1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 offset = 0; 40 struct extent_inode_elem *e; 41 42 if (!btrfs_file_extent_compression(eb, fi) && 43 !btrfs_file_extent_encryption(eb, fi) && 44 !btrfs_file_extent_other_encoding(eb, fi)) { 45 u64 data_offset; 46 u64 data_len; 47 48 data_offset = btrfs_file_extent_offset(eb, fi); 49 data_len = btrfs_file_extent_num_bytes(eb, fi); 50 51 if (extent_item_pos < data_offset || 52 extent_item_pos >= data_offset + data_len) 53 return 1; 54 offset = extent_item_pos - data_offset; 55 } 56 57 e = kmalloc(sizeof(*e), GFP_NOFS); 58 if (!e) 59 return -ENOMEM; 60 61 e->next = *eie; 62 e->inum = key->objectid; 63 e->offset = key->offset + offset; 64 *eie = e; 65 66 return 0; 67 } 68 69 static void free_inode_elem_list(struct extent_inode_elem *eie) 70 { 71 struct extent_inode_elem *eie_next; 72 73 for (; eie; eie = eie_next) { 74 eie_next = eie->next; 75 kfree(eie); 76 } 77 } 78 79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 80 u64 extent_item_pos, 81 struct extent_inode_elem **eie) 82 { 83 u64 disk_byte; 84 struct btrfs_key key; 85 struct btrfs_file_extent_item *fi; 86 int slot; 87 int nritems; 88 int extent_type; 89 int ret; 90 91 /* 92 * from the shared data ref, we only have the leaf but we need 93 * the key. thus, we must look into all items and see that we 94 * find one (some) with a reference to our extent item. 95 */ 96 nritems = btrfs_header_nritems(eb); 97 for (slot = 0; slot < nritems; ++slot) { 98 btrfs_item_key_to_cpu(eb, &key, slot); 99 if (key.type != BTRFS_EXTENT_DATA_KEY) 100 continue; 101 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 102 extent_type = btrfs_file_extent_type(eb, fi); 103 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 104 continue; 105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 106 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 107 if (disk_byte != wanted_disk_byte) 108 continue; 109 110 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 111 if (ret < 0) 112 return ret; 113 } 114 115 return 0; 116 } 117 118 /* 119 * this structure records all encountered refs on the way up to the root 120 */ 121 struct __prelim_ref { 122 struct list_head list; 123 u64 root_id; 124 struct btrfs_key key_for_search; 125 int level; 126 int count; 127 struct extent_inode_elem *inode_list; 128 u64 parent; 129 u64 wanted_disk_byte; 130 }; 131 132 static struct kmem_cache *btrfs_prelim_ref_cache; 133 134 int __init btrfs_prelim_ref_init(void) 135 { 136 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 137 sizeof(struct __prelim_ref), 138 0, 139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 140 NULL); 141 if (!btrfs_prelim_ref_cache) 142 return -ENOMEM; 143 return 0; 144 } 145 146 void btrfs_prelim_ref_exit(void) 147 { 148 if (btrfs_prelim_ref_cache) 149 kmem_cache_destroy(btrfs_prelim_ref_cache); 150 } 151 152 /* 153 * the rules for all callers of this function are: 154 * - obtaining the parent is the goal 155 * - if you add a key, you must know that it is a correct key 156 * - if you cannot add the parent or a correct key, then we will look into the 157 * block later to set a correct key 158 * 159 * delayed refs 160 * ============ 161 * backref type | shared | indirect | shared | indirect 162 * information | tree | tree | data | data 163 * --------------------+--------+----------+--------+---------- 164 * parent logical | y | - | - | - 165 * key to resolve | - | y | y | y 166 * tree block logical | - | - | - | - 167 * root for resolving | y | y | y | y 168 * 169 * - column 1: we've the parent -> done 170 * - column 2, 3, 4: we use the key to find the parent 171 * 172 * on disk refs (inline or keyed) 173 * ============================== 174 * backref type | shared | indirect | shared | indirect 175 * information | tree | tree | data | data 176 * --------------------+--------+----------+--------+---------- 177 * parent logical | y | - | y | - 178 * key to resolve | - | - | - | y 179 * tree block logical | y | y | y | y 180 * root for resolving | - | y | y | y 181 * 182 * - column 1, 3: we've the parent -> done 183 * - column 2: we take the first key from the block to find the parent 184 * (see __add_missing_keys) 185 * - column 4: we use the key to find the parent 186 * 187 * additional information that's available but not required to find the parent 188 * block might help in merging entries to gain some speed. 189 */ 190 191 static int __add_prelim_ref(struct list_head *head, u64 root_id, 192 struct btrfs_key *key, int level, 193 u64 parent, u64 wanted_disk_byte, int count, 194 gfp_t gfp_mask) 195 { 196 struct __prelim_ref *ref; 197 198 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 199 return 0; 200 201 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 202 if (!ref) 203 return -ENOMEM; 204 205 ref->root_id = root_id; 206 if (key) 207 ref->key_for_search = *key; 208 else 209 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 210 211 ref->inode_list = NULL; 212 ref->level = level; 213 ref->count = count; 214 ref->parent = parent; 215 ref->wanted_disk_byte = wanted_disk_byte; 216 list_add_tail(&ref->list, head); 217 218 return 0; 219 } 220 221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 222 struct ulist *parents, struct __prelim_ref *ref, 223 int level, u64 time_seq, const u64 *extent_item_pos) 224 { 225 int ret = 0; 226 int slot; 227 struct extent_buffer *eb; 228 struct btrfs_key key; 229 struct btrfs_key *key_for_search = &ref->key_for_search; 230 struct btrfs_file_extent_item *fi; 231 struct extent_inode_elem *eie = NULL, *old = NULL; 232 u64 disk_byte; 233 u64 wanted_disk_byte = ref->wanted_disk_byte; 234 u64 count = 0; 235 236 if (level != 0) { 237 eb = path->nodes[level]; 238 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 239 if (ret < 0) 240 return ret; 241 return 0; 242 } 243 244 /* 245 * We normally enter this function with the path already pointing to 246 * the first item to check. But sometimes, we may enter it with 247 * slot==nritems. In that case, go to the next leaf before we continue. 