1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!btrfs_file_extent_compression(eb, fi) && 49 !btrfs_file_extent_encryption(eb, fi) && 50 !btrfs_file_extent_other_encoding(eb, fi)) { 51 u64 data_offset; 52 53 data_offset = btrfs_file_extent_offset(eb, fi); 54 55 if (ctx->extent_item_pos < data_offset || 56 ctx->extent_item_pos >= data_offset + data_len) 57 return 1; 58 offset += ctx->extent_item_pos - data_offset; 59 } 60 61 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 62 goto add_inode_elem; 63 64 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 65 &root_count); 66 if (!cached) 67 goto add_inode_elem; 68 69 for (int i = 0; i < root_count; i++) { 70 int ret; 71 72 ret = ctx->indirect_ref_iterator(key->objectid, offset, 73 data_len, root_ids[i], 74 ctx->user_ctx); 75 if (ret) 76 return ret; 77 } 78 79 add_inode_elem: 80 e = kmalloc(sizeof(*e), GFP_NOFS); 81 if (!e) 82 return -ENOMEM; 83 84 e->next = *eie; 85 e->inum = key->objectid; 86 e->offset = offset; 87 e->num_bytes = data_len; 88 *eie = e; 89 90 return 0; 91 } 92 93 static void free_inode_elem_list(struct extent_inode_elem *eie) 94 { 95 struct extent_inode_elem *eie_next; 96 97 for (; eie; eie = eie_next) { 98 eie_next = eie->next; 99 kfree(eie); 100 } 101 } 102 103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 104 const struct extent_buffer *eb, 105 struct extent_inode_elem **eie) 106 { 107 u64 disk_byte; 108 struct btrfs_key key; 109 struct btrfs_file_extent_item *fi; 110 int slot; 111 int nritems; 112 int extent_type; 113 int ret; 114 115 /* 116 * from the shared data ref, we only have the leaf but we need 117 * the key. thus, we must look into all items and see that we 118 * find one (some) with a reference to our extent item. 119 */ 120 nritems = btrfs_header_nritems(eb); 121 for (slot = 0; slot < nritems; ++slot) { 122 btrfs_item_key_to_cpu(eb, &key, slot); 123 if (key.type != BTRFS_EXTENT_DATA_KEY) 124 continue; 125 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 126 extent_type = btrfs_file_extent_type(eb, fi); 127 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 128 continue; 129 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 130 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 131 if (disk_byte != ctx->bytenr) 132 continue; 133 134 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 135 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 136 return ret; 137 } 138 139 return 0; 140 } 141 142 struct preftree { 143 struct rb_root_cached root; 144 unsigned int count; 145 }; 146 147 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 148 149 struct preftrees { 150 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 151 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 152 struct preftree indirect_missing_keys; 153 }; 154 155 /* 156 * Checks for a shared extent during backref search. 157 * 158 * The share_count tracks prelim_refs (direct and indirect) having a 159 * ref->count >0: 160 * - incremented when a ref->count transitions to >0 161 * - decremented when a ref->count transitions to <1 162 */ 163 struct share_check { 164 struct btrfs_backref_share_check_ctx *ctx; 165 struct btrfs_root *root; 166 u64 inum; 167 u64 data_bytenr; 168 u64 data_extent_gen; 169 /* 170 * Counts number of inodes that refer to an extent (different inodes in 171 * the same root or different roots) that we could find. The sharedness 172 * check typically stops once this counter gets greater than 1, so it 173 * may not reflect the total number of inodes. 174 */ 175 int share_count; 176 /* 177 * The number of times we found our inode refers to the data extent we 178 * are determining the sharedness. In other words, how many file extent 179 * items we could find for our inode that point to our target data 180 * extent. The value we get here after finishing the extent sharedness 181 * check may be smaller than reality, but if it ends up being greater 182 * than 1, then we know for sure the inode has multiple file extent 183 * items that point to our inode, and we can safely assume it's useful 184 * to cache the sharedness check result. 185 */ 186 int self_ref_count; 187 bool have_delayed_delete_refs; 188 }; 189 190 static inline int extent_is_shared(struct share_check *sc) 191 { 192 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 193 } 194 195 static struct kmem_cache *btrfs_prelim_ref_cache; 196 197 int __init btrfs_prelim_ref_init(void) 198 { 199 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 200 sizeof(struct prelim_ref), 201 0, 202 SLAB_MEM_SPREAD, 203 NULL); 204 if (!btrfs_prelim_ref_cache) 205 return -ENOMEM; 206 return 0; 207 } 208 209 void __cold btrfs_prelim_ref_exit(void) 210 { 211 kmem_cache_destroy(btrfs_prelim_ref_cache); 212 } 213 214 static void free_pref(struct prelim_ref *ref) 215 { 216 kmem_cache_free(btrfs_prelim_ref_cache, ref); 217 } 218 219 /* 220 * Return 0 when both refs are for the same block (and can be merged). 221 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 222 * indicates a 'higher' block. 223 */ 224 static int prelim_ref_compare(struct prelim_ref *ref1, 225 struct prelim_ref *ref2) 226 { 227 if (ref1->level < ref2->level) 228 return -1; 229 if (ref1->level > ref2->level) 230 return 1; 231 if (ref1->root_id < ref2->root_id) 232 return -1; 233 if (ref1->root_id > ref2->root_id) 234 return 1; 235 if (ref1->key_for_search.type < ref2->key_for_search.type) 236 return -1; 237 if (ref1->key_for_search.type > ref2->key_for_search.type) 238 return 1; 239 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 240 return -1; 241 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 242 return 1; 243 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 244 return -1; 245 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 246 return 1; 247 if (ref1->parent < ref2->parent) 248 return -1; 249 if (ref1->parent > ref2->parent) 250 return 1; 251 252 return 0; 253 } 254 255 static void update_share_count(struct share_check *sc, int oldcount, 256 int newcount, struct prelim_ref *newref) 257 { 258 if ((!sc) || (oldcount == 0 && newcount < 1)) 259 return; 260 261 if (oldcount > 0 && newcount < 1) 262 sc->share_count--; 263 else if (oldcount < 1 && newcount > 0) 264 sc->share_count++; 265 266 if (newref->root_id == sc->root->root_key.objectid && 267 newref->wanted_disk_byte == sc->data_bytenr && 268 newref->key_for_search.objectid == sc->inum) 269 sc->self_ref_count += newref->count; 270 } 271 272 /* 273 * Add @newref to the @root rbtree, merging identical refs. 274 * 275 * Callers should assume that newref has been freed after calling. 276 */ 277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 278 struct preftree *preftree, 279 struct prelim_ref *newref, 280 struct share_check *sc) 281 { 282 struct rb_root_cached *root; 283 struct rb_node **p; 284 struct rb_node *parent = NULL; 285 struct prelim_ref *ref; 286 int result; 287 bool leftmost = true; 288 289 root = &preftree->root; 290 p = &root->rb_root.rb_node; 291 292 while (*p) { 293 parent = *p; 294 ref = rb_entry(parent, struct prelim_ref, rbnode); 295 result = prelim_ref_compare(ref, newref); 296 if (result < 0) { 297 p = &(*p)->rb_left; 298 } else if (result > 0) { 299 p = &(*p)->rb_right; 300 leftmost = false; 301 } else { 302 /* Identical refs, merge them and free @newref */ 303 struct extent_inode_elem *eie = ref->inode_list; 304 305 while (eie && eie->next) 306 eie = eie->next; 307 308 if (!eie) 309 ref->inode_list = newref->inode_list; 310 else 311 eie->next = newref->inode_list; 312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 313 preftree->count); 314 /* 315 * A delayed ref can have newref->count < 0. 316 * The ref->count is updated to follow any 317 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 318 */ 319 update_share_count(sc, ref->count, 320 ref->count + newref->count, newref); 321 ref->count += newref->count; 322 free_pref(newref); 323 return; 324 } 325 } 326 327 update_share_count(sc, 0, newref->count, newref); 328 preftree->count++; 329 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 330 rb_link_node(&newref->rbnode, parent, p); 331 rb_insert_color_cached(&newref->rbnode, root, leftmost); 332 } 333 334 /* 335 * Release the entire tree. We don't care about internal consistency so 336 * just free everything and then reset the tree root. 337 */ 338 static void prelim_release(struct preftree *preftree) 339 { 340 struct prelim_ref *ref, *next_ref; 341 342 rbtree_postorder_for_each_entry_safe(ref, next_ref, 343 &preftree->root.rb_root, rbnode) { 344 free_inode_elem_list(ref->inode_list); 345 free_pref(ref); 346 } 347 348 preftree->root = RB_ROOT_CACHED; 349 preftree->count = 0; 350 } 351 352 /* 353 * the rules for all callers of this function are: 354 * - obtaining the parent is the goal 355 * - if you add a key, you must know that it is a correct key 356 * - if you cannot add the parent or a correct key, then we will look into the 357 * block later to set a correct key 358 * 359 * delayed refs 360 * ============ 361 * backref type | shared | indirect | shared | indirect 362 * information | tree | tree | data | data 363 * --------------------+--------+----------+--------+---------- 364 * parent logical | y | - | - | - 365 * key to resolve | - | y | y | y 366 * tree block logical | - | - | - | - 367 * root for resolving | y | y | y | y 368 * 369 * - column 1: we've the parent -> done 370 * - column 2, 3, 4: we use the key to find the parent 371 * 372 * on disk refs (inline or keyed) 373 * ============================== 374 * backref type | shared | indirect | shared | indirect 375 * information | tree | tree | data | data 376 * --------------------+--------+----------+--------+---------- 377 * parent logical | y | - | y | - 378 * key to resolve | - | - | - | y 379 * tree block logical | y | y | y | y 380 * root for resolving | - | y | y | y 381 * 382 * - column 1, 3: we've the parent -> done 383 * - column 2: we take the first key from the block to find the parent 384 * (see add_missing_keys) 385 * - column 4: we use the key to find the parent 386 * 387 * additional information that's available but not required to find the parent 388 * block might help in merging entries to gain some speed. 389 */ 390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 391 struct preftree *preftree, u64 root_id, 392 const struct btrfs_key *key, int level, u64 parent, 393 u64 wanted_disk_byte, int count, 394 struct share_check *sc, gfp_t gfp_mask) 395 { 396 struct prelim_ref *ref; 397 398 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 399 return 0; 400 401 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 402 if (!ref) 403 return -ENOMEM; 404 405 ref->root_id = root_id; 406 if (key) 407 ref->key_for_search = *key; 408 else 409 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 410 411 ref->inode_list = NULL; 412 ref->level = level; 413 ref->count = count; 414 ref->parent = parent; 415 ref->wanted_disk_byte = wanted_disk_byte; 416 prelim_ref_insert(fs_info, preftree, ref, sc); 417 return extent_is_shared(sc); 418 } 419 420 /* direct refs use root == 0, key == NULL */ 421 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 422 struct preftrees *preftrees, int level, u64 parent, 423 u64 wanted_disk_byte, int count, 424 struct share_check *sc, gfp_t gfp_mask) 425 { 426 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 427 parent, wanted_disk_byte, count, sc, gfp_mask); 428 } 429 430 /* indirect refs use parent == 0 */ 431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 432 struct preftrees *preftrees, u64 root_id, 433 const struct btrfs_key *key, int level, 434 u64 wanted_disk_byte, int count, 435 struct share_check *sc, gfp_t gfp_mask) 436 { 437 struct preftree *tree = &preftrees->indirect; 438 439 if (!key) 440 tree = &preftrees->indirect_missing_keys; 441 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 442 wanted_disk_byte, count, sc, gfp_mask); 443 } 444 445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 446 { 447 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 448 struct rb_node *parent = NULL; 449 struct prelim_ref *ref = NULL; 450 struct prelim_ref target = {}; 451 int result; 452 453 target.parent = bytenr; 454 455 while (*p) { 456 parent = *p; 457 ref = rb_entry(parent, struct prelim_ref, rbnode); 458 result = prelim_ref_compare(ref, &target); 459 460 if (result < 0) 461 p = &(*p)->rb_left; 462 else if (result > 0) 463 p = &(*p)->rb_right; 464 else 465 return 1; 466 } 467 return 0; 468 } 469 470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 471 struct btrfs_root *root, struct btrfs_path *path, 472 struct ulist *parents, 473 struct preftrees *preftrees, struct prelim_ref *ref, 474 int level) 475 { 476 int ret = 0; 477 int slot; 478 struct extent_buffer *eb; 479 struct btrfs_key key; 480 struct btrfs_key *key_for_search = &ref->key_for_search; 481 struct btrfs_file_extent_item *fi; 482 struct extent_inode_elem *eie = NULL, *old = NULL; 483 u64 disk_byte; 484 u64 wanted_disk_byte = ref->wanted_disk_byte; 485 u64 count = 0; 486 u64 data_offset; 487 u8 type; 488 489 if (level != 0) { 490 eb = path->nodes[level]; 491 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 492 if (ret < 0) 493 return ret; 494 return 0; 495 } 496 497 /* 498 * 1. We normally enter this function with the path already pointing to 499 * the first item to check. But sometimes, we may enter it with 500 * slot == nritems. 