xref: /openbmc/linux/fs/btrfs/backref.c (revision 966a9b49033b472dcfb453abdc34bca7df17adce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 	bool have_delayed_delete_refs;
142 };
143 
144 static inline int extent_is_shared(struct share_check *sc)
145 {
146 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147 }
148 
149 static struct kmem_cache *btrfs_prelim_ref_cache;
150 
151 int __init btrfs_prelim_ref_init(void)
152 {
153 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
154 					sizeof(struct prelim_ref),
155 					0,
156 					SLAB_MEM_SPREAD,
157 					NULL);
158 	if (!btrfs_prelim_ref_cache)
159 		return -ENOMEM;
160 	return 0;
161 }
162 
163 void __cold btrfs_prelim_ref_exit(void)
164 {
165 	kmem_cache_destroy(btrfs_prelim_ref_cache);
166 }
167 
168 static void free_pref(struct prelim_ref *ref)
169 {
170 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
171 }
172 
173 /*
174  * Return 0 when both refs are for the same block (and can be merged).
175  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176  * indicates a 'higher' block.
177  */
178 static int prelim_ref_compare(struct prelim_ref *ref1,
179 			      struct prelim_ref *ref2)
180 {
181 	if (ref1->level < ref2->level)
182 		return -1;
183 	if (ref1->level > ref2->level)
184 		return 1;
185 	if (ref1->root_id < ref2->root_id)
186 		return -1;
187 	if (ref1->root_id > ref2->root_id)
188 		return 1;
189 	if (ref1->key_for_search.type < ref2->key_for_search.type)
190 		return -1;
191 	if (ref1->key_for_search.type > ref2->key_for_search.type)
192 		return 1;
193 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 		return -1;
195 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 		return 1;
197 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 		return -1;
199 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 		return 1;
201 	if (ref1->parent < ref2->parent)
202 		return -1;
203 	if (ref1->parent > ref2->parent)
204 		return 1;
205 
206 	return 0;
207 }
208 
209 static void update_share_count(struct share_check *sc, int oldcount,
210 			       int newcount)
211 {
212 	if ((!sc) || (oldcount == 0 && newcount < 1))
213 		return;
214 
215 	if (oldcount > 0 && newcount < 1)
216 		sc->share_count--;
217 	else if (oldcount < 1 && newcount > 0)
218 		sc->share_count++;
219 }
220 
221 /*
222  * Add @newref to the @root rbtree, merging identical refs.
223  *
224  * Callers should assume that newref has been freed after calling.
225  */
226 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 			      struct preftree *preftree,
228 			      struct prelim_ref *newref,
229 			      struct share_check *sc)
230 {
231 	struct rb_root_cached *root;
232 	struct rb_node **p;
233 	struct rb_node *parent = NULL;
234 	struct prelim_ref *ref;
235 	int result;
236 	bool leftmost = true;
237 
238 	root = &preftree->root;
239 	p = &root->rb_root.rb_node;
240 
241 	while (*p) {
242 		parent = *p;
243 		ref = rb_entry(parent, struct prelim_ref, rbnode);
244 		result = prelim_ref_compare(ref, newref);
245 		if (result < 0) {
246 			p = &(*p)->rb_left;
247 		} else if (result > 0) {
248 			p = &(*p)->rb_right;
249 			leftmost = false;
250 		} else {
251 			/* Identical refs, merge them and free @newref */
252 			struct extent_inode_elem *eie = ref->inode_list;
253 
254 			while (eie && eie->next)
255 				eie = eie->next;
256 
257 			if (!eie)
258 				ref->inode_list = newref->inode_list;
259 			else
260 				eie->next = newref->inode_list;
261 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 						     preftree->count);
263 			/*
264 			 * A delayed ref can have newref->count < 0.
265 			 * The ref->count is updated to follow any
266 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 			 */
268 			update_share_count(sc, ref->count,
269 					   ref->count + newref->count);
270 			ref->count += newref->count;
271 			free_pref(newref);
272 			return;
273 		}
274 	}
275 
276 	update_share_count(sc, 0, newref->count);
277 	preftree->count++;
278 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
279 	rb_link_node(&newref->rbnode, parent, p);
280 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
281 }
282 
283 /*
284  * Release the entire tree.  We don't care about internal consistency so
285  * just free everything and then reset the tree root.
286  */
287 static void prelim_release(struct preftree *preftree)
288 {
289 	struct prelim_ref *ref, *next_ref;
290 
291 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
292 					     &preftree->root.rb_root, rbnode) {
293 		free_inode_elem_list(ref->inode_list);
294 		free_pref(ref);
295 	}
296 
297 	preftree->root = RB_ROOT_CACHED;
298 	preftree->count = 0;
299 }
300 
301 /*
302  * the rules for all callers of this function are:
303  * - obtaining the parent is the goal
304  * - if you add a key, you must know that it is a correct key
305  * - if you cannot add the parent or a correct key, then we will look into the
306  *   block later to set a correct key
307  *
308  * delayed refs
309  * ============
310  *        backref type | shared | indirect | shared | indirect
311  * information         |   tree |     tree |   data |     data
312  * --------------------+--------+----------+--------+----------
313  *      parent logical |    y   |     -    |    -   |     -
314  *      key to resolve |    -   |     y    |    y   |     y
315  *  tree block logical |    -   |     -    |    -   |     -
316  *  root for resolving |    y   |     y    |    y   |     y
317  *
318  * - column 1:       we've the parent -> done
319  * - column 2, 3, 4: we use the key to find the parent
320  *
321  * on disk refs (inline or keyed)
322  * ==============================
323  *        backref type | shared | indirect | shared | indirect
324  * information         |   tree |     tree |   data |     data
325  * --------------------+--------+----------+--------+----------
326  *      parent logical |    y   |     -    |    y   |     -
327  *      key to resolve |    -   |     -    |    -   |     y
328  *  tree block logical |    y   |     y    |    y   |     y
329  *  root for resolving |    -   |     y    |    y   |     y
330  *
331  * - column 1, 3: we've the parent -> done
332  * - column 2:    we take the first key from the block to find the parent
333  *                (see add_missing_keys)
334  * - column 4:    we use the key to find the parent
335  *
336  * additional information that's available but not required to find the parent
337  * block might help in merging entries to gain some speed.
338  */
339 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
340 			  struct preftree *preftree, u64 root_id,
341 			  const struct btrfs_key *key, int level, u64 parent,
342 			  u64 wanted_disk_byte, int count,
343 			  struct share_check *sc, gfp_t gfp_mask)
344 {
345 	struct prelim_ref *ref;
346 
347 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
348 		return 0;
349 
350 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
351 	if (!ref)
352 		return -ENOMEM;
353 
354 	ref->root_id = root_id;
355 	if (key)
356 		ref->key_for_search = *key;
357 	else
358 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
359 
360 	ref->inode_list = NULL;
361 	ref->level = level;
362 	ref->count = count;
363 	ref->parent = parent;
364 	ref->wanted_disk_byte = wanted_disk_byte;
365 	prelim_ref_insert(fs_info, preftree, ref, sc);
366 	return extent_is_shared(sc);
367 }
368 
369 /* direct refs use root == 0, key == NULL */
370 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
371 			  struct preftrees *preftrees, int level, u64 parent,
372 			  u64 wanted_disk_byte, int count,
373 			  struct share_check *sc, gfp_t gfp_mask)
374 {
375 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
376 			      parent, wanted_disk_byte, count, sc, gfp_mask);
377 }
378 
379 /* indirect refs use parent == 0 */
380 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
381 			    struct preftrees *preftrees, u64 root_id,
382 			    const struct btrfs_key *key, int level,
383 			    u64 wanted_disk_byte, int count,
384 			    struct share_check *sc, gfp_t gfp_mask)
385 {
386 	struct preftree *tree = &preftrees->indirect;
387 
388 	if (!key)
389 		tree = &preftrees->indirect_missing_keys;
390 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
391 			      wanted_disk_byte, count, sc, gfp_mask);
392 }
393 
394 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
395 {
396 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
397 	struct rb_node *parent = NULL;
398 	struct prelim_ref *ref = NULL;
399 	struct prelim_ref target = {};
400 	int result;
401 
402 	target.parent = bytenr;
403 
404 	while (*p) {
405 		parent = *p;
406 		ref = rb_entry(parent, struct prelim_ref, rbnode);
407 		result = prelim_ref_compare(ref, &target);
408 
409 		if (result < 0)
410 			p = &(*p)->rb_left;
411 		else if (result > 0)
412 			p = &(*p)->rb_right;
413 		else
414 			return 1;
415 	}
416 	return 0;
417 }
418 
419 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420 			   struct ulist *parents,
421 			   struct preftrees *preftrees, struct prelim_ref *ref,
422 			   int level, u64 time_seq, const u64 *extent_item_pos,
423 			   bool ignore_offset)
424 {
425 	int ret = 0;
426 	int slot;
427 	struct extent_buffer *eb;
428 	struct btrfs_key key;
429 	struct btrfs_key *key_for_search = &ref->key_for_search;
430 	struct btrfs_file_extent_item *fi;
431 	struct extent_inode_elem *eie = NULL, *old = NULL;
432 	u64 disk_byte;
433 	u64 wanted_disk_byte = ref->wanted_disk_byte;
434 	u64 count = 0;
435 	u64 data_offset;
436 
437 	if (level != 0) {
438 		eb = path->nodes[level];
439 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
440 		if (ret < 0)
441 			return ret;
442 		return 0;
443 	}
444 
445 	/*
446 	 * 1. We normally enter this function with the path already pointing to
447 	 *    the first item to check. But sometimes, we may enter it with
448 	 *    slot == nritems.
449 	 * 2. We are searching for normal backref but bytenr of this leaf
450 	 *    matches shared data backref
451 	 * 3. The leaf owner is not equal to the root we are searching
452 	 *
453 	 * For these cases, go to the next leaf before we continue.
454 	 */
455 	eb = path->nodes[0];
456 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
457 	    is_shared_data_backref(preftrees, eb->start) ||
458 	    ref->root_id != btrfs_header_owner(eb)) {
459 		if (time_seq == BTRFS_SEQ_LAST)
460 			ret = btrfs_next_leaf(root, path);
461 		else
462 			ret = btrfs_next_old_leaf(root, path, time_seq);
463 	}
464 
465 	while (!ret && count < ref->count) {
466 		eb = path->nodes[0];
467 		slot = path->slots[0];
468 
469 		btrfs_item_key_to_cpu(eb, &key, slot);
470 
471 		if (key.objectid != key_for_search->objectid ||
472 		    key.type != BTRFS_EXTENT_DATA_KEY)
473 			break;
474 
475 		/*
476 		 * We are searching for normal backref but bytenr of this leaf
477 		 * matches shared data backref, OR
478 		 * the leaf owner is not equal to the root we are searching for
479 		 */
480 		if (slot == 0 &&
481 		    (is_shared_data_backref(preftrees, eb->start) ||
482 		     ref->root_id != btrfs_header_owner(eb))) {
483 			if (time_seq == BTRFS_SEQ_LAST)
484 				ret = btrfs_next_leaf(root, path);
485 			else
486 				ret = btrfs_next_old_leaf(root, path, time_seq);
487 			continue;
488 		}
489 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
490 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
491 		data_offset = btrfs_file_extent_offset(eb, fi);
492 
493 		if (disk_byte == wanted_disk_byte) {
494 			eie = NULL;
495 			old = NULL;
496 			if (ref->key_for_search.offset == key.offset - data_offset)
497 				count++;
498 			else
499 				goto next;
500 			if (extent_item_pos) {
501 				ret = check_extent_in_eb(&key, eb, fi,
502 						*extent_item_pos,
503 						&eie, ignore_offset);
504 				if (ret < 0)
505 					break;
506 			}
507 			if (ret > 0)
508 				goto next;
509 			ret = ulist_add_merge_ptr(parents, eb->start,
510 						  eie, (void **)&old, GFP_NOFS);
511 			if (ret < 0)
512 				break;
513 			if (!ret && extent_item_pos) {
514 				while (old->next)
515 					old = old->next;
516 				old->next = eie;
517 			}
518 			eie = NULL;
519 		}
520 next:
521 		if (time_seq == BTRFS_SEQ_LAST)
522 			ret = btrfs_next_item(root, path);
523 		else
524 			ret = btrfs_next_old_item(root, path, time_seq);
525 	}
526 
527 	if (ret > 0)
528 		ret = 0;
529 	else if (ret < 0)
530 		free_inode_elem_list(eie);
531 	return ret;
532 }
533 
534 /*
535  * resolve an indirect backref in the form (root_id, key, level)
536  * to a logical address
537  */
538 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
539 				struct btrfs_path *path, u64 time_seq,
540 				struct preftrees *preftrees,
541 				struct prelim_ref *ref, struct ulist *parents,
542 				const u64 *extent_item_pos, bool ignore_offset)
543 {
544 	struct btrfs_root *root;
545 	struct extent_buffer *eb;
546 	int ret = 0;
547 	int root_level;
548 	int level = ref->level;
549 	struct btrfs_key search_key = ref->key_for_search;
550 
551 	/*
552 	 * If we're search_commit_root we could possibly be holding locks on
553 	 * other tree nodes.  This happens when qgroups does backref walks when
554 	 * adding new delayed refs.  To deal with this we need to look in cache
555 	 * for the root, and if we don't find it then we need to search the
556 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
557 	 * here.
