1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!btrfs_file_extent_compression(eb, fi) && 49 !btrfs_file_extent_encryption(eb, fi) && 50 !btrfs_file_extent_other_encoding(eb, fi)) { 51 u64 data_offset; 52 53 data_offset = btrfs_file_extent_offset(eb, fi); 54 55 if (ctx->extent_item_pos < data_offset || 56 ctx->extent_item_pos >= data_offset + data_len) 57 return 1; 58 offset += ctx->extent_item_pos - data_offset; 59 } 60 61 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 62 goto add_inode_elem; 63 64 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 65 &root_count); 66 if (!cached) 67 goto add_inode_elem; 68 69 for (int i = 0; i < root_count; i++) { 70 int ret; 71 72 ret = ctx->indirect_ref_iterator(key->objectid, offset, 73 data_len, root_ids[i], 74 ctx->user_ctx); 75 if (ret) 76 return ret; 77 } 78 79 add_inode_elem: 80 e = kmalloc(sizeof(*e), GFP_NOFS); 81 if (!e) 82 return -ENOMEM; 83 84 e->next = *eie; 85 e->inum = key->objectid; 86 e->offset = offset; 87 e->num_bytes = data_len; 88 *eie = e; 89 90 return 0; 91 } 92 93 static void free_inode_elem_list(struct extent_inode_elem *eie) 94 { 95 struct extent_inode_elem *eie_next; 96 97 for (; eie; eie = eie_next) { 98 eie_next = eie->next; 99 kfree(eie); 100 } 101 } 102 103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 104 const struct extent_buffer *eb, 105 struct extent_inode_elem **eie) 106 { 107 u64 disk_byte; 108 struct btrfs_key key; 109 struct btrfs_file_extent_item *fi; 110 int slot; 111 int nritems; 112 int extent_type; 113 int ret; 114 115 /* 116 * from the shared data ref, we only have the leaf but we need 117 * the key. thus, we must look into all items and see that we 118 * find one (some) with a reference to our extent item. 119 */ 120 nritems = btrfs_header_nritems(eb); 121 for (slot = 0; slot < nritems; ++slot) { 122 btrfs_item_key_to_cpu(eb, &key, slot); 123 if (key.type != BTRFS_EXTENT_DATA_KEY) 124 continue; 125 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 126 extent_type = btrfs_file_extent_type(eb, fi); 127 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 128 continue; 129 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 130 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 131 if (disk_byte != ctx->bytenr) 132 continue; 133 134 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 135 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 136 return ret; 137 } 138 139 return 0; 140 } 141 142 struct preftree { 143 struct rb_root_cached root; 144 unsigned int count; 145 }; 146 147 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 148 149 struct preftrees { 150 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 151 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 152 struct preftree indirect_missing_keys; 153 }; 154 155 /* 156 * Checks for a shared extent during backref search. 157 * 158 * The share_count tracks prelim_refs (direct and indirect) having a 159 * ref->count >0: 160 * - incremented when a ref->count transitions to >0 161 * - decremented when a ref->count transitions to <1 162 */ 163 struct share_check { 164 struct btrfs_backref_share_check_ctx *ctx; 165 struct btrfs_root *root; 166 u64 inum; 167 u64 data_bytenr; 168 u64 data_extent_gen; 169 /* 170 * Counts number of inodes that refer to an extent (different inodes in 171 * the same root or different roots) that we could find. The sharedness 172 * check typically stops once this counter gets greater than 1, so it 173 * may not reflect the total number of inodes. 174 */ 175 int share_count; 176 /* 177 * The number of times we found our inode refers to the data extent we 178 * are determining the sharedness. In other words, how many file extent 179 * items we could find for our inode that point to our target data 180 * extent. The value we get here after finishing the extent sharedness 181 * check may be smaller than reality, but if it ends up being greater 182 * than 1, then we know for sure the inode has multiple file extent 183 * items that point to our inode, and we can safely assume it's useful 184 * to cache the sharedness check result. 185 */ 186 int self_ref_count; 187 bool have_delayed_delete_refs; 188 }; 189 190 static inline int extent_is_shared(struct share_check *sc) 191 { 192 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 193 } 194 195 static struct kmem_cache *btrfs_prelim_ref_cache; 196 197 int __init btrfs_prelim_ref_init(void) 198 { 199 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 200 sizeof(struct prelim_ref), 201 0, 202 SLAB_MEM_SPREAD, 203 NULL); 204 if (!btrfs_prelim_ref_cache) 205 return -ENOMEM; 206 return 0; 207 } 208 209 void __cold btrfs_prelim_ref_exit(void) 210 { 211 kmem_cache_destroy(btrfs_prelim_ref_cache); 212 } 213 214 static void free_pref(struct prelim_ref *ref) 215 { 216 kmem_cache_free(btrfs_prelim_ref_cache, ref); 217 } 218 219 /* 220 * Return 0 when both refs are for the same block (and can be merged). 221 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 222 * indicates a 'higher' block. 223 */ 224 static int prelim_ref_compare(struct prelim_ref *ref1, 225 struct prelim_ref *ref2) 226 { 227 if (ref1->level < ref2->level) 228 return -1; 229 if (ref1->level > ref2->level) 230 return 1; 231 if (ref1->root_id < ref2->root_id) 232 return -1; 233 if (ref1->root_id > ref2->root_id) 234 return 1; 235 if (ref1->key_for_search.type < ref2->key_for_search.type) 236 return -1; 237 if (ref1->key_for_search.type > ref2->key_for_search.type) 238 return 1; 239 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 240 return -1; 241 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 242 return 1; 243 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 244 return -1; 245 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 246 return 1; 247 if (ref1->parent < ref2->parent) 248 return -1; 249 if (ref1->parent > ref2->parent) 250 return 1; 251 252 return 0; 253 } 254 255 static void update_share_count(struct share_check *sc, int oldcount, 256 int newcount, struct prelim_ref *newref) 257 { 258 if ((!sc) || (oldcount == 0 && newcount < 1)) 259 return; 260 261 if (oldcount > 0 && newcount < 1) 262 sc->share_count--; 263 else if (oldcount < 1 && newcount > 0) 264 sc->share_count++; 265 266 if (newref->root_id == sc->root->root_key.objectid && 267 newref->wanted_disk_byte == sc->data_bytenr && 268 newref->key_for_search.objectid == sc->inum) 269 sc->self_ref_count += newref->count; 270 } 271 272 /* 273 * Add @newref to the @root rbtree, merging identical refs. 274 * 275 * Callers should assume that newref has been freed after calling. 276 */ 277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 278 struct preftree *preftree, 279 struct prelim_ref *newref, 280 struct share_check *sc) 281 { 282 struct rb_root_cached *root; 283 struct rb_node **p; 284 struct rb_node *parent = NULL; 285 struct prelim_ref *ref; 286 int result; 287 bool leftmost = true; 288 289 root = &preftree->root; 290 p = &root->rb_root.rb_node; 291 292 while (*p) { 293 parent = *p; 294 ref = rb_entry(parent, struct prelim_ref, rbnode); 295 result = prelim_ref_compare(ref, newref); 296 if (result < 0) { 297 p = &(*p)->rb_left; 298 } else if (result > 0) { 299 p = &(*p)->rb_right; 300 leftmost = false; 301 } else { 302 /* Identical refs, merge them and free @newref */ 303 struct extent_inode_elem *eie = ref->inode_list; 304 305 while (eie && eie->next) 306 eie = eie->next; 307 308 if (!eie) 309 ref->inode_list = newref->inode_list; 310 else 311 eie->next = newref->inode_list; 312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 313 preftree->count); 314 /* 315 * A delayed ref can have newref->count < 0. 316 * The ref->count is updated to follow any 317 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 318 */ 319 update_share_count(sc, ref->count, 320 ref->count + newref->count, newref); 321 ref->count += newref->count; 322 free_pref(newref); 323 return; 324 } 325 } 326 327 update_share_count(sc, 0, newref->count, newref); 328 preftree->count++; 329 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 330 rb_link_node(&newref->rbnode, parent, p); 331 rb_insert_color_cached(&newref->rbnode, root, leftmost); 332 } 333 334 /* 335 * Release the entire tree. We don't care about internal consistency so 336 * just free everything and then reset the tree root. 337 */ 338 static void prelim_release(struct preftree *preftree) 339 { 340 struct prelim_ref *ref, *next_ref; 341 342 rbtree_postorder_for_each_entry_safe(ref, next_ref, 343 &preftree->root.rb_root, rbnode) { 344 free_inode_elem_list(ref->inode_list); 345 free_pref(ref); 346 } 347 348 preftree->root = RB_ROOT_CACHED; 349 preftree->count = 0; 350 } 351 352 /* 353 * the rules for all callers of this function are: 354 * - obtaining the parent is the goal 355 * - if you add a key, you must know that it is a correct key 356 * - if you cannot add the parent or a correct key, then we will look into the 357 * block later to set a correct key 358 * 359 * delayed refs 360 * ============ 361 * backref type | shared | indirect | shared | indirect 362 * information | tree | tree | data | data 363 * --------------------+--------+----------+--------+---------- 364 * parent logical | y | - | - | - 365 * key to resolve | - | y | y | y 366 * tree block logical | - | - | - | - 367 * root for resolving | y | y | y | y 368 * 369 * - column 1: we've the parent -> done 370 * - column 2, 3, 4: we use the key to find the parent 371 * 372 * on disk refs (inline or keyed) 373 * ============================== 374 * backref type | shared | indirect | shared | indirect 375 * information | tree | tree | data | data 376 * --------------------+--------+----------+--------+---------- 377 * parent logical | y | - | y | - 378 * key to resolve | - | - | - | y 379 * tree block logical | y | y | y | y 380 * root for resolving | - | y | y | y 381 * 382 * - column 1, 3: we've the parent -> done 383 * - column 2: we take the first key from the block to find the parent 384 * (see add_missing_keys) 385 * - column 4: we use the key to find the parent 386 * 387 * additional information that's available but not required to find the parent 388 * block might help in merging entries to gain some speed. 389 */ 390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 391 struct preftree *preftree, u64 root_id, 392 const struct btrfs_key *key, int level, u64 parent, 393 u64 wanted_disk_byte, int count, 394 struct share_check *sc, gfp_t gfp_mask) 395 { 396 struct prelim_ref *ref; 397 398 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 399 return 0; 400 401 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 402 if (!ref) 403 return -ENOMEM; 404 405 ref->root_id = root_id; 406 if (key) 407 ref->key_for_search = *key; 408 else 409 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 410 411 ref->inode_list = NULL; 412 ref->level = level; 413 ref->count = count; 414 ref->parent = parent; 415 ref->wanted_disk_byte = wanted_disk_byte; 416 prelim_ref_insert(fs_info, preftree, ref, sc); 417 return extent_is_shared(sc); 418 } 419 420 /* direct refs use root == 0, key == NULL */ 421 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 422 struct preftrees *preftrees, int level, u64 parent, 423 u64 wanted_disk_byte, int count, 424 struct share_check *sc, gfp_t gfp_mask) 425 { 426 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 427 parent, wanted_disk_byte, count, sc, gfp_mask); 428 } 429 430 /* indirect refs use parent == 0 */ 431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 432 struct preftrees *preftrees, u64 root_id, 433 const struct btrfs_key *key, int level, 434 u64 wanted_disk_byte, int count, 435 struct share_check *sc, gfp_t gfp_mask) 436 { 437 struct preftree *tree = &preftrees->indirect; 438 439 if (!key) 440 tree = &preftrees->indirect_missing_keys; 441 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 442 wanted_disk_byte, count, sc, gfp_mask); 443 } 444 445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 446 { 447 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 448 struct rb_node *parent = NULL; 449 struct prelim_ref *ref = NULL; 450 struct prelim_ref target = {}; 451 int result; 452 453 target.parent = bytenr; 454 455 while (*p) { 456 parent = *p; 457 ref = rb_entry(parent, struct prelim_ref, rbnode); 458 result = prelim_ref_compare(ref, &target); 459 460 if (result < 0) 461 p = &(*p)->rb_left; 462 else if (result > 0) 463 p = &(*p)->rb_right; 464 else 465 return 1; 466 } 467 return 0; 468 } 469 470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 471 struct btrfs_root *root, struct btrfs_path *path, 472 struct ulist *parents, 473 struct preftrees *preftrees, struct prelim_ref *ref, 474 int level) 475 { 476 int ret = 0; 477 int slot; 478 struct extent_buffer *eb; 479 struct btrfs_key key; 480 struct btrfs_key *key_for_search = &ref->key_for_search; 481 struct btrfs_file_extent_item *fi; 482 struct extent_inode_elem *eie = NULL, *old = NULL; 483 u64 disk_byte; 484 u64 wanted_disk_byte = ref->wanted_disk_byte; 485 u64 count = 0; 486 u64 data_offset; 487 488 if (level != 0) { 489 eb = path->nodes[level]; 490 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 491 if (ret < 0) 492 return ret; 493 return 0; 494 } 495 496 /* 497 * 1. We normally enter this function with the path already pointing to 498 * the first item to check. But sometimes, we may enter it with 499 * slot == nritems. 