else { 1329 ret = ref_tree_add(ref_tree, 0, 0, 0, 1330 ref->parent, ref->count); 1331 if (ret) 1332 goto out; 1333 } 1334 1335 } 1336 1337 if (ref_tree->unique_refs > 1) { 1338 ret = BACKREF_FOUND_SHARED; 1339 goto out; 1340 } 1341 1342 } 1343 } 1344 1345 if (path->slots[0]) { 1346 struct extent_buffer *leaf; 1347 int slot; 1348 1349 path->slots[0]--; 1350 leaf = path->nodes[0]; 1351 slot = path->slots[0]; 1352 btrfs_item_key_to_cpu(leaf, &key, slot); 1353 if (key.objectid == bytenr && 1354 (key.type == BTRFS_EXTENT_ITEM_KEY || 1355 key.type == BTRFS_METADATA_ITEM_KEY)) { 1356 ret = __add_inline_refs(path, bytenr, 1357 &info_level, &prefs, 1358 ref_tree, &total_refs, 1359 inum); 1360 if (ret) 1361 goto out; 1362 ret = __add_keyed_refs(fs_info, path, bytenr, 1363 info_level, &prefs, 1364 ref_tree, inum); 1365 if (ret) 1366 goto out; 1367 } 1368 } 1369 btrfs_release_path(path); 1370 1371 list_splice_init(&prefs_delayed, &prefs); 1372 1373 ret = __add_missing_keys(fs_info, &prefs); 1374 if (ret) 1375 goto out; 1376 1377 __merge_refs(&prefs, 1); 1378 1379 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1380 extent_item_pos, total_refs, 1381 root_objectid); 1382 if (ret) 1383 goto out; 1384 1385 __merge_refs(&prefs, 2); 1386 1387 while (!list_empty(&prefs)) { 1388 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1389 WARN_ON(ref->count < 0); 1390 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1391 if (root_objectid && ref->root_id != root_objectid) { 1392 ret = BACKREF_FOUND_SHARED; 1393 goto out; 1394 } 1395 1396 /* no parent == root of tree */ 1397 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1398 if (ret < 0) 1399 goto out; 1400 } 1401 if (ref->count && ref->parent) { 1402 if (extent_item_pos && !ref->inode_list && 1403 ref->level == 0) { 1404 struct extent_buffer *eb; 1405 1406 eb = read_tree_block(fs_info, ref->parent, 0); 1407 if (IS_ERR(eb)) { 1408 ret = PTR_ERR(eb); 1409 goto out; 1410 } else if (!extent_buffer_uptodate(eb)) { 1411 free_extent_buffer(eb); 1412 ret = -EIO; 1413 goto out; 1414 } 1415 btrfs_tree_read_lock(eb); 1416 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1417 ret = find_extent_in_eb(eb, bytenr, 1418 *extent_item_pos, &eie); 1419 btrfs_tree_read_unlock_blocking(eb); 1420 free_extent_buffer(eb); 1421 if (ret < 0) 1422 goto out; 1423 ref->inode_list = eie; 1424 } 1425 ret = ulist_add_merge_ptr(refs, ref->parent, 1426 ref->inode_list, 1427 (void **)&eie, GFP_NOFS); 1428 if (ret < 0) 1429 goto out; 1430 if (!ret && extent_item_pos) { 1431 /* 1432 * we've recorded that parent, so we must extend 1433 * its inode list here 1434 */ 1435 BUG_ON(!eie); 1436 while (eie->next) 1437 eie = eie->next; 1438 eie->next = ref->inode_list; 1439 } 1440 eie = NULL; 1441 } 1442 list_del(&ref->list); 1443 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1444 } 1445 1446 out: 1447 btrfs_free_path(path); 1448 ref_root_free(ref_tree); 1449 while (!list_empty(&prefs)) { 1450 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1451 list_del(&ref->list); 1452 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1453 } 1454 while (!list_empty(&prefs_delayed)) { 1455 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1456 list); 1457 list_del(&ref->list); 1458 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1459 } 1460 if (ret < 0) 1461 free_inode_elem_list(eie); 1462 return ret; 1463 } 1464 1465 static void free_leaf_list(struct ulist *blocks) 1466 { 1467 struct ulist_node *node = NULL; 1468 struct extent_inode_elem *eie; 1469 struct ulist_iterator uiter; 1470 1471 ULIST_ITER_INIT(&uiter); 1472 while ((node = ulist_next(blocks, &uiter))) { 1473 if (!node->aux) 1474 continue; 