558 	 */
559 	if (path->search_commit_root)
560 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
561 	else
562 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
563 	if (IS_ERR(root)) {
564 		ret = PTR_ERR(root);
565 		goto out_free;
566 	}
567 
568 	if (!path->search_commit_root &&
569 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
570 		ret = -ENOENT;
571 		goto out;
572 	}
573 
574 	if (btrfs_is_testing(fs_info)) {
575 		ret = -ENOENT;
576 		goto out;
577 	}
578 
579 	if (path->search_commit_root)
580 		root_level = btrfs_header_level(root->commit_root);
581 	else if (time_seq == BTRFS_SEQ_LAST)
582 		root_level = btrfs_header_level(root->node);
583 	else
584 		root_level = btrfs_old_root_level(root, time_seq);
585 
586 	if (root_level + 1 == level)
587 		goto out;
588 
589 	/*
590 	 * We can often find data backrefs with an offset that is too large
591 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
592 	 * subtracting a file's offset with the data offset of its
593 	 * corresponding extent data item. This can happen for example in the
594 	 * clone ioctl.
595 	 *
596 	 * So if we detect such case we set the search key's offset to zero to
597 	 * make sure we will find the matching file extent item at
598 	 * add_all_parents(), otherwise we will miss it because the offset
599 	 * taken form the backref is much larger then the offset of the file
600 	 * extent item. This can make us scan a very large number of file
601 	 * extent items, but at least it will not make us miss any.
602 	 *
603 	 * This is an ugly workaround for a behaviour that should have never
604 	 * existed, but it does and a fix for the clone ioctl would touch a lot
605 	 * of places, cause backwards incompatibility and would not fix the
606 	 * problem for extents cloned with older kernels.
607 	 */
608 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
609 	    search_key.offset >= LLONG_MAX)
610 		search_key.offset = 0;
611 	path->lowest_level = level;
612 	if (time_seq == BTRFS_SEQ_LAST)
613 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
614 	else
615 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
616 
617 	btrfs_debug(fs_info,
618 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
619 		 ref->root_id, level, ref->count, ret,
620 		 ref->key_for_search.objectid, ref->key_for_search.type,
621 		 ref->key_for_search.offset);
622 	if (ret < 0)
623 		goto out;
624 
625 	eb = path->nodes[level];
626 	while (!eb) {
627 		if (WARN_ON(!level)) {
628 			ret = 1;
629 			goto out;
630 		}
631 		level--;
632 		eb = path->nodes[level];
633 	}
634 
635 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
636 			      time_seq, extent_item_pos, ignore_offset);
637 out:
638 	btrfs_put_root(root);
639 out_free:
640 	path->lowest_level = 0;
641 	btrfs_release_path(path);
642 	return ret;
643 }
644 
645 static struct extent_inode_elem *
646 unode_aux_to_inode_list(struct ulist_node *node)
647 {
648 	if (!node)
649 		return NULL;
650 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
651 }
652 
653 static void free_leaf_list(struct ulist *ulist)
654 {
655 	struct ulist_node *node;
656 	struct ulist_iterator uiter;
657 
658 	ULIST_ITER_INIT(&uiter);
659 	while ((node = ulist_next(ulist, &uiter)))
660 		free_inode_elem_list(unode_aux_to_inode_list(node));
661 
662 	ulist_free(ulist);
663 }
664 
665 /*
666  * We maintain three separate rbtrees: one for direct refs, one for
667  * indirect refs which have a key, and one for indirect refs which do not
668  * have a key. Each tree does merge on insertion.
669  *
670  * Once all of the references are located, we iterate over the tree of
671  * indirect refs with missing keys. An appropriate key is located and
672  * the ref is moved onto the tree for indirect refs. After all missing
673  * keys are thus located, we iterate over the indirect ref tree, resolve
674  * each reference, and then insert the resolved reference onto the
675  * direct tree (merging there too).
676  *
677  * New backrefs (i.e., for parent nodes) are added to the appropriate
678  * rbtree as they are encountered. The new backrefs are subsequently
679  * resolved as above.
680  */
681 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
682 				 struct btrfs_path *path, u64 time_seq,
683 				 struct preftrees *preftrees,
684 				 const u64 *extent_item_pos,
685 				 struct share_check *sc, bool ignore_offset)
686 {
687 	int err;
688 	int ret = 0;
689 	struct ulist *parents;
690 	struct ulist_node *node;
691 	struct ulist_iterator uiter;
692 	struct rb_node *rnode;
693 
694 	parents = ulist_alloc(GFP_NOFS);
695 	if (!parents)
696 		return -ENOMEM;
697 
698 	/*
699 	 * We could trade memory usage for performance here by iterating
700 	 * the tree, allocating new refs for each insertion, and then
701 	 * freeing the entire indirect tree when we're done.  In some test
702 	 * cases, the tree can grow quite large (~200k objects).
703 	 */
704 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
705 		struct prelim_ref *ref;
706 
707 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
708 		if (WARN(ref->parent,
709 			 "BUG: direct ref found in indirect tree")) {
710 			ret = -EINVAL;
711 			goto out;
712 		}
713 
714 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
715 		preftrees->indirect.count--;
716 
717 		if (ref->count == 0) {
718 			free_pref(ref);
719 			continue;
720 		}
721 
722 		if (sc && sc->root_objectid &&
723 		    ref->root_id != sc->root_objectid) {
724 			free_pref(ref);
725 			ret = BACKREF_FOUND_SHARED;
726 			goto out;
727 		}
728 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
729 					   ref, parents, extent_item_pos,
730 					   ignore_offset);
731 		/*
732 		 * we can only tolerate ENOENT,otherwise,we should catch error
733 		 * and return directly.
734 		 */
735 		if (err == -ENOENT) {
736 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
737 					  NULL);
738 			continue;
739 		} else if (err) {
740 			free_pref(ref);
741 			ret = err;
742 			goto out;
743 		}
744 
745 		/* we put the first parent into the ref at hand */
746 		ULIST_ITER_INIT(&uiter);
747 		node = ulist_next(parents, &uiter);
748 		ref->parent = node ? node->val : 0;
749 		ref->inode_list = unode_aux_to_inode_list(node);
750 
751 		/* Add a prelim_ref(s) for any other parent(s). */
752 		while ((node = ulist_next(parents, &uiter))) {
753 			struct prelim_ref *new_ref;
754 
755 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
756 						   GFP_NOFS);
757 			if (!new_ref) {
758 				free_pref(ref);
759 				ret = -ENOMEM;
760 				goto out;
761 			}
762 			memcpy(new_ref, ref, sizeof(*ref));
763 			new_ref->parent = node->val;
764 			new_ref->inode_list = unode_aux_to_inode_list(node);
765 			prelim_ref_insert(fs_info, &preftrees->direct,
766 					  new_ref, NULL);
767 		}
768 
769 		/*
770 		 * Now it's a direct ref, put it in the direct tree. We must
771 		 * do this last because the ref could be merged/freed here.
772 		 */
773 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
774 
775 		ulist_reinit(parents);
776 		cond_resched();
777 	}
778 out:
779 	/*
780 	 * We may have inode lists attached to refs in the parents ulist, so we
781 	 * must free them before freeing the ulist and its refs.
782 	 */
783 	free_leaf_list(parents);
784 	return ret;
785 }
786 
787 /*
788  * read tree blocks and add keys where required.
789  */
790 static int add_missing_keys(struct btrfs_fs_info *fs_info,
791 			    struct preftrees *preftrees, bool lock)
792 {
793 	struct prelim_ref *ref;
794 	struct extent_buffer *eb;
795 	struct preftree *tree = &preftrees->indirect_missing_keys;
796 	struct rb_node *node;
797 
798 	while ((node = rb_first_cached(&tree->root))) {
799 		ref = rb_entry(node, struct prelim_ref, rbnode);
800 		rb_erase_cached(node, &tree->root);
801 
802 		BUG_ON(ref->parent);	/* should not be a direct ref */
803 		BUG_ON(ref->key_for_search.type);
804 		BUG_ON(!ref->wanted_disk_byte);
805 
806 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
807 				     ref->root_id, 0, ref->level - 1, NULL);
808 		if (IS_ERR(eb)) {
809 			free_pref(ref);
810 			return PTR_ERR(eb);
811 		}
812 		if (!extent_buffer_uptodate(eb)) {
813 			free_pref(ref);
814 			free_extent_buffer(eb);
815 			return -EIO;
816 		}
817 
818 		if (lock)
819 			btrfs_tree_read_lock(eb);
820 		if (btrfs_header_level(eb) == 0)
821 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
822 		else
823 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
824 		if (lock)
825 			btrfs_tree_read_unlock(eb);
826 		free_extent_buffer(eb);
827 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
828 		cond_resched();
829 	}
830 	return 0;
831 }
832 
833 /*
834  * add all currently queued delayed refs from this head whose seq nr is
835  * smaller or equal that seq to the list
836  */
837 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
838 			    struct btrfs_delayed_ref_head *head, u64 seq,
839 			    struct preftrees *preftrees, struct share_check *sc)
840 {
841 	struct btrfs_delayed_ref_node *node;
842 	struct btrfs_key key;
843 	struct rb_node *n;
844 	int count;
845 	int ret = 0;
846 
847 	spin_lock(&head->lock);
848 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
849 		node = rb_entry(n, struct btrfs_delayed_ref_node,
850 				ref_node);
851 		if (node->seq > seq)
852 			continue;
853 
854 		switch (node->action) {
855 		case BTRFS_ADD_DELAYED_EXTENT:
856 		case BTRFS_UPDATE_DELAYED_HEAD:
857 			WARN_ON(1);
858 			continue;
859 		case BTRFS_ADD_DELAYED_REF:
860 			count = node->ref_mod;
861 			break;
862 		case BTRFS_DROP_DELAYED_REF:
863 			count = node->ref_mod * -1;
864 			break;
865 		default:
866 			BUG();
867 		}
868 		switch (node->type) {
869 		case BTRFS_TREE_BLOCK_REF_KEY: {
870 			/* NORMAL INDIRECT METADATA backref */
871 			struct btrfs_delayed_tree_ref *ref;
872 			struct btrfs_key *key_ptr = NULL;
873 
874 			if (head->extent_op && head->extent_op->update_key) {
875 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
876 				key_ptr = &key;
877 			}
878 
879 			ref = btrfs_delayed_node_to_tree_ref(node);
880 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
881 					       key_ptr, ref->level + 1,
882 					       node->bytenr, count, sc,
883 					       GFP_ATOMIC);
884 			break;
885 		}
886 		case BTRFS_SHARED_BLOCK_REF_KEY: {
887 			/* SHARED DIRECT METADATA backref */
888 			struct btrfs_delayed_tree_ref *ref;
889 
890 			ref = btrfs_delayed_node_to_tree_ref(node);
891 
892 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
893 					     ref->parent, node->bytenr, count,
894 					     sc, GFP_ATOMIC);
895 			break;
896 		}
897 		case BTRFS_EXTENT_DATA_REF_KEY: {
898 			/* NORMAL INDIRECT DATA backref */
899 			struct btrfs_delayed_data_ref *ref;
900 			ref = btrfs_delayed_node_to_data_ref(node);
901 
902 			key.objectid = ref->objectid;
903 			key.type = BTRFS_EXTENT_DATA_KEY;
904 			key.offset = ref->offset;
905 
906 			/*
907 			 * If we have a share check context and a reference for
908 			 * another inode, we can't exit immediately. This is
909 			 * because even if this is a BTRFS_ADD_DELAYED_REF
910 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
911 			 * which cancels out this ADD reference.
912 			 *
913 			 * If this is a DROP reference and there was no previous
914 			 * ADD reference, then we need to signal that when we
915 			 * process references from the extent tree (through
916 			 * add_inline_refs() and add_keyed_refs()), we should
917 			 * not exit early if we find a reference for another
918 			 * inode, because one of the delayed DROP references
919 			 * may cancel that reference in the extent tree.
920 			 */
921 			if (sc && count < 0)
922 				sc->have_delayed_delete_refs = true;
923 
924 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
925 					       &key, 0, node->bytenr, count, sc,
926 					       GFP_ATOMIC);
927 			break;
928 		}
929 		case BTRFS_SHARED_DATA_REF_KEY: {
930 			/* SHARED DIRECT FULL backref */
931 			struct btrfs_delayed_data_ref *ref;
932 
933 			ref = btrfs_delayed_node_to_data_ref(node);
934 
935 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
936 					     node->bytenr, count, sc,
937 					     GFP_ATOMIC);
938 			break;
939 		}
940 		default:
941 			WARN_ON(1);
942 		}
943 		/*
944 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
945 		 * refs have been checked.
