xref: /openbmc/linux/fs/btrfs/backref.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 				u64 extent_item_pos,
71 				struct extent_inode_elem **eie)
72 {
73 	u64 disk_byte;
74 	struct btrfs_key key;
75 	struct btrfs_file_extent_item *fi;
76 	int slot;
77 	int nritems;
78 	int extent_type;
79 	int ret;
80 
81 	/*
82 	 * from the shared data ref, we only have the leaf but we need
83 	 * the key. thus, we must look into all items and see that we
84 	 * find one (some) with a reference to our extent item.
85 	 */
86 	nritems = btrfs_header_nritems(eb);
87 	for (slot = 0; slot < nritems; ++slot) {
88 		btrfs_item_key_to_cpu(eb, &key, slot);
89 		if (key.type != BTRFS_EXTENT_DATA_KEY)
90 			continue;
91 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 		extent_type = btrfs_file_extent_type(eb, fi);
93 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 			continue;
95 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 		if (disk_byte != wanted_disk_byte)
98 			continue;
99 
100 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 		if (ret < 0)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112 	struct list_head list;
113 	u64 root_id;
114 	struct btrfs_key key_for_search;
115 	int level;
116 	int count;
117 	struct extent_inode_elem *inode_list;
118 	u64 parent;
119 	u64 wanted_disk_byte;
120 };
121 
122 static struct kmem_cache *btrfs_prelim_ref_cache;
123 
124 int __init btrfs_prelim_ref_init(void)
125 {
126 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127 					sizeof(struct __prelim_ref),
128 					0,
129 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130 					NULL);
131 	if (!btrfs_prelim_ref_cache)
132 		return -ENOMEM;
133 	return 0;
134 }
135 
136 void btrfs_prelim_ref_exit(void)
137 {
138 	if (btrfs_prelim_ref_cache)
139 		kmem_cache_destroy(btrfs_prelim_ref_cache);
140 }
141 
142 /*
143  * the rules for all callers of this function are:
144  * - obtaining the parent is the goal
145  * - if you add a key, you must know that it is a correct key
146  * - if you cannot add the parent or a correct key, then we will look into the
147  *   block later to set a correct key
148  *
149  * delayed refs
150  * ============
151  *        backref type | shared | indirect | shared | indirect
152  * information         |   tree |     tree |   data |     data
153  * --------------------+--------+----------+--------+----------
154  *      parent logical |    y   |     -    |    -   |     -
155  *      key to resolve |    -   |     y    |    y   |     y
156  *  tree block logical |    -   |     -    |    -   |     -
157  *  root for resolving |    y   |     y    |    y   |     y
158  *
159  * - column 1:       we've the parent -> done
160  * - column 2, 3, 4: we use the key to find the parent
161  *
162  * on disk refs (inline or keyed)
163  * ==============================
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    y   |     -
168  *      key to resolve |    -   |     -    |    -   |     y
169  *  tree block logical |    y   |     y    |    y   |     y
170  *  root for resolving |    -   |     y    |    y   |     y
171  *
172  * - column 1, 3: we've the parent -> done
173  * - column 2:    we take the first key from the block to find the parent
174  *                (see __add_missing_keys)
175  * - column 4:    we use the key to find the parent
176  *
177  * additional information that's available but not required to find the parent
178  * block might help in merging entries to gain some speed.
179  */
180 
181 static int __add_prelim_ref(struct list_head *head, u64 root_id,
182 			    struct btrfs_key *key, int level,
183 			    u64 parent, u64 wanted_disk_byte, int count,
184 			    gfp_t gfp_mask)
185 {
186 	struct __prelim_ref *ref;
187 
188 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189 		return 0;
190 
191 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192 	if (!ref)
193 		return -ENOMEM;
194 
195 	ref->root_id = root_id;
196 	if (key)
197 		ref->key_for_search = *key;
198 	else
199 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200 
201 	ref->inode_list = NULL;
202 	ref->level = level;
203 	ref->count = count;
204 	ref->parent = parent;
205 	ref->wanted_disk_byte = wanted_disk_byte;
206 	list_add_tail(&ref->list, head);
207 
208 	return 0;
209 }
210 
211 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212 				struct ulist *parents, int level,
213 				struct btrfs_key *key_for_search, u64 time_seq,
214 				u64 wanted_disk_byte,
215 				const u64 *extent_item_pos)
216 {
217 	int ret = 0;
218 	int slot;
219 	struct extent_buffer *eb;
220 	struct btrfs_key key;
221 	struct btrfs_file_extent_item *fi;
222 	struct extent_inode_elem *eie = NULL, *old = NULL;
223 	u64 disk_byte;
224 
225 	if (level != 0) {
226 		eb = path->nodes[level];
227 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
228 		if (ret < 0)
229 			return ret;
230 		return 0;
231 	}
232 
233 	/*
234 	 * We normally enter this function with the path already pointing to
235 	 * the first item to check. But sometimes, we may enter it with
236 	 * slot==nritems. In that case, go to the next leaf before we continue.
