xref: /openbmc/linux/fs/btrfs/backref.c (revision a67ff6a5)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "backref.h"
22 
23 struct __data_ref {
24 	struct list_head list;
25 	u64 inum;
26 	u64 root;
27 	u64 extent_data_item_offset;
28 };
29 
30 struct __shared_ref {
31 	struct list_head list;
32 	u64 disk_byte;
33 };
34 
35 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
36 			struct btrfs_root *fs_root, struct btrfs_path *path,
37 			struct btrfs_key *found_key)
38 {
39 	int ret;
40 	struct btrfs_key key;
41 	struct extent_buffer *eb;
42 
43 	key.type = key_type;
44 	key.objectid = inum;
45 	key.offset = ioff;
46 
47 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
48 	if (ret < 0)
49 		return ret;
50 
51 	eb = path->nodes[0];
52 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
53 		ret = btrfs_next_leaf(fs_root, path);
54 		if (ret)
55 			return ret;
56 		eb = path->nodes[0];
57 	}
58 
59 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
60 	if (found_key->type != key.type || found_key->objectid != key.objectid)
61 		return 1;
62 
63 	return 0;
64 }
65 
66 /*
67  * this makes the path point to (inum INODE_ITEM ioff)
68  */
69 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
70 			struct btrfs_path *path)
71 {
72 	struct btrfs_key key;
73 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
74 				&key);
75 }
76 
77 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
78 				struct btrfs_path *path,
79 				struct btrfs_key *found_key)
80 {
81 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
82 				found_key);
83 }
84 
85 /*
86  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
87  * of the path are separated by '/' and the path is guaranteed to be
88  * 0-terminated. the path is only given within the current file system.
89  * Therefore, it never starts with a '/'. the caller is responsible to provide
90  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
91  * the start point of the resulting string is returned. this pointer is within
92  * dest, normally.
93  * in case the path buffer would overflow, the pointer is decremented further
94  * as if output was written to the buffer, though no more output is actually
95  * generated. that way, the caller can determine how much space would be
96  * required for the path to fit into the buffer. in that case, the returned
97  * value will be smaller than dest. callers must check this!
98  */
99 static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
100 				struct btrfs_inode_ref *iref,
101 				struct extent_buffer *eb_in, u64 parent,
102 				char *dest, u32 size)
103 {
104 	u32 len;
105 	int slot;
106 	u64 next_inum;
107 	int ret;
108 	s64 bytes_left = size - 1;
109 	struct extent_buffer *eb = eb_in;
110 	struct btrfs_key found_key;
111 
112 	if (bytes_left >= 0)
113 		dest[bytes_left] = '\0';
114 
115 	while (1) {
116 		len = btrfs_inode_ref_name_len(eb, iref);
117 		bytes_left -= len;
118 		if (bytes_left >= 0)
119 			read_extent_buffer(eb, dest + bytes_left,
120 						(unsigned long)(iref + 1), len);
121 		if (eb != eb_in)
122 			free_extent_buffer(eb);
123 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
124 		if (ret)
125 			break;
126 		next_inum = found_key.offset;
127 
128 		/* regular exit ahead */
129 		if (parent == next_inum)
130 			break;
131 
132 		slot = path->slots[0];
133 		eb = path->nodes[0];
134 		/* make sure we can use eb after releasing the path */
135 		if (eb != eb_in)
136 			atomic_inc(&eb->refs);
137 		btrfs_release_path(path);
138 
139 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
140 		parent = next_inum;
141 		--bytes_left;
142 		if (bytes_left >= 0)
143 			dest[bytes_left] = '/';
144 	}
145 
146 	btrfs_release_path(path);
147 
148 	if (ret)
149 		return ERR_PTR(ret);
150 
151 	return dest + bytes_left;
152 }
153 
154 /*
155  * this makes the path point to (logical EXTENT_ITEM *)
156  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
157  * tree blocks and <0 on error.