501 * 2. We are searching for normal backref but bytenr of this leaf 502 * matches shared data backref 503 * 3. The leaf owner is not equal to the root we are searching 504 * 505 * For these cases, go to the next leaf before we continue. 506 */ 507 eb = path->nodes[0]; 508 if (path->slots[0] >= btrfs_header_nritems(eb) || 509 is_shared_data_backref(preftrees, eb->start) || 510 ref->root_id != btrfs_header_owner(eb)) { 511 if (ctx->time_seq == BTRFS_SEQ_LAST) 512 ret = btrfs_next_leaf(root, path); 513 else 514 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 515 } 516 517 while (!ret && count < ref->count) { 518 eb = path->nodes[0]; 519 slot = path->slots[0]; 520 521 btrfs_item_key_to_cpu(eb, &key, slot); 522 523 if (key.objectid != key_for_search->objectid || 524 key.type != BTRFS_EXTENT_DATA_KEY) 525 break; 526 527 /* 528 * We are searching for normal backref but bytenr of this leaf 529 * matches shared data backref, OR 530 * the leaf owner is not equal to the root we are searching for 531 */ 532 if (slot == 0 && 533 (is_shared_data_backref(preftrees, eb->start) || 534 ref->root_id != btrfs_header_owner(eb))) { 535 if (ctx->time_seq == BTRFS_SEQ_LAST) 536 ret = btrfs_next_leaf(root, path); 537 else 538 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 539 continue; 540 } 541 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 542 type = btrfs_file_extent_type(eb, fi); 543 if (type == BTRFS_FILE_EXTENT_INLINE) 544 goto next; 545 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 546 data_offset = btrfs_file_extent_offset(eb, fi); 547 548 if (disk_byte == wanted_disk_byte) { 549 eie = NULL; 550 old = NULL; 551 if (ref->key_for_search.offset == key.offset - data_offset) 552 count++; 553 else 554 goto next; 555 if (!ctx->ignore_extent_item_pos) { 556 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 557 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 558 ret < 0) 559 break; 560 } 561 if (ret > 0) 562 goto next; 563 ret = ulist_add_merge_ptr(parents, eb->start, 564 eie, (void **)&old, GFP_NOFS); 565 if (ret < 0) 566 break; 567 if (!ret && !ctx->ignore_extent_item_pos) { 568 while (old->next) 569 old = old->next; 570 old->next = eie; 571 } 572 eie = NULL; 573 } 574 next: 575 if (ctx->time_seq == BTRFS_SEQ_LAST) 576 ret = btrfs_next_item(root, path); 577 else 578 ret = btrfs_next_old_item(root, path, ctx->time_seq); 579 } 580 581 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 582 free_inode_elem_list(eie); 583 else if (ret > 0) 584 ret = 0; 585 586 return ret; 587 } 588 589 /* 590 * resolve an indirect backref in the form (root_id, key, level) 591 * to a logical address 592 */ 593 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 594 struct btrfs_path *path, 595 struct preftrees *preftrees, 596 struct prelim_ref *ref, struct ulist *parents) 597 { 598 struct btrfs_root *root; 599 struct extent_buffer *eb; 600 int ret = 0; 601 int root_level; 602 int level = ref->level; 603 struct btrfs_key search_key = ref->key_for_search; 604 605 /* 606 * If we're search_commit_root we could possibly be holding locks on 607 * other tree nodes. This happens when qgroups does backref walks when 608 * adding new delayed refs. To deal with this we need to look in cache 609 * for the root, and if we don't find it then we need to search the 610 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 611 * here. 612 */ 613 if (path->search_commit_root) 614 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 615 else 616 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 617 if (IS_ERR(root)) { 618 ret = PTR_ERR(root); 619 goto out_free; 620 } 621 622 if (!path->search_commit_root && 623 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (btrfs_is_testing(ctx->fs_info)) { 629 ret = -ENOENT; 630 goto out; 631 } 632 633 if (path->search_commit_root) 634 root_level = btrfs_header_level(root->commit_root); 635 else if (ctx->time_seq == BTRFS_SEQ_LAST) 636 root_level = btrfs_header_level(root->node); 637 else 638 root_level = btrfs_old_root_level(root, ctx->time_seq); 639 640 if (root_level + 1 == level) 641 goto out; 642 643 /* 644 * We can often find data backrefs with an offset that is too large 645 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 646 * subtracting a file's offset with the data offset of its 647 * corresponding extent data item. This can happen for example in the 648 * clone ioctl. 649 * 650 * So if we detect such case we set the search key's offset to zero to 651 * make sure we will find the matching file extent item at 652 * add_all_parents(), otherwise we will miss it because the offset 653 * taken form the backref is much larger then the offset of the file 654 * extent item. This can make us scan a very large number of file 655 * extent items, but at least it will not make us miss any. 656 * 657 * This is an ugly workaround for a behaviour that should have never 658 * existed, but it does and a fix for the clone ioctl would touch a lot 659 * of places, cause backwards incompatibility and would not fix the 660 * problem for extents cloned with older kernels. 661 */ 662 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 663 search_key.offset >= LLONG_MAX) 664 search_key.offset = 0; 665 path->lowest_level = level; 666 if (ctx->time_seq == BTRFS_SEQ_LAST) 667 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 668 else 669 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 670 671 btrfs_debug(ctx->fs_info, 672 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 673 ref->root_id, level, ref->count, ret, 674 ref->key_for_search.objectid, ref->key_for_search.type, 675 ref->key_for_search.offset); 676 if (ret < 0) 677 goto out; 678 679 eb = path->nodes[level]; 680 while (!eb) { 681 if (WARN_ON(!level)) { 682 ret = 1; 683 goto out; 684 } 685 level--; 686 eb = path->nodes[level]; 687 } 688 689 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 690 out: 691 btrfs_put_root(root); 692 out_free: 693 path->lowest_level = 0; 694 btrfs_release_path(path); 695 return ret; 696 } 697 698 static struct extent_inode_elem * 699 unode_aux_to_inode_list(struct ulist_node *node) 700 { 701 if (!node) 702 return NULL; 703 return (struct extent_inode_elem *)(uintptr_t)node->aux; 704 } 705 706 static void free_leaf_list(struct ulist *ulist) 707 { 708 struct ulist_node *node; 709 struct ulist_iterator uiter; 710 711 ULIST_ITER_INIT(&uiter); 712 while ((node = ulist_next(ulist, &uiter))) 713 free_inode_elem_list(unode_aux_to_inode_list(node)); 714 715 ulist_free(ulist); 716 } 717 718 /* 719 * We maintain three separate rbtrees: one for direct refs, one for 720 * indirect refs which have a key, and one for indirect refs which do not 721 * have a key. Each tree does merge on insertion. 722 * 723 * Once all of the references are located, we iterate over the tree of 724 * indirect refs with missing keys. An appropriate key is located and 725 * the ref is moved onto the tree for indirect refs. After all missing 726 * keys are thus located, we iterate over the indirect ref tree, resolve 727 * each reference, and then insert the resolved reference onto the 728 * direct tree (merging there too). 729 * 730 * New backrefs (i.e., for parent nodes) are added to the appropriate 731 * rbtree as they are encountered. The new backrefs are subsequently 732 * resolved as above. 733 */ 734 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 735 struct btrfs_path *path, 736 struct preftrees *preftrees, 737 struct share_check *sc) 738 { 739 int err; 740 int ret = 0; 741 struct ulist *parents; 742 struct ulist_node *node; 743 struct ulist_iterator uiter; 744 struct rb_node *rnode; 745 746 parents = ulist_alloc(GFP_NOFS); 747 if (!parents) 748 return -ENOMEM; 749 750 /* 751 * We could trade memory usage for performance here by iterating 752 * the tree, allocating new refs for each insertion, and then 753 * freeing the entire indirect tree when we're done. In some test 754 * cases, the tree can grow quite large (~200k objects). 755 */ 756 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 757 struct prelim_ref *ref; 758 759 ref = rb_entry(rnode, struct prelim_ref, rbnode); 760 if (WARN(ref->parent, 761 "BUG: direct ref found in indirect tree")) { 762 ret = -EINVAL; 763 goto out; 764 } 765 766 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 767 preftrees->indirect.count--; 768 769 if (ref->count == 0) { 770 free_pref(ref); 771 continue; 772 } 773 774 if (sc && ref->root_id != sc->root->root_key.objectid) { 775 free_pref(ref); 776 ret = BACKREF_FOUND_SHARED; 777 goto out; 778 } 779 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 780 /* 781 * we can only tolerate ENOENT,otherwise,we should catch error 782 * and return directly. 783 */ 784 if (err == -ENOENT) { 785 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 786 NULL); 787 continue; 788 } else if (err) { 789 free_pref(ref); 790 ret = err; 791 goto out; 792 } 793 794 /* we put the first parent into the ref at hand */ 795 ULIST_ITER_INIT(&uiter); 796 node = ulist_next(parents, &uiter); 797 ref->parent = node ? node->val : 0; 798 ref->inode_list = unode_aux_to_inode_list(node); 799 800 /* Add a prelim_ref(s) for any other parent(s). */ 801 while ((node = ulist_next(parents, &uiter))) { 802 struct prelim_ref *new_ref; 803 804 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 805 GFP_NOFS); 806 if (!new_ref) { 807 free_pref(ref); 808 ret = -ENOMEM; 809 goto out; 810 } 811 memcpy(new_ref, ref, sizeof(*ref)); 812 new_ref->parent = node->val; 813 new_ref->inode_list = unode_aux_to_inode_list(node); 814 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 815 new_ref, NULL); 816 } 817 818 /* 819 * Now it's a direct ref, put it in the direct tree. We must 820 * do this last because the ref could be merged/freed here. 821 */ 822 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 823 824 ulist_reinit(parents); 825 cond_resched(); 826 } 827 out: 828 /* 829 * We may have inode lists attached to refs in the parents ulist, so we 830 * must free them before freeing the ulist and its refs. 831 */ 832 free_leaf_list(parents); 833 return ret; 834 } 835 836 /* 837 * read tree blocks and add keys where required. 838 */ 839 static int add_missing_keys(struct btrfs_fs_info *fs_info, 840 struct preftrees *preftrees, bool lock) 841 { 842 struct prelim_ref *ref; 843 struct extent_buffer *eb; 844 struct preftree *tree = &preftrees->indirect_missing_keys; 845 struct rb_node *node; 846 847 while ((node = rb_first_cached(&tree->root))) { 848 struct btrfs_tree_parent_check check = { 0 }; 849 850 ref = rb_entry(node, struct prelim_ref, rbnode); 851 rb_erase_cached(node, &tree->root); 852 853 BUG_ON(ref->parent); /* should not be a direct ref */ 854 BUG_ON(ref->key_for_search.type); 855 BUG_ON(!ref->wanted_disk_byte); 856 857 check.level = ref->level - 1; 858 check.owner_root = ref->root_id; 859 860 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 861 if (IS_ERR(eb)) { 862 free_pref(ref); 863 return PTR_ERR(eb); 864 } 865 if (!extent_buffer_uptodate(eb)) { 866 free_pref(ref); 867 free_extent_buffer(eb); 868 return -EIO; 869 } 870 871 if (lock) 872 btrfs_tree_read_lock(eb); 873 if (btrfs_header_level(eb) == 0) 874 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 875 else 876 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 877 if (lock) 878 btrfs_tree_read_unlock(eb); 879 free_extent_buffer(eb); 880 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 881 cond_resched(); 882 } 883 return 0; 884 } 885 886 /* 887 * add all currently queued delayed refs from this head whose seq nr is 888 * smaller or equal that seq to the list 889 */ 890 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 891 struct btrfs_delayed_ref_head *head, u64 seq, 892 struct preftrees *preftrees, struct share_check *sc) 893 { 894 struct btrfs_delayed_ref_node *node; 895 struct btrfs_key key; 896 struct rb_node *n; 897 int count; 898 int ret = 0; 899 900 spin_lock(&head->lock); 901 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 902 node = rb_entry(n, struct btrfs_delayed_ref_node, 903 ref_node); 904 if (node->seq > seq) 905 continue; 906 907 switch (node->action) { 908 case BTRFS_ADD_DELAYED_EXTENT: 909 case BTRFS_UPDATE_DELAYED_HEAD: 910 WARN_ON(1); 911 continue; 912 case BTRFS_ADD_DELAYED_REF: 913 count = node->ref_mod; 914 break; 915 case BTRFS_DROP_DELAYED_REF: 916 count = node->ref_mod * -1; 917 break; 918 default: 919 BUG(); 920 } 921 switch (node->type) { 922 case BTRFS_TREE_BLOCK_REF_KEY: { 923 /* NORMAL INDIRECT METADATA backref */ 924 struct btrfs_delayed_tree_ref *ref; 925 struct btrfs_key *key_ptr = NULL; 926 927 if (head->extent_op && head->extent_op->update_key) { 928 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 929 key_ptr = &key; 930 } 931 932 ref = btrfs_delayed_node_to_tree_ref(node); 933 ret = add_indirect_ref(fs_info, preftrees, ref->root, 934 key_ptr, ref->level + 1, 935 node->bytenr, count, sc, 936 GFP_ATOMIC); 937 break; 938 } 939 case BTRFS_SHARED_BLOCK_REF_KEY: { 940 /* SHARED DIRECT METADATA backref */ 941 struct btrfs_delayed_tree_ref *ref; 942 943 ref = btrfs_delayed_node_to_tree_ref(node); 944 945 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 946 ref->parent, node->bytenr, count, 947 sc, GFP_ATOMIC); 948 break; 949 } 950 case BTRFS_EXTENT_DATA_REF_KEY: { 951 /* NORMAL INDIRECT DATA backref */ 952 struct btrfs_delayed_data_ref *ref; 953 ref = btrfs_delayed_node_to_data_ref(node); 954 955 key.objectid = ref->objectid; 956 key.type = BTRFS_EXTENT_DATA_KEY; 957 key.offset = ref->offset; 958 959 /* 960 * If we have a share check context and a reference for 961 * another inode, we can't exit immediately. This is 962 * because even if this is a BTRFS_ADD_DELAYED_REF 963 * reference we may find next a BTRFS_DROP_DELAYED_REF 964 * which cancels out this ADD reference. 