237 	 */
238 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
239 		ret = btrfs_next_old_leaf(root, path, time_seq);
240 
241 	while (!ret) {
242 		eb = path->nodes[0];
243 		slot = path->slots[0];
244 
245 		btrfs_item_key_to_cpu(eb, &key, slot);
246 
247 		if (key.objectid != key_for_search->objectid ||
248 		    key.type != BTRFS_EXTENT_DATA_KEY)
249 			break;
250 
251 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
252 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
253 
254 		if (disk_byte == wanted_disk_byte) {
255 			eie = NULL;
256 			old = NULL;
257 			if (extent_item_pos) {
258 				ret = check_extent_in_eb(&key, eb, fi,
259 						*extent_item_pos,
260 						&eie);
261 				if (ret < 0)
262 					break;
263 			}
264 			if (ret > 0)
265 				goto next;
266 			ret = ulist_add_merge(parents, eb->start,
267 					      (uintptr_t)eie,
268 					      (u64 *)&old, GFP_NOFS);
269 			if (ret < 0)
270 				break;
271 			if (!ret && extent_item_pos) {
272 				while (old->next)
273 					old = old->next;
274 				old->next = eie;
275 			}
276 		}
277 next:
278 		ret = btrfs_next_old_item(root, path, time_seq);
279 	}
280 
281 	if (ret > 0)
282 		ret = 0;
283 	return ret;
284 }
285 
286 /*
287  * resolve an indirect backref in the form (root_id, key, level)
288  * to a logical address
289  */
290 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
291 				  struct btrfs_path *path, u64 time_seq,
292 				  struct __prelim_ref *ref,
293 				  struct ulist *parents,
294 				  const u64 *extent_item_pos)
295 {
296 	struct btrfs_root *root;
297 	struct btrfs_key root_key;
298 	struct extent_buffer *eb;
299 	int ret = 0;
300 	int root_level;
301 	int level = ref->level;
302 
303 	root_key.objectid = ref->root_id;
304 	root_key.type = BTRFS_ROOT_ITEM_KEY;
305 	root_key.offset = (u64)-1;
306 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
307 	if (IS_ERR(root)) {
308 		ret = PTR_ERR(root);
309 		goto out;
310 	}
311 
312 	root_level = btrfs_old_root_level(root, time_seq);
313 
314 	if (root_level + 1 == level)
315 		goto out;
316 
317 	path->lowest_level = level;
318 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
319 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
320 		 "%d for key (%llu %u %llu)\n",
321 		 ref->root_id, level, ref->count, ret,
322 		 ref->key_for_search.objectid, ref->key_for_search.type,
323 		 ref->key_for_search.offset);
324 	if (ret < 0)
325 		goto out;
326 
327 	eb = path->nodes[level];
328 	while (!eb) {
329 		if (WARN_ON(!level)) {
330 			ret = 1;
331 			goto out;
332 		}
333 		level--;
334 		eb = path->nodes[level];
335 	}
336 
337 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
338 				time_seq, ref->wanted_disk_byte,
339 				extent_item_pos);
340 out:
341 	path->lowest_level = 0;
342 	btrfs_release_path(path);
343 	return ret;
344 }
345 
346 /*
347  * resolve all indirect backrefs from the list
348  */
349 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
350 				   struct btrfs_path *path, u64 time_seq,
351 				   struct list_head *head,
352 				   const u64 *extent_item_pos)
353 {
354 	int err;
355 	int ret = 0;
356 	struct __prelim_ref *ref;
357 	struct __prelim_ref *ref_safe;
358 	struct __prelim_ref *new_ref;
359 	struct ulist *parents;
360 	struct ulist_node *node;
361 	struct ulist_iterator uiter;
362 
363 	parents = ulist_alloc(GFP_NOFS);
364 	if (!parents)
365 		return -ENOMEM;
366 
367 	/*
368 	 * _safe allows us to insert directly after the current item without
369 	 * iterating over the newly inserted items.
370 	 * we're also allowed to re-assign ref during iteration.
371 	 */
372 	list_for_each_entry_safe(ref, ref_safe, head, list) {
373 		if (ref->parent)	/* already direct */
374 			continue;
375 		if (ref->count == 0)
376 			continue;
377 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
378 					     parents, extent_item_pos);
379 		if (err == -ENOMEM)
380 			goto out;
381 		if (err)
382 			continue;
383 
384 		/* we put the first parent into the ref at hand */
385 		ULIST_ITER_INIT(&uiter);
386 		node = ulist_next(parents, &uiter);
387 		ref->parent = node ? node->val : 0;
388 		ref->inode_list = node ?
389 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
390 
391 		/* additional parents require new refs being added here */
392 		while ((node = ulist_next(parents, &uiter))) {
393 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
394 						   GFP_NOFS);
395 			if (!new_ref) {
396 				ret = -ENOMEM;
397 				goto out;
398 			}
399 			memcpy(new_ref, ref, sizeof(*ref));
400 			new_ref->parent = node->val;
401 			new_ref->inode_list = (struct extent_inode_elem *)
402 							(uintptr_t)node->aux;
403 			list_add(&new_ref->list, &ref->list);
404 		}
405 		ulist_reinit(parents);
406 	}
407 out:
408 	ulist_free(parents);
409 	return ret;
410 }
411 
412 static inline int ref_for_same_block(struct __prelim_ref *ref1,
413 				     struct __prelim_ref *ref2)
414 {
415 	if (ref1->level != ref2->level)
416 		return 0;
417 	if (ref1->root_id != ref2->root_id)
418 		return 0;
419 	if (ref1->key_for_search.type != ref2->key_for_search.type)
420 		return 0;
421 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
422 		return 0;
423 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
424 		return 0;
425 	if (ref1->parent != ref2->parent)
426 		return 0;
427 
428 	return 1;
429 }
430 
431 /*
432  * read tree blocks and add keys where required.
433  */
434 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
435 			      struct list_head *head)
436 {
437 	struct list_head *pos;
438 	struct extent_buffer *eb;
439 
440 	list_for_each(pos, head) {
441 		struct __prelim_ref *ref;
442 		ref = list_entry(pos, struct __prelim_ref, list);
443 
444 		if (ref->parent)
445 			continue;
446 		if (ref->key_for_search.type)
447 			continue;
448 		BUG_ON(!ref->wanted_disk_byte);
449 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
450 				     fs_info->tree_root->leafsize, 0);
451 		if (!eb || !extent_buffer_uptodate(eb)) {
452 			free_extent_buffer(eb);
453 			return -EIO;
454 		}
455 		btrfs_tree_read_lock(eb);
456 		if (btrfs_header_level(eb) == 0)
457 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
458 		else
459 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
460 		btrfs_tree_read_unlock(eb);
461 		free_extent_buffer(eb);
462 	}
463 	return 0;
464 }
465 
466 /*
467  * merge two lists of backrefs and adjust counts accordingly
468  *
469  * mode = 1: merge identical keys, if key is set
470  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
471  *           additionally, we could even add a key range for the blocks we
472  *           looked into to merge even more (-> replace unresolved refs by those
473  *           having a parent).
