1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 18 /* Just an arbitrary number so we can be sure this happened */ 19 #define BACKREF_FOUND_SHARED 6 20 21 struct extent_inode_elem { 22 u64 inum; 23 u64 offset; 24 struct extent_inode_elem *next; 25 }; 26 27 static int check_extent_in_eb(const struct btrfs_key *key, 28 const struct extent_buffer *eb, 29 const struct btrfs_file_extent_item *fi, 30 u64 extent_item_pos, 31 struct extent_inode_elem **eie, 32 bool ignore_offset) 33 { 34 u64 offset = 0; 35 struct extent_inode_elem *e; 36 37 if (!ignore_offset && 38 !btrfs_file_extent_compression(eb, fi) && 39 !btrfs_file_extent_encryption(eb, fi) && 40 !btrfs_file_extent_other_encoding(eb, fi)) { 41 u64 data_offset; 42 u64 data_len; 43 44 data_offset = btrfs_file_extent_offset(eb, fi); 45 data_len = btrfs_file_extent_num_bytes(eb, fi); 46 47 if (extent_item_pos < data_offset || 48 extent_item_pos >= data_offset + data_len) 49 return 1; 50 offset = extent_item_pos - data_offset; 51 } 52 53 e = kmalloc(sizeof(*e), GFP_NOFS); 54 if (!e) 55 return -ENOMEM; 56 57 e->next = *eie; 58 e->inum = key->objectid; 59 e->offset = key->offset + offset; 60 *eie = e; 61 62 return 0; 63 } 64 65 static void free_inode_elem_list(struct extent_inode_elem *eie) 66 { 67 struct extent_inode_elem *eie_next; 68 69 for (; eie; eie = eie_next) { 70 eie_next = eie->next; 71 kfree(eie); 72 } 73 } 74 75 static int find_extent_in_eb(const struct extent_buffer *eb, 76 u64 wanted_disk_byte, u64 extent_item_pos, 77 struct extent_inode_elem **eie, 78 bool ignore_offset) 79 { 80 u64 disk_byte; 81 struct btrfs_key key; 82 struct btrfs_file_extent_item *fi; 83 int slot; 84 int nritems; 85 int extent_type; 86 int ret; 87 88 /* 89 * from the shared data ref, we only have the leaf but we need 90 * the key. thus, we must look into all items and see that we 91 * find one (some) with a reference to our extent item. 92 */ 93 nritems = btrfs_header_nritems(eb); 94 for (slot = 0; slot < nritems; ++slot) { 95 btrfs_item_key_to_cpu(eb, &key, slot); 96 if (key.type != BTRFS_EXTENT_DATA_KEY) 97 continue; 98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 99 extent_type = btrfs_file_extent_type(eb, fi); 100 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 101 continue; 102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 104 if (disk_byte != wanted_disk_byte) 105 continue; 106 107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 108 if (ret < 0) 109 return ret; 110 } 111 112 return 0; 113 } 114 115 struct preftree { 116 struct rb_root_cached root; 117 unsigned int count; 118 }; 119 120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 121 122 struct preftrees { 123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 125 struct preftree indirect_missing_keys; 126 }; 127 128 /* 129 * Checks for a shared extent during backref search. 130 * 131 * The share_count tracks prelim_refs (direct and indirect) having a 132 * ref->count >0: 133 * - incremented when a ref->count transitions to >0 134 * - decremented when a ref->count transitions to <1 135 */ 136 struct share_check { 137 u64 root_objectid; 138 u64 inum; 139 int share_count; 140 }; 141 142 static inline int extent_is_shared(struct share_check *sc) 143 { 144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 145 } 146 147 static struct kmem_cache *btrfs_prelim_ref_cache; 148 149 int __init btrfs_prelim_ref_init(void) 150 { 151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 152 sizeof(struct prelim_ref), 153 0, 154 SLAB_MEM_SPREAD, 155 NULL); 156 if (!btrfs_prelim_ref_cache) 157 return -ENOMEM; 158 return 0; 159 } 160 161 void __cold btrfs_prelim_ref_exit(void) 162 { 163 kmem_cache_destroy(btrfs_prelim_ref_cache); 164 } 165 166 static void free_pref(struct prelim_ref *ref) 167 { 168 kmem_cache_free(btrfs_prelim_ref_cache, ref); 169 } 170 171 /* 172 * Return 0 when both refs are for the same block (and can be merged). 173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 174 * indicates a 'higher' block. 175 */ 176 static int prelim_ref_compare(struct prelim_ref *ref1, 177 struct prelim_ref *ref2) 178 { 179 if (ref1->level < ref2->level) 180 return -1; 181 if (ref1->level > ref2->level) 182 return 1; 183 if (ref1->root_id < ref2->root_id) 184 return -1; 185 if (ref1->root_id > ref2->root_id) 186 return 1; 187 if (ref1->key_for_search.type < ref2->key_for_search.type) 188 return -1; 189 if (ref1->key_for_search.type > ref2->key_for_search.type) 190 return 1; 191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 192 return -1; 193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 194 return 1; 195 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 196 return -1; 197 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 198 return 1; 199 if (ref1->parent < ref2->parent) 200 return -1; 201 if (ref1->parent > ref2->parent) 202 return 1; 203 204 return 0; 205 } 206 207 static void update_share_count(struct share_check *sc, int oldcount, 208 int newcount) 209 { 210 if ((!sc) || (oldcount == 0 && newcount < 1)) 211 return; 212 213 if (oldcount > 0 && newcount < 1) 214 sc->share_count--; 215 else if (oldcount < 1 && newcount > 0) 216 sc->share_count++; 217 } 218 219 /* 220 * Add @newref to the @root rbtree, merging identical refs. 221 * 222 * Callers should assume that newref has been freed after calling. 223 */ 224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 225 struct preftree *preftree, 226 struct prelim_ref *newref, 227 struct share_check *sc) 228 { 229 struct rb_root_cached *root; 230 struct rb_node **p; 231 struct rb_node *parent = NULL; 232 struct prelim_ref *ref; 233 int result; 234 bool leftmost = true; 235 236 root = &preftree->root; 237 p = &root->rb_root.rb_node; 238 239 while (*p) { 240 parent = *p; 241 ref = rb_entry(parent, struct prelim_ref, rbnode); 242 result = prelim_ref_compare(ref, newref); 243 if (result < 0) { 244 p = &(*p)->rb_left; 245 } else if (result > 0) { 246 p = &(*p)->rb_right; 247 leftmost = false; 248 } else { 249 /* Identical refs, merge them and free @newref */ 250 struct extent_inode_elem *eie = ref->inode_list; 251 252 while (eie && eie->next) 253 eie = eie->next; 254 255 if (!eie) 256 ref->inode_list = newref->inode_list; 257 else 258 eie->next = newref->inode_list; 259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 260 preftree->count); 261 /* 262 * A delayed ref can have newref->count < 0. 263 * The ref->count is updated to follow any 264 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 265 */ 266 update_share_count(sc, ref->count, 267 ref->count + newref->count); 268 ref->count += newref->count; 269 free_pref(newref); 270 return; 271 } 272 } 273 274 update_share_count(sc, 0, newref->count); 275 preftree->count++; 276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 277 rb_link_node(&newref->rbnode, parent, p); 278 rb_insert_color_cached(&newref->rbnode, root, leftmost); 279 } 280 281 /* 282 * Release the entire tree. We don't care about internal consistency so 283 * just free everything and then reset the tree root. 284 */ 285 static void prelim_release(struct preftree *preftree) 286 { 287 struct prelim_ref *ref, *next_ref; 288 289 rbtree_postorder_for_each_entry_safe(ref, next_ref, 290 &preftree->root.rb_root, rbnode) 291 free_pref(ref); 292 293 preftree->root = RB_ROOT_CACHED; 294 preftree->count = 0; 295 } 296 297 /* 298 * the rules for all callers of this function are: 299 * - obtaining the parent is the goal 300 * - if you add a key, you must know that it is a correct key 301 * - if you cannot add the parent or a correct key, then we will look into the 302 * block later to set a correct key 303 * 304 * delayed refs 305 * ============ 306 * backref type | shared | indirect | shared | indirect 307 * information | tree | tree | data | data 308 * --------------------+--------+----------+--------+---------- 309 * parent logical | y | - | - | - 310 * key to resolve | - | y | y | y 311 * tree block logical | - | - | - | - 312 * root for resolving | y | y | y | y 313 * 314 * - column 1: we've the parent -> done 315 * - column 2, 3, 4: we use the key to find the parent 316 * 317 * on disk refs (inline or keyed) 318 * ============================== 319 * backref type | shared | indirect | shared | indirect 320 * information | tree | tree | data | data 321 * --------------------+--------+----------+--------+---------- 322 * parent logical | y | - | y | - 323 * key to resolve | - | - | - | y 324 * tree block logical | y | y | y | y 325 * root for resolving | - | y | y | y 326 * 327 * - column 1, 3: we've the parent -> done 328 * - column 2: we take the first key from the block to find the parent 329 * (see add_missing_keys) 330 * - column 4: we use the key to find the parent 331 * 332 * additional information that's available but not required to find the parent 333 * block might help in merging entries to gain some speed. 334 */ 335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 336 struct preftree *preftree, u64 root_id, 337 const struct btrfs_key *key, int level, u64 parent, 338 u64 wanted_disk_byte, int count, 339 struct share_check *sc, gfp_t gfp_mask) 340 { 341 struct prelim_ref *ref; 342 343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 344 return 0; 345 346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 347 if (!ref) 348 return -ENOMEM; 349 350 ref->root_id = root_id; 351 if (key) 352 ref->key_for_search = *key; 353 else 354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 355 356 ref->inode_list = NULL; 357 ref->level = level; 358 ref->count = count; 359 ref->parent = parent; 360 ref->wanted_disk_byte = wanted_disk_byte; 361 prelim_ref_insert(fs_info, preftree, ref, sc); 362 return extent_is_shared(sc); 363 } 364 365 /* direct refs use root == 0, key == NULL */ 366 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 367 struct preftrees *preftrees, int level, u64 parent, 368 u64 wanted_disk_byte, int count, 369 struct share_check *sc, gfp_t gfp_mask) 370 { 371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 372 parent, wanted_disk_byte, count, sc, gfp_mask); 373 } 374 375 /* indirect refs use parent == 0 */ 376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 377 struct preftrees *preftrees, u64 root_id, 378 const struct btrfs_key *key, int level, 379 u64 wanted_disk_byte, int count, 380 struct share_check *sc, gfp_t gfp_mask) 381 { 382 struct preftree *tree = &preftrees->indirect; 383 384 if (!key) 385 tree = &preftrees->indirect_missing_keys; 386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 387 wanted_disk_byte, count, sc, gfp_mask); 388 } 389 390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 391 { 392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 393 struct rb_node *parent = NULL; 394 struct prelim_ref *ref = NULL; 395 struct prelim_ref target = {}; 396 int result; 397 398 target.parent = bytenr; 399 400 while (*p) { 401 parent = *p; 402 ref = rb_entry(parent, struct prelim_ref, rbnode); 403 result = prelim_ref_compare(ref, &target); 404 405 if (result < 0) 406 p = &(*p)->rb_left; 407 else if (result > 0) 408 p = &(*p)->rb_right; 409 else 410 return 1; 411 } 412 return 0; 413 } 414 415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 416 struct ulist *parents, 417 struct preftrees *preftrees, struct prelim_ref *ref, 418 int level, u64 time_seq, const u64 *extent_item_pos, 419 bool ignore_offset) 420 { 421 int ret = 0; 422 int slot; 423 struct extent_buffer *eb; 424 struct btrfs_key key; 425 struct btrfs_key *key_for_search = &ref->key_for_search; 426 struct btrfs_file_extent_item *fi; 427 struct extent_inode_elem *eie = NULL, *old = NULL; 428 u64 disk_byte; 429 u64 wanted_disk_byte = ref->wanted_disk_byte; 430 u64 count = 0; 431 u64 data_offset; 432 433 if (level != 0) { 434 eb = path->nodes[level]; 435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 436 if (ret < 0) 437 return ret; 438 return 0; 439 } 440 441 /* 442 * 1. We normally enter this function with the path already pointing to 443 * the first item to check. But sometimes, we may enter it with 444 * slot == nritems. 