248 */ 249 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 250 ret = btrfs_next_old_leaf(root, path, time_seq); 251 252 while (!ret && count < ref->count) { 253 eb = path->nodes[0]; 254 slot = path->slots[0]; 255 256 btrfs_item_key_to_cpu(eb, &key, slot); 257 258 if (key.objectid != key_for_search->objectid || 259 key.type != BTRFS_EXTENT_DATA_KEY) 260 break; 261 262 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 263 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 264 265 if (disk_byte == wanted_disk_byte) { 266 eie = NULL; 267 old = NULL; 268 count++; 269 if (extent_item_pos) { 270 ret = check_extent_in_eb(&key, eb, fi, 271 *extent_item_pos, 272 &eie); 273 if (ret < 0) 274 break; 275 } 276 if (ret > 0) 277 goto next; 278 ret = ulist_add_merge(parents, eb->start, 279 (uintptr_t)eie, 280 (u64 *)&old, GFP_NOFS); 281 if (ret < 0) 282 break; 283 if (!ret && extent_item_pos) { 284 while (old->next) 285 old = old->next; 286 old->next = eie; 287 } 288 eie = NULL; 289 } 290 next: 291 ret = btrfs_next_old_item(root, path, time_seq); 292 } 293 294 if (ret > 0) 295 ret = 0; 296 else if (ret < 0) 297 free_inode_elem_list(eie); 298 return ret; 299 } 300 301 /* 302 * resolve an indirect backref in the form (root_id, key, level) 303 * to a logical address 304 */ 305 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 306 struct btrfs_path *path, u64 time_seq, 307 struct __prelim_ref *ref, 308 struct ulist *parents, 309 const u64 *extent_item_pos) 310 { 311 struct btrfs_root *root; 312 struct btrfs_key root_key; 313 struct extent_buffer *eb; 314 int ret = 0; 315 int root_level; 316 int level = ref->level; 317 int index; 318 319 root_key.objectid = ref->root_id; 320 root_key.type = BTRFS_ROOT_ITEM_KEY; 321 root_key.offset = (u64)-1; 322 323 index = srcu_read_lock(&fs_info->subvol_srcu); 324 325 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 326 if (IS_ERR(root)) { 327 srcu_read_unlock(&fs_info->subvol_srcu, index); 328 ret = PTR_ERR(root); 329 goto out; 330 } 331 332 root_level = btrfs_old_root_level(root, time_seq); 333 334 if (root_level + 1 == level) { 335 srcu_read_unlock(&fs_info->subvol_srcu, index); 336 goto out; 337 } 338 339 path->lowest_level = level; 340 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 341 342 /* root node has been locked, we can release @subvol_srcu safely here */ 343 srcu_read_unlock(&fs_info->subvol_srcu, index); 344 345 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 346 "%d for key (%llu %u %llu)\n", 347 ref->root_id, level, ref->count, ret, 348 ref->key_for_search.objectid, ref->key_for_search.type, 349 ref->key_for_search.offset); 350 if (ret < 0) 351 goto out; 352 353 eb = path->nodes[level]; 354 while (!eb) { 355 if (WARN_ON(!level)) { 356 ret = 1; 357 goto out; 358 } 359 level--; 360 eb = path->nodes[level]; 361 } 362 363 ret = add_all_parents(root, path, parents, ref, level, time_seq, 364 extent_item_pos); 365 out: 366 path->lowest_level = 0; 367 btrfs_release_path(path); 368 return ret; 369 } 370 371 /* 372 * resolve all indirect backrefs from the list 373 */ 374 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 375 struct btrfs_path *path, u64 time_seq, 376 struct list_head *head, 377 const u64 *extent_item_pos) 378 { 379 int err; 380 int ret = 0; 381 struct __prelim_ref *ref; 382 struct __prelim_ref *ref_safe; 383 struct __prelim_ref *new_ref; 384 struct ulist *parents; 385 struct ulist_node *node; 386 struct ulist_iterator uiter; 387 388 parents = ulist_alloc(GFP_NOFS); 389 if (!parents) 390 return -ENOMEM; 391 392 /* 393 * _safe allows us to insert directly after the current item without 394 * iterating over the newly inserted items. 395 * we're also allowed to re-assign ref during iteration. 396 */ 397 list_for_each_entry_safe(ref, ref_safe, head, list) { 398 if (ref->parent) /* already direct */ 399 continue; 400 if (ref->count == 0) 401 continue; 402 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 403 parents, extent_item_pos); 404 /* 405 * we can only tolerate ENOENT,otherwise,we should catch error 406 * and return directly. 407 */ 408 if (err == -ENOENT) { 409 continue; 410 } else if (err) { 411 ret = err; 412 goto out; 413 } 414 415 /* we put the first parent into the ref at hand */ 416 ULIST_ITER_INIT(&uiter); 417 node = ulist_next(parents, &uiter); 418 ref->parent = node ? node->val : 0; 419 ref->inode_list = node ? 420 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 421 422 /* additional parents require new refs being added here */ 423 while ((node = ulist_next(parents, &uiter))) { 424 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 425 GFP_NOFS); 426 if (!new_ref) { 427 ret = -ENOMEM; 428 goto out; 429 } 430 memcpy(new_ref, ref, sizeof(*ref)); 431 new_ref->parent = node->val; 432 new_ref->inode_list = (struct extent_inode_elem *) 433 (uintptr_t)node->aux; 434 list_add(&new_ref->list, &ref->list); 435 } 436 ulist_reinit(parents); 437 } 438 out: 439 ulist_free(parents); 440 return ret; 441 } 442 443 static inline int ref_for_same_block(struct __prelim_ref *ref1, 444 struct __prelim_ref *ref2) 445 { 446 if (ref1->level != ref2->level) 447 return 0; 448 if (ref1->root_id != ref2->root_id) 449 return 0; 450 if (ref1->key_for_search.type != ref2->key_for_search.type) 451 return 0; 452 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 453 return 0; 454 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 455 return 0; 456 if (ref1->parent != ref2->parent) 457 return 0; 458 459 return 1; 460 } 461 462 /* 463 * read tree blocks and add keys where required. 464 */ 465 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 466 struct list_head *head) 467 { 468 struct list_head *pos; 469 struct extent_buffer *eb; 470 471 list_for_each(pos, head) { 472 struct __prelim_ref *ref; 473 ref = list_entry(pos, struct __prelim_ref, list); 474 475 if (ref->parent) 476 continue; 477 if (ref->key_for_search.type) 478 continue; 479 BUG_ON(!ref->wanted_disk_byte); 480 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 481 fs_info->tree_root->leafsize, 0); 482 if (!eb || !extent_buffer_uptodate(eb)) { 483 free_extent_buffer(eb); 484 return -EIO; 485 } 486 btrfs_tree_read_lock(eb); 487 if (btrfs_header_level(eb) == 0) 488 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 489 else 490 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 491 btrfs_tree_read_unlock(eb); 492 free_extent_buffer(eb); 493 } 494 return 0; 495 } 496 497 /* 498 * merge two lists of backrefs and adjust counts accordingly 499 * 500 * mode = 1: merge identical keys, if key is set 501 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 502 * additionally, we could even add a key range for the blocks we 503 * looked into to merge even more (-> replace unresolved refs by those 504 * having a parent). 