xref: /openbmc/linux/fs/btrfs/backref.c (revision 8a10bc9d)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static void free_inode_elem_list(struct extent_inode_elem *eie)
70 {
71 	struct extent_inode_elem *eie_next;
72 
73 	for (; eie; eie = eie_next) {
74 		eie_next = eie->next;
75 		kfree(eie);
76 	}
77 }
78 
79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80 				u64 extent_item_pos,
81 				struct extent_inode_elem **eie)
82 {
83 	u64 disk_byte;
84 	struct btrfs_key key;
85 	struct btrfs_file_extent_item *fi;
86 	int slot;
87 	int nritems;
88 	int extent_type;
89 	int ret;
90 
91 	/*
92 	 * from the shared data ref, we only have the leaf but we need
93 	 * the key. thus, we must look into all items and see that we
94 	 * find one (some) with a reference to our extent item.
95 	 */
96 	nritems = btrfs_header_nritems(eb);
97 	for (slot = 0; slot < nritems; ++slot) {
98 		btrfs_item_key_to_cpu(eb, &key, slot);
99 		if (key.type != BTRFS_EXTENT_DATA_KEY)
100 			continue;
101 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102 		extent_type = btrfs_file_extent_type(eb, fi);
103 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104 			continue;
105 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107 		if (disk_byte != wanted_disk_byte)
108 			continue;
109 
110 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111 		if (ret < 0)
112 			return ret;
113 	}
114 
115 	return 0;
116 }
117 
118 /*
119  * this structure records all encountered refs on the way up to the root
120  */
121 struct __prelim_ref {
122 	struct list_head list;
123 	u64 root_id;
124 	struct btrfs_key key_for_search;
125 	int level;
126 	int count;
127 	struct extent_inode_elem *inode_list;
128 	u64 parent;
129 	u64 wanted_disk_byte;
130 };
131 
132 static struct kmem_cache *btrfs_prelim_ref_cache;
133 
134 int __init btrfs_prelim_ref_init(void)
135 {
136 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137 					sizeof(struct __prelim_ref),
138 					0,
139 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140 					NULL);
141 	if (!btrfs_prelim_ref_cache)
142 		return -ENOMEM;
143 	return 0;
144 }
145 
146 void btrfs_prelim_ref_exit(void)
147 {
148 	if (btrfs_prelim_ref_cache)
149 		kmem_cache_destroy(btrfs_prelim_ref_cache);
150 }
151 
152 /*
153  * the rules for all callers of this function are:
154  * - obtaining the parent is the goal
155  * - if you add a key, you must know that it is a correct key
156  * - if you cannot add the parent or a correct key, then we will look into the
157  *   block later to set a correct key
158  *
159  * delayed refs
160  * ============
161  *        backref type | shared | indirect | shared | indirect
162  * information         |   tree |     tree |   data |     data
163  * --------------------+--------+----------+--------+----------
164  *      parent logical |    y   |     -    |    -   |     -
165  *      key to resolve |    -   |     y    |    y   |     y
166  *  tree block logical |    -   |     -    |    -   |     -
167  *  root for resolving |    y   |     y    |    y   |     y
168  *
169  * - column 1:       we've the parent -> done
170  * - column 2, 3, 4: we use the key to find the parent
171  *
172  * on disk refs (inline or keyed)
173  * ==============================
174  *        backref type | shared | indirect | shared | indirect
175  * information         |   tree |     tree |   data |     data
176  * --------------------+--------+----------+--------+----------
177  *      parent logical |    y   |     -    |    y   |     -
178  *      key to resolve |    -   |     -    |    -   |     y
179  *  tree block logical |    y   |     y    |    y   |     y
180  *  root for resolving |    -   |     y    |    y   |     y
181  *
182  * - column 1, 3: we've the parent -> done
183  * - column 2:    we take the first key from the block to find the parent
184  *                (see __add_missing_keys)
185  * - column 4:    we use the key to find the parent
186  *
187  * additional information that's available but not required to find the parent
188  * block might help in merging entries to gain some speed.
189  */
190 
191 static int __add_prelim_ref(struct list_head *head, u64 root_id,
192 			    struct btrfs_key *key, int level,
193 			    u64 parent, u64 wanted_disk_byte, int count,
194 			    gfp_t gfp_mask)
195 {
196 	struct __prelim_ref *ref;
197 
198 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199 		return 0;
200 
201 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 	if (!ref)
203 		return -ENOMEM;
204 
205 	ref->root_id = root_id;
206 	if (key)
207 		ref->key_for_search = *key;
208 	else
209 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210 
211 	ref->inode_list = NULL;
212 	ref->level = level;
213 	ref->count = count;
214 	ref->parent = parent;
215 	ref->wanted_disk_byte = wanted_disk_byte;
216 	list_add_tail(&ref->list, head);
217 
218 	return 0;
219 }
220 
221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222 			   struct ulist *parents, struct __prelim_ref *ref,
223 			   int level, u64 time_seq, const u64 *extent_item_pos)
224 {
225 	int ret = 0;
226 	int slot;
227 	struct extent_buffer *eb;
228 	struct btrfs_key key;
229 	struct btrfs_key *key_for_search = &ref->key_for_search;
230 	struct btrfs_file_extent_item *fi;
231 	struct extent_inode_elem *eie = NULL, *old = NULL;
232 	u64 disk_byte;
233 	u64 wanted_disk_byte = ref->wanted_disk_byte;
234 	u64 count = 0;
235 
236 	if (level != 0) {
237 		eb = path->nodes[level];
238 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
239 		if (ret < 0)
240 			return ret;
241 		return 0;
242 	}
243 
244 	/*
245 	 * We normally enter this function with the path already pointing to
246 	 * the first item to check. But sometimes, we may enter it with
247 	 * slot==nritems. In that case, go to the next leaf before we continue.
