1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 /* Just an arbitrary number so we can be sure this happened */ 29 #define BACKREF_FOUND_SHARED 6 30 31 struct extent_inode_elem { 32 u64 inum; 33 u64 offset; 34 struct extent_inode_elem *next; 35 }; 36 37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 38 struct btrfs_file_extent_item *fi, 39 u64 extent_item_pos, 40 struct extent_inode_elem **eie) 41 { 42 u64 offset = 0; 43 struct extent_inode_elem *e; 44 45 if (!btrfs_file_extent_compression(eb, fi) && 46 !btrfs_file_extent_encryption(eb, fi) && 47 !btrfs_file_extent_other_encoding(eb, fi)) { 48 u64 data_offset; 49 u64 data_len; 50 51 data_offset = btrfs_file_extent_offset(eb, fi); 52 data_len = btrfs_file_extent_num_bytes(eb, fi); 53 54 if (extent_item_pos < data_offset || 55 extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset = extent_item_pos - data_offset; 58 } 59 60 e = kmalloc(sizeof(*e), GFP_NOFS); 61 if (!e) 62 return -ENOMEM; 63 64 e->next = *eie; 65 e->inum = key->objectid; 66 e->offset = key->offset + offset; 67 *eie = e; 68 69 return 0; 70 } 71 72 static void free_inode_elem_list(struct extent_inode_elem *eie) 73 { 74 struct extent_inode_elem *eie_next; 75 76 for (; eie; eie = eie_next) { 77 eie_next = eie->next; 78 kfree(eie); 79 } 80 } 81 82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 83 u64 extent_item_pos, 84 struct extent_inode_elem **eie) 85 { 86 u64 disk_byte; 87 struct btrfs_key key; 88 struct btrfs_file_extent_item *fi; 89 int slot; 90 int nritems; 91 int extent_type; 92 int ret; 93 94 /* 95 * from the shared data ref, we only have the leaf but we need 96 * the key. thus, we must look into all items and see that we 97 * find one (some) with a reference to our extent item. 98 */ 99 nritems = btrfs_header_nritems(eb); 100 for (slot = 0; slot < nritems; ++slot) { 101 btrfs_item_key_to_cpu(eb, &key, slot); 102 if (key.type != BTRFS_EXTENT_DATA_KEY) 103 continue; 104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 105 extent_type = btrfs_file_extent_type(eb, fi); 106 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 107 continue; 108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 110 if (disk_byte != wanted_disk_byte) 111 continue; 112 113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 114 if (ret < 0) 115 return ret; 116 } 117 118 return 0; 119 } 120 121 /* 122 * this structure records all encountered refs on the way up to the root 123 */ 124 struct __prelim_ref { 125 struct list_head list; 126 u64 root_id; 127 struct btrfs_key key_for_search; 128 int level; 129 int count; 130 struct extent_inode_elem *inode_list; 131 u64 parent; 132 u64 wanted_disk_byte; 133 }; 134 135 static struct kmem_cache *btrfs_prelim_ref_cache; 136 137 int __init btrfs_prelim_ref_init(void) 138 { 139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 140 sizeof(struct __prelim_ref), 141 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 143 NULL); 144 if (!btrfs_prelim_ref_cache) 145 return -ENOMEM; 146 return 0; 147 } 148 149 void btrfs_prelim_ref_exit(void) 150 { 151 if (btrfs_prelim_ref_cache) 152 kmem_cache_destroy(btrfs_prelim_ref_cache); 153 } 154 155 /* 156 * the rules for all callers of this function are: 157 * - obtaining the parent is the goal 158 * - if you add a key, you must know that it is a correct key 159 * - if you cannot add the parent or a correct key, then we will look into the 160 * block later to set a correct key 161 * 162 * delayed refs 163 * ============ 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | - | - 168 * key to resolve | - | y | y | y 169 * tree block logical | - | - | - | - 170 * root for resolving | y | y | y | y 171 * 172 * - column 1: we've the parent -> done 173 * - column 2, 3, 4: we use the key to find the parent 174 * 175 * on disk refs (inline or keyed) 176 * ============================== 177 * backref type | shared | indirect | shared | indirect 178 * information | tree | tree | data | data 179 * --------------------+--------+----------+--------+---------- 180 * parent logical | y | - | y | - 181 * key to resolve | - | - | - | y 182 * tree block logical | y | y | y | y 183 * root for resolving | - | y | y | y 184 * 185 * - column 1, 3: we've the parent -> done 186 * - column 2: we take the first key from the block to find the parent 187 * (see __add_missing_keys) 188 * - column 4: we use the key to find the parent 189 * 190 * additional information that's available but not required to find the parent 191 * block might help in merging entries to gain some speed. 192 */ 193 194 static int __add_prelim_ref(struct list_head *head, u64 root_id, 195 struct btrfs_key *key, int level, 196 u64 parent, u64 wanted_disk_byte, int count, 197 gfp_t gfp_mask) 198 { 199 struct __prelim_ref *ref; 200 201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 202 return 0; 203 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 205 if (!ref) 206 return -ENOMEM; 207 208 ref->root_id = root_id; 209 if (key) 210 ref->key_for_search = *key; 211 else 212 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 213 214 ref->inode_list = NULL; 215 ref->level = level; 216 ref->count = count; 217 ref->parent = parent; 218 ref->wanted_disk_byte = wanted_disk_byte; 219 list_add_tail(&ref->list, head); 220 221 return 0; 222 } 223 224 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 225 struct ulist *parents, struct __prelim_ref *ref, 226 int level, u64 time_seq, const u64 *extent_item_pos, 227 u64 total_refs) 228 { 229 int ret = 0; 230 int slot; 231 struct extent_buffer *eb; 232 struct btrfs_key key; 233 struct btrfs_key *key_for_search = &ref->key_for_search; 234 struct btrfs_file_extent_item *fi; 235 struct extent_inode_elem *eie = NULL, *old = NULL; 236 u64 disk_byte; 237 u64 wanted_disk_byte = ref->wanted_disk_byte; 238 u64 count = 0; 239 240 if (level != 0) { 241 eb = path->nodes[level]; 242 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 243 if (ret < 0) 244 return ret; 245 return 0; 246 } 247 248 /* 249 * We normally enter this function with the path already pointing to 250 * the first item to check. But sometimes, we may enter it with 251 * slot==nritems. In that case, go to the next leaf before we continue. 