158  */
159 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
160 			struct btrfs_path *path, struct btrfs_key *found_key)
161 {
162 	int ret;
163 	u64 flags;
164 	u32 item_size;
165 	struct extent_buffer *eb;
166 	struct btrfs_extent_item *ei;
167 	struct btrfs_key key;
168 
169 	key.type = BTRFS_EXTENT_ITEM_KEY;
170 	key.objectid = logical;
171 	key.offset = (u64)-1;
172 
173 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
174 	if (ret < 0)
175 		return ret;
176 	ret = btrfs_previous_item(fs_info->extent_root, path,
177 					0, BTRFS_EXTENT_ITEM_KEY);
178 	if (ret < 0)
179 		return ret;
180 
181 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
182 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
183 	    found_key->objectid > logical ||
184 	    found_key->objectid + found_key->offset <= logical)
185 		return -ENOENT;
186 
187 	eb = path->nodes[0];
188 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
189 	BUG_ON(item_size < sizeof(*ei));
190 
191 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
192 	flags = btrfs_extent_flags(eb, ei);
193 
194 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
195 		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
196 	if (flags & BTRFS_EXTENT_FLAG_DATA)
197 		return BTRFS_EXTENT_FLAG_DATA;
198 
199 	return -EIO;
200 }
201 
202 /*
203  * helper function to iterate extent inline refs. ptr must point to a 0 value
204  * for the first call and may be modified. it is used to track state.
205  * if more refs exist, 0 is returned and the next call to
206  * __get_extent_inline_ref must pass the modified ptr parameter to get the
207  * next ref. after the last ref was processed, 1 is returned.
208  * returns <0 on error
209  */
210 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
211 				struct btrfs_extent_item *ei, u32 item_size,
212 				struct btrfs_extent_inline_ref **out_eiref,
213 				int *out_type)
214 {
215 	unsigned long end;
216 	u64 flags;
217 	struct btrfs_tree_block_info *info;
218 
219 	if (!*ptr) {
220 		/* first call */
221 		flags = btrfs_extent_flags(eb, ei);
222 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
223 			info = (struct btrfs_tree_block_info *)(ei + 1);
224 			*out_eiref =
225 				(struct btrfs_extent_inline_ref *)(info + 1);
226 		} else {
227 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
228 		}
229 		*ptr = (unsigned long)*out_eiref;
230 		if ((void *)*ptr >= (void *)ei + item_size)
231 			return -ENOENT;
232 	}
233 
234 	end = (unsigned long)ei + item_size;
235 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
236 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
237 
238 	*ptr += btrfs_extent_inline_ref_size(*out_type);
239 	WARN_ON(*ptr > end);
240 	if (*ptr == end)
241 		return 1; /* last */
242 
243 	return 0;
244 }
245 
246 /*
247  * reads the tree block backref for an extent. tree level and root are returned
248  * through out_level and out_root. ptr must point to a 0 value for the first
249  * call and may be modified (see __get_extent_inline_ref comment).
250  * returns 0 if data was provided, 1 if there was no more data to provide or
251  * <0 on error.