248 	 */
249 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
250 		ret = btrfs_next_old_leaf(root, path, time_seq);
251 
252 	while (!ret && count < ref->count) {
253 		eb = path->nodes[0];
254 		slot = path->slots[0];
255 
256 		btrfs_item_key_to_cpu(eb, &key, slot);
257 
258 		if (key.objectid != key_for_search->objectid ||
259 		    key.type != BTRFS_EXTENT_DATA_KEY)
260 			break;
261 
262 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
263 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
264 
265 		if (disk_byte == wanted_disk_byte) {
266 			eie = NULL;
267 			old = NULL;
268 			count++;
269 			if (extent_item_pos) {
270 				ret = check_extent_in_eb(&key, eb, fi,
271 						*extent_item_pos,
272 						&eie);
273 				if (ret < 0)
274 					break;
275 			}
276 			if (ret > 0)
277 				goto next;
278 			ret = ulist_add_merge(parents, eb->start,
279 					      (uintptr_t)eie,
280 					      (u64 *)&old, GFP_NOFS);
281 			if (ret < 0)
282 				break;
283 			if (!ret && extent_item_pos) {
284 				while (old->next)
285 					old = old->next;
286 				old->next = eie;
287 			}
288 			eie = NULL;
289 		}
290 next:
291 		ret = btrfs_next_old_item(root, path, time_seq);
292 	}
293 
294 	if (ret > 0)
295 		ret = 0;
296 	else if (ret < 0)
297 		free_inode_elem_list(eie);
298 	return ret;
299 }
300 
301 /*
302  * resolve an indirect backref in the form (root_id, key, level)
303  * to a logical address
304  */
305 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
306 				  struct btrfs_path *path, u64 time_seq,
307 				  struct __prelim_ref *ref,
308 				  struct ulist *parents,
309 				  const u64 *extent_item_pos)
310 {
311 	struct btrfs_root *root;
312 	struct btrfs_key root_key;
313 	struct extent_buffer *eb;
314 	int ret = 0;
315 	int root_level;
316 	int level = ref->level;
317 	int index;
318 
319 	root_key.objectid = ref->root_id;
320 	root_key.type = BTRFS_ROOT_ITEM_KEY;
321 	root_key.offset = (u64)-1;
322 
323 	index = srcu_read_lock(&fs_info->subvol_srcu);
324 
325 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
326 	if (IS_ERR(root)) {
327 		srcu_read_unlock(&fs_info->subvol_srcu, index);
328 		ret = PTR_ERR(root);
329 		goto out;
330 	}
331 
332 	root_level = btrfs_old_root_level(root, time_seq);
333 
334 	if (root_level + 1 == level) {
335 		srcu_read_unlock(&fs_info->subvol_srcu, index);
336 		goto out;
337 	}
338 
339 	path->lowest_level = level;
340 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
341 
342 	/* root node has been locked, we can release @subvol_srcu safely here */
343 	srcu_read_unlock(&fs_info->subvol_srcu, index);
344 
345 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
346 		 "%d for key (%llu %u %llu)\n",
347 		 ref->root_id, level, ref->count, ret,
348 		 ref->key_for_search.objectid, ref->key_for_search.type,
349 		 ref->key_for_search.offset);
350 	if (ret < 0)
351 		goto out;
352 
353 	eb = path->nodes[level];
354 	while (!eb) {
355 		if (WARN_ON(!level)) {
356 			ret = 1;
357 			goto out;
358 		}
359 		level--;
360 		eb = path->nodes[level];
361 	}
362 
363 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
364 			      extent_item_pos);
365 out:
366 	path->lowest_level = 0;
367 	btrfs_release_path(path);
368 	return ret;
369 }
370 
371 /*
372  * resolve all indirect backrefs from the list
373  */
374 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
375 				   struct btrfs_path *path, u64 time_seq,
376 				   struct list_head *head,
377 				   const u64 *extent_item_pos)
378 {
379 	int err;
380 	int ret = 0;
381 	struct __prelim_ref *ref;
382 	struct __prelim_ref *ref_safe;
383 	struct __prelim_ref *new_ref;
384 	struct ulist *parents;
385 	struct ulist_node *node;
386 	struct ulist_iterator uiter;
387 
388 	parents = ulist_alloc(GFP_NOFS);
389 	if (!parents)
390 		return -ENOMEM;
391 
392 	/*
393 	 * _safe allows us to insert directly after the current item without
394 	 * iterating over the newly inserted items.
395 	 * we're also allowed to re-assign ref during iteration.
396 	 */
397 	list_for_each_entry_safe(ref, ref_safe, head, list) {
398 		if (ref->parent)	/* already direct */
399 			continue;
400 		if (ref->count == 0)
401 			continue;
402 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
403 					     parents, extent_item_pos);
404 		/*
405 		 * we can only tolerate ENOENT,otherwise,we should catch error
406 		 * and return directly.
407 		 */
408 		if (err == -ENOENT) {
409 			continue;
410 		} else if (err) {
411 			ret = err;
412 			goto out;
413 		}
414 
415 		/* we put the first parent into the ref at hand */
416 		ULIST_ITER_INIT(&uiter);
417 		node = ulist_next(parents, &uiter);
418 		ref->parent = node ? node->val : 0;
419 		ref->inode_list = node ?
420 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
421 
422 		/* additional parents require new refs being added here */
423 		while ((node = ulist_next(parents, &uiter))) {
424 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
425 						   GFP_NOFS);
426 			if (!new_ref) {
427 				ret = -ENOMEM;
428 				goto out;
429 			}
430 			memcpy(new_ref, ref, sizeof(*ref));
431 			new_ref->parent = node->val;
432 			new_ref->inode_list = (struct extent_inode_elem *)
433 							(uintptr_t)node->aux;
434 			list_add(&new_ref->list, &ref->list);
435 		}
436 		ulist_reinit(parents);
437 	}
438 out:
439 	ulist_free(parents);
440 	return ret;
441 }
442 
443 static inline int ref_for_same_block(struct __prelim_ref *ref1,
444 				     struct __prelim_ref *ref2)
445 {
446 	if (ref1->level != ref2->level)
447 		return 0;
448 	if (ref1->root_id != ref2->root_id)
449 		return 0;
450 	if (ref1->key_for_search.type != ref2->key_for_search.type)
451 		return 0;
452 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
453 		return 0;
454 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
455 		return 0;
456 	if (ref1->parent != ref2->parent)
457 		return 0;
458 
459 	return 1;
460 }
461 
462 /*
463  * read tree blocks and add keys where required.
464  */
465 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
466 			      struct list_head *head)
467 {
468 	struct list_head *pos;
469 	struct extent_buffer *eb;
470 
471 	list_for_each(pos, head) {
472 		struct __prelim_ref *ref;
473 		ref = list_entry(pos, struct __prelim_ref, list);
474 
475 		if (ref->parent)
476 			continue;
477 		if (ref->key_for_search.type)
478 			continue;
479 		BUG_ON(!ref->wanted_disk_byte);
480 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
481 				     fs_info->tree_root->leafsize, 0);
482 		if (!eb || !extent_buffer_uptodate(eb)) {
483 			free_extent_buffer(eb);
484 			return -EIO;
485 		}
486 		btrfs_tree_read_lock(eb);
487 		if (btrfs_header_level(eb) == 0)
488 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
489 		else
490 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
491 		btrfs_tree_read_unlock(eb);
492 		free_extent_buffer(eb);
493 	}
494 	return 0;
495 }
496 
497 /*
498  * merge two lists of backrefs and adjust counts accordingly
499  *
500  * mode = 1: merge identical keys, if key is set
501  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
502  *           additionally, we could even add a key range for the blocks we
503  *           looked into to merge even more (-> replace unresolved refs by those
504  *           having a parent).