445 * 2. We are searching for normal backref but bytenr of this leaf 446 * matches shared data backref 447 * 3. The leaf owner is not equal to the root we are searching 448 * 449 * For these cases, go to the next leaf before we continue. 450 */ 451 eb = path->nodes[0]; 452 if (path->slots[0] >= btrfs_header_nritems(eb) || 453 is_shared_data_backref(preftrees, eb->start) || 454 ref->root_id != btrfs_header_owner(eb)) { 455 if (time_seq == SEQ_LAST) 456 ret = btrfs_next_leaf(root, path); 457 else 458 ret = btrfs_next_old_leaf(root, path, time_seq); 459 } 460 461 while (!ret && count < ref->count) { 462 eb = path->nodes[0]; 463 slot = path->slots[0]; 464 465 btrfs_item_key_to_cpu(eb, &key, slot); 466 467 if (key.objectid != key_for_search->objectid || 468 key.type != BTRFS_EXTENT_DATA_KEY) 469 break; 470 471 /* 472 * We are searching for normal backref but bytenr of this leaf 473 * matches shared data backref, OR 474 * the leaf owner is not equal to the root we are searching for 475 */ 476 if (slot == 0 && 477 (is_shared_data_backref(preftrees, eb->start) || 478 ref->root_id != btrfs_header_owner(eb))) { 479 if (time_seq == SEQ_LAST) 480 ret = btrfs_next_leaf(root, path); 481 else 482 ret = btrfs_next_old_leaf(root, path, time_seq); 483 continue; 484 } 485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 487 data_offset = btrfs_file_extent_offset(eb, fi); 488 489 if (disk_byte == wanted_disk_byte) { 490 eie = NULL; 491 old = NULL; 492 if (ref->key_for_search.offset == key.offset - data_offset) 493 count++; 494 else 495 goto next; 496 if (extent_item_pos) { 497 ret = check_extent_in_eb(&key, eb, fi, 498 *extent_item_pos, 499 &eie, ignore_offset); 500 if (ret < 0) 501 break; 502 } 503 if (ret > 0) 504 goto next; 505 ret = ulist_add_merge_ptr(parents, eb->start, 506 eie, (void **)&old, GFP_NOFS); 507 if (ret < 0) 508 break; 509 if (!ret && extent_item_pos) { 510 while (old->next) 511 old = old->next; 512 old->next = eie; 513 } 514 eie = NULL; 515 } 516 next: 517 if (time_seq == SEQ_LAST) 518 ret = btrfs_next_item(root, path); 519 else 520 ret = btrfs_next_old_item(root, path, time_seq); 521 } 522 523 if (ret > 0) 524 ret = 0; 525 else if (ret < 0) 526 free_inode_elem_list(eie); 527 return ret; 528 } 529 530 /* 531 * resolve an indirect backref in the form (root_id, key, level) 532 * to a logical address 533 */ 534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 535 struct btrfs_path *path, u64 time_seq, 536 struct preftrees *preftrees, 537 struct prelim_ref *ref, struct ulist *parents, 538 const u64 *extent_item_pos, bool ignore_offset) 539 { 540 struct btrfs_root *root; 541 struct extent_buffer *eb; 542 int ret = 0; 543 int root_level; 544 int level = ref->level; 545 struct btrfs_key search_key = ref->key_for_search; 546 547 /* 548 * If we're search_commit_root we could possibly be holding locks on 549 * other tree nodes. This happens when qgroups does backref walks when 550 * adding new delayed refs. To deal with this we need to look in cache 551 * for the root, and if we don't find it then we need to search the 552 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 553 * here. 554 */ 555 if (path->search_commit_root) 556 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 557 else 558 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 559 if (IS_ERR(root)) { 560 ret = PTR_ERR(root); 561 goto out_free; 562 } 563 564 if (!path->search_commit_root && 565 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 566 ret = -ENOENT; 567 goto out; 568 } 569 570 if (btrfs_is_testing(fs_info)) { 571 ret = -ENOENT; 572 goto out; 573 } 574 575 if (path->search_commit_root) 576 root_level = btrfs_header_level(root->commit_root); 577 else if (time_seq == SEQ_LAST) 578 root_level = btrfs_header_level(root->node); 579 else 580 root_level = btrfs_old_root_level(root, time_seq); 581 582 if (root_level + 1 == level) 583 goto out; 584 585 /* 586 * We can often find data backrefs with an offset that is too large 587 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 588 * subtracting a file's offset with the data offset of its 589 * corresponding extent data item. This can happen for example in the 590 * clone ioctl. 591 * 592 * So if we detect such case we set the search key's offset to zero to 593 * make sure we will find the matching file extent item at 594 * add_all_parents(), otherwise we will miss it because the offset 595 * taken form the backref is much larger then the offset of the file 596 * extent item. This can make us scan a very large number of file 597 * extent items, but at least it will not make us miss any. 598 * 599 * This is an ugly workaround for a behaviour that should have never 600 * existed, but it does and a fix for the clone ioctl would touch a lot 601 * of places, cause backwards incompatibility and would not fix the 602 * problem for extents cloned with older kernels. 603 */ 604 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 605 search_key.offset >= LLONG_MAX) 606 search_key.offset = 0; 607 path->lowest_level = level; 608 if (time_seq == SEQ_LAST) 609 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 610 else 611 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 612 613 btrfs_debug(fs_info, 614 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 615 ref->root_id, level, ref->count, ret, 616 ref->key_for_search.objectid, ref->key_for_search.type, 617 ref->key_for_search.offset); 618 if (ret < 0) 619 goto out; 620 621 eb = path->nodes[level]; 622 while (!eb) { 623 if (WARN_ON(!level)) { 624 ret = 1; 625 goto out; 626 } 627 level--; 628 eb = path->nodes[level]; 629 } 630 631 ret = add_all_parents(root, path, parents, preftrees, ref, level, 632 time_seq, extent_item_pos, ignore_offset); 633 out: 634 btrfs_put_root(root); 635 out_free: 636 path->lowest_level = 0; 637 btrfs_release_path(path); 638 return ret; 639 } 640 641 static struct extent_inode_elem * 642 unode_aux_to_inode_list(struct ulist_node *node) 643 { 644 if (!node) 645 return NULL; 646 return (struct extent_inode_elem *)(uintptr_t)node->aux; 647 } 648 649 /* 650 * We maintain three separate rbtrees: one for direct refs, one for 651 * indirect refs which have a key, and one for indirect refs which do not 652 * have a key. Each tree does merge on insertion. 653 * 654 * Once all of the references are located, we iterate over the tree of 655 * indirect refs with missing keys. An appropriate key is located and 656 * the ref is moved onto the tree for indirect refs. After all missing 657 * keys are thus located, we iterate over the indirect ref tree, resolve 658 * each reference, and then insert the resolved reference onto the 659 * direct tree (merging there too). 660 * 661 * New backrefs (i.e., for parent nodes) are added to the appropriate 662 * rbtree as they are encountered. The new backrefs are subsequently 663 * resolved as above. 664 */ 665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 666 struct btrfs_path *path, u64 time_seq, 667 struct preftrees *preftrees, 668 const u64 *extent_item_pos, 669 struct share_check *sc, bool ignore_offset) 670 { 671 int err; 672 int ret = 0; 673 struct ulist *parents; 674 struct ulist_node *node; 675 struct ulist_iterator uiter; 676 struct rb_node *rnode; 677 678 parents = ulist_alloc(GFP_NOFS); 679 if (!parents) 680 return -ENOMEM; 681 682 /* 683 * We could trade memory usage for performance here by iterating 684 * the tree, allocating new refs for each insertion, and then 685 * freeing the entire indirect tree when we're done. In some test 686 * cases, the tree can grow quite large (~200k objects). 687 */ 688 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 689 struct prelim_ref *ref; 690 691 ref = rb_entry(rnode, struct prelim_ref, rbnode); 692 if (WARN(ref->parent, 693 "BUG: direct ref found in indirect tree")) { 694 ret = -EINVAL; 695 goto out; 696 } 697 698 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 699 preftrees->indirect.count--; 700 701 if (ref->count == 0) { 702 free_pref(ref); 703 continue; 704 } 705 706 if (sc && sc->root_objectid && 707 ref->root_id != sc->root_objectid) { 708 free_pref(ref); 709 ret = BACKREF_FOUND_SHARED; 710 goto out; 711 } 712 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 713 ref, parents, extent_item_pos, 714 ignore_offset); 715 /* 716 * we can only tolerate ENOENT,otherwise,we should catch error 717 * and return directly. 718 */ 719 if (err == -ENOENT) { 720 prelim_ref_insert(fs_info, &preftrees->direct, ref, 721 NULL); 722 continue; 723 } else if (err) { 724 free_pref(ref); 725 ret = err; 726 goto out; 727 } 728 729 /* we put the first parent into the ref at hand */ 730 ULIST_ITER_INIT(&uiter); 731 node = ulist_next(parents, &uiter); 732 ref->parent = node ? node->val : 0; 733 ref->inode_list = unode_aux_to_inode_list(node); 734 735 /* Add a prelim_ref(s) for any other parent(s). */ 736 while ((node = ulist_next(parents, &uiter))) { 737 struct prelim_ref *new_ref; 738 739 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 740 GFP_NOFS); 741 if (!new_ref) { 742 free_pref(ref); 743 ret = -ENOMEM; 744 goto out; 745 } 746 memcpy(new_ref, ref, sizeof(*ref)); 747 new_ref->parent = node->val; 748 new_ref->inode_list = unode_aux_to_inode_list(node); 749 prelim_ref_insert(fs_info, &preftrees->direct, 750 new_ref, NULL); 751 } 752 753 /* 754 * Now it's a direct ref, put it in the direct tree. We must 755 * do this last because the ref could be merged/freed here. 756 */ 757 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 758 759 ulist_reinit(parents); 760 cond_resched(); 761 } 762 out: 763 ulist_free(parents); 764 return ret; 765 } 766 767 /* 768 * read tree blocks and add keys where required. 