252  */
253 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
254 				struct btrfs_extent_item *ei, u32 item_size,
255 				u64 *out_root, u8 *out_level)
256 {
257 	int ret;
258 	int type;
259 	struct btrfs_tree_block_info *info;
260 	struct btrfs_extent_inline_ref *eiref;
261 
262 	if (*ptr == (unsigned long)-1)
263 		return 1;
264 
265 	while (1) {
266 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
267 						&eiref, &type);
268 		if (ret < 0)
269 			return ret;
270 
271 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
272 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
273 			break;
274 
275 		if (ret == 1)
276 			return 1;
277 	}
278 
279 	/* we can treat both ref types equally here */
280 	info = (struct btrfs_tree_block_info *)(ei + 1);
281 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
282 	*out_level = btrfs_tree_block_level(eb, info);
283 
284 	if (ret == 1)
285 		*ptr = (unsigned long)-1;
286 
287 	return 0;
288 }
289 
290 static int __data_list_add(struct list_head *head, u64 inum,
291 				u64 extent_data_item_offset, u64 root)
292 {
293 	struct __data_ref *ref;
294 
295 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
296 	if (!ref)
297 		return -ENOMEM;
298 
299 	ref->inum = inum;
300 	ref->extent_data_item_offset = extent_data_item_offset;
301 	ref->root = root;
302 	list_add_tail(&ref->list, head);
303 
304 	return 0;
305 }
306 
307 static int __data_list_add_eb(struct list_head *head, struct extent_buffer *eb,
308 				struct btrfs_extent_data_ref *dref)
309 {
310 	return __data_list_add(head, btrfs_extent_data_ref_objectid(eb, dref),
311 				btrfs_extent_data_ref_offset(eb, dref),
312 				btrfs_extent_data_ref_root(eb, dref));
313 }
314 
315 static int __shared_list_add(struct list_head *head, u64 disk_byte)
316 {
317 	struct __shared_ref *ref;
318 
319 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
320 	if (!ref)
321 		return -ENOMEM;
322 
323 	ref->disk_byte = disk_byte;
324 	list_add_tail(&ref->list, head);
325 
326 	return 0;
327 }
328 
329 static int __iter_shared_inline_ref_inodes(struct btrfs_fs_info *fs_info,
330 					   u64 logical, u64 inum,
331 					   u64 extent_data_item_offset,
332 					   u64 extent_offset,
333 					   struct btrfs_path *path,
334 					   struct list_head *data_refs,
335 					   iterate_extent_inodes_t *iterate,
336 					   void *ctx)
337 {
338 	u64 ref_root;
339 	u32 item_size;
340 	struct btrfs_key key;
341 	struct extent_buffer *eb;
342 	struct btrfs_extent_item *ei;
343 	struct btrfs_extent_inline_ref *eiref;
344 	struct __data_ref *ref;
345 	int ret;
346 	int type;
347 	int last;
348 	unsigned long ptr = 0;
349 
350 	WARN_ON(!list_empty(data_refs));
351 	ret = extent_from_logical(fs_info, logical, path, &key);
352 	if (ret & BTRFS_EXTENT_FLAG_DATA)
353 		ret = -EIO;
354 	if (ret < 0)
355 		goto out;
356 
357 	eb = path->nodes[0];
358 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
359 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
360 
361 	ret = 0;
362 	ref_root = 0;
363 	/*
364 	 * as done in iterate_extent_inodes, we first build a list of refs to
365 	 * iterate, then free the path and then iterate them to avoid deadlocks.
366 	 */
367 	do {
368 		last = __get_extent_inline_ref(&ptr, eb, ei, item_size,
369 						&eiref, &type);
370 		if (last < 0) {
371 			ret = last;
372 			goto out;
373 		}
374 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
375 		    type == BTRFS_SHARED_BLOCK_REF_KEY) {
376 			ref_root = btrfs_extent_inline_ref_offset(eb, eiref);
377 			ret = __data_list_add(data_refs, inum,
378 						extent_data_item_offset,
379 						ref_root);
380 		}
381 	} while (!ret && !last);
382 
383 	btrfs_release_path(path);
384 
385 	if (ref_root == 0) {
386 		printk(KERN_ERR "btrfs: failed to find tree block ref "
387 			"for shared data backref %llu\n", logical);
388 		WARN_ON(1);
389 		ret = -EIO;
390 	}
391 
392 out:
393 	while (!list_empty(data_refs)) {
394 		ref = list_first_entry(data_refs, struct __data_ref, list);
395 		list_del(&ref->list);
396 		if (!ret)
397 			ret = iterate(ref->inum, extent_offset +
398 					ref->extent_data_item_offset,
399 					ref->root, ctx);
400 		kfree(ref);
401 	}
402 
403 	return ret;
404 }
405 
406 static int __iter_shared_inline_ref(struct btrfs_fs_info *fs_info,
407 				    u64 logical, u64 orig_extent_item_objectid,
408 				    u64 extent_offset, struct btrfs_path *path,
409 				    struct list_head *data_refs,
410 				    iterate_extent_inodes_t *iterate,
411 				    void *ctx)
412 {
413 	u64 disk_byte;
414 	struct btrfs_key key;
415 	struct btrfs_file_extent_item *fi;
416 	struct extent_buffer *eb;
417 	int slot;
418 	int nritems;
419 	int ret;
420 	int found = 0;
421 
422 	eb = read_tree_block(fs_info->tree_root, logical,
423 				fs_info->tree_root->leafsize, 0);
424 	if (!eb)
425 		return -EIO;
426 
427 	/*
428 	 * from the shared data ref, we only have the leaf but we need
429 	 * the key. thus, we must look into all items and see that we
430 	 * find one (some) with a reference to our extent item.