474  * mode = 2: merge identical parents
475  */
476 static void __merge_refs(struct list_head *head, int mode)
477 {
478 	struct list_head *pos1;
479 
480 	list_for_each(pos1, head) {
481 		struct list_head *n2;
482 		struct list_head *pos2;
483 		struct __prelim_ref *ref1;
484 
485 		ref1 = list_entry(pos1, struct __prelim_ref, list);
486 
487 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
488 		     pos2 = n2, n2 = pos2->next) {
489 			struct __prelim_ref *ref2;
490 			struct __prelim_ref *xchg;
491 			struct extent_inode_elem *eie;
492 
493 			ref2 = list_entry(pos2, struct __prelim_ref, list);
494 
495 			if (mode == 1) {
496 				if (!ref_for_same_block(ref1, ref2))
497 					continue;
498 				if (!ref1->parent && ref2->parent) {
499 					xchg = ref1;
500 					ref1 = ref2;
501 					ref2 = xchg;
502 				}
503 			} else {
504 				if (ref1->parent != ref2->parent)
505 					continue;
506 			}
507 
508 			eie = ref1->inode_list;
509 			while (eie && eie->next)
510 				eie = eie->next;
511 			if (eie)
512 				eie->next = ref2->inode_list;
513 			else
514 				ref1->inode_list = ref2->inode_list;
515 			ref1->count += ref2->count;
516 
517 			list_del(&ref2->list);
518 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
519 		}
520 
521 	}
522 }
523 
524 /*
525  * add all currently queued delayed refs from this head whose seq nr is
526  * smaller or equal that seq to the list
527  */
528 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
529 			      struct list_head *prefs)
530 {
531 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
532 	struct rb_node *n = &head->node.rb_node;
533 	struct btrfs_key key;
534 	struct btrfs_key op_key = {0};
535 	int sgn;
536 	int ret = 0;
537 
538 	if (extent_op && extent_op->update_key)
539 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
540 
541 	while ((n = rb_prev(n))) {
542 		struct btrfs_delayed_ref_node *node;
543 		node = rb_entry(n, struct btrfs_delayed_ref_node,
544 				rb_node);
545 		if (node->bytenr != head->node.bytenr)
546 			break;
547 		WARN_ON(node->is_head);
548 
549 		if (node->seq > seq)
550 			continue;
551 
552 		switch (node->action) {
553 		case BTRFS_ADD_DELAYED_EXTENT:
554 		case BTRFS_UPDATE_DELAYED_HEAD:
555 			WARN_ON(1);
556 			continue;
557 		case BTRFS_ADD_DELAYED_REF:
558 			sgn = 1;
559 			break;
560 		case BTRFS_DROP_DELAYED_REF:
561 			sgn = -1;
562 			break;
563 		default:
564 			BUG_ON(1);
565 		}
566 		switch (node->type) {
567 		case BTRFS_TREE_BLOCK_REF_KEY: {
568 			struct btrfs_delayed_tree_ref *ref;
569 
570 			ref = btrfs_delayed_node_to_tree_ref(node);
571 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
572 					       ref->level + 1, 0, node->bytenr,
573 					       node->ref_mod * sgn, GFP_ATOMIC);
574 			break;
575 		}
576 		case BTRFS_SHARED_BLOCK_REF_KEY: {
577 			struct btrfs_delayed_tree_ref *ref;
578 
579 			ref = btrfs_delayed_node_to_tree_ref(node);
580 			ret = __add_prelim_ref(prefs, ref->root, NULL,
581 					       ref->level + 1, ref->parent,
582 					       node->bytenr,
583 					       node->ref_mod * sgn, GFP_ATOMIC);
584 			break;
585 		}
586 		case BTRFS_EXTENT_DATA_REF_KEY: {
587 			struct btrfs_delayed_data_ref *ref;
588 			ref = btrfs_delayed_node_to_data_ref(node);
589 
590 			key.objectid = ref->objectid;
591 			key.type = BTRFS_EXTENT_DATA_KEY;
592 			key.offset = ref->offset;
593 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
594 					       node->bytenr,
595 					       node->ref_mod * sgn, GFP_ATOMIC);
596 			break;
597 		}
598 		case BTRFS_SHARED_DATA_REF_KEY: {
599 			struct btrfs_delayed_data_ref *ref;
600 
601 			ref = btrfs_delayed_node_to_data_ref(node);
602 
603 			key.objectid = ref->objectid;
604 			key.type = BTRFS_EXTENT_DATA_KEY;
605 			key.offset = ref->offset;
606 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
607 					       ref->parent, node->bytenr,
608 					       node->ref_mod * sgn, GFP_ATOMIC);
609 			break;
610 		}
611 		default:
612 			WARN_ON(1);
613 		}
614 		if (ret)
615 			return ret;
616 	}
617 
618 	return 0;
619 }
620 
621 /*
622  * add all inline backrefs for bytenr to the list
623  */
624 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
625 			     struct btrfs_path *path, u64 bytenr,
626 			     int *info_level, struct list_head *prefs)
627 {
628 	int ret = 0;
629 	int slot;
630 	struct extent_buffer *leaf;
631 	struct btrfs_key key;
632 	struct btrfs_key found_key;
633 	unsigned long ptr;
634 	unsigned long end;
635 	struct btrfs_extent_item *ei;
636 	u64 flags;
637 	u64 item_size;
638 
639 	/*
640 	 * enumerate all inline refs
641 	 */
642 	leaf = path->nodes[0];
643 	slot = path->slots[0];
644 
645 	item_size = btrfs_item_size_nr(leaf, slot);
646 	BUG_ON(item_size < sizeof(*ei));
647 
648 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
649 	flags = btrfs_extent_flags(leaf, ei);
650 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
651 
652 	ptr = (unsigned long)(ei + 1);
653 	end = (unsigned long)ei + item_size;
654 
655 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
656 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
657 		struct btrfs_tree_block_info *info;
658 
659 		info = (struct btrfs_tree_block_info *)ptr;
660 		*info_level = btrfs_tree_block_level(leaf, info);
661 		ptr += sizeof(struct btrfs_tree_block_info);
662 		BUG_ON(ptr > end);
663 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
664 		*info_level = found_key.offset;
665 	} else {
666 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
667 	}
668 
669 	while (ptr < end) {
670 		struct btrfs_extent_inline_ref *iref;
671 		u64 offset;
672 		int type;
673 
674 		iref = (struct btrfs_extent_inline_ref *)ptr;
675 		type = btrfs_extent_inline_ref_type(leaf, iref);
676 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
677 
678 		switch (type) {
679 		case BTRFS_SHARED_BLOCK_REF_KEY:
680 			ret = __add_prelim_ref(prefs, 0, NULL,
681 						*info_level + 1, offset,
682 						bytenr, 1, GFP_NOFS);
683 			break;
684 		case BTRFS_SHARED_DATA_REF_KEY: {
685 			struct btrfs_shared_data_ref *sdref;
686 			int count;
687 
688 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
689 			count = btrfs_shared_data_ref_count(leaf, sdref);
690 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
691 					       bytenr, count, GFP_NOFS);
692 			break;
693 		}
694 		case BTRFS_TREE_BLOCK_REF_KEY:
695 			ret = __add_prelim_ref(prefs, offset, NULL,
696 					       *info_level + 1, 0,
697 					       bytenr, 1, GFP_NOFS);
698 			break;
699 		case BTRFS_EXTENT_DATA_REF_KEY: {
700 			struct btrfs_extent_data_ref *dref;
701 			int count;
702 			u64 root;
703 
704 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
705 			count = btrfs_extent_data_ref_count(leaf, dref);
706 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
707 								      dref);
708 			key.type = BTRFS_EXTENT_DATA_KEY;
709 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
710 			root = btrfs_extent_data_ref_root(leaf, dref);
