1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/rbtree.h> 21 #include <trace/events/btrfs.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "backref.h" 25 #include "ulist.h" 26 #include "transaction.h" 27 #include "delayed-ref.h" 28 #include "locking.h" 29 30 /* Just an arbitrary number so we can be sure this happened */ 31 #define BACKREF_FOUND_SHARED 6 32 33 struct extent_inode_elem { 34 u64 inum; 35 u64 offset; 36 struct extent_inode_elem *next; 37 }; 38 39 static int check_extent_in_eb(const struct btrfs_key *key, 40 const struct extent_buffer *eb, 41 const struct btrfs_file_extent_item *fi, 42 u64 extent_item_pos, 43 struct extent_inode_elem **eie, 44 bool ignore_offset) 45 { 46 u64 offset = 0; 47 struct extent_inode_elem *e; 48 49 if (!ignore_offset && 50 !btrfs_file_extent_compression(eb, fi) && 51 !btrfs_file_extent_encryption(eb, fi) && 52 !btrfs_file_extent_other_encoding(eb, fi)) { 53 u64 data_offset; 54 u64 data_len; 55 56 data_offset = btrfs_file_extent_offset(eb, fi); 57 data_len = btrfs_file_extent_num_bytes(eb, fi); 58 59 if (extent_item_pos < data_offset || 60 extent_item_pos >= data_offset + data_len) 61 return 1; 62 offset = extent_item_pos - data_offset; 63 } 64 65 e = kmalloc(sizeof(*e), GFP_NOFS); 66 if (!e) 67 return -ENOMEM; 68 69 e->next = *eie; 70 e->inum = key->objectid; 71 e->offset = key->offset + offset; 72 *eie = e; 73 74 return 0; 75 } 76 77 static void free_inode_elem_list(struct extent_inode_elem *eie) 78 { 79 struct extent_inode_elem *eie_next; 80 81 for (; eie; eie = eie_next) { 82 eie_next = eie->next; 83 kfree(eie); 84 } 85 } 86 87 static int find_extent_in_eb(const struct extent_buffer *eb, 88 u64 wanted_disk_byte, u64 extent_item_pos, 89 struct extent_inode_elem **eie, 90 bool ignore_offset) 91 { 92 u64 disk_byte; 93 struct btrfs_key key; 94 struct btrfs_file_extent_item *fi; 95 int slot; 96 int nritems; 97 int extent_type; 98 int ret; 99 100 /* 101 * from the shared data ref, we only have the leaf but we need 102 * the key. thus, we must look into all items and see that we 103 * find one (some) with a reference to our extent item. 104 */ 105 nritems = btrfs_header_nritems(eb); 106 for (slot = 0; slot < nritems; ++slot) { 107 btrfs_item_key_to_cpu(eb, &key, slot); 108 if (key.type != BTRFS_EXTENT_DATA_KEY) 109 continue; 110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 111 extent_type = btrfs_file_extent_type(eb, fi); 112 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 113 continue; 114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 116 if (disk_byte != wanted_disk_byte) 117 continue; 118 119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 120 if (ret < 0) 121 return ret; 122 } 123 124 return 0; 125 } 126 127 struct preftree { 128 struct rb_root root; 129 unsigned int count; 130 }; 131 132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 } 133 134 struct preftrees { 135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 137 struct preftree indirect_missing_keys; 138 }; 139 140 /* 141 * Checks for a shared extent during backref search. 142 * 143 * The share_count tracks prelim_refs (direct and indirect) having a 144 * ref->count >0: 145 * - incremented when a ref->count transitions to >0 146 * - decremented when a ref->count transitions to <1 147 */ 148 struct share_check { 149 u64 root_objectid; 150 u64 inum; 151 int share_count; 152 }; 153 154 static inline int extent_is_shared(struct share_check *sc) 155 { 156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 157 } 158 159 static struct kmem_cache *btrfs_prelim_ref_cache; 160 161 int __init btrfs_prelim_ref_init(void) 162 { 163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 164 sizeof(struct prelim_ref), 165 0, 166 SLAB_MEM_SPREAD, 167 NULL); 168 if (!btrfs_prelim_ref_cache) 169 return -ENOMEM; 170 return 0; 171 } 172 173 void btrfs_prelim_ref_exit(void) 174 { 175 kmem_cache_destroy(btrfs_prelim_ref_cache); 176 } 177 178 static void free_pref(struct prelim_ref *ref) 179 { 180 kmem_cache_free(btrfs_prelim_ref_cache, ref); 181 } 182 183 /* 184 * Return 0 when both refs are for the same block (and can be merged). 185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 186 * indicates a 'higher' block. 187 */ 188 static int prelim_ref_compare(struct prelim_ref *ref1, 189 struct prelim_ref *ref2) 190 { 191 if (ref1->level < ref2->level) 192 return -1; 193 if (ref1->level > ref2->level) 194 return 1; 195 if (ref1->root_id < ref2->root_id) 196 return -1; 197 if (ref1->root_id > ref2->root_id) 198 return 1; 199 if (ref1->key_for_search.type < ref2->key_for_search.type) 200 return -1; 201 if (ref1->key_for_search.type > ref2->key_for_search.type) 202 return 1; 203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 204 return -1; 205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 206 return 1; 207 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 208 return -1; 209 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 210 return 1; 211 if (ref1->parent < ref2->parent) 212 return -1; 213 if (ref1->parent > ref2->parent) 214 return 1; 215 216 return 0; 217 } 218 219 void update_share_count(struct share_check *sc, int oldcount, int newcount) 220 { 221 if ((!sc) || (oldcount == 0 && newcount < 1)) 222 return; 223 224 if (oldcount > 0 && newcount < 1) 225 sc->share_count--; 226 else if (oldcount < 1 && newcount > 0) 227 sc->share_count++; 228 } 229 230 /* 231 * Add @newref to the @root rbtree, merging identical refs. 232 * 233 * Callers should assume that newref has been freed after calling. 234 */ 235 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 236 struct preftree *preftree, 237 struct prelim_ref *newref, 238 struct share_check *sc) 239 { 240 struct rb_root *root; 241 struct rb_node **p; 242 struct rb_node *parent = NULL; 243 struct prelim_ref *ref; 244 int result; 245 246 root = &preftree->root; 247 p = &root->rb_node; 248 249 while (*p) { 250 parent = *p; 251 ref = rb_entry(parent, struct prelim_ref, rbnode); 252 result = prelim_ref_compare(ref, newref); 253 if (result < 0) { 254 p = &(*p)->rb_left; 255 } else if (result > 0) { 256 p = &(*p)->rb_right; 257 } else { 258 /* Identical refs, merge them and free @newref */ 259 struct extent_inode_elem *eie = ref->inode_list; 260 261 while (eie && eie->next) 262 eie = eie->next; 263 264 if (!eie) 265 ref->inode_list = newref->inode_list; 266 else 267 eie->next = newref->inode_list; 268 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 269 preftree->count); 270 /* 271 * A delayed ref can have newref->count < 0. 272 * The ref->count is updated to follow any 273 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 274 */ 275 update_share_count(sc, ref->count, 276 ref->count + newref->count); 277 ref->count += newref->count; 278 free_pref(newref); 279 return; 280 } 281 } 282 283 update_share_count(sc, 0, newref->count); 284 preftree->count++; 285 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 286 rb_link_node(&newref->rbnode, parent, p); 287 rb_insert_color(&newref->rbnode, root); 288 } 289 290 /* 291 * Release the entire tree. We don't care about internal consistency so 292 * just free everything and then reset the tree root. 293 */ 294 static void prelim_release(struct preftree *preftree) 295 { 296 struct prelim_ref *ref, *next_ref; 297 298 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, 299 rbnode) 300 free_pref(ref); 301 302 preftree->root = RB_ROOT; 303 preftree->count = 0; 304 } 305 306 /* 307 * the rules for all callers of this function are: 308 * - obtaining the parent is the goal 309 * - if you add a key, you must know that it is a correct key 310 * - if you cannot add the parent or a correct key, then we will look into the 311 * block later to set a correct key 312 * 313 * delayed refs 314 * ============ 315 * backref type | shared | indirect | shared | indirect 316 * information | tree | tree | data | data 317 * --------------------+--------+----------+--------+---------- 318 * parent logical | y | - | - | - 319 * key to resolve | - | y | y | y 320 * tree block logical | - | - | - | - 321 * root for resolving | y | y | y | y 322 * 323 * - column 1: we've the parent -> done 324 * - column 2, 3, 4: we use the key to find the parent 325 * 326 * on disk refs (inline or keyed) 327 * ============================== 328 * backref type | shared | indirect | shared | indirect 329 * information | tree | tree | data | data 330 * --------------------+--------+----------+--------+---------- 331 * parent logical | y | - | y | - 332 * key to resolve | - | - | - | y 333 * tree block logical | y | y | y | y 334 * root for resolving | - | y | y | y 335 * 336 * - column 1, 3: we've the parent -> done 337 * - column 2: we take the first key from the block to find the parent 338 * (see add_missing_keys) 339 * - column 4: we use the key to find the parent 340 * 341 * additional information that's available but not required to find the parent 342 * block might help in merging entries to gain some speed. 