xref: /openbmc/linux/fs/btrfs/backref.c (revision 6a613ac6)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30 
31 struct extent_inode_elem {
32 	u64 inum;
33 	u64 offset;
34 	struct extent_inode_elem *next;
35 };
36 
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 				struct btrfs_file_extent_item *fi,
39 				u64 extent_item_pos,
40 				struct extent_inode_elem **eie)
41 {
42 	u64 offset = 0;
43 	struct extent_inode_elem *e;
44 
45 	if (!btrfs_file_extent_compression(eb, fi) &&
46 	    !btrfs_file_extent_encryption(eb, fi) &&
47 	    !btrfs_file_extent_other_encoding(eb, fi)) {
48 		u64 data_offset;
49 		u64 data_len;
50 
51 		data_offset = btrfs_file_extent_offset(eb, fi);
52 		data_len = btrfs_file_extent_num_bytes(eb, fi);
53 
54 		if (extent_item_pos < data_offset ||
55 		    extent_item_pos >= data_offset + data_len)
56 			return 1;
57 		offset = extent_item_pos - data_offset;
58 	}
59 
60 	e = kmalloc(sizeof(*e), GFP_NOFS);
61 	if (!e)
62 		return -ENOMEM;
63 
64 	e->next = *eie;
65 	e->inum = key->objectid;
66 	e->offset = key->offset + offset;
67 	*eie = e;
68 
69 	return 0;
70 }
71 
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 	struct extent_inode_elem *eie_next;
75 
76 	for (; eie; eie = eie_next) {
77 		eie_next = eie->next;
78 		kfree(eie);
79 	}
80 }
81 
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 				u64 extent_item_pos,
84 				struct extent_inode_elem **eie)
85 {
86 	u64 disk_byte;
87 	struct btrfs_key key;
88 	struct btrfs_file_extent_item *fi;
89 	int slot;
90 	int nritems;
91 	int extent_type;
92 	int ret;
93 
94 	/*
95 	 * from the shared data ref, we only have the leaf but we need
96 	 * the key. thus, we must look into all items and see that we
97 	 * find one (some) with a reference to our extent item.
98 	 */
99 	nritems = btrfs_header_nritems(eb);
100 	for (slot = 0; slot < nritems; ++slot) {
101 		btrfs_item_key_to_cpu(eb, &key, slot);
102 		if (key.type != BTRFS_EXTENT_DATA_KEY)
103 			continue;
104 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 		extent_type = btrfs_file_extent_type(eb, fi);
106 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 			continue;
108 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 		if (disk_byte != wanted_disk_byte)
111 			continue;
112 
113 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 		if (ret < 0)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125 	struct list_head list;
126 	u64 root_id;
127 	struct btrfs_key key_for_search;
128 	int level;
129 	int count;
130 	struct extent_inode_elem *inode_list;
131 	u64 parent;
132 	u64 wanted_disk_byte;
133 };
134 
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136 
137 int __init btrfs_prelim_ref_init(void)
138 {
139 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 					sizeof(struct __prelim_ref),
141 					0,
142 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 					NULL);
144 	if (!btrfs_prelim_ref_cache)
145 		return -ENOMEM;
146 	return 0;
147 }
148 
149 void btrfs_prelim_ref_exit(void)
150 {
151 	if (btrfs_prelim_ref_cache)
152 		kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154 
155 /*
156  * the rules for all callers of this function are:
157  * - obtaining the parent is the goal
158  * - if you add a key, you must know that it is a correct key
159  * - if you cannot add the parent or a correct key, then we will look into the
160  *   block later to set a correct key
161  *
162  * delayed refs
163  * ============
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    -   |     -
168  *      key to resolve |    -   |     y    |    y   |     y
169  *  tree block logical |    -   |     -    |    -   |     -
170  *  root for resolving |    y   |     y    |    y   |     y
171  *
172  * - column 1:       we've the parent -> done
173  * - column 2, 3, 4: we use the key to find the parent
174  *
175  * on disk refs (inline or keyed)
176  * ==============================
177  *        backref type | shared | indirect | shared | indirect
178  * information         |   tree |     tree |   data |     data
179  * --------------------+--------+----------+--------+----------
180  *      parent logical |    y   |     -    |    y   |     -
181  *      key to resolve |    -   |     -    |    -   |     y
182  *  tree block logical |    y   |     y    |    y   |     y
183  *  root for resolving |    -   |     y    |    y   |     y
184  *
185  * - column 1, 3: we've the parent -> done
186  * - column 2:    we take the first key from the block to find the parent
187  *                (see __add_missing_keys)
188  * - column 4:    we use the key to find the parent
189  *
190  * additional information that's available but not required to find the parent
191  * block might help in merging entries to gain some speed.
192  */
193 
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 			    struct btrfs_key *key, int level,
196 			    u64 parent, u64 wanted_disk_byte, int count,
197 			    gfp_t gfp_mask)
198 {
199 	struct __prelim_ref *ref;
200 
201 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 		return 0;
203 
204 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 	if (!ref)
206 		return -ENOMEM;
207 
208 	ref->root_id = root_id;
209 	if (key) {
210 		ref->key_for_search = *key;
211 		/*
212 		 * We can often find data backrefs with an offset that is too
213 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 		 * underflows when subtracting a file's offset with the data
215 		 * offset of its corresponding extent data item. This can
216 		 * happen for example in the clone ioctl.
217 		 * So if we detect such case we set the search key's offset to
218 		 * zero to make sure we will find the matching file extent item
219 		 * at add_all_parents(), otherwise we will miss it because the
220 		 * offset taken form the backref is much larger then the offset
221 		 * of the file extent item. This can make us scan a very large
222 		 * number of file extent items, but at least it will not make
223 		 * us miss any.
224 		 * This is an ugly workaround for a behaviour that should have
225 		 * never existed, but it does and a fix for the clone ioctl
226 		 * would touch a lot of places, cause backwards incompatibility
227 		 * and would not fix the problem for extents cloned with older
228 		 * kernels.
229 		 */
230 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231 		    ref->key_for_search.offset >= LLONG_MAX)
232 			ref->key_for_search.offset = 0;
233 	} else {
234 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235 	}
236 
237 	ref->inode_list = NULL;
238 	ref->level = level;
239 	ref->count = count;
240 	ref->parent = parent;
241 	ref->wanted_disk_byte = wanted_disk_byte;
242 	list_add_tail(&ref->list, head);
243 
244 	return 0;
245 }
246 
247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248 			   struct ulist *parents, struct __prelim_ref *ref,
249 			   int level, u64 time_seq, const u64 *extent_item_pos,
250 			   u64 total_refs)
251 {
252 	int ret = 0;
253 	int slot;
254 	struct extent_buffer *eb;
255 	struct btrfs_key key;
256 	struct btrfs_key *key_for_search = &ref->key_for_search;
257 	struct btrfs_file_extent_item *fi;
258 	struct extent_inode_elem *eie = NULL, *old = NULL;
259 	u64 disk_byte;
260 	u64 wanted_disk_byte = ref->wanted_disk_byte;
261 	u64 count = 0;
262 
263 	if (level != 0) {
264 		eb = path->nodes[level];
265 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 		if (ret < 0)
267 			return ret;
268 		return 0;
269 	}
270 
271 	/*
272 	 * We normally enter this function with the path already pointing to
273 	 * the first item to check. But sometimes, we may enter it with
274 	 * slot==nritems. In that case, go to the next leaf before we continue.