500 * 2. We are searching for normal backref but bytenr of this leaf 501 * matches shared data backref 502 * 3. The leaf owner is not equal to the root we are searching 503 * 504 * For these cases, go to the next leaf before we continue. 505 */ 506 eb = path->nodes[0]; 507 if (path->slots[0] >= btrfs_header_nritems(eb) || 508 is_shared_data_backref(preftrees, eb->start) || 509 ref->root_id != btrfs_header_owner(eb)) { 510 if (ctx->time_seq == BTRFS_SEQ_LAST) 511 ret = btrfs_next_leaf(root, path); 512 else 513 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 514 } 515 516 while (!ret && count < ref->count) { 517 eb = path->nodes[0]; 518 slot = path->slots[0]; 519 520 btrfs_item_key_to_cpu(eb, &key, slot); 521 522 if (key.objectid != key_for_search->objectid || 523 key.type != BTRFS_EXTENT_DATA_KEY) 524 break; 525 526 /* 527 * We are searching for normal backref but bytenr of this leaf 528 * matches shared data backref, OR 529 * the leaf owner is not equal to the root we are searching for 530 */ 531 if (slot == 0 && 532 (is_shared_data_backref(preftrees, eb->start) || 533 ref->root_id != btrfs_header_owner(eb))) { 534 if (ctx->time_seq == BTRFS_SEQ_LAST) 535 ret = btrfs_next_leaf(root, path); 536 else 537 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 538 continue; 539 } 540 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 541 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 542 data_offset = btrfs_file_extent_offset(eb, fi); 543 544 if (disk_byte == wanted_disk_byte) { 545 eie = NULL; 546 old = NULL; 547 if (ref->key_for_search.offset == key.offset - data_offset) 548 count++; 549 else 550 goto next; 551 if (!ctx->ignore_extent_item_pos) { 552 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 553 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 554 ret < 0) 555 break; 556 } 557 if (ret > 0) 558 goto next; 559 ret = ulist_add_merge_ptr(parents, eb->start, 560 eie, (void **)&old, GFP_NOFS); 561 if (ret < 0) 562 break; 563 if (!ret && !ctx->ignore_extent_item_pos) { 564 while (old->next) 565 old = old->next; 566 old->next = eie; 567 } 568 eie = NULL; 569 } 570 next: 571 if (ctx->time_seq == BTRFS_SEQ_LAST) 572 ret = btrfs_next_item(root, path); 573 else 574 ret = btrfs_next_old_item(root, path, ctx->time_seq); 575 } 576 577 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 578 free_inode_elem_list(eie); 579 else if (ret > 0) 580 ret = 0; 581 582 return ret; 583 } 584 585 /* 586 * resolve an indirect backref in the form (root_id, key, level) 587 * to a logical address 588 */ 589 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 590 struct btrfs_path *path, 591 struct preftrees *preftrees, 592 struct prelim_ref *ref, struct ulist *parents) 593 { 594 struct btrfs_root *root; 595 struct extent_buffer *eb; 596 int ret = 0; 597 int root_level; 598 int level = ref->level; 599 struct btrfs_key search_key = ref->key_for_search; 600 601 /* 602 * If we're search_commit_root we could possibly be holding locks on 603 * other tree nodes. This happens when qgroups does backref walks when 604 * adding new delayed refs. To deal with this we need to look in cache 605 * for the root, and if we don't find it then we need to search the 606 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 607 * here. 608 */ 609 if (path->search_commit_root) 610 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 611 else 612 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 613 if (IS_ERR(root)) { 614 ret = PTR_ERR(root); 615 goto out_free; 616 } 617 618 if (!path->search_commit_root && 619 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 620 ret = -ENOENT; 621 goto out; 622 } 623 624 if (btrfs_is_testing(ctx->fs_info)) { 625 ret = -ENOENT; 626 goto out; 627 } 628 629 if (path->search_commit_root) 630 root_level = btrfs_header_level(root->commit_root); 631 else if (ctx->time_seq == BTRFS_SEQ_LAST) 632 root_level = btrfs_header_level(root->node); 633 else 634 root_level = btrfs_old_root_level(root, ctx->time_seq); 635 636 if (root_level + 1 == level) 637 goto out; 638 639 /* 640 * We can often find data backrefs with an offset that is too large 641 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 642 * subtracting a file's offset with the data offset of its 643 * corresponding extent data item. This can happen for example in the 644 * clone ioctl. 645 * 646 * So if we detect such case we set the search key's offset to zero to 647 * make sure we will find the matching file extent item at 648 * add_all_parents(), otherwise we will miss it because the offset 649 * taken form the backref is much larger then the offset of the file 650 * extent item. This can make us scan a very large number of file 651 * extent items, but at least it will not make us miss any. 652 * 653 * This is an ugly workaround for a behaviour that should have never 654 * existed, but it does and a fix for the clone ioctl would touch a lot 655 * of places, cause backwards incompatibility and would not fix the 656 * problem for extents cloned with older kernels. 657 */ 658 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 659 search_key.offset >= LLONG_MAX) 660 search_key.offset = 0; 661 path->lowest_level = level; 662 if (ctx->time_seq == BTRFS_SEQ_LAST) 663 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 664 else 665 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 666 667 btrfs_debug(ctx->fs_info, 668 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 669 ref->root_id, level, ref->count, ret, 670 ref->key_for_search.objectid, ref->key_for_search.type, 671 ref->key_for_search.offset); 672 if (ret < 0) 673 goto out; 674 675 eb = path->nodes[level]; 676 while (!eb) { 677 if (WARN_ON(!level)) { 678 ret = 1; 679 goto out; 680 } 681 level--; 682 eb = path->nodes[level]; 683 } 684 685 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 686 out: 687 btrfs_put_root(root); 688 out_free: 689 path->lowest_level = 0; 690 btrfs_release_path(path); 691 return ret; 692 } 693 694 static struct extent_inode_elem * 695 unode_aux_to_inode_list(struct ulist_node *node) 696 { 697 if (!node) 698 return NULL; 699 return (struct extent_inode_elem *)(uintptr_t)node->aux; 700 } 701 702 static void free_leaf_list(struct ulist *ulist) 703 { 704 struct ulist_node *node; 705 struct ulist_iterator uiter; 706 707 ULIST_ITER_INIT(&uiter); 708 while ((node = ulist_next(ulist, &uiter))) 709 free_inode_elem_list(unode_aux_to_inode_list(node)); 710 711 ulist_free(ulist); 712 } 713 714 /* 715 * We maintain three separate rbtrees: one for direct refs, one for 716 * indirect refs which have a key, and one for indirect refs which do not 717 * have a key. Each tree does merge on insertion. 718 * 719 * Once all of the references are located, we iterate over the tree of 720 * indirect refs with missing keys. An appropriate key is located and 721 * the ref is moved onto the tree for indirect refs. After all missing 722 * keys are thus located, we iterate over the indirect ref tree, resolve 723 * each reference, and then insert the resolved reference onto the 724 * direct tree (merging there too). 725 * 726 * New backrefs (i.e., for parent nodes) are added to the appropriate 727 * rbtree as they are encountered. The new backrefs are subsequently 728 * resolved as above. 729 */ 730 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 731 struct btrfs_path *path, 732 struct preftrees *preftrees, 733 struct share_check *sc) 734 { 735 int err; 736 int ret = 0; 737 struct ulist *parents; 738 struct ulist_node *node; 739 struct ulist_iterator uiter; 740 struct rb_node *rnode; 741 742 parents = ulist_alloc(GFP_NOFS); 743 if (!parents) 744 return -ENOMEM; 745 746 /* 747 * We could trade memory usage for performance here by iterating 748 * the tree, allocating new refs for each insertion, and then 749 * freeing the entire indirect tree when we're done. In some test 750 * cases, the tree can grow quite large (~200k objects). 751 */ 752 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 753 struct prelim_ref *ref; 754 755 ref = rb_entry(rnode, struct prelim_ref, rbnode); 756 if (WARN(ref->parent, 757 "BUG: direct ref found in indirect tree")) { 758 ret = -EINVAL; 759 goto out; 760 } 761 762 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 763 preftrees->indirect.count--; 764 765 if (ref->count == 0) { 766 free_pref(ref); 767 continue; 768 } 769 770 if (sc && ref->root_id != sc->root->root_key.objectid) { 771 free_pref(ref); 772 ret = BACKREF_FOUND_SHARED; 773 goto out; 774 } 775 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 776 /* 777 * we can only tolerate ENOENT,otherwise,we should catch error 778 * and return directly. 779 */ 780 if (err == -ENOENT) { 781 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 782 NULL); 783 continue; 784 } else if (err) { 785 free_pref(ref); 786 ret = err; 787 goto out; 788 } 789 790 /* we put the first parent into the ref at hand */ 791 ULIST_ITER_INIT(&uiter); 792 node = ulist_next(parents, &uiter); 793 ref->parent = node ? node->val : 0; 794 ref->inode_list = unode_aux_to_inode_list(node); 795 796 /* Add a prelim_ref(s) for any other parent(s). */ 797 while ((node = ulist_next(parents, &uiter))) { 798 struct prelim_ref *new_ref; 799 800 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 801 GFP_NOFS); 802 if (!new_ref) { 803 free_pref(ref); 804 ret = -ENOMEM; 805 goto out; 806 } 807 memcpy(new_ref, ref, sizeof(*ref)); 808 new_ref->parent = node->val; 809 new_ref->inode_list = unode_aux_to_inode_list(node); 810 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 811 new_ref, NULL); 812 } 813 814 /* 815 * Now it's a direct ref, put it in the direct tree. We must 816 * do this last because the ref could be merged/freed here. 817 */ 818 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 819 820 ulist_reinit(parents); 821 cond_resched(); 822 } 823 out: 824 /* 825 * We may have inode lists attached to refs in the parents ulist, so we 826 * must free them before freeing the ulist and its refs. 827 */ 828 free_leaf_list(parents); 829 return ret; 830 } 831 832 /* 833 * read tree blocks and add keys where required. 