xref: /openbmc/linux/fs/btrfs/backref.c (revision 861e10be)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 data_offset;
40 	u64 data_len;
41 	struct extent_inode_elem *e;
42 
43 	data_offset = btrfs_file_extent_offset(eb, fi);
44 	data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 	if (extent_item_pos < data_offset ||
47 	    extent_item_pos >= data_offset + data_len)
48 		return 1;
49 
50 	e = kmalloc(sizeof(*e), GFP_NOFS);
51 	if (!e)
52 		return -ENOMEM;
53 
54 	e->next = *eie;
55 	e->inum = key->objectid;
56 	e->offset = key->offset + (extent_item_pos - data_offset);
57 	*eie = e;
58 
59 	return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 				u64 extent_item_pos,
64 				struct extent_inode_elem **eie)
65 {
66 	u64 disk_byte;
67 	struct btrfs_key key;
68 	struct btrfs_file_extent_item *fi;
69 	int slot;
70 	int nritems;
71 	int extent_type;
72 	int ret;
73 
74 	/*
75 	 * from the shared data ref, we only have the leaf but we need
76 	 * the key. thus, we must look into all items and see that we
77 	 * find one (some) with a reference to our extent item.
78 	 */
79 	nritems = btrfs_header_nritems(eb);
80 	for (slot = 0; slot < nritems; ++slot) {
81 		btrfs_item_key_to_cpu(eb, &key, slot);
82 		if (key.type != BTRFS_EXTENT_DATA_KEY)
83 			continue;
84 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 		extent_type = btrfs_file_extent_type(eb, fi);
86 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 			continue;
88 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 		if (disk_byte != wanted_disk_byte)
91 			continue;
92 
93 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 		if (ret < 0)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105 	struct list_head list;
106 	u64 root_id;
107 	struct btrfs_key key_for_search;
108 	int level;
109 	int count;
110 	struct extent_inode_elem *inode_list;
111 	u64 parent;
112 	u64 wanted_disk_byte;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 			    struct btrfs_key *key, int level,
156 			    u64 parent, u64 wanted_disk_byte, int count)
157 {
158 	struct __prelim_ref *ref;
159 
160 	/* in case we're adding delayed refs, we're holding the refs spinlock */
161 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 	if (!ref)
163 		return -ENOMEM;
164 
165 	ref->root_id = root_id;
166 	if (key)
167 		ref->key_for_search = *key;
168 	else
169 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171 	ref->inode_list = NULL;
172 	ref->level = level;
173 	ref->count = count;
174 	ref->parent = parent;
175 	ref->wanted_disk_byte = wanted_disk_byte;
176 	list_add_tail(&ref->list, head);
177 
178 	return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182 				struct ulist *parents, int level,
183 				struct btrfs_key *key_for_search, u64 time_seq,
184 				u64 wanted_disk_byte,
185 				const u64 *extent_item_pos)
186 {
187 	int ret = 0;
188 	int slot;
189 	struct extent_buffer *eb;
190 	struct btrfs_key key;
191 	struct btrfs_file_extent_item *fi;
192 	struct extent_inode_elem *eie = NULL;
193 	u64 disk_byte;
194 
195 	if (level != 0) {
196 		eb = path->nodes[level];
197 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 		if (ret < 0)
199 			return ret;
200 		return 0;
201 	}
202 
203 	/*
204 	 * We normally enter this function with the path already pointing to
205 	 * the first item to check. But sometimes, we may enter it with
206 	 * slot==nritems. In that case, go to the next leaf before we continue.
207 	 */
208 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209 		ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211 	while (!ret) {
212 		eb = path->nodes[0];
213 		slot = path->slots[0];
214 
215 		btrfs_item_key_to_cpu(eb, &key, slot);
216 
217 		if (key.objectid != key_for_search->objectid ||
218 		    key.type != BTRFS_EXTENT_DATA_KEY)
219 			break;
220 
221 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224 		if (disk_byte == wanted_disk_byte) {
225 			eie = NULL;
226 			if (extent_item_pos) {
227 				ret = check_extent_in_eb(&key, eb, fi,
228 						*extent_item_pos,
229 						&eie);
230 				if (ret < 0)
231 					break;
232 			}
233 			if (!ret) {
234 				ret = ulist_add(parents, eb->start,
235 						(uintptr_t)eie, GFP_NOFS);
236 				if (ret < 0)
237 					break;
238 				if (!extent_item_pos) {
239 					ret = btrfs_next_old_leaf(root, path,
240 							time_seq);
241 					continue;
242 				}
243 			}
244 		}
245 		ret = btrfs_next_old_item(root, path, time_seq);
246 	}
247 
248 	if (ret > 0)
249 		ret = 0;
250 	return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258 					int search_commit_root,
259 					u64 time_seq,
260 					struct __prelim_ref *ref,
261 					struct ulist *parents,
262 					const u64 *extent_item_pos)
263 {
264 	struct btrfs_path *path;
265 	struct btrfs_root *root;
266 	struct btrfs_key root_key;
267 	struct extent_buffer *eb;
268 	int ret = 0;
269 	int root_level;
270 	int level = ref->level;
271 
272 	path = btrfs_alloc_path();
273 	if (!path)
274 		return -ENOMEM;
275 	path->search_commit_root = !!search_commit_root;
276 
277 	root_key.objectid = ref->root_id;
278 	root_key.type = BTRFS_ROOT_ITEM_KEY;
279 	root_key.offset = (u64)-1;
280 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 	if (IS_ERR(root)) {
282 		ret = PTR_ERR(root);
283 		goto out;
284 	}
285 
286 	root_level = btrfs_old_root_level(root, time_seq);
287 
288 	if (root_level + 1 == level)
289 		goto out;
290 
291 	path->lowest_level = level;
292 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294 		 "%d for key (%llu %u %llu)\n",
295 		 (unsigned long long)ref->root_id, level, ref->count, ret,
296 		 (unsigned long long)ref->key_for_search.objectid,
297 		 ref->key_for_search.type,
298 		 (unsigned long long)ref->key_for_search.offset);
299 	if (ret < 0)
300 		goto out;
301 
302 	eb = path->nodes[level];
303 	while (!eb) {
304 		if (!level) {
305 			WARN_ON(1);
306 			ret = 1;
307 			goto out;
308 		}
309 		level--;
310 		eb = path->nodes[level];
311 	}
312 
313 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314 				time_seq, ref->wanted_disk_byte,
315 				extent_item_pos);
316 out:
317 	btrfs_free_path(path);
318 	return ret;
319 }
320 
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325 				   int search_commit_root, u64 time_seq,
326 				   struct list_head *head,
327 				   const u64 *extent_item_pos)
328 {
329 	int err;
330 	int ret = 0;
331 	struct __prelim_ref *ref;
332 	struct __prelim_ref *ref_safe;
333 	struct __prelim_ref *new_ref;
334 	struct ulist *parents;
335 	struct ulist_node *node;
336 	struct ulist_iterator uiter;
337 
338 	parents = ulist_alloc(GFP_NOFS);
339 	if (!parents)
340 		return -ENOMEM;
341 
342 	/*
343 	 * _safe allows us to insert directly after the current item without
344 	 * iterating over the newly inserted items.