252 */ 253 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 254 ret = btrfs_next_old_leaf(root, path, time_seq); 255 256 while (!ret && count < total_refs) { 257 eb = path->nodes[0]; 258 slot = path->slots[0]; 259 260 btrfs_item_key_to_cpu(eb, &key, slot); 261 262 if (key.objectid != key_for_search->objectid || 263 key.type != BTRFS_EXTENT_DATA_KEY) 264 break; 265 266 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 267 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 268 269 if (disk_byte == wanted_disk_byte) { 270 eie = NULL; 271 old = NULL; 272 count++; 273 if (extent_item_pos) { 274 ret = check_extent_in_eb(&key, eb, fi, 275 *extent_item_pos, 276 &eie); 277 if (ret < 0) 278 break; 279 } 280 if (ret > 0) 281 goto next; 282 ret = ulist_add_merge_ptr(parents, eb->start, 283 eie, (void **)&old, GFP_NOFS); 284 if (ret < 0) 285 break; 286 if (!ret && extent_item_pos) { 287 while (old->next) 288 old = old->next; 289 old->next = eie; 290 } 291 eie = NULL; 292 } 293 next: 294 ret = btrfs_next_old_item(root, path, time_seq); 295 } 296 297 if (ret > 0) 298 ret = 0; 299 else if (ret < 0) 300 free_inode_elem_list(eie); 301 return ret; 302 } 303 304 /* 305 * resolve an indirect backref in the form (root_id, key, level) 306 * to a logical address 307 */ 308 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 309 struct btrfs_path *path, u64 time_seq, 310 struct __prelim_ref *ref, 311 struct ulist *parents, 312 const u64 *extent_item_pos, u64 total_refs) 313 { 314 struct btrfs_root *root; 315 struct btrfs_key root_key; 316 struct extent_buffer *eb; 317 int ret = 0; 318 int root_level; 319 int level = ref->level; 320 int index; 321 322 root_key.objectid = ref->root_id; 323 root_key.type = BTRFS_ROOT_ITEM_KEY; 324 root_key.offset = (u64)-1; 325 326 index = srcu_read_lock(&fs_info->subvol_srcu); 327 328 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 329 if (IS_ERR(root)) { 330 srcu_read_unlock(&fs_info->subvol_srcu, index); 331 ret = PTR_ERR(root); 332 goto out; 333 } 334 335 if (path->search_commit_root) 336 root_level = btrfs_header_level(root->commit_root); 337 else 338 root_level = btrfs_old_root_level(root, time_seq); 339 340 if (root_level + 1 == level) { 341 srcu_read_unlock(&fs_info->subvol_srcu, index); 342 goto out; 343 } 344 345 path->lowest_level = level; 346 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 347 348 /* root node has been locked, we can release @subvol_srcu safely here */ 349 srcu_read_unlock(&fs_info->subvol_srcu, index); 350 351 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 352 "%d for key (%llu %u %llu)\n", 353 ref->root_id, level, ref->count, ret, 354 ref->key_for_search.objectid, ref->key_for_search.type, 355 ref->key_for_search.offset); 356 if (ret < 0) 357 goto out; 358 359 eb = path->nodes[level]; 360 while (!eb) { 361 if (WARN_ON(!level)) { 362 ret = 1; 363 goto out; 364 } 365 level--; 366 eb = path->nodes[level]; 367 } 368 369 ret = add_all_parents(root, path, parents, ref, level, time_seq, 370 extent_item_pos, total_refs); 371 out: 372 path->lowest_level = 0; 373 btrfs_release_path(path); 374 return ret; 375 } 376 377 /* 378 * resolve all indirect backrefs from the list 379 */ 380 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 381 struct btrfs_path *path, u64 time_seq, 382 struct list_head *head, 383 const u64 *extent_item_pos, u64 total_refs, 384 u64 root_objectid) 385 { 386 int err; 387 int ret = 0; 388 struct __prelim_ref *ref; 389 struct __prelim_ref *ref_safe; 390 struct __prelim_ref *new_ref; 391 struct ulist *parents; 392 struct ulist_node *node; 393 struct ulist_iterator uiter; 394 395 parents = ulist_alloc(GFP_NOFS); 396 if (!parents) 397 return -ENOMEM; 398 399 /* 400 * _safe allows us to insert directly after the current item without 401 * iterating over the newly inserted items. 402 * we're also allowed to re-assign ref during iteration. 403 */ 404 list_for_each_entry_safe(ref, ref_safe, head, list) { 405 if (ref->parent) /* already direct */ 406 continue; 407 if (ref->count == 0) 408 continue; 409 if (root_objectid && ref->root_id != root_objectid) { 410 ret = BACKREF_FOUND_SHARED; 411 goto out; 412 } 413 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 414 parents, extent_item_pos, 415 total_refs); 416 /* 417 * we can only tolerate ENOENT,otherwise,we should catch error 418 * and return directly. 419 */ 420 if (err == -ENOENT) { 421 continue; 422 } else if (err) { 423 ret = err; 424 goto out; 425 } 426 427 /* we put the first parent into the ref at hand */ 428 ULIST_ITER_INIT(&uiter); 429 node = ulist_next(parents, &uiter); 430 ref->parent = node ? node->val : 0; 431 ref->inode_list = node ? 432 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 433 434 /* additional parents require new refs being added here */ 435 while ((node = ulist_next(parents, &uiter))) { 436 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 437 GFP_NOFS); 438 if (!new_ref) { 439 ret = -ENOMEM; 440 goto out; 441 } 442 memcpy(new_ref, ref, sizeof(*ref)); 443 new_ref->parent = node->val; 444 new_ref->inode_list = (struct extent_inode_elem *) 445 (uintptr_t)node->aux; 446 list_add(&new_ref->list, &ref->list); 447 } 448 ulist_reinit(parents); 449 } 450 out: 451 ulist_free(parents); 452 return ret; 453 } 454 455 static inline int ref_for_same_block(struct __prelim_ref *ref1, 456 struct __prelim_ref *ref2) 457 { 458 if (ref1->level != ref2->level) 459 return 0; 460 if (ref1->root_id != ref2->root_id) 461 return 0; 462 if (ref1->key_for_search.type != ref2->key_for_search.type) 463 return 0; 464 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 465 return 0; 466 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 467 return 0; 468 if (ref1->parent != ref2->parent) 469 return 0; 470 471 return 1; 472 } 473 474 /* 475 * read tree blocks and add keys where required. 476 */ 477 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 478 struct list_head *head) 479 { 480 struct list_head *pos; 481 struct extent_buffer *eb; 482 483 list_for_each(pos, head) { 484 struct __prelim_ref *ref; 485 ref = list_entry(pos, struct __prelim_ref, list); 486 487 if (ref->parent) 488 continue; 489 if (ref->key_for_search.type) 490 continue; 491 BUG_ON(!ref->wanted_disk_byte); 492 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 493 0); 494 if (!eb || !extent_buffer_uptodate(eb)) { 495 free_extent_buffer(eb); 496 return -EIO; 497 } 498 btrfs_tree_read_lock(eb); 499 if (btrfs_header_level(eb) == 0) 500 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 501 else 502 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 503 btrfs_tree_read_unlock(eb); 504 free_extent_buffer(eb); 505 } 506 return 0; 507 } 508 509 /* 510 * merge two lists of backrefs and adjust counts accordingly 511 * 512 * mode = 1: merge identical keys, if key is set 513 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 514 * additionally, we could even add a key range for the blocks we 515 * looked into to merge even more (-> replace unresolved refs by those 516 * having a parent). 