275 	 */
276 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277 		if (time_seq == (u64)-1)
278 			ret = btrfs_next_leaf(root, path);
279 		else
280 			ret = btrfs_next_old_leaf(root, path, time_seq);
281 	}
282 
283 	while (!ret && count < total_refs) {
284 		eb = path->nodes[0];
285 		slot = path->slots[0];
286 
287 		btrfs_item_key_to_cpu(eb, &key, slot);
288 
289 		if (key.objectid != key_for_search->objectid ||
290 		    key.type != BTRFS_EXTENT_DATA_KEY)
291 			break;
292 
293 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295 
296 		if (disk_byte == wanted_disk_byte) {
297 			eie = NULL;
298 			old = NULL;
299 			count++;
300 			if (extent_item_pos) {
301 				ret = check_extent_in_eb(&key, eb, fi,
302 						*extent_item_pos,
303 						&eie);
304 				if (ret < 0)
305 					break;
306 			}
307 			if (ret > 0)
308 				goto next;
309 			ret = ulist_add_merge_ptr(parents, eb->start,
310 						  eie, (void **)&old, GFP_NOFS);
311 			if (ret < 0)
312 				break;
313 			if (!ret && extent_item_pos) {
314 				while (old->next)
315 					old = old->next;
316 				old->next = eie;
317 			}
318 			eie = NULL;
319 		}
320 next:
321 		if (time_seq == (u64)-1)
322 			ret = btrfs_next_item(root, path);
323 		else
324 			ret = btrfs_next_old_item(root, path, time_seq);
325 	}
326 
327 	if (ret > 0)
328 		ret = 0;
329 	else if (ret < 0)
330 		free_inode_elem_list(eie);
331 	return ret;
332 }
333 
334 /*
335  * resolve an indirect backref in the form (root_id, key, level)
336  * to a logical address
337  */
338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 				  struct btrfs_path *path, u64 time_seq,
340 				  struct __prelim_ref *ref,
341 				  struct ulist *parents,
342 				  const u64 *extent_item_pos, u64 total_refs)
343 {
344 	struct btrfs_root *root;
345 	struct btrfs_key root_key;
346 	struct extent_buffer *eb;
347 	int ret = 0;
348 	int root_level;
349 	int level = ref->level;
350 	int index;
351 
352 	root_key.objectid = ref->root_id;
353 	root_key.type = BTRFS_ROOT_ITEM_KEY;
354 	root_key.offset = (u64)-1;
355 
356 	index = srcu_read_lock(&fs_info->subvol_srcu);
357 
358 	root = btrfs_get_fs_root(fs_info, &root_key, false);
359 	if (IS_ERR(root)) {
360 		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 		ret = PTR_ERR(root);
362 		goto out;
363 	}
364 
365 	if (btrfs_test_is_dummy_root(root)) {
366 		srcu_read_unlock(&fs_info->subvol_srcu, index);
367 		ret = -ENOENT;
368 		goto out;
369 	}
370 
371 	if (path->search_commit_root)
372 		root_level = btrfs_header_level(root->commit_root);
373 	else if (time_seq == (u64)-1)
374 		root_level = btrfs_header_level(root->node);
375 	else
376 		root_level = btrfs_old_root_level(root, time_seq);
377 
378 	if (root_level + 1 == level) {
379 		srcu_read_unlock(&fs_info->subvol_srcu, index);
380 		goto out;
381 	}
382 
383 	path->lowest_level = level;
384 	if (time_seq == (u64)-1)
385 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
386 					0, 0);
387 	else
388 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
389 					    time_seq);
390 
391 	/* root node has been locked, we can release @subvol_srcu safely here */
392 	srcu_read_unlock(&fs_info->subvol_srcu, index);
393 
394 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395 		 "%d for key (%llu %u %llu)\n",
396 		 ref->root_id, level, ref->count, ret,
397 		 ref->key_for_search.objectid, ref->key_for_search.type,
398 		 ref->key_for_search.offset);
399 	if (ret < 0)
400 		goto out;
401 
402 	eb = path->nodes[level];
403 	while (!eb) {
404 		if (WARN_ON(!level)) {
405 			ret = 1;
406 			goto out;
407 		}
408 		level--;
409 		eb = path->nodes[level];
410 	}
411 
412 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
413 			      extent_item_pos, total_refs);
414 out:
415 	path->lowest_level = 0;
416 	btrfs_release_path(path);
417 	return ret;
418 }
419 
420 /*
421  * resolve all indirect backrefs from the list
422  */
423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424 				   struct btrfs_path *path, u64 time_seq,
425 				   struct list_head *head,
426 				   const u64 *extent_item_pos, u64 total_refs,
427 				   u64 root_objectid)
428 {
429 	int err;
430 	int ret = 0;
431 	struct __prelim_ref *ref;
432 	struct __prelim_ref *ref_safe;
433 	struct __prelim_ref *new_ref;
434 	struct ulist *parents;
435 	struct ulist_node *node;
436 	struct ulist_iterator uiter;
437 
438 	parents = ulist_alloc(GFP_NOFS);
439 	if (!parents)
440 		return -ENOMEM;
441 
442 	/*
443 	 * _safe allows us to insert directly after the current item without
444 	 * iterating over the newly inserted items.
445 	 * we're also allowed to re-assign ref during iteration.
446 	 */
447 	list_for_each_entry_safe(ref, ref_safe, head, list) {
448 		if (ref->parent)	/* already direct */
449 			continue;
450 		if (ref->count == 0)
451 			continue;
452 		if (root_objectid && ref->root_id != root_objectid) {
453 			ret = BACKREF_FOUND_SHARED;
454 			goto out;
455 		}
456 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457 					     parents, extent_item_pos,
458 					     total_refs);
459 		/*
460 		 * we can only tolerate ENOENT,otherwise,we should catch error
461 		 * and return directly.
462 		 */
463 		if (err == -ENOENT) {
464 			continue;
465 		} else if (err) {
466 			ret = err;
467 			goto out;
468 		}
469 
470 		/* we put the first parent into the ref at hand */
471 		ULIST_ITER_INIT(&uiter);
472 		node = ulist_next(parents, &uiter);
473 		ref->parent = node ? node->val : 0;
474 		ref->inode_list = node ?
475 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476 
477 		/* additional parents require new refs being added here */
478 		while ((node = ulist_next(parents, &uiter))) {
479 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
480 						   GFP_NOFS);
481 			if (!new_ref) {
482 				ret = -ENOMEM;
483 				goto out;
484 			}
485 			memcpy(new_ref, ref, sizeof(*ref));
486 			new_ref->parent = node->val;
487 			new_ref->inode_list = (struct extent_inode_elem *)
488 							(uintptr_t)node->aux;
489 			list_add(&new_ref->list, &ref->list);
490 		}
491 		ulist_reinit(parents);
492 	}
493 out:
494 	ulist_free(parents);
495 	return ret;
496 }
497 
498 static inline int ref_for_same_block(struct __prelim_ref *ref1,
499 				     struct __prelim_ref *ref2)
500 {
501 	if (ref1->level != ref2->level)
502 		return 0;
503 	if (ref1->root_id != ref2->root_id)
504 		return 0;
505 	if (ref1->key_for_search.type != ref2->key_for_search.type)
506 		return 0;
507 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
508 		return 0;
509 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
510 		return 0;
511 	if (ref1->parent != ref2->parent)
512 		return 0;
513 
514 	return 1;
515 }
516 
517 /*
518  * read tree blocks and add keys where required.