711 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
712 					       bytenr, count, GFP_NOFS);
713 			break;
714 		}
715 		default:
716 			WARN_ON(1);
717 		}
718 		if (ret)
719 			return ret;
720 		ptr += btrfs_extent_inline_ref_size(type);
721 	}
722 
723 	return 0;
724 }
725 
726 /*
727  * add all non-inline backrefs for bytenr to the list
728  */
729 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
730 			    struct btrfs_path *path, u64 bytenr,
731 			    int info_level, struct list_head *prefs)
732 {
733 	struct btrfs_root *extent_root = fs_info->extent_root;
734 	int ret;
735 	int slot;
736 	struct extent_buffer *leaf;
737 	struct btrfs_key key;
738 
739 	while (1) {
740 		ret = btrfs_next_item(extent_root, path);
741 		if (ret < 0)
742 			break;
743 		if (ret) {
744 			ret = 0;
745 			break;
746 		}
747 
748 		slot = path->slots[0];
749 		leaf = path->nodes[0];
750 		btrfs_item_key_to_cpu(leaf, &key, slot);
751 
752 		if (key.objectid != bytenr)
753 			break;
754 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
755 			continue;
756 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
757 			break;
758 
759 		switch (key.type) {
760 		case BTRFS_SHARED_BLOCK_REF_KEY:
761 			ret = __add_prelim_ref(prefs, 0, NULL,
762 						info_level + 1, key.offset,
763 						bytenr, 1, GFP_NOFS);
764 			break;
765 		case BTRFS_SHARED_DATA_REF_KEY: {
766 			struct btrfs_shared_data_ref *sdref;
767 			int count;
768 
769 			sdref = btrfs_item_ptr(leaf, slot,
770 					      struct btrfs_shared_data_ref);
771 			count = btrfs_shared_data_ref_count(leaf, sdref);
772 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
773 						bytenr, count, GFP_NOFS);
774 			break;
775 		}
776 		case BTRFS_TREE_BLOCK_REF_KEY:
777 			ret = __add_prelim_ref(prefs, key.offset, NULL,
778 					       info_level + 1, 0,
779 					       bytenr, 1, GFP_NOFS);
780 			break;
781 		case BTRFS_EXTENT_DATA_REF_KEY: {
782 			struct btrfs_extent_data_ref *dref;
783 			int count;
784 			u64 root;
785 
786 			dref = btrfs_item_ptr(leaf, slot,
787 					      struct btrfs_extent_data_ref);
788 			count = btrfs_extent_data_ref_count(leaf, dref);
789 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
790 								      dref);
791 			key.type = BTRFS_EXTENT_DATA_KEY;
792 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
793 			root = btrfs_extent_data_ref_root(leaf, dref);
794 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
795 					       bytenr, count, GFP_NOFS);
796 			break;
797 		}
798 		default:
799 			WARN_ON(1);
800 		}
801 		if (ret)
802 			return ret;
803 
804 	}
805 
806 	return ret;
807 }
808 
809 /*
810  * this adds all existing backrefs (inline backrefs, backrefs and delayed
811  * refs) for the given bytenr to the refs list, merges duplicates and resolves
812  * indirect refs to their parent bytenr.
813  * When roots are found, they're added to the roots list
814  *
815  * FIXME some caching might speed things up
816  */
817 static int find_parent_nodes(struct btrfs_trans_handle *trans,
818 			     struct btrfs_fs_info *fs_info, u64 bytenr,
819 			     u64 time_seq, struct ulist *refs,
820 			     struct ulist *roots, const u64 *extent_item_pos)
821 {
822 	struct btrfs_key key;
823 	struct btrfs_path *path;
824 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
825 	struct btrfs_delayed_ref_head *head;
826 	int info_level = 0;
827 	int ret;
828 	struct list_head prefs_delayed;
829 	struct list_head prefs;
830 	struct __prelim_ref *ref;
831 
832 	INIT_LIST_HEAD(&prefs);
833 	INIT_LIST_HEAD(&prefs_delayed);
834 
835 	key.objectid = bytenr;
836 	key.offset = (u64)-1;
837 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
838 		key.type = BTRFS_METADATA_ITEM_KEY;
839 	else
840 		key.type = BTRFS_EXTENT_ITEM_KEY;
841 
842 	path = btrfs_alloc_path();
843 	if (!path)
844 		return -ENOMEM;
845 	if (!trans)
846 		path->search_commit_root = 1;
847 
848 	/*
849 	 * grab both a lock on the path and a lock on the delayed ref head.
850 	 * We need both to get a consistent picture of how the refs look
851 	 * at a specified point in time
852 	 */
853 again:
854 	head = NULL;
855 
856 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
857 	if (ret < 0)
858 		goto out;
859 	BUG_ON(ret == 0);
860 
861 	if (trans) {
862 		/*
863 		 * look if there are updates for this ref queued and lock the
864 		 * head
865 		 */
866 		delayed_refs = &trans->transaction->delayed_refs;
867 		spin_lock(&delayed_refs->lock);
868 		head = btrfs_find_delayed_ref_head(trans, bytenr);
869 		if (head) {
870 			if (!mutex_trylock(&head->mutex)) {
871 				atomic_inc(&head->node.refs);
872 				spin_unlock(&delayed_refs->lock);
873 
874 				btrfs_release_path(path);
875 
876 				/*
877 				 * Mutex was contended, block until it's
878 				 * released and try again
879 				 */
880 				mutex_lock(&head->mutex);
881 				mutex_unlock(&head->mutex);
882 				btrfs_put_delayed_ref(&head->node);
883 				goto again;
884 			}
885 			ret = __add_delayed_refs(head, time_seq,
886 						 &prefs_delayed);
887 			mutex_unlock(&head->mutex);
888 			if (ret) {
889 				spin_unlock(&delayed_refs->lock);
890 				goto out;
891 			}
892 		}
893 		spin_unlock(&delayed_refs->lock);
894 	}
895 
896 	if (path->slots[0]) {
897 		struct extent_buffer *leaf;
898 		int slot;
899 
900 		path->slots[0]--;
901 		leaf = path->nodes[0];
902 		slot = path->slots[0];
903 		btrfs_item_key_to_cpu(leaf, &key, slot);
904 		if (key.objectid == bytenr &&
905 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
906 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
907 			ret = __add_inline_refs(fs_info, path, bytenr,
908 						&info_level, &prefs);
909 			if (ret)
910 				goto out;
911 			ret = __add_keyed_refs(fs_info, path, bytenr,
912 					       info_level, &prefs);
913 			if (ret)
914 				goto out;
915 		}
916 	}
917 	btrfs_release_path(path);
918 
919 	list_splice_init(&prefs_delayed, &prefs);
920 
921 	ret = __add_missing_keys(fs_info, &prefs);
922 	if (ret)
923 		goto out;
924 
925 	__merge_refs(&prefs, 1);
926 
927 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
928 				      extent_item_pos);
929 	if (ret)
930 		goto out;
931 
932 	__merge_refs(&prefs, 2);
933 
934 	while (!list_empty(&prefs)) {
935 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
936 		WARN_ON(ref->count < 0);
937 		if (ref->count && ref->root_id && ref->parent == 0) {
938 			/* no parent == root of tree */
939 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
940 			if (ret < 0)
941 				goto out;
942 		}
943 		if (ref->count && ref->parent) {
944 			struct extent_inode_elem *eie = NULL;
945 			if (extent_item_pos && !ref->inode_list) {
946 				u32 bsz;
947 				struct extent_buffer *eb;
948 				bsz = btrfs_level_size(fs_info->extent_root,
949 							info_level);
950 				eb = read_tree_block(fs_info->extent_root,
951 							   ref->parent, bsz, 0);
952 				if (!eb || !extent_buffer_uptodate(eb)) {
953 					free_extent_buffer(eb);
954 					ret = -EIO;
955 					goto out;