505 * mode = 2: merge identical parents 506 */ 507 static void __merge_refs(struct list_head *head, int mode) 508 { 509 struct list_head *pos1; 510 511 list_for_each(pos1, head) { 512 struct list_head *n2; 513 struct list_head *pos2; 514 struct __prelim_ref *ref1; 515 516 ref1 = list_entry(pos1, struct __prelim_ref, list); 517 518 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 519 pos2 = n2, n2 = pos2->next) { 520 struct __prelim_ref *ref2; 521 struct __prelim_ref *xchg; 522 struct extent_inode_elem *eie; 523 524 ref2 = list_entry(pos2, struct __prelim_ref, list); 525 526 if (mode == 1) { 527 if (!ref_for_same_block(ref1, ref2)) 528 continue; 529 if (!ref1->parent && ref2->parent) { 530 xchg = ref1; 531 ref1 = ref2; 532 ref2 = xchg; 533 } 534 } else { 535 if (ref1->parent != ref2->parent) 536 continue; 537 } 538 539 eie = ref1->inode_list; 540 while (eie && eie->next) 541 eie = eie->next; 542 if (eie) 543 eie->next = ref2->inode_list; 544 else 545 ref1->inode_list = ref2->inode_list; 546 ref1->count += ref2->count; 547 548 list_del(&ref2->list); 549 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 550 } 551 552 } 553 } 554 555 /* 556 * add all currently queued delayed refs from this head whose seq nr is 557 * smaller or equal that seq to the list 558 */ 559 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 560 struct list_head *prefs) 561 { 562 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 563 struct rb_node *n = &head->node.rb_node; 564 struct btrfs_key key; 565 struct btrfs_key op_key = {0}; 566 int sgn; 567 int ret = 0; 568 569 if (extent_op && extent_op->update_key) 570 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 571 572 spin_lock(&head->lock); 573 n = rb_first(&head->ref_root); 574 while (n) { 575 struct btrfs_delayed_ref_node *node; 576 node = rb_entry(n, struct btrfs_delayed_ref_node, 577 rb_node); 578 n = rb_next(n); 579 if (node->seq > seq) 580 continue; 581 582 switch (node->action) { 583 case BTRFS_ADD_DELAYED_EXTENT: 584 case BTRFS_UPDATE_DELAYED_HEAD: 585 WARN_ON(1); 586 continue; 587 case BTRFS_ADD_DELAYED_REF: 588 sgn = 1; 589 break; 590 case BTRFS_DROP_DELAYED_REF: 591 sgn = -1; 592 break; 593 default: 594 BUG_ON(1); 595 } 596 switch (node->type) { 597 case BTRFS_TREE_BLOCK_REF_KEY: { 598 struct btrfs_delayed_tree_ref *ref; 599 600 ref = btrfs_delayed_node_to_tree_ref(node); 601 ret = __add_prelim_ref(prefs, ref->root, &op_key, 602 ref->level + 1, 0, node->bytenr, 603 node->ref_mod * sgn, GFP_ATOMIC); 604 break; 605 } 606 case BTRFS_SHARED_BLOCK_REF_KEY: { 607 struct btrfs_delayed_tree_ref *ref; 608 609 ref = btrfs_delayed_node_to_tree_ref(node); 610 ret = __add_prelim_ref(prefs, ref->root, NULL, 611 ref->level + 1, ref->parent, 612 node->bytenr, 613 node->ref_mod * sgn, GFP_ATOMIC); 614 break; 615 } 616 case BTRFS_EXTENT_DATA_REF_KEY: { 617 struct btrfs_delayed_data_ref *ref; 618 ref = btrfs_delayed_node_to_data_ref(node); 619 620 key.objectid = ref->objectid; 621 key.type = BTRFS_EXTENT_DATA_KEY; 622 key.offset = ref->offset; 623 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 624 node->bytenr, 625 node->ref_mod * sgn, GFP_ATOMIC); 626 break; 627 } 628 case BTRFS_SHARED_DATA_REF_KEY: { 629 struct btrfs_delayed_data_ref *ref; 630 631 ref = btrfs_delayed_node_to_data_ref(node); 632 633 key.objectid = ref->objectid; 634 key.type = BTRFS_EXTENT_DATA_KEY; 635 key.offset = ref->offset; 636 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 637 ref->parent, node->bytenr, 638 node->ref_mod * sgn, GFP_ATOMIC); 639 break; 640 } 641 default: 642 WARN_ON(1); 643 } 644 if (ret) 645 break; 646 } 647 spin_unlock(&head->lock); 648 return ret; 649 } 650 651 /* 652 * add all inline backrefs for bytenr to the list 653 */ 654 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 655 struct btrfs_path *path, u64 bytenr, 656 int *info_level, struct list_head *prefs) 657 { 658 int ret = 0; 659 int slot; 660 struct extent_buffer *leaf; 661 struct btrfs_key key; 662 struct btrfs_key found_key; 663 unsigned long ptr; 664 unsigned long end; 665 struct btrfs_extent_item *ei; 666 u64 flags; 667 u64 item_size; 668 669 /* 670 * enumerate all inline refs 671 */ 672 leaf = path->nodes[0]; 673 slot = path->slots[0]; 674 675 item_size = btrfs_item_size_nr(leaf, slot); 676 BUG_ON(item_size < sizeof(*ei)); 677 678 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 679 flags = btrfs_extent_flags(leaf, ei); 680 btrfs_item_key_to_cpu(leaf, &found_key, slot); 681 682 ptr = (unsigned long)(ei + 1); 683 end = (unsigned long)ei + item_size; 684 685 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 686 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 687 struct btrfs_tree_block_info *info; 688 689 info = (struct btrfs_tree_block_info *)ptr; 690 *info_level = btrfs_tree_block_level(leaf, info); 691 ptr += sizeof(struct btrfs_tree_block_info); 692 BUG_ON(ptr > end); 693 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 694 *info_level = found_key.offset; 695 } else { 696 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 697 } 698 699 while (ptr < end) { 700 struct btrfs_extent_inline_ref *iref; 701 u64 offset; 702 int type; 703 704 iref = (struct btrfs_extent_inline_ref *)ptr; 705 type = btrfs_extent_inline_ref_type(leaf, iref); 706 offset = btrfs_extent_inline_ref_offset(leaf, iref); 707 708 switch (type) { 709 case BTRFS_SHARED_BLOCK_REF_KEY: 710 ret = __add_prelim_ref(prefs, 0, NULL, 711 *info_level + 1, offset, 712 bytenr, 1, GFP_NOFS); 713 break; 714 case BTRFS_SHARED_DATA_REF_KEY: { 715 struct btrfs_shared_data_ref *sdref; 716 int count; 717 718 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 719 count = btrfs_shared_data_ref_count(leaf, sdref); 720 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 721 bytenr, count, GFP_NOFS); 722 break; 723 } 724 case BTRFS_TREE_BLOCK_REF_KEY: 725 ret = __add_prelim_ref(prefs, offset, NULL, 726 *info_level + 1, 0, 727 bytenr, 1, GFP_NOFS); 728 break; 729 case BTRFS_EXTENT_DATA_REF_KEY: { 730 struct btrfs_extent_data_ref *dref; 731 int count; 732 u64 root; 733 734 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 735 count = btrfs_extent_data_ref_count(leaf, dref); 736 key.objectid = btrfs_extent_data_ref_objectid(leaf, 737 dref); 738 key.type = BTRFS_EXTENT_DATA_KEY; 739 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 740 root = btrfs_extent_data_ref_root(leaf, dref); 741 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 742 bytenr, count, GFP_NOFS); 743 break; 744 } 745 default: 746 WARN_ON(1); 747 } 748 if (ret) 749 return ret; 750 ptr += btrfs_extent_inline_ref_size(type); 751 } 752 753 return 0; 754 } 755 756 /* 757 * add all non-inline backrefs for bytenr to the list 758 */ 759 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 760 struct btrfs_path *path, u64 bytenr, 761 int info_level, struct list_head *prefs) 762 { 763 struct btrfs_root *extent_root = fs_info->extent_root; 764 int ret; 765 int slot; 766 struct extent_buffer *leaf; 767 struct btrfs_key key; 768 769 while (1) { 770 ret = btrfs_next_item(extent_root, path); 771 if (ret < 0) 772 break; 773 if (ret) { 774 ret = 0; 775 break; 776 } 777 778 slot = path->slots[0]; 779 leaf = path->nodes[0]; 780 btrfs_item_key_to_cpu(leaf, &key, slot); 781 782 if (key.objectid != bytenr) 783 break; 784 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 785 continue; 786 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 787 break; 788 789 switch (key.type) { 790 case BTRFS_SHARED_BLOCK_REF_KEY: 791 ret = __add_prelim_ref(prefs, 0, NULL, 792 info_level + 1, key.offset, 793 bytenr, 1, GFP_NOFS); 794 break; 795 case BTRFS_SHARED_DATA_REF_KEY: { 796 struct btrfs_shared_data_ref *sdref; 797 int count; 798 799 sdref = btrfs_item_ptr(leaf, slot, 800 struct btrfs_shared_data_ref); 801 count = btrfs_shared_data_ref_count(leaf, sdref); 802 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 803 bytenr, count, GFP_NOFS); 804 break; 805 } 806 case BTRFS_TREE_BLOCK_REF_KEY: 807 ret = __add_prelim_ref(prefs, key.offset, NULL, 808 info_level + 1, 0, 809 bytenr, 1, GFP_NOFS); 810 break; 811 case BTRFS_EXTENT_DATA_REF_KEY: { 812 struct btrfs_extent_data_ref *dref; 813 int count; 814 u64 root; 815 816 dref = btrfs_item_ptr(leaf, slot, 817 struct btrfs_extent_data_ref); 818 count = btrfs_extent_data_ref_count(leaf, dref); 819 key.objectid = btrfs_extent_data_ref_objectid(leaf, 820 dref); 821 key.type = BTRFS_EXTENT_DATA_KEY; 822 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 823 root = btrfs_extent_data_ref_root(leaf, dref); 824 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 825 bytenr, count, GFP_NOFS); 826 break; 827 } 828 default: 829 WARN_ON(1); 830 } 831 if (ret) 832 return ret; 833 834 } 835 836 return ret; 837 } 838 839 /* 840 * this adds all existing backrefs (inline backrefs, backrefs and delayed 841 * refs) for the given bytenr to the refs list, merges duplicates and resolves 842 * indirect refs to their parent bytenr. 843 * When roots are found, they're added to the roots list 844 * 845 * FIXME some caching might speed things up 846 */ 847 static int find_parent_nodes(struct btrfs_trans_handle *trans, 848 struct btrfs_fs_info *fs_info, u64 bytenr, 849 u64 time_seq, struct ulist *refs, 850 struct ulist *roots, const u64 *extent_item_pos) 851 { 852 struct btrfs_key key; 853 struct btrfs_path *path; 854 struct btrfs_delayed_ref_root *delayed_refs = NULL; 855 struct btrfs_delayed_ref_head *head; 856 int info_level = 0; 857 int ret; 858 struct list_head prefs_delayed; 859 struct list_head prefs; 860 struct __prelim_ref *ref; 861 struct extent_inode_elem *eie = NULL; 862 863 INIT_LIST_HEAD(&prefs); 864 INIT_LIST_HEAD(&prefs_delayed); 865 866 key.objectid = bytenr; 867 key.offset = (u64)-1; 868 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 869 key.type = BTRFS_METADATA_ITEM_KEY; 870 else 871 key.type = BTRFS_EXTENT_ITEM_KEY; 872 873 path = btrfs_alloc_path(); 874 if (!path) 875 return -ENOMEM; 876 if (!trans) 877 path->search_commit_root = 1; 878 879 /* 880 * grab both a lock on the path and a lock on the delayed ref head. 881 * We need both to get a consistent picture of how the refs look 882 * at a specified point in time 883 */ 884 again: 885 head = NULL; 886 887 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 888 if (ret < 0) 889 goto out; 890 BUG_ON(ret == 0); 891 892 if (trans) { 893 /* 894 * look if there are updates for this ref queued and lock the 895 * head 896 */ 897 delayed_refs = &trans->transaction->delayed_refs; 898 spin_lock(&delayed_refs->lock); 899 head = btrfs_find_delayed_ref_head(trans, bytenr); 900 if (head) { 901 if (!mutex_trylock(&head->mutex)) { 902 atomic_inc(&head->node.refs); 903 spin_unlock(&delayed_refs->lock); 904 905 btrfs_release_path(path); 906 907 /* 908 * Mutex was contended, block until it's 909 * released and try again 910 */ 911 mutex_lock(&head->mutex); 912 mutex_unlock(&head->mutex); 913 btrfs_put_delayed_ref(&head->node); 914 goto again; 915 } 916 spin_unlock(&delayed_refs->lock); 917 ret = __add_delayed_refs(head, time_seq, 918 &prefs_delayed); 919 mutex_unlock(&head->mutex); 920 if (ret) 921 goto out; 922 } else { 923 spin_unlock(&delayed_refs->lock); 924 } 925 } 926 927 if (path->slots[0]) { 928 struct extent_buffer *leaf; 929 int slot; 930 931 path->slots[0]--; 932 leaf = path->nodes[0]; 933 slot = path->slots[0]; 934 btrfs_item_key_to_cpu(leaf, &key, slot); 935 if (key.objectid == bytenr && 936 (key.type == BTRFS_EXTENT_ITEM_KEY || 937 key.type == BTRFS_METADATA_ITEM_KEY)) { 938 ret = __add_inline_refs(fs_info, path, bytenr, 939 &info_level, &prefs); 940 if (ret) 941 goto out; 942 ret = __add_keyed_refs(fs_info, path, bytenr, 943 info_level, &prefs); 944 if (ret) 945 goto out; 946 } 947 } 948 btrfs_release_path(path); 949 950 list_splice_init(&prefs_delayed, &prefs); 951 952 ret = __add_missing_keys(fs_info, &prefs); 953 if (ret) 954 goto out; 955 956 __merge_refs(&prefs, 1); 957 958 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 959 extent_item_pos); 960 if (ret) 961 goto out; 962 963 __merge_refs(&prefs, 2); 964 965 while (!list_empty(&prefs)) { 966 ref = list_first_entry(&prefs, struct __prelim_ref, list); 967 WARN_ON(ref->count < 0); 968 if (ref->count && ref->root_id && ref->parent == 0) { 969 /* no parent == root of tree */ 970 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 971 if (ret < 0) 972 goto out; 973 } 974 if (ref->count && ref->parent) { 975 if (extent_item_pos && !ref->inode_list) { 976 u32 bsz; 977 struct extent_buffer *eb; 978 bsz = btrfs_level_size(fs_info->extent_root, 979 info_level); 980 eb = read_tree_block(fs_info->extent_root, 981 ref->parent, bsz, 0); 982 if (!eb || !extent_buffer_uptodate(eb)) { 983 free_extent_buffer(eb); 984 ret = -EIO; 985 goto out; 986 } 987 ret = find_extent_in_eb(eb, bytenr, 988 *extent_item_pos, &eie); 989 free_extent_buffer(eb); 990 if (ret < 0) 991 goto out; 992 ref->inode_list = eie; 993 } 994 ret = ulist_add_merge(refs, ref->parent, 995 (uintptr_t)ref->inode_list, 996 (u64 *)&eie, GFP_NOFS); 997 if (ret < 0) 998 goto out; 999 if (!ret && extent_item_pos) { 1000 /* 1001 * we've recorded that parent, so we must extend 1002 * its inode list here 1003 */ 1004 BUG_ON(!eie); 1005 while (eie->next) 1006 eie = eie->next; 1007 eie->next = ref->inode_list; 1008 } 1009 eie = NULL; 1010 } 1011 list_del(&ref->list); 1012 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1013 } 1014 1015 out: 1016 btrfs_free_path(path); 1017 while (!list_empty(&prefs)) { 1018 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1019 list_del(&ref->list); 1020 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1021 } 1022 while (!list_empty(&prefs_delayed)) { 1023 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1024 list); 1025 list_del(&ref->list); 1026 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1027 } 1028 if (ret < 0) 1029 free_inode_elem_list(eie); 1030 return ret; 1031 } 1032 1033 static void free_leaf_list(struct ulist *blocks) 1034 { 1035 struct ulist_node *node = NULL; 1036 struct extent_inode_elem *eie; 1037 struct ulist_iterator uiter; 1038 1039 ULIST_ITER_INIT(&uiter); 1040 while ((node = ulist_next(blocks, &uiter))) { 1041 if (!node->aux) 1042 continue; 1043 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1044 free_inode_elem_list(eie); 1045 node->aux = 0; 1046 } 1047 1048 ulist_free(blocks); 1049 } 1050 1051 /* 1052 * Finds all leafs with a reference to the specified combination of bytenr and 1053 * offset. key_list_head will point to a list of corresponding keys (caller must 1054 * free each list element). The leafs will be stored in the leafs ulist, which 1055 * must be freed with ulist_free. 1056 * 1057 * returns 0 on success, <0 on error 1058 */ 1059 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1060 struct btrfs_fs_info *fs_info, u64 bytenr, 1061 u64 time_seq, struct ulist **leafs, 1062 const u64 *extent_item_pos) 1063 { 1064 struct ulist *tmp; 1065 int ret; 1066 1067 tmp = ulist_alloc(GFP_NOFS); 1068 if (!tmp) 1069 return -ENOMEM; 1070 *leafs = ulist_alloc(GFP_NOFS); 1071 if (!*leafs) { 1072 ulist_free(tmp); 1073 return -ENOMEM; 1074 } 1075 1076 ret = find_parent_nodes(trans, fs_info, bytenr, 1077 time_seq, *leafs, tmp, extent_item_pos); 1078 ulist_free(tmp); 1079 1080 if (ret < 0 && ret != -ENOENT) { 1081 free_leaf_list(*leafs); 1082 return ret; 1083 } 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * walk all backrefs for a given extent to find all roots that reference this 1090 * extent. Walking a backref means finding all extents that reference this 1091 * extent and in turn walk the backrefs of those, too. Naturally this is a 1092 * recursive process, but here it is implemented in an iterative fashion: We 1093 * find all referencing extents for the extent in question and put them on a 1094 * list. In turn, we find all referencing extents for those, further appending 1095 * to the list. The way we iterate the list allows adding more elements after 1096 * the current while iterating. The process stops when we reach the end of the 1097 * list. Found roots are added to the roots list. 1098 * 1099 * returns 0 on success, < 0 on error. 1100 */ 1101 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1102 struct btrfs_fs_info *fs_info, u64 bytenr, 1103 u64 time_seq, struct ulist **roots) 1104 { 1105 struct ulist *tmp; 1106 struct ulist_node *node = NULL; 1107 struct ulist_iterator uiter; 1108 int ret; 1109 1110 tmp = ulist_alloc(GFP_NOFS); 1111 if (!tmp) 1112 return -ENOMEM; 1113 *roots = ulist_alloc(GFP_NOFS); 1114 if (!*roots) { 1115 ulist_free(tmp); 1116 return -ENOMEM; 1117 } 1118 1119 ULIST_ITER_INIT(&uiter); 1120 while (1) { 1121 ret = find_parent_nodes(trans, fs_info, bytenr, 1122 time_seq, tmp, *roots, NULL); 1123 if (ret < 0 && ret != -ENOENT) { 1124 ulist_free(tmp); 1125 ulist_free(*roots); 1126 return ret; 1127 } 1128 node = ulist_next(tmp, &uiter); 1129 if (!node) 1130 break; 1131 bytenr = node->val; 1132 cond_resched(); 1133 } 1134 1135 ulist_free(tmp); 1136 return 0; 1137 } 1138 1139 /* 1140 * this makes the path point to (inum INODE_ITEM ioff) 1141 */ 1142 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1143 struct btrfs_path *path) 1144 { 1145 struct btrfs_key key; 1146 return btrfs_find_item(fs_root, path, inum, ioff, 1147 BTRFS_INODE_ITEM_KEY, &key); 1148 } 1149 1150 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1151 struct btrfs_path *path, 1152 struct btrfs_key *found_key) 1153 { 1154 return btrfs_find_item(fs_root, path, inum, ioff, 1155 BTRFS_INODE_REF_KEY, found_key); 1156 } 1157 1158 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1159 u64 start_off, struct btrfs_path *path, 1160 struct btrfs_inode_extref **ret_extref, 1161 u64 *found_off) 1162 { 1163 int ret, slot; 1164 struct btrfs_key key; 1165 struct btrfs_key found_key; 1166 struct btrfs_inode_extref *extref; 1167 struct extent_buffer *leaf; 1168 unsigned long ptr; 1169 1170 key.objectid = inode_objectid; 1171 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1172 key.offset = start_off; 1173 1174 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1175 if (ret < 0) 1176 return ret; 1177 1178 while (1) { 1179 leaf = path->nodes[0]; 1180 slot = path->slots[0]; 1181 if (slot >= btrfs_header_nritems(leaf)) { 1182 /* 1183 * If the item at offset is not found, 1184 * btrfs_search_slot will point us to the slot 1185 * where it should be inserted. In our case 1186 * that will be the slot directly before the 1187 * next INODE_REF_KEY_V2 item. In the case 1188 * that we're pointing to the last slot in a 1189 * leaf, we must move one leaf over. 1190 */ 1191 ret = btrfs_next_leaf(root, path); 1192 if (ret) { 1193 if (ret >= 1) 1194 ret = -ENOENT; 1195 break; 1196 } 1197 continue; 1198 } 1199 1200 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1201 1202 /* 1203 * Check that we're still looking at an extended ref key for 1204 * this particular objectid. If we have different 1205 * objectid or type then there are no more to be found 1206 * in the tree and we can exit. 1207 */ 1208 ret = -ENOENT; 1209 if (found_key.objectid != inode_objectid) 1210 break; 1211 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1212 break; 1213 1214 ret = 0; 1215 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1216 extref = (struct btrfs_inode_extref *)ptr; 1217 *ret_extref = extref; 1218 if (found_off) 1219 *found_off = found_key.offset; 1220 break; 1221 } 1222 1223 return ret; 1224 } 1225 1226 /* 1227 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1228 * Elements of the path are separated by '/' and the path is guaranteed to be 1229 * 0-terminated. the path is only given within the current file system. 