519  */
520 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
521 			      struct list_head *head)
522 {
523 	struct list_head *pos;
524 	struct extent_buffer *eb;
525 
526 	list_for_each(pos, head) {
527 		struct __prelim_ref *ref;
528 		ref = list_entry(pos, struct __prelim_ref, list);
529 
530 		if (ref->parent)
531 			continue;
532 		if (ref->key_for_search.type)
533 			continue;
534 		BUG_ON(!ref->wanted_disk_byte);
535 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
536 				     0);
537 		if (IS_ERR(eb)) {
538 			return PTR_ERR(eb);
539 		} else if (!extent_buffer_uptodate(eb)) {
540 			free_extent_buffer(eb);
541 			return -EIO;
542 		}
543 		btrfs_tree_read_lock(eb);
544 		if (btrfs_header_level(eb) == 0)
545 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
546 		else
547 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
548 		btrfs_tree_read_unlock(eb);
549 		free_extent_buffer(eb);
550 	}
551 	return 0;
552 }
553 
554 /*
555  * merge backrefs and adjust counts accordingly
556  *
557  * mode = 1: merge identical keys, if key is set
558  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
559  *           additionally, we could even add a key range for the blocks we
560  *           looked into to merge even more (-> replace unresolved refs by those
561  *           having a parent).
562  * mode = 2: merge identical parents
563  */
564 static void __merge_refs(struct list_head *head, int mode)
565 {
566 	struct list_head *pos1;
567 
568 	list_for_each(pos1, head) {
569 		struct list_head *n2;
570 		struct list_head *pos2;
571 		struct __prelim_ref *ref1;
572 
573 		ref1 = list_entry(pos1, struct __prelim_ref, list);
574 
575 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
576 		     pos2 = n2, n2 = pos2->next) {
577 			struct __prelim_ref *ref2;
578 			struct __prelim_ref *xchg;
579 			struct extent_inode_elem *eie;
580 
581 			ref2 = list_entry(pos2, struct __prelim_ref, list);
582 
583 			if (!ref_for_same_block(ref1, ref2))
584 				continue;
585 			if (mode == 1) {
586 				if (!ref1->parent && ref2->parent) {
587 					xchg = ref1;
588 					ref1 = ref2;
589 					ref2 = xchg;
590 				}
591 			} else {
592 				if (ref1->parent != ref2->parent)
593 					continue;
594 			}
595 
596 			eie = ref1->inode_list;
597 			while (eie && eie->next)
598 				eie = eie->next;
599 			if (eie)
600 				eie->next = ref2->inode_list;
601 			else
602 				ref1->inode_list = ref2->inode_list;
603 			ref1->count += ref2->count;
604 
605 			list_del(&ref2->list);
606 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
607 		}
608 
609 	}
610 }
611 
612 /*
613  * add all currently queued delayed refs from this head whose seq nr is
614  * smaller or equal that seq to the list
615  */
616 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
617 			      struct list_head *prefs, u64 *total_refs,
618 			      u64 inum)
619 {
620 	struct btrfs_delayed_ref_node *node;
621 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
622 	struct btrfs_key key;
623 	struct btrfs_key op_key = {0};
624 	int sgn;
625 	int ret = 0;
626 
627 	if (extent_op && extent_op->update_key)
628 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
629 
630 	spin_lock(&head->lock);
631 	list_for_each_entry(node, &head->ref_list, list) {
632 		if (node->seq > seq)
633 			continue;
634 
635 		switch (node->action) {
636 		case BTRFS_ADD_DELAYED_EXTENT:
637 		case BTRFS_UPDATE_DELAYED_HEAD:
638 			WARN_ON(1);
639 			continue;
640 		case BTRFS_ADD_DELAYED_REF:
641 			sgn = 1;
642 			break;
643 		case BTRFS_DROP_DELAYED_REF:
644 			sgn = -1;
645 			break;
646 		default:
647 			BUG_ON(1);
648 		}
649 		*total_refs += (node->ref_mod * sgn);
650 		switch (node->type) {
651 		case BTRFS_TREE_BLOCK_REF_KEY: {
652 			struct btrfs_delayed_tree_ref *ref;
653 
654 			ref = btrfs_delayed_node_to_tree_ref(node);
655 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
656 					       ref->level + 1, 0, node->bytenr,
657 					       node->ref_mod * sgn, GFP_ATOMIC);
658 			break;
659 		}
660 		case BTRFS_SHARED_BLOCK_REF_KEY: {
661 			struct btrfs_delayed_tree_ref *ref;
662 
663 			ref = btrfs_delayed_node_to_tree_ref(node);
664 			ret = __add_prelim_ref(prefs, 0, NULL,
665 					       ref->level + 1, ref->parent,
666 					       node->bytenr,
667 					       node->ref_mod * sgn, GFP_ATOMIC);
668 			break;
669 		}
670 		case BTRFS_EXTENT_DATA_REF_KEY: {
671 			struct btrfs_delayed_data_ref *ref;
672 			ref = btrfs_delayed_node_to_data_ref(node);
673 
674 			key.objectid = ref->objectid;
675 			key.type = BTRFS_EXTENT_DATA_KEY;
676 			key.offset = ref->offset;
677 
678 			/*
679 			 * Found a inum that doesn't match our known inum, we
680 			 * know it's shared.
681 			 */
682 			if (inum && ref->objectid != inum) {
683 				ret = BACKREF_FOUND_SHARED;
684 				break;
685 			}
686 
687 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
688 					       node->bytenr,
689 					       node->ref_mod * sgn, GFP_ATOMIC);
690 			break;
691 		}
692 		case BTRFS_SHARED_DATA_REF_KEY: {
693 			struct btrfs_delayed_data_ref *ref;
694 
695 			ref = btrfs_delayed_node_to_data_ref(node);
696 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
697 					       ref->parent, node->bytenr,
698 					       node->ref_mod * sgn, GFP_ATOMIC);
699 			break;
700 		}
701 		default:
702 			WARN_ON(1);
703 		}
704 		if (ret)
705 			break;
706 	}
707 	spin_unlock(&head->lock);
708 	return ret;
709 }
710 
711 /*
712  * add all inline backrefs for bytenr to the list
713  */
714 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
715 			     struct btrfs_path *path, u64 bytenr,
716 			     int *info_level, struct list_head *prefs,
717 			     u64 *total_refs, u64 inum)
718 {
719 	int ret = 0;
720 	int slot;
721 	struct extent_buffer *leaf;
722 	struct btrfs_key key;
723 	struct btrfs_key found_key;
724 	unsigned long ptr;
725 	unsigned long end;
726 	struct btrfs_extent_item *ei;
727 	u64 flags;
728 	u64 item_size;
729 
730 	/*
731 	 * enumerate all inline refs
732 	 */
733 	leaf = path->nodes[0];
734 	slot = path->slots[0];
735 
736 	item_size = btrfs_item_size_nr(leaf, slot);
737 	BUG_ON(item_size < sizeof(*ei));
738 
739 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
740 	flags = btrfs_extent_flags(leaf, ei);
741 	*total_refs += btrfs_extent_refs(leaf, ei);
742 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
743 
744 	ptr = (unsigned long)(ei + 1);
745 	end = (unsigned long)ei + item_size;
746 
747 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
748 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