956 				}
957 				ret = find_extent_in_eb(eb, bytenr,
958 							*extent_item_pos, &eie);
959 				free_extent_buffer(eb);
960 				if (ret < 0)
961 					goto out;
962 				ref->inode_list = eie;
963 			}
964 			ret = ulist_add_merge(refs, ref->parent,
965 					      (uintptr_t)ref->inode_list,
966 					      (u64 *)&eie, GFP_NOFS);
967 			if (ret < 0)
968 				goto out;
969 			if (!ret && extent_item_pos) {
970 				/*
971 				 * we've recorded that parent, so we must extend
972 				 * its inode list here
973 				 */
974 				BUG_ON(!eie);
975 				while (eie->next)
976 					eie = eie->next;
977 				eie->next = ref->inode_list;
978 			}
979 		}
980 		list_del(&ref->list);
981 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
982 	}
983 
984 out:
985 	btrfs_free_path(path);
986 	while (!list_empty(&prefs)) {
987 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
988 		list_del(&ref->list);
989 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
990 	}
991 	while (!list_empty(&prefs_delayed)) {
992 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
993 				       list);
994 		list_del(&ref->list);
995 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
996 	}
997 
998 	return ret;
999 }
1000 
1001 static void free_leaf_list(struct ulist *blocks)
1002 {
1003 	struct ulist_node *node = NULL;
1004 	struct extent_inode_elem *eie;
1005 	struct extent_inode_elem *eie_next;
1006 	struct ulist_iterator uiter;
1007 
1008 	ULIST_ITER_INIT(&uiter);
1009 	while ((node = ulist_next(blocks, &uiter))) {
1010 		if (!node->aux)
1011 			continue;
1012 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1013 		for (; eie; eie = eie_next) {
1014 			eie_next = eie->next;
1015 			kfree(eie);
1016 		}
1017 		node->aux = 0;
1018 	}
1019 
1020 	ulist_free(blocks);
1021 }
1022 
1023 /*
1024  * Finds all leafs with a reference to the specified combination of bytenr and
1025  * offset. key_list_head will point to a list of corresponding keys (caller must
1026  * free each list element). The leafs will be stored in the leafs ulist, which
1027  * must be freed with ulist_free.
1028  *
1029  * returns 0 on success, <0 on error
1030  */
1031 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1032 				struct btrfs_fs_info *fs_info, u64 bytenr,
1033 				u64 time_seq, struct ulist **leafs,
1034 				const u64 *extent_item_pos)
1035 {
1036 	struct ulist *tmp;
1037 	int ret;
1038 
1039 	tmp = ulist_alloc(GFP_NOFS);
1040 	if (!tmp)
1041 		return -ENOMEM;
1042 	*leafs = ulist_alloc(GFP_NOFS);
1043 	if (!*leafs) {
1044 		ulist_free(tmp);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	ret = find_parent_nodes(trans, fs_info, bytenr,
1049 				time_seq, *leafs, tmp, extent_item_pos);
1050 	ulist_free(tmp);
1051 
1052 	if (ret < 0 && ret != -ENOENT) {
1053 		free_leaf_list(*leafs);
1054 		return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /*
1061  * walk all backrefs for a given extent to find all roots that reference this
1062  * extent. Walking a backref means finding all extents that reference this
1063  * extent and in turn walk the backrefs of those, too. Naturally this is a
1064  * recursive process, but here it is implemented in an iterative fashion: We
1065  * find all referencing extents for the extent in question and put them on a
1066  * list. In turn, we find all referencing extents for those, further appending
1067  * to the list. The way we iterate the list allows adding more elements after
1068  * the current while iterating. The process stops when we reach the end of the
1069  * list. Found roots are added to the roots list.
1070  *
1071  * returns 0 on success, < 0 on error.
1072  */
1073 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1074 				struct btrfs_fs_info *fs_info, u64 bytenr,
1075 				u64 time_seq, struct ulist **roots)
1076 {
1077 	struct ulist *tmp;
1078 	struct ulist_node *node = NULL;
1079 	struct ulist_iterator uiter;
1080 	int ret;
1081 
1082 	tmp = ulist_alloc(GFP_NOFS);
1083 	if (!tmp)
1084 		return -ENOMEM;
1085 	*roots = ulist_alloc(GFP_NOFS);
1086 	if (!*roots) {
1087 		ulist_free(tmp);
1088 		return -ENOMEM;
1089 	}
1090 
1091 	ULIST_ITER_INIT(&uiter);
1092 	while (1) {
1093 		ret = find_parent_nodes(trans, fs_info, bytenr,
1094 					time_seq, tmp, *roots, NULL);
1095 		if (ret < 0 && ret != -ENOENT) {
1096 			ulist_free(tmp);
1097 			ulist_free(*roots);
1098 			return ret;
1099 		}
1100 		node = ulist_next(tmp, &uiter);
1101 		if (!node)
1102 			break;
1103 		bytenr = node->val;
1104 	}
1105 
1106 	ulist_free(tmp);
1107 	return 0;
1108 }
1109 
1110 
1111 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1112 			struct btrfs_root *fs_root, struct btrfs_path *path,
1113 			struct btrfs_key *found_key)
1114 {
1115 	int ret;
1116 	struct btrfs_key key;
1117 	struct extent_buffer *eb;
1118 
1119 	key.type = key_type;
1120 	key.objectid = inum;
1121 	key.offset = ioff;
1122 
1123 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1124 	if (ret < 0)
1125 		return ret;
1126 
1127 	eb = path->nodes[0];
1128 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1129 		ret = btrfs_next_leaf(fs_root, path);
1130 		if (ret)
1131 			return ret;
1132 		eb = path->nodes[0];
1133 	}
1134 
1135 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1136 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1137 		return 1;
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * this makes the path point to (inum INODE_ITEM ioff)
1144  */
1145 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1146 			struct btrfs_path *path)
1147 {
1148 	struct btrfs_key key;
1149 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1150 				&key);
1151 }
1152 
1153 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1154 				struct btrfs_path *path,
1155 				struct btrfs_key *found_key)
1156 {
1157 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1158 				found_key);
1159 }
1160 
1161 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1162 			  u64 start_off, struct btrfs_path *path,
1163 			  struct btrfs_inode_extref **ret_extref,
1164 			  u64 *found_off)
1165 {
1166 	int ret, slot;
1167 	struct btrfs_key key;
1168 	struct btrfs_key found_key;
1169 	struct btrfs_inode_extref *extref;
1170 	struct extent_buffer *leaf;
1171 	unsigned long ptr;
1172 
1173 	key.objectid = inode_objectid;
1174 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1175 	key.offset = start_off;
1176 
1177 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1178 	if (ret < 0)
1179 		return ret;
1180 
1181 	while (1) {
1182 		leaf = path->nodes[0];
1183 		slot = path->slots[0];
1184 		if (slot >= btrfs_header_nritems(leaf)) {
1185 			/*
1186 			 * If the item at offset is not found,
1187 			 * btrfs_search_slot will point us to the slot
1188 			 * where it should be inserted. In our case
1189 			 * that will be the slot directly before the
1190 			 * next INODE_REF_KEY_V2 item. In the case
1191 			 * that we're pointing to the last slot in a
1192 			 * leaf, we must move one leaf over.