965 * 966 * If this is a DROP reference and there was no previous 967 * ADD reference, then we need to signal that when we 968 * process references from the extent tree (through 969 * add_inline_refs() and add_keyed_refs()), we should 970 * not exit early if we find a reference for another 971 * inode, because one of the delayed DROP references 972 * may cancel that reference in the extent tree. 973 */ 974 if (sc && count < 0) 975 sc->have_delayed_delete_refs = true; 976 977 ret = add_indirect_ref(fs_info, preftrees, ref->root, 978 &key, 0, node->bytenr, count, sc, 979 GFP_ATOMIC); 980 break; 981 } 982 case BTRFS_SHARED_DATA_REF_KEY: { 983 /* SHARED DIRECT FULL backref */ 984 struct btrfs_delayed_data_ref *ref; 985 986 ref = btrfs_delayed_node_to_data_ref(node); 987 988 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 989 node->bytenr, count, sc, 990 GFP_ATOMIC); 991 break; 992 } 993 default: 994 WARN_ON(1); 995 } 996 /* 997 * We must ignore BACKREF_FOUND_SHARED until all delayed 998 * refs have been checked. 999 */ 1000 if (ret && (ret != BACKREF_FOUND_SHARED)) 1001 break; 1002 } 1003 if (!ret) 1004 ret = extent_is_shared(sc); 1005 1006 spin_unlock(&head->lock); 1007 return ret; 1008 } 1009 1010 /* 1011 * add all inline backrefs for bytenr to the list 1012 * 1013 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1014 */ 1015 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1016 struct btrfs_path *path, 1017 int *info_level, struct preftrees *preftrees, 1018 struct share_check *sc) 1019 { 1020 int ret = 0; 1021 int slot; 1022 struct extent_buffer *leaf; 1023 struct btrfs_key key; 1024 struct btrfs_key found_key; 1025 unsigned long ptr; 1026 unsigned long end; 1027 struct btrfs_extent_item *ei; 1028 u64 flags; 1029 u64 item_size; 1030 1031 /* 1032 * enumerate all inline refs 1033 */ 1034 leaf = path->nodes[0]; 1035 slot = path->slots[0]; 1036 1037 item_size = btrfs_item_size(leaf, slot); 1038 BUG_ON(item_size < sizeof(*ei)); 1039 1040 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1041 1042 if (ctx->check_extent_item) { 1043 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 flags = btrfs_extent_flags(leaf, ei); 1049 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1050 1051 ptr = (unsigned long)(ei + 1); 1052 end = (unsigned long)ei + item_size; 1053 1054 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1055 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1056 struct btrfs_tree_block_info *info; 1057 1058 info = (struct btrfs_tree_block_info *)ptr; 1059 *info_level = btrfs_tree_block_level(leaf, info); 1060 ptr += sizeof(struct btrfs_tree_block_info); 1061 BUG_ON(ptr > end); 1062 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1063 *info_level = found_key.offset; 1064 } else { 1065 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1066 } 1067 1068 while (ptr < end) { 1069 struct btrfs_extent_inline_ref *iref; 1070 u64 offset; 1071 int type; 1072 1073 iref = (struct btrfs_extent_inline_ref *)ptr; 1074 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1075 BTRFS_REF_TYPE_ANY); 1076 if (type == BTRFS_REF_TYPE_INVALID) 1077 return -EUCLEAN; 1078 1079 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1080 1081 switch (type) { 1082 case BTRFS_SHARED_BLOCK_REF_KEY: 1083 ret = add_direct_ref(ctx->fs_info, preftrees, 1084 *info_level + 1, offset, 1085 ctx->bytenr, 1, NULL, GFP_NOFS); 1086 break; 1087 case BTRFS_SHARED_DATA_REF_KEY: { 1088 struct btrfs_shared_data_ref *sdref; 1089 int count; 1090 1091 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1092 count = btrfs_shared_data_ref_count(leaf, sdref); 1093 1094 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1095 ctx->bytenr, count, sc, GFP_NOFS); 1096 break; 1097 } 1098 case BTRFS_TREE_BLOCK_REF_KEY: 1099 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1100 NULL, *info_level + 1, 1101 ctx->bytenr, 1, NULL, GFP_NOFS); 1102 break; 1103 case BTRFS_EXTENT_DATA_REF_KEY: { 1104 struct btrfs_extent_data_ref *dref; 1105 int count; 1106 u64 root; 1107 1108 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1109 count = btrfs_extent_data_ref_count(leaf, dref); 1110 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1111 dref); 1112 key.type = BTRFS_EXTENT_DATA_KEY; 1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1114 1115 if (sc && key.objectid != sc->inum && 1116 !sc->have_delayed_delete_refs) { 1117 ret = BACKREF_FOUND_SHARED; 1118 break; 1119 } 1120 1121 root = btrfs_extent_data_ref_root(leaf, dref); 1122 1123 if (!ctx->skip_data_ref || 1124 !ctx->skip_data_ref(root, key.objectid, key.offset, 1125 ctx->user_ctx)) 1126 ret = add_indirect_ref(ctx->fs_info, preftrees, 1127 root, &key, 0, ctx->bytenr, 1128 count, sc, GFP_NOFS); 1129 break; 1130 } 1131 default: 1132 WARN_ON(1); 1133 } 1134 if (ret) 1135 return ret; 1136 ptr += btrfs_extent_inline_ref_size(type); 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * add all non-inline backrefs for bytenr to the list 1144 * 1145 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1146 */ 1147 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1148 struct btrfs_root *extent_root, 1149 struct btrfs_path *path, 1150 int info_level, struct preftrees *preftrees, 1151 struct share_check *sc) 1152 { 1153 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1154 int ret; 1155 int slot; 1156 struct extent_buffer *leaf; 1157 struct btrfs_key key; 1158 1159 while (1) { 1160 ret = btrfs_next_item(extent_root, path); 1161 if (ret < 0) 1162 break; 1163 if (ret) { 1164 ret = 0; 1165 break; 1166 } 1167 1168 slot = path->slots[0]; 1169 leaf = path->nodes[0]; 1170 btrfs_item_key_to_cpu(leaf, &key, slot); 1171 1172 if (key.objectid != ctx->bytenr) 1173 break; 1174 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1175 continue; 1176 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1177 break; 1178 1179 switch (key.type) { 1180 case BTRFS_SHARED_BLOCK_REF_KEY: 1181 /* SHARED DIRECT METADATA backref */ 1182 ret = add_direct_ref(fs_info, preftrees, 1183 info_level + 1, key.offset, 1184 ctx->bytenr, 1, NULL, GFP_NOFS); 1185 break; 1186 case BTRFS_SHARED_DATA_REF_KEY: { 1187 /* SHARED DIRECT FULL backref */ 1188 struct btrfs_shared_data_ref *sdref; 1189 int count; 1190 1191 sdref = btrfs_item_ptr(leaf, slot, 1192 struct btrfs_shared_data_ref); 1193 count = btrfs_shared_data_ref_count(leaf, sdref); 1194 ret = add_direct_ref(fs_info, preftrees, 0, 1195 key.offset, ctx->bytenr, count, 1196 sc, GFP_NOFS); 1197 break; 1198 } 1199 case BTRFS_TREE_BLOCK_REF_KEY: 1200 /* NORMAL INDIRECT METADATA backref */ 1201 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1202 NULL, info_level + 1, ctx->bytenr, 1203 1, NULL, GFP_NOFS); 1204 break; 1205 case BTRFS_EXTENT_DATA_REF_KEY: { 1206 /* NORMAL INDIRECT DATA backref */ 1207 struct btrfs_extent_data_ref *dref; 1208 int count; 1209 u64 root; 1210 1211 dref = btrfs_item_ptr(leaf, slot, 1212 struct btrfs_extent_data_ref); 1213 count = btrfs_extent_data_ref_count(leaf, dref); 1214 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1215 dref); 1216 key.type = BTRFS_EXTENT_DATA_KEY; 1217 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1218 1219 if (sc && key.objectid != sc->inum && 1220 !sc->have_delayed_delete_refs) { 1221 ret = BACKREF_FOUND_SHARED; 1222 break; 1223 } 1224 1225 root = btrfs_extent_data_ref_root(leaf, dref); 1226 1227 if (!ctx->skip_data_ref || 1228 !ctx->skip_data_ref(root, key.objectid, key.offset, 1229 ctx->user_ctx)) 1230 ret = add_indirect_ref(fs_info, preftrees, root, 1231 &key, 0, ctx->bytenr, 1232 count, sc, GFP_NOFS); 1233 break; 1234 } 1235 default: 1236 WARN_ON(1); 1237 } 1238 if (ret) 1239 return ret; 1240 1241 } 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * The caller has joined a transaction or is holding a read lock on the 1248 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1249 * snapshot field changing while updating or checking the cache. 1250 */ 1251 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1252 struct btrfs_root *root, 1253 u64 bytenr, int level, bool *is_shared) 1254 { 1255 struct btrfs_backref_shared_cache_entry *entry; 1256 1257 if (!ctx->use_path_cache) 1258 return false; 1259 1260 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1261 return false; 1262 1263 /* 1264 * Level -1 is used for the data extent, which is not reliable to cache 1265 * because its reference count can increase or decrease without us 1266 * realizing. We cache results only for extent buffers that lead from 1267 * the root node down to the leaf with the file extent item. 1268 */ 1269 ASSERT(level >= 0); 1270 1271 entry = &ctx->path_cache_entries[level]; 1272 1273 /* Unused cache entry or being used for some other extent buffer. */ 1274 if (entry->bytenr != bytenr) 1275 return false; 1276 1277 /* 1278 * We cached a false result, but the last snapshot generation of the 1279 * root changed, so we now have a snapshot. Don't trust the result. 1280 */ 1281 if (!entry->is_shared && 1282 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1283 return false; 1284 1285 /* 1286 * If we cached a true result and the last generation used for dropping 1287 * a root changed, we can not trust the result, because the dropped root 1288 * could be a snapshot sharing this extent buffer. 1289 */ 1290 if (entry->is_shared && 1291 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info)) 1292 return false; 1293 1294 *is_shared = entry->is_shared; 1295 /* 1296 * If the node at this level is shared, than all nodes below are also 1297 * shared. Currently some of the nodes below may be marked as not shared 1298 * because we have just switched from one leaf to another, and switched 1299 * also other nodes above the leaf and below the current level, so mark 1300 * them as shared. 1301 */ 1302 if (*is_shared) { 1303 for (int i = 0; i < level; i++) { 1304 ctx->path_cache_entries[i].is_shared = true; 1305 ctx->path_cache_entries[i].gen = entry->gen; 1306 } 1307 } 1308 1309 return true; 1310 } 1311 1312 /* 1313 * The caller has joined a transaction or is holding a read lock on the 1314 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1315 * snapshot field changing while updating or checking the cache. 1316 */ 1317 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1318 struct btrfs_root *root, 1319 u64 bytenr, int level, bool is_shared) 1320 { 1321 struct btrfs_backref_shared_cache_entry *entry; 1322 u64 gen; 1323 1324 if (!ctx->use_path_cache) 1325 return; 1326 1327 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1328 return; 1329 1330 /* 1331 * Level -1 is used for the data extent, which is not reliable to cache 1332 * because its reference count can increase or decrease without us 1333 * realizing. We cache results only for extent buffers that lead from 1334 * the root node down to the leaf with the file extent item. 1335 */ 1336 ASSERT(level >= 0); 1337 1338 if (is_shared) 1339 gen = btrfs_get_last_root_drop_gen(root->fs_info); 1340 else 1341 gen = btrfs_root_last_snapshot(&root->root_item); 1342 1343 entry = &ctx->path_cache_entries[level]; 1344 entry->bytenr = bytenr; 1345 entry->is_shared = is_shared; 1346 entry->gen = gen; 1347 1348 /* 1349 * If we found an extent buffer is shared, set the cache result for all 1350 * extent buffers below it to true. As nodes in the path are COWed, 1351 * their sharedness is moved to their children, and if a leaf is COWed, 1352 * then the sharedness of a data extent becomes direct, the refcount of 1353 * data extent is increased in the extent item at the extent tree. 1354 */ 1355 if (is_shared) { 1356 for (int i = 0; i < level; i++) { 1357 entry = &ctx->path_cache_entries[i]; 1358 entry->is_shared = is_shared; 1359 entry->gen = gen; 1360 } 1361 } 1362 } 1363 1364 /* 1365 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1366 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1367 * indirect refs to their parent bytenr. 1368 * When roots are found, they're added to the roots list 1369 * 1370 * @ctx: Backref walking context object, must be not NULL. 1371 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1372 * shared extent is detected. 1373 * 1374 * Otherwise this returns 0 for success and <0 for an error. 