345 	 * we're also allowed to re-assign ref during iteration.
346 	 */
347 	list_for_each_entry_safe(ref, ref_safe, head, list) {
348 		if (ref->parent)	/* already direct */
349 			continue;
350 		if (ref->count == 0)
351 			continue;
352 		err = __resolve_indirect_ref(fs_info, search_commit_root,
353 					     time_seq, ref, parents,
354 					     extent_item_pos);
355 		if (err) {
356 			if (ret == 0)
357 				ret = err;
358 			continue;
359 		}
360 
361 		/* we put the first parent into the ref at hand */
362 		ULIST_ITER_INIT(&uiter);
363 		node = ulist_next(parents, &uiter);
364 		ref->parent = node ? node->val : 0;
365 		ref->inode_list = node ?
366 			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
367 
368 		/* additional parents require new refs being added here */
369 		while ((node = ulist_next(parents, &uiter))) {
370 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
371 			if (!new_ref) {
372 				ret = -ENOMEM;
373 				break;
374 			}
375 			memcpy(new_ref, ref, sizeof(*ref));
376 			new_ref->parent = node->val;
377 			new_ref->inode_list = (struct extent_inode_elem *)
378 							(uintptr_t)node->aux;
379 			list_add(&new_ref->list, &ref->list);
380 		}
381 		ulist_reinit(parents);
382 	}
383 
384 	ulist_free(parents);
385 	return ret;
386 }
387 
388 static inline int ref_for_same_block(struct __prelim_ref *ref1,
389 				     struct __prelim_ref *ref2)
390 {
391 	if (ref1->level != ref2->level)
392 		return 0;
393 	if (ref1->root_id != ref2->root_id)
394 		return 0;
395 	if (ref1->key_for_search.type != ref2->key_for_search.type)
396 		return 0;
397 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
398 		return 0;
399 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
400 		return 0;
401 	if (ref1->parent != ref2->parent)
402 		return 0;
403 
404 	return 1;
405 }
406 
407 /*
408  * read tree blocks and add keys where required.
409  */
410 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
411 			      struct list_head *head)
412 {
413 	struct list_head *pos;
414 	struct extent_buffer *eb;
415 
416 	list_for_each(pos, head) {
417 		struct __prelim_ref *ref;
418 		ref = list_entry(pos, struct __prelim_ref, list);
419 
420 		if (ref->parent)
421 			continue;
422 		if (ref->key_for_search.type)
423 			continue;
424 		BUG_ON(!ref->wanted_disk_byte);
425 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
426 				     fs_info->tree_root->leafsize, 0);
427 		BUG_ON(!eb);
428 		btrfs_tree_read_lock(eb);
429 		if (btrfs_header_level(eb) == 0)
430 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
431 		else
432 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
433 		btrfs_tree_read_unlock(eb);
434 		free_extent_buffer(eb);
435 	}
436 	return 0;
437 }
438 
439 /*
440  * merge two lists of backrefs and adjust counts accordingly
441  *
442  * mode = 1: merge identical keys, if key is set
443  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
444  *           additionally, we could even add a key range for the blocks we
445  *           looked into to merge even more (-> replace unresolved refs by those
446  *           having a parent).
447  * mode = 2: merge identical parents
448  */
449 static int __merge_refs(struct list_head *head, int mode)
450 {
451 	struct list_head *pos1;
452 
453 	list_for_each(pos1, head) {
454 		struct list_head *n2;
455 		struct list_head *pos2;
456 		struct __prelim_ref *ref1;
457 
458 		ref1 = list_entry(pos1, struct __prelim_ref, list);
459 
460 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
461 		     pos2 = n2, n2 = pos2->next) {
462 			struct __prelim_ref *ref2;
463 			struct __prelim_ref *xchg;
464 			struct extent_inode_elem *eie;
465 
466 			ref2 = list_entry(pos2, struct __prelim_ref, list);
467 
468 			if (mode == 1) {
469 				if (!ref_for_same_block(ref1, ref2))
470 					continue;
471 				if (!ref1->parent && ref2->parent) {
472 					xchg = ref1;
473 					ref1 = ref2;
474 					ref2 = xchg;
475 				}
476 			} else {
477 				if (ref1->parent != ref2->parent)
478 					continue;
479 			}
480 
481 			eie = ref1->inode_list;
482 			while (eie && eie->next)
483 				eie = eie->next;
484 			if (eie)
485 				eie->next = ref2->inode_list;
486 			else
487 				ref1->inode_list = ref2->inode_list;
488 			ref1->count += ref2->count;
489 
490 			list_del(&ref2->list);
491 			kfree(ref2);
492 		}
493 
494 	}
495 	return 0;
496 }
497 
498 /*
499  * add all currently queued delayed refs from this head whose seq nr is
500  * smaller or equal that seq to the list
501  */
502 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
503 			      struct list_head *prefs)
504 {
505 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
506 	struct rb_node *n = &head->node.rb_node;
507 	struct btrfs_key key;
508 	struct btrfs_key op_key = {0};
509 	int sgn;
510 	int ret = 0;
511 
512 	if (extent_op && extent_op->update_key)
513 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
514 
515 	while ((n = rb_prev(n))) {
516 		struct btrfs_delayed_ref_node *node;
517 		node = rb_entry(n, struct btrfs_delayed_ref_node,
518 				rb_node);
519 		if (node->bytenr != head->node.bytenr)
520 			break;
521 		WARN_ON(node->is_head);
522 
523 		if (node->seq > seq)
524 			continue;
525 
526 		switch (node->action) {
527 		case BTRFS_ADD_DELAYED_EXTENT:
528 		case BTRFS_UPDATE_DELAYED_HEAD:
529 			WARN_ON(1);
530 			continue;
531 		case BTRFS_ADD_DELAYED_REF:
532 			sgn = 1;
533 			break;
534 		case BTRFS_DROP_DELAYED_REF:
535 			sgn = -1;
536 			break;
537 		default:
538 			BUG_ON(1);
539 		}
540 		switch (node->type) {
541 		case BTRFS_TREE_BLOCK_REF_KEY: {
542 			struct btrfs_delayed_tree_ref *ref;
543 
544 			ref = btrfs_delayed_node_to_tree_ref(node);
545 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
546 					       ref->level + 1, 0, node->bytenr,
547 					       node->ref_mod * sgn);
548 			break;
549 		}
550 		case BTRFS_SHARED_BLOCK_REF_KEY: {
551 			struct btrfs_delayed_tree_ref *ref;
552 
553 			ref = btrfs_delayed_node_to_tree_ref(node);
554 			ret = __add_prelim_ref(prefs, ref->root, NULL,
555 					       ref->level + 1, ref->parent,
556 					       node->bytenr,
557 					       node->ref_mod * sgn);
558 			break;
559 		}
560 		case BTRFS_EXTENT_DATA_REF_KEY: {
561 			struct btrfs_delayed_data_ref *ref;