517 * mode = 2: merge identical parents 518 */ 519 static void __merge_refs(struct list_head *head, int mode) 520 { 521 struct list_head *pos1; 522 523 list_for_each(pos1, head) { 524 struct list_head *n2; 525 struct list_head *pos2; 526 struct __prelim_ref *ref1; 527 528 ref1 = list_entry(pos1, struct __prelim_ref, list); 529 530 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 531 pos2 = n2, n2 = pos2->next) { 532 struct __prelim_ref *ref2; 533 struct __prelim_ref *xchg; 534 struct extent_inode_elem *eie; 535 536 ref2 = list_entry(pos2, struct __prelim_ref, list); 537 538 if (mode == 1) { 539 if (!ref_for_same_block(ref1, ref2)) 540 continue; 541 if (!ref1->parent && ref2->parent) { 542 xchg = ref1; 543 ref1 = ref2; 544 ref2 = xchg; 545 } 546 } else { 547 if (ref1->parent != ref2->parent) 548 continue; 549 } 550 551 eie = ref1->inode_list; 552 while (eie && eie->next) 553 eie = eie->next; 554 if (eie) 555 eie->next = ref2->inode_list; 556 else 557 ref1->inode_list = ref2->inode_list; 558 ref1->count += ref2->count; 559 560 list_del(&ref2->list); 561 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 562 } 563 564 } 565 } 566 567 /* 568 * add all currently queued delayed refs from this head whose seq nr is 569 * smaller or equal that seq to the list 570 */ 571 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 572 struct list_head *prefs, u64 *total_refs, 573 u64 inum) 574 { 575 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 576 struct rb_node *n = &head->node.rb_node; 577 struct btrfs_key key; 578 struct btrfs_key op_key = {0}; 579 int sgn; 580 int ret = 0; 581 582 if (extent_op && extent_op->update_key) 583 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 584 585 spin_lock(&head->lock); 586 n = rb_first(&head->ref_root); 587 while (n) { 588 struct btrfs_delayed_ref_node *node; 589 node = rb_entry(n, struct btrfs_delayed_ref_node, 590 rb_node); 591 n = rb_next(n); 592 if (node->seq > seq) 593 continue; 594 595 switch (node->action) { 596 case BTRFS_ADD_DELAYED_EXTENT: 597 case BTRFS_UPDATE_DELAYED_HEAD: 598 WARN_ON(1); 599 continue; 600 case BTRFS_ADD_DELAYED_REF: 601 sgn = 1; 602 break; 603 case BTRFS_DROP_DELAYED_REF: 604 sgn = -1; 605 break; 606 default: 607 BUG_ON(1); 608 } 609 *total_refs += (node->ref_mod * sgn); 610 switch (node->type) { 611 case BTRFS_TREE_BLOCK_REF_KEY: { 612 struct btrfs_delayed_tree_ref *ref; 613 614 ref = btrfs_delayed_node_to_tree_ref(node); 615 ret = __add_prelim_ref(prefs, ref->root, &op_key, 616 ref->level + 1, 0, node->bytenr, 617 node->ref_mod * sgn, GFP_ATOMIC); 618 break; 619 } 620 case BTRFS_SHARED_BLOCK_REF_KEY: { 621 struct btrfs_delayed_tree_ref *ref; 622 623 ref = btrfs_delayed_node_to_tree_ref(node); 624 ret = __add_prelim_ref(prefs, ref->root, NULL, 625 ref->level + 1, ref->parent, 626 node->bytenr, 627 node->ref_mod * sgn, GFP_ATOMIC); 628 break; 629 } 630 case BTRFS_EXTENT_DATA_REF_KEY: { 631 struct btrfs_delayed_data_ref *ref; 632 ref = btrfs_delayed_node_to_data_ref(node); 633 634 key.objectid = ref->objectid; 635 key.type = BTRFS_EXTENT_DATA_KEY; 636 key.offset = ref->offset; 637 638 /* 639 * Found a inum that doesn't match our known inum, we 640 * know it's shared. 641 */ 642 if (inum && ref->objectid != inum) { 643 ret = BACKREF_FOUND_SHARED; 644 break; 645 } 646 647 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 648 node->bytenr, 649 node->ref_mod * sgn, GFP_ATOMIC); 650 break; 651 } 652 case BTRFS_SHARED_DATA_REF_KEY: { 653 struct btrfs_delayed_data_ref *ref; 654 655 ref = btrfs_delayed_node_to_data_ref(node); 656 657 key.objectid = ref->objectid; 658 key.type = BTRFS_EXTENT_DATA_KEY; 659 key.offset = ref->offset; 660 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 661 ref->parent, node->bytenr, 662 node->ref_mod * sgn, GFP_ATOMIC); 663 break; 664 } 665 default: 666 WARN_ON(1); 667 } 668 if (ret) 669 break; 670 } 671 spin_unlock(&head->lock); 672 return ret; 673 } 674 675 /* 676 * add all inline backrefs for bytenr to the list 677 */ 678 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 679 struct btrfs_path *path, u64 bytenr, 680 int *info_level, struct list_head *prefs, 681 u64 *total_refs, u64 inum) 682 { 683 int ret = 0; 684 int slot; 685 struct extent_buffer *leaf; 686 struct btrfs_key key; 687 struct btrfs_key found_key; 688 unsigned long ptr; 689 unsigned long end; 690 struct btrfs_extent_item *ei; 691 u64 flags; 692 u64 item_size; 693 694 /* 695 * enumerate all inline refs 696 */ 697 leaf = path->nodes[0]; 698 slot = path->slots[0]; 699 700 item_size = btrfs_item_size_nr(leaf, slot); 701 BUG_ON(item_size < sizeof(*ei)); 702 703 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 704 flags = btrfs_extent_flags(leaf, ei); 705 *total_refs += btrfs_extent_refs(leaf, ei); 706 btrfs_item_key_to_cpu(leaf, &found_key, slot); 707 708 ptr = (unsigned long)(ei + 1); 709 end = (unsigned long)ei + item_size; 710 711 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 712 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 713 struct btrfs_tree_block_info *info; 714 715 info = (struct btrfs_tree_block_info *)ptr; 716 *info_level = btrfs_tree_block_level(leaf, info); 717 ptr += sizeof(struct btrfs_tree_block_info); 718 BUG_ON(ptr > end); 719 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 720 *info_level = found_key.offset; 721 } else { 722 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 723 } 724 725 while (ptr < end) { 726 struct btrfs_extent_inline_ref *iref; 727 u64 offset; 728 int type; 729 730 iref = (struct btrfs_extent_inline_ref *)ptr; 731 type = btrfs_extent_inline_ref_type(leaf, iref); 732 offset = btrfs_extent_inline_ref_offset(leaf, iref); 733 734 switch (type) { 735 case BTRFS_SHARED_BLOCK_REF_KEY: 736 ret = __add_prelim_ref(prefs, 0, NULL, 737 *info_level + 1, offset, 738 bytenr, 1, GFP_NOFS); 739 break; 740 case BTRFS_SHARED_DATA_REF_KEY: { 741 struct btrfs_shared_data_ref *sdref; 742 int count; 743 744 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 745 count = btrfs_shared_data_ref_count(leaf, sdref); 746 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 747 bytenr, count, GFP_NOFS); 748 break; 749 } 750 case BTRFS_TREE_BLOCK_REF_KEY: 751 ret = __add_prelim_ref(prefs, offset, NULL, 752 *info_level + 1, 0, 753 bytenr, 1, GFP_NOFS); 754 break; 755 case BTRFS_EXTENT_DATA_REF_KEY: { 756 struct btrfs_extent_data_ref *dref; 757 int count; 758 u64 root; 759 760 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 761 count = btrfs_extent_data_ref_count(leaf, dref); 762 key.objectid = btrfs_extent_data_ref_objectid(leaf, 763 dref); 764 key.type = BTRFS_EXTENT_DATA_KEY; 765 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 766 767 if (inum && key.objectid != inum) { 768 ret = BACKREF_FOUND_SHARED; 769 break; 770 } 771 772 root = btrfs_extent_data_ref_root(leaf, dref); 773 