946 		 */
947 		if (ret && (ret != BACKREF_FOUND_SHARED))
948 			break;
949 	}
950 	if (!ret)
951 		ret = extent_is_shared(sc);
952 
953 	spin_unlock(&head->lock);
954 	return ret;
955 }
956 
957 /*
958  * add all inline backrefs for bytenr to the list
959  *
960  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
961  */
962 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
963 			   struct btrfs_path *path, u64 bytenr,
964 			   int *info_level, struct preftrees *preftrees,
965 			   struct share_check *sc)
966 {
967 	int ret = 0;
968 	int slot;
969 	struct extent_buffer *leaf;
970 	struct btrfs_key key;
971 	struct btrfs_key found_key;
972 	unsigned long ptr;
973 	unsigned long end;
974 	struct btrfs_extent_item *ei;
975 	u64 flags;
976 	u64 item_size;
977 
978 	/*
979 	 * enumerate all inline refs
980 	 */
981 	leaf = path->nodes[0];
982 	slot = path->slots[0];
983 
984 	item_size = btrfs_item_size(leaf, slot);
985 	BUG_ON(item_size < sizeof(*ei));
986 
987 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
988 	flags = btrfs_extent_flags(leaf, ei);
989 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
990 
991 	ptr = (unsigned long)(ei + 1);
992 	end = (unsigned long)ei + item_size;
993 
994 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
995 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
996 		struct btrfs_tree_block_info *info;
997 
998 		info = (struct btrfs_tree_block_info *)ptr;
999 		*info_level = btrfs_tree_block_level(leaf, info);
1000 		ptr += sizeof(struct btrfs_tree_block_info);
1001 		BUG_ON(ptr > end);
1002 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1003 		*info_level = found_key.offset;
1004 	} else {
1005 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1006 	}
1007 
1008 	while (ptr < end) {
1009 		struct btrfs_extent_inline_ref *iref;
1010 		u64 offset;
1011 		int type;
1012 
1013 		iref = (struct btrfs_extent_inline_ref *)ptr;
1014 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1015 							BTRFS_REF_TYPE_ANY);
1016 		if (type == BTRFS_REF_TYPE_INVALID)
1017 			return -EUCLEAN;
1018 
1019 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1020 
1021 		switch (type) {
1022 		case BTRFS_SHARED_BLOCK_REF_KEY:
1023 			ret = add_direct_ref(fs_info, preftrees,
1024 					     *info_level + 1, offset,
1025 					     bytenr, 1, NULL, GFP_NOFS);
1026 			break;
1027 		case BTRFS_SHARED_DATA_REF_KEY: {
1028 			struct btrfs_shared_data_ref *sdref;
1029 			int count;
1030 
1031 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1032 			count = btrfs_shared_data_ref_count(leaf, sdref);
1033 
1034 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1035 					     bytenr, count, sc, GFP_NOFS);
1036 			break;
1037 		}
1038 		case BTRFS_TREE_BLOCK_REF_KEY:
1039 			ret = add_indirect_ref(fs_info, preftrees, offset,
1040 					       NULL, *info_level + 1,
1041 					       bytenr, 1, NULL, GFP_NOFS);
1042 			break;
1043 		case BTRFS_EXTENT_DATA_REF_KEY: {
1044 			struct btrfs_extent_data_ref *dref;
1045 			int count;
1046 			u64 root;
1047 
1048 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1049 			count = btrfs_extent_data_ref_count(leaf, dref);
1050 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1051 								      dref);
1052 			key.type = BTRFS_EXTENT_DATA_KEY;
1053 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1054 
1055 			if (sc && sc->inum && key.objectid != sc->inum &&
1056 			    !sc->have_delayed_delete_refs) {
1057 				ret = BACKREF_FOUND_SHARED;
1058 				break;
1059 			}
1060 
1061 			root = btrfs_extent_data_ref_root(leaf, dref);
1062 
1063 			ret = add_indirect_ref(fs_info, preftrees, root,
1064 					       &key, 0, bytenr, count,
1065 					       sc, GFP_NOFS);
1066 
1067 			break;
1068 		}
1069 		default:
1070 			WARN_ON(1);
1071 		}
1072 		if (ret)
1073 			return ret;
1074 		ptr += btrfs_extent_inline_ref_size(type);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * add all non-inline backrefs for bytenr to the list
1082  *
1083  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1084  */
1085 static int add_keyed_refs(struct btrfs_root *extent_root,
1086 			  struct btrfs_path *path, u64 bytenr,
1087 			  int info_level, struct preftrees *preftrees,
1088 			  struct share_check *sc)
1089 {
1090 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1091 	int ret;
1092 	int slot;
1093 	struct extent_buffer *leaf;
1094 	struct btrfs_key key;
1095 
1096 	while (1) {
1097 		ret = btrfs_next_item(extent_root, path);
1098 		if (ret < 0)
1099 			break;
1100 		if (ret) {
1101 			ret = 0;
1102 			break;
1103 		}
1104 
1105 		slot = path->slots[0];
1106 		leaf = path->nodes[0];
1107 		btrfs_item_key_to_cpu(leaf, &key, slot);
1108 
1109 		if (key.objectid != bytenr)
1110 			break;
1111 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1112 			continue;
1113 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1114 			break;
1115 
1116 		switch (key.type) {
1117 		case BTRFS_SHARED_BLOCK_REF_KEY:
1118 			/* SHARED DIRECT METADATA backref */
1119 			ret = add_direct_ref(fs_info, preftrees,
1120 					     info_level + 1, key.offset,
1121 					     bytenr, 1, NULL, GFP_NOFS);
1122 			break;
1123 		case BTRFS_SHARED_DATA_REF_KEY: {
1124 			/* SHARED DIRECT FULL backref */
1125 			struct btrfs_shared_data_ref *sdref;
1126 			int count;
1127 
1128 			sdref = btrfs_item_ptr(leaf, slot,
1129 					      struct btrfs_shared_data_ref);
1130 			count = btrfs_shared_data_ref_count(leaf, sdref);
1131 			ret = add_direct_ref(fs_info, preftrees, 0,
1132 					     key.offset, bytenr, count,
1133 					     sc, GFP_NOFS);
1134 			break;
1135 		}
1136 		case BTRFS_TREE_BLOCK_REF_KEY:
1137 			/* NORMAL INDIRECT METADATA backref */
1138 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1139 					       NULL, info_level + 1, bytenr,
1140 					       1, NULL, GFP_NOFS);
1141 			break;
1142 		case BTRFS_EXTENT_DATA_REF_KEY: {
1143 			/* NORMAL INDIRECT DATA backref */
1144 			struct btrfs_extent_data_ref *dref;
1145 			int count;
1146 			u64 root;
1147 
1148 			dref = btrfs_item_ptr(leaf, slot,
1149 					      struct btrfs_extent_data_ref);
1150 			count = btrfs_extent_data_ref_count(leaf, dref);
1151 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1152 								      dref);
1153 			key.type = BTRFS_EXTENT_DATA_KEY;
1154 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1155 
1156 			if (sc && sc->inum && key.objectid != sc->inum &&
1157 			    !sc->have_delayed_delete_refs) {
1158 				ret = BACKREF_FOUND_SHARED;
1159 				break;
1160 			}
1161 
1162 			root = btrfs_extent_data_ref_root(leaf, dref);
1163 			ret = add_indirect_ref(fs_info, preftrees, root,
1164 					       &key, 0, bytenr, count,
1165 					       sc, GFP_NOFS);
1166 			break;
1167 		}
1168 		default:
1169 			WARN_ON(1);
1170 		}
1171 		if (ret)
1172 			return ret;
1173 
1174 	}
1175 
1176 	return ret;
1177 }
1178 
1179 /*
1180  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1181  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1182  * indirect refs to their parent bytenr.
1183  * When roots are found, they're added to the roots list
1184  *
1185  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1186  * behave much like trans == NULL case, the difference only lies in it will not
1187  * commit root.
1188  * The special case is for qgroup to search roots in commit_transaction().
1189  *
1190  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1191  * shared extent is detected.
1192  *
1193  * Otherwise this returns 0 for success and <0 for an error.
1194  *
1195  * If ignore_offset is set to false, only extent refs whose offsets match
1196  * extent_item_pos are returned.  If true, every extent ref is returned
1197  * and extent_item_pos is ignored.
1198  *
1199  * FIXME some caching might speed things up
1200  */
1201 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1202 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1203 			     u64 time_seq, struct ulist *refs,
1204 			     struct ulist *roots, const u64 *extent_item_pos,
1205 			     struct share_check *sc, bool ignore_offset)
1206 {
1207 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1208 	struct btrfs_key key;
1209 	struct btrfs_path *path;
1210 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1211 	struct btrfs_delayed_ref_head *head;
1212 	int info_level = 0;
1213 	int ret;
1214 	struct prelim_ref *ref;
1215 	struct rb_node *node;
1216 	struct extent_inode_elem *eie = NULL;
1217 	struct preftrees preftrees = {
1218 		.direct = PREFTREE_INIT,
1219 		.indirect = PREFTREE_INIT,
1220 		.indirect_missing_keys = PREFTREE_INIT
1221 	};
1222 
1223 	key.objectid = bytenr;
1224 	key.offset = (u64)-1;
1225 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1226 		key.type = BTRFS_METADATA_ITEM_KEY;
1227 	else
1228 		key.type = BTRFS_EXTENT_ITEM_KEY;
1229 
1230 	path = btrfs_alloc_path();
1231 	if (!path)
1232 		return -ENOMEM;
1233 	if (!trans) {
1234 		path->search_commit_root = 1;
1235 		path->skip_locking = 1;
1236 	}
1237 
1238 	if (time_seq == BTRFS_SEQ_LAST)
1239 		path->skip_locking = 1;
1240 
1241 again:
1242 	head = NULL;
1243 
1244 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1245 	if (ret < 0)
1246 		goto out;
1247 	if (ret == 0) {
1248 		/* This shouldn't happen, indicates a bug or fs corruption. */
1249 		ASSERT(ret != 0);
1250 		ret = -EUCLEAN;
1251 		goto out;
1252 	}
1253 
1254 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1255 	    time_seq != BTRFS_SEQ_LAST) {
1256 		/*
1257 		 * We have a specific time_seq we care about and trans which
1258 		 * means we have the path lock, we need to grab the ref head and
1259 		 * lock it so we have a consistent view of the refs at the given
1260 		 * time.
1261 		 */
1262 		delayed_refs = &trans->transaction->delayed_refs;
1263 		spin_lock(&delayed_refs->lock);
1264 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1265 		if (head) {
1266 			if (!mutex_trylock(&head->mutex)) {
1267 				refcount_inc(&head->refs);
1268 				spin_unlock(&delayed_refs->lock);
1269 
1270 				btrfs_release_path(path);
1271 
1272 				/*
1273 				 * Mutex was contended, block until it's
1274 				 * released and try again
1275 				 */
1276 				mutex_lock(&head->mutex);
1277 				mutex_unlock(&head->mutex);
1278 				btrfs_put_delayed_ref_head(head);
1279 				goto again;
1280 			}
1281 			spin_unlock(&delayed_refs->lock);
1282 			ret = add_delayed_refs(fs_info, head, time_seq,
1283 					       &preftrees, sc);
1284 			mutex_unlock(&head->mutex);
1285 			if (ret)
1286 				goto out;
1287 		} else {
1288 			spin_unlock(&delayed_refs->lock);
1289 		}
1290 	}
1291 
1292 	if (path->slots[0]) {
1293 		struct extent_buffer *leaf;
1294 		int slot;
1295 
1296 		path->slots[0]--;
1297 		leaf = path->nodes[0];
1298 		slot = path->slots[0];
1299 		btrfs_item_key_to_cpu(leaf, &key, slot);
1300 		if (key.objectid == bytenr &&
1301 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1302 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1303 			ret = add_inline_refs(fs_info, path, bytenr,
1304 					      &info_level, &preftrees, sc);
1305 			if (ret)
1306 				goto out;
1307 			ret = add_keyed_refs(root, path, bytenr, info_level,
1308 					     &preftrees, sc);
1309 			if (ret)
1310 				goto out;
1311 		}
1312 	}
1313 
1314 	btrfs_release_path(path);
1315 
1316 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1317 	if (ret)
1318 		goto out;
1319 
1320 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1321 
1322 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1323 				    extent_item_pos, sc, ignore_offset);
1324 	if (ret)
1325 		goto out;
1326 
1327 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1328 
1329 	/*
1330 	 * This walks the tree of merged and resolved refs. Tree blocks are
1331 	 * read in as needed. Unique entries are added to the ulist, and
1332 	 * the list of found roots is updated.
1333 	 *
1334 	 * We release the entire tree in one go before returning.
1335 	 */
1336 	node = rb_first_cached(&preftrees.direct.root);
1337 	while (node) {
1338 		ref = rb_entry(node, struct prelim_ref, rbnode);
1339 		node = rb_next(&ref->rbnode);
1340 		/*
1341 		 * ref->count < 0 can happen here if there are delayed
1342 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1343 		 * prelim_ref_insert() relies on this when merging
1344 		 * identical refs to keep the overall count correct.