834 */ 835 static int add_missing_keys(struct btrfs_fs_info *fs_info, 836 struct preftrees *preftrees, bool lock) 837 { 838 struct prelim_ref *ref; 839 struct extent_buffer *eb; 840 struct preftree *tree = &preftrees->indirect_missing_keys; 841 struct rb_node *node; 842 843 while ((node = rb_first_cached(&tree->root))) { 844 struct btrfs_tree_parent_check check = { 0 }; 845 846 ref = rb_entry(node, struct prelim_ref, rbnode); 847 rb_erase_cached(node, &tree->root); 848 849 BUG_ON(ref->parent); /* should not be a direct ref */ 850 BUG_ON(ref->key_for_search.type); 851 BUG_ON(!ref->wanted_disk_byte); 852 853 check.level = ref->level - 1; 854 check.owner_root = ref->root_id; 855 856 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 857 if (IS_ERR(eb)) { 858 free_pref(ref); 859 return PTR_ERR(eb); 860 } 861 if (!extent_buffer_uptodate(eb)) { 862 free_pref(ref); 863 free_extent_buffer(eb); 864 return -EIO; 865 } 866 867 if (lock) 868 btrfs_tree_read_lock(eb); 869 if (btrfs_header_level(eb) == 0) 870 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 871 else 872 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 873 if (lock) 874 btrfs_tree_read_unlock(eb); 875 free_extent_buffer(eb); 876 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 877 cond_resched(); 878 } 879 return 0; 880 } 881 882 /* 883 * add all currently queued delayed refs from this head whose seq nr is 884 * smaller or equal that seq to the list 885 */ 886 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 887 struct btrfs_delayed_ref_head *head, u64 seq, 888 struct preftrees *preftrees, struct share_check *sc) 889 { 890 struct btrfs_delayed_ref_node *node; 891 struct btrfs_key key; 892 struct rb_node *n; 893 int count; 894 int ret = 0; 895 896 spin_lock(&head->lock); 897 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 898 node = rb_entry(n, struct btrfs_delayed_ref_node, 899 ref_node); 900 if (node->seq > seq) 901 continue; 902 903 switch (node->action) { 904 case BTRFS_ADD_DELAYED_EXTENT: 905 case BTRFS_UPDATE_DELAYED_HEAD: 906 WARN_ON(1); 907 continue; 908 case BTRFS_ADD_DELAYED_REF: 909 count = node->ref_mod; 910 break; 911 case BTRFS_DROP_DELAYED_REF: 912 count = node->ref_mod * -1; 913 break; 914 default: 915 BUG(); 916 } 917 switch (node->type) { 918 case BTRFS_TREE_BLOCK_REF_KEY: { 919 /* NORMAL INDIRECT METADATA backref */ 920 struct btrfs_delayed_tree_ref *ref; 921 struct btrfs_key *key_ptr = NULL; 922 923 if (head->extent_op && head->extent_op->update_key) { 924 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 925 key_ptr = &key; 926 } 927 928 ref = btrfs_delayed_node_to_tree_ref(node); 929 ret = add_indirect_ref(fs_info, preftrees, ref->root, 930 key_ptr, ref->level + 1, 931 node->bytenr, count, sc, 932 GFP_ATOMIC); 933 break; 934 } 935 case BTRFS_SHARED_BLOCK_REF_KEY: { 936 /* SHARED DIRECT METADATA backref */ 937 struct btrfs_delayed_tree_ref *ref; 938 939 ref = btrfs_delayed_node_to_tree_ref(node); 940 941 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 942 ref->parent, node->bytenr, count, 943 sc, GFP_ATOMIC); 944 break; 945 } 946 case BTRFS_EXTENT_DATA_REF_KEY: { 947 /* NORMAL INDIRECT DATA backref */ 948 struct btrfs_delayed_data_ref *ref; 949 ref = btrfs_delayed_node_to_data_ref(node); 950 951 key.objectid = ref->objectid; 952 key.type = BTRFS_EXTENT_DATA_KEY; 953 key.offset = ref->offset; 954 955 /* 956 * If we have a share check context and a reference for 957 * another inode, we can't exit immediately. This is 958 * because even if this is a BTRFS_ADD_DELAYED_REF 959 * reference we may find next a BTRFS_DROP_DELAYED_REF 960 * which cancels out this ADD reference. 961 * 962 * If this is a DROP reference and there was no previous 963 * ADD reference, then we need to signal that when we 964 * process references from the extent tree (through 965 * add_inline_refs() and add_keyed_refs()), we should 966 * not exit early if we find a reference for another 967 * inode, because one of the delayed DROP references 968 * may cancel that reference in the extent tree. 969 */ 970 if (sc && count < 0) 971 sc->have_delayed_delete_refs = true; 972 973 ret = add_indirect_ref(fs_info, preftrees, ref->root, 974 &key, 0, node->bytenr, count, sc, 975 GFP_ATOMIC); 976 break; 977 } 978 case BTRFS_SHARED_DATA_REF_KEY: { 979 /* SHARED DIRECT FULL backref */ 980 struct btrfs_delayed_data_ref *ref; 981 982 ref = btrfs_delayed_node_to_data_ref(node); 983 984 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 985 node->bytenr, count, sc, 986 GFP_ATOMIC); 987 break; 988 } 989 default: 990 WARN_ON(1); 991 } 992 /* 993 * We must ignore BACKREF_FOUND_SHARED until all delayed 994 * refs have been checked. 995 */ 996 if (ret && (ret != BACKREF_FOUND_SHARED)) 997 break; 998 } 999 if (!ret) 1000 ret = extent_is_shared(sc); 1001 1002 spin_unlock(&head->lock); 1003 return ret; 1004 } 1005 1006 /* 1007 * add all inline backrefs for bytenr to the list 1008 * 1009 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1010 */ 1011 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1012 struct btrfs_path *path, 1013 int *info_level, struct preftrees *preftrees, 1014 struct share_check *sc) 1015 { 1016 int ret = 0; 1017 int slot; 1018 struct extent_buffer *leaf; 1019 struct btrfs_key key; 1020 struct btrfs_key found_key; 1021 unsigned long ptr; 1022 unsigned long end; 1023 struct btrfs_extent_item *ei; 1024 u64 flags; 1025 u64 item_size; 1026 1027 /* 1028 * enumerate all inline refs 1029 */ 1030 leaf = path->nodes[0]; 1031 slot = path->slots[0]; 1032 1033 item_size = btrfs_item_size(leaf, slot); 1034 BUG_ON(item_size < sizeof(*ei)); 1035 1036 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1037 1038 if (ctx->check_extent_item) { 1039 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1040 if (ret) 1041 return ret; 1042 } 1043 1044 flags = btrfs_extent_flags(leaf, ei); 1045 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1046 1047 ptr = (unsigned long)(ei + 1); 1048 end = (unsigned long)ei + item_size; 1049 1050 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1051 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1052 struct btrfs_tree_block_info *info; 1053 1054 info = (struct btrfs_tree_block_info *)ptr; 1055 *info_level = btrfs_tree_block_level(leaf, info); 1056 ptr += sizeof(struct btrfs_tree_block_info); 1057 BUG_ON(ptr > end); 1058 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1059 *info_level = found_key.offset; 1060 } else { 1061 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1062 } 1063 1064 while (ptr < end) { 1065 struct btrfs_extent_inline_ref *iref; 1066 u64 offset; 1067 int type; 1068 1069 iref = (struct btrfs_extent_inline_ref *)ptr; 1070 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1071 BTRFS_REF_TYPE_ANY); 1072 if (type == BTRFS_REF_TYPE_INVALID) 1073 return -EUCLEAN; 1074 1075 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1076 1077 switch (type) { 1078 case BTRFS_SHARED_BLOCK_REF_KEY: 1079 ret = add_direct_ref(ctx->fs_info, preftrees, 1080 *info_level + 1, offset, 1081 ctx->bytenr, 1, NULL, GFP_NOFS); 1082 break; 1083 case BTRFS_SHARED_DATA_REF_KEY: { 1084 struct btrfs_shared_data_ref *sdref; 1085 int count; 1086 1087 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1088 count = btrfs_shared_data_ref_count(leaf, sdref); 1089 1090 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1091 ctx->bytenr, count, sc, GFP_NOFS); 1092 break; 1093 } 1094 case BTRFS_TREE_BLOCK_REF_KEY: 1095 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1096 NULL, *info_level + 1, 1097 ctx->bytenr, 1, NULL, GFP_NOFS); 1098 break; 1099 case BTRFS_EXTENT_DATA_REF_KEY: { 1100 struct btrfs_extent_data_ref *dref; 1101 int count; 1102 u64 root; 1103 1104 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1105 count = btrfs_extent_data_ref_count(leaf, dref); 1106 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1107 dref); 1108 key.type = BTRFS_EXTENT_DATA_KEY; 1109 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1110 1111 if (sc && key.objectid != sc->inum && 1112 !sc->have_delayed_delete_refs) { 1113 ret = BACKREF_FOUND_SHARED; 1114 break; 1115 } 1116 1117 root = btrfs_extent_data_ref_root(leaf, dref); 1118 1119 if (!ctx->skip_data_ref || 1120 !ctx->skip_data_ref(root, key.objectid, key.offset, 1121 ctx->user_ctx)) 1122 ret = add_indirect_ref(ctx->fs_info, preftrees, 1123 root, &key, 0, ctx->bytenr, 1124 count, sc, GFP_NOFS); 1125 break; 1126 } 1127 default: 1128 WARN_ON(1); 1129 } 1130 if (ret) 1131 return ret; 1132 ptr += btrfs_extent_inline_ref_size(type); 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * add all non-inline backrefs for bytenr to the list 1140 * 1141 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1142 */ 1143 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1144 struct btrfs_root *extent_root, 1145 struct btrfs_path *path, 1146 int info_level, struct preftrees *preftrees, 1147 struct share_check *sc) 1148 { 1149 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1150 int ret; 1151 int slot; 1152 struct extent_buffer *leaf; 1153 struct btrfs_key key; 1154 1155 while (1) { 1156 ret = btrfs_next_item(extent_root, path); 1157 if (ret < 0) 1158 break; 1159 if (ret) { 1160 ret = 0; 1161 break; 1162 } 1163 1164 slot = path->slots[0]; 1165 leaf = path->nodes[0]; 1166 btrfs_item_key_to_cpu(leaf, &key, slot); 1167 1168 if (key.objectid != ctx->bytenr) 1169 break; 1170 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1171 continue; 1172 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1173 break; 1174 1175 switch (key.type) { 1176 case BTRFS_SHARED_BLOCK_REF_KEY: 1177 /* SHARED DIRECT METADATA backref */ 1178 ret = add_direct_ref(fs_info, preftrees, 1179 info_level + 1, key.offset, 1180 ctx->bytenr, 1, NULL, GFP_NOFS); 1181 break; 1182 case BTRFS_SHARED_DATA_REF_KEY: { 1183 /* SHARED DIRECT FULL backref */ 1184 struct btrfs_shared_data_ref *sdref; 1185 int count; 1186 1187 sdref = btrfs_item_ptr(leaf, slot, 1188 struct btrfs_shared_data_ref); 1189 count = btrfs_shared_data_ref_count(leaf, sdref); 1190 ret = add_direct_ref(fs_info, preftrees, 0, 1191 key.offset, ctx->bytenr, count, 1192 sc, GFP_NOFS); 1193 break; 1194 } 1195 case BTRFS_TREE_BLOCK_REF_KEY: 1196 /* NORMAL INDIRECT METADATA backref */ 1197 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1198 NULL, info_level + 1, ctx->bytenr, 1199 1, NULL, GFP_NOFS); 1200 break; 1201 case BTRFS_EXTENT_DATA_REF_KEY: { 1202 /* NORMAL INDIRECT DATA backref */ 1203 struct btrfs_extent_data_ref *dref; 1204 int count; 1205 u64 root; 1206 1207 dref = btrfs_item_ptr(leaf, slot, 1208 struct btrfs_extent_data_ref); 1209 count = btrfs_extent_data_ref_count(leaf, dref); 1210 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1211 dref); 1212 key.type = BTRFS_EXTENT_DATA_KEY; 1213 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1214 1215 if (sc && key.objectid != sc->inum && 1216 !sc->have_delayed_delete_refs) { 1217 ret = BACKREF_FOUND_SHARED; 1218 break; 1219 } 1220 1221 root = btrfs_extent_data_ref_root(leaf, dref); 1222 1223 if (!ctx->skip_data_ref || 1224 !ctx->skip_data_ref(root, key.objectid, key.offset, 1225 ctx->user_ctx)) 1226 ret = add_indirect_ref(fs_info, preftrees, root, 1227 &key, 0, ctx->bytenr, 1228 count, sc, GFP_NOFS); 1229 break; 1230 } 1231 default: 1232 WARN_ON(1); 1233 } 1234 if (ret) 1235 return ret; 1236 1237 } 1238 1239 return ret; 1240 } 1241 1242 /* 1243 * The caller has joined a transaction or is holding a read lock on the 1244 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1245 * snapshot field changing while updating or checking the cache. 1246 */ 1247 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1248 struct btrfs_root *root, 1249 u64 bytenr, int level, bool *is_shared) 1250 { 1251 struct btrfs_backref_shared_cache_entry *entry; 1252 1253 if (!ctx->use_path_cache) 1254 return false; 1255 1256 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1257 return false; 1258 1259 /* 1260 * Level -1 is used for the data extent, which is not reliable to cache 1261 * because its reference count can increase or decrease without us 1262 * realizing. We cache results only for extent buffers that lead from 1263 * the root node down to the leaf with the file extent item. 1264 */ 1265 ASSERT(level >= 0); 1266 1267 entry = &ctx->path_cache_entries[level]; 1268 1269 /* Unused cache entry or being used for some other extent buffer. */ 1270 if (entry->bytenr != bytenr) 1271 return false; 1272 1273 /* 1274 * We cached a false result, but the last snapshot generation of the 1275 * root changed, so we now have a snapshot. Don't trust the result. 