562 			ref = btrfs_delayed_node_to_data_ref(node);
563 
564 			key.objectid = ref->objectid;
565 			key.type = BTRFS_EXTENT_DATA_KEY;
566 			key.offset = ref->offset;
567 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
568 					       node->bytenr,
569 					       node->ref_mod * sgn);
570 			break;
571 		}
572 		case BTRFS_SHARED_DATA_REF_KEY: {
573 			struct btrfs_delayed_data_ref *ref;
574 
575 			ref = btrfs_delayed_node_to_data_ref(node);
576 
577 			key.objectid = ref->objectid;
578 			key.type = BTRFS_EXTENT_DATA_KEY;
579 			key.offset = ref->offset;
580 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
581 					       ref->parent, node->bytenr,
582 					       node->ref_mod * sgn);
583 			break;
584 		}
585 		default:
586 			WARN_ON(1);
587 		}
588 		BUG_ON(ret);
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * add all inline backrefs for bytenr to the list
596  */
597 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
598 			     struct btrfs_path *path, u64 bytenr,
599 			     int *info_level, struct list_head *prefs)
600 {
601 	int ret = 0;
602 	int slot;
603 	struct extent_buffer *leaf;
604 	struct btrfs_key key;
605 	unsigned long ptr;
606 	unsigned long end;
607 	struct btrfs_extent_item *ei;
608 	u64 flags;
609 	u64 item_size;
610 
611 	/*
612 	 * enumerate all inline refs
613 	 */
614 	leaf = path->nodes[0];
615 	slot = path->slots[0];
616 
617 	item_size = btrfs_item_size_nr(leaf, slot);
618 	BUG_ON(item_size < sizeof(*ei));
619 
620 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
621 	flags = btrfs_extent_flags(leaf, ei);
622 
623 	ptr = (unsigned long)(ei + 1);
624 	end = (unsigned long)ei + item_size;
625 
626 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
627 		struct btrfs_tree_block_info *info;
628 
629 		info = (struct btrfs_tree_block_info *)ptr;
630 		*info_level = btrfs_tree_block_level(leaf, info);
631 		ptr += sizeof(struct btrfs_tree_block_info);
632 		BUG_ON(ptr > end);
633 	} else {
634 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
635 	}
636 
637 	while (ptr < end) {
638 		struct btrfs_extent_inline_ref *iref;
639 		u64 offset;
640 		int type;
641 
642 		iref = (struct btrfs_extent_inline_ref *)ptr;
643 		type = btrfs_extent_inline_ref_type(leaf, iref);
644 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
645 
646 		switch (type) {
647 		case BTRFS_SHARED_BLOCK_REF_KEY:
648 			ret = __add_prelim_ref(prefs, 0, NULL,
649 						*info_level + 1, offset,
650 						bytenr, 1);
651 			break;
652 		case BTRFS_SHARED_DATA_REF_KEY: {
653 			struct btrfs_shared_data_ref *sdref;
654 			int count;
655 
656 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
657 			count = btrfs_shared_data_ref_count(leaf, sdref);
658 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
659 					       bytenr, count);
660 			break;
661 		}
662 		case BTRFS_TREE_BLOCK_REF_KEY:
663 			ret = __add_prelim_ref(prefs, offset, NULL,
664 					       *info_level + 1, 0,
665 					       bytenr, 1);
666 			break;
667 		case BTRFS_EXTENT_DATA_REF_KEY: {
668 			struct btrfs_extent_data_ref *dref;
669 			int count;
670 			u64 root;
671 
672 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
673 			count = btrfs_extent_data_ref_count(leaf, dref);
674 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
675 								      dref);
676 			key.type = BTRFS_EXTENT_DATA_KEY;
677 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
678 			root = btrfs_extent_data_ref_root(leaf, dref);
679 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
680 					       bytenr, count);
681 			break;
682 		}
683 		default:
684 			WARN_ON(1);
685 		}
686 		BUG_ON(ret);
687 		ptr += btrfs_extent_inline_ref_size(type);
688 	}
689 
690 	return 0;
691 }
692 
693 /*
694  * add all non-inline backrefs for bytenr to the list
695  */
696 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
697 			    struct btrfs_path *path, u64 bytenr,
698 			    int info_level, struct list_head *prefs)
699 {
700 	struct btrfs_root *extent_root = fs_info->extent_root;
701 	int ret;
702 	int slot;
703 	struct extent_buffer *leaf;
704 	struct btrfs_key key;
705 
706 	while (1) {
707 		ret = btrfs_next_item(extent_root, path);
708 		if (ret < 0)
709 			break;
710 		if (ret) {
711 			ret = 0;
712 			break;
713 		}
714 
715 		slot = path->slots[0];
716 		leaf = path->nodes[0];
717 		btrfs_item_key_to_cpu(leaf, &key, slot);
718 
719 		if (key.objectid != bytenr)
720 			break;
721 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
722 			continue;
723 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
724 			break;
725 
726 		switch (key.type) {
727 		case BTRFS_SHARED_BLOCK_REF_KEY:
728 			ret = __add_prelim_ref(prefs, 0, NULL,
729 						info_level + 1, key.offset,
730 						bytenr, 1);
731 			break;
732 		case BTRFS_SHARED_DATA_REF_KEY: {
733 			struct btrfs_shared_data_ref *sdref;
734 			int count;
735 
736 			sdref = btrfs_item_ptr(leaf, slot,
737 					      struct btrfs_shared_data_ref);
738 			count = btrfs_shared_data_ref_count(leaf, sdref);
739 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
740 						bytenr, count);
741 			break;
742 		}
743 		case BTRFS_TREE_BLOCK_REF_KEY:
744 			ret = __add_prelim_ref(prefs, key.offset, NULL,
745 					       info_level + 1, 0,
746 					       bytenr, 1);
747 			break;
748 		case BTRFS_EXTENT_DATA_REF_KEY: {
749 			struct btrfs_extent_data_ref *dref;
750 			int count;
751 			u64 root;
752 
753 			dref = btrfs_item_ptr(leaf, slot,
754 					      struct btrfs_extent_data_ref);
755 			count = btrfs_extent_data_ref_count(leaf, dref);
756 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
757 								      dref);
758 			key.type = BTRFS_EXTENT_DATA_KEY;
759 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
760 			root = btrfs_extent_data_ref_root(leaf, dref);
761 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
762 					       bytenr, count);
763 			break;
764 		}
765 		default:
766 			WARN_ON(1);
767 		}
768 		BUG_ON(ret);
769 	}
770 
771 	return ret;
772 }
773 
774 /*
775  * this adds all existing backrefs (inline backrefs, backrefs and delayed
776  * refs) for the given bytenr to the refs list, merges duplicates and resolves
777  * indirect refs to their parent bytenr.
