xref: /openbmc/linux/fs/btrfs/backref.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "backref.h"
22 #include "ulist.h"
23 #include "transaction.h"
24 #include "delayed-ref.h"
25 #include "locking.h"
26 
27 struct extent_inode_elem {
28 	u64 inum;
29 	u64 offset;
30 	struct extent_inode_elem *next;
31 };
32 
33 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
34 				struct btrfs_file_extent_item *fi,
35 				u64 extent_item_pos,
36 				struct extent_inode_elem **eie)
37 {
38 	u64 data_offset;
39 	u64 data_len;
40 	struct extent_inode_elem *e;
41 
42 	data_offset = btrfs_file_extent_offset(eb, fi);
43 	data_len = btrfs_file_extent_num_bytes(eb, fi);
44 
45 	if (extent_item_pos < data_offset ||
46 	    extent_item_pos >= data_offset + data_len)
47 		return 1;
48 
49 	e = kmalloc(sizeof(*e), GFP_NOFS);
50 	if (!e)
51 		return -ENOMEM;
52 
53 	e->next = *eie;
54 	e->inum = key->objectid;
55 	e->offset = key->offset + (extent_item_pos - data_offset);
56 	*eie = e;
57 
58 	return 0;
59 }
60 
61 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
62 				u64 extent_item_pos,
63 				struct extent_inode_elem **eie)
64 {
65 	u64 disk_byte;
66 	struct btrfs_key key;
67 	struct btrfs_file_extent_item *fi;
68 	int slot;
69 	int nritems;
70 	int extent_type;
71 	int ret;
72 
73 	/*
74 	 * from the shared data ref, we only have the leaf but we need
75 	 * the key. thus, we must look into all items and see that we
76 	 * find one (some) with a reference to our extent item.
77 	 */
78 	nritems = btrfs_header_nritems(eb);
79 	for (slot = 0; slot < nritems; ++slot) {
80 		btrfs_item_key_to_cpu(eb, &key, slot);
81 		if (key.type != BTRFS_EXTENT_DATA_KEY)
82 			continue;
83 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
84 		extent_type = btrfs_file_extent_type(eb, fi);
85 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
86 			continue;
87 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
88 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
89 		if (disk_byte != wanted_disk_byte)
90 			continue;
91 
92 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
93 		if (ret < 0)
94 			return ret;
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * this structure records all encountered refs on the way up to the root
102  */
103 struct __prelim_ref {
104 	struct list_head list;
105 	u64 root_id;
106 	struct btrfs_key key_for_search;
107 	int level;
108 	int count;
109 	struct extent_inode_elem *inode_list;
110 	u64 parent;
111 	u64 wanted_disk_byte;
112 };
113 
114 /*
115  * the rules for all callers of this function are:
116  * - obtaining the parent is the goal
117  * - if you add a key, you must know that it is a correct key
118  * - if you cannot add the parent or a correct key, then we will look into the
119  *   block later to set a correct key
120  *
121  * delayed refs
122  * ============
123  *        backref type | shared | indirect | shared | indirect
124  * information         |   tree |     tree |   data |     data
125  * --------------------+--------+----------+--------+----------
126  *      parent logical |    y   |     -    |    -   |     -
127  *      key to resolve |    -   |     y    |    y   |     y
128  *  tree block logical |    -   |     -    |    -   |     -
129  *  root for resolving |    y   |     y    |    y   |     y
130  *
131  * - column 1:       we've the parent -> done
132  * - column 2, 3, 4: we use the key to find the parent
133  *
134  * on disk refs (inline or keyed)
135  * ==============================
136  *        backref type | shared | indirect | shared | indirect
137  * information         |   tree |     tree |   data |     data
138  * --------------------+--------+----------+--------+----------
139  *      parent logical |    y   |     -    |    y   |     -
140  *      key to resolve |    -   |     -    |    -   |     y
141  *  tree block logical |    y   |     y    |    y   |     y
142  *  root for resolving |    -   |     y    |    y   |     y
143  *
144  * - column 1, 3: we've the parent -> done
145  * - column 2:    we take the first key from the block to find the parent
146  *                (see __add_missing_keys)
147  * - column 4:    we use the key to find the parent
148  *
149  * additional information that's available but not required to find the parent
150  * block might help in merging entries to gain some speed.
151  */
152 
153 static int __add_prelim_ref(struct list_head *head, u64 root_id,
154 			    struct btrfs_key *key, int level,
155 			    u64 parent, u64 wanted_disk_byte, int count)
156 {
157 	struct __prelim_ref *ref;
158 
159 	/* in case we're adding delayed refs, we're holding the refs spinlock */
160 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
161 	if (!ref)
162 		return -ENOMEM;
163 
164 	ref->root_id = root_id;
165 	if (key)
166 		ref->key_for_search = *key;
167 	else
168 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
169 
170 	ref->inode_list = NULL;
171 	ref->level = level;
172 	ref->count = count;
173 	ref->parent = parent;
174 	ref->wanted_disk_byte = wanted_disk_byte;
175 	list_add_tail(&ref->list, head);
176 
177 	return 0;
178 }
179 
180 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
181 				struct ulist *parents, int level,
182 				struct btrfs_key *key_for_search, u64 time_seq,
183 				u64 wanted_disk_byte,
184 				const u64 *extent_item_pos)
185 {
186 	int ret = 0;
187 	int slot;
188 	struct extent_buffer *eb;
189 	struct btrfs_key key;
190 	struct btrfs_file_extent_item *fi;
191 	struct extent_inode_elem *eie = NULL;
192 	u64 disk_byte;
193 
194 	if (level != 0) {
195 		eb = path->nodes[level];
196 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
197 		if (ret < 0)
198 			return ret;
199 		return 0;
200 	}
201 
202 	/*
203 	 * We normally enter this function with the path already pointing to
204 	 * the first item to check. But sometimes, we may enter it with
205 	 * slot==nritems. In that case, go to the next leaf before we continue.