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 774 bytenr, count, GFP_NOFS); 775 break; 776 } 777 default: 778 WARN_ON(1); 779 } 780 if (ret) 781 return ret; 782 ptr += btrfs_extent_inline_ref_size(type); 783 } 784 785 return 0; 786 } 787 788 /* 789 * add all non-inline backrefs for bytenr to the list 790 */ 791 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 792 struct btrfs_path *path, u64 bytenr, 793 int info_level, struct list_head *prefs, u64 inum) 794 { 795 struct btrfs_root *extent_root = fs_info->extent_root; 796 int ret; 797 int slot; 798 struct extent_buffer *leaf; 799 struct btrfs_key key; 800 801 while (1) { 802 ret = btrfs_next_item(extent_root, path); 803 if (ret < 0) 804 break; 805 if (ret) { 806 ret = 0; 807 break; 808 } 809 810 slot = path->slots[0]; 811 leaf = path->nodes[0]; 812 btrfs_item_key_to_cpu(leaf, &key, slot); 813 814 if (key.objectid != bytenr) 815 break; 816 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 817 continue; 818 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 819 break; 820 821 switch (key.type) { 822 case BTRFS_SHARED_BLOCK_REF_KEY: 823 ret = __add_prelim_ref(prefs, 0, NULL, 824 info_level + 1, key.offset, 825 bytenr, 1, GFP_NOFS); 826 break; 827 case BTRFS_SHARED_DATA_REF_KEY: { 828 struct btrfs_shared_data_ref *sdref; 829 int count; 830 831 sdref = btrfs_item_ptr(leaf, slot, 832 struct btrfs_shared_data_ref); 833 count = btrfs_shared_data_ref_count(leaf, sdref); 834 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 835 bytenr, count, GFP_NOFS); 836 break; 837 } 838 case BTRFS_TREE_BLOCK_REF_KEY: 839 ret = __add_prelim_ref(prefs, key.offset, NULL, 840 info_level + 1, 0, 841 bytenr, 1, GFP_NOFS); 842 break; 843 case BTRFS_EXTENT_DATA_REF_KEY: { 844 struct btrfs_extent_data_ref *dref; 845 int count; 846 u64 root; 847 848 dref = btrfs_item_ptr(leaf, slot, 849 struct btrfs_extent_data_ref); 850 count = btrfs_extent_data_ref_count(leaf, dref); 851 key.objectid = btrfs_extent_data_ref_objectid(leaf, 852 dref); 853 key.type = BTRFS_EXTENT_DATA_KEY; 854 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 855 856 if (inum && key.objectid != inum) { 857 ret = BACKREF_FOUND_SHARED; 858 break; 859 } 860 861 root = btrfs_extent_data_ref_root(leaf, dref); 862 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 863 bytenr, count, GFP_NOFS); 864 break; 865 } 866 default: 867 WARN_ON(1); 868 } 869 if (ret) 870 return ret; 871 872 } 873 874 return ret; 875 } 876 877 /* 878 * this adds all existing backrefs (inline backrefs, backrefs and delayed 879 * refs) for the given bytenr to the refs list, merges duplicates and resolves 880 * indirect refs to their parent bytenr. 881 * When roots are found, they're added to the roots list 882 * 883 * FIXME some caching might speed things up 884 */ 885 static int find_parent_nodes(struct btrfs_trans_handle *trans, 886 struct btrfs_fs_info *fs_info, u64 bytenr, 887 u64 time_seq, struct ulist *refs, 888 struct ulist *roots, const u64 *extent_item_pos, 889 u64 root_objectid, u64 inum) 890 { 891 struct btrfs_key key; 892 struct btrfs_path *path; 893 struct btrfs_delayed_ref_root *delayed_refs = NULL; 894 struct btrfs_delayed_ref_head *head; 895 int info_level = 0; 896 int ret; 897 struct list_head prefs_delayed; 898 struct list_head prefs; 899 struct __prelim_ref *ref; 900 struct extent_inode_elem *eie = NULL; 901 u64 total_refs = 0; 902 903 INIT_LIST_HEAD(&prefs); 904 INIT_LIST_HEAD(&prefs_delayed); 905 906 key.objectid = bytenr; 907 key.offset = (u64)-1; 908 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 909 key.type = BTRFS_METADATA_ITEM_KEY; 910 else 911 key.type = BTRFS_EXTENT_ITEM_KEY; 912 913 path = btrfs_alloc_path(); 914 if (!path) 915 return -ENOMEM; 916 if (!trans) { 917 path->search_commit_root = 1; 918 path->skip_locking = 1; 919 } 920 921 /* 922 * grab both a lock on the path and a lock on the delayed ref head. 923 * We need both to get a consistent picture of how the refs look 924 * at a specified point in time 925 */ 926 again: 927 head = NULL; 928 929 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 930 if (ret < 0) 931 goto out; 932 BUG_ON(ret == 0); 933 934 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 935 if (trans && likely(trans->type != __TRANS_DUMMY)) { 936 #else 937 if (trans) { 938 #endif 939 /* 940 * look if there are updates for this ref queued and lock the 941 * head 942 */ 943 delayed_refs = &trans->transaction->delayed_refs; 944 spin_lock(&delayed_refs->lock); 945 head = btrfs_find_delayed_ref_head(trans, bytenr); 946 if (head) { 947 if (!mutex_trylock(&head->mutex)) { 948 atomic_inc(&head->node.refs); 949 spin_unlock(&delayed_refs->lock); 950 951 btrfs_release_path(path); 952 953 /* 954 * Mutex was contended, block until it's 955 * released and try again 956 */ 957 mutex_lock(&head->mutex); 958 mutex_unlock(&head->mutex); 959 btrfs_put_delayed_ref(&head->node); 960 goto again; 961 } 962 spin_unlock(&delayed_refs->lock); 963 ret = __add_delayed_refs(head, time_seq, 964 &prefs_delayed, &total_refs, 965 inum); 966 mutex_unlock(&head->mutex); 967 if (ret) 968 goto out; 969 } else { 970 spin_unlock(&delayed_refs->lock); 971 } 972 } 973 974 if (path->slots[0]) { 975 struct extent_buffer *leaf; 976 int slot; 977 978 path->slots[0]--; 979 leaf = path->nodes[0]; 980 slot = path->slots[0]; 981 btrfs_item_key_to_cpu(leaf, &key, slot); 982 if (key.objectid == bytenr && 983 (key.type == BTRFS_EXTENT_ITEM_KEY || 984 key.type == BTRFS_METADATA_ITEM_KEY)) { 985 ret = __add_inline_refs(fs_info, path, bytenr, 986 &info_level, &prefs, 987 &total_refs, inum); 988 if (ret) 989 goto out; 990 ret = __add_keyed_refs(fs_info, path, bytenr, 991 info_level, &prefs, inum); 992 if (ret) 993 goto out; 994 } 995 } 996 btrfs_release_path(path); 997 998 list_splice_init(&prefs_delayed, &prefs); 999 1000 ret = __add_missing_keys(fs_info, &prefs); 1001 if (ret) 1002 goto out; 1003 1004 __merge_refs(&prefs, 1); 1005 1006 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1007 extent_item_pos, total_refs, 1008 root_objectid); 1009 if (ret) 1010 goto out; 1011 1012 __merge_refs(&prefs, 2); 1013 1014 while (!list_empty(&prefs)) { 1015 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1016 WARN_ON(ref->count < 0); 1017 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1018 if (root_objectid && ref->root_id != root_objectid) { 1019 ret = BACKREF_FOUND_SHARED; 1020 goto out; 1021 } 1022 1023 /* no parent == root of tree */ 1024 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1025 if (ret < 0) 1026 goto out; 1027 } 1028 if (ref->count && ref->parent) { 1029 if (extent_item_pos && !ref->inode_list && 1030 ref->level == 0) { 1031 struct extent_buffer *eb; 1032 1033 eb = read_tree_block(fs_info->extent_root, 1034 ref->parent, 0); 1035 if (!eb || !extent_buffer_uptodate(eb)) { 1036 free_extent_buffer(eb); 1037 ret = -EIO; 1038 goto out; 1039 } 1040 btrfs_tree_read_lock(eb); 1041 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1042 ret = find_extent_in_eb(eb, bytenr, 1043 *extent_item_pos, &eie); 1044 btrfs_tree_read_unlock_blocking(eb); 1045 free_extent_buffer(eb); 1046 if (ret < 0) 1047 goto out; 1048 ref->inode_list = eie; 1049 } 1050 ret = ulist_add_merge_ptr(refs, ref->parent, 1051 ref->inode_list, 1052 (void **)&eie, GFP_NOFS); 1053 if (ret < 0) 1054 goto out; 1055 if (!ret && extent_item_pos) { 1056 /* 1057 * we've recorded that parent, so we must extend 1058 * its inode list here 1059 */ 1060 BUG_ON(!eie); 1061 while (eie->next) 1062 eie = eie->next; 1063 eie->next = ref->inode_list; 1064 } 1065 eie = NULL; 1066 } 1067 list_del(&ref->list); 1068 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1069 } 1070 1071 out: 1072 btrfs_free_path(path); 1073 while (!list_empty(&prefs)) { 1074 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1075 list_del(&ref->list); 1076 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1077 } 1078 while (!list_empty(&prefs_delayed)) { 1079 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1080 list); 1081 list_del(&ref->list); 1082 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1083 } 1084 if (ret < 0) 1085 free_inode_elem_list(eie); 1086 return ret; 1087 } 1088 1089 static void free_leaf_list(struct ulist *blocks) 1090 { 1091 struct ulist_node *node = NULL; 1092 struct extent_inode_elem *eie; 1093 struct ulist_iterator uiter; 1094 1095 ULIST_ITER_INIT(&uiter); 1096 while ((node = ulist_next(blocks, &uiter))) { 1097 if (!node->aux) 1098 continue; 1099 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1100 free_inode_elem_list(eie); 1101 node->aux = 0; 1102 } 1103 1104 ulist_free(blocks); 1105 } 1106 1107 /* 1108 * Finds all leafs with a reference to the specified combination of bytenr and 1109 * offset. key_list_head will point to a list of corresponding keys (caller must 1110 * free each list element). The leafs will be stored in the leafs ulist, which 1111 * must be freed with ulist_free. 1112 * 1113 * returns 0 on success, <0 on error 1114 */ 1115 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1116 struct btrfs_fs_info *fs_info, u64 bytenr, 1117 u64 time_seq, struct ulist **leafs, 1118 const u64 *extent_item_pos) 1119 { 1120 int ret; 1121 1122 *leafs = ulist_alloc(GFP_NOFS); 1123 if (!*leafs) 1124 return -ENOMEM; 1125 1126 ret = find_parent_nodes(trans, fs_info, bytenr, 1127 time_seq, *leafs, NULL, extent_item_pos, 0, 0); 1128 if (ret < 0 && ret != -ENOENT) { 1129 free_leaf_list(*leafs); 1130 return ret; 1131 } 1132 1133 return 0; 1134 } 1135 1136 /* 1137 * walk all backrefs for a given extent to find all roots that reference this 1138 * extent. Walking a backref means finding all extents that reference this 1139 * extent and in turn walk the backrefs of those, too. Naturally this is a 1140 * recursive process, but here it is implemented in an iterative fashion: We 1141 * find all referencing extents for the extent in question and put them on a 1142 * list. In turn, we find all referencing extents for those, further appending 1143 * to the list. The way we iterate the list allows adding more elements after 1144 * the current while iterating. The process stops when we reach the end of the 1145 * list. Found roots are added to the roots list. 1146 * 1147 * returns 0 on success, < 0 on error. 1148 */ 1149 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1150 struct btrfs_fs_info *fs_info, u64 bytenr, 1151 u64 time_seq, struct ulist **roots) 1152 { 1153 struct ulist *tmp; 1154 struct ulist_node *node = NULL; 1155 struct ulist_iterator uiter; 1156 int ret; 1157 1158 tmp = ulist_alloc(GFP_NOFS); 1159 if (!tmp) 1160 return -ENOMEM; 1161 *roots = ulist_alloc(GFP_NOFS); 1162 if (!*roots) { 1163 ulist_free(tmp); 1164 return -ENOMEM; 1165 } 1166 1167 ULIST_ITER_INIT(&uiter); 1168 while (1) { 1169 ret = find_parent_nodes(trans, fs_info, bytenr, 1170 time_seq, tmp, *roots, NULL, 0, 0); 1171 if (ret < 0 && ret != -ENOENT) { 1172 ulist_free(tmp); 1173 ulist_free(*roots); 1174 return ret; 1175 } 1176 node = ulist_next(tmp, &uiter); 1177 if (!node) 1178 break; 1179 bytenr = node->val; 1180 cond_resched(); 1181 } 1182 1183 ulist_free(tmp); 1184 return 0; 1185 } 1186 1187 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1188 struct btrfs_fs_info *fs_info, u64 bytenr, 1189 u64 time_seq, struct ulist **roots) 1190 { 1191 int ret; 1192 1193 if (!trans) 1194 down_read(&fs_info->commit_root_sem); 1195 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1196 if (!trans) 1197 up_read(&fs_info->commit_root_sem); 1198 return ret; 1199 } 1200 1201 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1202 struct btrfs_fs_info *fs_info, u64 root_objectid, 1203 u64 inum, u64 bytenr) 1204 { 1205 struct ulist *tmp = NULL; 1206 struct ulist *roots = NULL; 1207 struct ulist_iterator uiter; 1208 struct ulist_node *node; 1209 struct seq_list elem = SEQ_LIST_INIT(elem); 1210 int ret = 0; 1211 1212 tmp = ulist_alloc(GFP_NOFS); 1213 roots = ulist_alloc(GFP_NOFS); 1214 if (!tmp || !roots) { 1215 ulist_free(tmp); 1216 ulist_free(roots); 1217 return -ENOMEM; 1218 } 1219 1220 if (trans) 1221 btrfs_get_tree_mod_seq(fs_info, &elem); 1222 else 1223 down_read(&fs_info->commit_root_sem); 1224 ULIST_ITER_INIT(&uiter); 1225 while (1) { 1226 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1227 roots, NULL, root_objectid, inum); 1228 if (ret == BACKREF_FOUND_SHARED) { 1229 ret = 1; 1230 break; 1231 } 1232 if (ret < 0 && ret != -ENOENT) 1233 break; 1234 node = ulist_next(tmp, &uiter); 1235 if (!node) 1236 break; 1237 bytenr = node->val; 1238 cond_resched(); 1239 } 1240 if (trans) 1241 btrfs_put_tree_mod_seq(fs_info, &elem); 1242 else 1243 up_read(&fs_info->commit_root_sem); 1244 ulist_free(tmp); 1245 ulist_free(roots); 1246 return ret; 1247 } 1248 1249 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1250 u64 start_off, struct btrfs_path *path, 1251 struct btrfs_inode_extref **ret_extref, 1252 u64 *found_off) 1253 { 1254 int ret, slot; 1255 struct btrfs_key key; 1256 struct btrfs_key found_key; 1257 struct btrfs_inode_extref *extref; 1258 struct extent_buffer *leaf; 1259 unsigned long ptr; 1260 1261 key.objectid = inode_objectid; 1262 key.type = BTRFS_INODE_EXTREF_KEY; 1263 key.offset = start_off; 1264 1265 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1266 if (ret < 0) 1267 return ret; 1268 1269 while (1) { 1270 leaf = path->nodes[0]; 1271 slot = path->slots[0]; 1272 if (slot >= btrfs_header_nritems(leaf)) { 1273 /* 