769 */ 770 static int add_missing_keys(struct btrfs_fs_info *fs_info, 771 struct preftrees *preftrees, bool lock) 772 { 773 struct prelim_ref *ref; 774 struct extent_buffer *eb; 775 struct preftree *tree = &preftrees->indirect_missing_keys; 776 struct rb_node *node; 777 778 while ((node = rb_first_cached(&tree->root))) { 779 ref = rb_entry(node, struct prelim_ref, rbnode); 780 rb_erase_cached(node, &tree->root); 781 782 BUG_ON(ref->parent); /* should not be a direct ref */ 783 BUG_ON(ref->key_for_search.type); 784 BUG_ON(!ref->wanted_disk_byte); 785 786 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 787 ref->root_id, 0, ref->level - 1, NULL); 788 if (IS_ERR(eb)) { 789 free_pref(ref); 790 return PTR_ERR(eb); 791 } else if (!extent_buffer_uptodate(eb)) { 792 free_pref(ref); 793 free_extent_buffer(eb); 794 return -EIO; 795 } 796 if (lock) 797 btrfs_tree_read_lock(eb); 798 if (btrfs_header_level(eb) == 0) 799 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 800 else 801 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 802 if (lock) 803 btrfs_tree_read_unlock(eb); 804 free_extent_buffer(eb); 805 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 806 cond_resched(); 807 } 808 return 0; 809 } 810 811 /* 812 * add all currently queued delayed refs from this head whose seq nr is 813 * smaller or equal that seq to the list 814 */ 815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 816 struct btrfs_delayed_ref_head *head, u64 seq, 817 struct preftrees *preftrees, struct share_check *sc) 818 { 819 struct btrfs_delayed_ref_node *node; 820 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 821 struct btrfs_key key; 822 struct btrfs_key tmp_op_key; 823 struct rb_node *n; 824 int count; 825 int ret = 0; 826 827 if (extent_op && extent_op->update_key) 828 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 829 830 spin_lock(&head->lock); 831 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 832 node = rb_entry(n, struct btrfs_delayed_ref_node, 833 ref_node); 834 if (node->seq > seq) 835 continue; 836 837 switch (node->action) { 838 case BTRFS_ADD_DELAYED_EXTENT: 839 case BTRFS_UPDATE_DELAYED_HEAD: 840 WARN_ON(1); 841 continue; 842 case BTRFS_ADD_DELAYED_REF: 843 count = node->ref_mod; 844 break; 845 case BTRFS_DROP_DELAYED_REF: 846 count = node->ref_mod * -1; 847 break; 848 default: 849 BUG(); 850 } 851 switch (node->type) { 852 case BTRFS_TREE_BLOCK_REF_KEY: { 853 /* NORMAL INDIRECT METADATA backref */ 854 struct btrfs_delayed_tree_ref *ref; 855 856 ref = btrfs_delayed_node_to_tree_ref(node); 857 ret = add_indirect_ref(fs_info, preftrees, ref->root, 858 &tmp_op_key, ref->level + 1, 859 node->bytenr, count, sc, 860 GFP_ATOMIC); 861 break; 862 } 863 case BTRFS_SHARED_BLOCK_REF_KEY: { 864 /* SHARED DIRECT METADATA backref */ 865 struct btrfs_delayed_tree_ref *ref; 866 867 ref = btrfs_delayed_node_to_tree_ref(node); 868 869 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 870 ref->parent, node->bytenr, count, 871 sc, GFP_ATOMIC); 872 break; 873 } 874 case BTRFS_EXTENT_DATA_REF_KEY: { 875 /* NORMAL INDIRECT DATA backref */ 876 struct btrfs_delayed_data_ref *ref; 877 ref = btrfs_delayed_node_to_data_ref(node); 878 879 key.objectid = ref->objectid; 880 key.type = BTRFS_EXTENT_DATA_KEY; 881 key.offset = ref->offset; 882 883 /* 884 * Found a inum that doesn't match our known inum, we 885 * know it's shared. 886 */ 887 if (sc && sc->inum && ref->objectid != sc->inum) { 888 ret = BACKREF_FOUND_SHARED; 889 goto out; 890 } 891 892 ret = add_indirect_ref(fs_info, preftrees, ref->root, 893 &key, 0, node->bytenr, count, sc, 894 GFP_ATOMIC); 895 break; 896 } 897 case BTRFS_SHARED_DATA_REF_KEY: { 898 /* SHARED DIRECT FULL backref */ 899 struct btrfs_delayed_data_ref *ref; 900 901 ref = btrfs_delayed_node_to_data_ref(node); 902 903 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 904 node->bytenr, count, sc, 905 GFP_ATOMIC); 906 break; 907 } 908 default: 909 WARN_ON(1); 910 } 911 /* 912 * We must ignore BACKREF_FOUND_SHARED until all delayed 913 * refs have been checked. 914 */ 915 if (ret && (ret != BACKREF_FOUND_SHARED)) 916 break; 917 } 918 if (!ret) 919 ret = extent_is_shared(sc); 920 out: 921 spin_unlock(&head->lock); 922 return ret; 923 } 924 925 /* 926 * add all inline backrefs for bytenr to the list 927 * 928 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 929 */ 930 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 931 struct btrfs_path *path, u64 bytenr, 932 int *info_level, struct preftrees *preftrees, 933 struct share_check *sc) 934 { 935 int ret = 0; 936 int slot; 937 struct extent_buffer *leaf; 938 struct btrfs_key key; 939 struct btrfs_key found_key; 940 unsigned long ptr; 941 unsigned long end; 942 struct btrfs_extent_item *ei; 943 u64 flags; 944 u64 item_size; 945 946 /* 947 * enumerate all inline refs 948 */ 949 leaf = path->nodes[0]; 950 slot = path->slots[0]; 951 952 item_size = btrfs_item_size_nr(leaf, slot); 953 BUG_ON(item_size < sizeof(*ei)); 954 955 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 956 flags = btrfs_extent_flags(leaf, ei); 957 btrfs_item_key_to_cpu(leaf, &found_key, slot); 958 959 ptr = (unsigned long)(ei + 1); 960 end = (unsigned long)ei + item_size; 961 962 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 963 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 964 struct btrfs_tree_block_info *info; 965 966 info = (struct btrfs_tree_block_info *)ptr; 967 *info_level = btrfs_tree_block_level(leaf, info); 968 ptr += sizeof(struct btrfs_tree_block_info); 969 BUG_ON(ptr > end); 970 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 971 *info_level = found_key.offset; 972 } else { 973 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 974 } 975 976 while (ptr < end) { 977 struct btrfs_extent_inline_ref *iref; 978 u64 offset; 979 int type; 980 981 iref = (struct btrfs_extent_inline_ref *)ptr; 982 type = btrfs_get_extent_inline_ref_type(leaf, iref, 983 BTRFS_REF_TYPE_ANY); 984 if (type == BTRFS_REF_TYPE_INVALID) 985 return -EUCLEAN; 986 987 offset = btrfs_extent_inline_ref_offset(leaf, iref); 988 989 switch (type) { 990 case BTRFS_SHARED_BLOCK_REF_KEY: 991 ret = add_direct_ref(fs_info, preftrees, 992 *info_level + 1, offset, 993 bytenr, 1, NULL, GFP_NOFS); 994 break; 995 case BTRFS_SHARED_DATA_REF_KEY: { 996 struct btrfs_shared_data_ref *sdref; 997 int count; 998 999 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1000 count = btrfs_shared_data_ref_count(leaf, sdref); 1001 1002 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1003 bytenr, count, sc, GFP_NOFS); 1004 break; 1005 } 1006 case BTRFS_TREE_BLOCK_REF_KEY: 1007 ret = add_indirect_ref(fs_info, preftrees, offset, 1008 NULL, *info_level + 1, 1009 bytenr, 1, NULL, GFP_NOFS); 1010 break; 1011 case BTRFS_EXTENT_DATA_REF_KEY: { 1012 struct btrfs_extent_data_ref *dref; 1013 int count; 1014 u64 root; 1015 1016 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1017 count = btrfs_extent_data_ref_count(leaf, dref); 1018 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1019 dref); 1020 key.type = BTRFS_EXTENT_DATA_KEY; 1021 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1022 1023 if (sc && sc->inum && key.objectid != sc->inum) { 1024 ret = BACKREF_FOUND_SHARED; 1025 break; 1026 } 1027 1028 root = btrfs_extent_data_ref_root(leaf, dref); 1029 1030 ret = add_indirect_ref(fs_info, preftrees, root, 1031 &key, 0, bytenr, count, 1032 sc, GFP_NOFS); 1033 break; 1034 } 1035 default: 1036 WARN_ON(1); 1037 } 1038 if (ret) 1039 return ret; 1040 ptr += btrfs_extent_inline_ref_size(type); 1041 } 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * add all non-inline backrefs for bytenr to the list 1048 * 1049 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1050 */ 1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1052 struct btrfs_path *path, u64 bytenr, 1053 int info_level, struct preftrees *preftrees, 1054 struct share_check *sc) 1055 { 1056 struct btrfs_root *extent_root = fs_info->extent_root; 1057 int ret; 1058 int slot; 1059 struct extent_buffer *leaf; 1060 struct btrfs_key key; 1061 1062 while (1) { 1063 ret = btrfs_next_item(extent_root, path); 1064 if (ret < 0) 1065 break; 1066 if (ret) { 1067 ret = 0; 1068 break; 1069 } 1070 1071 slot = path->slots[0]; 1072 leaf = path->nodes[0]; 1073 btrfs_item_key_to_cpu(leaf, &key, slot); 1074 1075 if (key.objectid != bytenr) 1076 break; 1077 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1078 continue; 1079 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1080 break; 1081 1082 switch (key.type) { 1083 case BTRFS_SHARED_BLOCK_REF_KEY: 1084 /* SHARED DIRECT METADATA backref */ 1085 ret = add_direct_ref(fs_info, preftrees, 1086 info_level + 1, key.offset, 1087 bytenr, 1, NULL, GFP_NOFS); 1088 break; 1089 case BTRFS_SHARED_DATA_REF_KEY: { 1090 /* SHARED DIRECT FULL backref */ 1091 struct btrfs_shared_data_ref *sdref; 1092 int count; 1093 1094 sdref = btrfs_item_ptr(leaf, slot, 1095 struct btrfs_shared_data_ref); 1096 count = btrfs_shared_data_ref_count(leaf, sdref); 1097 ret = add_direct_ref(fs_info, preftrees, 0, 1098 key.offset, bytenr, count, 1099 sc, GFP_NOFS); 1100 break; 1101 } 1102 case BTRFS_TREE_BLOCK_REF_KEY: 1103 /* NORMAL INDIRECT METADATA backref */ 1104 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1105 NULL, info_level + 1, bytenr, 1106 1, NULL, GFP_NOFS); 1107 break; 1108 case BTRFS_EXTENT_DATA_REF_KEY: { 1109 /* NORMAL INDIRECT DATA backref */ 1110 struct btrfs_extent_data_ref *dref; 1111 int count; 1112 u64 root; 1113 1114 dref = btrfs_item_ptr(leaf, slot, 1115 struct btrfs_extent_data_ref); 1116 count = btrfs_extent_data_ref_count(leaf, dref); 1117 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1118 dref); 1119 key.type = BTRFS_EXTENT_DATA_KEY; 1120 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1121 1122 if (sc && sc->inum && key.objectid != sc->inum) { 1123 ret = BACKREF_FOUND_SHARED; 1124 break; 1125 } 1126 1127 root = btrfs_extent_data_ref_root(leaf, dref); 1128 ret = add_indirect_ref(fs_info, preftrees, root, 1129 &key, 0, bytenr, count, 1130 sc, GFP_NOFS); 1131 break; 1132 } 1133 default: 1134 WARN_ON(1); 1135 } 1136 if (ret) 1137 return ret; 1138 1139 } 1140 1141 return ret; 1142 } 1143 1144 /* 1145 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1146 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1147 * indirect refs to their parent bytenr. 1148 * When roots are found, they're added to the roots list 1149 * 1150 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1151 * much like trans == NULL case, the difference only lies in it will not 1152 * commit root. 1153 * The special case is for qgroup to search roots in commit_transaction(). 1154 * 1155 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1156 * shared extent is detected. 1157 * 1158 * Otherwise this returns 0 for success and <0 for an error. 1159 * 1160 * If ignore_offset is set to false, only extent refs whose offsets match 1161 * extent_item_pos are returned. If true, every extent ref is returned 1162 * and extent_item_pos is ignored. 