206 	 */
207 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
208 		ret = btrfs_next_old_leaf(root, path, time_seq);
209 
210 	while (!ret) {
211 		eb = path->nodes[0];
212 		slot = path->slots[0];
213 
214 		btrfs_item_key_to_cpu(eb, &key, slot);
215 
216 		if (key.objectid != key_for_search->objectid ||
217 		    key.type != BTRFS_EXTENT_DATA_KEY)
218 			break;
219 
220 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
221 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
222 
223 		if (disk_byte == wanted_disk_byte) {
224 			eie = NULL;
225 			if (extent_item_pos) {
226 				ret = check_extent_in_eb(&key, eb, fi,
227 						*extent_item_pos,
228 						&eie);
229 				if (ret < 0)
230 					break;
231 			}
232 			if (!ret) {
233 				ret = ulist_add(parents, eb->start,
234 						(unsigned long)eie, GFP_NOFS);
235 				if (ret < 0)
236 					break;
237 				if (!extent_item_pos) {
238 					ret = btrfs_next_old_leaf(root, path,
239 							time_seq);
240 					continue;
241 				}
242 			}
243 		}
244 		ret = btrfs_next_old_item(root, path, time_seq);
245 	}
246 
247 	if (ret > 0)
248 		ret = 0;
249 	return ret;
250 }
251 
252 /*
253  * resolve an indirect backref in the form (root_id, key, level)
254  * to a logical address
255  */
256 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
257 					int search_commit_root,
258 					u64 time_seq,
259 					struct __prelim_ref *ref,
260 					struct ulist *parents,
261 					const u64 *extent_item_pos)
262 {
263 	struct btrfs_path *path;
264 	struct btrfs_root *root;
265 	struct btrfs_key root_key;
266 	struct extent_buffer *eb;
267 	int ret = 0;
268 	int root_level;
269 	int level = ref->level;
270 
271 	path = btrfs_alloc_path();
272 	if (!path)
273 		return -ENOMEM;
274 	path->search_commit_root = !!search_commit_root;
275 
276 	root_key.objectid = ref->root_id;
277 	root_key.type = BTRFS_ROOT_ITEM_KEY;
278 	root_key.offset = (u64)-1;
279 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
280 	if (IS_ERR(root)) {
281 		ret = PTR_ERR(root);
282 		goto out;
283 	}
284 
285 	rcu_read_lock();
286 	root_level = btrfs_header_level(root->node);
287 	rcu_read_unlock();
288 
289 	if (root_level + 1 == level)
290 		goto out;
291 
292 	path->lowest_level = level;
293 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
294 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
295 		 "%d for key (%llu %u %llu)\n",
296 		 (unsigned long long)ref->root_id, level, ref->count, ret,
297 		 (unsigned long long)ref->key_for_search.objectid,
298 		 ref->key_for_search.type,
299 		 (unsigned long long)ref->key_for_search.offset);
300 	if (ret < 0)
301 		goto out;
302 
303 	eb = path->nodes[level];
304 	while (!eb) {
305 		if (!level) {
306 			WARN_ON(1);
307 			ret = 1;
308 			goto out;
309 		}
310 		level--;
311 		eb = path->nodes[level];
312 	}
313 
314 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
315 				time_seq, ref->wanted_disk_byte,
316 				extent_item_pos);
317 out:
318 	btrfs_free_path(path);
319 	return ret;
320 }
321 
322 /*
323  * resolve all indirect backrefs from the list
324  */
325 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
326 				   int search_commit_root, u64 time_seq,
327 				   struct list_head *head,
328 				   const u64 *extent_item_pos)
329 {
330 	int err;
331 	int ret = 0;
332 	struct __prelim_ref *ref;
333 	struct __prelim_ref *ref_safe;
334 	struct __prelim_ref *new_ref;
335 	struct ulist *parents;
336 	struct ulist_node *node;
337 	struct ulist_iterator uiter;
338 
339 	parents = ulist_alloc(GFP_NOFS);
340 	if (!parents)
341 		return -ENOMEM;
342 
343 	/*
344 	 * _safe allows us to insert directly after the current item without
345 	 * iterating over the newly inserted items.
346 	 * we're also allowed to re-assign ref during iteration.
347 	 */
348 	list_for_each_entry_safe(ref, ref_safe, head, list) {
349 		if (ref->parent)	/* already direct */
350 			continue;
351 		if (ref->count == 0)
352 			continue;
353 		err = __resolve_indirect_ref(fs_info, search_commit_root,
354 					     time_seq, ref, parents,
355 					     extent_item_pos);
356 		if (err) {
357 			if (ret == 0)
358 				ret = err;
359 			continue;
360 		}
361 
362 		/* we put the first parent into the ref at hand */
363 		ULIST_ITER_INIT(&uiter);
364 		node = ulist_next(parents, &uiter);
365 		ref->parent = node ? node->val : 0;
366 		ref->inode_list =
367 			node ? (struct extent_inode_elem *)node->aux : 0;
368 
369 		/* additional parents require new refs being added here */
370 		while ((node = ulist_next(parents, &uiter))) {
371 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
372 			if (!new_ref) {
373 				ret = -ENOMEM;
374 				break;
375 			}
376 			memcpy(new_ref, ref, sizeof(*ref));
377 			new_ref->parent = node->val;
378 			new_ref->inode_list =
379 					(struct extent_inode_elem *)node->aux;
380 			list_add(&new_ref->list, &ref->list);
381 		}
382 		ulist_reinit(parents);
383 	}
384 
385 	ulist_free(parents);
386 	return ret;
387 }
388 
389 static inline int ref_for_same_block(struct __prelim_ref *ref1,
390 				     struct __prelim_ref *ref2)
391 {
392 	if (ref1->level != ref2->level)
393 		return 0;
394 	if (ref1->root_id != ref2->root_id)
395 		return 0;
396 	if (ref1->key_for_search.type != ref2->key_for_search.type)
397 		return 0;
398 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
399 		return 0;
400 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
401 		return 0;
402 	if (ref1->parent != ref2->parent)
403 		return 0;
404 
405 	return 1;
406 }
407 
408 /*
409  * read tree blocks and add keys where required.
410  */
411 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
412 			      struct list_head *head)
413 {
414 	struct list_head *pos;
415 	struct extent_buffer *eb;
416 
417 	list_for_each(pos, head) {
418 		struct __prelim_ref *ref;
419 		ref = list_entry(pos, struct __prelim_ref, list);
420 
421 		if (ref->parent)
422 			continue;
423 		if (ref->key_for_search.type)
424 			continue;
425 		BUG_ON(!ref->wanted_disk_byte);
426 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
427 				     fs_info->tree_root->leafsize, 0);
428 		BUG_ON(!eb);
429 		btrfs_tree_read_lock(eb);
430 		if (btrfs_header_level(eb) == 0)
431 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
432 		else
433 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
434 		btrfs_tree_read_unlock(eb);
435 		free_extent_buffer(eb);
436 	}
437 	return 0;
438 }
439 
440 /*
441  * merge two lists of backrefs and adjust counts accordingly
442  *
443  * mode = 1: merge identical keys, if key is set
444  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
445  *           additionally, we could even add a key range for the blocks we
446  *           looked into to merge even more (-> replace unresolved refs by those
447  *           having a parent).