1345 		 * prelim_ref_insert() will merge only those refs
1346 		 * which compare identically.  Any refs having
1347 		 * e.g. different offsets would not be merged,
1348 		 * and would retain their original ref->count < 0.
1349 		 */
1350 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1351 			if (sc && sc->root_objectid &&
1352 			    ref->root_id != sc->root_objectid) {
1353 				ret = BACKREF_FOUND_SHARED;
1354 				goto out;
1355 			}
1356 
1357 			/* no parent == root of tree */
1358 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1359 			if (ret < 0)
1360 				goto out;
1361 		}
1362 		if (ref->count && ref->parent) {
1363 			if (extent_item_pos && !ref->inode_list &&
1364 			    ref->level == 0) {
1365 				struct extent_buffer *eb;
1366 
1367 				eb = read_tree_block(fs_info, ref->parent, 0,
1368 						     0, ref->level, NULL);
1369 				if (IS_ERR(eb)) {
1370 					ret = PTR_ERR(eb);
1371 					goto out;
1372 				}
1373 				if (!extent_buffer_uptodate(eb)) {
1374 					free_extent_buffer(eb);
1375 					ret = -EIO;
1376 					goto out;
1377 				}
1378 
1379 				if (!path->skip_locking)
1380 					btrfs_tree_read_lock(eb);
1381 				ret = find_extent_in_eb(eb, bytenr,
1382 							*extent_item_pos, &eie, ignore_offset);
1383 				if (!path->skip_locking)
1384 					btrfs_tree_read_unlock(eb);
1385 				free_extent_buffer(eb);
1386 				if (ret < 0)
1387 					goto out;
1388 				ref->inode_list = eie;
1389 				/*
1390 				 * We transferred the list ownership to the ref,
1391 				 * so set to NULL to avoid a double free in case
1392 				 * an error happens after this.
1393 				 */
1394 				eie = NULL;
1395 			}
1396 			ret = ulist_add_merge_ptr(refs, ref->parent,
1397 						  ref->inode_list,
1398 						  (void **)&eie, GFP_NOFS);
1399 			if (ret < 0)
1400 				goto out;
1401 			if (!ret && extent_item_pos) {
1402 				/*
1403 				 * We've recorded that parent, so we must extend
1404 				 * its inode list here.
1405 				 *
1406 				 * However if there was corruption we may not
1407 				 * have found an eie, return an error in this
1408 				 * case.
1409 				 */
1410 				ASSERT(eie);
1411 				if (!eie) {
1412 					ret = -EUCLEAN;
1413 					goto out;
1414 				}
1415 				while (eie->next)
1416 					eie = eie->next;
1417 				eie->next = ref->inode_list;
1418 			}
1419 			eie = NULL;
1420 			/*
1421 			 * We have transferred the inode list ownership from
1422 			 * this ref to the ref we added to the 'refs' ulist.
1423 			 * So set this ref's inode list to NULL to avoid
1424 			 * use-after-free when our caller uses it or double
1425 			 * frees in case an error happens before we return.
1426 			 */
1427 			ref->inode_list = NULL;
1428 		}
1429 		cond_resched();
1430 	}
1431 
1432 out:
1433 	btrfs_free_path(path);
1434 
1435 	prelim_release(&preftrees.direct);
1436 	prelim_release(&preftrees.indirect);
1437 	prelim_release(&preftrees.indirect_missing_keys);
1438 
1439 	if (ret < 0)
1440 		free_inode_elem_list(eie);
1441 	return ret;
1442 }
1443 
1444 /*
1445  * Finds all leafs with a reference to the specified combination of bytenr and
1446  * offset. key_list_head will point to a list of corresponding keys (caller must
1447  * free each list element). The leafs will be stored in the leafs ulist, which
1448  * must be freed with ulist_free.
1449  *
1450  * returns 0 on success, <0 on error
1451  */
1452 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1453 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1454 			 u64 time_seq, struct ulist **leafs,
1455 			 const u64 *extent_item_pos, bool ignore_offset)
1456 {
1457 	int ret;
1458 
1459 	*leafs = ulist_alloc(GFP_NOFS);
1460 	if (!*leafs)
1461 		return -ENOMEM;
1462 
1463 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1464 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1465 	if (ret < 0 && ret != -ENOENT) {
1466 		free_leaf_list(*leafs);
1467 		return ret;
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * walk all backrefs for a given extent to find all roots that reference this
1475  * extent. Walking a backref means finding all extents that reference this
1476  * extent and in turn walk the backrefs of those, too. Naturally this is a
1477  * recursive process, but here it is implemented in an iterative fashion: We
1478  * find all referencing extents for the extent in question and put them on a
1479  * list. In turn, we find all referencing extents for those, further appending
1480  * to the list. The way we iterate the list allows adding more elements after
1481  * the current while iterating. The process stops when we reach the end of the
1482  * list. Found roots are added to the roots list.
1483  *
1484  * returns 0 on success, < 0 on error.
1485  */
1486 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1487 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1488 				     u64 time_seq, struct ulist **roots,
1489 				     bool ignore_offset)
1490 {
1491 	struct ulist *tmp;
1492 	struct ulist_node *node = NULL;
1493 	struct ulist_iterator uiter;
1494 	int ret;
1495 
1496 	tmp = ulist_alloc(GFP_NOFS);
1497 	if (!tmp)
1498 		return -ENOMEM;
1499 	*roots = ulist_alloc(GFP_NOFS);
1500 	if (!*roots) {
1501 		ulist_free(tmp);
1502 		return -ENOMEM;
1503 	}
1504 
1505 	ULIST_ITER_INIT(&uiter);
1506 	while (1) {
1507 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1508 					tmp, *roots, NULL, NULL, ignore_offset);
1509 		if (ret < 0 && ret != -ENOENT) {
1510 			ulist_free(tmp);
1511 			ulist_free(*roots);
1512 			*roots = NULL;
1513 			return ret;
1514 		}
1515 		node = ulist_next(tmp, &uiter);
1516 		if (!node)
1517 			break;
1518 		bytenr = node->val;
1519 		cond_resched();
1520 	}
1521 
1522 	ulist_free(tmp);
1523 	return 0;
1524 }
1525 
1526 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1528 			 u64 time_seq, struct ulist **roots,
1529 			 bool skip_commit_root_sem)
1530 {
1531 	int ret;
1532 
1533 	if (!trans && !skip_commit_root_sem)
1534 		down_read(&fs_info->commit_root_sem);
1535 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1536 					time_seq, roots, false);
1537 	if (!trans && !skip_commit_root_sem)
1538 		up_read(&fs_info->commit_root_sem);
1539 	return ret;
1540 }
1541 
1542 /*
1543  * The caller has joined a transaction or is holding a read lock on the
1544  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1545  * snapshot field changing while updating or checking the cache.
1546  */
1547 static bool lookup_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1548 					struct btrfs_root *root,
1549 					u64 bytenr, int level, bool *is_shared)
1550 {
1551 	struct btrfs_backref_shared_cache_entry *entry;
1552 
1553 	if (!cache->use_cache)
1554 		return false;
1555 
1556 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1557 		return false;
1558 
1559 	/*
1560 	 * Level -1 is used for the data extent, which is not reliable to cache
1561 	 * because its reference count can increase or decrease without us
1562 	 * realizing. We cache results only for extent buffers that lead from
1563 	 * the root node down to the leaf with the file extent item.
1564 	 */
1565 	ASSERT(level >= 0);
1566 
1567 	entry = &cache->entries[level];
1568 
1569 	/* Unused cache entry or being used for some other extent buffer. */
1570 	if (entry->bytenr != bytenr)
1571 		return false;
1572 
1573 	/*
1574 	 * We cached a false result, but the last snapshot generation of the
1575 	 * root changed, so we now have a snapshot. Don't trust the result.
1576 	 */
1577 	if (!entry->is_shared &&
1578 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1579 		return false;
1580 
1581 	/*
1582 	 * If we cached a true result and the last generation used for dropping
1583 	 * a root changed, we can not trust the result, because the dropped root
1584 	 * could be a snapshot sharing this extent buffer.
1585 	 */
1586 	if (entry->is_shared &&
1587 	    entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1588 		return false;
1589 
1590 	*is_shared = entry->is_shared;
1591 	/*
1592 	 * If the node at this level is shared, than all nodes below are also
1593 	 * shared. Currently some of the nodes below may be marked as not shared
1594 	 * because we have just switched from one leaf to another, and switched
1595 	 * also other nodes above the leaf and below the current level, so mark
1596 	 * them as shared.
1597 	 */
1598 	if (*is_shared) {
1599 		for (int i = 0; i < level; i++) {
1600 			cache->entries[i].is_shared = true;
1601 			cache->entries[i].gen = entry->gen;
1602 		}
1603 	}
1604 
1605 	return true;
1606 }
1607 
1608 /*
1609  * The caller has joined a transaction or is holding a read lock on the
1610  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1611  * snapshot field changing while updating or checking the cache.
1612  */
1613 static void store_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1614 				       struct btrfs_root *root,
1615 				       u64 bytenr, int level, bool is_shared)
1616 {
1617 	struct btrfs_backref_shared_cache_entry *entry;
1618 	u64 gen;
1619 
1620 	if (!cache->use_cache)
1621 		return;
1622 
1623 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1624 		return;
1625 
1626 	/*
1627 	 * Level -1 is used for the data extent, which is not reliable to cache
1628 	 * because its reference count can increase or decrease without us
1629 	 * realizing. We cache results only for extent buffers that lead from
1630 	 * the root node down to the leaf with the file extent item.
1631 	 */
1632 	ASSERT(level >= 0);
1633 
1634 	if (is_shared)
1635 		gen = btrfs_get_last_root_drop_gen(root->fs_info);
1636 	else
1637 		gen = btrfs_root_last_snapshot(&root->root_item);
1638 
1639 	entry = &cache->entries[level];
1640 	entry->bytenr = bytenr;
1641 	entry->is_shared = is_shared;
1642 	entry->gen = gen;
1643 
1644 	/*
1645 	 * If we found an extent buffer is shared, set the cache result for all
1646 	 * extent buffers below it to true. As nodes in the path are COWed,
1647 	 * their sharedness is moved to their children, and if a leaf is COWed,
1648 	 * then the sharedness of a data extent becomes direct, the refcount of
1649 	 * data extent is increased in the extent item at the extent tree.
1650 	 */
1651 	if (is_shared) {
1652 		for (int i = 0; i < level; i++) {
1653 			entry = &cache->entries[i];
1654 			entry->is_shared = is_shared;
1655 			entry->gen = gen;
1656 		}
1657 	}
1658 }
1659 
1660 /*
1661  * Check if a data extent is shared or not.
1662  *
1663  * @root:        The root the inode belongs to.
1664  * @inum:        Number of the inode whose extent we are checking.
1665  * @bytenr:      Logical bytenr of the extent we are checking.
1666  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1667  *               not known.
1668  * @roots:       List of roots this extent is shared among.
1669  * @tmp:         Temporary list used for iteration.
1670  * @cache:       A backref lookup result cache.
1671  *
1672  * btrfs_is_data_extent_shared uses the backref walking code but will short
1673  * circuit as soon as it finds a root or inode that doesn't match the
1674  * one passed in. This provides a significant performance benefit for
1675  * callers (such as fiemap) which want to know whether the extent is
1676  * shared but do not need a ref count.
1677  *
1678  * This attempts to attach to the running transaction in order to account for
1679  * delayed refs, but continues on even when no running transaction exists.
1680  *
1681  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1682  */
1683 int btrfs_is_data_extent_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1684 				u64 extent_gen,
1685 				struct ulist *roots, struct ulist *tmp,
1686 				struct btrfs_backref_shared_cache *cache)
1687 {
1688 	struct btrfs_fs_info *fs_info = root->fs_info;
1689 	struct btrfs_trans_handle *trans;
1690 	struct ulist_iterator uiter;
1691 	struct ulist_node *node;
1692 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1693 	int ret = 0;
1694 	struct share_check shared = {
1695 		.root_objectid = root->root_key.objectid,
1696 		.inum = inum,
1697 		.share_count = 0,
1698 		.have_delayed_delete_refs = false,
1699 	};
1700 	int level;
1701 
1702 	ulist_init(roots);
1703 	ulist_init(tmp);
1704 
1705 	trans = btrfs_join_transaction_nostart(root);
1706 	if (IS_ERR(trans)) {
1707 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1708 			ret = PTR_ERR(trans);
1709 			goto out;
1710 		}
1711 		trans = NULL;
1712 		down_read(&fs_info->commit_root_sem);
1713 	} else {
1714 		btrfs_get_tree_mod_seq(fs_info, &elem);
1715 	}
1716 
1717 	/* -1 means we are in the bytenr of the data extent. */
1718 	level = -1;
1719 	ULIST_ITER_INIT(&uiter);
1720 	cache->use_cache = true;
1721 	while (1) {
1722 		bool is_shared;
1723 		bool cached;
1724 
1725 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1726 					roots, NULL, &shared, false);
1727 		if (ret == BACKREF_FOUND_SHARED) {
1728 			/* this is the only condition under which we return 1 */
1729 			ret = 1;
1730 			if (level >= 0)
1731 				store_backref_shared_cache(cache, root, bytenr,
1732 							   level, true);
1733 			break;
1734 		}
1735 		if (ret < 0 && ret != -ENOENT)
1736 			break;
1737 		ret = 0;
1738 		/*
1739 		 * If our data extent is not shared through reflinks and it was
1740 		 * created in a generation after the last one used to create a
1741 		 * snapshot of the inode's root, then it can not be shared
1742 		 * indirectly through subtrees, as that can only happen with
1743 		 * snapshots. In this case bail out, no need to check for the
1744 		 * sharedness of extent buffers.