1475 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1476 free_inode_elem_list(eie); 1477 node->aux = 0; 1478 } 1479 1480 ulist_free(blocks); 1481 } 1482 1483 /* 1484 * Finds all leafs with a reference to the specified combination of bytenr and 1485 * offset. key_list_head will point to a list of corresponding keys (caller must 1486 * free each list element). The leafs will be stored in the leafs ulist, which 1487 * must be freed with ulist_free. 1488 * 1489 * returns 0 on success, <0 on error 1490 */ 1491 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1492 struct btrfs_fs_info *fs_info, u64 bytenr, 1493 u64 time_seq, struct ulist **leafs, 1494 const u64 *extent_item_pos) 1495 { 1496 int ret; 1497 1498 *leafs = ulist_alloc(GFP_NOFS); 1499 if (!*leafs) 1500 return -ENOMEM; 1501 1502 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1503 *leafs, NULL, extent_item_pos, 0, 0, 0); 1504 if (ret < 0 && ret != -ENOENT) { 1505 free_leaf_list(*leafs); 1506 return ret; 1507 } 1508 1509 return 0; 1510 } 1511 1512 /* 1513 * walk all backrefs for a given extent to find all roots that reference this 1514 * extent. Walking a backref means finding all extents that reference this 1515 * extent and in turn walk the backrefs of those, too. Naturally this is a 1516 * recursive process, but here it is implemented in an iterative fashion: We 1517 * find all referencing extents for the extent in question and put them on a 1518 * list. In turn, we find all referencing extents for those, further appending 1519 * to the list. The way we iterate the list allows adding more elements after 1520 * the current while iterating. The process stops when we reach the end of the 1521 * list. Found roots are added to the roots list. 1522 * 1523 * returns 0 on success, < 0 on error. 1524 */ 1525 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1526 struct btrfs_fs_info *fs_info, u64 bytenr, 1527 u64 time_seq, struct ulist **roots) 1528 { 1529 struct ulist *tmp; 1530 struct ulist_node *node = NULL; 1531 struct ulist_iterator uiter; 1532 int ret; 1533 1534 tmp = ulist_alloc(GFP_NOFS); 1535 if (!tmp) 1536 return -ENOMEM; 1537 *roots = ulist_alloc(GFP_NOFS); 1538 if (!*roots) { 1539 ulist_free(tmp); 1540 return -ENOMEM; 1541 } 1542 1543 ULIST_ITER_INIT(&uiter); 1544 while (1) { 1545 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1546 tmp, *roots, NULL, 0, 0, 0); 1547 if (ret < 0 && ret != -ENOENT) { 1548 ulist_free(tmp); 1549 ulist_free(*roots); 1550 return ret; 1551 } 1552 node = ulist_next(tmp, &uiter); 1553 if (!node) 1554 break; 1555 bytenr = node->val; 1556 cond_resched(); 1557 } 1558 1559 ulist_free(tmp); 1560 return 0; 1561 } 1562 1563 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1564 struct btrfs_fs_info *fs_info, u64 bytenr, 1565 u64 time_seq, struct ulist **roots) 1566 { 1567 int ret; 1568 1569 if (!trans) 1570 down_read(&fs_info->commit_root_sem); 1571 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1572 if (!trans) 1573 up_read(&fs_info->commit_root_sem); 1574 return ret; 1575 } 1576 1577 /** 1578 * btrfs_check_shared - tell us whether an extent is shared 1579 * 1580 * @trans: optional trans handle 1581 * 1582 * btrfs_check_shared uses the backref walking code but will short 1583 * circuit as soon as it finds a root or inode that doesn't match the 1584 * one passed in. This provides a significant performance benefit for 1585 * callers (such as fiemap) which want to know whether the extent is 1586 * shared but do not need a ref count. 