1274 * If the item at offset is not found, 1275 * btrfs_search_slot will point us to the slot 1276 * where it should be inserted. In our case 1277 * that will be the slot directly before the 1278 * next INODE_REF_KEY_V2 item. In the case 1279 * that we're pointing to the last slot in a 1280 * leaf, we must move one leaf over. 1281 */ 1282 ret = btrfs_next_leaf(root, path); 1283 if (ret) { 1284 if (ret >= 1) 1285 ret = -ENOENT; 1286 break; 1287 } 1288 continue; 1289 } 1290 1291 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1292 1293 /* 1294 * Check that we're still looking at an extended ref key for 1295 * this particular objectid. If we have different 1296 * objectid or type then there are no more to be found 1297 * in the tree and we can exit. 1298 */ 1299 ret = -ENOENT; 1300 if (found_key.objectid != inode_objectid) 1301 break; 1302 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1303 break; 1304 1305 ret = 0; 1306 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1307 extref = (struct btrfs_inode_extref *)ptr; 1308 *ret_extref = extref; 1309 if (found_off) 1310 *found_off = found_key.offset; 1311 break; 1312 } 1313 1314 return ret; 1315 } 1316 1317 /* 1318 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1319 * Elements of the path are separated by '/' and the path is guaranteed to be 1320 * 0-terminated. the path is only given within the current file system. 1321 * Therefore, it never starts with a '/'. the caller is responsible to provide 1322 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1323 * the start point of the resulting string is returned. this pointer is within 1324 * dest, normally. 1325 * in case the path buffer would overflow, the pointer is decremented further 1326 * as if output was written to the buffer, though no more output is actually 1327 * generated. that way, the caller can determine how much space would be 1328 * required for the path to fit into the buffer. in that case, the returned 1329 * value will be smaller than dest. callers must check this! 1330 */ 1331 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1332 u32 name_len, unsigned long name_off, 1333 struct extent_buffer *eb_in, u64 parent, 1334 char *dest, u32 size) 1335 { 1336 int slot; 1337 u64 next_inum; 1338 int ret; 1339 s64 bytes_left = ((s64)size) - 1; 1340 struct extent_buffer *eb = eb_in; 1341 struct btrfs_key found_key; 1342 int leave_spinning = path->leave_spinning; 1343 struct btrfs_inode_ref *iref; 1344 1345 if (bytes_left >= 0) 1346 dest[bytes_left] = '\0'; 1347 1348 path->leave_spinning = 1; 1349 while (1) { 1350 bytes_left -= name_len; 1351 if (bytes_left >= 0) 1352 read_extent_buffer(eb, dest + bytes_left, 1353 name_off, name_len); 1354 if (eb != eb_in) { 1355 btrfs_tree_read_unlock_blocking(eb); 1356 free_extent_buffer(eb); 1357 } 1358 ret = btrfs_find_item(fs_root, path, parent, 0, 1359 BTRFS_INODE_REF_KEY, &found_key); 1360 if (ret > 0) 1361 ret = -ENOENT; 1362 if (ret) 1363 break; 1364 1365 next_inum = found_key.offset; 1366 1367 /* regular exit ahead */ 1368 if (parent == next_inum) 1369 break; 1370 1371 slot = path->slots[0]; 1372 eb = path->nodes[0]; 1373 /* make sure we can use eb after releasing the path */ 1374 if (eb != eb_in) { 1375 atomic_inc(&eb->refs); 1376 btrfs_tree_read_lock(eb); 1377 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1378 } 1379 btrfs_release_path(path); 1380 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1381 1382 name_len = btrfs_inode_ref_name_len(eb, iref); 1383 name_off = (unsigned long)(iref + 1); 1384 1385 parent = next_inum; 1386 --bytes_left; 1387 if (bytes_left >= 0) 1388 dest[bytes_left] = '/'; 1389 } 1390 1391 btrfs_release_path(path); 1392 path->leave_spinning = leave_spinning; 1393 1394 if (ret) 1395 return ERR_PTR(ret); 1396 1397 return dest + bytes_left; 1398 } 1399 1400 /* 1401 * this makes the path point to (logical EXTENT_ITEM *) 1402 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1403 * tree blocks and <0 on error. 1404 */ 1405 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1406 struct btrfs_path *path, struct btrfs_key *found_key, 1407 u64 *flags_ret) 1408 { 1409 int ret; 1410 u64 flags; 1411 u64 size = 0; 1412 u32 item_size; 1413 struct extent_buffer *eb; 1414 struct btrfs_extent_item *ei; 1415 struct btrfs_key key; 1416 1417 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1418 key.type = BTRFS_METADATA_ITEM_KEY; 1419 else 1420 key.type = BTRFS_EXTENT_ITEM_KEY; 1421 key.objectid = logical; 1422 key.offset = (u64)-1; 1423 1424 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1425 if (ret < 0) 1426 return ret; 1427 1428 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1429 if (ret) { 1430 if (ret > 0) 1431 ret = -ENOENT; 1432 return ret; 1433 } 1434 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1435 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1436 size = fs_info->extent_root->nodesize; 1437 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1438 size = found_key->offset; 1439 1440 if (found_key->objectid > logical || 1441 found_key->objectid + size <= logical) { 1442 pr_debug("logical %llu is not within any extent\n", logical); 1443 return -ENOENT; 1444 } 1445 1446 eb = path->nodes[0]; 1447 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1448 BUG_ON(item_size < sizeof(*ei)); 1449 1450 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1451 flags = btrfs_extent_flags(eb, ei); 1452 1453 pr_debug("logical %llu is at position %llu within the extent (%llu " 1454 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1455 logical, logical - found_key->objectid, found_key->objectid, 1456 found_key->offset, flags, item_size); 1457 1458 WARN_ON(!flags_ret); 1459 if (flags_ret) { 1460 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1461 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1462 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1463 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1464 else 1465 BUG_ON(1); 1466 return 0; 1467 } 1468 1469 return -EIO; 1470 } 1471 1472 /* 1473 * helper function to iterate extent inline refs. ptr must point to a 0 value 1474 * for the first call and may be modified. it is used to track state. 1475 * if more refs exist, 0 is returned and the next call to 1476 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1477 * next ref. after the last ref was processed, 1 is returned. 1478 * returns <0 on error 1479 */ 1480 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1481 struct btrfs_key *key, 1482 struct btrfs_extent_item *ei, u32 item_size, 1483 struct btrfs_extent_inline_ref **out_eiref, 1484 int *out_type) 1485 { 1486 unsigned long end; 1487 u64 flags; 1488 struct btrfs_tree_block_info *info; 1489 1490 if (!