1745 		 */
1746 		if (level == -1 &&
1747 		    extent_gen > btrfs_root_last_snapshot(&root->root_item))
1748 			break;
1749 
1750 		/*
1751 		 * If our data extent was not directly shared (without multiple
1752 		 * reference items), than it might have a single reference item
1753 		 * with a count > 1 for the same offset, which means there are 2
1754 		 * (or more) file extent items that point to the data extent -
1755 		 * this happens when a file extent item needs to be split and
1756 		 * then one item gets moved to another leaf due to a b+tree leaf
1757 		 * split when inserting some item. In this case the file extent
1758 		 * items may be located in different leaves and therefore some
1759 		 * of the leaves may be referenced through shared subtrees while
1760 		 * others are not. Since our extent buffer cache only works for
1761 		 * a single path (by far the most common case and simpler to
1762 		 * deal with), we can not use it if we have multiple leaves
1763 		 * (which implies multiple paths).
1764 		 */
1765 		if (level == -1 && tmp->nnodes > 1)
1766 			cache->use_cache = false;
1767 
1768 		if (level >= 0)
1769 			store_backref_shared_cache(cache, root, bytenr,
1770 						   level, false);
1771 		node = ulist_next(tmp, &uiter);
1772 		if (!node)
1773 			break;
1774 		bytenr = node->val;
1775 		level++;
1776 		cached = lookup_backref_shared_cache(cache, root, bytenr, level,
1777 						     &is_shared);
1778 		if (cached) {
1779 			ret = (is_shared ? 1 : 0);
1780 			break;
1781 		}
1782 		shared.share_count = 0;
1783 		shared.have_delayed_delete_refs = false;
1784 		cond_resched();
1785 	}
1786 
1787 	if (trans) {
1788 		btrfs_put_tree_mod_seq(fs_info, &elem);
1789 		btrfs_end_transaction(trans);
1790 	} else {
1791 		up_read(&fs_info->commit_root_sem);
1792 	}
1793 out:
1794 	ulist_release(roots);
1795 	ulist_release(tmp);
1796 	return ret;
1797 }
1798 
1799 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1800 			  u64 start_off, struct btrfs_path *path,
1801 			  struct btrfs_inode_extref **ret_extref,
1802 			  u64 *found_off)
1803 {
1804 	int ret, slot;
1805 	struct btrfs_key key;
1806 	struct btrfs_key found_key;
1807 	struct btrfs_inode_extref *extref;
1808 	const struct extent_buffer *leaf;
1809 	unsigned long ptr;
1810 
1811 	key.objectid = inode_objectid;
1812 	key.type = BTRFS_INODE_EXTREF_KEY;
1813 	key.offset = start_off;
1814 
1815 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1816 	if (ret < 0)
1817 		return ret;
1818 
1819 	while (1) {
1820 		leaf = path->nodes[0];
1821 		slot = path->slots[0];
1822 		if (slot >= btrfs_header_nritems(leaf)) {
1823 			/*
1824 			 * If the item at offset is not found,
1825 			 * btrfs_search_slot will point us to the slot
1826 			 * where it should be inserted. In our case
1827 			 * that will be the slot directly before the
1828 			 * next INODE_REF_KEY_V2 item. In the case
1829 			 * that we're pointing to the last slot in a
1830 			 * leaf, we must move one leaf over.
1831 			 */
1832 			ret = btrfs_next_leaf(root, path);
1833 			if (ret) {
1834 				if (ret >= 1)
1835 					ret = -ENOENT;
1836 				break;
1837 			}
1838 			continue;
1839 		}
1840 
1841 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1842 
1843 		/*
1844 		 * Check that we're still looking at an extended ref key for
1845 		 * this particular objectid. If we have different
1846 		 * objectid or type then there are no more to be found
1847 		 * in the tree and we can exit.
1848 		 */
1849 		ret = -ENOENT;
1850 		if (found_key.objectid != inode_objectid)
1851 			break;
1852 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1853 			break;
1854 
1855 		ret = 0;
1856 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1857 		extref = (struct btrfs_inode_extref *)ptr;
1858 		*ret_extref = extref;
1859 		if (found_off)
1860 			*found_off = found_key.offset;
1861 		break;
1862 	}
1863 
1864 	return ret;
1865 }
1866 
1867 /*
1868  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1869  * Elements of the path are separated by '/' and the path is guaranteed to be
1870  * 0-terminated. the path is only given within the current file system.
1871  * Therefore, it never starts with a '/'. the caller is responsible to provide
1872  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1873  * the start point of the resulting string is returned. this pointer is within
1874  * dest, normally.
1875  * in case the path buffer would overflow, the pointer is decremented further
1876  * as if output was written to the buffer, though no more output is actually
1877  * generated. that way, the caller can determine how much space would be
1878  * required for the path to fit into the buffer. in that case, the returned
1879  * value will be smaller than dest. callers must check this!
1880  */
1881 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1882 			u32 name_len, unsigned long name_off,
1883 			struct extent_buffer *eb_in, u64 parent,
1884 			char *dest, u32 size)
1885 {
1886 	int slot;
1887 	u64 next_inum;
1888 	int ret;
1889 	s64 bytes_left = ((s64)size) - 1;
1890 	struct extent_buffer *eb = eb_in;
1891 	struct btrfs_key found_key;
1892 	struct btrfs_inode_ref *iref;
1893 
1894 	if (bytes_left >= 0)
1895 		dest[bytes_left] = '\0';
1896 
1897 	while (1) {
1898 		bytes_left -= name_len;
1899 		if (bytes_left >= 0)
1900 			read_extent_buffer(eb, dest + bytes_left,
1901 					   name_off, name_len);
1902 		if (eb != eb_in) {
1903 			if (!path->skip_locking)
1904 				btrfs_tree_read_unlock(eb);
1905 			free_extent_buffer(eb);
1906 		}
1907 		ret = btrfs_find_item(fs_root, path, parent, 0,
1908 				BTRFS_INODE_REF_KEY, &found_key);
1909 		if (ret > 0)
1910 			ret = -ENOENT;
1911 		if (ret)
1912 			break;
1913 
1914 		next_inum = found_key.offset;
1915 
1916 		/* regular exit ahead */
1917 		if (parent == next_inum)
1918 			break;
1919 
1920 		slot = path->slots[0];
1921 		eb = path->nodes[0];
1922 		/* make sure we can use eb after releasing the path */
1923 		if (eb != eb_in) {
1924 			path->nodes[0] = NULL;
1925 			path->locks[0] = 0;
1926 		}
1927 		btrfs_release_path(path);
1928 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1929 
1930 		name_len = btrfs_inode_ref_name_len(eb, iref);
1931 		name_off = (unsigned long)(iref + 1);
1932 
1933 		parent = next_inum;
1934 		--bytes_left;
1935 		if (bytes_left >= 0)
1936 			dest[bytes_left] = '/';
1937 	}
1938 
1939 	btrfs_release_path(path);
1940 
1941 	if (ret)
1942 		return ERR_PTR(ret);
1943 
1944 	return dest + bytes_left;
1945 }
1946 
1947 /*
1948  * this makes the path point to (logical EXTENT_ITEM *)
1949  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1950  * tree blocks and <0 on error.
1951  */
1952 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1953 			struct btrfs_path *path, struct btrfs_key *found_key,
1954 			u64 *flags_ret)
1955 {
1956 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1957 	int ret;
1958 	u64 flags;
1959 	u64 size = 0;
1960 	u32 item_size;
1961 	const struct extent_buffer *eb;
1962 	struct btrfs_extent_item *ei;
1963 	struct btrfs_key key;
1964 
1965 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1966 		key.type = BTRFS_METADATA_ITEM_KEY;
1967 	else
1968 		key.type = BTRFS_EXTENT_ITEM_KEY;
1969 	key.objectid = logical;
1970 	key.offset = (u64)-1;
1971 
1972 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1973 	if (ret < 0)
1974 		return ret;
1975 
1976 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1977 	if (ret) {
1978 		if (ret > 0)
1979 			ret = -ENOENT;
1980 		return ret;
1981 	}
1982 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1983 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1984 		size = fs_info->nodesize;
1985 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1986 		size = found_key->offset;
1987 
1988 	if (found_key->objectid > logical ||
1989 	    found_key->objectid + size <= logical) {
1990 		btrfs_debug(fs_info,
1991 			"logical %llu is not within any extent", logical);
1992 		return -ENOENT;
1993 	}
1994 
1995 	eb = path->nodes[0];
1996 	item_size = btrfs_item_size(eb, path->slots[0]);
1997 	BUG_ON(item_size < sizeof(*ei));
1998 
1999 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2000 	flags = btrfs_extent_flags(eb, ei);
2001 
2002 	btrfs_debug(fs_info,
2003 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2004 		 logical, logical - found_key->objectid, found_key->objectid,
2005 		 found_key->offset, flags, item_size);
2006 
2007 	WARN_ON(!flags_ret);
2008 	if (flags_ret) {
2009 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2010 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2011 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2012 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2013 		else
2014 			BUG();
2015 		return 0;
2016 	}
2017 
2018 	return -EIO;
2019 }
2020 
2021 /*
2022  * helper function to iterate extent inline refs. ptr must point to a 0 value
2023  * for the first call and may be modified. it is used to track state.
2024  * if more refs exist, 0 is returned and the next call to
2025  * get_extent_inline_ref must pass the modified ptr parameter to get the
2026  * next ref. after the last ref was processed, 1 is returned.
2027  * returns <0 on error
2028  */
2029 static int get_extent_inline_ref(unsigned long *ptr,
2030 				 const struct extent_buffer *eb,
2031 				 const struct btrfs_key *key,
2032 				 const struct btrfs_extent_item *ei,
2033 				 u32 item_size,
2034 				 struct btrfs_extent_inline_ref **out_eiref,
2035 				 int *out_type)
2036 {
2037 	unsigned long end;
2038 	u64 flags;
2039 	struct btrfs_tree_block_info *info;
2040 
2041 	if (!*ptr) {
2042 		/* first call */
2043 		flags = btrfs_extent_flags(eb, ei);
2044 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2045 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2046 				/* a skinny metadata extent */
2047 				*out_eiref =
2048 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2049 			} else {
2050 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2051 				info = (struct btrfs_tree_block_info *)(ei + 1);
2052 				*out_eiref =
2053 				   (struct btrfs_extent_inline_ref *)(info + 1);
2054 			}
2055 		} else {
2056 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2057 		}
2058 		*ptr = (unsigned long)*out_eiref;
2059 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2060 			return -ENOENT;
2061 	}
2062 
2063 	end = (unsigned long)ei + item_size;
2064 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2065 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2066 						     BTRFS_REF_TYPE_ANY);
2067 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2068 		return -EUCLEAN;
2069 
2070 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2071 	WARN_ON(*ptr > end);
2072 	if (*ptr == end)
2073 		return 1; /* last */
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * reads the tree block backref for an extent. tree level and root are returned
2080  * through out_level and out_root. ptr must point to a 0 value for the first
2081  * call and may be modified (see get_extent_inline_ref comment).
2082  * returns 0 if data was provided, 1 if there was no more data to provide or
2083  * <0 on error.