1163 * 1164 * FIXME some caching might speed things up 1165 */ 1166 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1167 struct btrfs_fs_info *fs_info, u64 bytenr, 1168 u64 time_seq, struct ulist *refs, 1169 struct ulist *roots, const u64 *extent_item_pos, 1170 struct share_check *sc, bool ignore_offset) 1171 { 1172 struct btrfs_key key; 1173 struct btrfs_path *path; 1174 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1175 struct btrfs_delayed_ref_head *head; 1176 int info_level = 0; 1177 int ret; 1178 struct prelim_ref *ref; 1179 struct rb_node *node; 1180 struct extent_inode_elem *eie = NULL; 1181 struct preftrees preftrees = { 1182 .direct = PREFTREE_INIT, 1183 .indirect = PREFTREE_INIT, 1184 .indirect_missing_keys = PREFTREE_INIT 1185 }; 1186 1187 key.objectid = bytenr; 1188 key.offset = (u64)-1; 1189 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1190 key.type = BTRFS_METADATA_ITEM_KEY; 1191 else 1192 key.type = BTRFS_EXTENT_ITEM_KEY; 1193 1194 path = btrfs_alloc_path(); 1195 if (!path) 1196 return -ENOMEM; 1197 if (!trans) { 1198 path->search_commit_root = 1; 1199 path->skip_locking = 1; 1200 } 1201 1202 if (time_seq == SEQ_LAST) 1203 path->skip_locking = 1; 1204 1205 /* 1206 * grab both a lock on the path and a lock on the delayed ref head. 1207 * We need both to get a consistent picture of how the refs look 1208 * at a specified point in time 1209 */ 1210 again: 1211 head = NULL; 1212 1213 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1214 if (ret < 0) 1215 goto out; 1216 BUG_ON(ret == 0); 1217 1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1219 if (trans && likely(trans->type != __TRANS_DUMMY) && 1220 time_seq != SEQ_LAST) { 1221 #else 1222 if (trans && time_seq != SEQ_LAST) { 1223 #endif 1224 /* 1225 * look if there are updates for this ref queued and lock the 1226 * head 1227 */ 1228 delayed_refs = &trans->transaction->delayed_refs; 1229 spin_lock(&delayed_refs->lock); 1230 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1231 if (head) { 1232 if (!mutex_trylock(&head->mutex)) { 1233 refcount_inc(&head->refs); 1234 spin_unlock(&delayed_refs->lock); 1235 1236 btrfs_release_path(path); 1237 1238 /* 1239 * Mutex was contended, block until it's 1240 * released and try again 1241 */ 1242 mutex_lock(&head->mutex); 1243 mutex_unlock(&head->mutex); 1244 btrfs_put_delayed_ref_head(head); 1245 goto again; 1246 } 1247 spin_unlock(&delayed_refs->lock); 1248 ret = add_delayed_refs(fs_info, head, time_seq, 1249 &preftrees, sc); 1250 mutex_unlock(&head->mutex); 1251 if (ret) 1252 goto out; 1253 } else { 1254 spin_unlock(&delayed_refs->lock); 1255 } 1256 } 1257 1258 if (path->slots[0]) { 1259 struct extent_buffer *leaf; 1260 int slot; 1261 1262 path->slots[0]--; 1263 leaf = path->nodes[0]; 1264 slot = path->slots[0]; 1265 btrfs_item_key_to_cpu(leaf, &key, slot); 1266 if (key.objectid == bytenr && 1267 (key.type == BTRFS_EXTENT_ITEM_KEY || 1268 key.type == BTRFS_METADATA_ITEM_KEY)) { 1269 ret = add_inline_refs(fs_info, path, bytenr, 1270 &info_level, &preftrees, sc); 1271 if (ret) 1272 goto out; 1273 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1274 &preftrees, sc); 1275 if (ret) 1276 goto out; 1277 } 1278 } 1279 1280 btrfs_release_path(path); 1281 1282 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1283 if (ret) 1284 goto out; 1285 1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1287 1288 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1289 extent_item_pos, sc, ignore_offset); 1290 if (ret) 1291 goto out; 1292 1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1294 1295 /* 1296 * This walks the tree of merged and resolved refs. Tree blocks are 1297 * read in as needed. Unique entries are added to the ulist, and 1298 * the list of found roots is updated. 1299 * 1300 * We release the entire tree in one go before returning. 1301 */ 1302 node = rb_first_cached(&preftrees.direct.root); 1303 while (node) { 1304 ref = rb_entry(node, struct prelim_ref, rbnode); 1305 node = rb_next(&ref->rbnode); 1306 /* 1307 * ref->count < 0 can happen here if there are delayed 1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1309 * prelim_ref_insert() relies on this when merging 1310 * identical refs to keep the overall count correct. 1311 * prelim_ref_insert() will merge only those refs 1312 * which compare identically. Any refs having 1313 * e.g. different offsets would not be merged, 1314 * and would retain their original ref->count < 0. 1315 */ 1316 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1317 if (sc && sc->root_objectid && 1318 ref->root_id != sc->root_objectid) { 1319 ret = BACKREF_FOUND_SHARED; 1320 goto out; 1321 } 1322 1323 /* no parent == root of tree */ 1324 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1325 if (ret < 0) 1326 goto out; 1327 } 1328 if (ref->count && ref->parent) { 1329 if (extent_item_pos && !ref->inode_list && 1330 ref->level == 0) { 1331 struct extent_buffer *eb; 1332 1333 eb = read_tree_block(fs_info, ref->parent, 0, 1334 0, ref->level, NULL); 1335 if (IS_ERR(eb)) { 1336 ret = PTR_ERR(eb); 1337 goto out; 1338 } else if (!extent_buffer_uptodate(eb)) { 1339 free_extent_buffer(eb); 1340 ret = -EIO; 1341 goto out; 1342 } 1343 1344 if (!path->skip_locking) 1345 btrfs_tree_read_lock(eb); 1346 ret = find_extent_in_eb(eb, bytenr, 1347 *extent_item_pos, &eie, ignore_offset); 1348 if (!path->skip_locking) 1349 btrfs_tree_read_unlock(eb); 1350 free_extent_buffer(eb); 1351 if (ret < 0) 1352 goto out; 1353 ref->inode_list = eie; 1354 } 1355 ret = ulist_add_merge_ptr(refs, ref->parent, 1356 ref->inode_list, 1357 (void **)&eie, GFP_NOFS); 1358 if (ret < 0) 1359 goto out; 1360 if (!ret && extent_item_pos) { 1361 /* 1362 * we've recorded that parent, so we must extend 1363 * its inode list here 1364 */ 1365 BUG_ON(!eie); 1366 while (eie->next) 1367 eie = eie->next; 1368 eie->next = ref->inode_list; 1369 } 1370 eie = NULL; 1371 } 1372 cond_resched(); 1373 } 1374 1375 out: 1376 btrfs_free_path(path); 1377 1378 prelim_release(&preftrees.direct); 1379 prelim_release(&preftrees.indirect); 1380 prelim_release(&preftrees.indirect_missing_keys); 1381 1382 if (ret < 0) 1383 free_inode_elem_list(eie); 1384 return ret; 1385 } 1386 1387 static void free_leaf_list(struct ulist *blocks) 1388 { 1389 struct ulist_node *node = NULL; 1390 struct extent_inode_elem *eie; 1391 struct ulist_iterator uiter; 1392 1393 ULIST_ITER_INIT(&uiter); 1394 while ((node = ulist_next(blocks, &uiter))) { 1395 if (!node->aux) 1396 continue; 1397 eie = unode_aux_to_inode_list(node); 1398 free_inode_elem_list(eie); 1399 node->aux = 0; 1400 } 1401 1402 ulist_free(blocks); 1403 } 1404 1405 /* 1406 * Finds all leafs with a reference to the specified combination of bytenr and 1407 * offset. key_list_head will point to a list of corresponding keys (caller must 1408 * free each list element). The leafs will be stored in the leafs ulist, which 1409 * must be freed with ulist_free. 1410 * 1411 * returns 0 on success, <0 on error 1412 */ 1413 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1414 struct btrfs_fs_info *fs_info, u64 bytenr, 1415 u64 time_seq, struct ulist **leafs, 1416 const u64 *extent_item_pos, bool ignore_offset) 1417 { 1418 int ret; 1419 1420 *leafs = ulist_alloc(GFP_NOFS); 1421 if (!*leafs) 1422 return -ENOMEM; 1423 1424 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1425 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1426 if (ret < 0 && ret != -ENOENT) { 1427 free_leaf_list(*leafs); 1428 return ret; 1429 } 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * walk all backrefs for a given extent to find all roots that reference this 1436 * extent. Walking a backref means finding all extents that reference this 1437 * extent and in turn walk the backrefs of those, too. Naturally this is a 1438 * recursive process, but here it is implemented in an iterative fashion: We 1439 * find all referencing extents for the extent in question and put them on a 1440 * list. In turn, we find all referencing extents for those, further appending 1441 * to the list. The way we iterate the list allows adding more elements after 1442 * the current while iterating. The process stops when we reach the end of the 1443 * list. Found roots are added to the roots list. 1444 * 1445 * returns 0 on success, < 0 on error. 1446 */ 1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1448 struct btrfs_fs_info *fs_info, u64 bytenr, 1449 u64 time_seq, struct ulist **roots, 1450 bool ignore_offset) 1451 { 1452 struct ulist *tmp; 1453 struct ulist_node *node = NULL; 1454 struct ulist_iterator uiter; 1455 int ret; 1456 1457 tmp = ulist_alloc(GFP_NOFS); 1458 if (!tmp) 1459 return -ENOMEM; 1460 *roots = ulist_alloc(GFP_NOFS); 1461 if (!*roots) { 1462 ulist_free(tmp); 1463 return -ENOMEM; 1464 } 1465 1466 ULIST_ITER_INIT(&uiter); 1467 while (1) { 1468 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1469 tmp, *roots, NULL, NULL, ignore_offset); 1470 if (ret < 0 && ret != -ENOENT) { 1471 ulist_free(tmp); 1472 ulist_free(*roots); 1473 *roots = NULL; 1474 return ret; 1475 } 1476 node = ulist_next(tmp, &uiter); 1477 if (!node) 1478 break; 1479 bytenr = node->val; 1480 cond_resched(); 1481 } 1482 1483 ulist_free(tmp); 1484 return 0; 1485 } 1486 1487 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1488 struct btrfs_fs_info *fs_info, u64 bytenr, 1489 u64 time_seq, struct ulist **roots, 1490 bool ignore_offset) 1491 { 1492 int ret; 1493 1494 if (!trans) 1495 down_read(&fs_info->commit_root_sem); 1496 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1497 time_seq, roots, ignore_offset); 1498 if (!trans) 1499 up_read(&fs_info->commit_root_sem); 1500 return ret; 1501 } 1502 1503 /** 1504 * Check if an extent is shared or not 1505 * 1506 * @root: root inode belongs to 1507 * @inum: inode number of the inode whose extent we are checking 1508 * @bytenr: logical bytenr of the extent we are checking 1509 * @roots: list of roots this extent is shared among 1510 * @tmp: temporary list used for iteration 1511 * 1512 * btrfs_check_shared uses the backref walking code but will short 1513 * circuit as soon as it finds a root or inode that doesn't match the 1514 * one passed in. This provides a significant performance benefit for 1515 * callers (such as fiemap) which want to know whether the extent is 1516 * shared but do not need a ref count. 1517 * 1518 * This attempts to attach to the running transaction in order to account for 1519 * delayed refs, but continues on even when no running transaction exists. 1520 * 1521 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1522 */ 1523 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1524 struct ulist *roots, struct ulist *tmp) 1525 { 1526 struct btrfs_fs_info *fs_info = root->fs_info; 1527 struct btrfs_trans_handle *trans; 1528 struct ulist_iterator uiter; 1529 struct ulist_node *node; 1530 struct seq_list elem = SEQ_LIST_INIT(elem); 1531 int ret = 0; 1532 struct share_check shared = { 1533 .root_objectid = root->root_key.objectid, 1534 .inum = inum, 1535 .share_count = 0, 1536 }; 1537 1538 ulist_init(roots); 1539 ulist_init(tmp); 1540 1541 trans = btrfs_join_transaction_nostart(root); 1542 if (IS_ERR(trans)) { 1543 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1544 ret = PTR_ERR(trans); 1545 goto out; 1546 } 1547 trans = NULL; 1548 down_read(&fs_info->commit_root_sem); 1549 } else { 1550 btrfs_get_tree_mod_seq(fs_info, &elem); 1551 } 1552 1553 ULIST_ITER_INIT(&uiter); 1554 while (1) { 1555 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1556 roots, NULL, &shared, false); 1557 if (ret == BACKREF_FOUND_SHARED) { 1558 /* this is the only condition under which we return 1 */ 1559 ret = 1; 1560 break; 1561 } 1562 if (ret < 0 && ret != -ENOENT) 1563 break; 1564 ret = 0; 1565 node = ulist_next(tmp, &uiter); 1566 if (!node) 1567 break; 1568 bytenr = node->val; 1569 shared.share_count = 0; 1570 cond_resched(); 1571 } 1572 1573 if (trans) { 1574 btrfs_put_tree_mod_seq(fs_info, &elem); 1575 btrfs_end_transaction(trans); 1576 } else { 1577 up_read(&fs_info->commit_root_sem); 1578 } 1579 out: 1580 ulist_release(roots); 1581 ulist_release(tmp); 1582 return ret; 1583 } 1584 1585 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1586 u64 start_off, struct btrfs_path *path, 1587 struct