343 */ 344 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 345 struct preftree *preftree, u64 root_id, 346 const struct btrfs_key *key, int level, u64 parent, 347 u64 wanted_disk_byte, int count, 348 struct share_check *sc, gfp_t gfp_mask) 349 { 350 struct prelim_ref *ref; 351 352 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 353 return 0; 354 355 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 356 if (!ref) 357 return -ENOMEM; 358 359 ref->root_id = root_id; 360 if (key) { 361 ref->key_for_search = *key; 362 /* 363 * We can often find data backrefs with an offset that is too 364 * large (>= LLONG_MAX, maximum allowed file offset) due to 365 * underflows when subtracting a file's offset with the data 366 * offset of its corresponding extent data item. This can 367 * happen for example in the clone ioctl. 368 * So if we detect such case we set the search key's offset to 369 * zero to make sure we will find the matching file extent item 370 * at add_all_parents(), otherwise we will miss it because the 371 * offset taken form the backref is much larger then the offset 372 * of the file extent item. This can make us scan a very large 373 * number of file extent items, but at least it will not make 374 * us miss any. 375 * This is an ugly workaround for a behaviour that should have 376 * never existed, but it does and a fix for the clone ioctl 377 * would touch a lot of places, cause backwards incompatibility 378 * and would not fix the problem for extents cloned with older 379 * kernels. 380 */ 381 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 382 ref->key_for_search.offset >= LLONG_MAX) 383 ref->key_for_search.offset = 0; 384 } else { 385 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 386 } 387 388 ref->inode_list = NULL; 389 ref->level = level; 390 ref->count = count; 391 ref->parent = parent; 392 ref->wanted_disk_byte = wanted_disk_byte; 393 prelim_ref_insert(fs_info, preftree, ref, sc); 394 return extent_is_shared(sc); 395 } 396 397 /* direct refs use root == 0, key == NULL */ 398 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 399 struct preftrees *preftrees, int level, u64 parent, 400 u64 wanted_disk_byte, int count, 401 struct share_check *sc, gfp_t gfp_mask) 402 { 403 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 404 parent, wanted_disk_byte, count, sc, gfp_mask); 405 } 406 407 /* indirect refs use parent == 0 */ 408 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 409 struct preftrees *preftrees, u64 root_id, 410 const struct btrfs_key *key, int level, 411 u64 wanted_disk_byte, int count, 412 struct share_check *sc, gfp_t gfp_mask) 413 { 414 struct preftree *tree = &preftrees->indirect; 415 416 if (!key) 417 tree = &preftrees->indirect_missing_keys; 418 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 419 wanted_disk_byte, count, sc, gfp_mask); 420 } 421 422 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 423 struct ulist *parents, struct prelim_ref *ref, 424 int level, u64 time_seq, const u64 *extent_item_pos, 425 u64 total_refs, bool ignore_offset) 426 { 427 int ret = 0; 428 int slot; 429 struct extent_buffer *eb; 430 struct btrfs_key key; 431 struct btrfs_key *key_for_search = &ref->key_for_search; 432 struct btrfs_file_extent_item *fi; 433 struct extent_inode_elem *eie = NULL, *old = NULL; 434 u64 disk_byte; 435 u64 wanted_disk_byte = ref->wanted_disk_byte; 436 u64 count = 0; 437 438 if (level != 0) { 439 eb = path->nodes[level]; 440 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 441 if (ret < 0) 442 return ret; 443 return 0; 444 } 445 446 /* 447 * We normally enter this function with the path already pointing to 448 * the first item to check. But sometimes, we may enter it with 449 * slot==nritems. In that case, go to the next leaf before we continue. 450 */ 451 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 452 if (time_seq == SEQ_LAST) 453 ret = btrfs_next_leaf(root, path); 454 else 455 ret = btrfs_next_old_leaf(root, path, time_seq); 456 } 457 458 while (!ret && count < total_refs) { 459 eb = path->nodes[0]; 460 slot = path->slots[0]; 461 462 btrfs_item_key_to_cpu(eb, &key, slot); 463 464 if (key.objectid != key_for_search->objectid || 465 key.type != BTRFS_EXTENT_DATA_KEY) 466 break; 467 468 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 469 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 470 471 if (disk_byte == wanted_disk_byte) { 472 eie = NULL; 473 old = NULL; 474 count++; 475 if (extent_item_pos) { 476 ret = check_extent_in_eb(&key, eb, fi, 477 *extent_item_pos, 478 &eie, ignore_offset); 479 if (ret < 0) 480 break; 481 } 482 if (ret > 0) 483 goto next; 484 ret = ulist_add_merge_ptr(parents, eb->start, 485 eie, (void **)&old, GFP_NOFS); 486 if (ret < 0) 487 break; 488 if (!ret && extent_item_pos) { 489 while (old->next) 490 old = old->next; 491 old->next = eie; 492 } 493 eie = NULL; 494 } 495 next: 496 if (time_seq == SEQ_LAST) 497 ret = btrfs_next_item(root, path); 498 else 499 ret = btrfs_next_old_item(root, path, time_seq); 500 } 501 502 if (ret > 0) 503 ret = 0; 504 else if (ret < 0) 505 free_inode_elem_list(eie); 506 return ret; 507 } 508 509 /* 510 * resolve an indirect backref in the form (root_id, key, level) 511 * to a logical address 512 */ 513 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 514 struct btrfs_path *path, u64 time_seq, 515 struct prelim_ref *ref, struct ulist *parents, 516 const u64 *extent_item_pos, u64 total_refs, 517 bool ignore_offset) 518 { 519 struct btrfs_root *root; 520 struct btrfs_key root_key; 521 struct extent_buffer *eb; 522 int ret = 0; 523 int root_level; 524 int level = ref->level; 525 int index; 526 527 root_key.objectid = ref->root_id; 528 root_key.type = BTRFS_ROOT_ITEM_KEY; 529 root_key.offset = (u64)-1; 530 531 index = srcu_read_lock(&fs_info->subvol_srcu); 532 533 root = btrfs_get_fs_root(fs_info, &root_key, false); 534 if (IS_ERR(root)) { 535 srcu_read_unlock(&fs_info->subvol_srcu, index); 536 ret = PTR_ERR(root); 537 goto out; 538 } 539 540 if (btrfs_is_testing(fs_info)) { 541 srcu_read_unlock(&fs_info->subvol_srcu, index); 542 ret = -ENOENT; 543 goto out; 544 } 545 546 if (path->search_commit_root) 547 root_level = btrfs_header_level(root->commit_root); 548 else if (time_seq == SEQ_LAST) 549 root_level = btrfs_header_level(root->node); 550 else 551 root_level = btrfs_old_root_level(root, time_seq); 552 553 if (root_level + 1 == level) { 554 srcu_read_unlock(&fs_info->subvol_srcu, index); 555 goto out; 556 } 557 558 path->lowest_level = level; 559 if (time_seq == SEQ_LAST) 560 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 561 0, 0); 562 else 563 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 564 time_seq); 565 566 /* root node has been locked, we can release @subvol_srcu safely here */ 567 srcu_read_unlock(&fs_info->subvol_srcu, index); 568 569 btrfs_debug(fs_info, 570 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 571 ref->root_id, level, ref->count, ret, 572 ref->key_for_search.objectid, ref->key_for_search.type, 573 ref->key_for_search.offset); 574 if (ret < 0) 575 goto out; 576 577 eb = path->nodes[level]; 578 while (!eb) { 579 if (WARN_ON(!level)) { 580 ret = 1; 581 goto out; 582 } 583 level--; 584 eb = path->nodes[level]; 585 } 586 587 ret = add_all_parents(root, path, parents, ref, level, time_seq, 588 extent_item_pos, total_refs, ignore_offset); 589 out: 590 path->lowest_level = 0; 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static struct extent_inode_elem * 596 unode_aux_to_inode_list(struct ulist_node *node) 597 { 598 if (!node) 599 return NULL; 600 return (struct extent_inode_elem *)(uintptr_t)node->aux; 601 } 602 603 /* 604 * We maintain three seperate rbtrees: one for direct refs, one for 605 * indirect refs which have a key, and one for indirect refs which do not 606 * have a key. Each tree does merge on insertion. 