2084  */
2085 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2086 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2087 			    u32 item_size, u64 *out_root, u8 *out_level)
2088 {
2089 	int ret;
2090 	int type;
2091 	struct btrfs_extent_inline_ref *eiref;
2092 
2093 	if (*ptr == (unsigned long)-1)
2094 		return 1;
2095 
2096 	while (1) {
2097 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2098 					      &eiref, &type);
2099 		if (ret < 0)
2100 			return ret;
2101 
2102 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2103 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 			break;
2105 
2106 		if (ret == 1)
2107 			return 1;
2108 	}
2109 
2110 	/* we can treat both ref types equally here */
2111 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2112 
2113 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2114 		struct btrfs_tree_block_info *info;
2115 
2116 		info = (struct btrfs_tree_block_info *)(ei + 1);
2117 		*out_level = btrfs_tree_block_level(eb, info);
2118 	} else {
2119 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2120 		*out_level = (u8)key->offset;
2121 	}
2122 
2123 	if (ret == 1)
2124 		*ptr = (unsigned long)-1;
2125 
2126 	return 0;
2127 }
2128 
2129 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2130 			     struct extent_inode_elem *inode_list,
2131 			     u64 root, u64 extent_item_objectid,
2132 			     iterate_extent_inodes_t *iterate, void *ctx)
2133 {
2134 	struct extent_inode_elem *eie;
2135 	int ret = 0;
2136 
2137 	for (eie = inode_list; eie; eie = eie->next) {
2138 		btrfs_debug(fs_info,
2139 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2140 			    extent_item_objectid, eie->inum,
2141 			    eie->offset, root);
2142 		ret = iterate(eie->inum, eie->offset, root, ctx);
2143 		if (ret) {
2144 			btrfs_debug(fs_info,
2145 				    "stopping iteration for %llu due to ret=%d",
2146 				    extent_item_objectid, ret);
2147 			break;
2148 		}
2149 	}
2150 
2151 	return ret;
2152 }
2153 
2154 /*
2155  * calls iterate() for every inode that references the extent identified by
2156  * the given parameters.
2157  * when the iterator function returns a non-zero value, iteration stops.
2158  */
2159 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2160 				u64 extent_item_objectid, u64 extent_item_pos,
2161 				int search_commit_root,
2162 				iterate_extent_inodes_t *iterate, void *ctx,
2163 				bool ignore_offset)
2164 {
2165 	int ret;
2166 	struct btrfs_trans_handle *trans = NULL;
2167 	struct ulist *refs = NULL;
2168 	struct ulist *roots = NULL;
2169 	struct ulist_node *ref_node = NULL;
2170 	struct ulist_node *root_node = NULL;
2171 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2172 	struct ulist_iterator ref_uiter;
2173 	struct ulist_iterator root_uiter;
2174 
2175 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2176 			extent_item_objectid);
2177 
2178 	if (!search_commit_root) {
2179 		trans = btrfs_attach_transaction(fs_info->tree_root);
2180 		if (IS_ERR(trans)) {
2181 			if (PTR_ERR(trans) != -ENOENT &&
2182 			    PTR_ERR(trans) != -EROFS)
2183 				return PTR_ERR(trans);
2184 			trans = NULL;
2185 		}
2186 	}
2187 
2188 	if (trans)
2189 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
2190 	else
2191 		down_read(&fs_info->commit_root_sem);
2192 
2193 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2194 				   seq_elem.seq, &refs,
2195 				   &extent_item_pos, ignore_offset);
2196 	if (ret)
2197 		goto out;
2198 
2199 	ULIST_ITER_INIT(&ref_uiter);
2200 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2201 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2202 						seq_elem.seq, &roots,
2203 						ignore_offset);
2204 		if (ret)
2205 			break;
2206 		ULIST_ITER_INIT(&root_uiter);
2207 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2208 			btrfs_debug(fs_info,
2209 				    "root %llu references leaf %llu, data list %#llx",
2210 				    root_node->val, ref_node->val,
2211 				    ref_node->aux);
2212 			ret = iterate_leaf_refs(fs_info,
2213 						(struct extent_inode_elem *)
2214 						(uintptr_t)ref_node->aux,
2215 						root_node->val,
2216 						extent_item_objectid,
2217 						iterate, ctx);
2218 		}
2219 		ulist_free(roots);
2220 	}
2221 
2222 	free_leaf_list(refs);
2223 out:
2224 	if (trans) {
2225 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2226 		btrfs_end_transaction(trans);
2227 	} else {
2228 		up_read(&fs_info->commit_root_sem);
2229 	}
2230 
2231 	return ret;
2232 }
2233 
2234 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2235 {
2236 	struct btrfs_data_container *inodes = ctx;
2237 	const size_t c = 3 * sizeof(u64);
2238 
2239 	if (inodes->bytes_left >= c) {
2240 		inodes->bytes_left -= c;
2241 		inodes->val[inodes->elem_cnt] = inum;
2242 		inodes->val[inodes->elem_cnt + 1] = offset;
2243 		inodes->val[inodes->elem_cnt + 2] = root;
2244 		inodes->elem_cnt += 3;
2245 	} else {
2246 		inodes->bytes_missing += c - inodes->bytes_left;
2247 		inodes->bytes_left = 0;
2248 		inodes->elem_missed += 3;
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2255 				struct btrfs_path *path,
2256 				void *ctx, bool ignore_offset)
2257 {
2258 	int ret;
2259 	u64 extent_item_pos;
2260 	u64 flags = 0;
2261 	struct btrfs_key found_key;
2262 	int search_commit_root = path->search_commit_root;
2263 
2264 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2265 	btrfs_release_path(path);
2266 	if (ret < 0)
2267 		return ret;
2268 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2269 		return -EINVAL;
2270 
2271 	extent_item_pos = logical - found_key.objectid;
2272 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2273 					extent_item_pos, search_commit_root,
2274 					build_ino_list, ctx, ignore_offset);
2275 
2276 	return ret;
2277 }
2278 
2279 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2280 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2281 
2282 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2283 {
2284 	int ret = 0;
2285 	int slot;
2286 	u32 cur;
2287 	u32 len;
2288 	u32 name_len;
2289 	u64 parent = 0;
2290 	int found = 0;
2291 	struct btrfs_root *fs_root = ipath->fs_root;
2292 	struct btrfs_path *path = ipath->btrfs_path;
2293 	struct extent_buffer *eb;
2294 	struct btrfs_inode_ref *iref;
2295 	struct btrfs_key found_key;
2296 
2297 	while (!ret) {
2298 		ret = btrfs_find_item(fs_root, path, inum,
2299 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2300 				&found_key);
2301 
2302 		if (ret < 0)
2303 			break;
2304 		if (ret) {
2305 			ret = found ? 0 : -ENOENT;
2306 			break;
2307 		}
2308 		++found;
2309 
2310 		parent = found_key.offset;
2311 		slot = path->slots[0];
2312 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2313 		if (!eb) {
2314 			ret = -ENOMEM;
2315 			break;
2316 		}
2317 		btrfs_release_path(path);
2318 
2319 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2320 
2321 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2322 			name_len = btrfs_inode_ref_name_len(eb, iref);
2323 			/* path must be released before calling iterate()! */
2324 			btrfs_debug(fs_root->fs_info,
2325 				"following ref at offset %u for inode %llu in tree %llu",
2326 				cur, found_key.objectid,
2327 				fs_root->root_key.objectid);
2328 			ret = inode_to_path(parent, name_len,
2329 				      (unsigned long)(iref + 1), eb, ipath);
2330 			if (ret)
2331 				break;
2332 			len = sizeof(*iref) + name_len;
2333 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2334 		}
2335 		free_extent_buffer(eb);
2336 	}
2337 
2338 	btrfs_release_path(path);
2339 
2340 	return ret;
2341 }
2342 
2343 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2344 {
2345 	int ret;
2346 	int slot;
2347 	u64 offset = 0;
2348 	u64 parent;
2349 	int found = 0;
2350 	struct btrfs_root *fs_root = ipath->fs_root;
2351 	struct btrfs_path *path = ipath->btrfs_path;
2352 	struct extent_buffer *eb;
2353 	struct btrfs_inode_extref *extref;
2354 	u32 item_size;
2355 	u32 cur_offset;
2356 	unsigned long ptr;
2357 
2358 	while (1) {
2359 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2360 					    &offset);
2361 		if (ret < 0)
2362 			break;
2363 		if (ret) {
2364 			ret = found ? 0 : -ENOENT;
2365 			break;
2366 		}
2367 		++found;
2368 
2369 		slot = path->slots[0];
2370 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2371 		if (!eb) {
2372 			ret = -ENOMEM;
2373 			break;
2374 		}
2375 		btrfs_release_path(path);
2376 
2377 		item_size = btrfs_item_size(eb, slot);
2378 		ptr = btrfs_item_ptr_offset(eb, slot);
2379 		cur_offset = 0;
2380 
2381 		while (cur_offset < item_size) {
2382 			u32 name_len;
2383 
2384 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2385 			parent = btrfs_inode_extref_parent(eb, extref);
2386 			name_len = btrfs_inode_extref_name_len(eb, extref);
2387 			ret = inode_to_path(parent, name_len,
2388 				      (unsigned long)&extref->name, eb, ipath);
2389 			if (ret)
2390 				break;
2391 
2392 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2393 			cur_offset += sizeof(*extref);
2394 		}
2395 		free_extent_buffer(eb);
2396 
2397 		offset++;
2398 	}
2399 
2400 	btrfs_release_path(path);
2401 
2402 	return ret;
2403 }
2404 
2405 /*
2406  * returns 0 if the path could be dumped (probably truncated)
2407  * returns <0 in case of an error
2408  */
2409 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2410 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2411 {
2412 	char *fspath;
2413 	char *fspath_min;
2414 	int i = ipath->fspath->elem_cnt;
2415 	const int s_ptr = sizeof(char *);
2416 	u32 bytes_left;
2417 
2418 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2419 					ipath->fspath->bytes_left - s_ptr : 0;
2420 
2421 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2422 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2423 				   name_off, eb, inum, fspath_min, bytes_left);
2424 	if (IS_ERR(fspath))
2425 		return PTR_ERR(fspath);
2426 
2427 	if (fspath > fspath_min) {
2428 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2429 		++ipath->fspath->elem_cnt;
2430 		ipath->fspath->bytes_left = fspath - fspath_min;
2431 	} else {
2432 		++ipath->fspath->elem_missed;
2433 		ipath->fspath->bytes_missing += fspath_min - fspath;
2434 		ipath->fspath->bytes_left = 0;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 /*
2441  * this dumps all file system paths to the inode into the ipath struct, provided
2442  * is has been created large enough. each path is zero-terminated and accessed
2443  * from ipath->fspath->val[i].
2444  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2445  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2446  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2447  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2448  * have been needed to return all paths.
2449  */
2450 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2451 {
2452 	int ret;
2453 	int found_refs = 0;
2454 
2455 	ret = iterate_inode_refs(inum, ipath);
2456 	if (!ret)
2457 		++found_refs;
2458 	else if (ret != -ENOENT)
2459 		return ret;
2460 
2461 	ret = iterate_inode_extrefs(inum, ipath);
2462 	if (ret == -ENOENT && found_refs)
2463 		return 0;
2464 
2465 	return ret;
2466 }
2467 
2468 struct btrfs_data_container *init_data_container(u32 total_bytes)
2469 {
2470 	struct btrfs_data_container *data;
2471 	size_t alloc_bytes;
2472 
2473 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2474 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2475 	if (!data)
2476 		return ERR_PTR(-ENOMEM);
2477 
2478 	if (total_bytes >= sizeof(*data)) {
2479 		data->bytes_left = total_bytes - sizeof(*data);
2480 		data->bytes_missing = 0;
2481 	} else {
2482 		data->bytes_missing = sizeof(*data) - total_bytes;
2483 		data->bytes_left = 0;
2484 	}
2485 
2486 	data->elem_cnt = 0;
2487 	data->elem_missed = 0;
2488 
2489 	return data;
2490 }
2491 
2492 /*
2493  * allocates space to return multiple file system paths for an inode.
2494  * total_bytes to allocate are passed, note that space usable for actual path
2495  * information will be total_bytes - sizeof(struct inode_fs_paths).
2496  * the returned pointer must be freed with free_ipath() in the end.
2497  */
2498 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2499 					struct btrfs_path *path)
2500 {
2501 	struct inode_fs_paths *ifp;
2502 	struct btrfs_data_container *fspath;
2503 
2504 	fspath = init_data_container(total_bytes);
2505 	if (IS_ERR(fspath))
2506 		return ERR_CAST(fspath);
2507 
2508 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2509 	if (!ifp) {
2510 		kvfree(fspath);
2511 		return ERR_PTR(-ENOMEM);
2512 	}
2513 
2514 	ifp->btrfs_path = path;
2515 	ifp->fspath = fspath;
2516 	ifp->fs_root = fs_root;
2517 
2518 	return ifp;
2519 }
2520 
2521 void free_ipath(struct inode_fs_paths *ipath)
2522 {
2523 	if (!ipath)
2524 		return;
2525 	kvfree(ipath->fspath);
2526 	kfree(ipath);
2527 }
2528 
2529 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2530 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2531 {
2532 	struct btrfs_backref_iter *ret;
2533 
2534 	ret = kzalloc(sizeof(*ret), gfp_flag);
2535 	if (!ret)
2536 		return NULL;
2537 
2538 	ret->path = btrfs_alloc_path();
2539 	if (!ret->path) {
2540 		kfree(ret);
2541 		return NULL;
2542 	}
2543 
2544 	/* Current backref iterator only supports iteration in commit root */
2545 	ret->path->search_commit_root = 1;
2546 	ret->path->skip_locking = 1;
2547 	ret->fs_info = fs_info;
2548 
2549 	return ret;
2550 }
2551 
2552 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2553 {
2554 	struct btrfs_fs_info *fs_info = iter->fs_info;
2555 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2556 	struct btrfs_path *path = iter->path;
2557 	struct btrfs_extent_item *ei;
2558 	struct btrfs_key key;
2559 	int ret;
2560 
2561 	key.objectid = bytenr;
2562 	key.type = BTRFS_METADATA_ITEM_KEY;
2563 	key.offset = (u64)-1;
2564 	iter->bytenr = bytenr;
2565 
2566 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2567 	if (ret < 0)
2568 		return ret;
2569 	if (ret == 0) {
2570 		ret = -EUCLEAN;
2571 		goto release;
2572 	}
2573 	if (path->slots[0] == 0) {
2574 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2575 		ret = -EUCLEAN;
2576 		goto release;
2577 	}
2578 	path->slots[0]--;
2579 
2580 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2581 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2582 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2583 		ret = -ENOENT;
2584 		goto release;
2585 	}
2586 	memcpy(&iter->cur_key, &key, sizeof(key));
2587 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2588 						    path->slots[0]);
2589 	iter->end_ptr = (u32)(iter->item_ptr +
2590 			btrfs_item_size(path->nodes[0], path->slots[0]));
2591 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2592 			    struct btrfs_extent_item);
2593 
2594 	/*
2595 	 * Only support iteration on tree backref yet.