*ptr) { 1491 /* first call */ 1492 flags = btrfs_extent_flags(eb, ei); 1493 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1494 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1495 /* a skinny metadata extent */ 1496 *out_eiref = 1497 (struct btrfs_extent_inline_ref *)(ei + 1); 1498 } else { 1499 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1500 info = (struct btrfs_tree_block_info *)(ei + 1); 1501 *out_eiref = 1502 (struct btrfs_extent_inline_ref *)(info + 1); 1503 } 1504 } else { 1505 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1506 } 1507 *ptr = (unsigned long)*out_eiref; 1508 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1509 return -ENOENT; 1510 } 1511 1512 end = (unsigned long)ei + item_size; 1513 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1514 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1515 1516 *ptr += btrfs_extent_inline_ref_size(*out_type); 1517 WARN_ON(*ptr > end); 1518 if (*ptr == end) 1519 return 1; /* last */ 1520 1521 return 0; 1522 } 1523 1524 /* 1525 * reads the tree block backref for an extent. tree level and root are returned 1526 * through out_level and out_root. ptr must point to a 0 value for the first 1527 * call and may be modified (see __get_extent_inline_ref comment). 1528 * returns 0 if data was provided, 1 if there was no more data to provide or 1529 * <0 on error. 1530 */ 1531 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1532 struct btrfs_key *key, struct btrfs_extent_item *ei, 1533 u32 item_size, u64 *out_root, u8 *out_level) 1534 { 1535 int ret; 1536 int type; 1537 struct btrfs_extent_inline_ref *eiref; 1538 1539 if (*ptr == (unsigned long)-1) 1540 return 1; 1541 1542 while (1) { 1543 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1544 &eiref, &type); 1545 if (ret < 0) 1546 return ret; 1547 1548 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1549 type == BTRFS_SHARED_BLOCK_REF_KEY) 1550 break; 1551 1552 if (ret == 1) 1553 return 1; 1554 } 1555 1556 /* we can treat both ref types equally here */ 1557 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1558 1559 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1560 struct btrfs_tree_block_info *info; 1561 1562 info = (struct btrfs_tree_block_info *)(ei + 1); 1563 *out_level = btrfs_tree_block_level(eb, info); 1564 } else { 1565 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1566 *out_level = (u8)key->offset; 1567 } 1568 1569 if (ret == 1) 1570 *ptr = (unsigned long)-1; 1571 1572 return 0; 1573 } 1574 1575 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1576 u64 root, u64 extent_item_objectid, 1577 iterate_extent_inodes_t *iterate, void *ctx) 1578 { 1579 struct extent_inode_elem *eie; 1580 int ret = 0; 1581 1582 for (eie = inode_list; eie; eie = eie->next) { 1583 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1584 "root %llu\n", extent_item_objectid, 1585 eie->inum, eie->offset, root); 1586 ret = iterate(eie->inum, eie->offset, root, ctx); 1587 if (ret) { 1588 pr_debug("stopping iteration for %llu due to ret=%d\n", 1589 extent_item_objectid, ret); 1590 break; 1591 } 1592 } 1593 1594 return ret; 1595 } 1596 1597 /* 1598 * calls iterate() for every inode that references the extent identified by 1599 * the given parameters. 1600 * when the iterator function returns a non-zero value, iteration stops. 1601 */ 1602 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1603 u64 extent_item_objectid, u64 extent_item_pos, 1604 int search_commit_root, 1605 iterate_extent_inodes_t *iterate, void *ctx) 1606 { 1607 int ret; 1608 struct btrfs_trans_handle *trans = NULL; 1609 struct ulist *refs = NULL; 1610 struct ulist *roots = NULL; 1611 struct ulist_node *ref_node = NULL; 1612 struct ulist_node *root_node = NULL; 1613 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1614 struct ulist_iterator ref_uiter; 1615 struct ulist_iterator root_uiter; 1616 1617 pr_debug("resolving all inodes for extent %llu\n", 1618 extent_item_objectid); 1619 1620 if (!search_commit_root) { 1621 trans = btrfs_join_transaction(fs_info->extent_root); 1622 if (IS_ERR(trans)) 1623 return PTR_ERR(trans); 1624 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1625 } else { 1626 down_read(&fs_info->commit_root_sem); 1627 } 1628 1629 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1630 tree_mod_seq_elem.seq, &refs, 1631 &extent_item_pos); 1632 if (ret) 1633 goto out; 1634 1635 ULIST_ITER_INIT(&ref_uiter); 1636 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1637 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1638 tree_mod_seq_elem.seq, &roots); 1639 if (ret) 1640 break; 1641 ULIST_ITER_INIT(&root_uiter); 1642 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1643 pr_debug("root %llu references leaf %llu, data list " 1644 "%#llx\n", root_node->val, ref_node->val, 1645 ref_node->aux); 1646 ret = iterate_leaf_refs((struct extent_inode_elem *) 1647 (uintptr_t)ref_node->aux, 1648 root_node->val, 1649 extent_item_objectid, 1650 iterate, ctx); 1651 } 1652 ulist_free(roots); 1653 } 1654 1655 free_leaf_list(refs); 1656 out: 1657 if (!search_commit_root) { 1658 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1659 btrfs_end_transaction(trans, fs_info->extent_root); 1660 } else { 1661 up_read(&fs_info->commit_root_sem); 1662 } 1663 1664 return ret; 1665 } 1666 1667 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1668 struct btrfs_path *path, 1669 iterate_extent_inodes_t *iterate, void *ctx) 1670 { 1671 int ret; 1672 u64 extent_item_pos; 1673 u64 flags = 0; 1674 struct btrfs_key found_key; 1675 int search_commit_root = path->search_commit_root; 1676 1677 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1678 btrfs_release_path(path); 1679 if (ret < 0) 1680 return ret; 1681 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1682 return -EINVAL; 1683 1684 extent_item_pos = logical - found_key.objectid; 1685 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1686 extent_item_pos, search_commit_root, 1687 iterate, ctx); 1688 1689 return ret; 1690 } 1691 1692 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1693 struct extent_buffer *eb, void *ctx); 1694 1695 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1696 struct btrfs_path *path, 1697 iterate_irefs_t *iterate, void *ctx) 1698 { 1699 int ret = 0; 1700 int slot; 1701 u32 cur; 1702 u32 len; 1703 u32 name_len; 1704 u64 parent = 0; 1705 int found = 0; 1706 struct extent_buffer *eb; 1707 struct btrfs_item *item; 1708 struct btrfs_inode_ref *iref; 1709 struct btrfs_key found_key; 1710 1711 while (!ret) { 1712 ret = btrfs_find_item(fs_root, path, inum, 1713 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 1714 &found_key); 1715 1716 if (ret < 0) 1717 break; 1718 if (ret) { 1719 ret = found ? 