607 * 608 * Once all of the references are located, we iterate over the tree of 609 * indirect refs with missing keys. An appropriate key is located and 610 * the ref is moved onto the tree for indirect refs. After all missing 611 * keys are thus located, we iterate over the indirect ref tree, resolve 612 * each reference, and then insert the resolved reference onto the 613 * direct tree (merging there too). 614 * 615 * New backrefs (i.e., for parent nodes) are added to the appropriate 616 * rbtree as they are encountered. The new backrefs are subsequently 617 * resolved as above. 618 */ 619 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 620 struct btrfs_path *path, u64 time_seq, 621 struct preftrees *preftrees, 622 const u64 *extent_item_pos, u64 total_refs, 623 struct share_check *sc, bool ignore_offset) 624 { 625 int err; 626 int ret = 0; 627 struct ulist *parents; 628 struct ulist_node *node; 629 struct ulist_iterator uiter; 630 struct rb_node *rnode; 631 632 parents = ulist_alloc(GFP_NOFS); 633 if (!parents) 634 return -ENOMEM; 635 636 /* 637 * We could trade memory usage for performance here by iterating 638 * the tree, allocating new refs for each insertion, and then 639 * freeing the entire indirect tree when we're done. In some test 640 * cases, the tree can grow quite large (~200k objects). 641 */ 642 while ((rnode = rb_first(&preftrees->indirect.root))) { 643 struct prelim_ref *ref; 644 645 ref = rb_entry(rnode, struct prelim_ref, rbnode); 646 if (WARN(ref->parent, 647 "BUG: direct ref found in indirect tree")) { 648 ret = -EINVAL; 649 goto out; 650 } 651 652 rb_erase(&ref->rbnode, &preftrees->indirect.root); 653 preftrees->indirect.count--; 654 655 if (ref->count == 0) { 656 free_pref(ref); 657 continue; 658 } 659 660 if (sc && sc->root_objectid && 661 ref->root_id != sc->root_objectid) { 662 free_pref(ref); 663 ret = BACKREF_FOUND_SHARED; 664 goto out; 665 } 666 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 667 parents, extent_item_pos, 668 total_refs, ignore_offset); 669 /* 670 * we can only tolerate ENOENT,otherwise,we should catch error 671 * and return directly. 672 */ 673 if (err == -ENOENT) { 674 prelim_ref_insert(fs_info, &preftrees->direct, ref, 675 NULL); 676 continue; 677 } else if (err) { 678 free_pref(ref); 679 ret = err; 680 goto out; 681 } 682 683 /* we put the first parent into the ref at hand */ 684 ULIST_ITER_INIT(&uiter); 685 node = ulist_next(parents, &uiter); 686 ref->parent = node ? node->val : 0; 687 ref->inode_list = unode_aux_to_inode_list(node); 688 689 /* Add a prelim_ref(s) for any other parent(s). */ 690 while ((node = ulist_next(parents, &uiter))) { 691 struct prelim_ref *new_ref; 692 693 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 694 GFP_NOFS); 695 if (!new_ref) { 696 free_pref(ref); 697 ret = -ENOMEM; 698 goto out; 699 } 700 memcpy(new_ref, ref, sizeof(*ref)); 701 new_ref->parent = node->val; 702 new_ref->inode_list = unode_aux_to_inode_list(node); 703 prelim_ref_insert(fs_info, &preftrees->direct, 704 new_ref, NULL); 705 } 706 707 /* 708 * Now it's a direct ref, put it in the the direct tree. We must 709 * do this last because the ref could be merged/freed here. 710 */ 711 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 712 713 ulist_reinit(parents); 714 cond_resched(); 715 } 716 out: 717 ulist_free(parents); 718 return ret; 719 } 720 721 /* 722 * read tree blocks and add keys where required. 723 */ 724 static int add_missing_keys(struct btrfs_fs_info *fs_info, 725 struct preftrees *preftrees) 726 { 727 struct prelim_ref *ref; 728 struct extent_buffer *eb; 729 struct preftree *tree = &preftrees->indirect_missing_keys; 730 struct rb_node *node; 731 732 while ((node = rb_first(&tree->root))) { 733 ref = rb_entry(node, struct prelim_ref, rbnode); 734 rb_erase(node, &tree->root); 735 736 BUG_ON(ref->parent); /* should not be a direct ref */ 737 BUG_ON(ref->key_for_search.type); 738 BUG_ON(!ref->wanted_disk_byte); 739 740 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0); 741 if (IS_ERR(eb)) { 742 free_pref(ref); 743 return PTR_ERR(eb); 744 } else if (!extent_buffer_uptodate(eb)) { 745 free_pref(ref); 746 free_extent_buffer(eb); 747 return -EIO; 748 } 749 btrfs_tree_read_lock(eb); 750 if (btrfs_header_level(eb) == 0) 751 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 752 else 753 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 754 btrfs_tree_read_unlock(eb); 755 free_extent_buffer(eb); 756 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 757 cond_resched(); 758 } 759 return 0; 760 } 761 762 /* 763 * add all currently queued delayed refs from this head whose seq nr is 764 * smaller or equal that seq to the list 765 */ 766 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 767 struct btrfs_delayed_ref_head *head, u64 seq, 768 struct preftrees *preftrees, u64 *total_refs, 769 struct share_check *sc) 770 { 771 struct btrfs_delayed_ref_node *node; 772 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 773 struct btrfs_key key; 774 struct btrfs_key tmp_op_key; 775 struct btrfs_key *op_key = NULL; 776 struct rb_node *n; 777 int count; 778 int ret = 0; 779 780 if (extent_op && extent_op->update_key) { 781 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 782 op_key = &tmp_op_key; 783 } 784 785 spin_lock(&head->lock); 786 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { 787 node = rb_entry(n, struct btrfs_delayed_ref_node, 788 ref_node); 789 if (node->seq > seq) 790 continue; 791 792 switch (node->action) { 793 case BTRFS_ADD_DELAYED_EXTENT: 794 case BTRFS_UPDATE_DELAYED_HEAD: 795 WARN_ON(1); 796 continue; 797 case BTRFS_ADD_DELAYED_REF: 798 count = node->ref_mod; 799 break; 800 case BTRFS_DROP_DELAYED_REF: 801 count = node->ref_mod * -1; 802 break; 803 default: 804 BUG_ON(1); 805 } 806 *total_refs += count; 807 switch (node->type) { 808 case BTRFS_TREE_BLOCK_REF_KEY: { 809 /* NORMAL INDIRECT METADATA backref */ 810 struct btrfs_delayed_tree_ref *ref; 811 812 ref = btrfs_delayed_node_to_tree_ref(node); 813 ret = add_indirect_ref(fs_info, preftrees, ref->root, 814 &tmp_op_key, ref->level + 1, 815 node->bytenr, count, sc, 816 GFP_ATOMIC); 817 break; 818 } 819 case BTRFS_SHARED_BLOCK_REF_KEY: { 820 /* SHARED DIRECT METADATA backref */ 821 struct btrfs_delayed_tree_ref *ref; 822 823 ref = btrfs_delayed_node_to_tree_ref(node); 824 825 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 826 ref->parent, node->bytenr, count, 827 sc, GFP_ATOMIC); 828 break; 829 } 830 case BTRFS_EXTENT_DATA_REF_KEY: { 831 /* NORMAL INDIRECT DATA backref */ 832 struct btrfs_delayed_data_ref *ref; 833 ref = btrfs_delayed_node_to_data_ref(node); 834 835 key.objectid = ref->objectid; 836 key.type = BTRFS_EXTENT_DATA_KEY; 837 key.offset = ref->offset; 838 839 /* 840 * Found a inum that doesn't match our known inum, we 841 * know it's shared. 