1193 			 */
1194 			ret = btrfs_next_leaf(root, path);
1195 			if (ret) {
1196 				if (ret >= 1)
1197 					ret = -ENOENT;
1198 				break;
1199 			}
1200 			continue;
1201 		}
1202 
1203 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1204 
1205 		/*
1206 		 * Check that we're still looking at an extended ref key for
1207 		 * this particular objectid. If we have different
1208 		 * objectid or type then there are no more to be found
1209 		 * in the tree and we can exit.
1210 		 */
1211 		ret = -ENOENT;
1212 		if (found_key.objectid != inode_objectid)
1213 			break;
1214 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1215 			break;
1216 
1217 		ret = 0;
1218 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1219 		extref = (struct btrfs_inode_extref *)ptr;
1220 		*ret_extref = extref;
1221 		if (found_off)
1222 			*found_off = found_key.offset;
1223 		break;
1224 	}
1225 
1226 	return ret;
1227 }
1228 
1229 /*
1230  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1231  * Elements of the path are separated by '/' and the path is guaranteed to be
1232  * 0-terminated. the path is only given within the current file system.
1233  * Therefore, it never starts with a '/'. the caller is responsible to provide
1234  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1235  * the start point of the resulting string is returned. this pointer is within
1236  * dest, normally.
1237  * in case the path buffer would overflow, the pointer is decremented further
1238  * as if output was written to the buffer, though no more output is actually
1239  * generated. that way, the caller can determine how much space would be
1240  * required for the path to fit into the buffer. in that case, the returned
1241  * value will be smaller than dest. callers must check this!
1242  */
1243 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1244 			u32 name_len, unsigned long name_off,
1245 			struct extent_buffer *eb_in, u64 parent,
1246 			char *dest, u32 size)
1247 {
1248 	int slot;
1249 	u64 next_inum;
1250 	int ret;
1251 	s64 bytes_left = ((s64)size) - 1;
1252 	struct extent_buffer *eb = eb_in;
1253 	struct btrfs_key found_key;
1254 	int leave_spinning = path->leave_spinning;
1255 	struct btrfs_inode_ref *iref;
1256 
1257 	if (bytes_left >= 0)
1258 		dest[bytes_left] = '\0';
1259 
1260 	path->leave_spinning = 1;
1261 	while (1) {
1262 		bytes_left -= name_len;
1263 		if (bytes_left >= 0)
1264 			read_extent_buffer(eb, dest + bytes_left,
1265 					   name_off, name_len);
1266 		if (eb != eb_in) {
1267 			btrfs_tree_read_unlock_blocking(eb);
1268 			free_extent_buffer(eb);
1269 		}
1270 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1271 		if (ret > 0)
1272 			ret = -ENOENT;
1273 		if (ret)
1274 			break;
1275 
1276 		next_inum = found_key.offset;
1277 
1278 		/* regular exit ahead */
1279 		if (parent == next_inum)
1280 			break;
1281 
1282 		slot = path->slots[0];
1283 		eb = path->nodes[0];
1284 		/* make sure we can use eb after releasing the path */
1285 		if (eb != eb_in) {
1286 			atomic_inc(&eb->refs);
1287 			btrfs_tree_read_lock(eb);
1288 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1289 		}
1290 		btrfs_release_path(path);
1291 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1292 
1293 		name_len = btrfs_inode_ref_name_len(eb, iref);
1294 		name_off = (unsigned long)(iref + 1);
1295 
1296 		parent = next_inum;
1297 		--bytes_left;
1298 		if (bytes_left >= 0)
1299 			dest[bytes_left] = '/';
1300 	}
1301 
1302 	btrfs_release_path(path);
1303 	path->leave_spinning = leave_spinning;
1304 
1305 	if (ret)
1306 		return ERR_PTR(ret);
1307 
1308 	return dest + bytes_left;
1309 }
1310 
1311 /*
1312  * this makes the path point to (logical EXTENT_ITEM *)
1313  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1314  * tree blocks and <0 on error.
1315  */
1316 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1317 			struct btrfs_path *path, struct btrfs_key *found_key,
1318 			u64 *flags_ret)
1319 {
1320 	int ret;
1321 	u64 flags;
1322 	u64 size = 0;
1323 	u32 item_size;
1324 	struct extent_buffer *eb;
1325 	struct btrfs_extent_item *ei;
1326 	struct btrfs_key key;
1327 
1328 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1329 		key.type = BTRFS_METADATA_ITEM_KEY;
1330 	else
1331 		key.type = BTRFS_EXTENT_ITEM_KEY;
1332 	key.objectid = logical;
1333 	key.offset = (u64)-1;
1334 
1335 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1336 	if (ret < 0)
1337 		return ret;
1338 	ret = btrfs_previous_item(fs_info->extent_root, path,
1339 					0, BTRFS_EXTENT_ITEM_KEY);
1340 	if (ret < 0)
1341 		return ret;
1342 
1343 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1344 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1345 		size = fs_info->extent_root->leafsize;
1346 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1347 		size = found_key->offset;
1348 
1349 	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1350 	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1351 	    found_key->objectid > logical ||
1352 	    found_key->objectid + size <= logical) {
1353 		pr_debug("logical %llu is not within any extent\n", logical);
1354 		return -ENOENT;
1355 	}
1356 
1357 	eb = path->nodes[0];
1358 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1359 	BUG_ON(item_size < sizeof(*ei));
1360 
1361 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1362 	flags = btrfs_extent_flags(eb, ei);
1363 
1364 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1365 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1366 		 logical, logical - found_key->objectid, found_key->objectid,
1367 		 found_key->offset, flags, item_size);
1368 
1369 	WARN_ON(!flags_ret);
1370 	if (flags_ret) {
1371 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1372 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1373 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1374 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1375 		else
1376 			BUG_ON(1);
1377 		return 0;
1378 	}
1379 
1380 	return -EIO;
1381 }
1382 
1383 /*
1384  * helper function to iterate extent inline refs. ptr must point to a 0 value
1385  * for the first call and may be modified. it is used to track state.
1386  * if more refs exist, 0 is returned and the next call to
1387  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1388  * next ref. after the last ref was processed, 1 is returned.