778  * When roots are found, they're added to the roots list
779  *
780  * FIXME some caching might speed things up
781  */
782 static int find_parent_nodes(struct btrfs_trans_handle *trans,
783 			     struct btrfs_fs_info *fs_info, u64 bytenr,
784 			     u64 time_seq, struct ulist *refs,
785 			     struct ulist *roots, const u64 *extent_item_pos)
786 {
787 	struct btrfs_key key;
788 	struct btrfs_path *path;
789 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
790 	struct btrfs_delayed_ref_head *head;
791 	int info_level = 0;
792 	int ret;
793 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
794 	struct list_head prefs_delayed;
795 	struct list_head prefs;
796 	struct __prelim_ref *ref;
797 
798 	INIT_LIST_HEAD(&prefs);
799 	INIT_LIST_HEAD(&prefs_delayed);
800 
801 	key.objectid = bytenr;
802 	key.type = BTRFS_EXTENT_ITEM_KEY;
803 	key.offset = (u64)-1;
804 
805 	path = btrfs_alloc_path();
806 	if (!path)
807 		return -ENOMEM;
808 	path->search_commit_root = !!search_commit_root;
809 
810 	/*
811 	 * grab both a lock on the path and a lock on the delayed ref head.
812 	 * We need both to get a consistent picture of how the refs look
813 	 * at a specified point in time
814 	 */
815 again:
816 	head = NULL;
817 
818 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
819 	if (ret < 0)
820 		goto out;
821 	BUG_ON(ret == 0);
822 
823 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
824 		/*
825 		 * look if there are updates for this ref queued and lock the
826 		 * head
827 		 */
828 		delayed_refs = &trans->transaction->delayed_refs;
829 		spin_lock(&delayed_refs->lock);
830 		head = btrfs_find_delayed_ref_head(trans, bytenr);
831 		if (head) {
832 			if (!mutex_trylock(&head->mutex)) {
833 				atomic_inc(&head->node.refs);
834 				spin_unlock(&delayed_refs->lock);
835 
836 				btrfs_release_path(path);
837 
838 				/*
839 				 * Mutex was contended, block until it's
840 				 * released and try again
841 				 */
842 				mutex_lock(&head->mutex);
843 				mutex_unlock(&head->mutex);
844 				btrfs_put_delayed_ref(&head->node);
845 				goto again;
846 			}
847 			ret = __add_delayed_refs(head, time_seq,
848 						 &prefs_delayed);
849 			mutex_unlock(&head->mutex);
850 			if (ret) {
851 				spin_unlock(&delayed_refs->lock);
852 				goto out;
853 			}
854 		}
855 		spin_unlock(&delayed_refs->lock);
856 	}
857 
858 	if (path->slots[0]) {
859 		struct extent_buffer *leaf;
860 		int slot;
861 
862 		path->slots[0]--;
863 		leaf = path->nodes[0];
864 		slot = path->slots[0];
865 		btrfs_item_key_to_cpu(leaf, &key, slot);
866 		if (key.objectid == bytenr &&
867 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
868 			ret = __add_inline_refs(fs_info, path, bytenr,
869 						&info_level, &prefs);
870 			if (ret)
871 				goto out;
872 			ret = __add_keyed_refs(fs_info, path, bytenr,
873 					       info_level, &prefs);
874 			if (ret)
875 				goto out;
876 		}
877 	}
878 	btrfs_release_path(path);
879 
880 	list_splice_init(&prefs_delayed, &prefs);
881 
882 	ret = __add_missing_keys(fs_info, &prefs);
883 	if (ret)
884 		goto out;
885 
886 	ret = __merge_refs(&prefs, 1);
887 	if (ret)
888 		goto out;
889 
890 	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
891 				      &prefs, extent_item_pos);
892 	if (ret)
893 		goto out;
894 
895 	ret = __merge_refs(&prefs, 2);
896 	if (ret)
897 		goto out;
898 
899 	while (!list_empty(&prefs)) {
900 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
901 		list_del(&ref->list);
902 		WARN_ON(ref->count < 0);
903 		if (ref->count && ref->root_id && ref->parent == 0) {
904 			/* no parent == root of tree */
905 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
906 			BUG_ON(ret < 0);
907 		}
908 		if (ref->count && ref->parent) {
909 			struct extent_inode_elem *eie = NULL;
910 			if (extent_item_pos && !ref->inode_list) {
911 				u32 bsz;
912 				struct extent_buffer *eb;
913 				bsz = btrfs_level_size(fs_info->extent_root,
914 							info_level);
915 				eb = read_tree_block(fs_info->extent_root,
916 							   ref->parent, bsz, 0);
917 				BUG_ON(!eb);
918 				ret = find_extent_in_eb(eb, bytenr,
919 							*extent_item_pos, &eie);
920 				ref->inode_list = eie;
921 				free_extent_buffer(eb);
922 			}
923 			ret = ulist_add_merge(refs, ref->parent,
924 					      (uintptr_t)ref->inode_list,
925 					      (u64 *)&eie, GFP_NOFS);
926 			if (!ret && extent_item_pos) {
927 				/*
928 				 * we've recorded that parent, so we must extend
929 				 * its inode list here
930 				 */
931 				BUG_ON(!eie);
932 				while (eie->next)
933 					eie = eie->next;
934 				eie->next = ref->inode_list;
935 			}
936 			BUG_ON(ret < 0);
937 		}
938 		kfree(ref);
939 	}
940 
941 out:
942 	btrfs_free_path(path);
943 	while (!list_empty(&prefs)) {
944 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
945 		list_del(&ref->list);
946 		kfree(ref);
947 	}
948 	while (!list_empty(&prefs_delayed)) {
949 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
950 				       list);
951 		list_del(&ref->list);
952 		kfree(ref);
953 	}
954 
955 	return ret;
956 }
957 
958 static void free_leaf_list(struct ulist *blocks)
959 {
960 	struct ulist_node *node = NULL;
961 	struct extent_inode_elem *eie;
962 	struct extent_inode_elem *eie_next;
963 	struct ulist_iterator uiter;
964 
965 	ULIST_ITER_INIT(&uiter);
966 	while ((node = ulist_next(blocks, &uiter))) {
967 		if (!node->aux)
968 			continue;
969 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
970 		for (; eie; eie = eie_next) {
971 			eie_next = eie->next;
972 			kfree(eie);
973 		}
974 		node->aux = 0;
975 	}
976 
977 	ulist_free(blocks);
978 }
979 
980 /*
981  * Finds all leafs with a reference to the specified combination of bytenr and
982  * offset. key_list_head will point to a list of corresponding keys (caller must
983  * free each list element). The leafs will be stored in the leafs ulist, which
984  * must be freed with ulist_free.