505  * mode = 2: merge identical parents
506  */
507 static void __merge_refs(struct list_head *head, int mode)
508 {
509 	struct list_head *pos1;
510 
511 	list_for_each(pos1, head) {
512 		struct list_head *n2;
513 		struct list_head *pos2;
514 		struct __prelim_ref *ref1;
515 
516 		ref1 = list_entry(pos1, struct __prelim_ref, list);
517 
518 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
519 		     pos2 = n2, n2 = pos2->next) {
520 			struct __prelim_ref *ref2;
521 			struct __prelim_ref *xchg;
522 			struct extent_inode_elem *eie;
523 
524 			ref2 = list_entry(pos2, struct __prelim_ref, list);
525 
526 			if (mode == 1) {
527 				if (!ref_for_same_block(ref1, ref2))
528 					continue;
529 				if (!ref1->parent && ref2->parent) {
530 					xchg = ref1;
531 					ref1 = ref2;
532 					ref2 = xchg;
533 				}
534 			} else {
535 				if (ref1->parent != ref2->parent)
536 					continue;
537 			}
538 
539 			eie = ref1->inode_list;
540 			while (eie && eie->next)
541 				eie = eie->next;
542 			if (eie)
543 				eie->next = ref2->inode_list;
544 			else
545 				ref1->inode_list = ref2->inode_list;
546 			ref1->count += ref2->count;
547 
548 			list_del(&ref2->list);
549 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
550 		}
551 
552 	}
553 }
554 
555 /*
556  * add all currently queued delayed refs from this head whose seq nr is
557  * smaller or equal that seq to the list
558  */
559 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
560 			      struct list_head *prefs)
561 {
562 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
563 	struct rb_node *n = &head->node.rb_node;
564 	struct btrfs_key key;
565 	struct btrfs_key op_key = {0};
566 	int sgn;
567 	int ret = 0;
568 
569 	if (extent_op && extent_op->update_key)
570 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
571 
572 	spin_lock(&head->lock);
573 	n = rb_first(&head->ref_root);
574 	while (n) {
575 		struct btrfs_delayed_ref_node *node;
576 		node = rb_entry(n, struct btrfs_delayed_ref_node,
577 				rb_node);
578 		n = rb_next(n);
579 		if (node->seq > seq)
580 			continue;
581 
582 		switch (node->action) {
583 		case BTRFS_ADD_DELAYED_EXTENT:
584 		case BTRFS_UPDATE_DELAYED_HEAD:
585 			WARN_ON(1);
586 			continue;
587 		case BTRFS_ADD_DELAYED_REF:
588 			sgn = 1;
589 			break;
590 		case BTRFS_DROP_DELAYED_REF:
591 			sgn = -1;
592 			break;
593 		default:
594 			BUG_ON(1);
595 		}
596 		switch (node->type) {
597 		case BTRFS_TREE_BLOCK_REF_KEY: {
598 			struct btrfs_delayed_tree_ref *ref;
599 
600 			ref = btrfs_delayed_node_to_tree_ref(node);
601 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
602 					       ref->level + 1, 0, node->bytenr,
603 					       node->ref_mod * sgn, GFP_ATOMIC);
604 			break;
605 		}
606 		case BTRFS_SHARED_BLOCK_REF_KEY: {
607 			struct btrfs_delayed_tree_ref *ref;
608 
609 			ref = btrfs_delayed_node_to_tree_ref(node);
610 			ret = __add_prelim_ref(prefs, ref->root, NULL,
611 					       ref->level + 1, ref->parent,
612 					       node->bytenr,
613 					       node->ref_mod * sgn, GFP_ATOMIC);
614 			break;
615 		}
616 		case BTRFS_EXTENT_DATA_REF_KEY: {
617 			struct btrfs_delayed_data_ref *ref;
618 			ref = btrfs_delayed_node_to_data_ref(node);
619 
620 			key.objectid = ref->objectid;
621 			key.type = BTRFS_EXTENT_DATA_KEY;
622 			key.offset = ref->offset;
623 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
624 					       node->bytenr,
625 					       node->ref_mod * sgn, GFP_ATOMIC);
626 			break;
627 		}
628 		case BTRFS_SHARED_DATA_REF_KEY: {
629 			struct btrfs_delayed_data_ref *ref;
630 
631 			ref = btrfs_delayed_node_to_data_ref(node);
632 
633 			key.objectid = ref->objectid;
634 			key.type = BTRFS_EXTENT_DATA_KEY;
635 			key.offset = ref->offset;
636 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
637 					       ref->parent, node->bytenr,
638 					       node->ref_mod * sgn, GFP_ATOMIC);
639 			break;
640 		}
641 		default:
642 			WARN_ON(1);
643 		}
644 		if (ret)
645 			break;
646 	}
647 	spin_unlock(&head->lock);
648 	return ret;
649 }
650 
651 /*
652  * add all inline backrefs for bytenr to the list
653  */
654 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
655 			     struct btrfs_path *path, u64 bytenr,
656 			     int *info_level, struct list_head *prefs)
657 {
658 	int ret = 0;
659 	int slot;
660 	struct extent_buffer *leaf;
661 	struct btrfs_key key;
662 	struct btrfs_key found_key;
663 	unsigned long ptr;
664 	unsigned long end;
665 	struct btrfs_extent_item *ei;
666 	u64 flags;
667 	u64 item_size;
668 
669 	/*
670 	 * enumerate all inline refs
671 	 */
672 	leaf = path->nodes[0];
673 	slot = path->slots[0];
674 
675 	item_size = btrfs_item_size_nr(leaf, slot);
676 	BUG_ON(item_size < sizeof(*ei));
677 
678 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
679 	flags = btrfs_extent_flags(leaf, ei);
680 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
681 
682 	ptr = (unsigned long)(ei + 1);
683 	end = (unsigned long)ei + item_size;
684 
685 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
686 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
687 		struct btrfs_tree_block_info *info;
688 
689 		info = (struct btrfs_tree_block_info *)ptr;
690 		*info_level = btrfs_tree_block_level(leaf, info);
691 		ptr += sizeof(struct btrfs_tree_block_info);
692 		BUG_ON(ptr > end);
693 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
694 		*info_level = found_key.offset;
695 	} else {
696 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
697 	}
698 
699 	while (ptr < end) {
700 		struct btrfs_extent_inline_ref *iref;
701 		u64 offset;
702 		int type;
703 
704 		iref = (struct btrfs_extent_inline_ref *)ptr;
705 		type = btrfs_extent_inline_ref_type(leaf, iref);
706 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
707 
708 		switch (type) {
709 		case BTRFS_SHARED_BLOCK_REF_KEY:
710 			ret = __add_prelim_ref(prefs, 0, NULL,
711 						*info_level + 1, offset,
712 						bytenr, 1, GFP_NOFS);
713 			break;
714 		case BTRFS_SHARED_DATA_REF_KEY: {
715 			struct btrfs_shared_data_ref *sdref;
716 			int count;
717 
718 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
719 			count = btrfs_shared_data_ref_count(leaf, sdref);
720 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
721 					       bytenr, count, GFP_NOFS);
722 			break;
723 		}
724 		case BTRFS_TREE_BLOCK_REF_KEY:
725 			ret = __add_prelim_ref(prefs, offset, NULL,
726 					       *info_level + 1, 0,
727 					       bytenr, 1, GFP_NOFS);
728 			break;
729 		case BTRFS_EXTENT_DATA_REF_KEY: {
730 			struct btrfs_extent_data_ref *dref;
731 			int count;
732 			u64 root;
733 
734 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
735 			count = btrfs_extent_data_ref_count(leaf, dref);