1276 */ 1277 if (!entry->is_shared && 1278 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1279 return false; 1280 1281 /* 1282 * If we cached a true result and the last generation used for dropping 1283 * a root changed, we can not trust the result, because the dropped root 1284 * could be a snapshot sharing this extent buffer. 1285 */ 1286 if (entry->is_shared && 1287 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info)) 1288 return false; 1289 1290 *is_shared = entry->is_shared; 1291 /* 1292 * If the node at this level is shared, than all nodes below are also 1293 * shared. Currently some of the nodes below may be marked as not shared 1294 * because we have just switched from one leaf to another, and switched 1295 * also other nodes above the leaf and below the current level, so mark 1296 * them as shared. 1297 */ 1298 if (*is_shared) { 1299 for (int i = 0; i < level; i++) { 1300 ctx->path_cache_entries[i].is_shared = true; 1301 ctx->path_cache_entries[i].gen = entry->gen; 1302 } 1303 } 1304 1305 return true; 1306 } 1307 1308 /* 1309 * The caller has joined a transaction or is holding a read lock on the 1310 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1311 * snapshot field changing while updating or checking the cache. 1312 */ 1313 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1314 struct btrfs_root *root, 1315 u64 bytenr, int level, bool is_shared) 1316 { 1317 struct btrfs_backref_shared_cache_entry *entry; 1318 u64 gen; 1319 1320 if (!ctx->use_path_cache) 1321 return; 1322 1323 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1324 return; 1325 1326 /* 1327 * Level -1 is used for the data extent, which is not reliable to cache 1328 * because its reference count can increase or decrease without us 1329 * realizing. We cache results only for extent buffers that lead from 1330 * the root node down to the leaf with the file extent item. 1331 */ 1332 ASSERT(level >= 0); 1333 1334 if (is_shared) 1335 gen = btrfs_get_last_root_drop_gen(root->fs_info); 1336 else 1337 gen = btrfs_root_last_snapshot(&root->root_item); 1338 1339 entry = &ctx->path_cache_entries[level]; 1340 entry->bytenr = bytenr; 1341 entry->is_shared = is_shared; 1342 entry->gen = gen; 1343 1344 /* 1345 * If we found an extent buffer is shared, set the cache result for all 1346 * extent buffers below it to true. As nodes in the path are COWed, 1347 * their sharedness is moved to their children, and if a leaf is COWed, 1348 * then the sharedness of a data extent becomes direct, the refcount of 1349 * data extent is increased in the extent item at the extent tree. 1350 */ 1351 if (is_shared) { 1352 for (int i = 0; i < level; i++) { 1353 entry = &ctx->path_cache_entries[i]; 1354 entry->is_shared = is_shared; 1355 entry->gen = gen; 1356 } 1357 } 1358 } 1359 1360 /* 1361 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1362 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1363 * indirect refs to their parent bytenr. 1364 * When roots are found, they're added to the roots list 1365 * 1366 * @ctx: Backref walking context object, must be not NULL. 1367 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1368 * shared extent is detected. 1369 * 1370 * Otherwise this returns 0 for success and <0 for an error. 1371 * 1372 * FIXME some caching might speed things up 1373 */ 1374 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1375 struct share_check *sc) 1376 { 1377 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1378 struct btrfs_key key; 1379 struct btrfs_path *path; 1380 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1381 struct btrfs_delayed_ref_head *head; 1382 int info_level = 0; 1383 int ret; 1384 struct prelim_ref *ref; 1385 struct rb_node *node; 1386 struct extent_inode_elem *eie = NULL; 1387 struct preftrees preftrees = { 1388 .direct = PREFTREE_INIT, 1389 .indirect = PREFTREE_INIT, 1390 .indirect_missing_keys = PREFTREE_INIT 1391 }; 1392 1393 /* Roots ulist is not needed when using a sharedness check context. */ 1394 if (sc) 1395 ASSERT(ctx->roots == NULL); 1396 1397 key.objectid = ctx->bytenr; 1398 key.offset = (u64)-1; 1399 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1400 key.type = BTRFS_METADATA_ITEM_KEY; 1401 else 1402 key.type = BTRFS_EXTENT_ITEM_KEY; 1403 1404 path = btrfs_alloc_path(); 1405 if (!path) 1406 return -ENOMEM; 1407 if (!ctx->trans) { 1408 path->search_commit_root = 1; 1409 path->skip_locking = 1; 1410 } 1411 1412 if (ctx->time_seq == BTRFS_SEQ_LAST) 1413 path->skip_locking = 1; 1414 1415 again: 1416 head = NULL; 1417 1418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1419 if (ret < 0) 1420 goto out; 1421 if (ret == 0) { 1422 /* This shouldn't happen, indicates a bug or fs corruption. */ 1423 ASSERT(ret != 0); 1424 ret = -EUCLEAN; 1425 goto out; 1426 } 1427 1428 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1429 ctx->time_seq != BTRFS_SEQ_LAST) { 1430 /* 1431 * We have a specific time_seq we care about and trans which 1432 * means we have the path lock, we need to grab the ref head and 1433 * lock it so we have a consistent view of the refs at the given 1434 * time. 1435 */ 1436 delayed_refs = &ctx->trans->transaction->delayed_refs; 1437 spin_lock(&delayed_refs->lock); 1438 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1439 if (head) { 1440 if (!mutex_trylock(&head->mutex)) { 1441 refcount_inc(&head->refs); 1442 spin_unlock(&delayed_refs->lock); 1443 1444 btrfs_release_path(path); 1445 1446 /* 1447 * Mutex was contended, block until it's 1448 * released and try again 1449 */ 1450 mutex_lock(&head->mutex); 1451 mutex_unlock(&head->mutex); 1452 btrfs_put_delayed_ref_head(head); 1453 goto again; 1454 } 1455 spin_unlock(&delayed_refs->lock); 1456 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1457 &preftrees, sc); 1458 mutex_unlock(&head->mutex); 1459 if (ret) 1460 goto out; 1461 } else { 1462 spin_unlock(&delayed_refs->lock); 1463 } 1464 } 1465 1466 if (path->slots[0]) { 1467 struct extent_buffer *leaf; 1468 int slot; 1469 1470 path->slots[0]--; 1471 leaf = path->nodes[0]; 1472 slot = path->slots[0]; 1473 btrfs_item_key_to_cpu(leaf, &key, slot); 1474 if (key.objectid == ctx->bytenr && 1475 (key.type == BTRFS_EXTENT_ITEM_KEY || 1476 key.type == BTRFS_METADATA_ITEM_KEY)) { 1477 ret = add_inline_refs(ctx, path, &info_level, 1478 &preftrees, sc); 1479 if (ret) 1480 goto out; 1481 ret = add_keyed_refs(ctx, root, path, info_level, 1482 &preftrees, sc); 1483 if (ret) 1484 goto out; 1485 } 1486 } 1487 1488 /* 1489 * If we have a share context and we reached here, it means the extent 1490 * is not directly shared (no multiple reference items for it), 1491 * otherwise we would have exited earlier with a return value of 1492 * BACKREF_FOUND_SHARED after processing delayed references or while 1493 * processing inline or keyed references from the extent tree. 1494 * The extent may however be indirectly shared through shared subtrees 1495 * as a result from creating snapshots, so we determine below what is 1496 * its parent node, in case we are dealing with a metadata extent, or 1497 * what's the leaf (or leaves), from a fs tree, that has a file extent 1498 * item pointing to it in case we are dealing with a data extent. 1499 */ 1500 ASSERT(extent_is_shared(sc) == 0); 1501 1502 /* 1503 * If we are here for a data extent and we have a share_check structure 1504 * it means the data extent is not directly shared (does not have 1505 * multiple reference items), so we have to check if a path in the fs 1506 * tree (going from the root node down to the leaf that has the file 1507 * extent item pointing to the data extent) is shared, that is, if any 1508 * of the extent buffers in the path is referenced by other trees. 1509 */ 1510 if (sc && ctx->bytenr == sc->data_bytenr) { 1511 /* 1512 * If our data extent is from a generation more recent than the 1513 * last generation used to snapshot the root, then we know that 1514 * it can not be shared through subtrees, so we can skip 1515 * resolving indirect references, there's no point in 1516 * determining the extent buffers for the path from the fs tree 1517 * root node down to the leaf that has the file extent item that 1518 * points to the data extent. 1519 */ 1520 if (sc->data_extent_gen > 1521 btrfs_root_last_snapshot(&sc->root->root_item)) { 1522 ret = BACKREF_FOUND_NOT_SHARED; 1523 goto out; 1524 } 1525 1526 /* 1527 * If we are only determining if a data extent is shared or not 1528 * and the corresponding file extent item is located in the same 1529 * leaf as the previous file extent item, we can skip resolving 1530 * indirect references for a data extent, since the fs tree path 1531 * is the same (same leaf, so same path). We skip as long as the 1532 * cached result for the leaf is valid and only if there's only 1533 * one file extent item pointing to the data extent, because in 1534 * the case of multiple file extent items, they may be located 1535 * in different leaves and therefore we have multiple paths. 1536 */ 1537 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1538 sc->self_ref_count == 1) { 1539 bool cached; 1540 bool is_shared; 1541 1542 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1543 sc->ctx->curr_leaf_bytenr, 1544 0, &is_shared); 1545 if (cached) { 1546 if (is_shared) 1547 ret = BACKREF_FOUND_SHARED; 1548 else 1549 ret = BACKREF_FOUND_NOT_SHARED; 1550 goto out; 1551 } 1552 } 1553 } 1554 1555 btrfs_release_path(path); 1556 1557 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1558 if (ret) 1559 goto out; 1560 1561 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1562 1563 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1564 if (ret) 1565 goto out; 1566 1567 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1568 1569 /* 1570 * This walks the tree of merged and resolved refs. Tree blocks are 1571 * read in as needed. Unique entries are added to the ulist, and 1572 * the list of found roots is updated. 1573 * 1574 * We release the entire tree in one go before returning. 1575 */ 1576 node = rb_first_cached(&preftrees.direct.root); 1577 while (node) { 1578 ref = rb_entry(node, struct prelim_ref, rbnode); 1579 node = rb_next(&ref->rbnode); 1580 /* 1581 * ref->count < 0 can happen here if there are delayed 1582 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1583 * prelim_ref_insert() relies on this when merging 1584 * identical refs to keep the overall count correct. 1585 * prelim_ref_insert() will merge only those refs 1586 * which compare identically. Any refs having 1587 * e.g. different offsets would not be merged, 1588 * and would retain their original ref->count < 0. 