985  *
986  * returns 0 on success, <0 on error
987  */
988 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
989 				struct btrfs_fs_info *fs_info, u64 bytenr,
990 				u64 time_seq, struct ulist **leafs,
991 				const u64 *extent_item_pos)
992 {
993 	struct ulist *tmp;
994 	int ret;
995 
996 	tmp = ulist_alloc(GFP_NOFS);
997 	if (!tmp)
998 		return -ENOMEM;
999 	*leafs = ulist_alloc(GFP_NOFS);
1000 	if (!*leafs) {
1001 		ulist_free(tmp);
1002 		return -ENOMEM;
1003 	}
1004 
1005 	ret = find_parent_nodes(trans, fs_info, bytenr,
1006 				time_seq, *leafs, tmp, extent_item_pos);
1007 	ulist_free(tmp);
1008 
1009 	if (ret < 0 && ret != -ENOENT) {
1010 		free_leaf_list(*leafs);
1011 		return ret;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * walk all backrefs for a given extent to find all roots that reference this
1019  * extent. Walking a backref means finding all extents that reference this
1020  * extent and in turn walk the backrefs of those, too. Naturally this is a
1021  * recursive process, but here it is implemented in an iterative fashion: We
1022  * find all referencing extents for the extent in question and put them on a
1023  * list. In turn, we find all referencing extents for those, further appending
1024  * to the list. The way we iterate the list allows adding more elements after
1025  * the current while iterating. The process stops when we reach the end of the
1026  * list. Found roots are added to the roots list.
1027  *
1028  * returns 0 on success, < 0 on error.
1029  */
1030 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1031 				struct btrfs_fs_info *fs_info, u64 bytenr,
1032 				u64 time_seq, struct ulist **roots)
1033 {
1034 	struct ulist *tmp;
1035 	struct ulist_node *node = NULL;
1036 	struct ulist_iterator uiter;
1037 	int ret;
1038 
1039 	tmp = ulist_alloc(GFP_NOFS);
1040 	if (!tmp)
1041 		return -ENOMEM;
1042 	*roots = ulist_alloc(GFP_NOFS);
1043 	if (!*roots) {
1044 		ulist_free(tmp);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	ULIST_ITER_INIT(&uiter);
1049 	while (1) {
1050 		ret = find_parent_nodes(trans, fs_info, bytenr,
1051 					time_seq, tmp, *roots, NULL);
1052 		if (ret < 0 && ret != -ENOENT) {
1053 			ulist_free(tmp);
1054 			ulist_free(*roots);
1055 			return ret;
1056 		}
1057 		node = ulist_next(tmp, &uiter);
1058 		if (!node)
1059 			break;
1060 		bytenr = node->val;
1061 	}
1062 
1063 	ulist_free(tmp);
1064 	return 0;
1065 }
1066 
1067 
1068 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1069 			struct btrfs_root *fs_root, struct btrfs_path *path,
1070 			struct btrfs_key *found_key)
1071 {
1072 	int ret;
1073 	struct btrfs_key key;
1074 	struct extent_buffer *eb;
1075 
1076 	key.type = key_type;
1077 	key.objectid = inum;
1078 	key.offset = ioff;
1079 
1080 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	eb = path->nodes[0];
1085 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1086 		ret = btrfs_next_leaf(fs_root, path);
1087 		if (ret)
1088 			return ret;
1089 		eb = path->nodes[0];
1090 	}
1091 
1092 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1093 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1094 		return 1;
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * this makes the path point to (inum INODE_ITEM ioff)
1101  */
1102 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1103 			struct btrfs_path *path)
1104 {
1105 	struct btrfs_key key;
1106 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1107 				&key);
1108 }
1109 
1110 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1111 				struct btrfs_path *path,
1112 				struct btrfs_key *found_key)
1113 {
1114 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1115 				found_key);
1116 }
1117 
1118 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1119 			  u64 start_off, struct btrfs_path *path,
1120 			  struct btrfs_inode_extref **ret_extref,
1121 			  u64 *found_off)
1122 {
1123 	int ret, slot;
1124 	struct btrfs_key key;
1125 	struct btrfs_key found_key;
1126 	struct btrfs_inode_extref *extref;
1127 	struct extent_buffer *leaf;
1128 	unsigned long ptr;
1129 
1130 	key.objectid = inode_objectid;
1131 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1132 	key.offset = start_off;
1133 
1134 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1135 	if (ret < 0)
1136 		return ret;
1137 
1138 	while (1) {
1139 		leaf = path->nodes[0];
1140 		slot = path->slots[0];
1141 		if (slot >= btrfs_header_nritems(leaf)) {
1142 			/*
1143 			 * If the item at offset is not found,
1144 			 * btrfs_search_slot will point us to the slot
1145 			 * where it should be inserted. In our case
1146 			 * that will be the slot directly before the
1147 			 * next INODE_REF_KEY_V2 item. In the case
1148 			 * that we're pointing to the last slot in a
1149 			 * leaf, we must move one leaf over.
1150 			 */
1151 			ret = btrfs_next_leaf(root, path);
1152 			if (ret) {
1153 				if (ret >= 1)
1154 					ret = -ENOENT;
1155 				break;
1156 			}
1157 			continue;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1161 
1162 		/*
1163 		 * Check that we're still looking at an extended ref key for
1164 		 * this particular objectid. If we have different
1165 		 * objectid or type then there are no more to be found
1166 		 * in the tree and we can exit.