842 */ 843 if (sc && sc->inum && ref->objectid != sc->inum) { 844 ret = BACKREF_FOUND_SHARED; 845 goto out; 846 } 847 848 ret = add_indirect_ref(fs_info, preftrees, ref->root, 849 &key, 0, node->bytenr, count, sc, 850 GFP_ATOMIC); 851 break; 852 } 853 case BTRFS_SHARED_DATA_REF_KEY: { 854 /* SHARED DIRECT FULL backref */ 855 struct btrfs_delayed_data_ref *ref; 856 857 ref = btrfs_delayed_node_to_data_ref(node); 858 859 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 default: 865 WARN_ON(1); 866 } 867 /* 868 * We must ignore BACKREF_FOUND_SHARED until all delayed 869 * refs have been checked. 870 */ 871 if (ret && (ret != BACKREF_FOUND_SHARED)) 872 break; 873 } 874 if (!ret) 875 ret = extent_is_shared(sc); 876 out: 877 spin_unlock(&head->lock); 878 return ret; 879 } 880 881 /* 882 * add all inline backrefs for bytenr to the list 883 * 884 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 885 */ 886 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 887 struct btrfs_path *path, u64 bytenr, 888 int *info_level, struct preftrees *preftrees, 889 u64 *total_refs, struct share_check *sc) 890 { 891 int ret = 0; 892 int slot; 893 struct extent_buffer *leaf; 894 struct btrfs_key key; 895 struct btrfs_key found_key; 896 unsigned long ptr; 897 unsigned long end; 898 struct btrfs_extent_item *ei; 899 u64 flags; 900 u64 item_size; 901 902 /* 903 * enumerate all inline refs 904 */ 905 leaf = path->nodes[0]; 906 slot = path->slots[0]; 907 908 item_size = btrfs_item_size_nr(leaf, slot); 909 BUG_ON(item_size < sizeof(*ei)); 910 911 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 912 flags = btrfs_extent_flags(leaf, ei); 913 *total_refs += btrfs_extent_refs(leaf, ei); 914 btrfs_item_key_to_cpu(leaf, &found_key, slot); 915 916 ptr = (unsigned long)(ei + 1); 917 end = (unsigned long)ei + item_size; 918 919 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 920 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 921 struct btrfs_tree_block_info *info; 922 923 info = (struct btrfs_tree_block_info *)ptr; 924 *info_level = btrfs_tree_block_level(leaf, info); 925 ptr += sizeof(struct btrfs_tree_block_info); 926 BUG_ON(ptr > end); 927 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 928 *info_level = found_key.offset; 929 } else { 930 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 931 } 932 933 while (ptr < end) { 934 struct btrfs_extent_inline_ref *iref; 935 u64 offset; 936 int type; 937 938 iref = (struct btrfs_extent_inline_ref *)ptr; 939 type = btrfs_get_extent_inline_ref_type(leaf, iref, 940 BTRFS_REF_TYPE_ANY); 941 if (type == BTRFS_REF_TYPE_INVALID) 942 return -EINVAL; 943 944 offset = btrfs_extent_inline_ref_offset(leaf, iref); 945 946 switch (type) { 947 case BTRFS_SHARED_BLOCK_REF_KEY: 948 ret = add_direct_ref(fs_info, preftrees, 949 *info_level + 1, offset, 950 bytenr, 1, NULL, GFP_NOFS); 951 break; 952 case BTRFS_SHARED_DATA_REF_KEY: { 953 struct btrfs_shared_data_ref *sdref; 954 int count; 955 956 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 957 count = btrfs_shared_data_ref_count(leaf, sdref); 958 959 ret = add_direct_ref(fs_info, preftrees, 0, offset, 960 bytenr, count, sc, GFP_NOFS); 961 break; 962 } 963 case BTRFS_TREE_BLOCK_REF_KEY: 964 ret = add_indirect_ref(fs_info, preftrees, offset, 965 NULL, *info_level + 1, 966 bytenr, 1, NULL, GFP_NOFS); 967 break; 968 case BTRFS_EXTENT_DATA_REF_KEY: { 969 struct btrfs_extent_data_ref *dref; 970 int count; 971 u64 root; 972 973 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 974 count = btrfs_extent_data_ref_count(leaf, dref); 975 key.objectid = btrfs_extent_data_ref_objectid(leaf, 976 dref); 977 key.type = BTRFS_EXTENT_DATA_KEY; 978 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 979 980 if (sc && sc->inum && key.objectid != sc->inum) { 981 ret = BACKREF_FOUND_SHARED; 982 break; 983 } 984 985 root = btrfs_extent_data_ref_root(leaf, dref); 986 987 ret = add_indirect_ref(fs_info, preftrees, root, 988 &key, 0, bytenr, count, 989 sc, GFP_NOFS); 990 break; 991 } 992 default: 993 WARN_ON(1); 994 } 995 if (ret) 996 return ret; 997 ptr += btrfs_extent_inline_ref_size(type); 998 } 999 1000 return 0; 1001 } 1002 1003 /* 1004 * add all non-inline backrefs for bytenr to the list 1005 * 1006 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1007 */ 1008 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1009 struct btrfs_path *path, u64 bytenr, 1010 int info_level, struct preftrees *preftrees, 1011 struct share_check *sc) 1012 { 1013 struct btrfs_root *extent_root = fs_info->extent_root; 1014 int ret; 1015 int slot; 1016 struct extent_buffer *leaf; 1017 struct btrfs_key key; 1018 1019 while (1) { 1020 ret = btrfs_next_item(extent_root, path); 1021 if (ret < 0) 1022 break; 1023 if (ret) { 1024 ret = 0; 1025 break; 1026 } 1027 1028 slot = path->slots[0]; 1029 leaf = path->nodes[0]; 1030 btrfs_item_key_to_cpu(leaf, &key, slot); 1031 1032 if (key.objectid != bytenr) 1033 break; 1034 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1035 continue; 1036 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1037 break; 1038 1039 switch (key.type) { 1040 case BTRFS_SHARED_BLOCK_REF_KEY: 1041 /* SHARED DIRECT METADATA backref */ 1042 ret = add_direct_ref(fs_info, preftrees, 1043 info_level + 1, key.offset, 1044 bytenr, 1, NULL, GFP_NOFS); 1045 break; 1046 case BTRFS_SHARED_DATA_REF_KEY: { 1047 /* SHARED DIRECT FULL backref */ 1048 struct btrfs_shared_data_ref *sdref; 1049 int count; 1050 1051 sdref = btrfs_item_ptr(leaf, slot, 1052 struct btrfs_shared_data_ref); 1053 count = btrfs_shared_data_ref_count(leaf, sdref); 1054 ret = add_direct_ref(fs_info, preftrees, 0, 1055 key.offset, bytenr, count, 1056 sc, GFP_NOFS); 1057 break; 1058 } 1059 case BTRFS_TREE_BLOCK_REF_KEY: 1060 /* NORMAL INDIRECT METADATA backref */ 1061 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1062 NULL, info_level + 1, bytenr, 1063 1, NULL, GFP_NOFS); 1064 break; 1065 case BTRFS_EXTENT_DATA_REF_KEY: { 1066 /* NORMAL INDIRECT DATA backref */ 1067 struct btrfs_extent_data_ref *dref; 1068 int count; 1069 u64 root; 1070 1071 dref = btrfs_item_ptr(leaf, slot, 1072 struct btrfs_extent_data_ref); 1073 count = btrfs_extent_data_ref_count(leaf, dref); 1074 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1075 dref); 1076 key.type = BTRFS_EXTENT_DATA_KEY; 1077 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1078 1079 if (sc && sc->inum && key.objectid != sc->inum) { 1080 ret = BACKREF_FOUND_SHARED; 1081 break; 1082 } 1083 1084 root = btrfs_extent_data_ref_root(leaf, dref); 1085 ret = add_indirect_ref(fs_info, preftrees, root, 1086 &key, 0, bytenr, count, 1087 sc, GFP_NOFS); 1088 break; 1089 } 1090 default: 1091 WARN_ON(1); 1092 } 1093 if (ret) 1094 return ret; 1095 1096 } 1097 1098 return ret; 1099 } 1100 1101 /* 1102 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1103 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1104 * indirect refs to their parent bytenr. 1105 * When roots are found, they're added to the roots list 1106 * 1107 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1108 * much like trans == NULL case, the difference only lies in it will not 1109 * commit root. 1110 * The special case is for qgroup to search roots in commit_transaction(). 1111 * 1112 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1113 * shared extent is detected. 1114 * 1115 * Otherwise this returns 0 for success and <0 for an error. 1116 * 1117 * If ignore_offset is set to false, only extent refs whose offsets match 1118 * extent_item_pos are returned. If true, every extent ref is returned 1119 * and extent_item_pos is ignored. 