448  * mode = 2: merge identical parents
449  */
450 static int __merge_refs(struct list_head *head, int mode)
451 {
452 	struct list_head *pos1;
453 
454 	list_for_each(pos1, head) {
455 		struct list_head *n2;
456 		struct list_head *pos2;
457 		struct __prelim_ref *ref1;
458 
459 		ref1 = list_entry(pos1, struct __prelim_ref, list);
460 
461 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
462 		     pos2 = n2, n2 = pos2->next) {
463 			struct __prelim_ref *ref2;
464 			struct __prelim_ref *xchg;
465 
466 			ref2 = list_entry(pos2, struct __prelim_ref, list);
467 
468 			if (mode == 1) {
469 				if (!ref_for_same_block(ref1, ref2))
470 					continue;
471 				if (!ref1->parent && ref2->parent) {
472 					xchg = ref1;
473 					ref1 = ref2;
474 					ref2 = xchg;
475 				}
476 				ref1->count += ref2->count;
477 			} else {
478 				if (ref1->parent != ref2->parent)
479 					continue;
480 				ref1->count += ref2->count;
481 			}
482 			list_del(&ref2->list);
483 			kfree(ref2);
484 		}
485 
486 	}
487 	return 0;
488 }
489 
490 /*
491  * add all currently queued delayed refs from this head whose seq nr is
492  * smaller or equal that seq to the list
493  */
494 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
495 			      struct list_head *prefs)
496 {
497 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
498 	struct rb_node *n = &head->node.rb_node;
499 	struct btrfs_key key;
500 	struct btrfs_key op_key = {0};
501 	int sgn;
502 	int ret = 0;
503 
504 	if (extent_op && extent_op->update_key)
505 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
506 
507 	while ((n = rb_prev(n))) {
508 		struct btrfs_delayed_ref_node *node;
509 		node = rb_entry(n, struct btrfs_delayed_ref_node,
510 				rb_node);
511 		if (node->bytenr != head->node.bytenr)
512 			break;
513 		WARN_ON(node->is_head);
514 
515 		if (node->seq > seq)
516 			continue;
517 
518 		switch (node->action) {
519 		case BTRFS_ADD_DELAYED_EXTENT:
520 		case BTRFS_UPDATE_DELAYED_HEAD:
521 			WARN_ON(1);
522 			continue;
523 		case BTRFS_ADD_DELAYED_REF:
524 			sgn = 1;
525 			break;
526 		case BTRFS_DROP_DELAYED_REF:
527 			sgn = -1;
528 			break;
529 		default:
530 			BUG_ON(1);
531 		}
532 		switch (node->type) {
533 		case BTRFS_TREE_BLOCK_REF_KEY: {
534 			struct btrfs_delayed_tree_ref *ref;
535 
536 			ref = btrfs_delayed_node_to_tree_ref(node);
537 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
538 					       ref->level + 1, 0, node->bytenr,
539 					       node->ref_mod * sgn);
540 			break;
541 		}
542 		case BTRFS_SHARED_BLOCK_REF_KEY: {
543 			struct btrfs_delayed_tree_ref *ref;
544 
545 			ref = btrfs_delayed_node_to_tree_ref(node);
546 			ret = __add_prelim_ref(prefs, ref->root, NULL,
547 					       ref->level + 1, ref->parent,
548 					       node->bytenr,
549 					       node->ref_mod * sgn);
550 			break;
551 		}
552 		case BTRFS_EXTENT_DATA_REF_KEY: {
553 			struct btrfs_delayed_data_ref *ref;
554 			ref = btrfs_delayed_node_to_data_ref(node);
555 
556 			key.objectid = ref->objectid;
557 			key.type = BTRFS_EXTENT_DATA_KEY;
558 			key.offset = ref->offset;
559 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
560 					       node->bytenr,
561 					       node->ref_mod * sgn);
562 			break;
563 		}
564 		case BTRFS_SHARED_DATA_REF_KEY: {
565 			struct btrfs_delayed_data_ref *ref;
566 
567 			ref = btrfs_delayed_node_to_data_ref(node);
568 
569 			key.objectid = ref->objectid;
570 			key.type = BTRFS_EXTENT_DATA_KEY;
571 			key.offset = ref->offset;
572 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
573 					       ref->parent, node->bytenr,
574 					       node->ref_mod * sgn);
575 			break;
576 		}
577 		default:
578 			WARN_ON(1);
579 		}
580 		BUG_ON(ret);
581 	}
582 
583 	return 0;
584 }
585 
586 /*
587  * add all inline backrefs for bytenr to the list
588  */
589 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
590 			     struct btrfs_path *path, u64 bytenr,
591 			     int *info_level, struct list_head *prefs)
592 {
593 	int ret = 0;
594 	int slot;
595 	struct extent_buffer *leaf;
596 	struct btrfs_key key;
597 	unsigned long ptr;
598 	unsigned long end;
599 	struct btrfs_extent_item *ei;
600 	u64 flags;
601 	u64 item_size;
602 
603 	/*
604 	 * enumerate all inline refs
605 	 */
606 	leaf = path->nodes[0];
607 	slot = path->slots[0];
608 
609 	item_size = btrfs_item_size_nr(leaf, slot);
610 	BUG_ON(item_size < sizeof(*ei));
611 
612 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
613 	flags = btrfs_extent_flags(leaf, ei);
614 
615 	ptr = (unsigned long)(ei + 1);
616 	end = (unsigned long)ei + item_size;
617 
618 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
619 		struct btrfs_tree_block_info *info;
620 
621 		info = (struct btrfs_tree_block_info *)ptr;
622 		*info_level = btrfs_tree_block_level(leaf, info);
623 		ptr += sizeof(struct btrfs_tree_block_info);
624 		BUG_ON(ptr > end);
625 	} else {
626 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
627 	}
628 
629 	while (ptr < end) {
630 		struct btrfs_extent_inline_ref *iref;
631 		u64 offset;
632 		int type;
633 
634 		iref = (struct btrfs_extent_inline_ref *)ptr;