431 	 */
432 	nritems = btrfs_header_nritems(eb);
433 	for (slot = 0; slot < nritems; ++slot) {
434 		btrfs_item_key_to_cpu(eb, &key, slot);
435 		if (key.type != BTRFS_EXTENT_DATA_KEY)
436 			continue;
437 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
438 		if (!fi) {
439 			free_extent_buffer(eb);
440 			return -EIO;
441 		}
442 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
443 		if (disk_byte != orig_extent_item_objectid) {
444 			if (found)
445 				break;
446 			else
447 				continue;
448 		}
449 		++found;
450 		ret = __iter_shared_inline_ref_inodes(fs_info, logical,
451 							key.objectid,
452 							key.offset,
453 							extent_offset, path,
454 							data_refs,
455 							iterate, ctx);
456 		if (ret)
457 			break;
458 	}
459 
460 	if (!found) {
461 		printk(KERN_ERR "btrfs: failed to follow shared data backref "
462 			"to parent %llu\n", logical);
463 		WARN_ON(1);
464 		ret = -EIO;
465 	}
466 
467 	free_extent_buffer(eb);
468 	return ret;
469 }
470 
471 /*
472  * calls iterate() for every inode that references the extent identified by
473  * the given parameters. will use the path given as a parameter and return it
474  * released.
475  * when the iterator function returns a non-zero value, iteration stops.
476  */
477 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
478 				struct btrfs_path *path,
479 				u64 extent_item_objectid,
480 				u64 extent_offset,
481 				iterate_extent_inodes_t *iterate, void *ctx)
482 {
483 	unsigned long ptr = 0;
484 	int last;
485 	int ret;
486 	int type;
487 	u64 logical;
488 	u32 item_size;
489 	struct btrfs_extent_inline_ref *eiref;
490 	struct btrfs_extent_data_ref *dref;
491 	struct extent_buffer *eb;
492 	struct btrfs_extent_item *ei;
493 	struct btrfs_key key;
494 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
495 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
496 	struct __data_ref *ref_d;
497 	struct __shared_ref *ref_s;
498 
499 	eb = path->nodes[0];
500 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
501 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
502 
503 	/* first we iterate the inline refs, ... */
504 	do {
505 		last = __get_extent_inline_ref(&ptr, eb, ei, item_size,
506 						&eiref, &type);
507 		if (last == -ENOENT) {
508 			ret = 0;
509 			break;
510 		}
511 		if (last < 0) {
512 			ret = last;
513 			break;
514 		}
515 
516 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
517 			dref = (struct btrfs_extent_data_ref *)(&eiref->offset);
518 			ret = __data_list_add_eb(&data_refs, eb, dref);
519 		} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
520 			logical = btrfs_extent_inline_ref_offset(eb, eiref);
521 			ret = __shared_list_add(&shared_refs, logical);
522 		}
523 	} while (!ret && !last);
524 
525 	/* ... then we proceed to in-tree references and ... */
526 	while (!ret) {
527 		++path->slots[0];
528 		if (path->slots[0] > btrfs_header_nritems(eb)) {
529 			ret = btrfs_next_leaf(fs_info->extent_root, path);
530 			if (ret) {
531 				if (ret == 1)
532 					ret = 0; /* we're done */
533 				break;
534 			}
535 			eb = path->nodes[0];
536 		}
537 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
538 		if (key.objectid != extent_item_objectid)
539 			break;
540 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
541 			dref = btrfs_item_ptr(eb, path->slots[0],
542 						struct btrfs_extent_data_ref);
543 			ret = __data_list_add_eb(&data_refs, eb, dref);
544 		} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
545 			ret = __shared_list_add(&shared_refs, key.offset);
546 		}
547 	}
548 
549 	btrfs_release_path(path);
550 
551 	/*
552 	 * ... only at the very end we can process the refs we found. this is
553 	 * because the iterator function we call is allowed to make tree lookups
554 	 * and we have to avoid deadlocks. additionally, we need more tree
555 	 * lookups ourselves for shared data refs.