1120 * 1121 * FIXME some caching might speed things up 1122 */ 1123 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1124 struct btrfs_fs_info *fs_info, u64 bytenr, 1125 u64 time_seq, struct ulist *refs, 1126 struct ulist *roots, const u64 *extent_item_pos, 1127 struct share_check *sc, bool ignore_offset) 1128 { 1129 struct btrfs_key key; 1130 struct btrfs_path *path; 1131 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1132 struct btrfs_delayed_ref_head *head; 1133 int info_level = 0; 1134 int ret; 1135 struct prelim_ref *ref; 1136 struct rb_node *node; 1137 struct extent_inode_elem *eie = NULL; 1138 /* total of both direct AND indirect refs! */ 1139 u64 total_refs = 0; 1140 struct preftrees preftrees = { 1141 .direct = PREFTREE_INIT, 1142 .indirect = PREFTREE_INIT, 1143 .indirect_missing_keys = PREFTREE_INIT 1144 }; 1145 1146 key.objectid = bytenr; 1147 key.offset = (u64)-1; 1148 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1149 key.type = BTRFS_METADATA_ITEM_KEY; 1150 else 1151 key.type = BTRFS_EXTENT_ITEM_KEY; 1152 1153 path = btrfs_alloc_path(); 1154 if (!path) 1155 return -ENOMEM; 1156 if (!trans) { 1157 path->search_commit_root = 1; 1158 path->skip_locking = 1; 1159 } 1160 1161 if (time_seq == SEQ_LAST) 1162 path->skip_locking = 1; 1163 1164 /* 1165 * grab both a lock on the path and a lock on the delayed ref head. 1166 * We need both to get a consistent picture of how the refs look 1167 * at a specified point in time 1168 */ 1169 again: 1170 head = NULL; 1171 1172 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1173 if (ret < 0) 1174 goto out; 1175 BUG_ON(ret == 0); 1176 1177 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1178 if (trans && likely(trans->type != __TRANS_DUMMY) && 1179 time_seq != SEQ_LAST) { 1180 #else 1181 if (trans && time_seq != SEQ_LAST) { 1182 #endif 1183 /* 1184 * look if there are updates for this ref queued and lock the 1185 * head 1186 */ 1187 delayed_refs = &trans->transaction->delayed_refs; 1188 spin_lock(&delayed_refs->lock); 1189 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1190 if (head) { 1191 if (!mutex_trylock(&head->mutex)) { 1192 refcount_inc(&head->refs); 1193 spin_unlock(&delayed_refs->lock); 1194 1195 btrfs_release_path(path); 1196 1197 /* 1198 * Mutex was contended, block until it's 1199 * released and try again 1200 */ 1201 mutex_lock(&head->mutex); 1202 mutex_unlock(&head->mutex); 1203 btrfs_put_delayed_ref_head(head); 1204 goto again; 1205 } 1206 spin_unlock(&delayed_refs->lock); 1207 ret = add_delayed_refs(fs_info, head, time_seq, 1208 &preftrees, &total_refs, sc); 1209 mutex_unlock(&head->mutex); 1210 if (ret) 1211 goto out; 1212 } else { 1213 spin_unlock(&delayed_refs->lock); 1214 } 1215 } 1216 1217 if (path->slots[0]) { 1218 struct extent_buffer *leaf; 1219 int slot; 1220 1221 path->slots[0]--; 1222 leaf = path->nodes[0]; 1223 slot = path->slots[0]; 1224 btrfs_item_key_to_cpu(leaf, &key, slot); 1225 if (key.objectid == bytenr && 1226 (key.type == BTRFS_EXTENT_ITEM_KEY || 1227 key.type == BTRFS_METADATA_ITEM_KEY)) { 1228 ret = add_inline_refs(fs_info, path, bytenr, 1229 &info_level, &preftrees, 1230 &total_refs, sc); 1231 if (ret) 1232 goto out; 1233 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1234 &preftrees, sc); 1235 if (ret) 1236 goto out; 1237 } 1238 } 1239 1240 btrfs_release_path(path); 1241 1242 ret = add_missing_keys(fs_info, &preftrees); 1243 if (ret) 1244 goto out; 1245 1246 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); 1247 1248 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1249 extent_item_pos, total_refs, sc, ignore_offset); 1250 if (ret) 1251 goto out; 1252 1253 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); 1254 1255 /* 1256 * This walks the tree of merged and resolved refs. Tree blocks are 1257 * read in as needed. Unique entries are added to the ulist, and 1258 * the list of found roots is updated. 1259 * 1260 * We release the entire tree in one go before returning. 1261 */ 1262 node = rb_first(&preftrees.direct.root); 1263 while (node) { 1264 ref = rb_entry(node, struct prelim_ref, rbnode); 1265 node = rb_next(&ref->rbnode); 1266 WARN_ON(ref->count < 0); 1267 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1268 if (sc && sc->root_objectid && 1269 ref->root_id != sc->root_objectid) { 1270 ret = BACKREF_FOUND_SHARED; 1271 goto out; 1272 } 1273 1274 /* no parent == root of tree */ 1275 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1276 if (ret < 0) 1277 goto out; 1278 } 1279 if (ref->count && ref->parent) { 1280 if (extent_item_pos && !ref->inode_list && 1281 ref->level == 0) { 1282 struct extent_buffer *eb; 1283 1284 eb = read_tree_block(fs_info, ref->parent, 0); 1285 if (IS_ERR(eb)) { 1286 ret = PTR_ERR(eb); 1287 goto out; 1288 } else if (!extent_buffer_uptodate(eb)) { 1289 free_extent_buffer(eb); 1290 ret = -EIO; 1291 goto out; 1292 } 1293 btrfs_tree_read_lock(eb); 1294 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1295 ret = find_extent_in_eb(eb, bytenr, 1296 *extent_item_pos, &eie, ignore_offset); 1297 btrfs_tree_read_unlock_blocking(eb); 1298 free_extent_buffer(eb); 1299 if (ret < 0) 1300 goto out; 1301 ref->inode_list = eie; 1302 } 1303 ret = ulist_add_merge_ptr(refs, ref->parent, 1304 ref->inode_list, 1305 (void **)&eie, GFP_NOFS); 1306 if (ret < 0) 1307 goto out; 1308 if (!ret && extent_item_pos) { 1309 /* 1310 * we've recorded that parent, so we must extend 1311 * its inode list here 1312 */ 1313 BUG_ON(!eie); 1314 while (eie->next) 1315 eie = eie->next; 1316 eie->next = ref->inode_list; 1317 } 1318 eie = NULL; 1319 } 1320 cond_resched(); 1321 } 1322 1323 out: 1324 btrfs_free_path(path); 1325 1326 prelim_release(&preftrees.direct); 1327 prelim_release(&preftrees.indirect); 1328 prelim_release(&preftrees.indirect_missing_keys); 1329 1330 if (ret < 0) 1331 free_inode_elem_list(eie); 1332 return ret; 1333 } 1334 1335 static void free_leaf_list(struct ulist *blocks) 1336 { 1337 struct ulist_node *node = NULL; 1338 struct extent_inode_elem *eie; 1339 struct ulist_iterator uiter; 1340 1341 ULIST_ITER_INIT(&uiter); 1342 while ((node = ulist_next(blocks, &uiter))) { 1343 if (!node->aux) 1344 continue; 1345 eie = unode_aux_to_inode_list(node); 1346 free_inode_elem_list(eie); 1347 node->aux = 0; 1348 } 1349 1350 ulist_free(blocks); 1351 } 1352 1353 /* 1354 * Finds all leafs with a reference to the specified combination of bytenr and 1355 * offset. key_list_head will point to a list of corresponding keys (caller must 1356 * free each list element). The leafs will be stored in the leafs ulist, which 1357 * must be freed with ulist_free. 1358 * 1359 * returns 0 on success, <0 on error 1360 */ 1361 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1362 struct btrfs_fs_info *fs_info, u64 bytenr, 1363 u64 time_seq, struct ulist **leafs, 1364 const u64 *extent_item_pos, bool ignore_offset) 1365 { 1366 int ret; 1367 1368 *leafs = ulist_alloc(GFP_NOFS); 1369 if (!*leafs) 1370 return -ENOMEM; 1371 1372 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1373 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1374 if (ret < 0 && ret != -ENOENT) { 1375 free_leaf_list(*leafs); 1376 return ret; 1377 } 1378 1379 return 0; 1380 } 1381 1382 /* 1383 * walk all backrefs for a given extent to find all roots that reference this 1384 * extent. Walking a backref means finding all extents that reference this 1385 * extent and in turn walk the backrefs of those, too. Naturally this is a 1386 * recursive process, but here it is implemented in an iterative fashion: We 1387 * find all referencing extents for the extent in question and put them on a 1388 * list. In turn, we find all referencing extents for those, further appending 1389 * to the list. The way we iterate the list allows adding more elements after 1390 * the current while iterating. The process stops when we reach the end of the 1391 * list. Found roots are added to the roots list. 1392 * 1393 * returns 0 on success, < 0 on error. 1394 */ 1395 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info, u64 bytenr, 1397 u64 time_seq, struct ulist **roots, 1398 bool ignore_offset) 1399 { 1400 struct ulist *tmp; 1401 struct ulist_node *node = NULL; 1402 struct ulist_iterator uiter; 1403 int ret; 1404 1405 tmp = ulist_alloc(GFP_NOFS); 1406 if (!tmp) 1407 return -ENOMEM; 1408 *roots = ulist_alloc(GFP_NOFS); 1409 if (!