1230 * Therefore, it never starts with a '/'. the caller is responsible to provide 1231 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1232 * the start point of the resulting string is returned. this pointer is within 1233 * dest, normally. 1234 * in case the path buffer would overflow, the pointer is decremented further 1235 * as if output was written to the buffer, though no more output is actually 1236 * generated. that way, the caller can determine how much space would be 1237 * required for the path to fit into the buffer. in that case, the returned 1238 * value will be smaller than dest. callers must check this! 1239 */ 1240 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1241 u32 name_len, unsigned long name_off, 1242 struct extent_buffer *eb_in, u64 parent, 1243 char *dest, u32 size) 1244 { 1245 int slot; 1246 u64 next_inum; 1247 int ret; 1248 s64 bytes_left = ((s64)size) - 1; 1249 struct extent_buffer *eb = eb_in; 1250 struct btrfs_key found_key; 1251 int leave_spinning = path->leave_spinning; 1252 struct btrfs_inode_ref *iref; 1253 1254 if (bytes_left >= 0) 1255 dest[bytes_left] = '\0'; 1256 1257 path->leave_spinning = 1; 1258 while (1) { 1259 bytes_left -= name_len; 1260 if (bytes_left >= 0) 1261 read_extent_buffer(eb, dest + bytes_left, 1262 name_off, name_len); 1263 if (eb != eb_in) { 1264 btrfs_tree_read_unlock_blocking(eb); 1265 free_extent_buffer(eb); 1266 } 1267 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1268 if (ret > 0) 1269 ret = -ENOENT; 1270 if (ret) 1271 break; 1272 1273 next_inum = found_key.offset; 1274 1275 /* regular exit ahead */ 1276 if (parent == next_inum) 1277 break; 1278 1279 slot = path->slots[0]; 1280 eb = path->nodes[0]; 1281 /* make sure we can use eb after releasing the path */ 1282 if (eb != eb_in) { 1283 atomic_inc(&eb->refs); 1284 btrfs_tree_read_lock(eb); 1285 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1286 } 1287 btrfs_release_path(path); 1288 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1289 1290 name_len = btrfs_inode_ref_name_len(eb, iref); 1291 name_off = (unsigned long)(iref + 1); 1292 1293 parent = next_inum; 1294 --bytes_left; 1295 if (bytes_left >= 0) 1296 dest[bytes_left] = '/'; 1297 } 1298 1299 btrfs_release_path(path); 1300 path->leave_spinning = leave_spinning; 1301 1302 if (ret) 1303 return ERR_PTR(ret); 1304 1305 return dest + bytes_left; 1306 } 1307 1308 /* 1309 * this makes the path point to (logical EXTENT_ITEM *) 1310 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1311 * tree blocks and <0 on error. 1312 */ 1313 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1314 struct btrfs_path *path, struct btrfs_key *found_key, 1315 u64 *flags_ret) 1316 { 1317 int ret; 1318 u64 flags; 1319 u64 size = 0; 1320 u32 item_size; 1321 struct extent_buffer *eb; 1322 struct btrfs_extent_item *ei; 1323 struct btrfs_key key; 1324 1325 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1326 key.type = BTRFS_METADATA_ITEM_KEY; 1327 else 1328 key.type = BTRFS_EXTENT_ITEM_KEY; 1329 key.objectid = logical; 1330 key.offset = (u64)-1; 1331 1332 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1333 if (ret < 0) 1334 return ret; 1335 1336 while (1) { 1337 u32 nritems; 1338 if (path->slots[0] == 0) { 1339 btrfs_set_path_blocking(path); 1340 ret = btrfs_prev_leaf(fs_info->extent_root, path); 1341 if (ret != 0) { 1342 if (ret > 0) { 1343 pr_debug("logical %llu is not within " 1344 "any extent\n", logical); 1345 ret = -ENOENT; 1346 } 1347 return ret; 1348 } 1349 } else { 1350 path->slots[0]--; 1351 } 1352 nritems = btrfs_header_nritems(path->nodes[0]); 1353 if (nritems == 0) { 1354 pr_debug("logical %llu is not within any extent\n", 1355 logical); 1356 return -ENOENT; 1357 } 1358 if (path->slots[0] == nritems) 1359 path->slots[0]--; 1360 1361 btrfs_item_key_to_cpu(path->nodes[0], found_key, 1362 path->slots[0]); 1363 if (found_key->type == BTRFS_EXTENT_ITEM_KEY || 1364 found_key->type == BTRFS_METADATA_ITEM_KEY) 1365 break; 1366 } 1367 1368 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1369 size = fs_info->extent_root->leafsize; 1370 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1371 size = found_key->offset; 1372 1373 if (found_key->objectid > logical || 1374 found_key->objectid + size <= logical) { 1375 pr_debug("logical %llu is not within any extent\n", logical); 1376 return -ENOENT; 1377 } 1378 1379 eb = path->nodes[0]; 1380 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1381 BUG_ON(item_size < sizeof(*ei)); 1382 1383 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1384 flags = btrfs_extent_flags(eb, ei); 1385 1386 pr_debug("logical %llu is at position %llu within the extent (%llu " 1387 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1388 logical, logical - found_key->objectid, found_key->objectid, 1389 found_key->offset, flags, item_size); 1390 1391 WARN_ON(!flags_ret); 1392 if (flags_ret) { 1393 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1394 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1395 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1396 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1397 else 1398 BUG_ON(1); 1399 return 0; 1400 } 1401 1402 return -EIO; 1403 } 1404 1405 /* 1406 * helper function to iterate extent inline refs. ptr must point to a 0 value 1407 * for the first call and may be modified. it is used to track state. 1408 * if more refs exist, 0 is returned and the next call to 1409 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1410 * next ref. after the last ref was processed, 1 is returned. 1411 * returns <0 on error 1412 */ 1413 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1414 struct btrfs_extent_item *ei, u32 item_size, 1415 struct btrfs_extent_inline_ref **out_eiref, 1416 int *out_type) 1417 { 1418 unsigned long end; 1419 u64 flags; 1420 struct btrfs_tree_block_info *info; 1421 1422 if (!