btrfs_inode_extref **ret_extref, 1588 u64 *found_off) 1589 { 1590 int ret, slot; 1591 struct btrfs_key key; 1592 struct btrfs_key found_key; 1593 struct btrfs_inode_extref *extref; 1594 const struct extent_buffer *leaf; 1595 unsigned long ptr; 1596 1597 key.objectid = inode_objectid; 1598 key.type = BTRFS_INODE_EXTREF_KEY; 1599 key.offset = start_off; 1600 1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1602 if (ret < 0) 1603 return ret; 1604 1605 while (1) { 1606 leaf = path->nodes[0]; 1607 slot = path->slots[0]; 1608 if (slot >= btrfs_header_nritems(leaf)) { 1609 /* 1610 * If the item at offset is not found, 1611 * btrfs_search_slot will point us to the slot 1612 * where it should be inserted. In our case 1613 * that will be the slot directly before the 1614 * next INODE_REF_KEY_V2 item. In the case 1615 * that we're pointing to the last slot in a 1616 * leaf, we must move one leaf over. 1617 */ 1618 ret = btrfs_next_leaf(root, path); 1619 if (ret) { 1620 if (ret >= 1) 1621 ret = -ENOENT; 1622 break; 1623 } 1624 continue; 1625 } 1626 1627 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1628 1629 /* 1630 * Check that we're still looking at an extended ref key for 1631 * this particular objectid. If we have different 1632 * objectid or type then there are no more to be found 1633 * in the tree and we can exit. 1634 */ 1635 ret = -ENOENT; 1636 if (found_key.objectid != inode_objectid) 1637 break; 1638 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1639 break; 1640 1641 ret = 0; 1642 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1643 extref = (struct btrfs_inode_extref *)ptr; 1644 *ret_extref = extref; 1645 if (found_off) 1646 *found_off = found_key.offset; 1647 break; 1648 } 1649 1650 return ret; 1651 } 1652 1653 /* 1654 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1655 * Elements of the path are separated by '/' and the path is guaranteed to be 1656 * 0-terminated. the path is only given within the current file system. 1657 * Therefore, it never starts with a '/'. the caller is responsible to provide 1658 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1659 * the start point of the resulting string is returned. this pointer is within 1660 * dest, normally. 1661 * in case the path buffer would overflow, the pointer is decremented further 1662 * as if output was written to the buffer, though no more output is actually 1663 * generated. that way, the caller can determine how much space would be 1664 * required for the path to fit into the buffer. in that case, the returned 1665 * value will be smaller than dest. callers must check this! 1666 */ 1667 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1668 u32 name_len, unsigned long name_off, 1669 struct extent_buffer *eb_in, u64 parent, 1670 char *dest, u32 size) 1671 { 1672 int slot; 1673 u64 next_inum; 1674 int ret; 1675 s64 bytes_left = ((s64)size) - 1; 1676 struct extent_buffer *eb = eb_in; 1677 struct btrfs_key found_key; 1678 struct btrfs_inode_ref *iref; 1679 1680 if (bytes_left >= 0) 1681 dest[bytes_left] = '\0'; 1682 1683 while (1) { 1684 bytes_left -= name_len; 1685 if (bytes_left >= 0) 1686 read_extent_buffer(eb, dest + bytes_left, 1687 name_off, name_len); 1688 if (eb != eb_in) { 1689 if (!path->skip_locking) 1690 btrfs_tree_read_unlock(eb); 1691 free_extent_buffer(eb); 1692 } 1693 ret = btrfs_find_item(fs_root, path, parent, 0, 1694 BTRFS_INODE_REF_KEY, &found_key); 1695 if (ret > 0) 1696 ret = -ENOENT; 1697 if (ret) 1698 break; 1699 1700 next_inum = found_key.offset; 1701 1702 /* regular exit ahead */ 1703 if (parent == next_inum) 1704 break; 1705 1706 slot = path->slots[0]; 1707 eb = path->nodes[0]; 1708 /* make sure we can use eb after releasing the path */ 1709 if (eb != eb_in) { 1710 path->nodes[0] = NULL; 1711 path->locks[0] = 0; 1712 } 1713 btrfs_release_path(path); 1714 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1715 1716 name_len = btrfs_inode_ref_name_len(eb, iref); 1717 name_off = (unsigned long)(iref + 1); 1718 1719 parent = next_inum; 1720 --bytes_left; 1721 if (bytes_left >= 0) 1722 dest[bytes_left] = '/'; 1723 } 1724 1725 btrfs_release_path(path); 1726 1727 if (ret) 1728 return ERR_PTR(ret); 1729 1730 return dest + bytes_left; 1731 } 1732 1733 /* 1734 * this makes the path point to (logical EXTENT_ITEM *) 1735 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1736 * tree blocks and <0 on error. 1737 */ 1738 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1739 struct btrfs_path *path, struct btrfs_key *found_key, 1740 u64 *flags_ret) 1741 { 1742 int ret; 1743 u64 flags; 1744 u64 size = 0; 1745 u32 item_size; 1746 const struct extent_buffer *eb; 1747 struct btrfs_extent_item *ei; 1748 struct btrfs_key key; 1749 1750 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1751 key.type = BTRFS_METADATA_ITEM_KEY; 1752 else 1753 key.type = BTRFS_EXTENT_ITEM_KEY; 1754 key.objectid = logical; 1755 key.offset = (u64)-1; 1756 1757 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1758 if (ret < 0) 1759 return ret; 1760 1761 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1762 if (ret) { 1763 if (ret > 0) 1764 ret = -ENOENT; 1765 return ret; 1766 } 1767 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1768 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1769 size = fs_info->nodesize; 1770 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1771 size = found_key->offset; 1772 1773 if (found_key->objectid > logical || 1774 found_key->objectid + size <= logical) { 1775 btrfs_debug(fs_info, 1776 "logical %llu is not within any extent", logical); 1777 return -ENOENT; 1778 } 1779 1780 eb = path->nodes[0]; 1781 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1782 BUG_ON(item_size < sizeof(*ei)); 1783 1784 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1785 flags = btrfs_extent_flags(eb, ei); 1786 1787 btrfs_debug(fs_info, 1788 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1789 logical, logical - found_key->objectid, found_key->objectid, 1790 found_key->offset, flags, item_size); 1791 1792 WARN_ON(!flags_ret); 1793 if (flags_ret) { 1794 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1795 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1796 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1797 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1798 else 1799 BUG(); 1800 return 0; 1801 } 1802 1803 return -EIO; 1804 } 1805 1806 /* 1807 * helper function to iterate extent inline refs. ptr must point to a 0 value 1808 * for the first call and may be modified. it is used to track state. 1809 * if more refs exist, 0 is returned and the next call to 1810 * get_extent_inline_ref must pass the modified ptr parameter to get the 1811 * next ref. after the last ref was processed, 1 is returned. 1812 * returns <0 on error 1813 */ 1814 static int get_extent_inline_ref(unsigned long *ptr, 1815 const struct extent_buffer *eb, 1816 const struct btrfs_key *key, 1817 const struct btrfs_extent_item *ei, 1818 u32 item_size, 1819 struct btrfs_extent_inline_ref **out_eiref, 1820 int *out_type) 1821 { 1822 unsigned long end; 1823 u64 flags; 1824 struct btrfs_tree_block_info *info; 1825 1826 if (!*ptr) { 1827 /* first call */ 1828 flags = btrfs_extent_flags(eb, ei); 1829 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1830 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1831 /* a skinny metadata extent */ 1832 *out_eiref = 1833 (struct btrfs_extent_inline_ref *)(ei + 1); 1834 } else { 1835 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1836 info = (struct btrfs_tree_block_info *)(ei + 1); 1837 *out_eiref = 1838 (struct btrfs_extent_inline_ref *)(info + 1); 1839 } 1840 } else { 1841 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1842 } 1843 *ptr = (unsigned long)*out_eiref; 1844 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1845 return -ENOENT; 1846 } 1847 1848 end = (unsigned long)ei + item_size; 1849 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1850 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1851 BTRFS_REF_TYPE_ANY); 1852 if (*out_type == BTRFS_REF_TYPE_INVALID) 1853 return -EUCLEAN; 1854 1855 *ptr += btrfs_extent_inline_ref_size(*out_type); 1856 WARN_ON(*ptr > end); 1857 if (*ptr == end) 1858 return 1; /* last */ 1859 1860 return 0; 1861 } 1862 1863 /* 1864 * reads the tree block backref for an extent. tree level and root are returned 1865 * through out_level and out_root. ptr must point to a 0 value for the first 1866 * call and may be modified (see get_extent_inline_ref comment). 1867 * returns 0 if data was provided, 1 if there was no more data to provide or 1868 * <0 on error. 1869 */ 1870 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1871 struct btrfs_key *key, struct btrfs_extent_item *ei, 1872 u32 item_size, u64 *out_root, u8 *out_level) 1873 { 1874 int ret; 1875 int type; 1876 struct btrfs_extent_inline_ref *eiref; 1877 1878 if (*ptr == (unsigned long)-1) 1879 return 1; 1880 1881 while (1) { 1882 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1883 &eiref, &type); 1884 if (ret < 0) 1885 return ret; 1886 1887 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1888 type == BTRFS_SHARED_BLOCK_REF_KEY) 1889 break; 1890 1891 if (ret == 1) 1892 return 1; 1893 } 1894 1895 /* we can treat both ref types equally here */ 1896 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1897 1898 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1899 struct btrfs_tree_block_info *info; 1900 1901 info = (struct btrfs_tree_block_info *)(ei + 1); 1902 *out_level = btrfs_tree_block_level(eb, info); 1903 } else { 1904 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1905 *out_level = (u8)key->offset; 1906 } 1907 1908 if (ret == 1) 1909 *ptr = (unsigned long)-1; 1910 1911 return 0; 1912 } 1913 1914 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1915 struct extent_inode_elem *inode_list, 1916 u64 root, u64 extent_item_objectid, 1917 iterate_extent_inodes_t *iterate, void *ctx) 1918 { 1919 struct extent_inode_elem *eie; 1920 int ret = 0; 1921 1922 for (eie = inode_list; eie; eie = eie->next) { 1923 btrfs_debug(fs_info, 1924 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1925 extent_item_objectid, eie->inum, 1926 eie->offset, root); 1927 ret = iterate(eie->inum, eie->offset, root, ctx); 1928 if (ret) { 1929 btrfs_debug(fs_info, 1930 "stopping iteration for %llu due to ret=%d", 1931 extent_item_objectid, ret); 1932 break; 1933 } 1934 } 1935 1936 return ret; 1937 } 1938 1939 /* 1940 * calls iterate() for every inode that references the extent identified by 1941 * the given parameters. 1942 * when the iterator function returns a non-zero value, iteration stops. 