749 		struct btrfs_tree_block_info *info;
750 
751 		info = (struct btrfs_tree_block_info *)ptr;
752 		*info_level = btrfs_tree_block_level(leaf, info);
753 		ptr += sizeof(struct btrfs_tree_block_info);
754 		BUG_ON(ptr > end);
755 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
756 		*info_level = found_key.offset;
757 	} else {
758 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
759 	}
760 
761 	while (ptr < end) {
762 		struct btrfs_extent_inline_ref *iref;
763 		u64 offset;
764 		int type;
765 
766 		iref = (struct btrfs_extent_inline_ref *)ptr;
767 		type = btrfs_extent_inline_ref_type(leaf, iref);
768 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
769 
770 		switch (type) {
771 		case BTRFS_SHARED_BLOCK_REF_KEY:
772 			ret = __add_prelim_ref(prefs, 0, NULL,
773 						*info_level + 1, offset,
774 						bytenr, 1, GFP_NOFS);
775 			break;
776 		case BTRFS_SHARED_DATA_REF_KEY: {
777 			struct btrfs_shared_data_ref *sdref;
778 			int count;
779 
780 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
781 			count = btrfs_shared_data_ref_count(leaf, sdref);
782 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
783 					       bytenr, count, GFP_NOFS);
784 			break;
785 		}
786 		case BTRFS_TREE_BLOCK_REF_KEY:
787 			ret = __add_prelim_ref(prefs, offset, NULL,
788 					       *info_level + 1, 0,
789 					       bytenr, 1, GFP_NOFS);
790 			break;
791 		case BTRFS_EXTENT_DATA_REF_KEY: {
792 			struct btrfs_extent_data_ref *dref;
793 			int count;
794 			u64 root;
795 
796 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
797 			count = btrfs_extent_data_ref_count(leaf, dref);
798 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
799 								      dref);
800 			key.type = BTRFS_EXTENT_DATA_KEY;
801 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
802 
803 			if (inum && key.objectid != inum) {
804 				ret = BACKREF_FOUND_SHARED;
805 				break;
806 			}
807 
808 			root = btrfs_extent_data_ref_root(leaf, dref);
809 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
810 					       bytenr, count, GFP_NOFS);
811 			break;
812 		}
813 		default:
814 			WARN_ON(1);
815 		}
816 		if (ret)
817 			return ret;
818 		ptr += btrfs_extent_inline_ref_size(type);
819 	}
820 
821 	return 0;
822 }
823 
824 /*
825  * add all non-inline backrefs for bytenr to the list
826  */
827 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
828 			    struct btrfs_path *path, u64 bytenr,
829 			    int info_level, struct list_head *prefs, u64 inum)
830 {
831 	struct btrfs_root *extent_root = fs_info->extent_root;
832 	int ret;
833 	int slot;
834 	struct extent_buffer *leaf;
835 	struct btrfs_key key;
836 
837 	while (1) {
838 		ret = btrfs_next_item(extent_root, path);
839 		if (ret < 0)
840 			break;
841 		if (ret) {
842 			ret = 0;
843 			break;
844 		}
845 
846 		slot = path->slots[0];
847 		leaf = path->nodes[0];
848 		btrfs_item_key_to_cpu(leaf, &key, slot);
849 
850 		if (key.objectid != bytenr)
851 			break;
852 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
853 			continue;
854 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
855 			break;
856 
857 		switch (key.type) {
858 		case BTRFS_SHARED_BLOCK_REF_KEY:
859 			ret = __add_prelim_ref(prefs, 0, NULL,
860 						info_level + 1, key.offset,
861 						bytenr, 1, GFP_NOFS);
862 			break;
863 		case BTRFS_SHARED_DATA_REF_KEY: {
864 			struct btrfs_shared_data_ref *sdref;
865 			int count;
866 
867 			sdref = btrfs_item_ptr(leaf, slot,
868 					      struct btrfs_shared_data_ref);
869 			count = btrfs_shared_data_ref_count(leaf, sdref);
870 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
871 						bytenr, count, GFP_NOFS);
872 			break;
873 		}
874 		case BTRFS_TREE_BLOCK_REF_KEY:
875 			ret = __add_prelim_ref(prefs, key.offset, NULL,
876 					       info_level + 1, 0,
877 					       bytenr, 1, GFP_NOFS);
878 			break;
879 		case BTRFS_EXTENT_DATA_REF_KEY: {
880 			struct btrfs_extent_data_ref *dref;
881 			int count;
882 			u64 root;
883 
884 			dref = btrfs_item_ptr(leaf, slot,
885 					      struct btrfs_extent_data_ref);
886 			count = btrfs_extent_data_ref_count(leaf, dref);
887 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
888 								      dref);
889 			key.type = BTRFS_EXTENT_DATA_KEY;
890 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
891 
892 			if (inum && key.objectid != inum) {
893 				ret = BACKREF_FOUND_SHARED;
894 				break;
895 			}
896 
897 			root = btrfs_extent_data_ref_root(leaf, dref);
898 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
899 					       bytenr, count, GFP_NOFS);
900 			break;
901 		}
902 		default:
903 			WARN_ON(1);
904 		}
905 		if (ret)
906 			return ret;
907 
908 	}
909 
910 	return ret;
911 }
912 
913 /*
914  * this adds all existing backrefs (inline backrefs, backrefs and delayed
915  * refs) for the given bytenr to the refs list, merges duplicates and resolves
916  * indirect refs to their parent bytenr.
917  * When roots are found, they're added to the roots list
918  *
919  * NOTE: This can return values > 0
920  *
921  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
922  * much like trans == NULL case, the difference only lies in it will not
923  * commit root.
924  * The special case is for qgroup to search roots in commit_transaction().
925  *
926  * FIXME some caching might speed things up
927  */
928 static int find_parent_nodes(struct btrfs_trans_handle *trans,
929 			     struct btrfs_fs_info *fs_info, u64 bytenr,
930 			     u64 time_seq, struct ulist *refs,
931 			     struct ulist *roots, const u64 *extent_item_pos,
932 			     u64 root_objectid, u64 inum)
933 {
934 	struct btrfs_key key;
935 	struct btrfs_path *path;
936 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
937 	struct btrfs_delayed_ref_head *head;
938 	int info_level = 0;
939 	int ret;
940 	struct list_head prefs_delayed;
941 	struct list_head prefs;
942 	struct __prelim_ref *ref;
943 	struct extent_inode_elem *eie = NULL;
944 	u64 total_refs = 0;
945 
946 	INIT_LIST_HEAD(&prefs);
947 	INIT_LIST_HEAD(&prefs_delayed);
948 
949 	key.objectid = bytenr;
950 	key.offset = (u64)-1;
951 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
952 		key.type = BTRFS_METADATA_ITEM_KEY;
953 	else
954 		key.type = BTRFS_EXTENT_ITEM_KEY;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 	if (!trans) {
960 		path->search_commit_root = 1;
961 		path->skip_locking = 1;
962 	}
963 
964 	if (time_seq == (u64)-1)
965 		path->skip_locking = 1;
966 
967 	/*
968 	 * grab both a lock on the path and a lock on the delayed ref head.