*ptr) { 1423 /* first call */ 1424 flags = btrfs_extent_flags(eb, ei); 1425 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1426 info = (struct btrfs_tree_block_info *)(ei + 1); 1427 *out_eiref = 1428 (struct btrfs_extent_inline_ref *)(info + 1); 1429 } else { 1430 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1431 } 1432 *ptr = (unsigned long)*out_eiref; 1433 if ((void *)*ptr >= (void *)ei + item_size) 1434 return -ENOENT; 1435 } 1436 1437 end = (unsigned long)ei + item_size; 1438 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1439 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1440 1441 *ptr += btrfs_extent_inline_ref_size(*out_type); 1442 WARN_ON(*ptr > end); 1443 if (*ptr == end) 1444 return 1; /* last */ 1445 1446 return 0; 1447 } 1448 1449 /* 1450 * reads the tree block backref for an extent. tree level and root are returned 1451 * through out_level and out_root. ptr must point to a 0 value for the first 1452 * call and may be modified (see __get_extent_inline_ref comment). 1453 * returns 0 if data was provided, 1 if there was no more data to provide or 1454 * <0 on error. 1455 */ 1456 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1457 struct btrfs_extent_item *ei, u32 item_size, 1458 u64 *out_root, u8 *out_level) 1459 { 1460 int ret; 1461 int type; 1462 struct btrfs_tree_block_info *info; 1463 struct btrfs_extent_inline_ref *eiref; 1464 1465 if (*ptr == (unsigned long)-1) 1466 return 1; 1467 1468 while (1) { 1469 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1470 &eiref, &type); 1471 if (ret < 0) 1472 return ret; 1473 1474 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1475 type == BTRFS_SHARED_BLOCK_REF_KEY) 1476 break; 1477 1478 if (ret == 1) 1479 return 1; 1480 } 1481 1482 /* we can treat both ref types equally here */ 1483 info = (struct btrfs_tree_block_info *)(ei + 1); 1484 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1485 *out_level = btrfs_tree_block_level(eb, info); 1486 1487 if (ret == 1) 1488 *ptr = (unsigned long)-1; 1489 1490 return 0; 1491 } 1492 1493 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1494 u64 root, u64 extent_item_objectid, 1495 iterate_extent_inodes_t *iterate, void *ctx) 1496 { 1497 struct extent_inode_elem *eie; 1498 int ret = 0; 1499 1500 for (eie = inode_list; eie; eie = eie->next) { 1501 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1502 "root %llu\n", extent_item_objectid, 1503 eie->inum, eie->offset, root); 1504 ret = iterate(eie->inum, eie->offset, root, ctx); 1505 if (ret) { 1506 pr_debug("stopping iteration for %llu due to ret=%d\n", 1507 extent_item_objectid, ret); 1508 break; 1509 } 1510 } 1511 1512 return ret; 1513 } 1514 1515 /* 1516 * calls iterate() for every inode that references the extent identified by 1517 * the given parameters. 1518 * when the iterator function returns a non-zero value, iteration stops. 1519 */ 1520 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1521 u64 extent_item_objectid, u64 extent_item_pos, 1522 int search_commit_root, 1523 iterate_extent_inodes_t *iterate, void *ctx) 1524 { 1525 int ret; 1526 struct btrfs_trans_handle *trans = NULL; 1527 struct ulist *refs = NULL; 1528 struct ulist *roots = NULL; 1529 struct ulist_node *ref_node = NULL; 1530 struct ulist_node *root_node = NULL; 1531 struct seq_list tree_mod_seq_elem = {}; 1532 struct ulist_iterator ref_uiter; 1533 struct ulist_iterator root_uiter; 1534 1535 pr_debug("resolving all inodes for extent %llu\n", 1536 extent_item_objectid); 1537 1538 if (!search_commit_root) { 1539 trans = btrfs_join_transaction(fs_info->extent_root); 1540 if (IS_ERR(trans)) 1541 return PTR_ERR(trans); 1542 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1543 } 1544 1545 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1546 tree_mod_seq_elem.seq, &refs, 1547 &extent_item_pos); 1548 if (ret) 1549 goto out; 1550 1551 ULIST_ITER_INIT(&ref_uiter); 1552 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1553 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1554 tree_mod_seq_elem.seq, &roots); 1555 if (ret) 1556 break; 1557 ULIST_ITER_INIT(&root_uiter); 1558 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1559 pr_debug("root %llu references leaf %llu, data list " 1560 "%#llx\n", root_node->val, ref_node->val, 1561 ref_node->aux); 1562 ret = iterate_leaf_refs((struct extent_inode_elem *) 1563 (uintptr_t)ref_node->aux, 1564 root_node->val, 1565 extent_item_objectid, 1566 iterate, ctx); 1567 } 1568 ulist_free(roots); 1569 } 1570 1571 free_leaf_list(refs); 1572 out: 1573 if (!search_commit_root) { 1574 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1575 btrfs_end_transaction(trans, fs_info->extent_root); 1576 } 1577 1578 return ret; 1579 } 1580 1581 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1582 struct btrfs_path *path, 1583 iterate_extent_inodes_t *iterate, void *ctx) 1584 { 1585 int ret; 1586 u64 extent_item_pos; 1587 u64 flags = 0; 1588 struct btrfs_key found_key; 1589 int search_commit_root = path->search_commit_root; 1590 1591 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1592 btrfs_release_path(path); 1593 if (ret < 0) 1594 return ret; 1595 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1596 return -EINVAL; 1597 1598 extent_item_pos = logical - found_key.objectid; 1599 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1600 extent_item_pos, search_commit_root, 1601 iterate, ctx); 1602 1603 return ret; 1604 } 1605 1606 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1607 struct extent_buffer *eb, void *ctx); 1608 1609 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1610 struct btrfs_path *path, 1611 iterate_irefs_t *iterate, void *ctx) 1612 { 1613 int ret = 0; 1614 int slot; 1615 u32 cur; 1616 u32 len; 1617 u32 name_len; 1618 u64 parent = 0; 1619 int found = 0; 1620 struct extent_buffer *eb; 1621 struct btrfs_item *item; 1622 struct btrfs_inode_ref *iref; 1623 struct btrfs_key found_key; 1624 1625 while (!ret) { 1626 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1627 &found_key); 1628 if (ret < 0) 1629 break; 1630 if (ret) { 1631 ret = found ? 