1943 */ 1944 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1945 u64 extent_item_objectid, u64 extent_item_pos, 1946 int search_commit_root, 1947 iterate_extent_inodes_t *iterate, void *ctx, 1948 bool ignore_offset) 1949 { 1950 int ret; 1951 struct btrfs_trans_handle *trans = NULL; 1952 struct ulist *refs = NULL; 1953 struct ulist *roots = NULL; 1954 struct ulist_node *ref_node = NULL; 1955 struct ulist_node *root_node = NULL; 1956 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1957 struct ulist_iterator ref_uiter; 1958 struct ulist_iterator root_uiter; 1959 1960 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1961 extent_item_objectid); 1962 1963 if (!search_commit_root) { 1964 trans = btrfs_attach_transaction(fs_info->extent_root); 1965 if (IS_ERR(trans)) { 1966 if (PTR_ERR(trans) != -ENOENT && 1967 PTR_ERR(trans) != -EROFS) 1968 return PTR_ERR(trans); 1969 trans = NULL; 1970 } 1971 } 1972 1973 if (trans) 1974 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1975 else 1976 down_read(&fs_info->commit_root_sem); 1977 1978 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1979 tree_mod_seq_elem.seq, &refs, 1980 &extent_item_pos, ignore_offset); 1981 if (ret) 1982 goto out; 1983 1984 ULIST_ITER_INIT(&ref_uiter); 1985 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1986 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1987 tree_mod_seq_elem.seq, &roots, 1988 ignore_offset); 1989 if (ret) 1990 break; 1991 ULIST_ITER_INIT(&root_uiter); 1992 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1993 btrfs_debug(fs_info, 1994 "root %llu references leaf %llu, data list %#llx", 1995 root_node->val, ref_node->val, 1996 ref_node->aux); 1997 ret = iterate_leaf_refs(fs_info, 1998 (struct extent_inode_elem *) 1999 (uintptr_t)ref_node->aux, 2000 root_node->val, 2001 extent_item_objectid, 2002 iterate, ctx); 2003 } 2004 ulist_free(roots); 2005 } 2006 2007 free_leaf_list(refs); 2008 out: 2009 if (trans) { 2010 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2011 btrfs_end_transaction(trans); 2012 } else { 2013 up_read(&fs_info->commit_root_sem); 2014 } 2015 2016 return ret; 2017 } 2018 2019 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2020 struct btrfs_path *path, 2021 iterate_extent_inodes_t *iterate, void *ctx, 2022 bool ignore_offset) 2023 { 2024 int ret; 2025 u64 extent_item_pos; 2026 u64 flags = 0; 2027 struct btrfs_key found_key; 2028 int search_commit_root = path->search_commit_root; 2029 2030 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2031 btrfs_release_path(path); 2032 if (ret < 0) 2033 return ret; 2034 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2035 return -EINVAL; 2036 2037 extent_item_pos = logical - found_key.objectid; 2038 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2039 extent_item_pos, search_commit_root, 2040 iterate, ctx, ignore_offset); 2041 2042 return ret; 2043 } 2044 2045 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2046 struct extent_buffer *eb, void *ctx); 2047 2048 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2049 struct btrfs_path *path, 2050 iterate_irefs_t *iterate, void *ctx) 2051 { 2052 int ret = 0; 2053 int slot; 2054 u32 cur; 2055 u32 len; 2056 u32 name_len; 2057 u64 parent = 0; 2058 int found = 0; 2059 struct extent_buffer *eb; 2060 struct btrfs_item *item; 2061 struct btrfs_inode_ref *iref; 2062 struct btrfs_key found_key; 2063 2064 while (!ret) { 2065 ret = btrfs_find_item(fs_root, path, inum, 2066 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2067 &found_key); 2068 2069 if (ret < 0) 2070 break; 2071 if (ret) { 2072 ret = found ? 0 : -ENOENT; 2073 break; 2074 } 2075 ++found; 2076 2077 parent = found_key.offset; 2078 slot = path->slots[0]; 2079 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2080 if (!eb) { 2081 ret = -ENOMEM; 2082 break; 2083 } 2084 btrfs_release_path(path); 2085 2086 item = btrfs_item_nr(slot); 2087 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2088 2089 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2090 name_len = btrfs_inode_ref_name_len(eb, iref); 2091 /* path must be released before calling iterate()! */ 2092 btrfs_debug(fs_root->fs_info, 2093 "following ref at offset %u for inode %llu in tree %llu", 2094 cur, found_key.objectid, 2095 fs_root->root_key.objectid); 2096 ret = iterate(parent, name_len, 2097 (unsigned long)(iref + 1), eb, ctx); 2098 if (ret) 2099 break; 2100 len = sizeof(*iref) + name_len; 2101 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2102 } 2103 free_extent_buffer(eb); 2104 } 2105 2106 btrfs_release_path(path); 2107 2108 return ret; 2109 } 2110 2111 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2112 struct btrfs_path *path, 2113 iterate_irefs_t *iterate, void *ctx) 2114 { 2115 int ret; 2116 int slot; 2117 u64 offset = 0; 2118 u64 parent; 2119 int found = 0; 2120 struct extent_buffer *eb; 2121 struct btrfs_inode_extref *extref; 2122 u32 item_size; 2123 u32 cur_offset; 2124 unsigned long ptr; 2125 2126 while (1) { 2127 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2128 &offset); 2129 if (ret < 0) 2130 break; 2131 if (ret) { 2132 ret = found ? 0 : -ENOENT; 2133 break; 2134 } 2135 ++found; 2136 2137 slot = path->slots[0]; 2138 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2139 if (!eb) { 2140 ret = -ENOMEM; 2141 break; 2142 } 2143 btrfs_release_path(path); 2144 2145 item_size = btrfs_item_size_nr(eb, slot); 2146 ptr = btrfs_item_ptr_offset(eb, slot); 2147 cur_offset = 0; 2148 2149 while (cur_offset < item_size) { 2150 u32 name_len; 2151 2152 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2153 parent = btrfs_inode_extref_parent(eb, extref); 2154 name_len = btrfs_inode_extref_name_len(eb, extref); 2155 ret = iterate(parent, name_len, 2156 (unsigned long)&extref->name, eb, ctx); 2157 if (ret) 2158 break; 2159 2160 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2161 cur_offset += sizeof(*extref); 2162 } 2163 free_extent_buffer(eb); 2164 2165 offset++; 2166 } 2167 2168 btrfs_release_path(path); 2169 2170 return ret; 2171 } 2172 2173 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2174 struct btrfs_path *path, iterate_irefs_t *iterate, 2175 void *ctx) 2176 { 2177 int ret; 2178 int found_refs = 0; 2179 2180 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2181 if (!ret) 2182 ++found_refs; 2183 else if (ret != -ENOENT) 2184 return ret; 2185 2186 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2187 if (ret == -ENOENT && found_refs) 2188 return 0; 2189 2190 return ret; 2191 } 2192 2193 /* 2194 * returns 0 if the path could be dumped (probably truncated) 2195 * returns <0 in case of an error 2196 */ 2197 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2198 struct extent_buffer *eb, void *ctx) 2199 { 2200 struct inode_fs_paths *ipath = ctx; 2201 char *fspath; 2202 char *fspath_min; 2203 int i = ipath->fspath->elem_cnt; 2204 const int s_ptr = sizeof(char *); 2205 u32 bytes_left; 2206 2207 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2208 ipath->fspath->bytes_left - s_ptr : 0; 2209 2210 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2211 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2212 name_off, eb, inum, fspath_min, bytes_left); 2213 if (IS_ERR(fspath)) 2214 return PTR_ERR(fspath); 2215 2216 if (fspath > fspath_min) { 2217 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2218 ++ipath->fspath->elem_cnt; 2219 ipath->fspath->bytes_left = fspath - fspath_min; 2220 } else { 2221 ++ipath->fspath->elem_missed; 2222 ipath->fspath->bytes_missing += fspath_min - fspath; 2223 ipath->fspath->bytes_left = 0; 2224 } 2225 2226 return 0; 2227 } 2228 2229 /* 2230 * this dumps all file system paths to the inode into the ipath struct, provided 2231 * is has been created large enough. each path is zero-terminated and accessed 2232 * from ipath->fspath->val[i]. 2233 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2234 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2235 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2236 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2237 * have been needed to return all paths. 2238 */ 2239 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2240 { 2241 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2242 inode_to_path, ipath); 2243 } 2244 2245 struct btrfs_data_container *init_data_container(u32 total_bytes) 2246 { 2247 struct btrfs_data_container *data; 2248 size_t alloc_bytes; 2249 2250 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2251 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2252 if (!data) 2253 return ERR_PTR(-ENOMEM); 2254 2255 if (total_bytes >= sizeof(*data)) { 2256 data->bytes_left = total_bytes - sizeof(*data); 2257 data->bytes_missing = 0; 2258 } else { 2259 data->bytes_missing = sizeof(*data) - total_bytes; 2260 data->bytes_left = 0; 2261 } 2262 2263 data->elem_cnt = 0; 2264 data->elem_missed = 0; 2265 2266 return data; 2267 } 2268 2269 /* 2270 * allocates space to return multiple file system paths for an inode. 2271 * total_bytes to allocate are passed, note that space usable for actual path 2272 * information will be total_bytes - sizeof(struct inode_fs_paths). 2273 * the returned pointer must be freed with free_ipath() in the end. 2274 */ 2275 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2276 struct btrfs_path *path) 2277 { 2278 struct inode_fs_paths *ifp; 2279 struct btrfs_data_container *fspath; 2280 2281 fspath = init_data_container(total_bytes); 2282 if (IS_ERR(fspath)) 2283 return ERR_CAST(fspath); 2284 2285 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2286 if (!ifp) { 2287 kvfree(fspath); 2288 return ERR_PTR(-ENOMEM); 2289 } 2290 2291 ifp->btrfs_path = path; 2292 ifp->fspath = fspath; 2293 ifp->fs_root = fs_root; 2294 2295 return ifp; 2296 } 2297 2298 void free_ipath(struct inode_fs_paths *ipath) 2299 { 2300 if (!ipath) 2301 return; 2302 kvfree(ipath->fspath); 2303 kfree(ipath); 2304 } 2305 2306 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2307 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2308 { 2309 struct btrfs_backref_iter *ret; 2310 2311 ret = kzalloc(sizeof(*ret), gfp_flag); 2312 if (!ret) 2313 return NULL; 2314 2315 ret->path = btrfs_alloc_path(); 2316 if (!ret->path) { 2317 kfree(ret); 2318 return NULL; 2319 } 2320 2321 /* Current backref iterator only supports iteration in commit root */ 2322 ret->path->search_commit_root = 1; 2323 ret->path->skip_locking = 1; 2324 ret->fs_info = fs_info; 2325 2326 return ret; 2327 } 2328 2329 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2330 { 2331 struct btrfs_fs_info *fs_info = iter->fs_info; 2332 struct btrfs_path *path = iter->path; 2333 struct btrfs_extent_item *ei; 2334 struct btrfs_key key; 2335 int ret; 2336 2337 key.objectid = bytenr; 2338 key.type = BTRFS_METADATA_ITEM_KEY; 2339 key.offset = (u64)-1; 2340 iter->bytenr = bytenr; 2341 2342 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2343 if (ret < 0) 2344 return ret; 2345 if (ret == 0) { 2346 ret = -EUCLEAN; 2347 goto release; 2348 } 2349 if (path->slots[0] == 0) { 2350 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2351 ret = -EUCLEAN; 2352 goto release; 2353 } 2354 path->slots[0]--; 2355 2356 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2357 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2358 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2359 ret = -ENOENT; 2360 goto release; 2361 } 2362 memcpy(&iter->cur_key, &key, sizeof(key)); 2363 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2364 path->slots[0]); 2365 iter->end_ptr = (u32)(iter->item_ptr + 2366 btrfs_item_size_nr(path->nodes[0], path->slots[0])); 2367 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2368 struct btrfs_extent_item); 2369 2370 /* 2371 * Only support iteration on tree backref yet. 2372 * 2373 * This is an extra precaution for non skinny-metadata, where 2374 * EXTENT_ITEM is also used for tree blocks, that we can only use 2375 * extent flags to determine if it's a tree block. 