1589 */ 1590 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1591 /* no parent == root of tree */ 1592 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1593 if (ret < 0) 1594 goto out; 1595 } 1596 if (ref->count && ref->parent) { 1597 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1598 ref->level == 0) { 1599 struct btrfs_tree_parent_check check = { 0 }; 1600 struct extent_buffer *eb; 1601 1602 check.level = ref->level; 1603 1604 eb = read_tree_block(ctx->fs_info, ref->parent, 1605 &check); 1606 if (IS_ERR(eb)) { 1607 ret = PTR_ERR(eb); 1608 goto out; 1609 } 1610 if (!extent_buffer_uptodate(eb)) { 1611 free_extent_buffer(eb); 1612 ret = -EIO; 1613 goto out; 1614 } 1615 1616 if (!path->skip_locking) 1617 btrfs_tree_read_lock(eb); 1618 ret = find_extent_in_eb(ctx, eb, &eie); 1619 if (!path->skip_locking) 1620 btrfs_tree_read_unlock(eb); 1621 free_extent_buffer(eb); 1622 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1623 ret < 0) 1624 goto out; 1625 ref->inode_list = eie; 1626 /* 1627 * We transferred the list ownership to the ref, 1628 * so set to NULL to avoid a double free in case 1629 * an error happens after this. 1630 */ 1631 eie = NULL; 1632 } 1633 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1634 ref->inode_list, 1635 (void **)&eie, GFP_NOFS); 1636 if (ret < 0) 1637 goto out; 1638 if (!ret && !ctx->ignore_extent_item_pos) { 1639 /* 1640 * We've recorded that parent, so we must extend 1641 * its inode list here. 1642 * 1643 * However if there was corruption we may not 1644 * have found an eie, return an error in this 1645 * case. 1646 */ 1647 ASSERT(eie); 1648 if (!eie) { 1649 ret = -EUCLEAN; 1650 goto out; 1651 } 1652 while (eie->next) 1653 eie = eie->next; 1654 eie->next = ref->inode_list; 1655 } 1656 eie = NULL; 1657 /* 1658 * We have transferred the inode list ownership from 1659 * this ref to the ref we added to the 'refs' ulist. 1660 * So set this ref's inode list to NULL to avoid 1661 * use-after-free when our caller uses it or double 1662 * frees in case an error happens before we return. 1663 */ 1664 ref->inode_list = NULL; 1665 } 1666 cond_resched(); 1667 } 1668 1669 out: 1670 btrfs_free_path(path); 1671 1672 prelim_release(&preftrees.direct); 1673 prelim_release(&preftrees.indirect); 1674 prelim_release(&preftrees.indirect_missing_keys); 1675 1676 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1677 free_inode_elem_list(eie); 1678 return ret; 1679 } 1680 1681 /* 1682 * Finds all leaves with a reference to the specified combination of 1683 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1684 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1685 * function. The caller should free the ulist with free_leaf_list() if 1686 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1687 * enough. 1688 * 1689 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1690 */ 1691 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1692 { 1693 int ret; 1694 1695 ASSERT(ctx->refs == NULL); 1696 1697 ctx->refs = ulist_alloc(GFP_NOFS); 1698 if (!ctx->refs) 1699 return -ENOMEM; 1700 1701 ret = find_parent_nodes(ctx, NULL); 1702 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1703 (ret < 0 && ret != -ENOENT)) { 1704 free_leaf_list(ctx->refs); 1705 ctx->refs = NULL; 1706 return ret; 1707 } 1708 1709 return 0; 1710 } 1711 1712 /* 1713 * Walk all backrefs for a given extent to find all roots that reference this 1714 * extent. Walking a backref means finding all extents that reference this 1715 * extent and in turn walk the backrefs of those, too. Naturally this is a 1716 * recursive process, but here it is implemented in an iterative fashion: We 1717 * find all referencing extents for the extent in question and put them on a 1718 * list. In turn, we find all referencing extents for those, further appending 1719 * to the list. The way we iterate the list allows adding more elements after 1720 * the current while iterating. The process stops when we reach the end of the 1721 * list. 1722 * 1723 * Found roots are added to @ctx->roots, which is allocated by this function if 1724 * it points to NULL, in which case the caller is responsible for freeing it 1725 * after it's not needed anymore. 1726 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1727 * ulist to do temporary work, and frees it before returning. 1728 * 1729 * Returns 0 on success, < 0 on error. 1730 */ 1731 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1732 { 1733 const u64 orig_bytenr = ctx->bytenr; 1734 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1735 bool roots_ulist_allocated = false; 1736 struct ulist_iterator uiter; 1737 int ret = 0; 1738 1739 ASSERT(ctx->refs == NULL); 1740 1741 ctx->refs = ulist_alloc(GFP_NOFS); 1742 if (!ctx->refs) 1743 return -ENOMEM; 1744 1745 if (!ctx->roots) { 1746 ctx->roots = ulist_alloc(GFP_NOFS); 1747 if (!ctx->roots) { 1748 ulist_free(ctx->refs); 1749 ctx->refs = NULL; 1750 return -ENOMEM; 1751 } 1752 roots_ulist_allocated = true; 1753 } 1754 1755 ctx->ignore_extent_item_pos = true; 1756 1757 ULIST_ITER_INIT(&uiter); 1758 while (1) { 1759 struct ulist_node *node; 1760 1761 ret = find_parent_nodes(ctx, NULL); 1762 if (ret < 0 && ret != -ENOENT) { 1763 if (roots_ulist_allocated) { 1764 ulist_free(ctx->roots); 1765 ctx->roots = NULL; 1766 } 1767 break; 1768 } 1769 ret = 0; 1770 node = ulist_next(ctx->refs, &uiter); 1771 if (!node) 1772 break; 1773 ctx->bytenr = node->val; 1774 cond_resched(); 1775 } 1776 1777 ulist_free(ctx->refs); 1778 ctx->refs = NULL; 1779 ctx->bytenr = orig_bytenr; 1780 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1781 1782 return ret; 1783 } 1784 1785 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1786 bool skip_commit_root_sem) 1787 { 1788 int ret; 1789 1790 if (!ctx->trans && !skip_commit_root_sem) 1791 down_read(&ctx->fs_info->commit_root_sem); 1792 ret = btrfs_find_all_roots_safe(ctx); 1793 if (!ctx->trans && !skip_commit_root_sem) 1794 up_read(&ctx->fs_info->commit_root_sem); 1795 return ret; 1796 } 1797 1798 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1799 { 1800 struct btrfs_backref_share_check_ctx *ctx; 1801 1802 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1803 if (!ctx) 1804 return NULL; 1805 1806 ulist_init(&ctx->refs); 1807 1808 return ctx; 1809 } 1810 1811 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1812 { 1813 if (!ctx) 1814 return; 1815 1816 ulist_release(&ctx->refs); 1817 kfree(ctx); 1818 } 1819 1820 /* 1821 * Check if a data extent is shared or not. 1822 * 1823 * @inode: The inode whose extent we are checking. 1824 * @bytenr: Logical bytenr of the extent we are checking. 1825 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1826 * not known. 1827 * @ctx: A backref sharedness check context. 1828 * 1829 * btrfs_is_data_extent_shared uses the backref walking code but will short 1830 * circuit as soon as it finds a root or inode that doesn't match the 1831 * one passed in. This provides a significant performance benefit for 1832 * callers (such as fiemap) which want to know whether the extent is 1833 * shared but do not need a ref count. 1834 * 1835 * This attempts to attach to the running transaction in order to account for 1836 * delayed refs, but continues on even when no running transaction exists. 1837 * 1838 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1839 */ 1840 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1841 u64 extent_gen, 1842 struct btrfs_backref_share_check_ctx *ctx) 1843 { 1844 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1845 struct btrfs_root *root = inode->root; 1846 struct btrfs_fs_info *fs_info = root->fs_info; 1847 struct btrfs_trans_handle *trans; 1848 struct ulist_iterator uiter; 1849 struct ulist_node *node; 1850 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1851 int ret = 0; 1852 struct share_check shared = { 1853 .ctx = ctx, 1854 .root = root, 1855 .inum = btrfs_ino(inode), 1856 .data_bytenr = bytenr, 1857 .data_extent_gen = extent_gen, 1858 .share_count = 0, 1859 .self_ref_count = 0, 1860 .have_delayed_delete_refs = false, 1861 }; 1862 int level; 1863 1864 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1865 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1866 return ctx->prev_extents_cache[i].is_shared; 1867 } 1868 1869 ulist_init(&ctx->refs); 1870 1871 trans = btrfs_join_transaction_nostart(root); 1872 if (IS_ERR(trans)) { 1873 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1874 ret = PTR_ERR(trans); 1875 goto out; 1876 } 1877 trans = NULL; 1878 down_read(&fs_info->commit_root_sem); 1879 } else { 1880 btrfs_get_tree_mod_seq(fs_info, &elem); 1881 walk_ctx.time_seq = elem.seq; 1882 } 1883 1884 walk_ctx.ignore_extent_item_pos = true; 1885 walk_ctx.trans = trans; 1886 walk_ctx.fs_info = fs_info; 1887 walk_ctx.refs = &ctx->refs; 1888 1889 /* -1 means we are in the bytenr of the data extent. */ 1890 level = -1; 1891 ULIST_ITER_INIT(&uiter); 1892 ctx->use_path_cache = true; 1893 while (1) { 1894 bool is_shared; 1895 bool cached; 1896 1897 walk_ctx.bytenr = bytenr; 1898 ret = find_parent_nodes(&walk_ctx, &shared); 1899 if (ret == BACKREF_FOUND_SHARED || 1900 ret == BACKREF_FOUND_NOT_SHARED) { 1901 /* If shared must return 1, otherwise return 0. */ 1902 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1903 if (level >= 0) 1904 store_backref_shared_cache(ctx, root, bytenr, 1905 level, ret == 1); 1906 break; 1907 } 1908 if (ret < 0 && ret != -ENOENT) 1909 break; 1910 ret = 0; 1911 1912 /* 1913 * If our data extent was not directly shared (without multiple 1914 * reference items), than it might have a single reference item 1915 * with a count > 1 for the same offset, which means there are 2 1916 * (or more) file extent items that point to the data extent - 1917 * this happens when a file extent item needs to be split and 1918 * then one item gets moved to another leaf due to a b+tree leaf 1919 * split when inserting some item. In this case the file extent 1920 * items may be located in different leaves and therefore some 1921 * of the leaves may be referenced through shared subtrees while 1922 * others are not. Since our extent buffer cache only works for 1923 * a single path (by far the most common case and simpler to 1924 * deal with), we can not use it if we have multiple leaves 1925 * (which implies multiple paths). 1926 */ 1927 if (level == -1 && ctx->refs.nnodes > 1) 1928 ctx->use_path_cache = false; 1929 1930 if (level >= 0) 1931 store_backref_shared_cache(ctx, root, bytenr, 1932 level, false); 1933 node = ulist_next(&ctx->refs, &uiter); 1934 if (!node) 1935 break; 1936 bytenr = node->val; 1937 level++; 1938 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1939 &is_shared); 1940 if (cached) { 1941 ret = (is_shared ? 1 : 0); 1942 break; 1943 } 1944 shared.share_count = 0; 1945 shared.have_delayed_delete_refs = false; 1946 cond_resched(); 1947 } 1948 1949 /* 1950 * Cache the sharedness result for the data extent if we know our inode 1951 * has more than 1 file extent item that refers to the data extent. 1952 */ 1953 if (ret >= 0 && shared.self_ref_count > 1) { 1954 int slot = ctx->prev_extents_cache_slot; 1955 1956 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1957 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1958 1959 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1960 ctx->prev_extents_cache_slot = slot; 1961 } 1962 1963 if (trans) { 1964 btrfs_put_tree_mod_seq(fs_info, &elem); 1965 btrfs_end_transaction(trans); 1966 } else { 1967 up_read(&fs_info->commit_root_sem); 1968 } 1969 out: 1970 ulist_release(&ctx->refs); 1971 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 1972 1973 return ret; 1974 } 1975 1976 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1977 u64 start_off, struct btrfs_path *path, 1978 struct btrfs_inode_extref **ret_extref, 1979 u64 *found_off) 1980 { 1981 int ret, slot; 1982 struct btrfs_key key; 1983 struct btrfs_key found_key; 1984 struct btrfs_inode_extref *extref; 1985 const struct extent_buffer *leaf; 1986 unsigned long ptr; 1987 1988 key.objectid = inode_objectid; 1989 key.type = BTRFS_INODE_EXTREF_KEY; 1990 key.offset = start_off; 1991 1992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1993 if (ret < 0) 1994 return ret; 1995 1996 while (1) { 1997 leaf = path->nodes[0]; 1998 slot = path->slots[0]; 1999 if (slot >= btrfs_header_nritems(leaf)) { 2000 /* 2001 * If the item at offset is not found, 2002 * btrfs_search_slot will point us to the slot 2003 * where it should be inserted. In our case 2004 * that will be the slot directly before the 2005 * next INODE_REF_KEY_V2 item. In the case 2006 * that we're pointing to the last slot in a 2007 * leaf, we must move one leaf over. 2008 */ 2009 ret = btrfs_next_leaf(root, path); 2010 if (ret) { 2011 if (ret >= 1) 2012 ret = -ENOENT; 2013 break; 2014 } 2015 continue; 2016 } 2017 2018 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2019 2020 /* 2021 * Check that we're still looking at an extended ref key for 2022 * this particular objectid. If we have different 2023 * objectid or type then there are no more to be found 2024 * in the tree and we can exit. 2025 */ 2026 ret = -ENOENT; 2027 if (found_key.objectid != inode_objectid) 2028 break; 2029 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2030 break; 2031 2032 ret = 0; 2033 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2034 extref = (struct btrfs_inode_extref *)ptr; 2035 *ret_extref = extref; 2036 if (found_off) 2037 *found_off = found_key.offset; 2038 break; 2039 } 2040 2041 return ret; 2042 } 2043 2044 /* 2045 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2046 * Elements of the path are separated by '/' and the path is guaranteed to be 2047 * 0-terminated. the path is only given within the current file system. 