1389  * returns <0 on error
1390  */
1391 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1392 				struct btrfs_extent_item *ei, u32 item_size,
1393 				struct btrfs_extent_inline_ref **out_eiref,
1394 				int *out_type)
1395 {
1396 	unsigned long end;
1397 	u64 flags;
1398 	struct btrfs_tree_block_info *info;
1399 
1400 	if (!*ptr) {
1401 		/* first call */
1402 		flags = btrfs_extent_flags(eb, ei);
1403 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1404 			info = (struct btrfs_tree_block_info *)(ei + 1);
1405 			*out_eiref =
1406 				(struct btrfs_extent_inline_ref *)(info + 1);
1407 		} else {
1408 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1409 		}
1410 		*ptr = (unsigned long)*out_eiref;
1411 		if ((void *)*ptr >= (void *)ei + item_size)
1412 			return -ENOENT;
1413 	}
1414 
1415 	end = (unsigned long)ei + item_size;
1416 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1417 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1418 
1419 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1420 	WARN_ON(*ptr > end);
1421 	if (*ptr == end)
1422 		return 1; /* last */
1423 
1424 	return 0;
1425 }
1426 
1427 /*
1428  * reads the tree block backref for an extent. tree level and root are returned
1429  * through out_level and out_root. ptr must point to a 0 value for the first
1430  * call and may be modified (see __get_extent_inline_ref comment).
1431  * returns 0 if data was provided, 1 if there was no more data to provide or
1432  * <0 on error.
1433  */
1434 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1435 				struct btrfs_extent_item *ei, u32 item_size,
1436 				u64 *out_root, u8 *out_level)
1437 {
1438 	int ret;
1439 	int type;
1440 	struct btrfs_tree_block_info *info;
1441 	struct btrfs_extent_inline_ref *eiref;
1442 
1443 	if (*ptr == (unsigned long)-1)
1444 		return 1;
1445 
1446 	while (1) {
1447 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1448 						&eiref, &type);
1449 		if (ret < 0)
1450 			return ret;
1451 
1452 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1453 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1454 			break;
1455 
1456 		if (ret == 1)
1457 			return 1;
1458 	}
1459 
1460 	/* we can treat both ref types equally here */
1461 	info = (struct btrfs_tree_block_info *)(ei + 1);
1462 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1463 	*out_level = btrfs_tree_block_level(eb, info);
1464 
1465 	if (ret == 1)
1466 		*ptr = (unsigned long)-1;
1467 
1468 	return 0;
1469 }
1470 
1471 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1472 				u64 root, u64 extent_item_objectid,
1473 				iterate_extent_inodes_t *iterate, void *ctx)
1474 {
1475 	struct extent_inode_elem *eie;
1476 	int ret = 0;
1477 
1478 	for (eie = inode_list; eie; eie = eie->next) {
1479 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1480 			 "root %llu\n", extent_item_objectid,
1481 			 eie->inum, eie->offset, root);
1482 		ret = iterate(eie->inum, eie->offset, root, ctx);
1483 		if (ret) {
1484 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1485 				 extent_item_objectid, ret);
1486 			break;
1487 		}
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 /*
1494  * calls iterate() for every inode that references the extent identified by
1495  * the given parameters.
1496  * when the iterator function returns a non-zero value, iteration stops.
1497  */
1498 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1499 				u64 extent_item_objectid, u64 extent_item_pos,
1500 				int search_commit_root,
1501 				iterate_extent_inodes_t *iterate, void *ctx)
1502 {
1503 	int ret;
1504 	struct btrfs_trans_handle *trans = NULL;
1505 	struct ulist *refs = NULL;
1506 	struct ulist *roots = NULL;
1507 	struct ulist_node *ref_node = NULL;
1508 	struct ulist_node *root_node = NULL;
1509 	struct seq_list tree_mod_seq_elem = {};
1510 	struct ulist_iterator ref_uiter;
1511 	struct ulist_iterator root_uiter;
1512 
1513 	pr_debug("resolving all inodes for extent %llu\n",
1514 			extent_item_objectid);
1515 
1516 	if (!search_commit_root) {
1517 		trans = btrfs_join_transaction(fs_info->extent_root);
1518 		if (IS_ERR(trans))
1519 			return PTR_ERR(trans);
1520 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1521 	}
1522 
1523 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1524 				   tree_mod_seq_elem.seq, &refs,
1525 				   &extent_item_pos);
1526 	if (ret)
1527 		goto out;
1528 
1529 	ULIST_ITER_INIT(&ref_uiter);
1530 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1531 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1532 					   tree_mod_seq_elem.seq, &roots);
1533 		if (ret)
1534 			break;
1535 		ULIST_ITER_INIT(&root_uiter);
1536 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1537 			pr_debug("root %llu references leaf %llu, data list "
1538 				 "%#llx\n", root_node->val, ref_node->val,
1539 				 ref_node->aux);
1540 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1541 						(uintptr_t)ref_node->aux,
1542 						root_node->val,
1543 						extent_item_objectid,
1544 						iterate, ctx);
1545 		}
1546 		ulist_free(roots);
1547 	}
1548 
1549 	free_leaf_list(refs);
1550 out:
1551 	if (!search_commit_root) {
1552 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1553 		btrfs_end_transaction(trans, fs_info->extent_root);
1554 	}
1555 
1556 	return ret;
1557 }
1558 
1559 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1560 				struct btrfs_path *path,
1561 				iterate_extent_inodes_t *iterate, void *ctx)
1562 {
1563 	int ret;
1564 	u64 extent_item_pos;
1565 	u64 flags = 0;
1566 	struct btrfs_key found_key;
1567 	int search_commit_root = path->search_commit_root;
1568 
1569 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1570 	btrfs_release_path(path);
1571 	if (ret < 0)
1572 		return ret;
1573 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1574 		return -EINVAL;
1575 
1576 	extent_item_pos = logical - found_key.objectid;
1577 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1578 					extent_item_pos, search_commit_root,
1579 					iterate, ctx);
1580 
1581 	return ret;
1582 }
1583 
1584 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1585 			      struct extent_buffer *eb, void *ctx);
1586 
1587 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1588 			      struct btrfs_path *path,
1589 			      iterate_irefs_t *iterate, void *ctx)
1590 {
1591 	int ret = 0;
1592 	int slot;
1593 	u32 cur;
1594 	u32 len;
1595 	u32 name_len;
1596 	u64 parent = 0;
1597 	int found = 0;
1598 	struct extent_buffer *eb;
1599 	struct btrfs_item *item;
1600 	struct btrfs_inode_ref *iref;
1601 	struct btrfs_key found_key;
1602 
1603 	while (!ret) {
1604 		path->leave_spinning = 1;
1605 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1606 				     &found_key);
1607 		if (ret < 0)
1608 			break;
1609 		if (ret) {
1610 			ret = found ? 0 : -ENOENT;
1611 			break;
1612 		}
1613 		++found;
1614 