*roots) { 1410 ulist_free(tmp); 1411 return -ENOMEM; 1412 } 1413 1414 ULIST_ITER_INIT(&uiter); 1415 while (1) { 1416 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1417 tmp, *roots, NULL, NULL, ignore_offset); 1418 if (ret < 0 && ret != -ENOENT) { 1419 ulist_free(tmp); 1420 ulist_free(*roots); 1421 return ret; 1422 } 1423 node = ulist_next(tmp, &uiter); 1424 if (!node) 1425 break; 1426 bytenr = node->val; 1427 cond_resched(); 1428 } 1429 1430 ulist_free(tmp); 1431 return 0; 1432 } 1433 1434 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1435 struct btrfs_fs_info *fs_info, u64 bytenr, 1436 u64 time_seq, struct ulist **roots, 1437 bool ignore_offset) 1438 { 1439 int ret; 1440 1441 if (!trans) 1442 down_read(&fs_info->commit_root_sem); 1443 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1444 time_seq, roots, ignore_offset); 1445 if (!trans) 1446 up_read(&fs_info->commit_root_sem); 1447 return ret; 1448 } 1449 1450 /** 1451 * btrfs_check_shared - tell us whether an extent is shared 1452 * 1453 * btrfs_check_shared uses the backref walking code but will short 1454 * circuit as soon as it finds a root or inode that doesn't match the 1455 * one passed in. This provides a significant performance benefit for 1456 * callers (such as fiemap) which want to know whether the extent is 1457 * shared but do not need a ref count. 1458 * 1459 * This attempts to allocate a transaction in order to account for 1460 * delayed refs, but continues on even when the alloc fails. 1461 * 1462 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1463 */ 1464 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1465 { 1466 struct btrfs_fs_info *fs_info = root->fs_info; 1467 struct btrfs_trans_handle *trans; 1468 struct ulist *tmp = NULL; 1469 struct ulist *roots = NULL; 1470 struct ulist_iterator uiter; 1471 struct ulist_node *node; 1472 struct seq_list elem = SEQ_LIST_INIT(elem); 1473 int ret = 0; 1474 struct share_check shared = { 1475 .root_objectid = root->objectid, 1476 .inum = inum, 1477 .share_count = 0, 1478 }; 1479 1480 tmp = ulist_alloc(GFP_NOFS); 1481 roots = ulist_alloc(GFP_NOFS); 1482 if (!tmp || !roots) { 1483 ulist_free(tmp); 1484 ulist_free(roots); 1485 return -ENOMEM; 1486 } 1487 1488 trans = btrfs_join_transaction(root); 1489 if (IS_ERR(trans)) { 1490 trans = NULL; 1491 down_read(&fs_info->commit_root_sem); 1492 } else { 1493 btrfs_get_tree_mod_seq(fs_info, &elem); 1494 } 1495 1496 ULIST_ITER_INIT(&uiter); 1497 while (1) { 1498 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1499 roots, NULL, &shared, false); 1500 if (ret == BACKREF_FOUND_SHARED) { 1501 /* this is the only condition under which we return 1 */ 1502 ret = 1; 1503 break; 1504 } 1505 if (ret < 0 && ret != -ENOENT) 1506 break; 1507 ret = 0; 1508 node = ulist_next(tmp, &uiter); 1509 if (!node) 1510 break; 1511 bytenr = node->val; 1512 cond_resched(); 1513 } 1514 1515 if (trans) { 1516 btrfs_put_tree_mod_seq(fs_info, &elem); 1517 btrfs_end_transaction(trans); 1518 } else { 1519 up_read(&fs_info->commit_root_sem); 1520 } 1521 ulist_free(tmp); 1522 ulist_free(roots); 1523 return ret; 1524 } 1525 1526 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1527 u64 start_off, struct btrfs_path *path, 1528 struct btrfs_inode_extref **ret_extref, 1529 u64 *found_off) 1530 { 1531 int ret, slot; 1532 struct btrfs_key key; 1533 struct btrfs_key found_key; 1534 struct btrfs_inode_extref *extref; 1535 const struct extent_buffer *leaf; 1536 unsigned long ptr; 1537 1538 key.objectid = inode_objectid; 1539 key.type = BTRFS_INODE_EXTREF_KEY; 1540 key.offset = start_off; 1541 1542 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1543 if (ret < 0) 1544 return ret; 1545 1546 while (1) { 1547 leaf = path->nodes[0]; 1548 slot = path->slots[0]; 1549 if (slot >= btrfs_header_nritems(leaf)) { 1550 /* 1551 * If the item at offset is not found, 1552 * btrfs_search_slot will point us to the slot 1553 * where it should be inserted. In our case 1554 * that will be the slot directly before the 1555 * next INODE_REF_KEY_V2 item. In the case 1556 * that we're pointing to the last slot in a 1557 * leaf, we must move one leaf over. 1558 */ 1559 ret = btrfs_next_leaf(root, path); 1560 if (ret) { 1561 if (ret >= 1) 1562 ret = -ENOENT; 1563 break; 1564 } 1565 continue; 1566 } 1567 1568 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1569 1570 /* 1571 * Check that we're still looking at an extended ref key for 1572 * this particular objectid. If we have different 1573 * objectid or type then there are no more to be found 1574 * in the tree and we can exit. 1575 */ 1576 ret = -ENOENT; 1577 if (found_key.objectid != inode_objectid) 1578 break; 1579 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1580 break; 1581 1582 ret = 0; 1583 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1584 extref = (struct btrfs_inode_extref *)ptr; 1585 *ret_extref = extref; 1586 if (found_off) 1587 *found_off = found_key.offset; 1588 break; 1589 } 1590 1591 return ret; 1592 } 1593 1594 /* 1595 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1596 * Elements of the path are separated by '/' and the path is guaranteed to be 1597 * 0-terminated. the path is only given within the current file system. 1598 * Therefore, it never starts with a '/'. the caller is responsible to provide 1599 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1600 * the start point of the resulting string is returned. this pointer is within 1601 * dest, normally. 1602 * in case the path buffer would overflow, the pointer is decremented further 1603 * as if output was written to the buffer, though no more output is actually 1604 * generated. that way, the caller can determine how much space would be 1605 * required for the path to fit into the buffer. in that case, the returned 1606 * value will be smaller than dest. callers must check this! 1607 */ 1608 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1609 u32 name_len, unsigned long name_off, 1610 struct extent_buffer *eb_in, u64 parent, 1611 char *dest, u32 size) 1612 { 1613 int slot; 1614 u64 next_inum; 1615 int ret; 1616 s64 bytes_left = ((s64)size) - 1; 1617 struct extent_buffer *eb = eb_in; 1618 struct btrfs_key found_key; 1619 int leave_spinning = path->leave_spinning; 1620 struct btrfs_inode_ref *iref; 1621 1622 if (bytes_left >= 0) 1623 dest[bytes_left] = '\0'; 1624 1625 path->leave_spinning = 1; 1626 while (1) { 1627 bytes_left -= name_len; 1628 if (bytes_left >= 0) 1629 read_extent_buffer(eb, dest + bytes_left, 1630 name_off, name_len); 1631 if (eb != eb_in) { 1632 if (!path->skip_locking) 1633 btrfs_tree_read_unlock_blocking(eb); 1634 free_extent_buffer(eb); 1635 } 1636 ret = btrfs_find_item(fs_root, path, parent, 0, 1637 BTRFS_INODE_REF_KEY, &found_key); 1638 if (ret > 0) 1639 ret = -ENOENT; 1640 if (ret) 1641 break; 1642 1643 next_inum = found_key.offset; 1644 1645 /* regular exit ahead */ 1646 if (parent == next_inum) 1647 break; 1648 1649 slot = path->slots[0]; 1650 eb = path->nodes[0]; 1651 /* make sure we can use eb after releasing the path */ 1652 if (eb != eb_in) { 1653 if (!path->skip_locking) 1654 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1655 path->nodes[0] = NULL; 1656 path->locks[0] = 0; 1657 } 1658 btrfs_release_path(path); 1659 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1660 1661 name_len = btrfs_inode_ref_name_len(eb, iref); 1662 name_off = (unsigned long)(iref + 1); 1663 1664 parent = next_inum; 1665 --bytes_left; 1666 if (bytes_left >= 0) 1667 dest[bytes_left] = '/'; 1668 } 1669 1670 btrfs_release_path(path); 1671 path->leave_spinning = leave_spinning; 1672 1673 if (ret) 1674 return ERR_PTR(ret); 1675 1676 return dest + bytes_left; 1677 } 1678 1679 /* 1680 * this makes the path point to (logical EXTENT_ITEM *) 1681 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1682 * tree blocks and <0 on error. 