635 		type = btrfs_extent_inline_ref_type(leaf, iref);
636 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
637 
638 		switch (type) {
639 		case BTRFS_SHARED_BLOCK_REF_KEY:
640 			ret = __add_prelim_ref(prefs, 0, NULL,
641 						*info_level + 1, offset,
642 						bytenr, 1);
643 			break;
644 		case BTRFS_SHARED_DATA_REF_KEY: {
645 			struct btrfs_shared_data_ref *sdref;
646 			int count;
647 
648 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
649 			count = btrfs_shared_data_ref_count(leaf, sdref);
650 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
651 					       bytenr, count);
652 			break;
653 		}
654 		case BTRFS_TREE_BLOCK_REF_KEY:
655 			ret = __add_prelim_ref(prefs, offset, NULL,
656 					       *info_level + 1, 0,
657 					       bytenr, 1);
658 			break;
659 		case BTRFS_EXTENT_DATA_REF_KEY: {
660 			struct btrfs_extent_data_ref *dref;
661 			int count;
662 			u64 root;
663 
664 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
665 			count = btrfs_extent_data_ref_count(leaf, dref);
666 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
667 								      dref);
668 			key.type = BTRFS_EXTENT_DATA_KEY;
669 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
670 			root = btrfs_extent_data_ref_root(leaf, dref);
671 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
672 					       bytenr, count);
673 			break;
674 		}
675 		default:
676 			WARN_ON(1);
677 		}
678 		BUG_ON(ret);
679 		ptr += btrfs_extent_inline_ref_size(type);
680 	}
681 
682 	return 0;
683 }
684 
685 /*
686  * add all non-inline backrefs for bytenr to the list
687  */
688 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
689 			    struct btrfs_path *path, u64 bytenr,
690 			    int info_level, struct list_head *prefs)
691 {
692 	struct btrfs_root *extent_root = fs_info->extent_root;
693 	int ret;
694 	int slot;
695 	struct extent_buffer *leaf;
696 	struct btrfs_key key;
697 
698 	while (1) {
699 		ret = btrfs_next_item(extent_root, path);
700 		if (ret < 0)
701 			break;
702 		if (ret) {
703 			ret = 0;
704 			break;
705 		}
706 
707 		slot = path->slots[0];
708 		leaf = path->nodes[0];
709 		btrfs_item_key_to_cpu(leaf, &key, slot);
710 
711 		if (key.objectid != bytenr)
712 			break;
713 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
714 			continue;
715 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
716 			break;
717 
718 		switch (key.type) {
719 		case BTRFS_SHARED_BLOCK_REF_KEY:
720 			ret = __add_prelim_ref(prefs, 0, NULL,
721 						info_level + 1, key.offset,
722 						bytenr, 1);
723 			break;
724 		case BTRFS_SHARED_DATA_REF_KEY: {
725 			struct btrfs_shared_data_ref *sdref;
726 			int count;
727 
728 			sdref = btrfs_item_ptr(leaf, slot,
729 					      struct btrfs_shared_data_ref);
730 			count = btrfs_shared_data_ref_count(leaf, sdref);
731 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
732 						bytenr, count);
733 			break;
734 		}
735 		case BTRFS_TREE_BLOCK_REF_KEY:
736 			ret = __add_prelim_ref(prefs, key.offset, NULL,
737 					       info_level + 1, 0,
738 					       bytenr, 1);
739 			break;
740 		case BTRFS_EXTENT_DATA_REF_KEY: {
741 			struct btrfs_extent_data_ref *dref;
742 			int count;
743 			u64 root;
744 
745 			dref = btrfs_item_ptr(leaf, slot,
746 					      struct btrfs_extent_data_ref);
747 			count = btrfs_extent_data_ref_count(leaf, dref);
748 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
749 								      dref);
750 			key.type = BTRFS_EXTENT_DATA_KEY;
751 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
752 			root = btrfs_extent_data_ref_root(leaf, dref);
753 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
754 					       bytenr, count);
755 			break;
756 		}
757 		default:
758 			WARN_ON(1);
759 		}
760 		BUG_ON(ret);
761 	}
762 
763 	return ret;
764 }
765 
766 /*
767  * this adds all existing backrefs (inline backrefs, backrefs and delayed
768  * refs) for the given bytenr to the refs list, merges duplicates and resolves
769  * indirect refs to their parent bytenr.
770  * When roots are found, they're added to the roots list
771  *
772  * FIXME some caching might speed things up
773  */
774 static int find_parent_nodes(struct btrfs_trans_handle *trans,
775 			     struct btrfs_fs_info *fs_info, u64 bytenr,
776 			     u64 time_seq, struct ulist *refs,
777 			     struct ulist *roots, const u64 *extent_item_pos)
778 {
779 	struct btrfs_key key;
780 	struct btrfs_path *path;
781 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
782 	struct btrfs_delayed_ref_head *head;
783 	int info_level = 0;
784 	int ret;
785 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
786 	struct list_head prefs_delayed;
787 	struct list_head prefs;
788 	struct __prelim_ref *ref;
789 
790 	INIT_LIST_HEAD(&prefs);
791 	INIT_LIST_HEAD(&prefs_delayed);
792 
793 	key.objectid = bytenr;
794 	key.type = BTRFS_EXTENT_ITEM_KEY;
795 	key.offset = (u64)-1;
796 
797 	path = btrfs_alloc_path();
798 	if (!path)
799 		return -ENOMEM;
800 	path->search_commit_root = !!search_commit_root;
801 
802 	/*
803 	 * grab both a lock on the path and a lock on the delayed ref head.