969 	 * We need both to get a consistent picture of how the refs look
970 	 * at a specified point in time
971 	 */
972 again:
973 	head = NULL;
974 
975 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
976 	if (ret < 0)
977 		goto out;
978 	BUG_ON(ret == 0);
979 
980 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
981 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
982 	    time_seq != (u64)-1) {
983 #else
984 	if (trans && time_seq != (u64)-1) {
985 #endif
986 		/*
987 		 * look if there are updates for this ref queued and lock the
988 		 * head
989 		 */
990 		delayed_refs = &trans->transaction->delayed_refs;
991 		spin_lock(&delayed_refs->lock);
992 		head = btrfs_find_delayed_ref_head(trans, bytenr);
993 		if (head) {
994 			if (!mutex_trylock(&head->mutex)) {
995 				atomic_inc(&head->node.refs);
996 				spin_unlock(&delayed_refs->lock);
997 
998 				btrfs_release_path(path);
999 
1000 				/*
1001 				 * Mutex was contended, block until it's
1002 				 * released and try again
1003 				 */
1004 				mutex_lock(&head->mutex);
1005 				mutex_unlock(&head->mutex);
1006 				btrfs_put_delayed_ref(&head->node);
1007 				goto again;
1008 			}
1009 			spin_unlock(&delayed_refs->lock);
1010 			ret = __add_delayed_refs(head, time_seq,
1011 						 &prefs_delayed, &total_refs,
1012 						 inum);
1013 			mutex_unlock(&head->mutex);
1014 			if (ret)
1015 				goto out;
1016 		} else {
1017 			spin_unlock(&delayed_refs->lock);
1018 		}
1019 	}
1020 
1021 	if (path->slots[0]) {
1022 		struct extent_buffer *leaf;
1023 		int slot;
1024 
1025 		path->slots[0]--;
1026 		leaf = path->nodes[0];
1027 		slot = path->slots[0];
1028 		btrfs_item_key_to_cpu(leaf, &key, slot);
1029 		if (key.objectid == bytenr &&
1030 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1031 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1032 			ret = __add_inline_refs(fs_info, path, bytenr,
1033 						&info_level, &prefs,
1034 						&total_refs, inum);
1035 			if (ret)
1036 				goto out;
1037 			ret = __add_keyed_refs(fs_info, path, bytenr,
1038 					       info_level, &prefs, inum);
1039 			if (ret)
1040 				goto out;
1041 		}
1042 	}
1043 	btrfs_release_path(path);
1044 
1045 	list_splice_init(&prefs_delayed, &prefs);
1046 
1047 	ret = __add_missing_keys(fs_info, &prefs);
1048 	if (ret)
1049 		goto out;
1050 
1051 	__merge_refs(&prefs, 1);
1052 
1053 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1054 				      extent_item_pos, total_refs,
1055 				      root_objectid);
1056 	if (ret)
1057 		goto out;
1058 
1059 	__merge_refs(&prefs, 2);
1060 
1061 	while (!list_empty(&prefs)) {
1062 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1063 		WARN_ON(ref->count < 0);
1064 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1065 			if (root_objectid && ref->root_id != root_objectid) {
1066 				ret = BACKREF_FOUND_SHARED;
1067 				goto out;
1068 			}
1069 
1070 			/* no parent == root of tree */
1071 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1072 			if (ret < 0)
1073 				goto out;
1074 		}
1075 		if (ref->count && ref->parent) {
1076 			if (extent_item_pos && !ref->inode_list &&
1077 			    ref->level == 0) {
1078 				struct extent_buffer *eb;
1079 
1080 				eb = read_tree_block(fs_info->extent_root,
1081 							   ref->parent, 0);
1082 				if (IS_ERR(eb)) {
1083 					ret = PTR_ERR(eb);
1084 					goto out;
1085 				} else if (!extent_buffer_uptodate(eb)) {
1086 					free_extent_buffer(eb);
1087 					ret = -EIO;
1088 					goto out;
1089 				}
1090 				btrfs_tree_read_lock(eb);
1091 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1092 				ret = find_extent_in_eb(eb, bytenr,
1093 							*extent_item_pos, &eie);
1094 				btrfs_tree_read_unlock_blocking(eb);
1095 				free_extent_buffer(eb);
1096 				if (ret < 0)
1097 					goto out;
1098 				ref->inode_list = eie;
1099 			}
1100 			ret = ulist_add_merge_ptr(refs, ref->parent,
1101 						  ref->inode_list,
1102 						  (void **)&eie, GFP_NOFS);
1103 			if (ret < 0)
1104 				goto out;
1105 			if (!ret && extent_item_pos) {
1106 				/*
1107 				 * we've recorded that parent, so we must extend
1108 				 * its inode list here
1109 				 */
1110 				BUG_ON(!eie);
1111 				while (eie->next)
1112 					eie = eie->next;
1113 				eie->next = ref->inode_list;
1114 			}
1115 			eie = NULL;
1116 		}
1117 		list_del(&ref->list);
1118 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1119 	}
1120 
1121 out:
1122 	btrfs_free_path(path);
1123 	while (!list_empty(&prefs)) {
1124 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1125 		list_del(&ref->list);
1126 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1127 	}
1128 	while (!list_empty(&prefs_delayed)) {
1129 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1130 				       list);
1131 		list_del(&ref->list);
1132 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1133 	}
1134 	if (ret < 0)
1135 		free_inode_elem_list(eie);
1136 	return ret;
1137 }
1138 
1139 static void free_leaf_list(struct ulist *blocks)
1140 {
1141 	struct ulist_node *node = NULL;
1142 	struct extent_inode_elem *eie;
1143 	struct ulist_iterator uiter;
1144 
1145 	ULIST_ITER_INIT(&uiter);
1146 	while ((node = ulist_next(blocks, &uiter))) {
1147 		if (!node->aux)
1148 			continue;
1149 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1150 		free_inode_elem_list(eie);
1151 		node->aux = 0;
1152 	}
1153 
1154 	ulist_free(blocks);
1155 }
1156 
1157 /*
1158  * Finds all leafs with a reference to the specified combination of bytenr and
1159  * offset. key_list_head will point to a list of corresponding keys (caller must
1160  * free each list element). The leafs will be stored in the leafs ulist, which
1161  * must be freed with ulist_free.
1162  *
1163  * returns 0 on success, <0 on error
1164  */
1165 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1166 				struct btrfs_fs_info *fs_info, u64 bytenr,
1167 				u64 time_seq, struct ulist **leafs,
1168 				const u64 *extent_item_pos)
1169 {
1170 	int ret;
1171 
1172 	*leafs = ulist_alloc(GFP_NOFS);
1173 	if (!*leafs)
1174 		return -ENOMEM;
1175 
1176 	ret = find_parent_nodes(trans, fs_info, bytenr,
1177 				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1178 	if (ret < 0 && ret != -ENOENT) {
1179 		free_leaf_list(*leafs);
1180 		return ret;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 /*
1187  * walk all backrefs for a given extent to find all roots that reference this
1188  * extent. Walking a backref means finding all extents that reference this
1189  * extent and in turn walk the backrefs of those, too. Naturally this is a
1190  * recursive process, but here it is implemented in an iterative fashion: We
1191  * find all referencing extents for the extent in question and put them on a
1192  * list. In turn, we find all referencing extents for those, further appending
1193  * to the list. The way we iterate the list allows adding more elements after
1194  * the current while iterating. The process stops when we reach the end of the
1195  * list. Found roots are added to the roots list.
1196  *
1197  * returns 0 on success, < 0 on error.
1198  */
1199 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1200 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1201 				  u64 time_seq, struct ulist **roots)
1202 {
1203 	struct ulist *tmp;
1204 	struct ulist_node *node = NULL;
1205 	struct ulist_iterator uiter;
1206 	int ret;
1207 
1208 	tmp = ulist_alloc(GFP_NOFS);
1209 	if (!tmp)
1210 		return -ENOMEM;
1211 	*roots = ulist_alloc(GFP_NOFS);
1212 	if (!*roots) {
1213 		ulist_free(tmp);
1214 		return -ENOMEM;
1215 	}
1216 
1217 	ULIST_ITER_INIT(&uiter);
1218 	while (1) {
1219 		ret = find_parent_nodes(trans, fs_info, bytenr,
1220 					time_seq, tmp, *roots, NULL, 0, 0);
1221 		if (ret < 0 && ret != -ENOENT) {
1222 			ulist_free(tmp);
1223 			ulist_free(*roots);
1224 			return ret;
1225 		}
1226 		node = ulist_next(tmp, &uiter);
1227 		if (!node)
1228 			break;
1229 		bytenr = node->val;
1230 		cond_resched();
1231 	}
1232 
1233 	ulist_free(tmp);
1234 	return 0;
1235 }
1236 
1237 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1238 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1239 			 u64 time_seq, struct ulist **roots)
1240 {
1241 	int ret;
1242 
1243 	if (!trans)
1244 		down_read(&fs_info->commit_root_sem);
1245 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1246 	if (!trans)
1247 		up_read(&fs_info->commit_root_sem);
1248 	return ret;
1249 }
1250 
1251 /**
1252  * btrfs_check_shared - tell us whether an extent is shared
1253  *
1254  * @trans: optional trans handle
1255  *
1256  * btrfs_check_shared uses the backref walking code but will short
1257  * circuit as soon as it finds a root or inode that doesn't match the
1258  * one passed in. This provides a significant performance benefit for
1259  * callers (such as fiemap) which want to know whether the extent is
1260  * shared but do not need a ref count.