1375 * 1376 * FIXME some caching might speed things up 1377 */ 1378 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1379 struct share_check *sc) 1380 { 1381 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1382 struct btrfs_key key; 1383 struct btrfs_path *path; 1384 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1385 struct btrfs_delayed_ref_head *head; 1386 int info_level = 0; 1387 int ret; 1388 struct prelim_ref *ref; 1389 struct rb_node *node; 1390 struct extent_inode_elem *eie = NULL; 1391 struct preftrees preftrees = { 1392 .direct = PREFTREE_INIT, 1393 .indirect = PREFTREE_INIT, 1394 .indirect_missing_keys = PREFTREE_INIT 1395 }; 1396 1397 /* Roots ulist is not needed when using a sharedness check context. */ 1398 if (sc) 1399 ASSERT(ctx->roots == NULL); 1400 1401 key.objectid = ctx->bytenr; 1402 key.offset = (u64)-1; 1403 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1404 key.type = BTRFS_METADATA_ITEM_KEY; 1405 else 1406 key.type = BTRFS_EXTENT_ITEM_KEY; 1407 1408 path = btrfs_alloc_path(); 1409 if (!path) 1410 return -ENOMEM; 1411 if (!ctx->trans) { 1412 path->search_commit_root = 1; 1413 path->skip_locking = 1; 1414 } 1415 1416 if (ctx->time_seq == BTRFS_SEQ_LAST) 1417 path->skip_locking = 1; 1418 1419 again: 1420 head = NULL; 1421 1422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1423 if (ret < 0) 1424 goto out; 1425 if (ret == 0) { 1426 /* This shouldn't happen, indicates a bug or fs corruption. */ 1427 ASSERT(ret != 0); 1428 ret = -EUCLEAN; 1429 goto out; 1430 } 1431 1432 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1433 ctx->time_seq != BTRFS_SEQ_LAST) { 1434 /* 1435 * We have a specific time_seq we care about and trans which 1436 * means we have the path lock, we need to grab the ref head and 1437 * lock it so we have a consistent view of the refs at the given 1438 * time. 1439 */ 1440 delayed_refs = &ctx->trans->transaction->delayed_refs; 1441 spin_lock(&delayed_refs->lock); 1442 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1443 if (head) { 1444 if (!mutex_trylock(&head->mutex)) { 1445 refcount_inc(&head->refs); 1446 spin_unlock(&delayed_refs->lock); 1447 1448 btrfs_release_path(path); 1449 1450 /* 1451 * Mutex was contended, block until it's 1452 * released and try again 1453 */ 1454 mutex_lock(&head->mutex); 1455 mutex_unlock(&head->mutex); 1456 btrfs_put_delayed_ref_head(head); 1457 goto again; 1458 } 1459 spin_unlock(&delayed_refs->lock); 1460 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1461 &preftrees, sc); 1462 mutex_unlock(&head->mutex); 1463 if (ret) 1464 goto out; 1465 } else { 1466 spin_unlock(&delayed_refs->lock); 1467 } 1468 } 1469 1470 if (path->slots[0]) { 1471 struct extent_buffer *leaf; 1472 int slot; 1473 1474 path->slots[0]--; 1475 leaf = path->nodes[0]; 1476 slot = path->slots[0]; 1477 btrfs_item_key_to_cpu(leaf, &key, slot); 1478 if (key.objectid == ctx->bytenr && 1479 (key.type == BTRFS_EXTENT_ITEM_KEY || 1480 key.type == BTRFS_METADATA_ITEM_KEY)) { 1481 ret = add_inline_refs(ctx, path, &info_level, 1482 &preftrees, sc); 1483 if (ret) 1484 goto out; 1485 ret = add_keyed_refs(ctx, root, path, info_level, 1486 &preftrees, sc); 1487 if (ret) 1488 goto out; 1489 } 1490 } 1491 1492 /* 1493 * If we have a share context and we reached here, it means the extent 1494 * is not directly shared (no multiple reference items for it), 1495 * otherwise we would have exited earlier with a return value of 1496 * BACKREF_FOUND_SHARED after processing delayed references or while 1497 * processing inline or keyed references from the extent tree. 1498 * The extent may however be indirectly shared through shared subtrees 1499 * as a result from creating snapshots, so we determine below what is 1500 * its parent node, in case we are dealing with a metadata extent, or 1501 * what's the leaf (or leaves), from a fs tree, that has a file extent 1502 * item pointing to it in case we are dealing with a data extent. 1503 */ 1504 ASSERT(extent_is_shared(sc) == 0); 1505 1506 /* 1507 * If we are here for a data extent and we have a share_check structure 1508 * it means the data extent is not directly shared (does not have 1509 * multiple reference items), so we have to check if a path in the fs 1510 * tree (going from the root node down to the leaf that has the file 1511 * extent item pointing to the data extent) is shared, that is, if any 1512 * of the extent buffers in the path is referenced by other trees. 1513 */ 1514 if (sc && ctx->bytenr == sc->data_bytenr) { 1515 /* 1516 * If our data extent is from a generation more recent than the 1517 * last generation used to snapshot the root, then we know that 1518 * it can not be shared through subtrees, so we can skip 1519 * resolving indirect references, there's no point in 1520 * determining the extent buffers for the path from the fs tree 1521 * root node down to the leaf that has the file extent item that 1522 * points to the data extent. 1523 */ 1524 if (sc->data_extent_gen > 1525 btrfs_root_last_snapshot(&sc->root->root_item)) { 1526 ret = BACKREF_FOUND_NOT_SHARED; 1527 goto out; 1528 } 1529 1530 /* 1531 * If we are only determining if a data extent is shared or not 1532 * and the corresponding file extent item is located in the same 1533 * leaf as the previous file extent item, we can skip resolving 1534 * indirect references for a data extent, since the fs tree path 1535 * is the same (same leaf, so same path). We skip as long as the 1536 * cached result for the leaf is valid and only if there's only 1537 * one file extent item pointing to the data extent, because in 1538 * the case of multiple file extent items, they may be located 1539 * in different leaves and therefore we have multiple paths. 1540 */ 1541 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1542 sc->self_ref_count == 1) { 1543 bool cached; 1544 bool is_shared; 1545 1546 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1547 sc->ctx->curr_leaf_bytenr, 1548 0, &is_shared); 1549 if (cached) { 1550 if (is_shared) 1551 ret = BACKREF_FOUND_SHARED; 1552 else 1553 ret = BACKREF_FOUND_NOT_SHARED; 1554 goto out; 1555 } 1556 } 1557 } 1558 1559 btrfs_release_path(path); 1560 1561 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1562 if (ret) 1563 goto out; 1564 1565 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1566 1567 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1568 if (ret) 1569 goto out; 1570 1571 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1572 1573 /* 1574 * This walks the tree of merged and resolved refs. Tree blocks are 1575 * read in as needed. Unique entries are added to the ulist, and 1576 * the list of found roots is updated. 1577 * 1578 * We release the entire tree in one go before returning. 1579 */ 1580 node = rb_first_cached(&preftrees.direct.root); 1581 while (node) { 1582 ref = rb_entry(node, struct prelim_ref, rbnode); 1583 node = rb_next(&ref->rbnode); 1584 /* 1585 * ref->count < 0 can happen here if there are delayed 1586 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1587 * prelim_ref_insert() relies on this when merging 1588 * identical refs to keep the overall count correct. 1589 * prelim_ref_insert() will merge only those refs 1590 * which compare identically. Any refs having 1591 * e.g. different offsets would not be merged, 1592 * and would retain their original ref->count < 0. 1593 */ 1594 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1595 /* no parent == root of tree */ 1596 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1597 if (ret < 0) 1598 goto out; 1599 } 1600 if (ref->count && ref->parent) { 1601 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1602 ref->level == 0) { 1603 struct btrfs_tree_parent_check check = { 0 }; 1604 struct extent_buffer *eb; 1605 1606 check.level = ref->level; 1607 1608 eb = read_tree_block(ctx->fs_info, ref->parent, 1609 &check); 1610 if (IS_ERR(eb)) { 1611 ret = PTR_ERR(eb); 1612 goto out; 1613 } 1614 if (!extent_buffer_uptodate(eb)) { 1615 free_extent_buffer(eb); 1616 ret = -EIO; 1617 goto out; 1618 } 1619 1620 if (!path->skip_locking) 1621 btrfs_tree_read_lock(eb); 1622 ret = find_extent_in_eb(ctx, eb, &eie); 1623 if (!path->skip_locking) 1624 btrfs_tree_read_unlock(eb); 1625 free_extent_buffer(eb); 1626 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1627 ret < 0) 1628 goto out; 1629 ref->inode_list = eie; 1630 /* 1631 * We transferred the list ownership to the ref, 1632 * so set to NULL to avoid a double free in case 1633 * an error happens after this. 1634 */ 1635 eie = NULL; 1636 } 1637 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1638 ref->inode_list, 1639 (void **)&eie, GFP_NOFS); 1640 if (ret < 0) 1641 goto out; 1642 if (!ret && !ctx->ignore_extent_item_pos) { 1643 /* 1644 * We've recorded that parent, so we must extend 1645 * its inode list here. 1646 * 1647 * However if there was corruption we may not 1648 * have found an eie, return an error in this 1649 * case. 1650 */ 1651 ASSERT(eie); 1652 if (!eie) { 1653 ret = -EUCLEAN; 1654 goto out; 1655 } 1656 while (eie->next) 1657 eie = eie->next; 1658 eie->next = ref->inode_list; 1659 } 1660 eie = NULL; 1661 /* 1662 * We have transferred the inode list ownership from 1663 * this ref to the ref we added to the 'refs' ulist. 1664 * So set this ref's inode list to NULL to avoid 1665 * use-after-free when our caller uses it or double 1666 * frees in case an error happens before we return. 1667 */ 1668 ref->inode_list = NULL; 1669 } 1670 cond_resched(); 1671 } 1672 1673 out: 1674 btrfs_free_path(path); 1675 1676 prelim_release(&preftrees.direct); 1677 prelim_release(&preftrees.indirect); 1678 prelim_release(&preftrees.indirect_missing_keys); 1679 1680 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1681 free_inode_elem_list(eie); 1682 return ret; 1683 } 1684 1685 /* 1686 * Finds all leaves with a reference to the specified combination of 1687 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1688 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1689 * function. The caller should free the ulist with free_leaf_list() if 1690 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1691 * enough. 1692 * 1693 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1694 */ 1695 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1696 { 1697 int ret; 1698 1699 ASSERT(ctx->refs == NULL); 1700 1701 ctx->refs = ulist_alloc(GFP_NOFS); 1702 if (!ctx->refs) 1703 return -ENOMEM; 1704 1705 ret = find_parent_nodes(ctx, NULL); 1706 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1707 (ret < 0 && ret != -ENOENT)) { 1708 free_leaf_list(ctx->refs); 1709 ctx->refs = NULL; 1710 return ret; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /* 1717 * Walk all backrefs for a given extent to find all roots that reference this 1718 * extent. Walking a backref means finding all extents that reference this 1719 * extent and in turn walk the backrefs of those, too. Naturally this is a 1720 * recursive process, but here it is implemented in an iterative fashion: We 1721 * find all referencing extents for the extent in question and put them on a 1722 * list. In turn, we find all referencing extents for those, further appending 1723 * to the list. The way we iterate the list allows adding more elements after 1724 * the current while iterating. The process stops when we reach the end of the 1725 * list. 1726 * 1727 * Found roots are added to @ctx->roots, which is allocated by this function if 1728 * it points to NULL, in which case the caller is responsible for freeing it 1729 * after it's not needed anymore. 1730 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1731 * ulist to do temporary work, and frees it before returning. 1732 * 1733 * Returns 0 on success, < 0 on error. 1734 */ 1735 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1736 { 1737 const u64 orig_bytenr = ctx->bytenr; 1738 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1739 bool roots_ulist_allocated = false; 1740 struct ulist_iterator uiter; 1741 int ret = 0; 1742 1743 ASSERT(ctx->refs == NULL); 1744 1745 ctx->refs = ulist_alloc(GFP_NOFS); 1746 if (!ctx->refs) 1747 return -ENOMEM; 1748 1749 if (!ctx->roots) { 1750 ctx->roots = ulist_alloc(GFP_NOFS); 1751 if (!ctx->roots) { 1752 ulist_free(ctx->refs); 1753 ctx->refs = NULL; 1754 return -ENOMEM; 1755 } 1756 roots_ulist_allocated = true; 1757 } 1758 1759 ctx->ignore_extent_item_pos = true; 1760 1761 ULIST_ITER_INIT(&uiter); 1762 while (1) { 1763 struct ulist_node *node; 1764 1765 ret = find_parent_nodes(ctx, NULL); 1766 if (ret < 0 && ret != -ENOENT) { 1767 if (roots_ulist_allocated) { 1768 ulist_free(ctx->roots); 1769 ctx->roots = NULL; 1770 } 1771 break; 1772 } 1773 ret = 0; 1774 node = ulist_next(ctx->refs, &uiter); 1775 if (!node) 1776 break; 1777 ctx->bytenr = node->val; 1778 cond_resched(); 1779 } 1780 1781 ulist_free(ctx->refs); 1782 ctx->refs = NULL; 1783 ctx->bytenr = orig_bytenr; 1784 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1785 1786 return ret; 1787 } 1788 1789 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1790 bool skip_commit_root_sem) 1791 { 1792 int ret; 1793 1794 if (!ctx->trans && !skip_commit_root_sem) 1795 down_read(&ctx->fs_info->commit_root_sem); 1796 ret = btrfs_find_all_roots_safe(ctx); 1797 if (!ctx->trans && !skip_commit_root_sem) 1798 up_read(&ctx->fs_info->commit_root_sem); 1799 return ret; 1800 } 1801 1802 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1803 { 1804 struct btrfs_backref_share_check_ctx *ctx; 1805 1806 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1807 if (!ctx) 1808 return NULL; 1809 1810 ulist_init(&ctx->refs); 1811 1812 return ctx; 1813 } 1814 1815 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1816 { 1817 if (!ctx) 1818 return; 1819 1820 ulist_release(&ctx->refs); 1821 kfree(ctx); 1822 } 1823 1824 /* 1825 * Check if a data extent is shared or not. 1826 * 1827 * @inode: The inode whose extent we are checking. 