804 	 * We need both to get a consistent picture of how the refs look
805 	 * at a specified point in time
806 	 */
807 again:
808 	head = NULL;
809 
810 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
811 	if (ret < 0)
812 		goto out;
813 	BUG_ON(ret == 0);
814 
815 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
816 		/*
817 		 * look if there are updates for this ref queued and lock the
818 		 * head
819 		 */
820 		delayed_refs = &trans->transaction->delayed_refs;
821 		spin_lock(&delayed_refs->lock);
822 		head = btrfs_find_delayed_ref_head(trans, bytenr);
823 		if (head) {
824 			if (!mutex_trylock(&head->mutex)) {
825 				atomic_inc(&head->node.refs);
826 				spin_unlock(&delayed_refs->lock);
827 
828 				btrfs_release_path(path);
829 
830 				/*
831 				 * Mutex was contended, block until it's
832 				 * released and try again
833 				 */
834 				mutex_lock(&head->mutex);
835 				mutex_unlock(&head->mutex);
836 				btrfs_put_delayed_ref(&head->node);
837 				goto again;
838 			}
839 			ret = __add_delayed_refs(head, time_seq,
840 						 &prefs_delayed);
841 			mutex_unlock(&head->mutex);
842 			if (ret) {
843 				spin_unlock(&delayed_refs->lock);
844 				goto out;
845 			}
846 		}
847 		spin_unlock(&delayed_refs->lock);
848 	}
849 
850 	if (path->slots[0]) {
851 		struct extent_buffer *leaf;
852 		int slot;
853 
854 		path->slots[0]--;
855 		leaf = path->nodes[0];
856 		slot = path->slots[0];
857 		btrfs_item_key_to_cpu(leaf, &key, slot);
858 		if (key.objectid == bytenr &&
859 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
860 			ret = __add_inline_refs(fs_info, path, bytenr,
861 						&info_level, &prefs);
862 			if (ret)
863 				goto out;
864 			ret = __add_keyed_refs(fs_info, path, bytenr,
865 					       info_level, &prefs);
866 			if (ret)
867 				goto out;
868 		}
869 	}
870 	btrfs_release_path(path);
871 
872 	list_splice_init(&prefs_delayed, &prefs);
873 
874 	ret = __add_missing_keys(fs_info, &prefs);
875 	if (ret)
876 		goto out;
877 
878 	ret = __merge_refs(&prefs, 1);
879 	if (ret)
880 		goto out;
881 
882 	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
883 				      &prefs, extent_item_pos);
884 	if (ret)
885 		goto out;
886 
887 	ret = __merge_refs(&prefs, 2);
888 	if (ret)
889 		goto out;
890 
891 	while (!list_empty(&prefs)) {
892 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
893 		list_del(&ref->list);
894 		if (ref->count < 0)
895 			WARN_ON(1);
896 		if (ref->count && ref->root_id && ref->parent == 0) {
897 			/* no parent == root of tree */
898 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
899 			BUG_ON(ret < 0);
900 		}
901 		if (ref->count && ref->parent) {
902 			struct extent_inode_elem *eie = NULL;
903 			if (extent_item_pos && !ref->inode_list) {
904 				u32 bsz;
905 				struct extent_buffer *eb;
906 				bsz = btrfs_level_size(fs_info->extent_root,
907 							info_level);
908 				eb = read_tree_block(fs_info->extent_root,
909 							   ref->parent, bsz, 0);
910 				BUG_ON(!eb);
911 				ret = find_extent_in_eb(eb, bytenr,
912 							*extent_item_pos, &eie);
913 				ref->inode_list = eie;
914 				free_extent_buffer(eb);
915 			}
916 			ret = ulist_add_merge(refs, ref->parent,
917 					      (unsigned long)ref->inode_list,
918 					      (unsigned long *)&eie, GFP_NOFS);
919 			if (!ret && extent_item_pos) {
920 				/*
921 				 * we've recorded that parent, so we must extend
922 				 * its inode list here
923 				 */
924 				BUG_ON(!eie);
925 				while (eie->next)
926 					eie = eie->next;
927 				eie->next = ref->inode_list;
928 			}
929 			BUG_ON(ret < 0);
930 		}
931 		kfree(ref);
932 	}
933 
934 out:
935 	btrfs_free_path(path);
936 	while (!list_empty(&prefs)) {
937 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
938 		list_del(&ref->list);
939 		kfree(ref);
940 	}
941 	while (!list_empty(&prefs_delayed)) {
942 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
943 				       list);
944 		list_del(&ref->list);
945 		kfree(ref);
946 	}
947 
948 	return ret;
949 }
950 
951 static void free_leaf_list(struct ulist *blocks)
952 {
953 	struct ulist_node *node = NULL;
954 	struct extent_inode_elem *eie;
955 	struct extent_inode_elem *eie_next;
956 	struct ulist_iterator uiter;
957 
958 	ULIST_ITER_INIT(&uiter);
959 	while ((node = ulist_next(blocks, &uiter))) {
960 		if (!node->aux)
961 			continue;
962 		eie = (struct extent_inode_elem *)node->aux;
963 		for (; eie; eie = eie_next) {
964 			eie_next = eie->next;
965 			kfree(eie);
966 		}
967 		node->aux = 0;
968 	}
969 
970 	ulist_free(blocks);
971 }
972 
973 /*
974  * Finds all leafs with a reference to the specified combination of bytenr and
975  * offset. key_list_head will point to a list of corresponding keys (caller must
976  * free each list element). The leafs will be stored in the leafs ulist, which
977  * must be freed with ulist_free.
978  *
979  * returns 0 on success, <0 on error
980  */
981 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
982 				struct btrfs_fs_info *fs_info, u64 bytenr,
983 				u64 time_seq, struct ulist **leafs,
984 				const u64 *extent_item_pos)
985 {
986 	struct ulist *tmp;
987 	int ret;
988 
989 	tmp = ulist_alloc(GFP_NOFS);
990 	if (!tmp)
991 		return -ENOMEM;
992 	*leafs = ulist_alloc(GFP_NOFS);
993 	if (!*leafs) {
994 		ulist_free(tmp);
995 		return -ENOMEM;
996 	}
997 
998 	ret = find_parent_nodes(trans, fs_info, bytenr,
999 				time_seq, *leafs, tmp, extent_item_pos);
1000 	ulist_free(tmp);
1001 
1002 	if (ret < 0 && ret != -ENOENT) {
1003 		free_leaf_list(*leafs);
1004 		return ret;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * walk all backrefs for a given extent to find all roots that reference this
1012  * extent. Walking a backref means finding all extents that reference this
1013  * extent and in turn walk the backrefs of those, too. Naturally this is a
1014  * recursive process, but here it is implemented in an iterative fashion: We
1015  * find all referencing extents for the extent in question and put them on a
1016  * list. In turn, we find all referencing extents for those, further appending
1017  * to the list. The way we iterate the list allows adding more elements after
1018  * the current while iterating. The process stops when we reach the end of the
1019  * list. Found roots are added to the roots list.