1167 		 */
1168 		ret = -ENOENT;
1169 		if (found_key.objectid != inode_objectid)
1170 			break;
1171 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1172 			break;
1173 
1174 		ret = 0;
1175 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1176 		extref = (struct btrfs_inode_extref *)ptr;
1177 		*ret_extref = extref;
1178 		if (found_off)
1179 			*found_off = found_key.offset;
1180 		break;
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1187 			u32 name_len, unsigned long name_off,
1188 			struct extent_buffer *eb_in, u64 parent,
1189 			char *dest, u32 size)
1190 {
1191 	int slot;
1192 	u64 next_inum;
1193 	int ret;
1194 	s64 bytes_left = ((s64)size) - 1;
1195 	struct extent_buffer *eb = eb_in;
1196 	struct btrfs_key found_key;
1197 	int leave_spinning = path->leave_spinning;
1198 	struct btrfs_inode_ref *iref;
1199 
1200 	if (bytes_left >= 0)
1201 		dest[bytes_left] = '\0';
1202 
1203 	path->leave_spinning = 1;
1204 	while (1) {
1205 		bytes_left -= name_len;
1206 		if (bytes_left >= 0)
1207 			read_extent_buffer(eb, dest + bytes_left,
1208 					   name_off, name_len);
1209 		if (eb != eb_in) {
1210 			btrfs_tree_read_unlock_blocking(eb);
1211 			free_extent_buffer(eb);
1212 		}
1213 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1214 		if (ret > 0)
1215 			ret = -ENOENT;
1216 		if (ret)
1217 			break;
1218 
1219 		next_inum = found_key.offset;
1220 
1221 		/* regular exit ahead */
1222 		if (parent == next_inum)
1223 			break;
1224 
1225 		slot = path->slots[0];
1226 		eb = path->nodes[0];
1227 		/* make sure we can use eb after releasing the path */
1228 		if (eb != eb_in) {
1229 			atomic_inc(&eb->refs);
1230 			btrfs_tree_read_lock(eb);
1231 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1232 		}
1233 		btrfs_release_path(path);
1234 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1235 
1236 		name_len = btrfs_inode_ref_name_len(eb, iref);
1237 		name_off = (unsigned long)(iref + 1);
1238 
1239 		parent = next_inum;
1240 		--bytes_left;
1241 		if (bytes_left >= 0)
1242 			dest[bytes_left] = '/';
1243 	}
1244 
1245 	btrfs_release_path(path);
1246 	path->leave_spinning = leave_spinning;
1247 
1248 	if (ret)
1249 		return ERR_PTR(ret);
1250 
1251 	return dest + bytes_left;
1252 }
1253 
1254 /*
1255  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1256  * of the path are separated by '/' and the path is guaranteed to be
1257  * 0-terminated. the path is only given within the current file system.
1258  * Therefore, it never starts with a '/'. the caller is responsible to provide
1259  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1260  * the start point of the resulting string is returned. this pointer is within
1261  * dest, normally.
1262  * in case the path buffer would overflow, the pointer is decremented further
1263  * as if output was written to the buffer, though no more output is actually
1264  * generated. that way, the caller can determine how much space would be
1265  * required for the path to fit into the buffer. in that case, the returned
1266  * value will be smaller than dest. callers must check this!
1267  */
1268 char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1269 			 struct btrfs_path *path,
1270 			 struct btrfs_inode_ref *iref,
1271 			 struct extent_buffer *eb_in, u64 parent,
1272 			 char *dest, u32 size)
1273 {
1274 	return btrfs_ref_to_path(fs_root, path,
1275 				 btrfs_inode_ref_name_len(eb_in, iref),
1276 				 (unsigned long)(iref + 1),
1277 				 eb_in, parent, dest, size);
1278 }
1279 
1280 /*
1281  * this makes the path point to (logical EXTENT_ITEM *)
1282  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1283  * tree blocks and <0 on error.
1284  */
1285 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1286 			struct btrfs_path *path, struct btrfs_key *found_key,
1287 			u64 *flags_ret)
1288 {
1289 	int ret;
1290 	u64 flags;
1291 	u32 item_size;
1292 	struct extent_buffer *eb;
1293 	struct btrfs_extent_item *ei;
1294 	struct btrfs_key key;
1295 
1296 	key.type = BTRFS_EXTENT_ITEM_KEY;
1297 	key.objectid = logical;
1298 	key.offset = (u64)-1;
1299 
1300 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1301 	if (ret < 0)
1302 		return ret;
1303 	ret = btrfs_previous_item(fs_info->extent_root, path,
1304 					0, BTRFS_EXTENT_ITEM_KEY);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1309 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1310 	    found_key->objectid > logical ||
1311 	    found_key->objectid + found_key->offset <= logical) {
1312 		pr_debug("logical %llu is not within any extent\n",
1313 			 (unsigned long long)logical);
1314 		return -ENOENT;
1315 	}
1316 
1317 	eb = path->nodes[0];
1318 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1319 	BUG_ON(item_size < sizeof(*ei));
1320 
1321 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1322 	flags = btrfs_extent_flags(eb, ei);
1323 
1324 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1325 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1326 		 (unsigned long long)logical,
1327 		 (unsigned long long)(logical - found_key->objectid),
1328 		 (unsigned long long)found_key->objectid,
1329 		 (unsigned long long)found_key->offset,
1330 		 (unsigned long long)flags, item_size);
1331 
1332 	WARN_ON(!flags_ret);
1333 	if (flags_ret) {
1334 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1335 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1336 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1337 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1338 		else
1339 			BUG_ON(1);
1340 		return 0;
1341 	}
1342 
1343 	return -EIO;
1344 }
1345 
1346 /*
1347  * helper function to iterate extent inline refs. ptr must point to a 0 value
1348  * for the first call and may be modified. it is used to track state.
1349  * if more refs exist, 0 is returned and the next call to
1350  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1351  * next ref. after the last ref was processed, 1 is returned.
1352  * returns <0 on error
1353  */
1354 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1355 				struct btrfs_extent_item *ei, u32 item_size,
1356 				struct btrfs_extent_inline_ref **out_eiref,
1357 				int *out_type)
1358 {
1359 	unsigned long end;
1360 	u64 flags;
1361 	struct btrfs_tree_block_info *info;
1362 
1363 	if (!*ptr) {
1364 		/* first call */
1365 		flags = btrfs_extent_flags(eb, ei);
1366 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1367 			info = (struct btrfs_tree_block_info *)(ei + 1);
1368 			*out_eiref =
1369 				(struct btrfs_extent_inline_ref *)(info + 1);
1370 		} else {
1371 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1372 		}
1373 		*ptr = (unsigned long)*out_eiref;
1374 		if ((void *)*ptr >= (void *)ei + item_size)
1375 			return -ENOENT;
1376 	}
1377 
1378 	end = (unsigned long)ei + item_size;
1379 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1380 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1381 
1382 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1383 	WARN_ON(*ptr > end);
1384 	if (*ptr == end)
1385 		return 1; /* last */
1386 
1387 	return 0;
1388 }
1389 
1390 /*
1391  * reads the tree block backref for an extent. tree level and root are returned
1392  * through out_level and out_root. ptr must point to a 0 value for the first
1393  * call and may be modified (see __get_extent_inline_ref comment).