1828 * @bytenr: Logical bytenr of the extent we are checking. 1829 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1830 * not known. 1831 * @ctx: A backref sharedness check context. 1832 * 1833 * btrfs_is_data_extent_shared uses the backref walking code but will short 1834 * circuit as soon as it finds a root or inode that doesn't match the 1835 * one passed in. This provides a significant performance benefit for 1836 * callers (such as fiemap) which want to know whether the extent is 1837 * shared but do not need a ref count. 1838 * 1839 * This attempts to attach to the running transaction in order to account for 1840 * delayed refs, but continues on even when no running transaction exists. 1841 * 1842 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1843 */ 1844 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1845 u64 extent_gen, 1846 struct btrfs_backref_share_check_ctx *ctx) 1847 { 1848 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1849 struct btrfs_root *root = inode->root; 1850 struct btrfs_fs_info *fs_info = root->fs_info; 1851 struct btrfs_trans_handle *trans; 1852 struct ulist_iterator uiter; 1853 struct ulist_node *node; 1854 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1855 int ret = 0; 1856 struct share_check shared = { 1857 .ctx = ctx, 1858 .root = root, 1859 .inum = btrfs_ino(inode), 1860 .data_bytenr = bytenr, 1861 .data_extent_gen = extent_gen, 1862 .share_count = 0, 1863 .self_ref_count = 0, 1864 .have_delayed_delete_refs = false, 1865 }; 1866 int level; 1867 1868 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1869 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1870 return ctx->prev_extents_cache[i].is_shared; 1871 } 1872 1873 ulist_init(&ctx->refs); 1874 1875 trans = btrfs_join_transaction_nostart(root); 1876 if (IS_ERR(trans)) { 1877 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1878 ret = PTR_ERR(trans); 1879 goto out; 1880 } 1881 trans = NULL; 1882 down_read(&fs_info->commit_root_sem); 1883 } else { 1884 btrfs_get_tree_mod_seq(fs_info, &elem); 1885 walk_ctx.time_seq = elem.seq; 1886 } 1887 1888 walk_ctx.ignore_extent_item_pos = true; 1889 walk_ctx.trans = trans; 1890 walk_ctx.fs_info = fs_info; 1891 walk_ctx.refs = &ctx->refs; 1892 1893 /* -1 means we are in the bytenr of the data extent. */ 1894 level = -1; 1895 ULIST_ITER_INIT(&uiter); 1896 ctx->use_path_cache = true; 1897 while (1) { 1898 bool is_shared; 1899 bool cached; 1900 1901 walk_ctx.bytenr = bytenr; 1902 ret = find_parent_nodes(&walk_ctx, &shared); 1903 if (ret == BACKREF_FOUND_SHARED || 1904 ret == BACKREF_FOUND_NOT_SHARED) { 1905 /* If shared must return 1, otherwise return 0. */ 1906 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1907 if (level >= 0) 1908 store_backref_shared_cache(ctx, root, bytenr, 1909 level, ret == 1); 1910 break; 1911 } 1912 if (ret < 0 && ret != -ENOENT) 1913 break; 1914 ret = 0; 1915 1916 /* 1917 * If our data extent was not directly shared (without multiple 1918 * reference items), than it might have a single reference item 1919 * with a count > 1 for the same offset, which means there are 2 1920 * (or more) file extent items that point to the data extent - 1921 * this happens when a file extent item needs to be split and 1922 * then one item gets moved to another leaf due to a b+tree leaf 1923 * split when inserting some item. In this case the file extent 1924 * items may be located in different leaves and therefore some 1925 * of the leaves may be referenced through shared subtrees while 1926 * others are not. Since our extent buffer cache only works for 1927 * a single path (by far the most common case and simpler to 1928 * deal with), we can not use it if we have multiple leaves 1929 * (which implies multiple paths). 1930 */ 1931 if (level == -1 && ctx->refs.nnodes > 1) 1932 ctx->use_path_cache = false; 1933 1934 if (level >= 0) 1935 store_backref_shared_cache(ctx, root, bytenr, 1936 level, false); 1937 node = ulist_next(&ctx->refs, &uiter); 1938 if (!node) 1939 break; 1940 bytenr = node->val; 1941 level++; 1942 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1943 &is_shared); 1944 if (cached) { 1945 ret = (is_shared ? 1 : 0); 1946 break; 1947 } 1948 shared.share_count = 0; 1949 shared.have_delayed_delete_refs = false; 1950 cond_resched(); 1951 } 1952 1953 /* 1954 * Cache the sharedness result for the data extent if we know our inode 1955 * has more than 1 file extent item that refers to the data extent. 1956 */ 1957 if (ret >= 0 && shared.self_ref_count > 1) { 1958 int slot = ctx->prev_extents_cache_slot; 1959 1960 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1961 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1962 1963 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1964 ctx->prev_extents_cache_slot = slot; 1965 } 1966 1967 if (trans) { 1968 btrfs_put_tree_mod_seq(fs_info, &elem); 1969 btrfs_end_transaction(trans); 1970 } else { 1971 up_read(&fs_info->commit_root_sem); 1972 } 1973 out: 1974 ulist_release(&ctx->refs); 1975 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 1976 1977 return ret; 1978 } 1979 1980 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1981 u64 start_off, struct btrfs_path *path, 1982 struct btrfs_inode_extref **ret_extref, 1983 u64 *found_off) 1984 { 1985 int ret, slot; 1986 struct btrfs_key key; 1987 struct btrfs_key found_key; 1988 struct btrfs_inode_extref *extref; 1989 const struct extent_buffer *leaf; 1990 unsigned long ptr; 1991 1992 key.objectid = inode_objectid; 1993 key.type = BTRFS_INODE_EXTREF_KEY; 1994 key.offset = start_off; 1995 1996 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1997 if (ret < 0) 1998 return ret; 1999 2000 while (1) { 2001 leaf = path->nodes[0]; 2002 slot = path->slots[0]; 2003 if (slot >= btrfs_header_nritems(leaf)) { 2004 /* 2005 * If the item at offset is not found, 2006 * btrfs_search_slot will point us to the slot 2007 * where it should be inserted. In our case 2008 * that will be the slot directly before the 2009 * next INODE_REF_KEY_V2 item. In the case 2010 * that we're pointing to the last slot in a 2011 * leaf, we must move one leaf over. 2012 */ 2013 ret = btrfs_next_leaf(root, path); 2014 if (ret) { 2015 if (ret >= 1) 2016 ret = -ENOENT; 2017 break; 2018 } 2019 continue; 2020 } 2021 2022 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2023 2024 /* 2025 * Check that we're still looking at an extended ref key for 2026 * this particular objectid. If we have different 2027 * objectid or type then there are no more to be found 2028 * in the tree and we can exit. 2029 */ 2030 ret = -ENOENT; 2031 if (found_key.objectid != inode_objectid) 2032 break; 2033 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2034 break; 2035 2036 ret = 0; 2037 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2038 extref = (struct btrfs_inode_extref *)ptr; 2039 *ret_extref = extref; 2040 if (found_off) 2041 *found_off = found_key.offset; 2042 break; 2043 } 2044 2045 return ret; 2046 } 2047 2048 /* 2049 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2050 * Elements of the path are separated by '/' and the path is guaranteed to be 2051 * 0-terminated. the path is only given within the current file system. 2052 * Therefore, it never starts with a '/'. the caller is responsible to provide 2053 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2054 * the start point of the resulting string is returned. this pointer is within 2055 * dest, normally. 2056 * in case the path buffer would overflow, the pointer is decremented further 2057 * as if output was written to the buffer, though no more output is actually 2058 * generated. that way, the caller can determine how much space would be 2059 * required for the path to fit into the buffer. in that case, the returned 2060 * value will be smaller than dest. callers must check this! 2061 */ 2062 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2063 u32 name_len, unsigned long name_off, 2064 struct extent_buffer *eb_in, u64 parent, 2065 char *dest, u32 size) 2066 { 2067 int slot; 2068 u64 next_inum; 2069 int ret; 2070 s64 bytes_left = ((s64)size) - 1; 2071 struct extent_buffer *eb = eb_in; 2072 struct btrfs_key found_key; 2073 struct btrfs_inode_ref *iref; 2074 2075 if (bytes_left >= 0) 2076 dest[bytes_left] = '\0'; 2077 2078 while (1) { 2079 bytes_left -= name_len; 2080 if (bytes_left >= 0) 2081 read_extent_buffer(eb, dest + bytes_left, 2082 name_off, name_len); 2083 if (eb != eb_in) { 2084 if (!path->skip_locking) 2085 btrfs_tree_read_unlock(eb); 2086 free_extent_buffer(eb); 2087 } 2088 ret = btrfs_find_item(fs_root, path, parent, 0, 2089 BTRFS_INODE_REF_KEY, &found_key); 2090 if (ret > 0) 2091 ret = -ENOENT; 2092 if (ret) 2093 break; 2094 2095 next_inum = found_key.offset; 2096 2097 /* regular exit ahead */ 2098 if (parent == next_inum) 2099 break; 2100 2101 slot = path->slots[0]; 2102 eb = path->nodes[0]; 2103 /* make sure we can use eb after releasing the path */ 2104 if (eb != eb_in) { 2105 path->nodes[0] = NULL; 2106 path->locks[0] = 0; 2107 } 2108 btrfs_release_path(path); 2109 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2110 2111 name_len = btrfs_inode_ref_name_len(eb, iref); 2112 name_off = (unsigned long)(iref + 1); 2113 2114 parent = next_inum; 2115 --bytes_left; 2116 if (bytes_left >= 0) 2117 dest[bytes_left] = '/'; 2118 } 2119 2120 btrfs_release_path(path); 2121 2122 if (ret) 2123 return ERR_PTR(ret); 2124 2125 return dest + bytes_left; 2126 } 2127 2128 /* 2129 * this makes the path point to (logical EXTENT_ITEM *) 2130 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2131 * tree blocks and <0 on error. 2132 */ 2133 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2134 struct btrfs_path *path, struct btrfs_key *found_key, 2135 u64 *flags_ret) 2136 { 2137 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2138 int ret; 2139 u64 flags; 2140 u64 size = 0; 2141 u32 item_size; 2142 const struct extent_buffer *eb; 2143 struct btrfs_extent_item *ei; 2144 struct btrfs_key key; 2145 2146 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2147 key.type = BTRFS_METADATA_ITEM_KEY; 2148 else 2149 key.type = BTRFS_EXTENT_ITEM_KEY; 2150 key.objectid = logical; 2151 key.offset = (u64)-1; 2152 2153 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2154 if (ret < 0) 2155 return ret; 2156 2157 ret = btrfs_previous_extent_item(extent_root, path, 0); 2158 if (ret) { 2159 if (ret > 0) 2160 ret = -ENOENT; 2161 return ret; 2162 } 2163 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2164 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2165 size = fs_info->nodesize; 2166 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2167 size = found_key->offset; 2168 2169 if (found_key->objectid > logical || 2170 found_key->objectid + size <= logical) { 2171 btrfs_debug(fs_info, 2172 "logical %llu is not within any extent", logical); 2173 return -ENOENT; 2174 } 2175 2176 eb = path->nodes[0]; 2177 item_size = btrfs_item_size(eb, path->slots[0]); 2178 BUG_ON(item_size < sizeof(*ei)); 2179 2180 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2181 flags = btrfs_extent_flags(eb, ei); 2182 2183 btrfs_debug(fs_info, 2184 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2185 logical, logical - found_key->objectid, found_key->objectid, 2186 found_key->offset, flags, item_size); 2187 2188 WARN_ON(!flags_ret); 2189 if (flags_ret) { 2190 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2191 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2192 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2193 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2194 else 2195 BUG(); 2196 return 0; 2197 } 2198 2199 return -EIO; 2200 } 2201 2202 /* 2203 * helper function to iterate extent inline refs. ptr must point to a 0 value 2204 * for the first call and may be modified. it is used to track state. 2205 * if more refs exist, 0 is returned and the next call to 2206 * get_extent_inline_ref must pass the modified ptr parameter to get the 2207 * next ref. after the last ref was processed, 1 is returned. 2208 * returns <0 on error 2209 */ 2210 static int get_extent_inline_ref(unsigned long *ptr, 2211 const struct extent_buffer *eb, 2212 const struct btrfs_key *key, 2213 const struct btrfs_extent_item *ei, 2214 u32 item_size, 2215 struct btrfs_extent_inline_ref **out_eiref, 2216 int *out_type) 2217 { 2218 unsigned long end; 2219 u64 flags; 2220 struct btrfs_tree_block_info *info; 2221 2222 if (!