736 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
737 								      dref);
738 			key.type = BTRFS_EXTENT_DATA_KEY;
739 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
740 			root = btrfs_extent_data_ref_root(leaf, dref);
741 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742 					       bytenr, count, GFP_NOFS);
743 			break;
744 		}
745 		default:
746 			WARN_ON(1);
747 		}
748 		if (ret)
749 			return ret;
750 		ptr += btrfs_extent_inline_ref_size(type);
751 	}
752 
753 	return 0;
754 }
755 
756 /*
757  * add all non-inline backrefs for bytenr to the list
758  */
759 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
760 			    struct btrfs_path *path, u64 bytenr,
761 			    int info_level, struct list_head *prefs)
762 {
763 	struct btrfs_root *extent_root = fs_info->extent_root;
764 	int ret;
765 	int slot;
766 	struct extent_buffer *leaf;
767 	struct btrfs_key key;
768 
769 	while (1) {
770 		ret = btrfs_next_item(extent_root, path);
771 		if (ret < 0)
772 			break;
773 		if (ret) {
774 			ret = 0;
775 			break;
776 		}
777 
778 		slot = path->slots[0];
779 		leaf = path->nodes[0];
780 		btrfs_item_key_to_cpu(leaf, &key, slot);
781 
782 		if (key.objectid != bytenr)
783 			break;
784 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
785 			continue;
786 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
787 			break;
788 
789 		switch (key.type) {
790 		case BTRFS_SHARED_BLOCK_REF_KEY:
791 			ret = __add_prelim_ref(prefs, 0, NULL,
792 						info_level + 1, key.offset,
793 						bytenr, 1, GFP_NOFS);
794 			break;
795 		case BTRFS_SHARED_DATA_REF_KEY: {
796 			struct btrfs_shared_data_ref *sdref;
797 			int count;
798 
799 			sdref = btrfs_item_ptr(leaf, slot,
800 					      struct btrfs_shared_data_ref);
801 			count = btrfs_shared_data_ref_count(leaf, sdref);
802 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
803 						bytenr, count, GFP_NOFS);
804 			break;
805 		}
806 		case BTRFS_TREE_BLOCK_REF_KEY:
807 			ret = __add_prelim_ref(prefs, key.offset, NULL,
808 					       info_level + 1, 0,
809 					       bytenr, 1, GFP_NOFS);
810 			break;
811 		case BTRFS_EXTENT_DATA_REF_KEY: {
812 			struct btrfs_extent_data_ref *dref;
813 			int count;
814 			u64 root;
815 
816 			dref = btrfs_item_ptr(leaf, slot,
817 					      struct btrfs_extent_data_ref);
818 			count = btrfs_extent_data_ref_count(leaf, dref);
819 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
820 								      dref);
821 			key.type = BTRFS_EXTENT_DATA_KEY;
822 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
823 			root = btrfs_extent_data_ref_root(leaf, dref);
824 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
825 					       bytenr, count, GFP_NOFS);
826 			break;
827 		}
828 		default:
829 			WARN_ON(1);
830 		}
831 		if (ret)
832 			return ret;
833 
834 	}
835 
836 	return ret;
837 }
838 
839 /*
840  * this adds all existing backrefs (inline backrefs, backrefs and delayed
841  * refs) for the given bytenr to the refs list, merges duplicates and resolves
842  * indirect refs to their parent bytenr.
843  * When roots are found, they're added to the roots list
844  *
845  * FIXME some caching might speed things up
846  */
847 static int find_parent_nodes(struct btrfs_trans_handle *trans,
848 			     struct btrfs_fs_info *fs_info, u64 bytenr,
849 			     u64 time_seq, struct ulist *refs,
850 			     struct ulist *roots, const u64 *extent_item_pos)
851 {
852 	struct btrfs_key key;
853 	struct btrfs_path *path;
854 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
855 	struct btrfs_delayed_ref_head *head;
856 	int info_level = 0;
857 	int ret;
858 	struct list_head prefs_delayed;
859 	struct list_head prefs;
860 	struct __prelim_ref *ref;
861 	struct extent_inode_elem *eie = NULL;
862 
863 	INIT_LIST_HEAD(&prefs);
864 	INIT_LIST_HEAD(&prefs_delayed);
865 
866 	key.objectid = bytenr;
867 	key.offset = (u64)-1;
868 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
869 		key.type = BTRFS_METADATA_ITEM_KEY;
870 	else
871 		key.type = BTRFS_EXTENT_ITEM_KEY;
872 
873 	path = btrfs_alloc_path();
874 	if (!path)
875 		return -ENOMEM;
876 	if (!trans)
877 		path->search_commit_root = 1;
878 
879 	/*
880 	 * grab both a lock on the path and a lock on the delayed ref head.
881 	 * We need both to get a consistent picture of how the refs look
882 	 * at a specified point in time
883 	 */
884 again:
885 	head = NULL;
886 
887 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
888 	if (ret < 0)
889 		goto out;
890 	BUG_ON(ret == 0);
891 
892 	if (trans) {
893 		/*
894 		 * look if there are updates for this ref queued and lock the
895 		 * head
896 		 */
897 		delayed_refs = &trans->transaction->delayed_refs;
898 		spin_lock(&delayed_refs->lock);
899 		head = btrfs_find_delayed_ref_head(trans, bytenr);
900 		if (head) {
901 			if (!mutex_trylock(&head->mutex)) {
902 				atomic_inc(&head->node.refs);
903 				spin_unlock(&delayed_refs->lock);
904 
905 				btrfs_release_path(path);
906 
907 				/*
908 				 * Mutex was contended, block until it's
909 				 * released and try again
910 				 */
911 				mutex_lock(&head->mutex);
912 				mutex_unlock(&head->mutex);
913 				btrfs_put_delayed_ref(&head->node);
914 				goto again;
915 			}
916 			spin_unlock(&delayed_refs->lock);
917 			ret = __add_delayed_refs(head, time_seq,
918 						 &prefs_delayed);
919 			mutex_unlock(&head->mutex);
920 			if (ret)
921 				goto out;
922 		} else {
923 			spin_unlock(&delayed_refs->lock);
924 		}
925 	}
926 
927 	if (path->slots[0]) {
928 		struct extent_buffer *leaf;
929 		int slot;
930 
931 		path->slots[0]--;
932 		leaf = path->nodes[0];
933 		slot = path->slots[0];
934 		btrfs_item_key_to_cpu(leaf, &key, slot);
935 		if (key.objectid == bytenr &&
936 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
937 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
938 			ret = __add_inline_refs(fs_info, path, bytenr,
939 						&info_level, &prefs);
940 			if (ret)
941 				goto out;
942 			ret = __add_keyed_refs(fs_info, path, bytenr,
943 					       info_level, &prefs);
944 			if (ret)
945 				goto out;
946 		}
947 	}
948 	btrfs_release_path(path);
949 
950 	list_splice_init(&prefs_delayed, &prefs);
951 
952 	ret = __add_missing_keys(fs_info, &prefs);
953 	if (ret)
954 		goto out;
955 
956 	__merge_refs(&prefs, 1);
957 
958 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
959 				      extent_item_pos);
960 	if (ret)
961 		goto out;
962 
963 	__merge_refs(&prefs, 2);
964 
965 	while (!list_empty(&prefs)) {
966 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
967 		WARN_ON(ref->count < 0);
968 		if (ref->count && ref->root_id && ref->parent == 0) {
969 			/* no parent == root of tree */