2376 */ 2377 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2378 ret = -ENOTSUPP; 2379 goto release; 2380 } 2381 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2382 2383 /* If there is no inline backref, go search for keyed backref */ 2384 if (iter->cur_ptr >= iter->end_ptr) { 2385 ret = btrfs_next_item(fs_info->extent_root, path); 2386 2387 /* No inline nor keyed ref */ 2388 if (ret > 0) { 2389 ret = -ENOENT; 2390 goto release; 2391 } 2392 if (ret < 0) 2393 goto release; 2394 2395 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2396 path->slots[0]); 2397 if (iter->cur_key.objectid != bytenr || 2398 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2399 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2400 ret = -ENOENT; 2401 goto release; 2402 } 2403 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2404 path->slots[0]); 2405 iter->item_ptr = iter->cur_ptr; 2406 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( 2407 path->nodes[0], path->slots[0])); 2408 } 2409 2410 return 0; 2411 release: 2412 btrfs_backref_iter_release(iter); 2413 return ret; 2414 } 2415 2416 /* 2417 * Go to the next backref item of current bytenr, can be either inlined or 2418 * keyed. 2419 * 2420 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2421 * 2422 * Return 0 if we get next backref without problem. 2423 * Return >0 if there is no extra backref for this bytenr. 2424 * Return <0 if there is something wrong happened. 2425 */ 2426 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2427 { 2428 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2429 struct btrfs_path *path = iter->path; 2430 struct btrfs_extent_inline_ref *iref; 2431 int ret; 2432 u32 size; 2433 2434 if (btrfs_backref_iter_is_inline_ref(iter)) { 2435 /* We're still inside the inline refs */ 2436 ASSERT(iter->cur_ptr < iter->end_ptr); 2437 2438 if (btrfs_backref_has_tree_block_info(iter)) { 2439 /* First tree block info */ 2440 size = sizeof(struct btrfs_tree_block_info); 2441 } else { 2442 /* Use inline ref type to determine the size */ 2443 int type; 2444 2445 iref = (struct btrfs_extent_inline_ref *) 2446 ((unsigned long)iter->cur_ptr); 2447 type = btrfs_extent_inline_ref_type(eb, iref); 2448 2449 size = btrfs_extent_inline_ref_size(type); 2450 } 2451 iter->cur_ptr += size; 2452 if (iter->cur_ptr < iter->end_ptr) 2453 return 0; 2454 2455 /* All inline items iterated, fall through */ 2456 } 2457 2458 /* We're at keyed items, there is no inline item, go to the next one */ 2459 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2460 if (ret) 2461 return ret; 2462 2463 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2464 if (iter->cur_key.objectid != iter->bytenr || 2465 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2466 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2467 return 1; 2468 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2469 path->slots[0]); 2470 iter->cur_ptr = iter->item_ptr; 2471 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], 2472 path->slots[0]); 2473 return 0; 2474 } 2475 2476 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2477 struct btrfs_backref_cache *cache, int is_reloc) 2478 { 2479 int i; 2480 2481 cache->rb_root = RB_ROOT; 2482 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2483 INIT_LIST_HEAD(&cache->pending[i]); 2484 INIT_LIST_HEAD(&cache->changed); 2485 INIT_LIST_HEAD(&cache->detached); 2486 INIT_LIST_HEAD(&cache->leaves); 2487 INIT_LIST_HEAD(&cache->pending_edge); 2488 INIT_LIST_HEAD(&cache->useless_node); 2489 cache->fs_info = fs_info; 2490 cache->is_reloc = is_reloc; 2491 } 2492 2493 struct btrfs_backref_node *btrfs_backref_alloc_node( 2494 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2495 { 2496 struct btrfs_backref_node *node; 2497 2498 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2499 node = kzalloc(sizeof(*node), GFP_NOFS); 2500 if (!node) 2501 return node; 2502 2503 INIT_LIST_HEAD(&node->list); 2504 INIT_LIST_HEAD(&node->upper); 2505 INIT_LIST_HEAD(&node->lower); 2506 RB_CLEAR_NODE(&node->rb_node); 2507 cache->nr_nodes++; 2508 node->level = level; 2509 node->bytenr = bytenr; 2510 2511 return node; 2512 } 2513 2514 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2515 struct btrfs_backref_cache *cache) 2516 { 2517 struct btrfs_backref_edge *edge; 2518 2519 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2520 if (edge) 2521 cache->nr_edges++; 2522 return edge; 2523 } 2524 2525 /* 2526 * Drop the backref node from cache, also cleaning up all its 2527 * upper edges and any uncached nodes in the path. 2528 * 2529 * This cleanup happens bottom up, thus the node should either 2530 * be the lowest node in the cache or a detached node. 2531 */ 2532 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2533 struct btrfs_backref_node *node) 2534 { 2535 struct btrfs_backref_node *upper; 2536 struct btrfs_backref_edge *edge; 2537 2538 if (!node) 2539 return; 2540 2541 BUG_ON(!node->lowest && !node->detached); 2542 while (!list_empty(&node->upper)) { 2543 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2544 list[LOWER]); 2545 upper = edge->node[UPPER]; 2546 list_del(&edge->list[LOWER]); 2547 list_del(&edge->list[UPPER]); 2548 btrfs_backref_free_edge(cache, edge); 2549 2550 /* 2551 * Add the node to leaf node list if no other child block 2552 * cached. 2553 */ 2554 if (list_empty(&upper->lower)) { 2555 list_add_tail(&upper->lower, &cache->leaves); 2556 upper->lowest = 1; 2557 } 2558 } 2559 2560 btrfs_backref_drop_node(cache, node); 2561 } 2562 2563 /* 2564 * Release all nodes/edges from current cache 2565 */ 2566 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2567 { 2568 struct btrfs_backref_node *node; 2569 int i; 2570 2571 while (!list_empty(&cache->detached)) { 2572 node = list_entry(cache->detached.next, 2573 struct btrfs_backref_node, list); 2574 btrfs_backref_cleanup_node(cache, node); 2575 } 2576 2577 while (!list_empty(&cache->leaves)) { 2578 node = list_entry(cache->leaves.next, 2579 struct btrfs_backref_node, lower); 2580 btrfs_backref_cleanup_node(cache, node); 2581 } 2582 2583 cache->last_trans = 0; 2584 2585 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2586 ASSERT(list_empty(&cache->pending[i])); 2587 ASSERT(list_empty(&cache->pending_edge)); 2588 ASSERT(list_empty(&cache->useless_node)); 2589 ASSERT(list_empty(&cache->changed)); 2590 ASSERT(list_empty(&cache->detached)); 2591 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2592 ASSERT(!cache->nr_nodes); 2593 ASSERT(!cache->nr_edges); 2594 } 2595 2596 /* 2597 * Handle direct tree backref 2598 * 2599 * Direct tree backref means, the backref item shows its parent bytenr 2600 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2601 * 2602 * @ref_key: The converted backref key. 2603 * For keyed backref, it's the item key. 2604 * For inlined backref, objectid is the bytenr, 2605 * type is btrfs_inline_ref_type, offset is 2606 * btrfs_inline_ref_offset. 2607 */ 2608 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2609 struct btrfs_key *ref_key, 2610 struct btrfs_backref_node *cur) 2611 { 2612 struct btrfs_backref_edge *edge; 2613 struct btrfs_backref_node *upper; 2614 struct rb_node *rb_node; 2615 2616 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2617 2618 /* Only reloc root uses backref pointing to itself */ 2619 if (ref_key->objectid == ref_key->offset) { 2620 struct btrfs_root *root; 2621 2622 cur->is_reloc_root = 1; 2623 /* Only reloc backref cache cares about a specific root */ 2624 if (cache->is_reloc) { 2625 root = find_reloc_root(cache->fs_info, cur->bytenr); 2626 if (!root) 2627 return -ENOENT; 2628 cur->root = root; 2629 } else { 2630 /* 2631 * For generic purpose backref cache, reloc root node 2632 * is useless. 2633 */ 2634 list_add(&cur->list, &cache->useless_node); 2635 } 2636 return 0; 2637 } 2638 2639 edge = btrfs_backref_alloc_edge(cache); 2640 if (!edge) 2641 return -ENOMEM; 2642 2643 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2644 if (!rb_node) { 2645 /* Parent node not yet cached */ 2646 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2647 cur->level + 1); 2648 if (!upper) { 2649 btrfs_backref_free_edge(cache, edge); 2650 return -ENOMEM; 2651 } 2652 2653 /* 2654 * Backrefs for the upper level block isn't cached, add the 2655 * block to pending list 2656 */ 2657 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2658 } else { 2659 /* Parent node already cached */ 2660 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2661 ASSERT(upper->checked); 2662 INIT_LIST_HEAD(&edge->list[UPPER]); 2663 } 2664 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2665 return 0; 2666 } 2667 2668 /* 2669 * Handle indirect tree backref 2670 * 2671 * Indirect tree backref means, we only know which tree the node belongs to. 2672 * We still need to do a tree search to find out the parents. This is for 2673 * TREE_BLOCK_REF backref (keyed or inlined). 2674 * 2675 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2676 * @tree_key: The first key of this tree block. 2677 * @path: A clean (released) path, to avoid allocating path everytime 2678 * the function get called. 2679 */ 2680 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2681 struct btrfs_path *path, 2682 struct btrfs_key *ref_key, 2683 struct btrfs_key *tree_key, 2684 struct btrfs_backref_node *cur) 2685 { 2686 struct btrfs_fs_info *fs_info = cache->fs_info; 2687 struct btrfs_backref_node *upper; 2688 struct btrfs_backref_node *lower; 2689 struct btrfs_backref_edge *edge; 2690 struct extent_buffer *eb; 2691 struct btrfs_root *root; 2692 struct rb_node *rb_node; 2693 int level; 2694 bool need_check = true; 2695 int ret; 2696 2697 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2698 if (IS_ERR(root)) 2699 return PTR_ERR(root); 2700 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2701 cur->cowonly = 1; 2702 2703 if (btrfs_root_level(&root->root_item) == cur->level) { 2704 /* Tree root */ 2705 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2706 /* 2707 * For reloc backref cache, we may ignore reloc root. But for 2708 * general purpose backref cache, we can't rely on 2709 * btrfs_should_ignore_reloc_root() as it may conflict with 2710 * current running relocation and lead to missing root. 2711 * 2712 * For general purpose backref cache, reloc root detection is 2713 * completely relying on direct backref (key->offset is parent 2714 * bytenr), thus only do such check for reloc cache. 