*ptr) { 2223 /* first call */ 2224 flags = btrfs_extent_flags(eb, ei); 2225 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2226 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2227 /* a skinny metadata extent */ 2228 *out_eiref = 2229 (struct btrfs_extent_inline_ref *)(ei + 1); 2230 } else { 2231 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2232 info = (struct btrfs_tree_block_info *)(ei + 1); 2233 *out_eiref = 2234 (struct btrfs_extent_inline_ref *)(info + 1); 2235 } 2236 } else { 2237 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2238 } 2239 *ptr = (unsigned long)*out_eiref; 2240 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2241 return -ENOENT; 2242 } 2243 2244 end = (unsigned long)ei + item_size; 2245 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2246 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2247 BTRFS_REF_TYPE_ANY); 2248 if (*out_type == BTRFS_REF_TYPE_INVALID) 2249 return -EUCLEAN; 2250 2251 *ptr += btrfs_extent_inline_ref_size(*out_type); 2252 WARN_ON(*ptr > end); 2253 if (*ptr == end) 2254 return 1; /* last */ 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * reads the tree block backref for an extent. tree level and root are returned 2261 * through out_level and out_root. ptr must point to a 0 value for the first 2262 * call and may be modified (see get_extent_inline_ref comment). 2263 * returns 0 if data was provided, 1 if there was no more data to provide or 2264 * <0 on error. 2265 */ 2266 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2267 struct btrfs_key *key, struct btrfs_extent_item *ei, 2268 u32 item_size, u64 *out_root, u8 *out_level) 2269 { 2270 int ret; 2271 int type; 2272 struct btrfs_extent_inline_ref *eiref; 2273 2274 if (*ptr == (unsigned long)-1) 2275 return 1; 2276 2277 while (1) { 2278 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2279 &eiref, &type); 2280 if (ret < 0) 2281 return ret; 2282 2283 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2284 type == BTRFS_SHARED_BLOCK_REF_KEY) 2285 break; 2286 2287 if (ret == 1) 2288 return 1; 2289 } 2290 2291 /* we can treat both ref types equally here */ 2292 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2293 2294 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2295 struct btrfs_tree_block_info *info; 2296 2297 info = (struct btrfs_tree_block_info *)(ei + 1); 2298 *out_level = btrfs_tree_block_level(eb, info); 2299 } else { 2300 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2301 *out_level = (u8)key->offset; 2302 } 2303 2304 if (ret == 1) 2305 *ptr = (unsigned long)-1; 2306 2307 return 0; 2308 } 2309 2310 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2311 struct extent_inode_elem *inode_list, 2312 u64 root, u64 extent_item_objectid, 2313 iterate_extent_inodes_t *iterate, void *ctx) 2314 { 2315 struct extent_inode_elem *eie; 2316 int ret = 0; 2317 2318 for (eie = inode_list; eie; eie = eie->next) { 2319 btrfs_debug(fs_info, 2320 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2321 extent_item_objectid, eie->inum, 2322 eie->offset, root); 2323 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2324 if (ret) { 2325 btrfs_debug(fs_info, 2326 "stopping iteration for %llu due to ret=%d", 2327 extent_item_objectid, ret); 2328 break; 2329 } 2330 } 2331 2332 return ret; 2333 } 2334 2335 /* 2336 * calls iterate() for every inode that references the extent identified by 2337 * the given parameters. 2338 * when the iterator function returns a non-zero value, iteration stops. 2339 */ 2340 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2341 bool search_commit_root, 2342 iterate_extent_inodes_t *iterate, void *user_ctx) 2343 { 2344 int ret; 2345 struct ulist *refs; 2346 struct ulist_node *ref_node; 2347 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2348 struct ulist_iterator ref_uiter; 2349 2350 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2351 ctx->bytenr); 2352 2353 ASSERT(ctx->trans == NULL); 2354 ASSERT(ctx->roots == NULL); 2355 2356 if (!search_commit_root) { 2357 struct btrfs_trans_handle *trans; 2358 2359 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2360 if (IS_ERR(trans)) { 2361 if (PTR_ERR(trans) != -ENOENT && 2362 PTR_ERR(trans) != -EROFS) 2363 return PTR_ERR(trans); 2364 trans = NULL; 2365 } 2366 ctx->trans = trans; 2367 } 2368 2369 if (ctx->trans) { 2370 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2371 ctx->time_seq = seq_elem.seq; 2372 } else { 2373 down_read(&ctx->fs_info->commit_root_sem); 2374 } 2375 2376 ret = btrfs_find_all_leafs(ctx); 2377 if (ret) 2378 goto out; 2379 refs = ctx->refs; 2380 ctx->refs = NULL; 2381 2382 ULIST_ITER_INIT(&ref_uiter); 2383 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2384 const u64 leaf_bytenr = ref_node->val; 2385 struct ulist_node *root_node; 2386 struct ulist_iterator root_uiter; 2387 struct extent_inode_elem *inode_list; 2388 2389 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2390 2391 if (ctx->cache_lookup) { 2392 const u64 *root_ids; 2393 int root_count; 2394 bool cached; 2395 2396 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2397 &root_ids, &root_count); 2398 if (cached) { 2399 for (int i = 0; i < root_count; i++) { 2400 ret = iterate_leaf_refs(ctx->fs_info, 2401 inode_list, 2402 root_ids[i], 2403 leaf_bytenr, 2404 iterate, 2405 user_ctx); 2406 if (ret) 2407 break; 2408 } 2409 continue; 2410 } 2411 } 2412 2413 if (!ctx->roots) { 2414 ctx->roots = ulist_alloc(GFP_NOFS); 2415 if (!ctx->roots) { 2416 ret = -ENOMEM; 2417 break; 2418 } 2419 } 2420 2421 ctx->bytenr = leaf_bytenr; 2422 ret = btrfs_find_all_roots_safe(ctx); 2423 if (ret) 2424 break; 2425 2426 if (ctx->cache_store) 2427 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2428 2429 ULIST_ITER_INIT(&root_uiter); 2430 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2431 btrfs_debug(ctx->fs_info, 2432 "root %llu references leaf %llu, data list %#llx", 2433 root_node->val, ref_node->val, 2434 ref_node->aux); 2435 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2436 root_node->val, ctx->bytenr, 2437 iterate, user_ctx); 2438 } 2439 ulist_reinit(ctx->roots); 2440 } 2441 2442 free_leaf_list(refs); 2443 out: 2444 if (ctx->trans) { 2445 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2446 btrfs_end_transaction(ctx->trans); 2447 ctx->trans = NULL; 2448 } else { 2449 up_read(&ctx->fs_info->commit_root_sem); 2450 } 2451 2452 ulist_free(ctx->roots); 2453 ctx->roots = NULL; 2454 2455 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2456 ret = 0; 2457 2458 return ret; 2459 } 2460 2461 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2462 { 2463 struct btrfs_data_container *inodes = ctx; 2464 const size_t c = 3 * sizeof(u64); 2465 2466 if (inodes->bytes_left >= c) { 2467 inodes->bytes_left -= c; 2468 inodes->val[inodes->elem_cnt] = inum; 2469 inodes->val[inodes->elem_cnt + 1] = offset; 2470 inodes->val[inodes->elem_cnt + 2] = root; 2471 inodes->elem_cnt += 3; 2472 } else { 2473 inodes->bytes_missing += c - inodes->bytes_left; 2474 inodes->bytes_left = 0; 2475 inodes->elem_missed += 3; 2476 } 2477 2478 return 0; 2479 } 2480 2481 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2482 struct btrfs_path *path, 2483 void *ctx, bool ignore_offset) 2484 { 2485 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2486 int ret; 2487 u64 flags = 0; 2488 struct btrfs_key found_key; 2489 int search_commit_root = path->search_commit_root; 2490 2491 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2492 btrfs_release_path(path); 2493 if (ret < 0) 2494 return ret; 2495 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2496 return -EINVAL; 2497 2498 walk_ctx.bytenr = found_key.objectid; 2499 if (ignore_offset) 2500 walk_ctx.ignore_extent_item_pos = true; 2501 else 2502 walk_ctx.extent_item_pos = logical - found_key.objectid; 2503 walk_ctx.fs_info = fs_info; 2504 2505 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2506 build_ino_list, ctx); 2507 } 2508 2509 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2510 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2511 2512 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2513 { 2514 int ret = 0; 2515 int slot; 2516 u32 cur; 2517 u32 len; 2518 u32 name_len; 2519 u64 parent = 0; 2520 int found = 0; 2521 struct btrfs_root *fs_root = ipath->fs_root; 2522 struct btrfs_path *path = ipath->btrfs_path; 2523 struct extent_buffer *eb; 2524 struct btrfs_inode_ref *iref; 2525 struct btrfs_key found_key; 2526 2527 while (!ret) { 2528 ret = btrfs_find_item(fs_root, path, inum, 2529 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2530 &found_key); 2531 2532 if (ret < 0) 2533 break; 2534 if (ret) { 2535 ret = found ? 0 : -ENOENT; 2536 break; 2537 } 2538 ++found; 2539 2540 parent = found_key.offset; 2541 slot = path->slots[0]; 2542 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2543 if (!eb) { 2544 ret = -ENOMEM; 2545 break; 2546 } 2547 btrfs_release_path(path); 2548 2549 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2550 2551 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2552 name_len = btrfs_inode_ref_name_len(eb, iref); 2553 /* path must be released before calling iterate()! */ 2554 btrfs_debug(fs_root->fs_info, 2555 "following ref at offset %u for inode %llu in tree %llu", 2556 cur, found_key.objectid, 2557 fs_root->root_key.objectid); 2558 ret = inode_to_path(parent, name_len, 2559 (unsigned long)(iref + 1), eb, ipath); 2560 if (ret) 2561 break; 2562 len = sizeof(*iref) + name_len; 2563 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2564 } 2565 free_extent_buffer(eb); 2566 } 2567 2568 btrfs_release_path(path); 2569 2570 return ret; 2571 } 2572 2573 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2574 { 2575 int ret; 2576 int slot; 2577 u64 offset = 0; 2578 u64 parent; 2579 int found = 0; 2580 struct btrfs_root *fs_root = ipath->fs_root; 2581 struct btrfs_path *path = ipath->btrfs_path; 2582 struct extent_buffer *eb; 2583 struct btrfs_inode_extref *extref; 2584 u32 item_size; 2585 u32 cur_offset; 2586 unsigned long ptr; 2587 2588 while (1) { 2589 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2590 &offset); 2591 if (ret < 0) 2592 break; 2593 if (ret) { 2594 ret = found ? 0 : -ENOENT; 2595 break; 2596 } 2597 ++found; 2598 2599 slot = path->slots[0]; 2600 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2601 if (!eb) { 2602 ret = -ENOMEM; 2603 break; 2604 } 2605 btrfs_release_path(path); 2606 2607 item_size = btrfs_item_size(eb, slot); 2608 ptr = btrfs_item_ptr_offset(eb, slot); 2609 cur_offset = 0; 2610 2611 while (cur_offset < item_size) { 2612 u32 name_len; 2613 2614 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2615 parent = btrfs_inode_extref_parent(eb, extref); 2616 name_len = btrfs_inode_extref_name_len(eb, extref); 2617 ret = inode_to_path(parent, name_len, 2618 (unsigned long)&extref->name, eb, ipath); 2619 if (ret) 2620 break; 2621 2622 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2623 cur_offset += sizeof(*extref); 2624 } 2625 free_extent_buffer(eb); 2626 2627 offset++; 2628 } 2629 2630 btrfs_release_path(path); 2631 2632 return ret; 2633 } 2634 2635 /* 2636 * returns 0 if the path could be dumped (probably truncated) 2637 * returns <0 in case of an error 2638 */ 2639 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2640 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2641 { 2642 char *fspath; 2643 char *fspath_min; 2644 int i = ipath->fspath->elem_cnt; 2645 const int s_ptr = sizeof(char *); 2646 u32 bytes_left; 2647 2648 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2649 ipath->fspath->bytes_left - s_ptr : 0; 2650 2651 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2652 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2653 name_off, eb, inum, fspath_min, bytes_left); 2654 if (IS_ERR(fspath)) 2655 return PTR_ERR(fspath); 2656 2657 if (fspath > fspath_min) { 2658 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2659 ++ipath->fspath->elem_cnt; 2660 ipath->fspath->bytes_left = fspath - fspath_min; 2661 } else { 2662 ++ipath->fspath->elem_missed; 2663 ipath->fspath->bytes_missing += fspath_min - fspath; 2664 ipath->fspath->bytes_left = 0; 2665 } 2666 2667 return 0; 2668 } 2669 2670 /* 2671 * this dumps all file system paths to the inode into the ipath struct, provided 2672 * is has been created large enough. each path is zero-terminated and accessed 2673 * from ipath->fspath->val[i]. 2674 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2675 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2676 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2677 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2678 * have been needed to return all paths. 