1020  *
1021  * returns 0 on success, < 0 on error.
1022  */
1023 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1024 				struct btrfs_fs_info *fs_info, u64 bytenr,
1025 				u64 time_seq, struct ulist **roots)
1026 {
1027 	struct ulist *tmp;
1028 	struct ulist_node *node = NULL;
1029 	struct ulist_iterator uiter;
1030 	int ret;
1031 
1032 	tmp = ulist_alloc(GFP_NOFS);
1033 	if (!tmp)
1034 		return -ENOMEM;
1035 	*roots = ulist_alloc(GFP_NOFS);
1036 	if (!*roots) {
1037 		ulist_free(tmp);
1038 		return -ENOMEM;
1039 	}
1040 
1041 	ULIST_ITER_INIT(&uiter);
1042 	while (1) {
1043 		ret = find_parent_nodes(trans, fs_info, bytenr,
1044 					time_seq, tmp, *roots, NULL);
1045 		if (ret < 0 && ret != -ENOENT) {
1046 			ulist_free(tmp);
1047 			ulist_free(*roots);
1048 			return ret;
1049 		}
1050 		node = ulist_next(tmp, &uiter);
1051 		if (!node)
1052 			break;
1053 		bytenr = node->val;
1054 	}
1055 
1056 	ulist_free(tmp);
1057 	return 0;
1058 }
1059 
1060 
1061 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1062 			struct btrfs_root *fs_root, struct btrfs_path *path,
1063 			struct btrfs_key *found_key)
1064 {
1065 	int ret;
1066 	struct btrfs_key key;
1067 	struct extent_buffer *eb;
1068 
1069 	key.type = key_type;
1070 	key.objectid = inum;
1071 	key.offset = ioff;
1072 
1073 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	eb = path->nodes[0];
1078 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1079 		ret = btrfs_next_leaf(fs_root, path);
1080 		if (ret)
1081 			return ret;
1082 		eb = path->nodes[0];
1083 	}
1084 
1085 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1086 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1087 		return 1;
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * this makes the path point to (inum INODE_ITEM ioff)
1094  */
1095 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1096 			struct btrfs_path *path)
1097 {
1098 	struct btrfs_key key;
1099 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1100 				&key);
1101 }
1102 
1103 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1104 				struct btrfs_path *path,
1105 				struct btrfs_key *found_key)
1106 {
1107 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1108 				found_key);
1109 }
1110 
1111 /*
1112  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1113  * of the path are separated by '/' and the path is guaranteed to be
1114  * 0-terminated. the path is only given within the current file system.
1115  * Therefore, it never starts with a '/'. the caller is responsible to provide
1116  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1117  * the start point of the resulting string is returned. this pointer is within
1118  * dest, normally.
1119  * in case the path buffer would overflow, the pointer is decremented further
1120  * as if output was written to the buffer, though no more output is actually
1121  * generated. that way, the caller can determine how much space would be
1122  * required for the path to fit into the buffer. in that case, the returned
1123  * value will be smaller than dest. callers must check this!
1124  */
1125 char *btrfs_iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1126 			 struct btrfs_inode_ref *iref,
1127 			 struct extent_buffer *eb_in, u64 parent,
1128 			 char *dest, u32 size)
1129 {
1130 	u32 len;
1131 	int slot;
1132 	u64 next_inum;
1133 	int ret;
1134 	s64 bytes_left = size - 1;
1135 	struct extent_buffer *eb = eb_in;
1136 	struct btrfs_key found_key;
1137 	int leave_spinning = path->leave_spinning;
1138 
1139 	if (bytes_left >= 0)
1140 		dest[bytes_left] = '\0';
1141 
1142 	path->leave_spinning = 1;
1143 	while (1) {
1144 		len = btrfs_inode_ref_name_len(eb, iref);
1145 		bytes_left -= len;
1146 		if (bytes_left >= 0)
1147 			read_extent_buffer(eb, dest + bytes_left,
1148 						(unsigned long)(iref + 1), len);
1149 		if (eb != eb_in) {
1150 			btrfs_tree_read_unlock_blocking(eb);
1151 			free_extent_buffer(eb);
1152 		}
1153 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1154 		if (ret > 0)
1155 			ret = -ENOENT;
1156 		if (ret)
1157 			break;
1158 		next_inum = found_key.offset;
1159 
1160 		/* regular exit ahead */
1161 		if (parent == next_inum)
1162 			break;
1163 
1164 		slot = path->slots[0];
1165 		eb = path->nodes[0];
1166 		/* make sure we can use eb after releasing the path */
1167 		if (eb != eb_in) {
1168 			atomic_inc(&eb->refs);
1169 			btrfs_tree_read_lock(eb);
1170 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1171 		}
1172 		btrfs_release_path(path);
1173 
1174 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1175 		parent = next_inum;
1176 		--bytes_left;
1177 		if (bytes_left >= 0)
1178 			dest[bytes_left] = '/';
1179 	}
1180 
1181 	btrfs_release_path(path);
1182 	path->leave_spinning = leave_spinning;
1183 
1184 	if (ret)
1185 		return ERR_PTR(ret);
1186 
1187 	return dest + bytes_left;
1188 }
1189 
1190 /*
1191  * this makes the path point to (logical EXTENT_ITEM *)
1192  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1193  * tree blocks and <0 on error.
1194  */
1195 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1196 			struct btrfs_path *path, struct btrfs_key *found_key)
1197 {
1198 	int ret;
1199 	u64 flags;
1200 	u32 item_size;
1201 	struct extent_buffer *eb;
1202 	struct btrfs_extent_item *ei;
1203 	struct btrfs_key key;
1204 
1205 	key.type = BTRFS_EXTENT_ITEM_KEY;
1206 	key.objectid = logical;
1207 	key.offset = (u64)-1;
1208 
1209 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1210 	if (ret < 0)
1211 		return ret;
1212 	ret = btrfs_previous_item(fs_info->extent_root, path,
1213 					0, BTRFS_EXTENT_ITEM_KEY);
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1218 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1219 	    found_key->objectid > logical ||
1220 	    found_key->objectid + found_key->offset <= logical) {
1221 		pr_debug("logical %llu is not within any extent\n",
1222 			 (unsigned long long)logical);
1223 		return -ENOENT;
1224 	}
1225 
1226 	eb = path->nodes[0];
1227 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1228 	BUG_ON(item_size < sizeof(*ei));
1229 
1230 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1231 	flags = btrfs_extent_flags(eb, ei);
1232 
1233 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1234 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1235 		 (unsigned long long)logical,
1236 		 (unsigned long long)(logical - found_key->objectid),
1237 		 (unsigned long long)found_key->objectid,
1238 		 (unsigned long long)found_key->offset,
1239 		 (unsigned long long)flags, item_size);
1240 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1241 		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1242 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1243 		return BTRFS_EXTENT_FLAG_DATA;
1244 
1245 	return -EIO;
1246 }
1247 
1248 /*
1249  * helper function to iterate extent inline refs. ptr must point to a 0 value
1250  * for the first call and may be modified. it is used to track state.