1587 * 1588 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1589 */ 1590 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1591 struct btrfs_fs_info *fs_info, u64 root_objectid, 1592 u64 inum, u64 bytenr) 1593 { 1594 struct ulist *tmp = NULL; 1595 struct ulist *roots = NULL; 1596 struct ulist_iterator uiter; 1597 struct ulist_node *node; 1598 struct seq_list elem = SEQ_LIST_INIT(elem); 1599 int ret = 0; 1600 1601 tmp = ulist_alloc(GFP_NOFS); 1602 roots = ulist_alloc(GFP_NOFS); 1603 if (!tmp || !roots) { 1604 ulist_free(tmp); 1605 ulist_free(roots); 1606 return -ENOMEM; 1607 } 1608 1609 if (trans) 1610 btrfs_get_tree_mod_seq(fs_info, &elem); 1611 else 1612 down_read(&fs_info->commit_root_sem); 1613 ULIST_ITER_INIT(&uiter); 1614 while (1) { 1615 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1616 roots, NULL, root_objectid, inum, 1); 1617 if (ret == BACKREF_FOUND_SHARED) { 1618 /* this is the only condition under which we return 1 */ 1619 ret = 1; 1620 break; 1621 } 1622 if (ret < 0 && ret != -ENOENT) 1623 break; 1624 ret = 0; 1625 node = ulist_next(tmp, &uiter); 1626 if (!node) 1627 break; 1628 bytenr = node->val; 1629 cond_resched(); 1630 } 1631 if (trans) 1632 btrfs_put_tree_mod_seq(fs_info, &elem); 1633 else 1634 up_read(&fs_info->commit_root_sem); 1635 ulist_free(tmp); 1636 ulist_free(roots); 1637 return ret; 1638 } 1639 1640 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1641 u64 start_off, struct btrfs_path *path, 1642 struct btrfs_inode_extref **ret_extref, 1643 u64 *found_off) 1644 { 1645 int ret, slot; 1646 struct btrfs_key key; 1647 struct btrfs_key found_key; 1648 struct btrfs_inode_extref *extref; 1649 struct extent_buffer *leaf; 1650 unsigned long ptr; 1651 1652 key.objectid = inode_objectid; 1653 key.type = BTRFS_INODE_EXTREF_KEY; 1654 key.offset = start_off; 1655 1656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1657 if (ret < 0) 1658 return ret; 1659 1660 while (1) { 1661 leaf = path->nodes[0]; 1662 slot = path->slots[0]; 1663 if (slot >= btrfs_header_nritems(leaf)) { 1664 /* 1665 * If the item at offset is not found, 1666 * btrfs_search_slot will point us to the slot 1667 * where it should be inserted. In our case 1668 * that will be the slot directly before the 1669 * next INODE_REF_KEY_V2 item. In the case 1670 * that we're pointing to the last slot in a 1671 * leaf, we must move one leaf over. 1672 */ 1673 ret = btrfs_next_leaf(root, path); 1674 if (ret) { 1675 if (ret >= 1) 1676 ret = -ENOENT; 1677 break; 1678 } 1679 continue; 1680 } 1681 1682 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1683 1684 /* 1685 * Check that we're still looking at an extended ref key for 1686 * this particular objectid. If we have different 1687 * objectid or type then there are no more to be found 1688 * in the tree and we can exit. 1689 */ 1690 ret = -ENOENT; 1691 if (found_key.objectid != inode_objectid) 1692 break; 1693 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1694 break; 1695 1696 ret = 0; 1697 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1698 extref = (struct btrfs_inode_extref *)ptr; 1699 *ret_extref = extref; 1700 if (found_off) 1701 *found_off = found_key.offset; 1702 break; 1703 } 1704 1705 return ret; 1706 } 1707 1708 /* 1709 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1710 * Elements of the path are separated by '/' and the path is guaranteed to be 1711 * 0-terminated. the path is only given within the current file system. 1712 * Therefore, it never starts with a '/'. the caller is responsible to provide 1713 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1714 * the start point of the resulting string is returned. this pointer is within 1715 * dest, normally. 