2679 */ 2680 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2681 { 2682 int ret; 2683 int found_refs = 0; 2684 2685 ret = iterate_inode_refs(inum, ipath); 2686 if (!ret) 2687 ++found_refs; 2688 else if (ret != -ENOENT) 2689 return ret; 2690 2691 ret = iterate_inode_extrefs(inum, ipath); 2692 if (ret == -ENOENT && found_refs) 2693 return 0; 2694 2695 return ret; 2696 } 2697 2698 struct btrfs_data_container *init_data_container(u32 total_bytes) 2699 { 2700 struct btrfs_data_container *data; 2701 size_t alloc_bytes; 2702 2703 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2704 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2705 if (!data) 2706 return ERR_PTR(-ENOMEM); 2707 2708 if (total_bytes >= sizeof(*data)) { 2709 data->bytes_left = total_bytes - sizeof(*data); 2710 data->bytes_missing = 0; 2711 } else { 2712 data->bytes_missing = sizeof(*data) - total_bytes; 2713 data->bytes_left = 0; 2714 } 2715 2716 data->elem_cnt = 0; 2717 data->elem_missed = 0; 2718 2719 return data; 2720 } 2721 2722 /* 2723 * allocates space to return multiple file system paths for an inode. 2724 * total_bytes to allocate are passed, note that space usable for actual path 2725 * information will be total_bytes - sizeof(struct inode_fs_paths). 2726 * the returned pointer must be freed with free_ipath() in the end. 2727 */ 2728 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2729 struct btrfs_path *path) 2730 { 2731 struct inode_fs_paths *ifp; 2732 struct btrfs_data_container *fspath; 2733 2734 fspath = init_data_container(total_bytes); 2735 if (IS_ERR(fspath)) 2736 return ERR_CAST(fspath); 2737 2738 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2739 if (!ifp) { 2740 kvfree(fspath); 2741 return ERR_PTR(-ENOMEM); 2742 } 2743 2744 ifp->btrfs_path = path; 2745 ifp->fspath = fspath; 2746 ifp->fs_root = fs_root; 2747 2748 return ifp; 2749 } 2750 2751 void free_ipath(struct inode_fs_paths *ipath) 2752 { 2753 if (!ipath) 2754 return; 2755 kvfree(ipath->fspath); 2756 kfree(ipath); 2757 } 2758 2759 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2760 { 2761 struct btrfs_backref_iter *ret; 2762 2763 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2764 if (!ret) 2765 return NULL; 2766 2767 ret->path = btrfs_alloc_path(); 2768 if (!ret->path) { 2769 kfree(ret); 2770 return NULL; 2771 } 2772 2773 /* Current backref iterator only supports iteration in commit root */ 2774 ret->path->search_commit_root = 1; 2775 ret->path->skip_locking = 1; 2776 ret->fs_info = fs_info; 2777 2778 return ret; 2779 } 2780 2781 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2782 { 2783 struct btrfs_fs_info *fs_info = iter->fs_info; 2784 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2785 struct btrfs_path *path = iter->path; 2786 struct btrfs_extent_item *ei; 2787 struct btrfs_key key; 2788 int ret; 2789 2790 key.objectid = bytenr; 2791 key.type = BTRFS_METADATA_ITEM_KEY; 2792 key.offset = (u64)-1; 2793 iter->bytenr = bytenr; 2794 2795 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2796 if (ret < 0) 2797 return ret; 2798 if (ret == 0) { 2799 ret = -EUCLEAN; 2800 goto release; 2801 } 2802 if (path->slots[0] == 0) { 2803 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2804 ret = -EUCLEAN; 2805 goto release; 2806 } 2807 path->slots[0]--; 2808 2809 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2810 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2811 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2812 ret = -ENOENT; 2813 goto release; 2814 } 2815 memcpy(&iter->cur_key, &key, sizeof(key)); 2816 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2817 path->slots[0]); 2818 iter->end_ptr = (u32)(iter->item_ptr + 2819 btrfs_item_size(path->nodes[0], path->slots[0])); 2820 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2821 struct btrfs_extent_item); 2822 2823 /* 2824 * Only support iteration on tree backref yet. 2825 * 2826 * This is an extra precaution for non skinny-metadata, where 2827 * EXTENT_ITEM is also used for tree blocks, that we can only use 2828 * extent flags to determine if it's a tree block. 2829 */ 2830 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2831 ret = -ENOTSUPP; 2832 goto release; 2833 } 2834 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2835 2836 /* If there is no inline backref, go search for keyed backref */ 2837 if (iter->cur_ptr >= iter->end_ptr) { 2838 ret = btrfs_next_item(extent_root, path); 2839 2840 /* No inline nor keyed ref */ 2841 if (ret > 0) { 2842 ret = -ENOENT; 2843 goto release; 2844 } 2845 if (ret < 0) 2846 goto release; 2847 2848 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2849 path->slots[0]); 2850 if (iter->cur_key.objectid != bytenr || 2851 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2852 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2853 ret = -ENOENT; 2854 goto release; 2855 } 2856 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2857 path->slots[0]); 2858 iter->item_ptr = iter->cur_ptr; 2859 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2860 path->nodes[0], path->slots[0])); 2861 } 2862 2863 return 0; 2864 release: 2865 btrfs_backref_iter_release(iter); 2866 return ret; 2867 } 2868 2869 /* 2870 * Go to the next backref item of current bytenr, can be either inlined or 2871 * keyed. 2872 * 2873 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2874 * 2875 * Return 0 if we get next backref without problem. 2876 * Return >0 if there is no extra backref for this bytenr. 2877 * Return <0 if there is something wrong happened. 2878 */ 2879 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2880 { 2881 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2882 struct btrfs_root *extent_root; 2883 struct btrfs_path *path = iter->path; 2884 struct btrfs_extent_inline_ref *iref; 2885 int ret; 2886 u32 size; 2887 2888 if (btrfs_backref_iter_is_inline_ref(iter)) { 2889 /* We're still inside the inline refs */ 2890 ASSERT(iter->cur_ptr < iter->end_ptr); 2891 2892 if (btrfs_backref_has_tree_block_info(iter)) { 2893 /* First tree block info */ 2894 size = sizeof(struct btrfs_tree_block_info); 2895 } else { 2896 /* Use inline ref type to determine the size */ 2897 int type; 2898 2899 iref = (struct btrfs_extent_inline_ref *) 2900 ((unsigned long)iter->cur_ptr); 2901 type = btrfs_extent_inline_ref_type(eb, iref); 2902 2903 size = btrfs_extent_inline_ref_size(type); 2904 } 2905 iter->cur_ptr += size; 2906 if (iter->cur_ptr < iter->end_ptr) 2907 return 0; 2908 2909 /* All inline items iterated, fall through */ 2910 } 2911 2912 /* We're at keyed items, there is no inline item, go to the next one */ 2913 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2914 ret = btrfs_next_item(extent_root, iter->path); 2915 if (ret) 2916 return ret; 2917 2918 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2919 if (iter->cur_key.objectid != iter->bytenr || 2920 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2921 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2922 return 1; 2923 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2924 path->slots[0]); 2925 iter->cur_ptr = iter->item_ptr; 2926 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2927 path->slots[0]); 2928 return 0; 2929 } 2930 2931 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2932 struct btrfs_backref_cache *cache, int is_reloc) 2933 { 2934 int i; 2935 2936 cache->rb_root = RB_ROOT; 2937 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2938 INIT_LIST_HEAD(&cache->pending[i]); 2939 INIT_LIST_HEAD(&cache->changed); 2940 INIT_LIST_HEAD(&cache->detached); 2941 INIT_LIST_HEAD(&cache->leaves); 2942 INIT_LIST_HEAD(&cache->pending_edge); 2943 INIT_LIST_HEAD(&cache->useless_node); 2944 cache->fs_info = fs_info; 2945 cache->is_reloc = is_reloc; 2946 } 2947 2948 struct btrfs_backref_node *btrfs_backref_alloc_node( 2949 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2950 { 2951 struct btrfs_backref_node *node; 2952 2953 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2954 node = kzalloc(sizeof(*node), GFP_NOFS); 2955 if (!node) 2956 return node; 2957 2958 INIT_LIST_HEAD(&node->list); 2959 INIT_LIST_HEAD(&node->upper); 2960 INIT_LIST_HEAD(&node->lower); 2961 RB_CLEAR_NODE(&node->rb_node); 2962 cache->nr_nodes++; 2963 node->level = level; 2964 node->bytenr = bytenr; 2965 2966 return node; 2967 } 2968 2969 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2970 struct btrfs_backref_cache *cache) 2971 { 2972 struct btrfs_backref_edge *edge; 2973 2974 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2975 if (edge) 2976 cache->nr_edges++; 2977 return edge; 2978 } 2979 2980 /* 2981 * Drop the backref node from cache, also cleaning up all its 2982 * upper edges and any uncached nodes in the path. 2983 * 2984 * This cleanup happens bottom up, thus the node should either 2985 * be the lowest node in the cache or a detached node. 2986 */ 2987 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2988 struct btrfs_backref_node *node) 2989 { 2990 struct btrfs_backref_node *upper; 2991 struct btrfs_backref_edge *edge; 2992 2993 if (!node) 2994 return; 2995 2996 BUG_ON(!node->lowest && !node->detached); 2997 while (!list_empty(&node->upper)) { 2998 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2999 list[LOWER]); 3000 upper = edge->node[UPPER]; 3001 list_del(&edge->list[LOWER]); 3002 list_del(&edge->list[UPPER]); 3003 btrfs_backref_free_edge(cache, edge); 3004 3005 /* 3006 * Add the node to leaf node list if no other child block 3007 * cached. 3008 */ 3009 if (list_empty(&upper->lower)) { 3010 list_add_tail(&upper->lower, &cache->leaves); 3011 upper->lowest = 1; 3012 } 3013 } 3014 3015 btrfs_backref_drop_node(cache, node); 3016 } 3017 3018 /* 3019 * Release all nodes/edges from current cache 3020 */ 3021 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3022 { 3023 struct btrfs_backref_node *node; 3024 int i; 3025 3026 while (!list_empty(&cache->detached)) { 3027 node = list_entry(cache->detached.next, 3028 struct btrfs_backref_node, list); 3029 btrfs_backref_cleanup_node(cache, node); 3030 } 3031 3032 while (!list_empty(&cache->leaves)) { 3033 node = list_entry(cache->leaves.next, 3034 struct btrfs_backref_node, lower); 3035 btrfs_backref_cleanup_node(cache, node); 3036 } 3037 3038 cache->last_trans = 0; 3039 3040 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3041 ASSERT(list_empty(&cache->pending[i])); 3042 ASSERT(list_empty(&cache->pending_edge)); 3043 ASSERT(list_empty(&cache->useless_node)); 3044 ASSERT(list_empty(&cache->changed)); 3045 ASSERT(list_empty(&cache->detached)); 3046 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3047 ASSERT(!cache->nr_nodes); 3048 ASSERT(!cache->nr_edges); 3049 } 3050 3051 /* 3052 * Handle direct tree backref 3053 * 3054 * Direct tree backref means, the backref item shows its parent bytenr 3055 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3056 * 3057 * @ref_key: The converted backref key. 3058 * For keyed backref, it's the item key. 3059 * For inlined backref, objectid is the bytenr, 3060 * type is btrfs_inline_ref_type, offset is 3061 * btrfs_inline_ref_offset. 3062 */ 3063 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3064 struct btrfs_key *ref_key, 3065 struct btrfs_backref_node *cur) 3066 { 3067 struct btrfs_backref_edge *edge; 3068 struct btrfs_backref_node *upper; 3069 struct rb_node *rb_node; 3070 3071 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3072 3073 /* Only reloc root uses backref pointing to itself */ 3074 if (ref_key->objectid == ref_key->offset) { 3075 struct btrfs_root *root; 3076 3077 cur->is_reloc_root = 1; 3078 /* Only reloc backref cache cares about a specific root */ 3079 if (cache->is_reloc) { 3080 root = find_reloc_root(cache->fs_info, cur->bytenr); 3081 if (!root) 3082 return -ENOENT; 3083 cur->root = root; 3084 } else { 3085 /* 3086 * For generic purpose backref cache, reloc root node 3087 * is useless. 3088 */ 3089 list_add(&cur->list, &cache->useless_node); 3090 } 3091 return 0; 3092 } 3093 3094 edge = btrfs_backref_alloc_edge(cache); 3095 if (!edge) 3096 return -ENOMEM; 3097 3098 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3099 if (!rb_node) { 3100 /* Parent node not yet cached */ 3101 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3102 cur->level + 1); 3103 if (!upper) { 3104 btrfs_backref_free_edge(cache, edge); 3105 return -ENOMEM; 3106 } 3107 3108 /* 3109 * Backrefs for the upper level block isn't cached, add the 3110 * block to pending list 3111 */ 3112 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3113 } else { 3114 /* Parent node already cached */ 3115 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3116 ASSERT(upper->checked); 3117 INIT_LIST_HEAD(&edge->list[UPPER]); 3118 } 3119 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3120 return 0; 3121 } 3122 3123 /* 3124 * Handle indirect tree backref 3125 * 3126 * Indirect tree backref means, we only know which tree the node belongs to. 3127 * We still need to do a tree search to find out the parents. This is for 3128 * TREE_BLOCK_REF backref (keyed or inlined). 3129 * 3130 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3131 * @tree_key: The first key of this tree block. 3132 * @path: A clean (released) path, to avoid allocating path every time 3133 * the function get called. 