2048 * Therefore, it never starts with a '/'. the caller is responsible to provide 2049 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2050 * the start point of the resulting string is returned. this pointer is within 2051 * dest, normally. 2052 * in case the path buffer would overflow, the pointer is decremented further 2053 * as if output was written to the buffer, though no more output is actually 2054 * generated. that way, the caller can determine how much space would be 2055 * required for the path to fit into the buffer. in that case, the returned 2056 * value will be smaller than dest. callers must check this! 2057 */ 2058 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2059 u32 name_len, unsigned long name_off, 2060 struct extent_buffer *eb_in, u64 parent, 2061 char *dest, u32 size) 2062 { 2063 int slot; 2064 u64 next_inum; 2065 int ret; 2066 s64 bytes_left = ((s64)size) - 1; 2067 struct extent_buffer *eb = eb_in; 2068 struct btrfs_key found_key; 2069 struct btrfs_inode_ref *iref; 2070 2071 if (bytes_left >= 0) 2072 dest[bytes_left] = '\0'; 2073 2074 while (1) { 2075 bytes_left -= name_len; 2076 if (bytes_left >= 0) 2077 read_extent_buffer(eb, dest + bytes_left, 2078 name_off, name_len); 2079 if (eb != eb_in) { 2080 if (!path->skip_locking) 2081 btrfs_tree_read_unlock(eb); 2082 free_extent_buffer(eb); 2083 } 2084 ret = btrfs_find_item(fs_root, path, parent, 0, 2085 BTRFS_INODE_REF_KEY, &found_key); 2086 if (ret > 0) 2087 ret = -ENOENT; 2088 if (ret) 2089 break; 2090 2091 next_inum = found_key.offset; 2092 2093 /* regular exit ahead */ 2094 if (parent == next_inum) 2095 break; 2096 2097 slot = path->slots[0]; 2098 eb = path->nodes[0]; 2099 /* make sure we can use eb after releasing the path */ 2100 if (eb != eb_in) { 2101 path->nodes[0] = NULL; 2102 path->locks[0] = 0; 2103 } 2104 btrfs_release_path(path); 2105 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2106 2107 name_len = btrfs_inode_ref_name_len(eb, iref); 2108 name_off = (unsigned long)(iref + 1); 2109 2110 parent = next_inum; 2111 --bytes_left; 2112 if (bytes_left >= 0) 2113 dest[bytes_left] = '/'; 2114 } 2115 2116 btrfs_release_path(path); 2117 2118 if (ret) 2119 return ERR_PTR(ret); 2120 2121 return dest + bytes_left; 2122 } 2123 2124 /* 2125 * this makes the path point to (logical EXTENT_ITEM *) 2126 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2127 * tree blocks and <0 on error. 2128 */ 2129 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2130 struct btrfs_path *path, struct btrfs_key *found_key, 2131 u64 *flags_ret) 2132 { 2133 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2134 int ret; 2135 u64 flags; 2136 u64 size = 0; 2137 u32 item_size; 2138 const struct extent_buffer *eb; 2139 struct btrfs_extent_item *ei; 2140 struct btrfs_key key; 2141 2142 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2143 key.type = BTRFS_METADATA_ITEM_KEY; 2144 else 2145 key.type = BTRFS_EXTENT_ITEM_KEY; 2146 key.objectid = logical; 2147 key.offset = (u64)-1; 2148 2149 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2150 if (ret < 0) 2151 return ret; 2152 2153 ret = btrfs_previous_extent_item(extent_root, path, 0); 2154 if (ret) { 2155 if (ret > 0) 2156 ret = -ENOENT; 2157 return ret; 2158 } 2159 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2160 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2161 size = fs_info->nodesize; 2162 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2163 size = found_key->offset; 2164 2165 if (found_key->objectid > logical || 2166 found_key->objectid + size <= logical) { 2167 btrfs_debug(fs_info, 2168 "logical %llu is not within any extent", logical); 2169 return -ENOENT; 2170 } 2171 2172 eb = path->nodes[0]; 2173 item_size = btrfs_item_size(eb, path->slots[0]); 2174 BUG_ON(item_size < sizeof(*ei)); 2175 2176 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2177 flags = btrfs_extent_flags(eb, ei); 2178 2179 btrfs_debug(fs_info, 2180 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2181 logical, logical - found_key->objectid, found_key->objectid, 2182 found_key->offset, flags, item_size); 2183 2184 WARN_ON(!flags_ret); 2185 if (flags_ret) { 2186 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2187 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2188 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2189 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2190 else 2191 BUG(); 2192 return 0; 2193 } 2194 2195 return -EIO; 2196 } 2197 2198 /* 2199 * helper function to iterate extent inline refs. ptr must point to a 0 value 2200 * for the first call and may be modified. it is used to track state. 2201 * if more refs exist, 0 is returned and the next call to 2202 * get_extent_inline_ref must pass the modified ptr parameter to get the 2203 * next ref. after the last ref was processed, 1 is returned. 2204 * returns <0 on error 2205 */ 2206 static int get_extent_inline_ref(unsigned long *ptr, 2207 const struct extent_buffer *eb, 2208 const struct btrfs_key *key, 2209 const struct btrfs_extent_item *ei, 2210 u32 item_size, 2211 struct btrfs_extent_inline_ref **out_eiref, 2212 int *out_type) 2213 { 2214 unsigned long end; 2215 u64 flags; 2216 struct btrfs_tree_block_info *info; 2217 2218 if (!*ptr) { 2219 /* first call */ 2220 flags = btrfs_extent_flags(eb, ei); 2221 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2222 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2223 /* a skinny metadata extent */ 2224 *out_eiref = 2225 (struct btrfs_extent_inline_ref *)(ei + 1); 2226 } else { 2227 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2228 info = (struct btrfs_tree_block_info *)(ei + 1); 2229 *out_eiref = 2230 (struct btrfs_extent_inline_ref *)(info + 1); 2231 } 2232 } else { 2233 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2234 } 2235 *ptr = (unsigned long)*out_eiref; 2236 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2237 return -ENOENT; 2238 } 2239 2240 end = (unsigned long)ei + item_size; 2241 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2242 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2243 BTRFS_REF_TYPE_ANY); 2244 if (*out_type == BTRFS_REF_TYPE_INVALID) 2245 return -EUCLEAN; 2246 2247 *ptr += btrfs_extent_inline_ref_size(*out_type); 2248 WARN_ON(*ptr > end); 2249 if (*ptr == end) 2250 return 1; /* last */ 2251 2252 return 0; 2253 } 2254 2255 /* 2256 * reads the tree block backref for an extent. tree level and root are returned 2257 * through out_level and out_root. ptr must point to a 0 value for the first 2258 * call and may be modified (see get_extent_inline_ref comment). 2259 * returns 0 if data was provided, 1 if there was no more data to provide or 2260 * <0 on error. 2261 */ 2262 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2263 struct btrfs_key *key, struct btrfs_extent_item *ei, 2264 u32 item_size, u64 *out_root, u8 *out_level) 2265 { 2266 int ret; 2267 int type; 2268 struct btrfs_extent_inline_ref *eiref; 2269 2270 if (*ptr == (unsigned long)-1) 2271 return 1; 2272 2273 while (1) { 2274 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2275 &eiref, &type); 2276 if (ret < 0) 2277 return ret; 2278 2279 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2280 type == BTRFS_SHARED_BLOCK_REF_KEY) 2281 break; 2282 2283 if (ret == 1) 2284 return 1; 2285 } 2286 2287 /* we can treat both ref types equally here */ 2288 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2289 2290 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2291 struct btrfs_tree_block_info *info; 2292 2293 info = (struct btrfs_tree_block_info *)(ei + 1); 2294 *out_level = btrfs_tree_block_level(eb, info); 2295 } else { 2296 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2297 *out_level = (u8)key->offset; 2298 } 2299 2300 if (ret == 1) 2301 *ptr = (unsigned long)-1; 2302 2303 return 0; 2304 } 2305 2306 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2307 struct extent_inode_elem *inode_list, 2308 u64 root, u64 extent_item_objectid, 2309 iterate_extent_inodes_t *iterate, void *ctx) 2310 { 2311 struct extent_inode_elem *eie; 2312 int ret = 0; 2313 2314 for (eie = inode_list; eie; eie = eie->next) { 2315 btrfs_debug(fs_info, 2316 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2317 extent_item_objectid, eie->inum, 2318 eie->offset, root); 2319 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2320 if (ret) { 2321 btrfs_debug(fs_info, 2322 "stopping iteration for %llu due to ret=%d", 2323 extent_item_objectid, ret); 2324 break; 2325 } 2326 } 2327 2328 return ret; 2329 } 2330 2331 /* 2332 * calls iterate() for every inode that references the extent identified by 2333 * the given parameters. 2334 * when the iterator function returns a non-zero value, iteration stops. 2335 */ 2336 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2337 bool search_commit_root, 2338 iterate_extent_inodes_t *iterate, void *user_ctx) 2339 { 2340 int ret; 2341 struct ulist *refs; 2342 struct ulist_node *ref_node; 2343 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2344 struct ulist_iterator ref_uiter; 2345 2346 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2347 ctx->bytenr); 2348 2349 ASSERT(ctx->trans == NULL); 2350 ASSERT(ctx->roots == NULL); 2351 2352 if (!search_commit_root) { 2353 struct btrfs_trans_handle *trans; 2354 2355 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2356 if (IS_ERR(trans)) { 2357 if (PTR_ERR(trans) != -ENOENT && 2358 PTR_ERR(trans) != -EROFS) 2359 return PTR_ERR(trans); 2360 trans = NULL; 2361 } 2362 ctx->trans = trans; 2363 } 2364 2365 if (ctx->trans) { 2366 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2367 ctx->time_seq = seq_elem.seq; 2368 } else { 2369 down_read(&ctx->fs_info->commit_root_sem); 2370 } 2371 2372 ret = btrfs_find_all_leafs(ctx); 2373 if (ret) 2374 goto out; 2375 refs = ctx->refs; 2376 ctx->refs = NULL; 2377 2378 ULIST_ITER_INIT(&ref_uiter); 2379 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2380 const u64 leaf_bytenr = ref_node->val; 2381 struct ulist_node *root_node; 2382 struct ulist_iterator root_uiter; 2383 struct extent_inode_elem *inode_list; 2384 2385 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2386 2387 if (ctx->cache_lookup) { 2388 const u64 *root_ids; 2389 int root_count; 2390 bool cached; 2391 2392 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2393 &root_ids, &root_count); 2394 if (cached) { 2395 for (int i = 0; i < root_count; i++) { 2396 ret = iterate_leaf_refs(ctx->fs_info, 2397 inode_list, 2398 root_ids[i], 2399 leaf_bytenr, 2400 iterate, 2401 user_ctx); 2402 if (ret) 2403 break; 2404 } 2405 continue; 2406 } 2407 } 2408 2409 if (!ctx->roots) { 2410 ctx->roots = ulist_alloc(GFP_NOFS); 2411 if (!ctx->roots) { 2412 ret = -ENOMEM; 2413 break; 2414 } 2415 } 2416 2417 ctx->bytenr = leaf_bytenr; 2418 ret = btrfs_find_all_roots_safe(ctx); 2419 if (ret) 2420 break; 2421 2422 if (ctx->cache_store) 2423 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2424 2425 ULIST_ITER_INIT(&root_uiter); 2426 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2427 