0 : -ENOENT; 1632 break; 1633 } 1634 ++found; 1635 1636 parent = found_key.offset; 1637 slot = path->slots[0]; 1638 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1639 if (!eb) { 1640 ret = -ENOMEM; 1641 break; 1642 } 1643 extent_buffer_get(eb); 1644 btrfs_tree_read_lock(eb); 1645 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1646 btrfs_release_path(path); 1647 1648 item = btrfs_item_nr(slot); 1649 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1650 1651 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1652 name_len = btrfs_inode_ref_name_len(eb, iref); 1653 /* path must be released before calling iterate()! */ 1654 pr_debug("following ref at offset %u for inode %llu in " 1655 "tree %llu\n", cur, found_key.objectid, 1656 fs_root->objectid); 1657 ret = iterate(parent, name_len, 1658 (unsigned long)(iref + 1), eb, ctx); 1659 if (ret) 1660 break; 1661 len = sizeof(*iref) + name_len; 1662 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1663 } 1664 btrfs_tree_read_unlock_blocking(eb); 1665 free_extent_buffer(eb); 1666 } 1667 1668 btrfs_release_path(path); 1669 1670 return ret; 1671 } 1672 1673 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1674 struct btrfs_path *path, 1675 iterate_irefs_t *iterate, void *ctx) 1676 { 1677 int ret; 1678 int slot; 1679 u64 offset = 0; 1680 u64 parent; 1681 int found = 0; 1682 struct extent_buffer *eb; 1683 struct btrfs_inode_extref *extref; 1684 struct extent_buffer *leaf; 1685 u32 item_size; 1686 u32 cur_offset; 1687 unsigned long ptr; 1688 1689 while (1) { 1690 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1691 &offset); 1692 if (ret < 0) 1693 break; 1694 if (ret) { 1695 ret = found ? 0 : -ENOENT; 1696 break; 1697 } 1698 ++found; 1699 1700 slot = path->slots[0]; 1701 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1702 if (!eb) { 1703 ret = -ENOMEM; 1704 break; 1705 } 1706 extent_buffer_get(eb); 1707 1708 btrfs_tree_read_lock(eb); 1709 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1710 btrfs_release_path(path); 1711 1712 leaf = path->nodes[0]; 1713 item_size = btrfs_item_size_nr(leaf, slot); 1714 ptr = btrfs_item_ptr_offset(leaf, slot); 1715 cur_offset = 0; 1716 1717 while (cur_offset < item_size) { 1718 u32 name_len; 1719 1720 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1721 parent = btrfs_inode_extref_parent(eb, extref); 1722 name_len = btrfs_inode_extref_name_len(eb, extref); 1723 ret = iterate(parent, name_len, 1724 (unsigned long)&extref->name, eb, ctx); 1725 if (ret) 1726 break; 1727 1728 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1729 cur_offset += sizeof(*extref); 1730 } 1731 btrfs_tree_read_unlock_blocking(eb); 1732 free_extent_buffer(eb); 1733 1734 offset++; 1735 } 1736 1737 btrfs_release_path(path); 1738 1739 return ret; 1740 } 1741 1742 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1743 struct btrfs_path *path, iterate_irefs_t *iterate, 1744 void *ctx) 1745 { 1746 int ret; 1747 int found_refs = 0; 1748 1749 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1750 if (!ret) 1751 ++found_refs; 1752 else if (ret != -ENOENT) 1753 return ret; 1754 1755 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1756 if (ret == -ENOENT && found_refs) 1757 return 0; 1758 1759 return ret; 1760 } 1761 1762 /* 1763 * returns 0 if the path could be dumped (probably truncated) 1764 * returns <0 in case of an error 1765 */ 1766 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1767 struct extent_buffer *eb, void *ctx) 1768 { 1769 struct inode_fs_paths *ipath = ctx; 1770 char *fspath; 1771 char *fspath_min; 1772 int i = ipath->fspath->elem_cnt; 1773 const int s_ptr = sizeof(char *); 1774 u32 bytes_left; 1775 1776 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1777 ipath->fspath->bytes_left - s_ptr : 0; 1778 1779 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1780 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1781 name_off, eb, inum, fspath_min, bytes_left); 1782 if (IS_ERR(fspath)) 1783 return PTR_ERR(fspath); 1784 1785 if (fspath > fspath_min) { 1786 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1787 ++ipath->fspath->elem_cnt; 1788 ipath->fspath->bytes_left = fspath - fspath_min; 1789 } else { 1790 ++ipath->fspath->elem_missed; 1791 ipath->fspath->bytes_missing += fspath_min - fspath; 1792 ipath->fspath->bytes_left = 0; 1793 } 1794 1795 return 0; 1796 } 1797 1798 /* 1799 * this dumps all file system paths to the inode into the ipath struct, provided 1800 * is has been created large enough. each path is zero-terminated and accessed 1801 * from ipath->fspath->val[i]. 1802 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1803 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1804 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1805 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1806 * have been needed to return all paths. 1807 */ 1808 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1809 { 1810 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1811 inode_to_path, ipath); 1812 } 1813 1814 struct btrfs_data_container *init_data_container(u32 total_bytes) 1815 { 1816 struct btrfs_data_container *data; 1817 size_t alloc_bytes; 1818 1819 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1820 data = vmalloc(alloc_bytes); 1821 if (!data) 1822 return ERR_PTR(-ENOMEM); 1823 1824 if (total_bytes >= sizeof(*data)) { 1825 data->bytes_left = total_bytes - sizeof(*data); 1826 data->bytes_missing = 0; 1827 } else { 1828 data->bytes_missing = sizeof(*data) - total_bytes; 1829 data->bytes_left = 0; 1830 } 1831 1832 data->elem_cnt = 0; 1833 data->elem_missed = 0; 1834 1835 return data; 1836 } 1837 1838 /* 1839 * allocates space to return multiple file system paths for an inode. 1840 * total_bytes to allocate are passed, note that space usable for actual path 1841 * information will be total_bytes - sizeof(struct inode_fs_paths). 1842 * the returned pointer must be freed with free_ipath() in the end. 1843 */ 1844 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1845 struct btrfs_path *path) 1846 { 1847 struct inode_fs_paths *ifp; 1848 struct btrfs_data_container *fspath; 1849 1850 fspath = init_data_container(total_bytes); 1851 if (IS_ERR(fspath)) 1852 return (void *)fspath; 1853 1854 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1855 if (!ifp) { 1856 kfree(fspath); 1857 return ERR_PTR(-ENOMEM); 1858 } 1859 1860 ifp->btrfs_path = path; 1861 ifp->fspath = fspath; 1862 ifp->fs_root = fs_root; 1863 1864 return ifp; 1865 } 1866 1867 void free_ipath(struct inode_fs_paths *ipath) 1868 { 1869 if (!ipath) 1870 return; 1871 vfree(ipath->fspath); 1872 kfree(ipath); 1873 } 1874