556 	 */
557 	while (!list_empty(&data_refs)) {
558 		ref_d = list_first_entry(&data_refs, struct __data_ref, list);
559 		list_del(&ref_d->list);
560 		if (!ret)
561 			ret = iterate(ref_d->inum, extent_offset +
562 					ref_d->extent_data_item_offset,
563 					ref_d->root, ctx);
564 		kfree(ref_d);
565 	}
566 
567 	while (!list_empty(&shared_refs)) {
568 		ref_s = list_first_entry(&shared_refs, struct __shared_ref,
569 					list);
570 		list_del(&ref_s->list);
571 		if (!ret)
572 			ret = __iter_shared_inline_ref(fs_info,
573 							ref_s->disk_byte,
574 							extent_item_objectid,
575 							extent_offset, path,
576 							&data_refs,
577 							iterate, ctx);
578 		kfree(ref_s);
579 	}
580 
581 	return ret;
582 }
583 
584 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
585 				struct btrfs_path *path,
586 				iterate_extent_inodes_t *iterate, void *ctx)
587 {
588 	int ret;
589 	u64 offset;
590 	struct btrfs_key found_key;
591 
592 	ret = extent_from_logical(fs_info, logical, path,
593 					&found_key);
594 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
595 		ret = -EINVAL;
596 	if (ret < 0)
597 		return ret;
598 
599 	offset = logical - found_key.objectid;
600 	ret = iterate_extent_inodes(fs_info, path, found_key.objectid,
601 					offset, iterate, ctx);
602 
603 	return ret;
604 }
605 
606 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
607 				struct btrfs_path *path,
608 				iterate_irefs_t *iterate, void *ctx)
609 {
610 	int ret;
611 	int slot;
612 	u32 cur;
613 	u32 len;
614 	u32 name_len;
615 	u64 parent = 0;
616 	int found = 0;
617 	struct extent_buffer *eb;
618 	struct btrfs_item *item;
619 	struct btrfs_inode_ref *iref;
620 	struct btrfs_key found_key;
621 
622 	while (1) {
623 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
624 					&found_key);
625 		if (ret < 0)
626 			break;
627 		if (ret) {
628 			ret = found ? 0 : -ENOENT;
629 			break;
630 		}
631 		++found;
632 
633 		parent = found_key.offset;
634 		slot = path->slots[0];
635 		eb = path->nodes[0];
636 		/* make sure we can use eb after releasing the path */
637 		atomic_inc(&eb->refs);
638 		btrfs_release_path(path);
639 
640 		item = btrfs_item_nr(eb, slot);
641 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
642 
643 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
644 			name_len = btrfs_inode_ref_name_len(eb, iref);
645 			/* path must be released before calling iterate()! */
646 			ret = iterate(parent, iref, eb, ctx);
647 			if (ret) {
648 				free_extent_buffer(eb);
649 				break;
650 			}
651 			len = sizeof(*iref) + name_len;
652 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
653 		}
654 		free_extent_buffer(eb);
655 	}
656 
657 	btrfs_release_path(path);
658 
659 	return ret;
660 }
661 
662 /*
663  * returns 0 if the path could be dumped (probably truncated)
664  * returns <0 in case of an error
665  */
666 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
667 				struct extent_buffer *eb, void *ctx)
668 {
669 	struct inode_fs_paths *ipath = ctx;
670 	char *fspath;
671 	char *fspath_min;
672 	int i = ipath->fspath->elem_cnt;
673 	const int s_ptr = sizeof(char *);
674 	u32 bytes_left;
675 
676 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