1261  *
1262  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1263  */
1264 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1265 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1266 		       u64 inum, u64 bytenr)
1267 {
1268 	struct ulist *tmp = NULL;
1269 	struct ulist *roots = NULL;
1270 	struct ulist_iterator uiter;
1271 	struct ulist_node *node;
1272 	struct seq_list elem = SEQ_LIST_INIT(elem);
1273 	int ret = 0;
1274 
1275 	tmp = ulist_alloc(GFP_NOFS);
1276 	roots = ulist_alloc(GFP_NOFS);
1277 	if (!tmp || !roots) {
1278 		ulist_free(tmp);
1279 		ulist_free(roots);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	if (trans)
1284 		btrfs_get_tree_mod_seq(fs_info, &elem);
1285 	else
1286 		down_read(&fs_info->commit_root_sem);
1287 	ULIST_ITER_INIT(&uiter);
1288 	while (1) {
1289 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1290 					roots, NULL, root_objectid, inum);
1291 		if (ret == BACKREF_FOUND_SHARED) {
1292 			/* this is the only condition under which we return 1 */
1293 			ret = 1;
1294 			break;
1295 		}
1296 		if (ret < 0 && ret != -ENOENT)
1297 			break;
1298 		ret = 0;
1299 		node = ulist_next(tmp, &uiter);
1300 		if (!node)
1301 			break;
1302 		bytenr = node->val;
1303 		cond_resched();
1304 	}
1305 	if (trans)
1306 		btrfs_put_tree_mod_seq(fs_info, &elem);
1307 	else
1308 		up_read(&fs_info->commit_root_sem);
1309 	ulist_free(tmp);
1310 	ulist_free(roots);
1311 	return ret;
1312 }
1313 
1314 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1315 			  u64 start_off, struct btrfs_path *path,
1316 			  struct btrfs_inode_extref **ret_extref,
1317 			  u64 *found_off)
1318 {
1319 	int ret, slot;
1320 	struct btrfs_key key;
1321 	struct btrfs_key found_key;
1322 	struct btrfs_inode_extref *extref;
1323 	struct extent_buffer *leaf;
1324 	unsigned long ptr;
1325 
1326 	key.objectid = inode_objectid;
1327 	key.type = BTRFS_INODE_EXTREF_KEY;
1328 	key.offset = start_off;
1329 
1330 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1331 	if (ret < 0)
1332 		return ret;
1333 
1334 	while (1) {
1335 		leaf = path->nodes[0];
1336 		slot = path->slots[0];
1337 		if (slot >= btrfs_header_nritems(leaf)) {
1338 			/*
1339 			 * If the item at offset is not found,
1340 			 * btrfs_search_slot will point us to the slot
1341 			 * where it should be inserted. In our case
1342 			 * that will be the slot directly before the
1343 			 * next INODE_REF_KEY_V2 item. In the case
1344 			 * that we're pointing to the last slot in a
1345 			 * leaf, we must move one leaf over.
1346 			 */
1347 			ret = btrfs_next_leaf(root, path);
1348 			if (ret) {
1349 				if (ret >= 1)
1350 					ret = -ENOENT;
1351 				break;
1352 			}
1353 			continue;
1354 		}
1355 
1356 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1357 
1358 		/*
1359 		 * Check that we're still looking at an extended ref key for
1360 		 * this particular objectid. If we have different
1361 		 * objectid or type then there are no more to be found
1362 		 * in the tree and we can exit.
1363 		 */
1364 		ret = -ENOENT;
1365 		if (found_key.objectid != inode_objectid)
1366 			break;
1367 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1368 			break;
1369 
1370 		ret = 0;
1371 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1372 		extref = (struct btrfs_inode_extref *)ptr;
1373 		*ret_extref = extref;
1374 		if (found_off)
1375 			*found_off = found_key.offset;
1376 		break;
1377 	}
1378 
1379 	return ret;
1380 }
1381 
1382 /*
1383  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1384  * Elements of the path are separated by '/' and the path is guaranteed to be
1385  * 0-terminated. the path is only given within the current file system.
1386  * Therefore, it never starts with a '/'. the caller is responsible to provide
1387  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1388  * the start point of the resulting string is returned. this pointer is within
1389  * dest, normally.
1390  * in case the path buffer would overflow, the pointer is decremented further
1391  * as if output was written to the buffer, though no more output is actually
1392  * generated. that way, the caller can determine how much space would be
1393  * required for the path to fit into the buffer. in that case, the returned
1394  * value will be smaller than dest. callers must check this!
1395  */
1396 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1397 			u32 name_len, unsigned long name_off,
1398 			struct extent_buffer *eb_in, u64 parent,
1399 			char *dest, u32 size)
1400 {
1401 	int slot;
1402 	u64 next_inum;
1403 	int ret;
1404 	s64 bytes_left = ((s64)size) - 1;
1405 	struct extent_buffer *eb = eb_in;
1406 	struct btrfs_key found_key;
1407 	int leave_spinning = path->leave_spinning;
1408 	struct btrfs_inode_ref *iref;
1409 
1410 	if (bytes_left >= 0)
1411 		dest[bytes_left] = '\0';
1412 
1413 	path->leave_spinning = 1;
1414 	while (1) {
1415 		bytes_left -= name_len;
1416 		if (bytes_left >= 0)
1417 			read_extent_buffer(eb, dest + bytes_left,
1418 					   name_off, name_len);
1419 		if (eb != eb_in) {
1420 			btrfs_tree_read_unlock_blocking(eb);
1421 			free_extent_buffer(eb);
1422 		}
1423 		ret = btrfs_find_item(fs_root, path, parent, 0,
1424 				BTRFS_INODE_REF_KEY, &found_key);
1425 		if (ret > 0)
1426 			ret = -ENOENT;
1427 		if (ret)
1428 			break;
1429 
1430 		next_inum = found_key.offset;
1431 
1432 		/* regular exit ahead */
1433 		if (parent == next_inum)
1434 			break;
1435 
1436 		slot = path->slots[0];
1437 		eb = path->nodes[0];
1438 		/* make sure we can use eb after releasing the path */
1439 		if (eb != eb_in) {
1440 			atomic_inc(&eb->refs);
1441 			btrfs_tree_read_lock(eb);
1442 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1443 		}
1444 		btrfs_release_path(path);
1445 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1446 
1447 		name_len = btrfs_inode_ref_name_len(eb, iref);
1448 		name_off = (unsigned long)(iref + 1);
1449 
1450 		parent = next_inum;
1451 		--bytes_left;
1452 		if (bytes_left >= 0)
1453 			dest[bytes_left] = '/';
1454 	}
1455 
1456 	btrfs_release_path(path);
1457 	path->leave_spinning = leave_spinning;
1458 
1459 	if (ret)
1460 		return ERR_PTR(ret);
1461 
1462 	return dest + bytes_left;
1463 }
1464 
1465 /*
1466  * this makes the path point to (logical EXTENT_ITEM *)
1467  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1468  * tree blocks and <0 on error.