1394  * returns 0 if data was provided, 1 if there was no more data to provide or
1395  * <0 on error.
1396  */
1397 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1398 				struct btrfs_extent_item *ei, u32 item_size,
1399 				u64 *out_root, u8 *out_level)
1400 {
1401 	int ret;
1402 	int type;
1403 	struct btrfs_tree_block_info *info;
1404 	struct btrfs_extent_inline_ref *eiref;
1405 
1406 	if (*ptr == (unsigned long)-1)
1407 		return 1;
1408 
1409 	while (1) {
1410 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1411 						&eiref, &type);
1412 		if (ret < 0)
1413 			return ret;
1414 
1415 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1416 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1417 			break;
1418 
1419 		if (ret == 1)
1420 			return 1;
1421 	}
1422 
1423 	/* we can treat both ref types equally here */
1424 	info = (struct btrfs_tree_block_info *)(ei + 1);
1425 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1426 	*out_level = btrfs_tree_block_level(eb, info);
1427 
1428 	if (ret == 1)
1429 		*ptr = (unsigned long)-1;
1430 
1431 	return 0;
1432 }
1433 
1434 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1435 				u64 root, u64 extent_item_objectid,
1436 				iterate_extent_inodes_t *iterate, void *ctx)
1437 {
1438 	struct extent_inode_elem *eie;
1439 	int ret = 0;
1440 
1441 	for (eie = inode_list; eie; eie = eie->next) {
1442 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1443 			 "root %llu\n", extent_item_objectid,
1444 			 eie->inum, eie->offset, root);
1445 		ret = iterate(eie->inum, eie->offset, root, ctx);
1446 		if (ret) {
1447 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1448 				 extent_item_objectid, ret);
1449 			break;
1450 		}
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * calls iterate() for every inode that references the extent identified by
1458  * the given parameters.
1459  * when the iterator function returns a non-zero value, iteration stops.
1460  */
1461 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1462 				u64 extent_item_objectid, u64 extent_item_pos,
1463 				int search_commit_root,
1464 				iterate_extent_inodes_t *iterate, void *ctx)
1465 {
1466 	int ret;
1467 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1468 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1469 	struct btrfs_trans_handle *trans;
1470 	struct ulist *refs = NULL;
1471 	struct ulist *roots = NULL;
1472 	struct ulist_node *ref_node = NULL;
1473 	struct ulist_node *root_node = NULL;
1474 	struct seq_list tree_mod_seq_elem = {};
1475 	struct ulist_iterator ref_uiter;
1476 	struct ulist_iterator root_uiter;
1477 
1478 	pr_debug("resolving all inodes for extent %llu\n",
1479 			extent_item_objectid);
1480 
1481 	if (search_commit_root) {
1482 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1483 	} else {
1484 		trans = btrfs_join_transaction(fs_info->extent_root);
1485 		if (IS_ERR(trans))
1486 			return PTR_ERR(trans);
1487 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1488 	}
1489 
1490 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1491 				   tree_mod_seq_elem.seq, &refs,
1492 				   &extent_item_pos);
1493 	if (ret)
1494 		goto out;
1495 
1496 	ULIST_ITER_INIT(&ref_uiter);
1497 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1498 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1499 					   tree_mod_seq_elem.seq, &roots);
1500 		if (ret)
1501 			break;
1502 		ULIST_ITER_INIT(&root_uiter);
1503 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1504 			pr_debug("root %llu references leaf %llu, data list "
1505 				 "%#llx\n", root_node->val, ref_node->val,
1506 				 (long long)ref_node->aux);
1507 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1508 						(uintptr_t)ref_node->aux,
1509 						root_node->val,
1510 						extent_item_objectid,
1511 						iterate, ctx);
1512 		}
1513 		ulist_free(roots);
1514 		roots = NULL;
1515 	}
1516 
1517 	free_leaf_list(refs);
1518 	ulist_free(roots);
1519 out:
1520 	if (!search_commit_root) {
1521 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1522 		btrfs_end_transaction(trans, fs_info->extent_root);
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1529 				struct btrfs_path *path,
1530 				iterate_extent_inodes_t *iterate, void *ctx)
1531 {
1532 	int ret;
1533 	u64 extent_item_pos;
1534 	u64 flags = 0;
1535 	struct btrfs_key found_key;
1536 	int search_commit_root = path->search_commit_root;
1537 
1538 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1539 	btrfs_release_path(path);
1540 	if (ret < 0)
1541 		return ret;
1542 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1543 		return -EINVAL;
1544 
1545 	extent_item_pos = logical - found_key.objectid;
1546 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1547 					extent_item_pos, search_commit_root,
1548 					iterate, ctx);
1549 
1550 	return ret;
1551 }
1552 
1553 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1554 			      struct extent_buffer *eb, void *ctx);
1555 
1556 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1557 			      struct btrfs_path *path,
1558 			      iterate_irefs_t *iterate, void *ctx)
1559 {
1560 	int ret = 0;
1561 	int slot;
1562 	u32 cur;
1563 	u32 len;
1564 	u32 name_len;
1565 	u64 parent = 0;
1566 	int found = 0;
1567 	struct extent_buffer *eb;
1568 	struct btrfs_item *item;
1569 	struct btrfs_inode_ref *iref;
1570 	struct btrfs_key found_key;
1571 
1572 	while (!ret) {
1573 		path->leave_spinning = 1;
1574 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1575 				     &found_key);
1576 		if (ret < 0)
1577 			break;
1578 		if (ret) {
1579 			ret = found ? 0 : -ENOENT;
1580 			break;
1581 		}
1582 		++found;
1583 
1584 		parent = found_key.offset;
1585 		slot = path->slots[0];
1586 		eb = path->nodes[0];
1587 		/* make sure we can use eb after releasing the path */
1588 		atomic_inc(&eb->refs);
1589 		btrfs_tree_read_lock(eb);
1590 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1591 		btrfs_release_path(path);
1592 
1593 		item = btrfs_item_nr(eb, slot);
1594 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1595 
1596 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1597 			name_len = btrfs_inode_ref_name_len(eb, iref);
1598 			/* path must be released before calling iterate()! */
1599 			pr_debug("following ref at offset %u for inode %llu in "