677 					ipath->fspath->bytes_left - s_ptr : 0;
678 
679 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
680 	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
681 				inum, fspath_min, bytes_left);
682 	if (IS_ERR(fspath))
683 		return PTR_ERR(fspath);
684 
685 	if (fspath > fspath_min) {
686 		ipath->fspath->val[i] = (u64)fspath;
687 		++ipath->fspath->elem_cnt;
688 		ipath->fspath->bytes_left = fspath - fspath_min;
689 	} else {
690 		++ipath->fspath->elem_missed;
691 		ipath->fspath->bytes_missing += fspath_min - fspath;
692 		ipath->fspath->bytes_left = 0;
693 	}
694 
695 	return 0;
696 }
697 
698 /*
699  * this dumps all file system paths to the inode into the ipath struct, provided
700  * is has been created large enough. each path is zero-terminated and accessed
701  * from ipath->fspath->val[i].
702  * when it returns, there are ipath->fspath->elem_cnt number of paths available
703  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
704  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
705  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
706  * have been needed to return all paths.
707  */
708 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
709 {
710 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
711 				inode_to_path, ipath);
712 }
713 
714 /*
715  * allocates space to return multiple file system paths for an inode.
716  * total_bytes to allocate are passed, note that space usable for actual path
717  * information will be total_bytes - sizeof(struct inode_fs_paths).
718  * the returned pointer must be freed with free_ipath() in the end.
719  */
720 struct btrfs_data_container *init_data_container(u32 total_bytes)
721 {
722 	struct btrfs_data_container *data;
723 	size_t alloc_bytes;
724 
725 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
726 	data = kmalloc(alloc_bytes, GFP_NOFS);
727 	if (!data)
728 		return ERR_PTR(-ENOMEM);
729 
730 	if (total_bytes >= sizeof(*data)) {
731 		data->bytes_left = total_bytes - sizeof(*data);
732 		data->bytes_missing = 0;
733 	} else {
734 		data->bytes_missing = sizeof(*data) - total_bytes;
735 		data->bytes_left = 0;
736 	}
737 
738 	data->elem_cnt = 0;
739 	data->elem_missed = 0;
740 
741 	return data;
742 }
743 
744 /*
745  * allocates space to return multiple file system paths for an inode.
746  * total_bytes to allocate are passed, note that space usable for actual path
747  * information will be total_bytes - sizeof(struct inode_fs_paths).
748  * the returned pointer must be freed with free_ipath() in the end.
749  */
750 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
751 					struct btrfs_path *path)
752 {
753 	struct inode_fs_paths *ifp;
754 	struct btrfs_data_container *fspath;
755 
756 	fspath = init_data_container(total_bytes);
757 	if (IS_ERR(fspath))
758 		return (void *)fspath;
759 
760 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
761 	if (!ifp) {
762 		kfree(fspath);
763 		return ERR_PTR(-ENOMEM);
764 	}
765 
766 	ifp->btrfs_path = path;
767 	ifp->fspath = fspath;
768 	ifp->fs_root = fs_root;
769 
770 	return ifp;
771 }
772 
773 void free_ipath(struct inode_fs_paths *ipath)
774 {
775 	kfree(ipath);
776 }
777