2596 	 *
2597 	 * This is an extra precaution for non skinny-metadata, where
2598 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2599 	 * extent flags to determine if it's a tree block.
2600 	 */
2601 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2602 		ret = -ENOTSUPP;
2603 		goto release;
2604 	}
2605 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2606 
2607 	/* If there is no inline backref, go search for keyed backref */
2608 	if (iter->cur_ptr >= iter->end_ptr) {
2609 		ret = btrfs_next_item(extent_root, path);
2610 
2611 		/* No inline nor keyed ref */
2612 		if (ret > 0) {
2613 			ret = -ENOENT;
2614 			goto release;
2615 		}
2616 		if (ret < 0)
2617 			goto release;
2618 
2619 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2620 				path->slots[0]);
2621 		if (iter->cur_key.objectid != bytenr ||
2622 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2623 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2624 			ret = -ENOENT;
2625 			goto release;
2626 		}
2627 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2628 							   path->slots[0]);
2629 		iter->item_ptr = iter->cur_ptr;
2630 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2631 				      path->nodes[0], path->slots[0]));
2632 	}
2633 
2634 	return 0;
2635 release:
2636 	btrfs_backref_iter_release(iter);
2637 	return ret;
2638 }
2639 
2640 /*
2641  * Go to the next backref item of current bytenr, can be either inlined or
2642  * keyed.
2643  *
2644  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2645  *
2646  * Return 0 if we get next backref without problem.
2647  * Return >0 if there is no extra backref for this bytenr.
2648  * Return <0 if there is something wrong happened.
2649  */
2650 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2651 {
2652 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2653 	struct btrfs_root *extent_root;
2654 	struct btrfs_path *path = iter->path;
2655 	struct btrfs_extent_inline_ref *iref;
2656 	int ret;
2657 	u32 size;
2658 
2659 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2660 		/* We're still inside the inline refs */
2661 		ASSERT(iter->cur_ptr < iter->end_ptr);
2662 
2663 		if (btrfs_backref_has_tree_block_info(iter)) {
2664 			/* First tree block info */
2665 			size = sizeof(struct btrfs_tree_block_info);
2666 		} else {
2667 			/* Use inline ref type to determine the size */
2668 			int type;
2669 
2670 			iref = (struct btrfs_extent_inline_ref *)
2671 				((unsigned long)iter->cur_ptr);
2672 			type = btrfs_extent_inline_ref_type(eb, iref);
2673 
2674 			size = btrfs_extent_inline_ref_size(type);
2675 		}
2676 		iter->cur_ptr += size;
2677 		if (iter->cur_ptr < iter->end_ptr)
2678 			return 0;
2679 
2680 		/* All inline items iterated, fall through */
2681 	}
2682 
2683 	/* We're at keyed items, there is no inline item, go to the next one */
2684 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2685 	ret = btrfs_next_item(extent_root, iter->path);
2686 	if (ret)
2687 		return ret;
2688 
2689 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2690 	if (iter->cur_key.objectid != iter->bytenr ||
2691 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2692 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2693 		return 1;
2694 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2695 					path->slots[0]);
2696 	iter->cur_ptr = iter->item_ptr;
2697 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2698 						path->slots[0]);
2699 	return 0;
2700 }
2701 
2702 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2703 			      struct btrfs_backref_cache *cache, int is_reloc)
2704 {
2705 	int i;
2706 
2707 	cache->rb_root = RB_ROOT;
2708 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2709 		INIT_LIST_HEAD(&cache->pending[i]);
2710 	INIT_LIST_HEAD(&cache->changed);
2711 	INIT_LIST_HEAD(&cache->detached);
2712 	INIT_LIST_HEAD(&cache->leaves);
2713 	INIT_LIST_HEAD(&cache->pending_edge);
2714 	INIT_LIST_HEAD(&cache->useless_node);
2715 	cache->fs_info = fs_info;
2716 	cache->is_reloc = is_reloc;
2717 }
2718 
2719 struct btrfs_backref_node *btrfs_backref_alloc_node(
2720 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2721 {
2722 	struct btrfs_backref_node *node;
2723 
2724 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2725 	node = kzalloc(sizeof(*node), GFP_NOFS);
2726 	if (!node)
2727 		return node;
2728 
2729 	INIT_LIST_HEAD(&node->list);
2730 	INIT_LIST_HEAD(&node->upper);
2731 	INIT_LIST_HEAD(&node->lower);
2732 	RB_CLEAR_NODE(&node->rb_node);
2733 	cache->nr_nodes++;
2734 	node->level = level;
2735 	node->bytenr = bytenr;
2736 
2737 	return node;
2738 }
2739 
2740 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2741 		struct btrfs_backref_cache *cache)
2742 {
2743 	struct btrfs_backref_edge *edge;
2744 
2745 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2746 	if (edge)
2747 		cache->nr_edges++;
2748 	return edge;
2749 }
2750 
2751 /*
2752  * Drop the backref node from cache, also cleaning up all its
2753  * upper edges and any uncached nodes in the path.
2754  *
2755  * This cleanup happens bottom up, thus the node should either
2756  * be the lowest node in the cache or a detached node.
2757  */
2758 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2759 				struct btrfs_backref_node *node)
2760 {
2761 	struct btrfs_backref_node *upper;
2762 	struct btrfs_backref_edge *edge;
2763 
2764 	if (!node)
2765 		return;
2766 
2767 	BUG_ON(!node->lowest && !node->detached);
2768 	while (!list_empty(&node->upper)) {
2769 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2770 				  list[LOWER]);
2771 		upper = edge->node[UPPER];
2772 		list_del(&edge->list[LOWER]);
2773 		list_del(&edge->list[UPPER]);
2774 		btrfs_backref_free_edge(cache, edge);
2775 
2776 		/*
2777 		 * Add the node to leaf node list if no other child block
2778 		 * cached.
2779 		 */
2780 		if (list_empty(&upper->lower)) {
2781 			list_add_tail(&upper->lower, &cache->leaves);
2782 			upper->lowest = 1;
2783 		}
2784 	}
2785 
2786 	btrfs_backref_drop_node(cache, node);
2787 }
2788 
2789 /*
2790  * Release all nodes/edges from current cache
2791  */
2792 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2793 {
2794 	struct btrfs_backref_node *node;
2795 	int i;
2796 
2797 	while (!list_empty(&cache->detached)) {
2798 		node = list_entry(cache->detached.next,
2799 				  struct btrfs_backref_node, list);
2800 		btrfs_backref_cleanup_node(cache, node);
2801 	}
2802 
2803 	while (!list_empty(&cache->leaves)) {
2804 		node = list_entry(cache->leaves.next,
2805 				  struct btrfs_backref_node, lower);
2806 		btrfs_backref_cleanup_node(cache, node);
2807 	}
2808 
2809 	cache->last_trans = 0;
2810 
2811 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2812 		ASSERT(list_empty(&cache->pending[i]));
2813 	ASSERT(list_empty(&cache->pending_edge));
2814 	ASSERT(list_empty(&cache->useless_node));
2815 	ASSERT(list_empty(&cache->changed));
2816 	ASSERT(list_empty(&cache->detached));
2817 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2818 	ASSERT(!cache->nr_nodes);
2819 	ASSERT(!cache->nr_edges);
2820 }
2821 
2822 /*
2823  * Handle direct tree backref
2824  *
2825  * Direct tree backref means, the backref item shows its parent bytenr
2826  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2827  *
2828  * @ref_key:	The converted backref key.
2829  *		For keyed backref, it's the item key.
2830  *		For inlined backref, objectid is the bytenr,
2831  *		type is btrfs_inline_ref_type, offset is
2832  *		btrfs_inline_ref_offset.
2833  */
2834 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2835 				      struct btrfs_key *ref_key,
2836 				      struct btrfs_backref_node *cur)
2837 {
2838 	struct btrfs_backref_edge *edge;
2839 	struct btrfs_backref_node *upper;
2840 	struct rb_node *rb_node;
2841 
2842 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2843 
2844 	/* Only reloc root uses backref pointing to itself */
2845 	if (ref_key->objectid == ref_key->offset) {
2846 		struct btrfs_root *root;
2847 
2848 		cur->is_reloc_root = 1;
2849 		/* Only reloc backref cache cares about a specific root */
2850 		if (cache->is_reloc) {
2851 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2852 			if (!root)
2853 				return -ENOENT;
2854 			cur->root = root;
2855 		} else {
2856 			/*
2857 			 * For generic purpose backref cache, reloc root node
2858 			 * is useless.
2859 			 */
2860 			list_add(&cur->list, &cache->useless_node);
2861 		}
2862 		return 0;
2863 	}
2864 
2865 	edge = btrfs_backref_alloc_edge(cache);
2866 	if (!edge)
2867 		return -ENOMEM;
2868 
2869 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2870 	if (!rb_node) {
2871 		/* Parent node not yet cached */
2872 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2873 					   cur->level + 1);
2874 		if (!upper) {
2875 			btrfs_backref_free_edge(cache, edge);
2876 			return -ENOMEM;
2877 		}
2878 
2879 		/*
2880 		 *  Backrefs for the upper level block isn't cached, add the
2881 		 *  block to pending list
2882 		 */
2883 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2884 	} else {
2885 		/* Parent node already cached */
2886 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2887 		ASSERT(upper->checked);
2888 		INIT_LIST_HEAD(&edge->list[UPPER]);
2889 	}
2890 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2891 	return 0;
2892 }
2893 
2894 /*
2895  * Handle indirect tree backref
2896  *
2897  * Indirect tree backref means, we only know which tree the node belongs to.
2898  * We still need to do a tree search to find out the parents. This is for
2899  * TREE_BLOCK_REF backref (keyed or inlined).
2900  *
2901  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2902  * @tree_key:	The first key of this tree block.
2903  * @path:	A clean (released) path, to avoid allocating path every time
2904  *		the function get called.
2905  */
2906 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2907 					struct btrfs_path *path,
2908 					struct btrfs_key *ref_key,
2909 					struct btrfs_key *tree_key,
2910 					struct btrfs_backref_node *cur)
2911 {
2912 	struct btrfs_fs_info *fs_info = cache->fs_info;
2913 	struct btrfs_backref_node *upper;
2914 	struct btrfs_backref_node *lower;
2915 	struct btrfs_backref_edge *edge;
2916 	struct extent_buffer *eb;
2917 	struct btrfs_root *root;
2918 	struct rb_node *rb_node;
2919 	int level;
2920 	bool need_check = true;
2921 	int ret;
2922 
2923 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2924 	if (IS_ERR(root))
2925 		return PTR_ERR(root);
2926 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2927 		cur->cowonly = 1;
2928 
2929 	if (btrfs_root_level(&root->root_item) == cur->level) {
2930 		/* Tree root */
2931 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2932 		/*
2933 		 * For reloc backref cache, we may ignore reloc root.  But for
2934 		 * general purpose backref cache, we can't rely on
2935 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2936 		 * current running relocation and lead to missing root.
2937 		 *
2938 		 * For general purpose backref cache, reloc root detection is
2939 		 * completely relying on direct backref (key->offset is parent
2940 		 * bytenr), thus only do such check for reloc cache.