1469  */
1470 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1471 			struct btrfs_path *path, struct btrfs_key *found_key,
1472 			u64 *flags_ret)
1473 {
1474 	int ret;
1475 	u64 flags;
1476 	u64 size = 0;
1477 	u32 item_size;
1478 	struct extent_buffer *eb;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_key key;
1481 
1482 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1483 		key.type = BTRFS_METADATA_ITEM_KEY;
1484 	else
1485 		key.type = BTRFS_EXTENT_ITEM_KEY;
1486 	key.objectid = logical;
1487 	key.offset = (u64)-1;
1488 
1489 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1494 	if (ret) {
1495 		if (ret > 0)
1496 			ret = -ENOENT;
1497 		return ret;
1498 	}
1499 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1500 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1501 		size = fs_info->extent_root->nodesize;
1502 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1503 		size = found_key->offset;
1504 
1505 	if (found_key->objectid > logical ||
1506 	    found_key->objectid + size <= logical) {
1507 		pr_debug("logical %llu is not within any extent\n", logical);
1508 		return -ENOENT;
1509 	}
1510 
1511 	eb = path->nodes[0];
1512 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1513 	BUG_ON(item_size < sizeof(*ei));
1514 
1515 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1516 	flags = btrfs_extent_flags(eb, ei);
1517 
1518 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1519 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1520 		 logical, logical - found_key->objectid, found_key->objectid,
1521 		 found_key->offset, flags, item_size);
1522 
1523 	WARN_ON(!flags_ret);
1524 	if (flags_ret) {
1525 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1526 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1527 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1528 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1529 		else
1530 			BUG_ON(1);
1531 		return 0;
1532 	}
1533 
1534 	return -EIO;
1535 }
1536 
1537 /*
1538  * helper function to iterate extent inline refs. ptr must point to a 0 value
1539  * for the first call and may be modified. it is used to track state.
1540  * if more refs exist, 0 is returned and the next call to
1541  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1542  * next ref. after the last ref was processed, 1 is returned.
1543  * returns <0 on error
1544  */
1545 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1546 				   struct btrfs_key *key,
1547 				   struct btrfs_extent_item *ei, u32 item_size,
1548 				   struct btrfs_extent_inline_ref **out_eiref,
1549 				   int *out_type)
1550 {
1551 	unsigned long end;
1552 	u64 flags;
1553 	struct btrfs_tree_block_info *info;
1554 
1555 	if (!*ptr) {
1556 		/* first call */
1557 		flags = btrfs_extent_flags(eb, ei);
1558 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1559 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1560 				/* a skinny metadata extent */
1561 				*out_eiref =
1562 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1563 			} else {
1564 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1565 				info = (struct btrfs_tree_block_info *)(ei + 1);
1566 				*out_eiref =
1567 				   (struct btrfs_extent_inline_ref *)(info + 1);
1568 			}
1569 		} else {
1570 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1571 		}
1572 		*ptr = (unsigned long)*out_eiref;
1573 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1574 			return -ENOENT;
1575 	}
1576 
1577 	end = (unsigned long)ei + item_size;
1578 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1579 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1580 
1581 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1582 	WARN_ON(*ptr > end);
1583 	if (*ptr == end)
1584 		return 1; /* last */
1585 
1586 	return 0;
1587 }
1588 
1589 /*
1590  * reads the tree block backref for an extent. tree level and root are returned
1591  * through out_level and out_root. ptr must point to a 0 value for the first
1592  * call and may be modified (see __get_extent_inline_ref comment).
1593  * returns 0 if data was provided, 1 if there was no more data to provide or
1594  * <0 on error.
1595  */
1596 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1597 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1598 			    u32 item_size, u64 *out_root, u8 *out_level)
1599 {
1600 	int ret;
1601 	int type;
1602 	struct btrfs_extent_inline_ref *eiref;
1603 
1604 	if (*ptr == (unsigned long)-1)
1605 		return 1;
1606 
1607 	while (1) {
1608 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1609 					      &eiref, &type);
1610 		if (ret < 0)
1611 			return ret;
1612 
1613 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1614 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1615 			break;
1616 
1617 		if (ret == 1)
1618 			return 1;
1619 	}
1620 
1621 	/* we can treat both ref types equally here */
1622 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1623 
1624 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1625 		struct btrfs_tree_block_info *info;
1626 
1627 		info = (struct btrfs_tree_block_info *)(ei + 1);
1628 		*out_level = btrfs_tree_block_level(eb, info);
1629 	} else {
1630 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1631 		*out_level = (u8)key->offset;
1632 	}
1633 
1634 	if (ret == 1)
1635 		*ptr = (unsigned long)-1;
1636 
1637 	return 0;
1638 }
1639 
1640 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1641 				u64 root, u64 extent_item_objectid,
1642 				iterate_extent_inodes_t *iterate, void *ctx)
1643 {
1644 	struct extent_inode_elem *eie;
1645 	int ret = 0;
1646 
1647 	for (eie = inode_list; eie; eie = eie->next) {
1648 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1649 			 "root %llu\n", extent_item_objectid,
1650 			 eie->inum, eie->offset, root);
1651 		ret = iterate(eie->inum, eie->offset, root, ctx);
1652 		if (ret) {
1653 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1654 				 extent_item_objectid, ret);
1655 			break;
1656 		}
1657 	}
1658 
1659 	return ret;
1660 }
1661 
1662 /*
1663  * calls iterate() for every inode that references the extent identified by
1664  * the given parameters.
1665  * when the iterator function returns a non-zero value, iteration stops.
1666  */
1667 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1668 				u64 extent_item_objectid, u64 extent_item_pos,
1669 				int search_commit_root,
1670 				iterate_extent_inodes_t *iterate, void *ctx)
1671 {
1672 	int ret;
1673 	struct btrfs_trans_handle *trans = NULL;
1674 	struct ulist *refs = NULL;
1675 	struct ulist *roots = NULL;
1676 	struct ulist_node *ref_node = NULL;
1677 	struct ulist_node *root_node = NULL;
1678 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1679 	struct ulist_iterator ref_uiter;
1680 	struct ulist_iterator root_uiter;
1681 
1682 	pr_debug("resolving all inodes for extent %llu\n",
1683 			extent_item_objectid);
1684 
1685 	if (!search_commit_root) {
1686 		trans = btrfs_join_transaction(fs_info->extent_root);
1687 		if (IS_ERR(trans))
1688 			return PTR_ERR(trans);
1689 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1690 	} else {
1691 		down_read(&fs_info->commit_root_sem);
1692 	}
1693 
1694 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1695 				   tree_mod_seq_elem.seq, &refs,
1696 				   &extent_item_pos);
1697 	if (ret)
1698 		goto out;
1699 
1700 	ULIST_ITER_INIT(&ref_uiter);
1701 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1702 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1703 					     tree_mod_seq_elem.seq, &roots);
1704 		if (ret)
1705 			break;
1706 		ULIST_ITER_INIT(&root_uiter);
1707 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1708 			pr_debug("root %llu references leaf %llu, data list "
1709 				 "%#llx\n", root_node->val, ref_node->val,
1710 				 ref_node->aux);
1711 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1712 						(uintptr_t)ref_node->aux,
1713 						root_node->val,
1714 						extent_item_objectid,
1715 						iterate, ctx);
1716 		}
1717 		ulist_free(roots);
1718 	}
1719 
1720 	free_leaf_list(refs);
1721 out:
1722 	if (!search_commit_root) {
1723 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1724 		btrfs_end_transaction(trans, fs_info->extent_root);
1725 	} else {
1726 		up_read(&fs_info->commit_root_sem);
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1733 				struct btrfs_path *path,