1600 				 "tree %llu\n", cur,
1601 				 (unsigned long long)found_key.objectid,
1602 				 (unsigned long long)fs_root->objectid);
1603 			ret = iterate(parent, name_len,
1604 				      (unsigned long)(iref + 1), eb, ctx);
1605 			if (ret)
1606 				break;
1607 			len = sizeof(*iref) + name_len;
1608 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1609 		}
1610 		btrfs_tree_read_unlock_blocking(eb);
1611 		free_extent_buffer(eb);
1612 	}
1613 
1614 	btrfs_release_path(path);
1615 
1616 	return ret;
1617 }
1618 
1619 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1620 				 struct btrfs_path *path,
1621 				 iterate_irefs_t *iterate, void *ctx)
1622 {
1623 	int ret;
1624 	int slot;
1625 	u64 offset = 0;
1626 	u64 parent;
1627 	int found = 0;
1628 	struct extent_buffer *eb;
1629 	struct btrfs_inode_extref *extref;
1630 	struct extent_buffer *leaf;
1631 	u32 item_size;
1632 	u32 cur_offset;
1633 	unsigned long ptr;
1634 
1635 	while (1) {
1636 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1637 					    &offset);
1638 		if (ret < 0)
1639 			break;
1640 		if (ret) {
1641 			ret = found ? 0 : -ENOENT;
1642 			break;
1643 		}
1644 		++found;
1645 
1646 		slot = path->slots[0];
1647 		eb = path->nodes[0];
1648 		/* make sure we can use eb after releasing the path */
1649 		atomic_inc(&eb->refs);
1650 
1651 		btrfs_tree_read_lock(eb);
1652 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1653 		btrfs_release_path(path);
1654 
1655 		leaf = path->nodes[0];
1656 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1657 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1658 		cur_offset = 0;
1659 
1660 		while (cur_offset < item_size) {
1661 			u32 name_len;
1662 
1663 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1664 			parent = btrfs_inode_extref_parent(eb, extref);
1665 			name_len = btrfs_inode_extref_name_len(eb, extref);
1666 			ret = iterate(parent, name_len,
1667 				      (unsigned long)&extref->name, eb, ctx);
1668 			if (ret)
1669 				break;
1670 
1671 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1672 			cur_offset += sizeof(*extref);
1673 		}
1674 		btrfs_tree_read_unlock_blocking(eb);
1675 		free_extent_buffer(eb);
1676 
1677 		offset++;
1678 	}
1679 
1680 	btrfs_release_path(path);
1681 
1682 	return ret;
1683 }
1684 
1685 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1686 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1687 			 void *ctx)
1688 {
1689 	int ret;
1690 	int found_refs = 0;
1691 
1692 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1693 	if (!ret)
1694 		++found_refs;
1695 	else if (ret != -ENOENT)
1696 		return ret;
1697 
1698 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1699 	if (ret == -ENOENT && found_refs)
1700 		return 0;
1701 
1702 	return ret;
1703 }
1704 
1705 /*
1706  * returns 0 if the path could be dumped (probably truncated)
1707  * returns <0 in case of an error
1708  */
1709 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1710 			 struct extent_buffer *eb, void *ctx)
1711 {
1712 	struct inode_fs_paths *ipath = ctx;
1713 	char *fspath;
1714 	char *fspath_min;
1715 	int i = ipath->fspath->elem_cnt;
1716 	const int s_ptr = sizeof(char *);
1717 	u32 bytes_left;
1718 
1719 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1720 					ipath->fspath->bytes_left - s_ptr : 0;
1721 
1722 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1723 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1724 				   name_off, eb, inum, fspath_min, bytes_left);
1725 	if (IS_ERR(fspath))
1726 		return PTR_ERR(fspath);
1727 
1728 	if (fspath > fspath_min) {
1729 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1730 		++ipath->fspath->elem_cnt;
1731 		ipath->fspath->bytes_left = fspath - fspath_min;
1732 	} else {
1733 		++ipath->fspath->elem_missed;
1734 		ipath->fspath->bytes_missing += fspath_min - fspath;
1735 		ipath->fspath->bytes_left = 0;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * this dumps all file system paths to the inode into the ipath struct, provided
1743  * is has been created large enough. each path is zero-terminated and accessed
1744  * from ipath->fspath->val[i].
1745  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1746  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1747  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1748  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1749  * have been needed to return all paths.
1750  */
1751 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1752 {
1753 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1754 			     inode_to_path, ipath);
1755 }
1756 
1757 struct btrfs_data_container *init_data_container(u32 total_bytes)
1758 {
1759 	struct btrfs_data_container *data;
1760 	size_t alloc_bytes;
1761 
1762 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1763 	data = vmalloc(alloc_bytes);
1764 	if (!data)
1765 		return ERR_PTR(-ENOMEM);
1766 
1767 	if (total_bytes >= sizeof(*data)) {
1768 		data->bytes_left = total_bytes - sizeof(*data);
1769 		data->bytes_missing = 0;
1770 	} else {
1771 		data->bytes_missing = sizeof(*data) - total_bytes;
1772 		data->bytes_left = 0;
1773 	}
1774 
1775 	data->elem_cnt = 0;
1776 	data->elem_missed = 0;
1777 
1778 	return data;
1779 }
1780 
1781 /*
1782  * allocates space to return multiple file system paths for an inode.
1783  * total_bytes to allocate are passed, note that space usable for actual path
1784  * information will be total_bytes - sizeof(struct inode_fs_paths).
1785  * the returned pointer must be freed with free_ipath() in the end.
1786  */
1787 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1788 					struct btrfs_path *path)
1789 {
1790 	struct inode_fs_paths *ifp;
1791 	struct btrfs_data_container *fspath;
1792 
1793 	fspath = init_data_container(total_bytes);
1794 	if (IS_ERR(fspath))
1795 		return (void *)fspath;
1796 
1797 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1798 	if (!ifp) {
1799 		kfree(fspath);
1800 		return ERR_PTR(-ENOMEM);
1801 	}
1802 
1803 	ifp->btrfs_path = path;
1804 	ifp->fspath = fspath;
1805 	ifp->fs_root = fs_root;
1806 
1807 	return ifp;
1808 }
1809 
1810 void free_ipath(struct inode_fs_paths *ipath)
1811 {
1812 	if (!ipath)
1813 		return;
1814 	vfree(ipath->fspath);
1815 	kfree(ipath);
1816 }
1817