1683 */ 1684 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1685 struct btrfs_path *path, struct btrfs_key *found_key, 1686 u64 *flags_ret) 1687 { 1688 int ret; 1689 u64 flags; 1690 u64 size = 0; 1691 u32 item_size; 1692 const struct extent_buffer *eb; 1693 struct btrfs_extent_item *ei; 1694 struct btrfs_key key; 1695 1696 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1697 key.type = BTRFS_METADATA_ITEM_KEY; 1698 else 1699 key.type = BTRFS_EXTENT_ITEM_KEY; 1700 key.objectid = logical; 1701 key.offset = (u64)-1; 1702 1703 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1704 if (ret < 0) 1705 return ret; 1706 1707 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1708 if (ret) { 1709 if (ret > 0) 1710 ret = -ENOENT; 1711 return ret; 1712 } 1713 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1714 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1715 size = fs_info->nodesize; 1716 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1717 size = found_key->offset; 1718 1719 if (found_key->objectid > logical || 1720 found_key->objectid + size <= logical) { 1721 btrfs_debug(fs_info, 1722 "logical %llu is not within any extent", logical); 1723 return -ENOENT; 1724 } 1725 1726 eb = path->nodes[0]; 1727 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1728 BUG_ON(item_size < sizeof(*ei)); 1729 1730 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1731 flags = btrfs_extent_flags(eb, ei); 1732 1733 btrfs_debug(fs_info, 1734 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1735 logical, logical - found_key->objectid, found_key->objectid, 1736 found_key->offset, flags, item_size); 1737 1738 WARN_ON(!flags_ret); 1739 if (flags_ret) { 1740 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1741 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1742 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1743 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1744 else 1745 BUG_ON(1); 1746 return 0; 1747 } 1748 1749 return -EIO; 1750 } 1751 1752 /* 1753 * helper function to iterate extent inline refs. ptr must point to a 0 value 1754 * for the first call and may be modified. it is used to track state. 1755 * if more refs exist, 0 is returned and the next call to 1756 * get_extent_inline_ref must pass the modified ptr parameter to get the 1757 * next ref. after the last ref was processed, 1 is returned. 1758 * returns <0 on error 1759 */ 1760 static int get_extent_inline_ref(unsigned long *ptr, 1761 const struct extent_buffer *eb, 1762 const struct btrfs_key *key, 1763 const struct btrfs_extent_item *ei, 1764 u32 item_size, 1765 struct btrfs_extent_inline_ref **out_eiref, 1766 int *out_type) 1767 { 1768 unsigned long end; 1769 u64 flags; 1770 struct btrfs_tree_block_info *info; 1771 1772 if (!*ptr) { 1773 /* first call */ 1774 flags = btrfs_extent_flags(eb, ei); 1775 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1776 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1777 /* a skinny metadata extent */ 1778 *out_eiref = 1779 (struct btrfs_extent_inline_ref *)(ei + 1); 1780 } else { 1781 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1782 info = (struct btrfs_tree_block_info *)(ei + 1); 1783 *out_eiref = 1784 (struct btrfs_extent_inline_ref *)(info + 1); 1785 } 1786 } else { 1787 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1788 } 1789 *ptr = (unsigned long)*out_eiref; 1790 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1791 return -ENOENT; 1792 } 1793 1794 end = (unsigned long)ei + item_size; 1795 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1796 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1797 BTRFS_REF_TYPE_ANY); 1798 if (*out_type == BTRFS_REF_TYPE_INVALID) 1799 return -EINVAL; 1800 1801 *ptr += btrfs_extent_inline_ref_size(*out_type); 1802 WARN_ON(*ptr > end); 1803 if (*ptr == end) 1804 return 1; /* last */ 1805 1806 return 0; 1807 } 1808 1809 /* 1810 * reads the tree block backref for an extent. tree level and root are returned 1811 * through out_level and out_root. ptr must point to a 0 value for the first 1812 * call and may be modified (see get_extent_inline_ref comment). 1813 * returns 0 if data was provided, 1 if there was no more data to provide or 1814 * <0 on error. 1815 */ 1816 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1817 struct btrfs_key *key, struct btrfs_extent_item *ei, 1818 u32 item_size, u64 *out_root, u8 *out_level) 1819 { 1820 int ret; 1821 int type; 1822 struct btrfs_extent_inline_ref *eiref; 1823 1824 if (*ptr == (unsigned long)-1) 1825 return 1; 1826 1827 while (1) { 1828 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1829 &eiref, &type); 1830 if (ret < 0) 1831 return ret; 1832 1833 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1834 type == BTRFS_SHARED_BLOCK_REF_KEY) 1835 break; 1836 1837 if (ret == 1) 1838 return 1; 1839 } 1840 1841 /* we can treat both ref types equally here */ 1842 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1843 1844 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1845 struct btrfs_tree_block_info *info; 1846 1847 info = (struct btrfs_tree_block_info *)(ei + 1); 1848 *out_level = btrfs_tree_block_level(eb, info); 1849 } else { 1850 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1851 *out_level = (u8)key->offset; 1852 } 1853 1854 if (ret == 1) 1855 *ptr = (unsigned long)-1; 1856 1857 return 0; 1858 } 1859 1860 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1861 struct extent_inode_elem *inode_list, 1862 u64 root, u64 extent_item_objectid, 1863 iterate_extent_inodes_t *iterate, void *ctx) 1864 { 1865 struct extent_inode_elem *eie; 1866 int ret = 0; 1867 1868 for (eie = inode_list; eie; eie = eie->next) { 1869 btrfs_debug(fs_info, 1870 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1871 extent_item_objectid, eie->inum, 1872 eie->offset, root); 1873 ret = iterate(eie->inum, eie->offset, root, ctx); 1874 if (ret) { 1875 btrfs_debug(fs_info, 1876 "stopping iteration for %llu due to ret=%d", 1877 extent_item_objectid, ret); 1878 break; 1879 } 1880 } 1881 1882 return ret; 1883 } 1884 1885 /* 1886 * calls iterate() for every inode that references the extent identified by 1887 * the given parameters. 1888 * when the iterator function returns a non-zero value, iteration stops. 1889 */ 1890 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1891 u64 extent_item_objectid, u64 extent_item_pos, 1892 int search_commit_root, 1893 iterate_extent_inodes_t *iterate, void *ctx, 1894 bool ignore_offset) 1895 { 1896 int ret; 1897 struct btrfs_trans_handle *trans = NULL; 1898 struct ulist *refs = NULL; 1899 struct ulist *roots = NULL; 1900 struct ulist_node *ref_node = NULL; 1901 struct ulist_node *root_node = NULL; 1902 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1903 struct ulist_iterator ref_uiter; 1904 struct ulist_iterator root_uiter; 1905 1906 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1907 extent_item_objectid); 1908 1909 if (!search_commit_root) { 1910 trans = btrfs_join_transaction(fs_info->extent_root); 1911 if (IS_ERR(trans)) 1912 return PTR_ERR(trans); 1913 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1914 } else { 1915 down_read(&fs_info->commit_root_sem); 1916 } 1917 1918 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1919 tree_mod_seq_elem.seq, &refs, 1920 &extent_item_pos, ignore_offset); 1921 if (ret) 1922 goto out; 1923 1924 ULIST_ITER_INIT(&ref_uiter); 1925 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1926 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1927 tree_mod_seq_elem.seq, &roots, 1928 ignore_offset); 1929 if (ret) 1930 break; 1931 ULIST_ITER_INIT(&root_uiter); 1932 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1933 btrfs_debug(fs_info, 1934 "root %llu references leaf %llu, data list %#llx", 1935 root_node->val, ref_node->val, 1936 ref_node->aux); 1937 ret = iterate_leaf_refs(fs_info, 1938 (struct extent_inode_elem *) 1939 (uintptr_t)ref_node->aux, 1940 root_node->val, 1941 extent_item_objectid, 1942 iterate, ctx); 1943 } 1944 ulist_free(roots); 1945 } 1946 1947 free_leaf_list(refs); 1948 out: 1949 if (!search_commit_root) { 1950 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1951 btrfs_end_transaction(trans); 1952 } else { 1953 up_read(&fs_info->commit_root_sem); 1954 } 1955 1956 return ret; 1957 } 1958 1959 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1960 struct btrfs_path *path, 