1734 				iterate_extent_inodes_t *iterate, void *ctx)
1735 {
1736 	int ret;
1737 	u64 extent_item_pos;
1738 	u64 flags = 0;
1739 	struct btrfs_key found_key;
1740 	int search_commit_root = path->search_commit_root;
1741 
1742 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1743 	btrfs_release_path(path);
1744 	if (ret < 0)
1745 		return ret;
1746 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1747 		return -EINVAL;
1748 
1749 	extent_item_pos = logical - found_key.objectid;
1750 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1751 					extent_item_pos, search_commit_root,
1752 					iterate, ctx);
1753 
1754 	return ret;
1755 }
1756 
1757 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1758 			      struct extent_buffer *eb, void *ctx);
1759 
1760 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1761 			      struct btrfs_path *path,
1762 			      iterate_irefs_t *iterate, void *ctx)
1763 {
1764 	int ret = 0;
1765 	int slot;
1766 	u32 cur;
1767 	u32 len;
1768 	u32 name_len;
1769 	u64 parent = 0;
1770 	int found = 0;
1771 	struct extent_buffer *eb;
1772 	struct btrfs_item *item;
1773 	struct btrfs_inode_ref *iref;
1774 	struct btrfs_key found_key;
1775 
1776 	while (!ret) {
1777 		ret = btrfs_find_item(fs_root, path, inum,
1778 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1779 				&found_key);
1780 
1781 		if (ret < 0)
1782 			break;
1783 		if (ret) {
1784 			ret = found ? 0 : -ENOENT;
1785 			break;
1786 		}
1787 		++found;
1788 
1789 		parent = found_key.offset;
1790 		slot = path->slots[0];
1791 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1792 		if (!eb) {
1793 			ret = -ENOMEM;
1794 			break;
1795 		}
1796 		extent_buffer_get(eb);
1797 		btrfs_tree_read_lock(eb);
1798 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1799 		btrfs_release_path(path);
1800 
1801 		item = btrfs_item_nr(slot);
1802 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1803 
1804 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1805 			name_len = btrfs_inode_ref_name_len(eb, iref);
1806 			/* path must be released before calling iterate()! */
1807 			pr_debug("following ref at offset %u for inode %llu in "
1808 				 "tree %llu\n", cur, found_key.objectid,
1809 				 fs_root->objectid);
1810 			ret = iterate(parent, name_len,
1811 				      (unsigned long)(iref + 1), eb, ctx);
1812 			if (ret)
1813 				break;
1814 			len = sizeof(*iref) + name_len;
1815 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1816 		}
1817 		btrfs_tree_read_unlock_blocking(eb);
1818 		free_extent_buffer(eb);
1819 	}
1820 
1821 	btrfs_release_path(path);
1822 
1823 	return ret;
1824 }
1825 
1826 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1827 				 struct btrfs_path *path,
1828 				 iterate_irefs_t *iterate, void *ctx)
1829 {
1830 	int ret;
1831 	int slot;
1832 	u64 offset = 0;
1833 	u64 parent;
1834 	int found = 0;
1835 	struct extent_buffer *eb;
1836 	struct btrfs_inode_extref *extref;
1837 	u32 item_size;
1838 	u32 cur_offset;
1839 	unsigned long ptr;
1840 
1841 	while (1) {
1842 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1843 					    &offset);
1844 		if (ret < 0)
1845 			break;
1846 		if (ret) {
1847 			ret = found ? 0 : -ENOENT;
1848 			break;
1849 		}
1850 		++found;
1851 
1852 		slot = path->slots[0];
1853 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1854 		if (!eb) {
1855 			ret = -ENOMEM;
1856 			break;
1857 		}
1858 		extent_buffer_get(eb);
1859 
1860 		btrfs_tree_read_lock(eb);
1861 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1862 		btrfs_release_path(path);
1863 
1864 		item_size = btrfs_item_size_nr(eb, slot);
1865 		ptr = btrfs_item_ptr_offset(eb, slot);
1866 		cur_offset = 0;
1867 
1868 		while (cur_offset < item_size) {
1869 			u32 name_len;
1870 
1871 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1872 			parent = btrfs_inode_extref_parent(eb, extref);
1873 			name_len = btrfs_inode_extref_name_len(eb, extref);
1874 			ret = iterate(parent, name_len,
1875 				      (unsigned long)&extref->name, eb, ctx);
1876 			if (ret)
1877 				break;
1878 
1879 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1880 			cur_offset += sizeof(*extref);
1881 		}
1882 		btrfs_tree_read_unlock_blocking(eb);
1883 		free_extent_buffer(eb);
1884 
1885 		offset++;
1886 	}
1887 
1888 	btrfs_release_path(path);
1889 
1890 	return ret;
1891 }
1892 
1893 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1894 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1895 			 void *ctx)
1896 {
1897 	int ret;
1898 	int found_refs = 0;
1899 
1900 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1901 	if (!ret)
1902 		++found_refs;
1903 	else if (ret != -ENOENT)
1904 		return ret;
1905 
1906 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1907 	if (ret == -ENOENT && found_refs)
1908 		return 0;
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * returns 0 if the path could be dumped (probably truncated)
1915  * returns <0 in case of an error
1916  */
1917 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1918 			 struct extent_buffer *eb, void *ctx)
1919 {
1920 	struct inode_fs_paths *ipath = ctx;
1921 	char *fspath;
1922 	char *fspath_min;
1923 	int i = ipath->fspath->elem_cnt;
1924 	const int s_ptr = sizeof(char *);
1925 	u32 bytes_left;
1926 
1927 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1928 					ipath->fspath->bytes_left - s_ptr : 0;
1929 
1930 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1931 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1932 				   name_off, eb, inum, fspath_min, bytes_left);
1933 	if (IS_ERR(fspath))
1934 		return PTR_ERR(fspath);
1935 
1936 	if (fspath > fspath_min) {
1937 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1938 		++ipath->fspath->elem_cnt;
1939 		ipath->fspath->bytes_left = fspath - fspath_min;
1940 	} else {
1941 		++ipath->fspath->elem_missed;
1942 		ipath->fspath->bytes_missing += fspath_min - fspath;
1943 		ipath->fspath->bytes_left = 0;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * this dumps all file system paths to the inode into the ipath struct, provided
1951  * is has been created large enough. each path is zero-terminated and accessed
1952  * from ipath->fspath->val[i].
1953  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1954  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1955  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1956  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1957  * have been needed to return all paths.
1958  */
1959 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1960 {
1961 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1962 			     inode_to_path, ipath);
1963 }
1964 
1965 struct btrfs_data_container *init_data_container(u32 total_bytes)
1966 {
1967 	struct btrfs_data_container *data;
1968 	size_t alloc_bytes;
1969 
1970 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1971 	data = vmalloc(alloc_bytes);
1972 	if (!data)
1973 		return ERR_PTR(-ENOMEM);
1974 
1975 	if (total_bytes >= sizeof(*data)) {
1976 		data->bytes_left = total_bytes - sizeof(*data);
1977 		data->bytes_missing = 0;
1978 	} else {
1979 		data->bytes_missing = sizeof(*data) - total_bytes;
1980 		data->bytes_left = 0;
1981 	}
1982 
1983 	data->elem_cnt = 0;
1984 	data->elem_missed = 0;
1985 
1986 	return data;
1987 }
1988 
1989 /*
1990  * allocates space to return multiple file system paths for an inode.
1991  * total_bytes to allocate are passed, note that space usable for actual path
1992  * information will be total_bytes - sizeof(struct inode_fs_paths).
1993  * the returned pointer must be freed with free_ipath() in the end.
1994  */
1995 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1996 					struct btrfs_path *path)
1997 {
1998 	struct inode_fs_paths *ifp;
1999 	struct btrfs_data_container *fspath;
2000 
2001 	fspath = init_data_container(total_bytes);
2002 	if (IS_ERR(fspath))
2003 		return (void *)fspath;
2004 
2005 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2006 	if (!ifp) {
2007 		kfree(fspath);
2008 		return ERR_PTR(-ENOMEM);
2009 	}
2010 
2011 	ifp->btrfs_path = path;
2012 	ifp->fspath = fspath;
2013 	ifp->fs_root = fs_root;
2014 
2015 	return ifp;
2016 }
2017 
2018 void free_ipath(struct inode_fs_paths *ipath)
2019 {
2020 	if (!ipath)
2021 		return;
2022 	vfree(ipath->fspath);
2023 	kfree(ipath);
2024 }
2025