1716 * in case the path buffer would overflow, the pointer is decremented further 1717 * as if output was written to the buffer, though no more output is actually 1718 * generated. that way, the caller can determine how much space would be 1719 * required for the path to fit into the buffer. in that case, the returned 1720 * value will be smaller than dest. callers must check this! 1721 */ 1722 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1723 u32 name_len, unsigned long name_off, 1724 struct extent_buffer *eb_in, u64 parent, 1725 char *dest, u32 size) 1726 { 1727 int slot; 1728 u64 next_inum; 1729 int ret; 1730 s64 bytes_left = ((s64)size) - 1; 1731 struct extent_buffer *eb = eb_in; 1732 struct btrfs_key found_key; 1733 int leave_spinning = path->leave_spinning; 1734 struct btrfs_inode_ref *iref; 1735 1736 if (bytes_left >= 0) 1737 dest[bytes_left] = '\0'; 1738 1739 path->leave_spinning = 1; 1740 while (1) { 1741 bytes_left -= name_len; 1742 if (bytes_left >= 0) 1743 read_extent_buffer(eb, dest + bytes_left, 1744 name_off, name_len); 1745 if (eb != eb_in) { 1746 if (!path->skip_locking) 1747 btrfs_tree_read_unlock_blocking(eb); 1748 free_extent_buffer(eb); 1749 } 1750 ret = btrfs_find_item(fs_root, path, parent, 0, 1751 BTRFS_INODE_REF_KEY, &found_key); 1752 if (ret > 0) 1753 ret = -ENOENT; 1754 if (ret) 1755 break; 1756 1757 next_inum = found_key.offset; 1758 1759 /* regular exit ahead */ 1760 if (parent == next_inum) 1761 break; 1762 1763 slot = path->slots[0]; 1764 eb = path->nodes[0]; 1765 /* make sure we can use eb after releasing the path */ 1766 if (eb != eb_in) { 1767 if (!path->skip_locking) 1768 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1769 path->nodes[0] = NULL; 1770 path->locks[0] = 0; 1771 } 1772 btrfs_release_path(path); 1773 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1774 1775 name_len = btrfs_inode_ref_name_len(eb, iref); 1776 name_off = (unsigned long)(iref + 1); 1777 1778 parent = next_inum; 1779 --bytes_left; 1780 if (bytes_left >= 0) 1781 dest[bytes_left] = '/'; 1782 } 1783 1784 btrfs_release_path(path); 1785 path->leave_spinning = leave_spinning; 1786 1787 if (ret) 1788 return ERR_PTR(ret); 1789 1790 return dest + bytes_left; 1791 } 1792 1793 /* 1794 * this makes the path point to (logical EXTENT_ITEM *) 1795 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1796 * tree blocks and <0 on error. 1797 */ 1798 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1799 struct btrfs_path *path, struct btrfs_key *found_key, 1800 u64 *flags_ret) 1801 { 1802 int ret; 1803 u64 flags; 1804 u64 size = 0; 1805 u32 item_size; 1806 struct extent_buffer *eb; 1807 struct btrfs_extent_item *ei; 1808 struct btrfs_key key; 1809 1810 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1811 key.type = BTRFS_METADATA_ITEM_KEY; 1812 else 1813 key.type = BTRFS_EXTENT_ITEM_KEY; 1814 key.objectid = logical; 1815 key.offset = (u64)-1; 1816 1817 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1818 if (ret < 0) 1819 return ret; 1820 1821 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1822 if (ret) { 1823 if (ret > 0) 1824 ret = -ENOENT; 1825 return ret; 1826 } 1827 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1828 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1829 size = fs_info->nodesize; 1830 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1831 size = found_key->offset; 1832 1833 if (found_key->objectid > logical || 1834 found_key->objectid + size <= logical) { 1835 btrfs_debug(fs_info, 1836 "logical %llu is not within any extent", logical); 1837 return -ENOENT; 1838 } 1839 1840 eb = path->nodes[0]; 1841 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1842 BUG_ON(item_size < sizeof(*ei)); 1843 1844 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1845 flags = btrfs_extent_flags(eb, ei); 1846 1847 btrfs_debug(fs_info, 1848 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1849 logical, logical - found_key->objectid, found_key->objectid, 1850 found_key->offset, flags, item_size); 1851 1852 WARN_ON(!flags_ret); 1853 if (flags_ret) { 1854 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1855 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1856 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1857 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1858 else 1859 BUG_ON(1); 1860 return 0; 1861 } 1862 1863 return -EIO; 1864 } 1865 1866 /* 1867 * helper function to iterate extent inline refs. ptr must point to a 0 value 1868 * for the first call and may be modified. it is used to track state. 1869 * if more refs exist, 0 is returned and the next call to 1870 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1871 * next ref. after the last ref was processed, 1 is returned. 1872 * returns <0 on error 1873 */ 1874 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1875 struct btrfs_key *key, 1876 struct btrfs_extent_item *ei, u32 item_size, 1877 struct btrfs_extent_inline_ref **out_eiref, 1878 int *out_type) 1879 { 1880 unsigned long end; 1881 u64 flags; 1882 struct btrfs_tree_block_info *info; 1883 1884 if (!*ptr) { 1885 /* first call */ 1886 flags = btrfs_extent_flags(eb, ei); 1887 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1888 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1889 /* a skinny metadata extent */ 1890 *out_eiref = 1891 (struct btrfs_extent_inline_ref *)(ei + 1); 1892 } else { 1893 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1894 info = (struct btrfs_tree_block_info *)(ei + 1); 1895 *out_eiref = 1896 (struct btrfs_extent_inline_ref *)(info + 1); 1897 } 1898 } else { 1899 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1900 } 1901 *ptr = (unsigned long)*out_eiref; 1902 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1903 return -ENOENT; 1904 } 1905 1906 end = (unsigned long)ei + item_size; 1907 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1908 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1909 1910 *ptr += btrfs_extent_inline_ref_size(*out_type); 1911 WARN_ON(*ptr > end); 1912 if (*ptr == end) 1913 return 1; /* last */ 1914 1915 return 0; 1916 } 1917 1918 /* 1919 * reads the tree block backref for an extent. tree level and root are returned 1920 * through out_level and out_root. ptr must point to a 0 value for the first 1921 * call and may be modified (see __get_extent_inline_ref comment). 1922 * returns 0 if data was provided, 1 if there was no more data to provide or 1923 * <0 on error. 1924 */ 1925 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1926 struct btrfs_key *key, struct btrfs_extent_item *ei, 1927 u32 item_size, u64 *out_root, u8 *out_level) 1928 { 1929 int ret; 1930 int type; 1931 struct btrfs_extent_inline_ref *eiref; 1932 1933 if (*ptr == (unsigned long)-1) 1934 return 1; 1935 1936 while (1) { 1937 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1938 &eiref, &type); 1939 if (ret < 0) 1940 return ret; 1941 1942 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1943 type == BTRFS_SHARED_BLOCK_REF_KEY) 1944 break; 1945 1946 if (ret == 1) 1947 return 1; 1948 } 1949 1950 /* we can treat both ref types equally here */ 1951 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1952 1953 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1954 struct btrfs_tree_block_info *info; 1955 1956 info = (struct btrfs_tree_block_info *)(ei + 1); 1957 *out_level = btrfs_tree_block_level(eb, info); 1958 } else { 1959 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1960 *out_level = (u8)key->offset; 1961 } 1962 1963 if (ret == 1) 1964 *ptr = (unsigned long)-1; 1965 1966 return 0; 1967 } 1968 1969 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1970 struct extent_inode_elem *inode_list, 1971 u64 root, u64 extent_item_objectid, 1972 iterate_extent_inodes_t *iterate, void *ctx) 1973 { 1974 struct extent_inode_elem *eie; 1975 int ret = 0; 1976 1977 for (eie = inode_list; eie; eie = eie->next) { 1978 btrfs_debug(fs_info, 1979 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1980 extent_item_objectid, eie->inum, 1981 eie->offset, root); 1982 ret = iterate(eie->inum, eie->offset, root, ctx); 1983 if (ret) { 1984 btrfs_debug(fs_info, 1985 "stopping iteration for %llu due to ret=%d", 1986 extent_item_objectid, ret); 1987 break; 1988 } 1989 } 1990 1991 return ret; 1992 } 1993 1994 /* 1995 * calls iterate() for every inode that references the extent identified by 1996 * the given parameters. 1997 * when the iterator function returns a non-zero value, iteration stops. 1998 */ 1999 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 2000 u64 extent_item_objectid, u64 extent_item_pos, 2001 int search_commit_root, 2002 iterate_extent_inodes_t *iterate, void *ctx) 2003 { 2004 int ret; 2005 struct btrfs_trans_handle *trans = NULL; 2006 struct ulist *refs = NULL; 2007 struct ulist *roots = NULL; 2008 struct ulist_node *ref_node = NULL; 2009 struct ulist_node *root_node = NULL; 2010 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 2011 struct ulist_iterator ref_uiter; 2012 struct ulist_iterator root_uiter; 2013 2014 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 2015 extent_item_objectid); 2016 2017 if (!search_commit_root) { 2018 trans = btrfs_join_transaction(fs_info->extent_root); 2019 if (IS_ERR(trans)) 2020 return PTR_ERR(trans); 2021 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2022 } else { 2023 down_read(&fs_info->commit_root_sem); 2024 } 2025 2026 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 2027 tree_mod_seq_elem.seq, &refs, 2028 &extent_item_pos); 2029 if (ret) 2030 goto out; 2031 2032 ULIST_ITER_INIT(&ref_uiter); 2033 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2034 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 2035 tree_mod_seq_elem.seq, &roots); 2036 if (ret) 2037 break; 2038 ULIST_ITER_INIT(&root_uiter); 2039 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2040 btrfs_debug(fs_info, 2041 "root %llu references leaf %llu, data list %#llx", 2042 root_node->val, ref_node->val, 2043 ref_node->aux); 2044 ret = iterate_leaf_refs(fs_info, 2045 (struct extent_inode_elem *) 2046 (uintptr_t)ref_node->aux, 2047 root_node->val, 2048 extent_item_objectid, 2049 iterate, ctx); 2050 } 2051 ulist_free(roots); 2052 } 2053 2054 free_leaf_list(refs); 2055 out: 2056 if (!search_commit_root) { 2057 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2058 btrfs_end_transaction(trans); 2059 } else { 2060 up_read(&fs_info->commit_root_sem); 2061 } 2062 2063 return ret; 2064 } 2065 2066 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2067 struct btrfs_path *path, 2068 iterate_extent_inodes_t *iterate, void *ctx) 2069 { 2070 int ret; 2071 u64 extent_item_pos; 2072 u64 flags = 0; 2073 struct btrfs_key found_key; 2074 int search_commit_root = path->search_commit_root; 2075 2076 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2077 btrfs_release_path(path); 2078 if (ret < 0) 2079 return ret; 2080 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2081 return -EINVAL; 2082 2083 extent_item_pos = logical - found_key.objectid; 2084 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2085 extent_item_pos, search_commit_root, 2086 iterate, ctx); 