1961 iterate_extent_inodes_t *iterate, void *ctx, 1962 bool ignore_offset) 1963 { 1964 int ret; 1965 u64 extent_item_pos; 1966 u64 flags = 0; 1967 struct btrfs_key found_key; 1968 int search_commit_root = path->search_commit_root; 1969 1970 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1971 btrfs_release_path(path); 1972 if (ret < 0) 1973 return ret; 1974 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1975 return -EINVAL; 1976 1977 extent_item_pos = logical - found_key.objectid; 1978 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1979 extent_item_pos, search_commit_root, 1980 iterate, ctx, ignore_offset); 1981 1982 return ret; 1983 } 1984 1985 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1986 struct extent_buffer *eb, void *ctx); 1987 1988 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1989 struct btrfs_path *path, 1990 iterate_irefs_t *iterate, void *ctx) 1991 { 1992 int ret = 0; 1993 int slot; 1994 u32 cur; 1995 u32 len; 1996 u32 name_len; 1997 u64 parent = 0; 1998 int found = 0; 1999 struct extent_buffer *eb; 2000 struct btrfs_item *item; 2001 struct btrfs_inode_ref *iref; 2002 struct btrfs_key found_key; 2003 2004 while (!ret) { 2005 ret = btrfs_find_item(fs_root, path, inum, 2006 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2007 &found_key); 2008 2009 if (ret < 0) 2010 break; 2011 if (ret) { 2012 ret = found ? 0 : -ENOENT; 2013 break; 2014 } 2015 ++found; 2016 2017 parent = found_key.offset; 2018 slot = path->slots[0]; 2019 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2020 if (!eb) { 2021 ret = -ENOMEM; 2022 break; 2023 } 2024 extent_buffer_get(eb); 2025 btrfs_tree_read_lock(eb); 2026 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2027 btrfs_release_path(path); 2028 2029 item = btrfs_item_nr(slot); 2030 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2031 2032 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2033 name_len = btrfs_inode_ref_name_len(eb, iref); 2034 /* path must be released before calling iterate()! */ 2035 btrfs_debug(fs_root->fs_info, 2036 "following ref at offset %u for inode %llu in tree %llu", 2037 cur, found_key.objectid, fs_root->objectid); 2038 ret = iterate(parent, name_len, 2039 (unsigned long)(iref + 1), eb, ctx); 2040 if (ret) 2041 break; 2042 len = sizeof(*iref) + name_len; 2043 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2044 } 2045 btrfs_tree_read_unlock_blocking(eb); 2046 free_extent_buffer(eb); 2047 } 2048 2049 btrfs_release_path(path); 2050 2051 return ret; 2052 } 2053 2054 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2055 struct btrfs_path *path, 2056 iterate_irefs_t *iterate, void *ctx) 2057 { 2058 int ret; 2059 int slot; 2060 u64 offset = 0; 2061 u64 parent; 2062 int found = 0; 2063 struct extent_buffer *eb; 2064 struct btrfs_inode_extref *extref; 2065 u32 item_size; 2066 u32 cur_offset; 2067 unsigned long ptr; 2068 2069 while (1) { 2070 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2071 &offset); 2072 if (ret < 0) 2073 break; 2074 if (ret) { 2075 ret = found ? 0 : -ENOENT; 2076 break; 2077 } 2078 ++found; 2079 2080 slot = path->slots[0]; 2081 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2082 if (!eb) { 2083 ret = -ENOMEM; 2084 break; 2085 } 2086 extent_buffer_get(eb); 2087 2088 btrfs_tree_read_lock(eb); 2089 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2090 btrfs_release_path(path); 2091 2092 item_size = btrfs_item_size_nr(eb, slot); 2093 ptr = btrfs_item_ptr_offset(eb, slot); 2094 cur_offset = 0; 2095 2096 while (cur_offset < item_size) { 2097 u32 name_len; 2098 2099 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2100 parent = btrfs_inode_extref_parent(eb, extref); 2101 name_len = btrfs_inode_extref_name_len(eb, extref); 2102 ret = iterate(parent, name_len, 2103 (unsigned long)&extref->name, eb, ctx); 2104 if (ret) 2105 break; 2106 2107 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2108 cur_offset += sizeof(*extref); 2109 } 2110 btrfs_tree_read_unlock_blocking(eb); 2111 free_extent_buffer(eb); 2112 2113 offset++; 2114 } 2115 2116 btrfs_release_path(path); 2117 2118 return ret; 2119 } 2120 2121 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2122 struct btrfs_path *path, iterate_irefs_t *iterate, 2123 void *ctx) 2124 { 2125 int ret; 2126 int found_refs = 0; 2127 2128 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2129 if (!ret) 2130 ++found_refs; 2131 else if (ret != -ENOENT) 2132 return ret; 2133 2134 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2135 if (ret == -ENOENT && found_refs) 2136 return 0; 2137 2138 return ret; 2139 } 2140 2141 /* 2142 * returns 0 if the path could be dumped (probably truncated) 2143 * returns <0 in case of an error 2144 */ 2145 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2146 struct extent_buffer *eb, void *ctx) 2147 { 2148 struct inode_fs_paths *ipath = ctx; 2149 char *fspath; 2150 char *fspath_min; 2151 int i = ipath->fspath->elem_cnt; 2152 const int s_ptr = sizeof(char *); 2153 u32 bytes_left; 2154 2155 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2156 ipath->fspath->bytes_left - s_ptr : 0; 2157 2158 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2159 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2160 name_off, eb, inum, fspath_min, bytes_left); 2161 if (IS_ERR(fspath)) 2162 return PTR_ERR(fspath); 2163 2164 if (fspath > fspath_min) { 2165 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2166 ++ipath->fspath->elem_cnt; 2167 ipath->fspath->bytes_left = fspath - fspath_min; 2168 } else { 2169 ++ipath->fspath->elem_missed; 2170 ipath->fspath->bytes_missing += fspath_min - fspath; 2171 ipath->fspath->bytes_left = 0; 2172 } 2173 2174 return 0; 2175 } 2176 2177 /* 2178 * this dumps all file system paths to the inode into the ipath struct, provided 2179 * is has been created large enough. each path is zero-terminated and accessed 2180 * from ipath->fspath->val[i]. 2181 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2182 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2183 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2184 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2185 * have been needed to return all paths. 2186 */ 2187 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2188 { 2189 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2190 inode_to_path, ipath); 2191 } 2192 2193 struct btrfs_data_container *init_data_container(u32 total_bytes) 2194 { 2195 struct btrfs_data_container *data; 2196 size_t alloc_bytes; 2197 2198 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2199 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2200 if (!data) 2201 return ERR_PTR(-ENOMEM); 2202 2203 if (total_bytes >= sizeof(*data)) { 2204 data->bytes_left = total_bytes - sizeof(*data); 2205 data->bytes_missing = 0; 2206 } else { 2207 data->bytes_missing = sizeof(*data) - total_bytes; 2208 data->bytes_left = 0; 2209 } 2210 2211 data->elem_cnt = 0; 2212 data->elem_missed = 0; 2213 2214 return data; 2215 } 2216 2217 /* 2218 * allocates space to return multiple file system paths for an inode. 2219 * total_bytes to allocate are passed, note that space usable for actual path 2220 * information will be total_bytes - sizeof(struct inode_fs_paths). 2221 * the returned pointer must be freed with free_ipath() in the end. 2222 */ 2223 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2224 struct btrfs_path *path) 2225 { 2226 struct inode_fs_paths *ifp; 2227 struct btrfs_data_container *fspath; 2228 2229 fspath = init_data_container(total_bytes); 2230 if (IS_ERR(fspath)) 2231 return (void *)fspath; 2232 2233 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2234 if (!ifp) { 2235 kvfree(fspath); 2236 return ERR_PTR(-ENOMEM); 2237 } 2238 2239 ifp->btrfs_path = path; 2240 ifp->fspath = fspath; 2241 ifp->fs_root = fs_root; 2242 2243 return ifp; 2244 } 2245 2246 void free_ipath(struct inode_fs_paths *ipath) 2247 { 2248 if (!ipath) 2249 return; 2250 kvfree(ipath->fspath); 2251 kfree(ipath); 2252 } 2253