0 : -ENOENT; 1720 break; 1721 } 1722 ++found; 1723 1724 parent = found_key.offset; 1725 slot = path->slots[0]; 1726 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1727 if (!eb) { 1728 ret = -ENOMEM; 1729 break; 1730 } 1731 extent_buffer_get(eb); 1732 btrfs_tree_read_lock(eb); 1733 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1734 btrfs_release_path(path); 1735 1736 item = btrfs_item_nr(slot); 1737 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1738 1739 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1740 name_len = btrfs_inode_ref_name_len(eb, iref); 1741 /* path must be released before calling iterate()! */ 1742 pr_debug("following ref at offset %u for inode %llu in " 1743 "tree %llu\n", cur, found_key.objectid, 1744 fs_root->objectid); 1745 ret = iterate(parent, name_len, 1746 (unsigned long)(iref + 1), eb, ctx); 1747 if (ret) 1748 break; 1749 len = sizeof(*iref) + name_len; 1750 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1751 } 1752 btrfs_tree_read_unlock_blocking(eb); 1753 free_extent_buffer(eb); 1754 } 1755 1756 btrfs_release_path(path); 1757 1758 return ret; 1759 } 1760 1761 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1762 struct btrfs_path *path, 1763 iterate_irefs_t *iterate, void *ctx) 1764 { 1765 int ret; 1766 int slot; 1767 u64 offset = 0; 1768 u64 parent; 1769 int found = 0; 1770 struct extent_buffer *eb; 1771 struct btrfs_inode_extref *extref; 1772 struct extent_buffer *leaf; 1773 u32 item_size; 1774 u32 cur_offset; 1775 unsigned long ptr; 1776 1777 while (1) { 1778 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1779 &offset); 1780 if (ret < 0) 1781 break; 1782 if (ret) { 1783 ret = found ? 0 : -ENOENT; 1784 break; 1785 } 1786 ++found; 1787 1788 slot = path->slots[0]; 1789 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1790 if (!eb) { 1791 ret = -ENOMEM; 1792 break; 1793 } 1794 extent_buffer_get(eb); 1795 1796 btrfs_tree_read_lock(eb); 1797 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1798 btrfs_release_path(path); 1799 1800 leaf = path->nodes[0]; 1801 item_size = btrfs_item_size_nr(leaf, slot); 1802 ptr = btrfs_item_ptr_offset(leaf, slot); 1803 cur_offset = 0; 1804 1805 while (cur_offset < item_size) { 1806 u32 name_len; 1807 1808 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1809 parent = btrfs_inode_extref_parent(eb, extref); 1810 name_len = btrfs_inode_extref_name_len(eb, extref); 1811 ret = iterate(parent, name_len, 1812 (unsigned long)&extref->name, eb, ctx); 1813 if (ret) 1814 break; 1815 1816 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1817 cur_offset += sizeof(*extref); 1818 } 1819 btrfs_tree_read_unlock_blocking(eb); 1820 free_extent_buffer(eb); 1821 1822 offset++; 1823 } 1824 1825 btrfs_release_path(path); 1826 1827 return ret; 1828 } 1829 1830 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1831 struct btrfs_path *path, iterate_irefs_t *iterate, 1832 void *ctx) 1833 { 1834 int ret; 1835 int found_refs = 0; 1836 1837 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1838 if (!ret) 1839 ++found_refs; 1840 else if (ret != -ENOENT) 1841 return ret; 1842 1843 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1844 if (ret == -ENOENT && found_refs) 1845 return 0; 1846 1847 return ret; 1848 } 1849 1850 /* 1851 * returns 0 if the path could be dumped (probably truncated) 1852 * returns <0 in case of an error 1853 */ 1854 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1855 struct extent_buffer *eb, void *ctx) 1856 { 1857 struct inode_fs_paths *ipath = ctx; 1858 char *fspath; 1859 char *fspath_min; 1860 int i = ipath->fspath->elem_cnt; 1861 const int s_ptr = sizeof(char *); 1862 u32 bytes_left; 1863 1864 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1865 ipath->fspath->bytes_left - s_ptr : 0; 1866 1867 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1868 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1869 name_off, eb, inum, fspath_min, bytes_left); 1870 if (IS_ERR(fspath)) 1871 return PTR_ERR(fspath); 1872 1873 if (fspath > fspath_min) { 1874 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1875 ++ipath->fspath->elem_cnt; 1876 ipath->fspath->bytes_left = fspath - fspath_min; 1877 } else { 1878 ++ipath->fspath->elem_missed; 1879 ipath->fspath->bytes_missing += fspath_min - fspath; 1880 ipath->fspath->bytes_left = 0; 1881 } 1882 1883 return 0; 1884 } 1885 1886 /* 1887 * this dumps all file system paths to the inode into the ipath struct, provided 1888 * is has been created large enough. each path is zero-terminated and accessed 1889 * from ipath->fspath->val[i]. 1890 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1891 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1892 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1893 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1894 * have been needed to return all paths. 1895 */ 1896 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1897 { 1898 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1899 inode_to_path, ipath); 1900 } 1901 1902 struct btrfs_data_container *init_data_container(u32 total_bytes) 1903 { 1904 struct btrfs_data_container *data; 1905 size_t alloc_bytes; 1906 1907 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1908 data = vmalloc(alloc_bytes); 1909 if (!data) 1910 return ERR_PTR(-ENOMEM); 1911 1912 if (total_bytes >= sizeof(*data)) { 1913 data->bytes_left = total_bytes - sizeof(*data); 1914 data->bytes_missing = 0; 1915 } else { 1916 data->bytes_missing = sizeof(*data) - total_bytes; 1917 data->bytes_left = 0; 1918 } 1919 1920 data->elem_cnt = 0; 1921 data->elem_missed = 0; 1922 1923 return data; 1924 } 1925 1926 /* 1927 * allocates space to return multiple file system paths for an inode. 1928 * total_bytes to allocate are passed, note that space usable for actual path 1929 * information will be total_bytes - sizeof(struct inode_fs_paths). 1930 * the returned pointer must be freed with free_ipath() in the end. 1931 */ 1932 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1933 struct btrfs_path *path) 1934 { 1935 struct inode_fs_paths *ifp; 1936 struct btrfs_data_container *fspath; 1937 1938 fspath = init_data_container(total_bytes); 1939 if (IS_ERR(fspath)) 1940 return (void *)fspath; 1941 1942 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1943 if (!ifp) { 1944 kfree(fspath); 1945 return ERR_PTR(-ENOMEM); 1946 } 1947 1948 ifp->btrfs_path = path; 1949 ifp->fspath = fspath; 1950 ifp->fs_root = fs_root; 1951 1952 return ifp; 1953 } 1954 1955 void free_ipath(struct inode_fs_paths *ipath) 1956 { 1957 if (!ipath) 1958 return; 1959 vfree(ipath->fspath); 1960 kfree(ipath); 1961 } 1962