970 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
971 			if (ret < 0)
972 				goto out;
973 		}
974 		if (ref->count && ref->parent) {
975 			if (extent_item_pos && !ref->inode_list) {
976 				u32 bsz;
977 				struct extent_buffer *eb;
978 				bsz = btrfs_level_size(fs_info->extent_root,
979 							info_level);
980 				eb = read_tree_block(fs_info->extent_root,
981 							   ref->parent, bsz, 0);
982 				if (!eb || !extent_buffer_uptodate(eb)) {
983 					free_extent_buffer(eb);
984 					ret = -EIO;
985 					goto out;
986 				}
987 				ret = find_extent_in_eb(eb, bytenr,
988 							*extent_item_pos, &eie);
989 				free_extent_buffer(eb);
990 				if (ret < 0)
991 					goto out;
992 				ref->inode_list = eie;
993 			}
994 			ret = ulist_add_merge(refs, ref->parent,
995 					      (uintptr_t)ref->inode_list,
996 					      (u64 *)&eie, GFP_NOFS);
997 			if (ret < 0)
998 				goto out;
999 			if (!ret && extent_item_pos) {
1000 				/*
1001 				 * we've recorded that parent, so we must extend
1002 				 * its inode list here
1003 				 */
1004 				BUG_ON(!eie);
1005 				while (eie->next)
1006 					eie = eie->next;
1007 				eie->next = ref->inode_list;
1008 			}
1009 			eie = NULL;
1010 		}
1011 		list_del(&ref->list);
1012 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1013 	}
1014 
1015 out:
1016 	btrfs_free_path(path);
1017 	while (!list_empty(&prefs)) {
1018 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1019 		list_del(&ref->list);
1020 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1021 	}
1022 	while (!list_empty(&prefs_delayed)) {
1023 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1024 				       list);
1025 		list_del(&ref->list);
1026 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1027 	}
1028 	if (ret < 0)
1029 		free_inode_elem_list(eie);
1030 	return ret;
1031 }
1032 
1033 static void free_leaf_list(struct ulist *blocks)
1034 {
1035 	struct ulist_node *node = NULL;
1036 	struct extent_inode_elem *eie;
1037 	struct ulist_iterator uiter;
1038 
1039 	ULIST_ITER_INIT(&uiter);
1040 	while ((node = ulist_next(blocks, &uiter))) {
1041 		if (!node->aux)
1042 			continue;
1043 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1044 		free_inode_elem_list(eie);
1045 		node->aux = 0;
1046 	}
1047 
1048 	ulist_free(blocks);
1049 }
1050 
1051 /*
1052  * Finds all leafs with a reference to the specified combination of bytenr and
1053  * offset. key_list_head will point to a list of corresponding keys (caller must
1054  * free each list element). The leafs will be stored in the leafs ulist, which
1055  * must be freed with ulist_free.
1056  *
1057  * returns 0 on success, <0 on error
1058  */
1059 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1060 				struct btrfs_fs_info *fs_info, u64 bytenr,
1061 				u64 time_seq, struct ulist **leafs,
1062 				const u64 *extent_item_pos)
1063 {
1064 	struct ulist *tmp;
1065 	int ret;
1066 
1067 	tmp = ulist_alloc(GFP_NOFS);
1068 	if (!tmp)
1069 		return -ENOMEM;
1070 	*leafs = ulist_alloc(GFP_NOFS);
1071 	if (!*leafs) {
1072 		ulist_free(tmp);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	ret = find_parent_nodes(trans, fs_info, bytenr,
1077 				time_seq, *leafs, tmp, extent_item_pos);
1078 	ulist_free(tmp);
1079 
1080 	if (ret < 0 && ret != -ENOENT) {
1081 		free_leaf_list(*leafs);
1082 		return ret;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * walk all backrefs for a given extent to find all roots that reference this
1090  * extent. Walking a backref means finding all extents that reference this
1091  * extent and in turn walk the backrefs of those, too. Naturally this is a
1092  * recursive process, but here it is implemented in an iterative fashion: We
1093  * find all referencing extents for the extent in question and put them on a
1094  * list. In turn, we find all referencing extents for those, further appending
1095  * to the list. The way we iterate the list allows adding more elements after
1096  * the current while iterating. The process stops when we reach the end of the
1097  * list. Found roots are added to the roots list.
1098  *
1099  * returns 0 on success, < 0 on error.
1100  */
1101 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1102 				struct btrfs_fs_info *fs_info, u64 bytenr,
1103 				u64 time_seq, struct ulist **roots)
1104 {
1105 	struct ulist *tmp;
1106 	struct ulist_node *node = NULL;
1107 	struct ulist_iterator uiter;
1108 	int ret;
1109 
1110 	tmp = ulist_alloc(GFP_NOFS);
1111 	if (!tmp)
1112 		return -ENOMEM;
1113 	*roots = ulist_alloc(GFP_NOFS);
1114 	if (!*roots) {
1115 		ulist_free(tmp);
1116 		return -ENOMEM;
1117 	}
1118 
1119 	ULIST_ITER_INIT(&uiter);
1120 	while (1) {
1121 		ret = find_parent_nodes(trans, fs_info, bytenr,
1122 					time_seq, tmp, *roots, NULL);
1123 		if (ret < 0 && ret != -ENOENT) {
1124 			ulist_free(tmp);
1125 			ulist_free(*roots);
1126 			return ret;
1127 		}
1128 		node = ulist_next(tmp, &uiter);
1129 		if (!node)
1130 			break;
1131 		bytenr = node->val;
1132 		cond_resched();
1133 	}
1134 
1135 	ulist_free(tmp);
1136 	return 0;
1137 }
1138 
1139 /*
1140  * this makes the path point to (inum INODE_ITEM ioff)
1141  */
1142 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1143 			struct btrfs_path *path)
1144 {
1145 	struct btrfs_key key;
1146 	return btrfs_find_item(fs_root, path, inum, ioff,
1147 			BTRFS_INODE_ITEM_KEY, &key);
1148 }
1149 
1150 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1151 				struct btrfs_path *path,
1152 				struct btrfs_key *found_key)
1153 {
1154 	return btrfs_find_item(fs_root, path, inum, ioff,
1155 			BTRFS_INODE_REF_KEY, found_key);
1156 }
1157 
1158 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1159 			  u64 start_off, struct btrfs_path *path,
1160 			  struct btrfs_inode_extref **ret_extref,
1161 			  u64 *found_off)
1162 {
1163 	int ret, slot;
1164 	struct btrfs_key key;
1165 	struct btrfs_key found_key;
1166 	struct btrfs_inode_extref *extref;
1167 	struct extent_buffer *leaf;
1168 	unsigned long ptr;
1169 
1170 	key.objectid = inode_objectid;
1171 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1172 	key.offset = start_off;
1173 
1174 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1175 	if (ret < 0)
1176 		return ret;
1177 
1178 	while (1) {
1179 		leaf = path->nodes[0];
1180 		slot = path->slots[0];
1181 		if (slot >= btrfs_header_nritems(leaf)) {
1182 			/*
1183 			 * If the item at offset is not found,
1184 			 * btrfs_search_slot will point us to the slot
1185 			 * where it should be inserted. In our case
1186 			 * that will be the slot directly before the
1187 			 * next INODE_REF_KEY_V2 item. In the case
1188 			 * that we're pointing to the last slot in a
1189 			 * leaf, we must move one leaf over.