2087 2088 return ret; 2089 } 2090 2091 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2092 struct extent_buffer *eb, void *ctx); 2093 2094 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2095 struct btrfs_path *path, 2096 iterate_irefs_t *iterate, void *ctx) 2097 { 2098 int ret = 0; 2099 int slot; 2100 u32 cur; 2101 u32 len; 2102 u32 name_len; 2103 u64 parent = 0; 2104 int found = 0; 2105 struct extent_buffer *eb; 2106 struct btrfs_item *item; 2107 struct btrfs_inode_ref *iref; 2108 struct btrfs_key found_key; 2109 2110 while (!ret) { 2111 ret = btrfs_find_item(fs_root, path, inum, 2112 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2113 &found_key); 2114 2115 if (ret < 0) 2116 break; 2117 if (ret) { 2118 ret = found ? 0 : -ENOENT; 2119 break; 2120 } 2121 ++found; 2122 2123 parent = found_key.offset; 2124 slot = path->slots[0]; 2125 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2126 if (!eb) { 2127 ret = -ENOMEM; 2128 break; 2129 } 2130 extent_buffer_get(eb); 2131 btrfs_tree_read_lock(eb); 2132 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2133 btrfs_release_path(path); 2134 2135 item = btrfs_item_nr(slot); 2136 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2137 2138 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2139 name_len = btrfs_inode_ref_name_len(eb, iref); 2140 /* path must be released before calling iterate()! */ 2141 btrfs_debug(fs_root->fs_info, 2142 "following ref at offset %u for inode %llu in tree %llu", 2143 cur, found_key.objectid, fs_root->objectid); 2144 ret = iterate(parent, name_len, 2145 (unsigned long)(iref + 1), eb, ctx); 2146 if (ret) 2147 break; 2148 len = sizeof(*iref) + name_len; 2149 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2150 } 2151 btrfs_tree_read_unlock_blocking(eb); 2152 free_extent_buffer(eb); 2153 } 2154 2155 btrfs_release_path(path); 2156 2157 return ret; 2158 } 2159 2160 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2161 struct btrfs_path *path, 2162 iterate_irefs_t *iterate, void *ctx) 2163 { 2164 int ret; 2165 int slot; 2166 u64 offset = 0; 2167 u64 parent; 2168 int found = 0; 2169 struct extent_buffer *eb; 2170 struct btrfs_inode_extref *extref; 2171 u32 item_size; 2172 u32 cur_offset; 2173 unsigned long ptr; 2174 2175 while (1) { 2176 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2177 &offset); 2178 if (ret < 0) 2179 break; 2180 if (ret) { 2181 ret = found ? 0 : -ENOENT; 2182 break; 2183 } 2184 ++found; 2185 2186 slot = path->slots[0]; 2187 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2188 if (!eb) { 2189 ret = -ENOMEM; 2190 break; 2191 } 2192 extent_buffer_get(eb); 2193 2194 btrfs_tree_read_lock(eb); 2195 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2196 btrfs_release_path(path); 2197 2198 item_size = btrfs_item_size_nr(eb, slot); 2199 ptr = btrfs_item_ptr_offset(eb, slot); 2200 cur_offset = 0; 2201 2202 while (cur_offset < item_size) { 2203 u32 name_len; 2204 2205 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2206 parent = btrfs_inode_extref_parent(eb, extref); 2207 name_len = btrfs_inode_extref_name_len(eb, extref); 2208 ret = iterate(parent, name_len, 2209 (unsigned long)&extref->name, eb, ctx); 2210 if (ret) 2211 break; 2212 2213 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2214 cur_offset += sizeof(*extref); 2215 } 2216 btrfs_tree_read_unlock_blocking(eb); 2217 free_extent_buffer(eb); 2218 2219 offset++; 2220 } 2221 2222 btrfs_release_path(path); 2223 2224 return ret; 2225 } 2226 2227 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2228 struct btrfs_path *path, iterate_irefs_t *iterate, 2229 void *ctx) 2230 { 2231 int ret; 2232 int found_refs = 