1251  * if more refs exist, 0 is returned and the next call to
1252  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1253  * next ref. after the last ref was processed, 1 is returned.
1254  * returns <0 on error
1255  */
1256 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1257 				struct btrfs_extent_item *ei, u32 item_size,
1258 				struct btrfs_extent_inline_ref **out_eiref,
1259 				int *out_type)
1260 {
1261 	unsigned long end;
1262 	u64 flags;
1263 	struct btrfs_tree_block_info *info;
1264 
1265 	if (!*ptr) {
1266 		/* first call */
1267 		flags = btrfs_extent_flags(eb, ei);
1268 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1269 			info = (struct btrfs_tree_block_info *)(ei + 1);
1270 			*out_eiref =
1271 				(struct btrfs_extent_inline_ref *)(info + 1);
1272 		} else {
1273 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1274 		}
1275 		*ptr = (unsigned long)*out_eiref;
1276 		if ((void *)*ptr >= (void *)ei + item_size)
1277 			return -ENOENT;
1278 	}
1279 
1280 	end = (unsigned long)ei + item_size;
1281 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1282 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1283 
1284 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1285 	WARN_ON(*ptr > end);
1286 	if (*ptr == end)
1287 		return 1; /* last */
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * reads the tree block backref for an extent. tree level and root are returned
1294  * through out_level and out_root. ptr must point to a 0 value for the first
1295  * call and may be modified (see __get_extent_inline_ref comment).
1296  * returns 0 if data was provided, 1 if there was no more data to provide or
1297  * <0 on error.
1298  */
1299 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1300 				struct btrfs_extent_item *ei, u32 item_size,
1301 				u64 *out_root, u8 *out_level)
1302 {
1303 	int ret;
1304 	int type;
1305 	struct btrfs_tree_block_info *info;
1306 	struct btrfs_extent_inline_ref *eiref;
1307 
1308 	if (*ptr == (unsigned long)-1)
1309 		return 1;
1310 
1311 	while (1) {
1312 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1313 						&eiref, &type);
1314 		if (ret < 0)
1315 			return ret;
1316 
1317 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1318 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1319 			break;
1320 
1321 		if (ret == 1)
1322 			return 1;
1323 	}
1324 
1325 	/* we can treat both ref types equally here */
1326 	info = (struct btrfs_tree_block_info *)(ei + 1);
1327 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1328 	*out_level = btrfs_tree_block_level(eb, info);
1329 
1330 	if (ret == 1)
1331 		*ptr = (unsigned long)-1;
1332 
1333 	return 0;
1334 }
1335 
1336 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1337 				u64 root, u64 extent_item_objectid,
1338 				iterate_extent_inodes_t *iterate, void *ctx)
1339 {
1340 	struct extent_inode_elem *eie;
1341 	int ret = 0;
1342 
1343 	for (eie = inode_list; eie; eie = eie->next) {
1344 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1345 			 "root %llu\n", extent_item_objectid,
1346 			 eie->inum, eie->offset, root);
1347 		ret = iterate(eie->inum, eie->offset, root, ctx);
1348 		if (ret) {
1349 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1350 				 extent_item_objectid, ret);
1351 			break;
1352 		}
1353 	}
1354 
1355 	return ret;
1356 }
1357 
1358 /*
1359  * calls iterate() for every inode that references the extent identified by
1360  * the given parameters.
1361  * when the iterator function returns a non-zero value, iteration stops.
1362  */
1363 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1364 				u64 extent_item_objectid, u64 extent_item_pos,
1365 				int search_commit_root,
1366 				iterate_extent_inodes_t *iterate, void *ctx)
1367 {
1368 	int ret;
1369 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1370 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1371 	struct btrfs_trans_handle *trans;
1372 	struct ulist *refs = NULL;
1373 	struct ulist *roots = NULL;
1374 	struct ulist_node *ref_node = NULL;
1375 	struct ulist_node *root_node = NULL;
1376 	struct seq_list tree_mod_seq_elem = {};
1377 	struct ulist_iterator ref_uiter;
1378 	struct ulist_iterator root_uiter;
1379 
1380 	pr_debug("resolving all inodes for extent %llu\n",
1381 			extent_item_objectid);
1382 
1383 	if (search_commit_root) {
1384 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1385 	} else {
1386 		trans = btrfs_join_transaction(fs_info->extent_root);
1387 		if (IS_ERR(trans))
1388 			return PTR_ERR(trans);
1389 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1390 	}
1391 
1392 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1393 				   tree_mod_seq_elem.seq, &refs,
1394 				   &extent_item_pos);
1395 	if (ret)
1396 		goto out;
1397 
1398 	ULIST_ITER_INIT(&ref_uiter);
1399 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1400 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1401 					   tree_mod_seq_elem.seq, &roots);
1402 		if (ret)
1403 			break;
1404 		ULIST_ITER_INIT(&root_uiter);
1405 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1406 			pr_debug("root %llu references leaf %llu, data list "
1407 				 "%#lx\n", root_node->val, ref_node->val,
1408 				 ref_node->aux);
1409 			ret = iterate_leaf_refs(
1410 				(struct extent_inode_elem *)ref_node->aux,
1411 				root_node->val, extent_item_objectid,
1412 				iterate, ctx);
1413 		}
1414 		ulist_free(roots);
1415 		roots = NULL;
1416 	}
1417 
1418 	free_leaf_list(refs);
1419 	ulist_free(roots);
1420 out:
1421 	if (!search_commit_root) {
1422 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1423 		btrfs_end_transaction(trans, fs_info->extent_root);
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1430 				struct btrfs_path *path,
1431 				iterate_extent_inodes_t *iterate, void *ctx)
1432 {
1433 	int ret;
1434 	u64 extent_item_pos;
1435 	struct btrfs_key found_key;
1436 	int search_commit_root = path->search_commit_root;
1437 