1615 		parent = found_key.offset;
1616 		slot = path->slots[0];
1617 		eb = path->nodes[0];
1618 		/* make sure we can use eb after releasing the path */
1619 		atomic_inc(&eb->refs);
1620 		btrfs_tree_read_lock(eb);
1621 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1622 		btrfs_release_path(path);
1623 
1624 		item = btrfs_item_nr(slot);
1625 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1626 
1627 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1628 			name_len = btrfs_inode_ref_name_len(eb, iref);
1629 			/* path must be released before calling iterate()! */
1630 			pr_debug("following ref at offset %u for inode %llu in "
1631 				 "tree %llu\n", cur, found_key.objectid,
1632 				 fs_root->objectid);
1633 			ret = iterate(parent, name_len,
1634 				      (unsigned long)(iref + 1), eb, ctx);
1635 			if (ret)
1636 				break;
1637 			len = sizeof(*iref) + name_len;
1638 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1639 		}
1640 		btrfs_tree_read_unlock_blocking(eb);
1641 		free_extent_buffer(eb);
1642 	}
1643 
1644 	btrfs_release_path(path);
1645 
1646 	return ret;
1647 }
1648 
1649 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1650 				 struct btrfs_path *path,
1651 				 iterate_irefs_t *iterate, void *ctx)
1652 {
1653 	int ret;
1654 	int slot;
1655 	u64 offset = 0;
1656 	u64 parent;
1657 	int found = 0;
1658 	struct extent_buffer *eb;
1659 	struct btrfs_inode_extref *extref;
1660 	struct extent_buffer *leaf;
1661 	u32 item_size;
1662 	u32 cur_offset;
1663 	unsigned long ptr;
1664 
1665 	while (1) {
1666 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1667 					    &offset);
1668 		if (ret < 0)
1669 			break;
1670 		if (ret) {
1671 			ret = found ? 0 : -ENOENT;
1672 			break;
1673 		}
1674 		++found;
1675 
1676 		slot = path->slots[0];
1677 		eb = path->nodes[0];
1678 		/* make sure we can use eb after releasing the path */
1679 		atomic_inc(&eb->refs);
1680 
1681 		btrfs_tree_read_lock(eb);
1682 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1683 		btrfs_release_path(path);
1684 
1685 		leaf = path->nodes[0];
1686 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1687 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1688 		cur_offset = 0;
1689 
1690 		while (cur_offset < item_size) {
1691 			u32 name_len;
1692 
1693 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1694 			parent = btrfs_inode_extref_parent(eb, extref);
1695 			name_len = btrfs_inode_extref_name_len(eb, extref);
1696 			ret = iterate(parent, name_len,
1697 				      (unsigned long)&extref->name, eb, ctx);
1698 			if (ret)
1699 				break;
1700 
1701 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1702 			cur_offset += sizeof(*extref);
1703 		}
1704 		btrfs_tree_read_unlock_blocking(eb);
1705 		free_extent_buffer(eb);
1706 
1707 		offset++;
1708 	}
1709 
1710 	btrfs_release_path(path);
1711 
1712 	return ret;
1713 }
1714 
1715 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1716 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1717 			 void *ctx)
1718 {
1719 	int ret;
1720 	int found_refs = 0;
1721 
1722 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1723 	if (!ret)
1724 		++found_refs;
1725 	else if (ret != -ENOENT)
1726 		return ret;
1727 
1728 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1729 	if (ret == -ENOENT && found_refs)
1730 		return 0;
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * returns 0 if the path could be dumped (probably truncated)
1737  * returns <0 in case of an error
1738  */
1739 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1740 			 struct extent_buffer *eb, void *ctx)
1741 {
1742 	struct inode_fs_paths *ipath = ctx;
1743 	char *fspath;
1744 	char *fspath_min;
1745 	int i = ipath->fspath->elem_cnt;
1746 	const int s_ptr = sizeof(char *);
1747 	u32 bytes_left;
1748 
1749 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1750 					ipath->fspath->bytes_left - s_ptr : 0;
1751 
1752 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1753 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1754 				   name_off, eb, inum, fspath_min, bytes_left);
1755 	if (IS_ERR(fspath))
1756 		return PTR_ERR(fspath);
1757 
1758 	if (fspath > fspath_min) {
1759 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1760 		++ipath->fspath->elem_cnt;
1761 		ipath->fspath->bytes_left = fspath - fspath_min;
1762 	} else {
1763 		++ipath->fspath->elem_missed;
1764 		ipath->fspath->bytes_missing += fspath_min - fspath;
1765 		ipath->fspath->bytes_left = 0;
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 /*
1772  * this dumps all file system paths to the inode into the ipath struct, provided
1773  * is has been created large enough. each path is zero-terminated and accessed
1774  * from ipath->fspath->val[i].
1775  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1776  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1777  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1778  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1779  * have been needed to return all paths.
1780  */
1781 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1782 {
1783 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1784 			     inode_to_path, ipath);
1785 }
1786 
1787 struct btrfs_data_container *init_data_container(u32 total_bytes)
1788 {
1789 	struct btrfs_data_container *data;
1790 	size_t alloc_bytes;
1791 
1792 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1793 	data = vmalloc(alloc_bytes);
1794 	if (!data)
1795 		return ERR_PTR(-ENOMEM);
1796 
1797 	if (total_bytes >= sizeof(*data)) {
1798 		data->bytes_left = total_bytes - sizeof(*data);
1799 		data->bytes_missing = 0;
1800 	} else {
1801 		data->bytes_missing = sizeof(*data) - total_bytes;
1802 		data->bytes_left = 0;
1803 	}
1804 
1805 	data->elem_cnt = 0;
1806 	data->elem_missed = 0;
1807 
1808 	return data;
1809 }
1810 
1811 /*
1812  * allocates space to return multiple file system paths for an inode.
1813  * total_bytes to allocate are passed, note that space usable for actual path
1814  * information will be total_bytes - sizeof(struct inode_fs_paths).
1815  * the returned pointer must be freed with free_ipath() in the end.
1816  */
1817 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1818 					struct btrfs_path *path)
1819 {
1820 	struct inode_fs_paths *ifp;
1821 	struct btrfs_data_container *fspath;
1822 
1823 	fspath = init_data_container(total_bytes);
1824 	if (IS_ERR(fspath))
1825 		return (void *)fspath;
1826 
1827 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1828 	if (!ifp) {
1829 		kfree(fspath);
1830 		return ERR_PTR(-ENOMEM);
1831 	}
1832 
1833 	ifp->btrfs_path = path;
1834 	ifp->fspath = fspath;
1835 	ifp->fs_root = fs_root;
1836 
1837 	return ifp;
1838 }
1839 
1840 void free_ipath(struct inode_fs_paths *ipath)
1841 {
1842 	if (!ipath)
1843 		return;
1844 	vfree(ipath->fspath);
1845 	kfree(ipath);
1846 }
1847