3134 */ 3135 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3136 struct btrfs_path *path, 3137 struct btrfs_key *ref_key, 3138 struct btrfs_key *tree_key, 3139 struct btrfs_backref_node *cur) 3140 { 3141 struct btrfs_fs_info *fs_info = cache->fs_info; 3142 struct btrfs_backref_node *upper; 3143 struct btrfs_backref_node *lower; 3144 struct btrfs_backref_edge *edge; 3145 struct extent_buffer *eb; 3146 struct btrfs_root *root; 3147 struct rb_node *rb_node; 3148 int level; 3149 bool need_check = true; 3150 int ret; 3151 3152 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3153 if (IS_ERR(root)) 3154 return PTR_ERR(root); 3155 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3156 cur->cowonly = 1; 3157 3158 if (btrfs_root_level(&root->root_item) == cur->level) { 3159 /* Tree root */ 3160 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3161 /* 3162 * For reloc backref cache, we may ignore reloc root. But for 3163 * general purpose backref cache, we can't rely on 3164 * btrfs_should_ignore_reloc_root() as it may conflict with 3165 * current running relocation and lead to missing root. 3166 * 3167 * For general purpose backref cache, reloc root detection is 3168 * completely relying on direct backref (key->offset is parent 3169 * bytenr), thus only do such check for reloc cache. 3170 */ 3171 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3172 btrfs_put_root(root); 3173 list_add(&cur->list, &cache->useless_node); 3174 } else { 3175 cur->root = root; 3176 } 3177 return 0; 3178 } 3179 3180 level = cur->level + 1; 3181 3182 /* Search the tree to find parent blocks referring to the block */ 3183 path->search_commit_root = 1; 3184 path->skip_locking = 1; 3185 path->lowest_level = level; 3186 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3187 path->lowest_level = 0; 3188 if (ret < 0) { 3189 btrfs_put_root(root); 3190 return ret; 3191 } 3192 if (ret > 0 && path->slots[level] > 0) 3193 path->slots[level]--; 3194 3195 eb = path->nodes[level]; 3196 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3197 btrfs_err(fs_info, 3198 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3199 cur->bytenr, level - 1, root->root_key.objectid, 3200 tree_key->objectid, tree_key->type, tree_key->offset); 3201 btrfs_put_root(root); 3202 ret = -ENOENT; 3203 goto out; 3204 } 3205 lower = cur; 3206 3207 /* Add all nodes and edges in the path */ 3208 for (; level < BTRFS_MAX_LEVEL; level++) { 3209 if (!path->nodes[level]) { 3210 ASSERT(btrfs_root_bytenr(&root->root_item) == 3211 lower->bytenr); 3212 /* Same as previous should_ignore_reloc_root() call */ 3213 if (btrfs_should_ignore_reloc_root(root) && 3214 cache->is_reloc) { 3215 btrfs_put_root(root); 3216 list_add(&lower->list, &cache->useless_node); 3217 } else { 3218 lower->root = root; 3219 } 3220 break; 3221 } 3222 3223 edge = btrfs_backref_alloc_edge(cache); 3224 if (!edge) { 3225 btrfs_put_root(root); 3226 ret = -ENOMEM; 3227 goto out; 3228 } 3229 3230 eb = path->nodes[level]; 3231 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3232 if (!rb_node) { 3233 upper = btrfs_backref_alloc_node(cache, eb->start, 3234 lower->level + 1); 3235 if (!upper) { 3236 btrfs_put_root(root); 3237 btrfs_backref_free_edge(cache, edge); 3238 ret = -ENOMEM; 3239 goto out; 3240 } 3241 upper->owner = btrfs_header_owner(eb); 3242 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3243 upper->cowonly = 1; 3244 3245 /* 3246 * If we know the block isn't shared we can avoid 3247 * checking its backrefs. 3248 */ 3249 if (btrfs_block_can_be_shared(root, eb)) 3250 upper->checked = 0; 3251 else 3252 upper->checked = 1; 3253 3254 /* 3255 * Add the block to pending list if we need to check its 3256 * backrefs, we only do this once while walking up a 3257 * tree as we will catch anything else later on. 3258 */ 3259 if (!upper->checked && need_check) { 3260 need_check = false; 3261 list_add_tail(&edge->list[UPPER], 3262 &cache->pending_edge); 3263 } else { 3264 if (upper->checked) 3265 need_check = true; 3266 INIT_LIST_HEAD(&edge->list[UPPER]); 3267 } 3268 } else { 3269 upper = rb_entry(rb_node, struct btrfs_backref_node, 3270 rb_node); 3271 ASSERT(upper->checked); 3272 INIT_LIST_HEAD(&edge->list[UPPER]); 3273 if (!upper->owner) 3274 upper->owner = btrfs_header_owner(eb); 3275 } 3276 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3277 3278 if (rb_node) { 3279 btrfs_put_root(root); 3280 break; 3281 } 3282 lower = upper; 3283 upper = NULL; 3284 } 3285 out: 3286 btrfs_release_path(path); 3287 return ret; 3288 } 3289 3290 /* 3291 * Add backref node @cur into @cache. 3292 * 3293 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3294 * links aren't yet bi-directional. Needs to finish such links. 3295 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3296 * 3297 * @path: Released path for indirect tree backref lookup 3298 * @iter: Released backref iter for extent tree search 3299 * @node_key: The first key of the tree block 3300 */ 3301 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3302 struct btrfs_path *path, 3303 struct btrfs_backref_iter *iter, 3304 struct btrfs_key *node_key, 3305 struct btrfs_backref_node *cur) 3306 { 3307 struct btrfs_fs_info *fs_info = cache->fs_info; 3308 struct btrfs_backref_edge *edge; 3309 struct btrfs_backref_node *exist; 3310 int ret; 3311 3312 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3313 if (ret < 0) 3314 return ret; 3315 /* 3316 * We skip the first btrfs_tree_block_info, as we don't use the key 3317 * stored in it, but fetch it from the tree block 3318 */ 3319 if (btrfs_backref_has_tree_block_info(iter)) { 3320 ret = btrfs_backref_iter_next(iter); 3321 if (ret < 0) 3322 goto out; 3323 /* No extra backref? This means the tree block is corrupted */ 3324 if (ret > 0) { 3325 ret = -EUCLEAN; 3326 goto out; 3327 } 3328 } 3329 WARN_ON(cur->checked); 3330 if (!list_empty(&cur->upper)) { 3331 /* 3332 * The backref was added previously when processing backref of 3333 * type BTRFS_TREE_BLOCK_REF_KEY 3334 */ 3335 ASSERT(list_is_singular(&cur->upper)); 3336 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3337 list[LOWER]); 3338 ASSERT(list_empty(&edge->list[UPPER])); 3339 exist = edge->node[UPPER]; 3340 /* 3341 * Add the upper level block to pending list if we need check 3342 * its backrefs 3343 */ 3344 if (!exist->checked) 3345 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3346 } else { 3347 exist = NULL; 3348 } 3349 3350 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3351 struct extent_buffer *eb; 3352 struct btrfs_key key; 3353 int type; 3354 3355 cond_resched(); 3356 eb = btrfs_backref_get_eb(iter); 3357 3358 key.objectid = iter->bytenr; 3359 if (btrfs_backref_iter_is_inline_ref(iter)) { 3360 struct btrfs_extent_inline_ref *iref; 3361 3362 /* Update key for inline backref */ 3363 iref = (struct btrfs_extent_inline_ref *) 3364 ((unsigned long)iter->cur_ptr); 3365 type = btrfs_get_extent_inline_ref_type(eb, iref, 3366 BTRFS_REF_TYPE_BLOCK); 3367 if (type == BTRFS_REF_TYPE_INVALID) { 3368 ret = -EUCLEAN; 3369 goto out; 3370 } 3371 key.type = type; 3372 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3373 } else { 3374 key.type = iter->cur_key.type; 3375 key.offset = iter->cur_key.offset; 3376 } 3377 3378 /* 3379 * Parent node found and matches current inline ref, no need to 3380 * rebuild this node for this inline ref 3381 */ 3382 if (exist && 3383 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3384 exist->owner == key.offset) || 3385 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3386 exist->bytenr == key.offset))) { 3387 exist = NULL; 3388 continue; 3389 } 3390 3391 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3392 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3393 ret = handle_direct_tree_backref(cache, &key, cur); 3394 if (ret < 0) 3395 goto out; 3396 continue; 3397 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3398 ret = -EINVAL; 3399 btrfs_print_v0_err(fs_info); 3400 btrfs_handle_fs_error(fs_info, ret, NULL); 3401 goto out; 3402 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3403 continue; 3404 } 3405 3406 /* 3407 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3408 * means the root objectid. We need to search the tree to get 3409 * its parent bytenr. 3410 */ 3411 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3412 cur); 3413 if (ret < 0) 3414 goto out; 3415 } 3416 ret = 0; 3417 cur->checked = 1; 3418 WARN_ON(exist); 3419 out: 3420 btrfs_backref_iter_release(iter); 3421 return ret; 3422 } 3423 3424 /* 3425 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3426 */ 3427 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3428 struct btrfs_backref_node *start) 3429 { 3430 struct list_head *useless_node = &cache->useless_node; 3431 struct btrfs_backref_edge *edge; 3432 struct rb_node *rb_node; 3433 LIST_HEAD(pending_edge); 3434 3435 ASSERT(start->checked); 3436 3437 /* Insert this node to cache if it's not COW-only */ 3438 if (!start->cowonly) { 3439 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3440 &start->rb_node); 3441 if (rb_node) 3442 btrfs_backref_panic(cache->fs_info, start->bytenr, 3443 -EEXIST); 3444 list_add_tail(&start->lower, &cache->leaves); 3445 } 3446 3447 /* 3448 * Use breadth first search to iterate all related edges. 3449 * 3450 * The starting points are all the edges of this node 3451 */ 3452 list_for_each_entry(edge, &start->upper, list[LOWER]) 3453 list_add_tail(&edge->list[UPPER], &pending_edge); 3454 3455 while (!list_empty(&pending_edge)) { 3456 struct btrfs_backref_node *upper; 3457 struct btrfs_backref_node *lower; 3458 3459 edge = list_first_entry(&pending_edge, 3460 struct btrfs_backref_edge, list[UPPER]); 3461 list_del_init(&edge->list[UPPER]); 3462 upper = edge->node[UPPER]; 3463 lower = edge->node[LOWER]; 3464 3465 /* Parent is detached, no need to keep any edges */ 3466 if (upper->detached) { 3467 list_del(&edge->list[LOWER]); 3468 btrfs_backref_free_edge(cache, edge); 3469 3470 /* Lower node is orphan, queue for cleanup */ 3471 if (list_empty(&lower->upper)) 3472 list_add(&lower->list, useless_node); 3473 continue; 3474 } 3475 3476 /* 3477 * All new nodes added in current build_backref_tree() haven't 3478 * been linked to the cache rb tree. 3479 * So if we have upper->rb_node populated, this means a cache 3480 * hit. We only need to link the edge, as @upper and all its 3481 * parents have already been linked. 3482 */ 3483 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3484 if (upper->lowest) { 3485 list_del_init(&upper->lower); 3486 upper->lowest = 0; 3487 } 3488 3489 list_add_tail(&edge->list[UPPER], &upper->lower); 3490 continue; 3491 } 3492 3493 /* Sanity check, we shouldn't have any unchecked nodes */ 3494 if (!upper->checked) { 3495 ASSERT(0); 3496 return -EUCLEAN; 3497 } 3498 3499 /* Sanity check, COW-only node has non-COW-only parent */ 3500 if (start->cowonly != upper->cowonly) { 3501 ASSERT(0); 3502 return -EUCLEAN; 3503 } 3504 3505 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3506 if (!upper->cowonly) { 3507 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3508 &upper->rb_node); 3509 if (rb_node) { 3510 btrfs_backref_panic(cache->fs_info, 3511 upper->bytenr, -EEXIST); 3512 return -EUCLEAN; 3513 } 3514 } 3515 3516 list_add_tail(&edge->list[UPPER], &upper->lower); 3517 3518 /* 3519 * Also queue all the parent edges of this uncached node 3520 * to finish the upper linkage 3521 */ 3522 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3523 list_add_tail(&edge->list[UPPER], &pending_edge); 3524 } 3525 return 0; 3526 } 3527 3528 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3529 struct btrfs_backref_node *node) 3530 { 3531 struct btrfs_backref_node *lower; 3532 struct btrfs_backref_node *upper; 3533 struct btrfs_backref_edge *edge; 3534 3535 while (!list_empty(&cache->useless_node)) { 3536 lower = list_first_entry(&cache->useless_node, 3537 struct btrfs_backref_node, list); 3538 list_del_init(&lower->list); 3539 } 3540 while (!list_empty(&cache->pending_edge)) { 3541 edge = list_first_entry(&cache->pending_edge, 3542 struct btrfs_backref_edge, list[UPPER]); 3543 list_del(&edge->list[UPPER]); 3544 list_del(&edge->list[LOWER]); 3545 lower = edge->node[LOWER]; 3546 upper = edge->node[UPPER]; 3547 btrfs_backref_free_edge(cache, edge); 3548 3549 /* 3550 * Lower is no longer linked to any upper backref nodes and 3551 * isn't in the cache, we can free it ourselves. 3552 */ 3553 if (list_empty(&lower->upper) && 3554 RB_EMPTY_NODE(&lower->rb_node)) 3555 list_add(&lower->list, &cache->useless_node); 3556 3557 if (!RB_EMPTY_NODE(&upper->rb_node)) 3558 continue; 3559 3560 /* Add this guy's upper edges to the list to process */ 3561 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3562 list_add_tail(&edge->list[UPPER], 3563 &cache->pending_edge); 3564 if (list_empty(&upper->upper)) 3565 list_add(&upper->list, &cache->useless_node); 3566 } 3567 3568 while (!list_empty(&cache->useless_node)) { 3569 lower = list_first_entry(&cache->useless_node, 3570 struct btrfs_backref_node, list); 3571 list_del_init(&lower->list); 3572 if (lower == node) 3573 node = NULL; 3574 btrfs_backref_drop_node(cache, lower); 3575 } 3576 3577 btrfs_backref_cleanup_node(cache, node); 3578 ASSERT(list_empty(&cache->useless_node) && 3579 list_empty(&cache->pending_edge)); 3580 } 3581