1438 	ret = extent_from_logical(fs_info, logical, path,
1439 					&found_key);
1440 	btrfs_release_path(path);
1441 	if (ret < 0)
1442 		return ret;
1443 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1444 		return -EINVAL;
1445 
1446 	extent_item_pos = logical - found_key.objectid;
1447 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1448 					extent_item_pos, search_commit_root,
1449 					iterate, ctx);
1450 
1451 	return ret;
1452 }
1453 
1454 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1455 				struct btrfs_path *path,
1456 				iterate_irefs_t *iterate, void *ctx)
1457 {
1458 	int ret = 0;
1459 	int slot;
1460 	u32 cur;
1461 	u32 len;
1462 	u32 name_len;
1463 	u64 parent = 0;
1464 	int found = 0;
1465 	struct extent_buffer *eb;
1466 	struct btrfs_item *item;
1467 	struct btrfs_inode_ref *iref;
1468 	struct btrfs_key found_key;
1469 
1470 	while (!ret) {
1471 		path->leave_spinning = 1;
1472 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1473 					&found_key);
1474 		if (ret < 0)
1475 			break;
1476 		if (ret) {
1477 			ret = found ? 0 : -ENOENT;
1478 			break;
1479 		}
1480 		++found;
1481 
1482 		parent = found_key.offset;
1483 		slot = path->slots[0];
1484 		eb = path->nodes[0];
1485 		/* make sure we can use eb after releasing the path */
1486 		atomic_inc(&eb->refs);
1487 		btrfs_tree_read_lock(eb);
1488 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1489 		btrfs_release_path(path);
1490 
1491 		item = btrfs_item_nr(eb, slot);
1492 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1493 
1494 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1495 			name_len = btrfs_inode_ref_name_len(eb, iref);
1496 			/* path must be released before calling iterate()! */
1497 			pr_debug("following ref at offset %u for inode %llu in "
1498 				 "tree %llu\n", cur,
1499 				 (unsigned long long)found_key.objectid,
1500 				 (unsigned long long)fs_root->objectid);
1501 			ret = iterate(parent, iref, eb, ctx);
1502 			if (ret)
1503 				break;
1504 			len = sizeof(*iref) + name_len;
1505 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1506 		}
1507 		btrfs_tree_read_unlock_blocking(eb);
1508 		free_extent_buffer(eb);
1509 	}
1510 
1511 	btrfs_release_path(path);
1512 
1513 	return ret;
1514 }
1515 
1516 /*
1517  * returns 0 if the path could be dumped (probably truncated)
1518  * returns <0 in case of an error
1519  */
1520 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1521 				struct extent_buffer *eb, void *ctx)
1522 {
1523 	struct inode_fs_paths *ipath = ctx;
1524 	char *fspath;
1525 	char *fspath_min;
1526 	int i = ipath->fspath->elem_cnt;
1527 	const int s_ptr = sizeof(char *);
1528 	u32 bytes_left;
1529 
1530 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1531 					ipath->fspath->bytes_left - s_ptr : 0;
1532 
1533 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1534 	fspath = btrfs_iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1535 				inum, fspath_min, bytes_left);
1536 	if (IS_ERR(fspath))
1537 		return PTR_ERR(fspath);
1538 
1539 	if (fspath > fspath_min) {
1540 		pr_debug("path resolved: %s\n", fspath);
1541 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1542 		++ipath->fspath->elem_cnt;
1543 		ipath->fspath->bytes_left = fspath - fspath_min;
1544 	} else {
1545 		pr_debug("missed path, not enough space. missing bytes: %lu, "
1546 			 "constructed so far: %s\n",
1547 			 (unsigned long)(fspath_min - fspath), fspath_min);
1548 		++ipath->fspath->elem_missed;
1549 		ipath->fspath->bytes_missing += fspath_min - fspath;
1550 		ipath->fspath->bytes_left = 0;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * this dumps all file system paths to the inode into the ipath struct, provided
1558  * is has been created large enough. each path is zero-terminated and accessed
1559  * from ipath->fspath->val[i].
1560  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1561  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1562  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1563  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1564  * have been needed to return all paths.
1565  */
1566 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1567 {
1568 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1569 				inode_to_path, ipath);
1570 }
1571 
1572 struct btrfs_data_container *init_data_container(u32 total_bytes)
1573 {
1574 	struct btrfs_data_container *data;
1575 	size_t alloc_bytes;
1576 
1577 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1578 	data = kmalloc(alloc_bytes, GFP_NOFS);
1579 	if (!data)
1580 		return ERR_PTR(-ENOMEM);
1581 
1582 	if (total_bytes >= sizeof(*data)) {
1583 		data->bytes_left = total_bytes - sizeof(*data);
1584 		data->bytes_missing = 0;
1585 	} else {
1586 		data->bytes_missing = sizeof(*data) - total_bytes;
1587 		data->bytes_left = 0;
1588 	}
1589 
1590 	data->elem_cnt = 0;
1591 	data->elem_missed = 0;
1592 
1593 	return data;
1594 }
1595 
1596 /*
1597  * allocates space to return multiple file system paths for an inode.
1598  * total_bytes to allocate are passed, note that space usable for actual path
1599  * information will be total_bytes - sizeof(struct inode_fs_paths).
1600  * the returned pointer must be freed with free_ipath() in the end.
1601  */
1602 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1603 					struct btrfs_path *path)
1604 {
1605 	struct inode_fs_paths *ifp;
1606 	struct btrfs_data_container *fspath;
1607 
1608 	fspath = init_data_container(total_bytes);
1609 	if (IS_ERR(fspath))
1610 		return (void *)fspath;
1611 
1612 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1613 	if (!ifp) {
1614 		kfree(fspath);
1615 		return ERR_PTR(-ENOMEM);
1616 	}
1617 
1618 	ifp->btrfs_path = path;
1619 	ifp->fspath = fspath;
1620 	ifp->fs_root = fs_root;
1621 
1622 	return ifp;
1623 }
1624 
1625 void free_ipath(struct inode_fs_paths *ipath)
1626 {
1627 	if (!ipath)
1628 		return;
1629 	kfree(ipath->fspath);
1630 	kfree(ipath);
1631 }
1632