2715 */ 2716 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2717 btrfs_put_root(root); 2718 list_add(&cur->list, &cache->useless_node); 2719 } else { 2720 cur->root = root; 2721 } 2722 return 0; 2723 } 2724 2725 level = cur->level + 1; 2726 2727 /* Search the tree to find parent blocks referring to the block */ 2728 path->search_commit_root = 1; 2729 path->skip_locking = 1; 2730 path->lowest_level = level; 2731 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2732 path->lowest_level = 0; 2733 if (ret < 0) { 2734 btrfs_put_root(root); 2735 return ret; 2736 } 2737 if (ret > 0 && path->slots[level] > 0) 2738 path->slots[level]--; 2739 2740 eb = path->nodes[level]; 2741 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2742 btrfs_err(fs_info, 2743 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2744 cur->bytenr, level - 1, root->root_key.objectid, 2745 tree_key->objectid, tree_key->type, tree_key->offset); 2746 btrfs_put_root(root); 2747 ret = -ENOENT; 2748 goto out; 2749 } 2750 lower = cur; 2751 2752 /* Add all nodes and edges in the path */ 2753 for (; level < BTRFS_MAX_LEVEL; level++) { 2754 if (!path->nodes[level]) { 2755 ASSERT(btrfs_root_bytenr(&root->root_item) == 2756 lower->bytenr); 2757 /* Same as previous should_ignore_reloc_root() call */ 2758 if (btrfs_should_ignore_reloc_root(root) && 2759 cache->is_reloc) { 2760 btrfs_put_root(root); 2761 list_add(&lower->list, &cache->useless_node); 2762 } else { 2763 lower->root = root; 2764 } 2765 break; 2766 } 2767 2768 edge = btrfs_backref_alloc_edge(cache); 2769 if (!edge) { 2770 btrfs_put_root(root); 2771 ret = -ENOMEM; 2772 goto out; 2773 } 2774 2775 eb = path->nodes[level]; 2776 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2777 if (!rb_node) { 2778 upper = btrfs_backref_alloc_node(cache, eb->start, 2779 lower->level + 1); 2780 if (!upper) { 2781 btrfs_put_root(root); 2782 btrfs_backref_free_edge(cache, edge); 2783 ret = -ENOMEM; 2784 goto out; 2785 } 2786 upper->owner = btrfs_header_owner(eb); 2787 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2788 upper->cowonly = 1; 2789 2790 /* 2791 * If we know the block isn't shared we can avoid 2792 * checking its backrefs. 2793 */ 2794 if (btrfs_block_can_be_shared(root, eb)) 2795 upper->checked = 0; 2796 else 2797 upper->checked = 1; 2798 2799 /* 2800 * Add the block to pending list if we need to check its 2801 * backrefs, we only do this once while walking up a 2802 * tree as we will catch anything else later on. 2803 */ 2804 if (!upper->checked && need_check) { 2805 need_check = false; 2806 list_add_tail(&edge->list[UPPER], 2807 &cache->pending_edge); 2808 } else { 2809 if (upper->checked) 2810 need_check = true; 2811 INIT_LIST_HEAD(&edge->list[UPPER]); 2812 } 2813 } else { 2814 upper = rb_entry(rb_node, struct btrfs_backref_node, 2815 rb_node); 2816 ASSERT(upper->checked); 2817 INIT_LIST_HEAD(&edge->list[UPPER]); 2818 if (!upper->owner) 2819 upper->owner = btrfs_header_owner(eb); 2820 } 2821 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2822 2823 if (rb_node) { 2824 btrfs_put_root(root); 2825 break; 2826 } 2827 lower = upper; 2828 upper = NULL; 2829 } 2830 out: 2831 btrfs_release_path(path); 2832 return ret; 2833 } 2834 2835 /* 2836 * Add backref node @cur into @cache. 2837 * 2838 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2839 * links aren't yet bi-directional. Needs to finish such links. 2840 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2841 * 2842 * @path: Released path for indirect tree backref lookup 2843 * @iter: Released backref iter for extent tree search 2844 * @node_key: The first key of the tree block 2845 */ 2846 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2847 struct btrfs_path *path, 2848 struct btrfs_backref_iter *iter, 2849 struct btrfs_key *node_key, 2850 struct btrfs_backref_node *cur) 2851 { 2852 struct btrfs_fs_info *fs_info = cache->fs_info; 2853 struct btrfs_backref_edge *edge; 2854 struct btrfs_backref_node *exist; 2855 int ret; 2856 2857 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2858 if (ret < 0) 2859 return ret; 2860 /* 2861 * We skip the first btrfs_tree_block_info, as we don't use the key 2862 * stored in it, but fetch it from the tree block 2863 */ 2864 if (btrfs_backref_has_tree_block_info(iter)) { 2865 ret = btrfs_backref_iter_next(iter); 2866 if (ret < 0) 2867 goto out; 2868 /* No extra backref? This means the tree block is corrupted */ 2869 if (ret > 0) { 2870 ret = -EUCLEAN; 2871 goto out; 2872 } 2873 } 2874 WARN_ON(cur->checked); 2875 if (!list_empty(&cur->upper)) { 2876 /* 2877 * The backref was added previously when processing backref of 2878 * type BTRFS_TREE_BLOCK_REF_KEY 2879 */ 2880 ASSERT(list_is_singular(&cur->upper)); 2881 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2882 list[LOWER]); 2883 ASSERT(list_empty(&edge->list[UPPER])); 2884 exist = edge->node[UPPER]; 2885 /* 2886 * Add the upper level block to pending list if we need check 2887 * its backrefs 2888 */ 2889 if (!exist->checked) 2890 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2891 } else { 2892 exist = NULL; 2893 } 2894 2895 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2896 struct extent_buffer *eb; 2897 struct btrfs_key key; 2898 int type; 2899 2900 cond_resched(); 2901 eb = btrfs_backref_get_eb(iter); 2902 2903 key.objectid = iter->bytenr; 2904 if (btrfs_backref_iter_is_inline_ref(iter)) { 2905 struct btrfs_extent_inline_ref *iref; 2906 2907 /* Update key for inline backref */ 2908 iref = (struct btrfs_extent_inline_ref *) 2909 ((unsigned long)iter->cur_ptr); 2910 type = btrfs_get_extent_inline_ref_type(eb, iref, 2911 BTRFS_REF_TYPE_BLOCK); 2912 if (type == BTRFS_REF_TYPE_INVALID) { 2913 ret = -EUCLEAN; 2914 goto out; 2915 } 2916 key.type = type; 2917 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2918 } else { 2919 key.type = iter->cur_key.type; 2920 key.offset = iter->cur_key.offset; 2921 } 2922 2923 /* 2924 * Parent node found and matches current inline ref, no need to 2925 * rebuild this node for this inline ref 2926 */ 2927 if (exist && 2928 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2929 exist->owner == key.offset) || 2930 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2931 exist->bytenr == key.offset))) { 2932 exist = NULL; 2933 continue; 2934 } 2935 2936 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2937 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2938 ret = handle_direct_tree_backref(cache, &key, cur); 2939 if (ret < 0) 2940 goto out; 2941 continue; 2942 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2943 ret = -EINVAL; 2944 btrfs_print_v0_err(fs_info); 2945 btrfs_handle_fs_error(fs_info, ret, NULL); 2946 goto out; 2947 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2948 continue; 2949 } 2950 2951 /* 2952 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2953 * means the root objectid. We need to search the tree to get 2954 * its parent bytenr. 2955 */ 2956 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2957 cur); 2958 if (ret < 0) 2959 goto out; 2960 } 2961 ret = 0; 2962 cur->checked = 1; 2963 WARN_ON(exist); 2964 out: 2965 btrfs_backref_iter_release(iter); 2966 return ret; 2967 } 2968 2969 /* 2970 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2971 */ 2972 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2973 struct btrfs_backref_node *start) 2974 { 2975 struct list_head *useless_node = &cache->useless_node; 2976 struct btrfs_backref_edge *edge; 2977 struct rb_node *rb_node; 2978 LIST_HEAD(pending_edge); 2979 2980 ASSERT(start->checked); 2981 2982 /* Insert this node to cache if it's not COW-only */ 2983 if (!start->cowonly) { 2984 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2985 &start->rb_node); 2986 if (rb_node) 2987 btrfs_backref_panic(cache->fs_info, start->bytenr, 2988 -EEXIST); 2989 list_add_tail(&start->lower, &cache->leaves); 2990 } 2991 2992 /* 2993 * Use breadth first search to iterate all related edges. 2994 * 2995 * The starting points are all the edges of this node 2996 */ 2997 list_for_each_entry(edge, &start->upper, list[LOWER]) 2998 list_add_tail(&edge->list[UPPER], &pending_edge); 2999 3000 while (!list_empty(&pending_edge)) { 3001 struct btrfs_backref_node *upper; 3002 struct btrfs_backref_node *lower; 3003 3004 edge = list_first_entry(&pending_edge, 3005 struct btrfs_backref_edge, list[UPPER]); 3006 list_del_init(&edge->list[UPPER]); 3007 upper = edge->node[UPPER]; 3008 lower = edge->node[LOWER]; 3009 3010 /* Parent is detached, no need to keep any edges */ 3011 if (upper->detached) { 3012 list_del(&edge->list[LOWER]); 3013 btrfs_backref_free_edge(cache, edge); 3014 3015 /* Lower node is orphan, queue for cleanup */ 3016 if (list_empty(&lower->upper)) 3017 list_add(&lower->list, useless_node); 3018 continue; 3019 } 3020 3021 /* 3022 * All new nodes added in current build_backref_tree() haven't 3023 * been linked to the cache rb tree. 3024 * So if we have upper->rb_node populated, this means a cache 3025 * hit. We only need to link the edge, as @upper and all its 3026 * parents have already been linked. 3027 */ 3028 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3029 if (upper->lowest) { 3030 list_del_init(&upper->lower); 3031 upper->lowest = 0; 3032 } 3033 3034 list_add_tail(&edge->list[UPPER], &upper->lower); 3035 continue; 3036 } 3037 3038 /* Sanity check, we shouldn't have any unchecked nodes */ 3039 if (!upper->checked) { 3040 ASSERT(0); 3041 return -EUCLEAN; 3042 } 3043 3044 /* Sanity check, COW-only node has non-COW-only parent */ 3045 if (start->cowonly != upper->cowonly) { 3046 ASSERT(0); 3047 return -EUCLEAN; 3048 } 3049 3050 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3051 if (!upper->cowonly) { 3052 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3053 &upper->rb_node); 3054 if (rb_node) { 3055 btrfs_backref_panic(cache->fs_info, 3056 upper->bytenr, -EEXIST); 3057 return -EUCLEAN; 3058 } 3059 } 3060 3061 list_add_tail(&edge->list[UPPER], &upper->lower); 3062 3063 /* 3064 * Also queue all the parent edges of this uncached node 3065 * to finish the upper linkage 3066 */ 3067 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3068 list_add_tail(&edge->list[UPPER], &pending_edge); 3069 } 3070 return 0; 3071 } 3072 3073 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3074 struct btrfs_backref_node *node) 3075 { 3076 struct btrfs_backref_node *lower; 3077 struct btrfs_backref_node *upper; 3078 struct btrfs_backref_edge *edge; 3079 3080 while (!list_empty(&cache->useless_node)) { 3081 lower = list_first_entry(&cache->useless_node, 3082 struct btrfs_backref_node, list); 3083 list_del_init(&lower->list); 3084 } 3085 while (!list_empty(&cache->pending_edge)) { 3086 edge = list_first_entry(&cache->pending_edge, 3087 struct btrfs_backref_edge, list[UPPER]); 3088 list_del(&edge->list[UPPER]); 3089 list_del(&edge->list[LOWER]); 3090 lower = edge->node[LOWER]; 3091 upper = edge->node[UPPER]; 3092 btrfs_backref_free_edge(cache, edge); 3093 3094 /* 3095 * Lower is no longer linked to any upper backref nodes and 3096 * isn't in the cache, we can free it ourselves. 3097 */ 3098 if (list_empty(&lower->upper) && 3099 RB_EMPTY_NODE(&lower->rb_node)) 3100 list_add(&lower->list, &cache->useless_node); 3101 3102 if (!RB_EMPTY_NODE(&upper->rb_node)) 3103 continue; 3104 3105 /* Add this guy's upper edges to the list to process */ 3106 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3107 list_add_tail(&edge->list[UPPER], 3108 &cache->pending_edge); 3109 if (list_empty(&upper->upper)) 3110 list_add(&upper->list, &cache->useless_node); 3111 } 3112 3113 while (!list_empty(&cache->useless_node)) { 3114 lower = list_first_entry(&cache->useless_node, 3115 struct btrfs_backref_node, list); 3116 list_del_init(&lower->list); 3117 if (lower == node) 3118 node = NULL; 3119 btrfs_backref_drop_node(cache, lower); 3120 } 3121 3122 btrfs_backref_cleanup_node(cache, node); 3123 ASSERT(list_empty(&cache->useless_node) && 3124 list_empty(&cache->pending_edge)); 3125 } 3126