0; 2233 2234 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2235 if (!ret) 2236 ++found_refs; 2237 else if (ret != -ENOENT) 2238 return ret; 2239 2240 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2241 if (ret == -ENOENT && found_refs) 2242 return 0; 2243 2244 return ret; 2245 } 2246 2247 /* 2248 * returns 0 if the path could be dumped (probably truncated) 2249 * returns <0 in case of an error 2250 */ 2251 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2252 struct extent_buffer *eb, void *ctx) 2253 { 2254 struct inode_fs_paths *ipath = ctx; 2255 char *fspath; 2256 char *fspath_min; 2257 int i = ipath->fspath->elem_cnt; 2258 const int s_ptr = sizeof(char *); 2259 u32 bytes_left; 2260 2261 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2262 ipath->fspath->bytes_left - s_ptr : 0; 2263 2264 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2265 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2266 name_off, eb, inum, fspath_min, bytes_left); 2267 if (IS_ERR(fspath)) 2268 return PTR_ERR(fspath); 2269 2270 if (fspath > fspath_min) { 2271 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2272 ++ipath->fspath->elem_cnt; 2273 ipath->fspath->bytes_left = fspath - fspath_min; 2274 } else { 2275 ++ipath->fspath->elem_missed; 2276 ipath->fspath->bytes_missing += fspath_min - fspath; 2277 ipath->fspath->bytes_left = 0; 2278 } 2279 2280 return 0; 2281 } 2282 2283 /* 2284 * this dumps all file system paths to the inode into the ipath struct, provided 2285 * is has been created large enough. each path is zero-terminated and accessed 2286 * from ipath->fspath->val[i]. 2287 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2288 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2289 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2290 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2291 * have been needed to return all paths. 2292 */ 2293 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2294 { 2295 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2296 inode_to_path, ipath); 2297 } 2298 2299 struct btrfs_data_container *init_data_container(u32 total_bytes) 2300 { 2301 struct btrfs_data_container *data; 2302 size_t alloc_bytes; 2303 2304 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2305 data = vmalloc(alloc_bytes); 2306 if (!data) 2307 return ERR_PTR(-ENOMEM); 2308 2309 if (total_bytes >= sizeof(*data)) { 2310 data->bytes_left = total_bytes - sizeof(*data); 2311 data->bytes_missing = 0; 2312 } else { 2313 data->bytes_missing = sizeof(*data) - total_bytes; 2314 data->bytes_left = 0; 2315 } 2316 2317 data->elem_cnt = 0; 2318 data->elem_missed = 0; 2319 2320 return data; 2321 } 2322 2323 /* 2324 * allocates space to return multiple file system paths for an inode. 2325 * total_bytes to allocate are passed, note that space usable for actual path 2326 * information will be total_bytes - sizeof(struct inode_fs_paths). 2327 * the returned pointer must be freed with free_ipath() in the end. 2328 */ 2329 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2330 struct btrfs_path *path) 2331 { 2332 struct inode_fs_paths *ifp; 2333 struct btrfs_data_container *fspath; 2334 2335 fspath = init_data_container(total_bytes); 2336 if (IS_ERR(fspath)) 2337 return (void *)fspath; 2338 2339 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 2340 if (!ifp) { 2341 vfree(fspath); 2342 return ERR_PTR(-ENOMEM); 2343 } 2344 2345 ifp->btrfs_path = path; 2346 ifp->fspath = fspath; 2347 ifp->fs_root = fs_root; 2348 2349 return ifp; 2350 } 2351 2352 void free_ipath(struct inode_fs_paths *ipath) 2353 { 2354 if (!ipath) 2355 return; 2356 vfree(ipath->fspath); 2357 kfree(ipath); 2358 } 2359