1190 			 */
1191 			ret = btrfs_next_leaf(root, path);
1192 			if (ret) {
1193 				if (ret >= 1)
1194 					ret = -ENOENT;
1195 				break;
1196 			}
1197 			continue;
1198 		}
1199 
1200 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1201 
1202 		/*
1203 		 * Check that we're still looking at an extended ref key for
1204 		 * this particular objectid. If we have different
1205 		 * objectid or type then there are no more to be found
1206 		 * in the tree and we can exit.
1207 		 */
1208 		ret = -ENOENT;
1209 		if (found_key.objectid != inode_objectid)
1210 			break;
1211 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1212 			break;
1213 
1214 		ret = 0;
1215 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1216 		extref = (struct btrfs_inode_extref *)ptr;
1217 		*ret_extref = extref;
1218 		if (found_off)
1219 			*found_off = found_key.offset;
1220 		break;
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1228  * Elements of the path are separated by '/' and the path is guaranteed to be
1229  * 0-terminated. the path is only given within the current file system.
1230  * Therefore, it never starts with a '/'. the caller is responsible to provide
1231  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1232  * the start point of the resulting string is returned. this pointer is within
1233  * dest, normally.
1234  * in case the path buffer would overflow, the pointer is decremented further
1235  * as if output was written to the buffer, though no more output is actually
1236  * generated. that way, the caller can determine how much space would be
1237  * required for the path to fit into the buffer. in that case, the returned
1238  * value will be smaller than dest. callers must check this!
1239  */
1240 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1241 			u32 name_len, unsigned long name_off,
1242 			struct extent_buffer *eb_in, u64 parent,
1243 			char *dest, u32 size)
1244 {
1245 	int slot;
1246 	u64 next_inum;
1247 	int ret;
1248 	s64 bytes_left = ((s64)size) - 1;
1249 	struct extent_buffer *eb = eb_in;
1250 	struct btrfs_key found_key;
1251 	int leave_spinning = path->leave_spinning;
1252 	struct btrfs_inode_ref *iref;
1253 
1254 	if (bytes_left >= 0)
1255 		dest[bytes_left] = '\0';
1256 
1257 	path->leave_spinning = 1;
1258 	while (1) {
1259 		bytes_left -= name_len;
1260 		if (bytes_left >= 0)
1261 			read_extent_buffer(eb, dest + bytes_left,
1262 					   name_off, name_len);
1263 		if (eb != eb_in) {
1264 			btrfs_tree_read_unlock_blocking(eb);
1265 			free_extent_buffer(eb);
1266 		}
1267 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1268 		if (ret > 0)
1269 			ret = -ENOENT;
1270 		if (ret)
1271 			break;
1272 
1273 		next_inum = found_key.offset;
1274 
1275 		/* regular exit ahead */
1276 		if (parent == next_inum)
1277 			break;
1278 
1279 		slot = path->slots[0];
1280 		eb = path->nodes[0];
1281 		/* make sure we can use eb after releasing the path */
1282 		if (eb != eb_in) {
1283 			atomic_inc(&eb->refs);
1284 			btrfs_tree_read_lock(eb);
1285 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1286 		}
1287 		btrfs_release_path(path);
1288 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1289 
1290 		name_len = btrfs_inode_ref_name_len(eb, iref);
1291 		name_off = (unsigned long)(iref + 1);
1292 
1293 		parent = next_inum;
1294 		--bytes_left;
1295 		if (bytes_left >= 0)
1296 			dest[bytes_left] = '/';
1297 	}
1298 
1299 	btrfs_release_path(path);
1300 	path->leave_spinning = leave_spinning;
1301 
1302 	if (ret)
1303 		return ERR_PTR(ret);
1304 
1305 	return dest + bytes_left;
1306 }
1307 
1308 /*
1309  * this makes the path point to (logical EXTENT_ITEM *)
1310  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1311  * tree blocks and <0 on error.
1312  */
1313 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1314 			struct btrfs_path *path, struct btrfs_key *found_key,
1315 			u64 *flags_ret)
1316 {
1317 	int ret;
1318 	u64 flags;
1319 	u64 size = 0;
1320 	u32 item_size;
1321 	struct extent_buffer *eb;
1322 	struct btrfs_extent_item *ei;
1323 	struct btrfs_key key;
1324 
1325 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1326 		key.type = BTRFS_METADATA_ITEM_KEY;
1327 	else
1328 		key.type = BTRFS_EXTENT_ITEM_KEY;
1329 	key.objectid = logical;
1330 	key.offset = (u64)-1;
1331 
1332 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1333 	if (ret < 0)
1334 		return ret;
1335 
1336 	while (1) {
1337 		u32 nritems;
1338 		if (path->slots[0] == 0) {
1339 			btrfs_set_path_blocking(path);
1340 			ret = btrfs_prev_leaf(fs_info->extent_root, path);
1341 			if (ret != 0) {
1342 				if (ret > 0) {
1343 					pr_debug("logical %llu is not within "
1344 						 "any extent\n", logical);
1345 					ret = -ENOENT;
1346 				}
1347 				return ret;
1348 			}
1349 		} else {
1350 			path->slots[0]--;
1351 		}
1352 		nritems = btrfs_header_nritems(path->nodes[0]);
1353 		if (nritems == 0) {
1354 			pr_debug("logical %llu is not within any extent\n",
1355 				 logical);
1356 			return -ENOENT;
1357 		}
1358 		if (path->slots[0] == nritems)
1359 			path->slots[0]--;
1360 
1361 		btrfs_item_key_to_cpu(path->nodes[0], found_key,
1362 				      path->slots[0]);
1363 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1364 		    found_key->type == BTRFS_METADATA_ITEM_KEY)
1365 			break;
1366 	}
1367 
1368 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1369 		size = fs_info->extent_root->leafsize;
1370 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1371 		size = found_key->offset;
1372 
1373 	if (found_key->objectid > logical ||
1374 	    found_key->objectid + size <= logical) {
1375 		pr_debug("logical %llu is not within any extent\n", logical);
1376 		return -ENOENT;
1377 	}
1378 
1379 	eb = path->nodes[0];
1380 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1381 	BUG_ON(item_size < sizeof(*ei));
1382 
1383 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1384 	flags = btrfs_extent_flags(eb, ei);
1385 
1386 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1387 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1388 		 logical, logical - found_key->objectid, found_key->objectid,
1389 		 found_key->offset, flags, item_size);
1390 
1391 	WARN_ON(!flags_ret);
1392 	if (flags_ret) {
1393 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1394 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1395 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1396 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1397 		else
1398 			BUG_ON(1);
1399 		return 0;
1400 	}
1401 
1402 	return -EIO;
1403 }
1404 
1405 /*
1406  * helper function to iterate extent inline refs. ptr must point to a 0 value
1407  * for the first call and may be modified. it is used to track state.