btrfs_debug(ctx->fs_info, 2428 "root %llu references leaf %llu, data list %#llx", 2429 root_node->val, ref_node->val, 2430 ref_node->aux); 2431 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2432 root_node->val, ctx->bytenr, 2433 iterate, user_ctx); 2434 } 2435 ulist_reinit(ctx->roots); 2436 } 2437 2438 free_leaf_list(refs); 2439 out: 2440 if (ctx->trans) { 2441 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2442 btrfs_end_transaction(ctx->trans); 2443 ctx->trans = NULL; 2444 } else { 2445 up_read(&ctx->fs_info->commit_root_sem); 2446 } 2447 2448 ulist_free(ctx->roots); 2449 ctx->roots = NULL; 2450 2451 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2452 ret = 0; 2453 2454 return ret; 2455 } 2456 2457 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2458 { 2459 struct btrfs_data_container *inodes = ctx; 2460 const size_t c = 3 * sizeof(u64); 2461 2462 if (inodes->bytes_left >= c) { 2463 inodes->bytes_left -= c; 2464 inodes->val[inodes->elem_cnt] = inum; 2465 inodes->val[inodes->elem_cnt + 1] = offset; 2466 inodes->val[inodes->elem_cnt + 2] = root; 2467 inodes->elem_cnt += 3; 2468 } else { 2469 inodes->bytes_missing += c - inodes->bytes_left; 2470 inodes->bytes_left = 0; 2471 inodes->elem_missed += 3; 2472 } 2473 2474 return 0; 2475 } 2476 2477 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2478 struct btrfs_path *path, 2479 void *ctx, bool ignore_offset) 2480 { 2481 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2482 int ret; 2483 u64 flags = 0; 2484 struct btrfs_key found_key; 2485 int search_commit_root = path->search_commit_root; 2486 2487 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2488 btrfs_release_path(path); 2489 if (ret < 0) 2490 return ret; 2491 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2492 return -EINVAL; 2493 2494 walk_ctx.bytenr = found_key.objectid; 2495 if (ignore_offset) 2496 walk_ctx.ignore_extent_item_pos = true; 2497 else 2498 walk_ctx.extent_item_pos = logical - found_key.objectid; 2499 walk_ctx.fs_info = fs_info; 2500 2501 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2502 build_ino_list, ctx); 2503 } 2504 2505 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2506 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2507 2508 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2509 { 2510 int ret = 0; 2511 int slot; 2512 u32 cur; 2513 u32 len; 2514 u32 name_len; 2515 u64 parent = 0; 2516 int found = 0; 2517 struct btrfs_root *fs_root = ipath->fs_root; 2518 struct btrfs_path *path = ipath->btrfs_path; 2519 struct extent_buffer *eb; 2520 struct btrfs_inode_ref *iref; 2521 struct btrfs_key found_key; 2522 2523 while (!ret) { 2524 ret = btrfs_find_item(fs_root, path, inum, 2525 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2526 &found_key); 2527 2528 if (ret < 0) 2529 break; 2530 if (ret) { 2531 ret = found ? 0 : -ENOENT; 2532 break; 2533 } 2534 ++found; 2535 2536 parent = found_key.offset; 2537 slot = path->slots[0]; 2538 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2539 if (!eb) { 2540 ret = -ENOMEM; 2541 break; 2542 } 2543 btrfs_release_path(path); 2544 2545 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2546 2547 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2548 name_len = btrfs_inode_ref_name_len(eb, iref); 2549 /* path must be released before calling iterate()! */ 2550 btrfs_debug(fs_root->fs_info, 2551 "following ref at offset %u for inode %llu in tree %llu", 2552 cur, found_key.objectid, 2553 fs_root->root_key.objectid); 2554 ret = inode_to_path(parent, name_len, 2555 (unsigned long)(iref + 1), eb, ipath); 2556 if (ret) 2557 break; 2558 len = sizeof(*iref) + name_len; 2559 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2560 } 2561 free_extent_buffer(eb); 2562 } 2563 2564 btrfs_release_path(path); 2565 2566 return ret; 2567 } 2568 2569 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2570 { 2571 int ret; 2572 int slot; 2573 u64 offset = 0; 2574 u64 parent; 2575 int found = 0; 2576 struct btrfs_root *fs_root = ipath->fs_root; 2577 struct btrfs_path *path = ipath->btrfs_path; 2578 struct extent_buffer *eb; 2579 struct btrfs_inode_extref *extref; 2580 u32 item_size; 2581 u32 cur_offset; 2582 unsigned long ptr; 2583 2584 while (1) { 2585 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2586 &offset); 2587 if (ret < 0) 2588 break; 2589 if (ret) { 2590 ret = found ? 0 : -ENOENT; 2591 break; 2592 } 2593 ++found; 2594 2595 slot = path->slots[0]; 2596 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2597 if (!eb) { 2598 ret = -ENOMEM; 2599 break; 2600 } 2601 btrfs_release_path(path); 2602 2603 item_size = btrfs_item_size(eb, slot); 2604 ptr = btrfs_item_ptr_offset(eb, slot); 2605 cur_offset = 0; 2606 2607 while (cur_offset < item_size) { 2608 u32 name_len; 2609 2610 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2611 parent = btrfs_inode_extref_parent(eb, extref); 2612 name_len = btrfs_inode_extref_name_len(eb, extref); 2613 ret = inode_to_path(parent, name_len, 2614 (unsigned long)&extref->name, eb, ipath); 2615 if (ret) 2616 break; 2617 2618 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2619 cur_offset += sizeof(*extref); 2620 } 2621 free_extent_buffer(eb); 2622 2623 offset++; 2624 } 2625 2626 btrfs_release_path(path); 2627 2628 return ret; 2629 } 2630 2631 /* 2632 * returns 0 if the path could be dumped (probably truncated) 2633 * returns <0 in case of an error 2634 */ 2635 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2636 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2637 { 2638 char *fspath; 2639 char *fspath_min; 2640 int i = ipath->fspath->elem_cnt; 2641 const int s_ptr = sizeof(char *); 2642 u32 bytes_left; 2643 2644 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2645 ipath->fspath->bytes_left - s_ptr : 0; 2646 2647 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2648 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2649 name_off, eb, inum, fspath_min, bytes_left); 2650 if (IS_ERR(fspath)) 2651 return PTR_ERR(fspath); 2652 2653 if (fspath > fspath_min) { 2654 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2655 ++ipath->fspath->elem_cnt; 2656 ipath->fspath->bytes_left = fspath - fspath_min; 2657 } else { 2658 ++ipath->fspath->elem_missed; 2659 ipath->fspath->bytes_missing += fspath_min - fspath; 2660 ipath->fspath->bytes_left = 0; 2661 } 2662 2663 return 0; 2664 } 2665 2666 /* 2667 * this dumps all file system paths to the inode into the ipath struct, provided 2668 * is has been created large enough. each path is zero-terminated and accessed 2669 * from ipath->fspath->val[i]. 2670 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2671 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2672 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2673 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2674 * have been needed to return all paths. 2675 */ 2676 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2677 { 2678 int ret; 2679 int found_refs = 0; 2680 2681 ret = iterate_inode_refs(inum, ipath); 2682 if (!ret) 2683 ++found_refs; 2684 else if (ret != -ENOENT) 2685 return ret; 2686 2687 ret = iterate_inode_extrefs(inum, ipath); 2688 if (ret == -ENOENT && found_refs) 2689 return 0; 2690 2691 return ret; 2692 } 2693 2694 struct btrfs_data_container *init_data_container(u32 total_bytes) 2695 { 2696 struct btrfs_data_container *data; 2697 size_t alloc_bytes; 2698 2699 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2700 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2701 if (!data) 2702 return ERR_PTR(-ENOMEM); 2703 2704 if (total_bytes >= sizeof(*data)) { 2705 data->bytes_left = total_bytes - sizeof(*data); 2706 data->bytes_missing = 0; 2707 } else { 2708 data->bytes_missing = sizeof(*data) - total_bytes; 2709 data->bytes_left = 0; 2710 } 2711 2712 data->elem_cnt = 0; 2713 data->elem_missed = 0; 2714 2715 return data; 2716 } 2717 2718 /* 2719 * allocates space to return multiple file system paths for an inode. 2720 * total_bytes to allocate are passed, note that space usable for actual path 2721 * information will be total_bytes - sizeof(struct inode_fs_paths). 2722 * the returned pointer must be freed with free_ipath() in the end. 2723 */ 2724 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2725 struct btrfs_path *path) 2726 { 2727 struct inode_fs_paths *ifp; 2728 struct btrfs_data_container *fspath; 2729 2730 fspath = init_data_container(total_bytes); 2731 if (IS_ERR(fspath)) 2732 return ERR_CAST(fspath); 2733 2734 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2735 if (!ifp) { 2736 kvfree(fspath); 2737 return ERR_PTR(-ENOMEM); 2738 } 2739 2740 ifp->btrfs_path = path; 2741 ifp->fspath = fspath; 2742 ifp->fs_root = fs_root; 2743 2744 return ifp; 2745 } 2746 2747 void free_ipath(struct inode_fs_paths *ipath) 2748 { 2749 if (!ipath) 2750 return; 2751 kvfree(ipath->fspath); 2752 kfree(ipath); 2753 } 2754 2755 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2756 { 2757 struct btrfs_backref_iter *ret; 2758 2759 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2760 if (!ret) 2761 return NULL; 2762 2763 ret->path = btrfs_alloc_path(); 2764 if (!ret->path) { 2765 kfree(ret); 2766 return NULL; 2767 } 2768 2769 /* Current backref iterator only supports iteration in commit root */ 2770 ret->path->search_commit_root = 1; 2771 ret->path->skip_locking = 1; 2772 ret->fs_info = fs_info; 2773 2774 return ret; 2775 } 2776 2777 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2778 { 2779 struct btrfs_fs_info *fs_info = iter->fs_info; 2780 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2781 struct btrfs_path *path = iter->path; 2782 struct btrfs_extent_item *ei; 2783 struct btrfs_key key; 2784 int ret; 2785 2786 key.objectid = bytenr; 2787 key.type = BTRFS_METADATA_ITEM_KEY; 2788 key.offset = (u64)-1; 2789 iter->bytenr = bytenr; 2790 2791 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2792 if (ret < 0) 2793 return ret; 2794 if (ret == 0) { 2795 ret = -EUCLEAN; 2796 goto release; 2797 } 2798 if (path->slots[0] == 0) { 2799 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2800 ret = -EUCLEAN; 2801 goto release; 2802 } 2803 path->slots[0]--; 2804 2805 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2806 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2807 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2808 ret = -ENOENT; 2809 goto release; 2810 } 2811 memcpy(&iter->cur_key, &key, sizeof(key)); 2812 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2813 path->slots[0]); 2814 iter->end_ptr = (u32)(iter->item_ptr + 2815 btrfs_item_size(path->nodes[0], path->slots[0])); 2816 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2817 struct btrfs_extent_item); 2818 2819 /* 2820 * Only support iteration on tree backref yet. 2821 * 2822 * This is an extra precaution for non skinny-metadata, where 2823 * EXTENT_ITEM is also used for tree blocks, that we can only use 2824 * extent flags to determine if it's a tree block. 2825 */ 2826 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2827 ret = -ENOTSUPP; 2828 goto release; 2829 } 2830 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2831 2832 /* If there is no inline backref, go search for keyed backref */ 2833 if (iter->cur_ptr >= iter->end_ptr) { 2834 ret = btrfs_next_item(extent_root, path); 2835 2836 /* No inline nor keyed ref */ 2837 if (ret > 0) { 2838 ret = -ENOENT; 2839 goto release; 2840 } 2841 if (ret < 0) 2842 goto release; 2843 2844 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2845 path->slots[0]); 2846 if (iter->cur_key.objectid != bytenr || 2847 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2848 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2849 ret = -ENOENT; 2850 goto release; 2851 } 2852 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2853 path->slots[0]); 2854 iter->item_ptr = iter->cur_ptr; 2855 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2856 path->nodes[0], path->slots[0])); 2857 } 2858 2859 return 0; 2860 release: 2861 btrfs_backref_iter_release(iter); 2862 return ret; 2863 } 2864 2865 /* 2866 * Go to the next backref item of current bytenr, can be either inlined or 2867 * keyed. 