2941 		 */
2942 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2943 			btrfs_put_root(root);
2944 			list_add(&cur->list, &cache->useless_node);
2945 		} else {
2946 			cur->root = root;
2947 		}
2948 		return 0;
2949 	}
2950 
2951 	level = cur->level + 1;
2952 
2953 	/* Search the tree to find parent blocks referring to the block */
2954 	path->search_commit_root = 1;
2955 	path->skip_locking = 1;
2956 	path->lowest_level = level;
2957 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2958 	path->lowest_level = 0;
2959 	if (ret < 0) {
2960 		btrfs_put_root(root);
2961 		return ret;
2962 	}
2963 	if (ret > 0 && path->slots[level] > 0)
2964 		path->slots[level]--;
2965 
2966 	eb = path->nodes[level];
2967 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2968 		btrfs_err(fs_info,
2969 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2970 			  cur->bytenr, level - 1, root->root_key.objectid,
2971 			  tree_key->objectid, tree_key->type, tree_key->offset);
2972 		btrfs_put_root(root);
2973 		ret = -ENOENT;
2974 		goto out;
2975 	}
2976 	lower = cur;
2977 
2978 	/* Add all nodes and edges in the path */
2979 	for (; level < BTRFS_MAX_LEVEL; level++) {
2980 		if (!path->nodes[level]) {
2981 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2982 			       lower->bytenr);
2983 			/* Same as previous should_ignore_reloc_root() call */
2984 			if (btrfs_should_ignore_reloc_root(root) &&
2985 			    cache->is_reloc) {
2986 				btrfs_put_root(root);
2987 				list_add(&lower->list, &cache->useless_node);
2988 			} else {
2989 				lower->root = root;
2990 			}
2991 			break;
2992 		}
2993 
2994 		edge = btrfs_backref_alloc_edge(cache);
2995 		if (!edge) {
2996 			btrfs_put_root(root);
2997 			ret = -ENOMEM;
2998 			goto out;
2999 		}
3000 
3001 		eb = path->nodes[level];
3002 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3003 		if (!rb_node) {
3004 			upper = btrfs_backref_alloc_node(cache, eb->start,
3005 							 lower->level + 1);
3006 			if (!upper) {
3007 				btrfs_put_root(root);
3008 				btrfs_backref_free_edge(cache, edge);
3009 				ret = -ENOMEM;
3010 				goto out;
3011 			}
3012 			upper->owner = btrfs_header_owner(eb);
3013 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3014 				upper->cowonly = 1;
3015 
3016 			/*
3017 			 * If we know the block isn't shared we can avoid
3018 			 * checking its backrefs.
3019 			 */
3020 			if (btrfs_block_can_be_shared(root, eb))
3021 				upper->checked = 0;
3022 			else
3023 				upper->checked = 1;
3024 
3025 			/*
3026 			 * Add the block to pending list if we need to check its
3027 			 * backrefs, we only do this once while walking up a
3028 			 * tree as we will catch anything else later on.
3029 			 */
3030 			if (!upper->checked && need_check) {
3031 				need_check = false;
3032 				list_add_tail(&edge->list[UPPER],
3033 					      &cache->pending_edge);
3034 			} else {
3035 				if (upper->checked)
3036 					need_check = true;
3037 				INIT_LIST_HEAD(&edge->list[UPPER]);
3038 			}
3039 		} else {
3040 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3041 					 rb_node);
3042 			ASSERT(upper->checked);
3043 			INIT_LIST_HEAD(&edge->list[UPPER]);
3044 			if (!upper->owner)
3045 				upper->owner = btrfs_header_owner(eb);
3046 		}
3047 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3048 
3049 		if (rb_node) {
3050 			btrfs_put_root(root);
3051 			break;
3052 		}
3053 		lower = upper;
3054 		upper = NULL;
3055 	}
3056 out:
3057 	btrfs_release_path(path);
3058 	return ret;
3059 }
3060 
3061 /*
3062  * Add backref node @cur into @cache.
3063  *
3064  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3065  *	 links aren't yet bi-directional. Needs to finish such links.
3066  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3067  *
3068  * @path:	Released path for indirect tree backref lookup
3069  * @iter:	Released backref iter for extent tree search
3070  * @node_key:	The first key of the tree block
3071  */
3072 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3073 				struct btrfs_path *path,
3074 				struct btrfs_backref_iter *iter,
3075 				struct btrfs_key *node_key,
3076 				struct btrfs_backref_node *cur)
3077 {
3078 	struct btrfs_fs_info *fs_info = cache->fs_info;
3079 	struct btrfs_backref_edge *edge;
3080 	struct btrfs_backref_node *exist;
3081 	int ret;
3082 
3083 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3084 	if (ret < 0)
3085 		return ret;
3086 	/*
3087 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3088 	 * stored in it, but fetch it from the tree block
3089 	 */
3090 	if (btrfs_backref_has_tree_block_info(iter)) {
3091 		ret = btrfs_backref_iter_next(iter);
3092 		if (ret < 0)
3093 			goto out;
3094 		/* No extra backref? This means the tree block is corrupted */
3095 		if (ret > 0) {
3096 			ret = -EUCLEAN;
3097 			goto out;
3098 		}
3099 	}
3100 	WARN_ON(cur->checked);
3101 	if (!list_empty(&cur->upper)) {
3102 		/*
3103 		 * The backref was added previously when processing backref of
3104 		 * type BTRFS_TREE_BLOCK_REF_KEY
3105 		 */
3106 		ASSERT(list_is_singular(&cur->upper));
3107 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3108 				  list[LOWER]);
3109 		ASSERT(list_empty(&edge->list[UPPER]));
3110 		exist = edge->node[UPPER];
3111 		/*
3112 		 * Add the upper level block to pending list if we need check
3113 		 * its backrefs
3114 		 */
3115 		if (!exist->checked)
3116 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3117 	} else {
3118 		exist = NULL;
3119 	}
3120 
3121 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3122 		struct extent_buffer *eb;
3123 		struct btrfs_key key;
3124 		int type;
3125 
3126 		cond_resched();
3127 		eb = btrfs_backref_get_eb(iter);
3128 
3129 		key.objectid = iter->bytenr;
3130 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3131 			struct btrfs_extent_inline_ref *iref;
3132 
3133 			/* Update key for inline backref */
3134 			iref = (struct btrfs_extent_inline_ref *)
3135 				((unsigned long)iter->cur_ptr);
3136 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3137 							BTRFS_REF_TYPE_BLOCK);
3138 			if (type == BTRFS_REF_TYPE_INVALID) {
3139 				ret = -EUCLEAN;
3140 				goto out;
3141 			}
3142 			key.type = type;
3143 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3144 		} else {
3145 			key.type = iter->cur_key.type;
3146 			key.offset = iter->cur_key.offset;
3147 		}
3148 
3149 		/*
3150 		 * Parent node found and matches current inline ref, no need to
3151 		 * rebuild this node for this inline ref
3152 		 */
3153 		if (exist &&
3154 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3155 		      exist->owner == key.offset) ||
3156 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3157 		      exist->bytenr == key.offset))) {
3158 			exist = NULL;
3159 			continue;
3160 		}
3161 
3162 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3163 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3164 			ret = handle_direct_tree_backref(cache, &key, cur);
3165 			if (ret < 0)
3166 				goto out;
3167 			continue;
3168 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3169 			ret = -EINVAL;
3170 			btrfs_print_v0_err(fs_info);
3171 			btrfs_handle_fs_error(fs_info, ret, NULL);
3172 			goto out;
3173 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3174 			continue;
3175 		}
3176 
3177 		/*
3178 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3179 		 * means the root objectid. We need to search the tree to get
3180 		 * its parent bytenr.
3181 		 */
3182 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3183 						   cur);
3184 		if (ret < 0)
3185 			goto out;
3186 	}
3187 	ret = 0;
3188 	cur->checked = 1;
3189 	WARN_ON(exist);
3190 out:
3191 	btrfs_backref_iter_release(iter);
3192 	return ret;
3193 }
3194 
3195 /*
3196  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3197  */
3198 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3199 				     struct btrfs_backref_node *start)
3200 {
3201 	struct list_head *useless_node = &cache->useless_node;
3202 	struct btrfs_backref_edge *edge;
3203 	struct rb_node *rb_node;
3204 	LIST_HEAD(pending_edge);
3205 
3206 	ASSERT(start->checked);
3207 
3208 	/* Insert this node to cache if it's not COW-only */
3209 	if (!start->cowonly) {
3210 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3211 					   &start->rb_node);
3212 		if (rb_node)
3213 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3214 					    -EEXIST);
3215 		list_add_tail(&start->lower, &cache->leaves);
3216 	}
3217 
3218 	/*
3219 	 * Use breadth first search to iterate all related edges.
3220 	 *
3221 	 * The starting points are all the edges of this node
3222 	 */
3223 	list_for_each_entry(edge, &start->upper, list[LOWER])
3224 		list_add_tail(&edge->list[UPPER], &pending_edge);
3225 
3226 	while (!list_empty(&pending_edge)) {
3227 		struct btrfs_backref_node *upper;
3228 		struct btrfs_backref_node *lower;
3229 
3230 		edge = list_first_entry(&pending_edge,
3231 				struct btrfs_backref_edge, list[UPPER]);
3232 		list_del_init(&edge->list[UPPER]);
3233 		upper = edge->node[UPPER];
3234 		lower = edge->node[LOWER];
3235 
3236 		/* Parent is detached, no need to keep any edges */
3237 		if (upper->detached) {
3238 			list_del(&edge->list[LOWER]);
3239 			btrfs_backref_free_edge(cache, edge);
3240 
3241 			/* Lower node is orphan, queue for cleanup */
3242 			if (list_empty(&lower->upper))
3243 				list_add(&lower->list, useless_node);
3244 			continue;
3245 		}
3246 
3247 		/*
3248 		 * All new nodes added in current build_backref_tree() haven't
3249 		 * been linked to the cache rb tree.
3250 		 * So if we have upper->rb_node populated, this means a cache
3251 		 * hit. We only need to link the edge, as @upper and all its
3252 		 * parents have already been linked.
3253 		 */
3254 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3255 			if (upper->lowest) {
3256 				list_del_init(&upper->lower);
3257 				upper->lowest = 0;
3258 			}
3259 
3260 			list_add_tail(&edge->list[UPPER], &upper->lower);
3261 			continue;
3262 		}
3263 
3264 		/* Sanity check, we shouldn't have any unchecked nodes */
3265 		if (!upper->checked) {
3266 			ASSERT(0);
3267 			return -EUCLEAN;
3268 		}
3269 
3270 		/* Sanity check, COW-only node has non-COW-only parent */
3271 		if (start->cowonly != upper->cowonly) {
3272 			ASSERT(0);
3273 			return -EUCLEAN;
3274 		}
3275 
3276 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3277 		if (!upper->cowonly) {
3278 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3279 						   &upper->rb_node);
3280 			if (rb_node) {
3281 				btrfs_backref_panic(cache->fs_info,
3282 						upper->bytenr, -EEXIST);
3283 				return -EUCLEAN;
3284 			}
3285 		}
3286 
3287 		list_add_tail(&edge->list[UPPER], &upper->lower);
3288 
3289 		/*
3290 		 * Also queue all the parent edges of this uncached node
3291 		 * to finish the upper linkage
3292 		 */
3293 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3294 			list_add_tail(&edge->list[UPPER], &pending_edge);
3295 	}
3296 	return 0;
3297 }
3298 
3299 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3300 				 struct btrfs_backref_node *node)
3301 {
3302 	struct btrfs_backref_node *lower;
3303 	struct btrfs_backref_node *upper;
3304 	struct btrfs_backref_edge *edge;
3305 
3306 	while (!list_empty(&cache->useless_node)) {
3307 		lower = list_first_entry(&cache->useless_node,
3308 				   struct btrfs_backref_node, list);
3309 		list_del_init(&lower->list);
3310 	}
3311 	while (!list_empty(&cache->pending_edge)) {
3312 		edge = list_first_entry(&cache->pending_edge,
3313 				struct btrfs_backref_edge, list[UPPER]);
3314 		list_del(&edge->list[UPPER]);
3315 		list_del(&edge->list[LOWER]);
3316 		lower = edge->node[LOWER];
3317 		upper = edge->node[UPPER];
3318 		btrfs_backref_free_edge(cache, edge);
3319 
3320 		/*
3321 		 * Lower is no longer linked to any upper backref nodes and
3322 		 * isn't in the cache, we can free it ourselves.
3323 		 */
3324 		if (list_empty(&lower->upper) &&
3325 		    RB_EMPTY_NODE(&lower->rb_node))
3326 			list_add(&lower->list, &cache->useless_node);
3327 
3328 		if (!RB_EMPTY_NODE(&upper->rb_node))
3329 			continue;
3330 
3331 		/* Add this guy's upper edges to the list to process */
3332 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3333 			list_add_tail(&edge->list[UPPER],
3334 				      &cache->pending_edge);
3335 		if (list_empty(&upper->upper))
3336 			list_add(&upper->list, &cache->useless_node);
3337 	}
3338 
3339 	while (!list_empty(&cache->useless_node)) {
3340 		lower = list_first_entry(&cache->useless_node,
3341 				   struct btrfs_backref_node, list);
3342 		list_del_init(&lower->list);
3343 		if (lower == node)
3344 			node = NULL;
3345 		btrfs_backref_drop_node(cache, lower);
3346 	}
3347 
3348 	btrfs_backref_cleanup_node(cache, node);
3349 	ASSERT(list_empty(&cache->useless_node) &&
3350 	       list_empty(&cache->pending_edge));
3351 }
3352