1408  * if more refs exist, 0 is returned and the next call to
1409  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1410  * next ref. after the last ref was processed, 1 is returned.
1411  * returns <0 on error
1412  */
1413 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1414 				struct btrfs_extent_item *ei, u32 item_size,
1415 				struct btrfs_extent_inline_ref **out_eiref,
1416 				int *out_type)
1417 {
1418 	unsigned long end;
1419 	u64 flags;
1420 	struct btrfs_tree_block_info *info;
1421 
1422 	if (!*ptr) {
1423 		/* first call */
1424 		flags = btrfs_extent_flags(eb, ei);
1425 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1426 			info = (struct btrfs_tree_block_info *)(ei + 1);
1427 			*out_eiref =
1428 				(struct btrfs_extent_inline_ref *)(info + 1);
1429 		} else {
1430 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1431 		}
1432 		*ptr = (unsigned long)*out_eiref;
1433 		if ((void *)*ptr >= (void *)ei + item_size)
1434 			return -ENOENT;
1435 	}
1436 
1437 	end = (unsigned long)ei + item_size;
1438 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1439 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1440 
1441 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1442 	WARN_ON(*ptr > end);
1443 	if (*ptr == end)
1444 		return 1; /* last */
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * reads the tree block backref for an extent. tree level and root are returned
1451  * through out_level and out_root. ptr must point to a 0 value for the first
1452  * call and may be modified (see __get_extent_inline_ref comment).
1453  * returns 0 if data was provided, 1 if there was no more data to provide or
1454  * <0 on error.
1455  */
1456 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1457 				struct btrfs_extent_item *ei, u32 item_size,
1458 				u64 *out_root, u8 *out_level)
1459 {
1460 	int ret;
1461 	int type;
1462 	struct btrfs_tree_block_info *info;
1463 	struct btrfs_extent_inline_ref *eiref;
1464 
1465 	if (*ptr == (unsigned long)-1)
1466 		return 1;
1467 
1468 	while (1) {
1469 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1470 						&eiref, &type);
1471 		if (ret < 0)
1472 			return ret;
1473 
1474 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1475 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1476 			break;
1477 
1478 		if (ret == 1)
1479 			return 1;
1480 	}
1481 
1482 	/* we can treat both ref types equally here */
1483 	info = (struct btrfs_tree_block_info *)(ei + 1);
1484 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1485 	*out_level = btrfs_tree_block_level(eb, info);
1486 
1487 	if (ret == 1)
1488 		*ptr = (unsigned long)-1;
1489 
1490 	return 0;
1491 }
1492 
1493 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1494 				u64 root, u64 extent_item_objectid,
1495 				iterate_extent_inodes_t *iterate, void *ctx)
1496 {
1497 	struct extent_inode_elem *eie;
1498 	int ret = 0;
1499 
1500 	for (eie = inode_list; eie; eie = eie->next) {
1501 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1502 			 "root %llu\n", extent_item_objectid,
1503 			 eie->inum, eie->offset, root);
1504 		ret = iterate(eie->inum, eie->offset, root, ctx);
1505 		if (ret) {
1506 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1507 				 extent_item_objectid, ret);
1508 			break;
1509 		}
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 /*
1516  * calls iterate() for every inode that references the extent identified by
1517  * the given parameters.
1518  * when the iterator function returns a non-zero value, iteration stops.
1519  */
1520 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1521 				u64 extent_item_objectid, u64 extent_item_pos,
1522 				int search_commit_root,
1523 				iterate_extent_inodes_t *iterate, void *ctx)
1524 {
1525 	int ret;
1526 	struct btrfs_trans_handle *trans = NULL;
1527 	struct ulist *refs = NULL;
1528 	struct ulist *roots = NULL;
1529 	struct ulist_node *ref_node = NULL;
1530 	struct ulist_node *root_node = NULL;
1531 	struct seq_list tree_mod_seq_elem = {};
1532 	struct ulist_iterator ref_uiter;
1533 	struct ulist_iterator root_uiter;
1534 
1535 	pr_debug("resolving all inodes for extent %llu\n",
1536 			extent_item_objectid);
1537 
1538 	if (!search_commit_root) {
1539 		trans = btrfs_join_transaction(fs_info->extent_root);
1540 		if (IS_ERR(trans))
1541 			return PTR_ERR(trans);
1542 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1543 	}
1544 
1545 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1546 				   tree_mod_seq_elem.seq, &refs,
1547 				   &extent_item_pos);
1548 	if (ret)
1549 		goto out;
1550 
1551 	ULIST_ITER_INIT(&ref_uiter);
1552 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1553 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1554 					   tree_mod_seq_elem.seq, &roots);
1555 		if (ret)
1556 			break;
1557 		ULIST_ITER_INIT(&root_uiter);
1558 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1559 			pr_debug("root %llu references leaf %llu, data list "
1560 				 "%#llx\n", root_node->val, ref_node->val,
1561 				 ref_node->aux);
1562 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1563 						(uintptr_t)ref_node->aux,
1564 						root_node->val,
1565 						extent_item_objectid,
1566 						iterate, ctx);
1567 		}
1568 		ulist_free(roots);
1569 	}
1570 
1571 	free_leaf_list(refs);
1572 out:
1573 	if (!search_commit_root) {
1574 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1575 		btrfs_end_transaction(trans, fs_info->extent_root);
1576 	}
1577 
1578 	return ret;
1579 }
1580 
1581 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1582 				struct btrfs_path *path,
1583 				iterate_extent_inodes_t *iterate, void *ctx)
1584 {
1585 	int ret;
1586 	u64 extent_item_pos;
1587 	u64 flags = 0;
1588 	struct btrfs_key found_key;
1589 	int search_commit_root = path->search_commit_root;
1590 
1591 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1592 	btrfs_release_path(path);
1593 	if (ret < 0)
1594 		return ret;
1595 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596 		return -EINVAL;
1597 
1598 	extent_item_pos = logical - found_key.objectid;
1599 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1600 					extent_item_pos, search_commit_root,
1601 					iterate, ctx);
1602 
1603 	return ret;
1604 }
1605 
1606 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1607 			      struct extent_buffer *eb, void *ctx);
1608 
1609 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1610 			      struct btrfs_path *path,
1611 			      iterate_irefs_t *iterate, void *ctx)
1612 {
1613 	int ret = 0;
1614 	int slot;
1615 	u32 cur;
1616 	u32 len;
1617 	u32 name_len;
1618 	u64 parent = 0;
1619 	int found = 0;
1620 	struct extent_buffer *eb;
1621 	struct btrfs_item *item;
1622 	struct btrfs_inode_ref *iref;
1623 	struct btrfs_key found_key;
1624 
1625 	while (!ret) {
1626 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1627 				     &found_key);
1628 		if (ret < 0)
1629 			break;
1630 		if (ret) {
1631 			ret = found ? 0 : -ENOENT;
1632 			break;
1633 		}
1634 		++found;
1635 
1636 		parent = found_key.offset;
1637 		slot = path->slots[0];
1638 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1639 		if (!eb) {
1640 			ret = -ENOMEM;
1641 			break;
1642 		}
1643 		extent_buffer_get(eb);
1644 		btrfs_tree_read_lock(eb);
1645 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1646 		btrfs_release_path(path);
1647 
1648 		item = btrfs_item_nr(slot);
1649 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1650 
1651 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1652 			name_len = btrfs_inode_ref_name_len(eb, iref);
1653 			/* path must be released before calling iterate()! */
1654 			pr_debug("following ref at offset %u for inode %llu in "
1655 				 "tree %llu\n", cur, found_key.objectid,
1656 				 fs_root->objectid);
1657 			ret = iterate(parent, name_len,
1658 				      (unsigned long)(iref + 1), eb, ctx);
1659 			if (ret)
1660 				break;
1661 			len = sizeof(*iref) + name_len;
1662 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1663 		}
1664 		btrfs_tree_read_unlock_blocking(eb);
1665 		free_extent_buffer(eb);
1666 	}
1667 
1668 	btrfs_release_path(path);
1669 
1670 	return ret;
1671 }
1672 
1673 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1674 				 struct btrfs_path *path,
1675 				 iterate_irefs_t *iterate, void *ctx)
1676 {
1677 	int ret;
1678 	int slot;
1679 	u64 offset = 0;
1680 	u64 parent;
1681 	int found = 0;
1682 	struct extent_buffer *eb;
1683 	struct btrfs_inode_extref *extref;
1684 	struct extent_buffer *leaf;
1685 	u32 item_size;
1686 	u32 cur_offset;
1687 	unsigned long ptr;
1688 
1689 	while (1) {
1690 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1691 					    &offset);
1692 		if (ret < 0)
1693 			break;
1694 		if (ret) {
1695 			ret = found ? 0 : -ENOENT;
1696 			break;
1697 		}
1698 		++found;
1699 
1700 		slot = path->slots[0];
1701 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1702 		if (!eb) {
1703 			ret = -ENOMEM;
1704 			break;
1705 		}
1706 		extent_buffer_get(eb);
1707 
1708 		btrfs_tree_read_lock(eb);
1709 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1710 		btrfs_release_path(path);
1711 
1712 		leaf = path->nodes[0];
1713 		item_size = btrfs_item_size_nr(leaf, slot);
1714 		ptr = btrfs_item_ptr_offset(leaf, slot);
1715 		cur_offset = 0;
1716 
1717 		while (cur_offset < item_size) {
1718 			u32 name_len;
1719 
1720 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1721 			parent = btrfs_inode_extref_parent(eb, extref);
1722 			name_len = btrfs_inode_extref_name_len(eb, extref);
1723 			ret = iterate(parent, name_len,
1724 				      (unsigned long)&extref->name, eb, ctx);
1725 			if (ret)
1726 				break;
1727 
1728 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1729 			cur_offset += sizeof(*extref);
1730 		}
1731 		btrfs_tree_read_unlock_blocking(eb);
1732 		free_extent_buffer(eb);
1733 
1734 		offset++;
1735 	}
1736 
1737 	btrfs_release_path(path);
1738 
1739 	return ret;
1740 }
1741 
1742 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1743 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1744 			 void *ctx)
1745 {
1746 	int ret;
1747 	int found_refs = 0;
1748 
1749 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1750 	if (!ret)
1751 		++found_refs;
1752 	else if (ret != -ENOENT)
1753 		return ret;
1754 
1755 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1756 	if (ret == -ENOENT && found_refs)
1757 		return 0;
1758 
1759 	return ret;
1760 }
1761 
1762 /*
1763  * returns 0 if the path could be dumped (probably truncated)
1764  * returns <0 in case of an error
1765  */
1766 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1767 			 struct extent_buffer *eb, void *ctx)
1768 {
1769 	struct inode_fs_paths *ipath = ctx;
1770 	char *fspath;
1771 	char *fspath_min;
1772 	int i = ipath->fspath->elem_cnt;
1773 	const int s_ptr = sizeof(char *);
1774 	u32 bytes_left;
1775 
1776 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1777 					ipath->fspath->bytes_left - s_ptr : 0;
1778 
1779 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1780 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1781 				   name_off, eb, inum, fspath_min, bytes_left);
1782 	if (IS_ERR(fspath))
1783 		return PTR_ERR(fspath);
1784 
1785 	if (fspath > fspath_min) {
1786 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1787 		++ipath->fspath->elem_cnt;
1788 		ipath->fspath->bytes_left = fspath - fspath_min;
1789 	} else {
1790 		++ipath->fspath->elem_missed;
1791 		ipath->fspath->bytes_missing += fspath_min - fspath;
1792 		ipath->fspath->bytes_left = 0;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * this dumps all file system paths to the inode into the ipath struct, provided
1800  * is has been created large enough. each path is zero-terminated and accessed
1801  * from ipath->fspath->val[i].
1802  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1803  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1804  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1805  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1806  * have been needed to return all paths.
1807  */
1808 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1809 {
1810 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1811 			     inode_to_path, ipath);
1812 }
1813 
1814 struct btrfs_data_container *init_data_container(u32 total_bytes)
1815 {
1816 	struct btrfs_data_container *data;
1817 	size_t alloc_bytes;
1818 
1819 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1820 	data = vmalloc(alloc_bytes);
1821 	if (!data)
1822 		return ERR_PTR(-ENOMEM);
1823 
1824 	if (total_bytes >= sizeof(*data)) {
1825 		data->bytes_left = total_bytes - sizeof(*data);
1826 		data->bytes_missing = 0;
1827 	} else {
1828 		data->bytes_missing = sizeof(*data) - total_bytes;
1829 		data->bytes_left = 0;
1830 	}
1831 
1832 	data->elem_cnt = 0;
1833 	data->elem_missed = 0;
1834 
1835 	return data;
1836 }
1837 
1838 /*
1839  * allocates space to return multiple file system paths for an inode.
1840  * total_bytes to allocate are passed, note that space usable for actual path
1841  * information will be total_bytes - sizeof(struct inode_fs_paths).
1842  * the returned pointer must be freed with free_ipath() in the end.
1843  */
1844 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1845 					struct btrfs_path *path)
1846 {
1847 	struct inode_fs_paths *ifp;
1848 	struct btrfs_data_container *fspath;
1849 
1850 	fspath = init_data_container(total_bytes);
1851 	if (IS_ERR(fspath))
1852 		return (void *)fspath;
1853 
1854 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1855 	if (!ifp) {
1856 		kfree(fspath);
1857 		return ERR_PTR(-ENOMEM);
1858 	}
1859 
1860 	ifp->btrfs_path = path;
1861 	ifp->fspath = fspath;
1862 	ifp->fs_root = fs_root;
1863 
1864 	return ifp;
1865 }
1866 
1867 void free_ipath(struct inode_fs_paths *ipath)
1868 {
1869 	if (!ipath)
1870 		return;
1871 	vfree(ipath->fspath);
1872 	kfree(ipath);
1873 }
1874