2868 * 2869 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2870 * 2871 * Return 0 if we get next backref without problem. 2872 * Return >0 if there is no extra backref for this bytenr. 2873 * Return <0 if there is something wrong happened. 2874 */ 2875 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2876 { 2877 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2878 struct btrfs_root *extent_root; 2879 struct btrfs_path *path = iter->path; 2880 struct btrfs_extent_inline_ref *iref; 2881 int ret; 2882 u32 size; 2883 2884 if (btrfs_backref_iter_is_inline_ref(iter)) { 2885 /* We're still inside the inline refs */ 2886 ASSERT(iter->cur_ptr < iter->end_ptr); 2887 2888 if (btrfs_backref_has_tree_block_info(iter)) { 2889 /* First tree block info */ 2890 size = sizeof(struct btrfs_tree_block_info); 2891 } else { 2892 /* Use inline ref type to determine the size */ 2893 int type; 2894 2895 iref = (struct btrfs_extent_inline_ref *) 2896 ((unsigned long)iter->cur_ptr); 2897 type = btrfs_extent_inline_ref_type(eb, iref); 2898 2899 size = btrfs_extent_inline_ref_size(type); 2900 } 2901 iter->cur_ptr += size; 2902 if (iter->cur_ptr < iter->end_ptr) 2903 return 0; 2904 2905 /* All inline items iterated, fall through */ 2906 } 2907 2908 /* We're at keyed items, there is no inline item, go to the next one */ 2909 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2910 ret = btrfs_next_item(extent_root, iter->path); 2911 if (ret) 2912 return ret; 2913 2914 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2915 if (iter->cur_key.objectid != iter->bytenr || 2916 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2917 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2918 return 1; 2919 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2920 path->slots[0]); 2921 iter->cur_ptr = iter->item_ptr; 2922 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2923 path->slots[0]); 2924 return 0; 2925 } 2926 2927 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2928 struct btrfs_backref_cache *cache, int is_reloc) 2929 { 2930 int i; 2931 2932 cache->rb_root = RB_ROOT; 2933 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2934 INIT_LIST_HEAD(&cache->pending[i]); 2935 INIT_LIST_HEAD(&cache->changed); 2936 INIT_LIST_HEAD(&cache->detached); 2937 INIT_LIST_HEAD(&cache->leaves); 2938 INIT_LIST_HEAD(&cache->pending_edge); 2939 INIT_LIST_HEAD(&cache->useless_node); 2940 cache->fs_info = fs_info; 2941 cache->is_reloc = is_reloc; 2942 } 2943 2944 struct btrfs_backref_node *btrfs_backref_alloc_node( 2945 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2946 { 2947 struct btrfs_backref_node *node; 2948 2949 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2950 node = kzalloc(sizeof(*node), GFP_NOFS); 2951 if (!node) 2952 return node; 2953 2954 INIT_LIST_HEAD(&node->list); 2955 INIT_LIST_HEAD(&node->upper); 2956 INIT_LIST_HEAD(&node->lower); 2957 RB_CLEAR_NODE(&node->rb_node); 2958 cache->nr_nodes++; 2959 node->level = level; 2960 node->bytenr = bytenr; 2961 2962 return node; 2963 } 2964 2965 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2966 struct btrfs_backref_cache *cache) 2967 { 2968 struct btrfs_backref_edge *edge; 2969 2970 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2971 if (edge) 2972 cache->nr_edges++; 2973 return edge; 2974 } 2975 2976 /* 2977 * Drop the backref node from cache, also cleaning up all its 2978 * upper edges and any uncached nodes in the path. 2979 * 2980 * This cleanup happens bottom up, thus the node should either 2981 * be the lowest node in the cache or a detached node. 2982 */ 2983 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2984 struct btrfs_backref_node *node) 2985 { 2986 struct btrfs_backref_node *upper; 2987 struct btrfs_backref_edge *edge; 2988 2989 if (!node) 2990 return; 2991 2992 BUG_ON(!node->lowest && !node->detached); 2993 while (!list_empty(&node->upper)) { 2994 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2995 list[LOWER]); 2996 upper = edge->node[UPPER]; 2997 list_del(&edge->list[LOWER]); 2998 list_del(&edge->list[UPPER]); 2999 btrfs_backref_free_edge(cache, edge); 3000 3001 /* 3002 * Add the node to leaf node list if no other child block 3003 * cached. 3004 */ 3005 if (list_empty(&upper->lower)) { 3006 list_add_tail(&upper->lower, &cache->leaves); 3007 upper->lowest = 1; 3008 } 3009 } 3010 3011 btrfs_backref_drop_node(cache, node); 3012 } 3013 3014 /* 3015 * Release all nodes/edges from current cache 3016 */ 3017 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3018 { 3019 struct btrfs_backref_node *node; 3020 int i; 3021 3022 while (!list_empty(&cache->detached)) { 3023 node = list_entry(cache->detached.next, 3024 struct btrfs_backref_node, list); 3025 btrfs_backref_cleanup_node(cache, node); 3026 } 3027 3028 while (!list_empty(&cache->leaves)) { 3029 node = list_entry(cache->leaves.next, 3030 struct btrfs_backref_node, lower); 3031 btrfs_backref_cleanup_node(cache, node); 3032 } 3033 3034 cache->last_trans = 0; 3035 3036 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3037 ASSERT(list_empty(&cache->pending[i])); 3038 ASSERT(list_empty(&cache->pending_edge)); 3039 ASSERT(list_empty(&cache->useless_node)); 3040 ASSERT(list_empty(&cache->changed)); 3041 ASSERT(list_empty(&cache->detached)); 3042 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3043 ASSERT(!cache->nr_nodes); 3044 ASSERT(!cache->nr_edges); 3045 } 3046 3047 /* 3048 * Handle direct tree backref 3049 * 3050 * Direct tree backref means, the backref item shows its parent bytenr 3051 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3052 * 3053 * @ref_key: The converted backref key. 3054 * For keyed backref, it's the item key. 3055 * For inlined backref, objectid is the bytenr, 3056 * type is btrfs_inline_ref_type, offset is 3057 * btrfs_inline_ref_offset. 3058 */ 3059 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3060 struct btrfs_key *ref_key, 3061 struct btrfs_backref_node *cur) 3062 { 3063 struct btrfs_backref_edge *edge; 3064 struct btrfs_backref_node *upper; 3065 struct rb_node *rb_node; 3066 3067 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3068 3069 /* Only reloc root uses backref pointing to itself */ 3070 if (ref_key->objectid == ref_key->offset) { 3071 struct btrfs_root *root; 3072 3073 cur->is_reloc_root = 1; 3074 /* Only reloc backref cache cares about a specific root */ 3075 if (cache->is_reloc) { 3076 root = find_reloc_root(cache->fs_info, cur->bytenr); 3077 if (!root) 3078 return -ENOENT; 3079 cur->root = root; 3080 } else { 3081 /* 3082 * For generic purpose backref cache, reloc root node 3083 * is useless. 3084 */ 3085 list_add(&cur->list, &cache->useless_node); 3086 } 3087 return 0; 3088 } 3089 3090 edge = btrfs_backref_alloc_edge(cache); 3091 if (!edge) 3092 return -ENOMEM; 3093 3094 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3095 if (!rb_node) { 3096 /* Parent node not yet cached */ 3097 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3098 cur->level + 1); 3099 if (!upper) { 3100 btrfs_backref_free_edge(cache, edge); 3101 return -ENOMEM; 3102 } 3103 3104 /* 3105 * Backrefs for the upper level block isn't cached, add the 3106 * block to pending list 3107 */ 3108 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3109 } else { 3110 /* Parent node already cached */ 3111 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3112 ASSERT(upper->checked); 3113 INIT_LIST_HEAD(&edge->list[UPPER]); 3114 } 3115 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3116 return 0; 3117 } 3118 3119 /* 3120 * Handle indirect tree backref 3121 * 3122 * Indirect tree backref means, we only know which tree the node belongs to. 3123 * We still need to do a tree search to find out the parents. This is for 3124 * TREE_BLOCK_REF backref (keyed or inlined). 3125 * 3126 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3127 * @tree_key: The first key of this tree block. 3128 * @path: A clean (released) path, to avoid allocating path every time 3129 * the function get called. 3130 */ 3131 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3132 struct btrfs_path *path, 3133 struct btrfs_key *ref_key, 3134 struct btrfs_key *tree_key, 3135 struct btrfs_backref_node *cur) 3136 { 3137 struct btrfs_fs_info *fs_info = cache->fs_info; 3138 struct btrfs_backref_node *upper; 3139 struct btrfs_backref_node *lower; 3140 struct btrfs_backref_edge *edge; 3141 struct extent_buffer *eb; 3142 struct btrfs_root *root; 3143 struct rb_node *rb_node; 3144 int level; 3145 bool need_check = true; 3146 int ret; 3147 3148 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3149 if (IS_ERR(root)) 3150 return PTR_ERR(root); 3151 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3152 cur->cowonly = 1; 3153 3154 if (btrfs_root_level(&root->root_item) == cur->level) { 3155 /* Tree root */ 3156 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3157 /* 3158 * For reloc backref cache, we may ignore reloc root. But for 3159 * general purpose backref cache, we can't rely on 3160 * btrfs_should_ignore_reloc_root() as it may conflict with 3161 * current running relocation and lead to missing root. 3162 * 3163 * For general purpose backref cache, reloc root detection is 3164 * completely relying on direct backref (key->offset is parent 3165 * bytenr), thus only do such check for reloc cache. 3166 */ 3167 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3168 btrfs_put_root(root); 3169 list_add(&cur->list, &cache->useless_node); 3170 } else { 3171 cur->root = root; 3172 } 3173 return 0; 3174 } 3175 3176 level = cur->level + 1; 3177 3178 /* Search the tree to find parent blocks referring to the block */ 3179 path->search_commit_root = 1; 3180 path->skip_locking = 1; 3181 path->lowest_level = level; 3182 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3183 path->lowest_level = 0; 3184 if (ret < 0) { 3185 btrfs_put_root(root); 3186 return ret; 3187 } 3188 if (ret > 0 && path->slots[level] > 0) 3189 path->slots[level]--; 3190 3191 eb = path->nodes[level]; 3192 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3193 btrfs_err(fs_info, 3194 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3195 cur->bytenr, level - 1, root->root_key.objectid, 3196 tree_key->objectid, tree_key->type, tree_key->offset); 3197 btrfs_put_root(root); 3198 ret = -ENOENT; 3199 goto out; 3200 } 3201 lower = cur; 3202 3203 /* Add all nodes and edges in the path */ 3204 for (; level < BTRFS_MAX_LEVEL; level++) { 3205 if (!path->nodes[level]) { 3206 ASSERT(btrfs_root_bytenr(&root->root_item) == 3207 lower->bytenr); 3208 /* Same as previous should_ignore_reloc_root() call */ 3209 if (btrfs_should_ignore_reloc_root(root) && 3210 cache->is_reloc) { 3211 btrfs_put_root(root); 3212 list_add(&lower->list, &cache->useless_node); 3213 } else { 3214 lower->root = root; 3215 } 3216 break; 3217 } 3218 3219 edge = btrfs_backref_alloc_edge(cache); 3220 if (!edge) { 3221 btrfs_put_root(root); 3222 ret = -ENOMEM; 3223 goto out; 3224 } 3225 3226 eb = path->nodes[level]; 3227 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3228 if (!rb_node) { 3229 upper = btrfs_backref_alloc_node(cache, eb->start, 3230 lower->level + 1); 3231 if (!upper) { 3232 btrfs_put_root(root); 3233 btrfs_backref_free_edge(cache, edge); 3234 ret = -ENOMEM; 3235 goto out; 3236 } 3237 upper->owner = btrfs_header_owner(eb); 3238 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3239 upper->cowonly = 1; 3240 3241 /* 3242 * If we know the block isn't shared we can avoid 3243 * checking its backrefs. 3244 */ 3245 if (btrfs_block_can_be_shared(root, eb)) 3246 upper->checked = 0; 3247 else 3248 upper->checked = 1; 3249 3250 /* 3251 * Add the block to pending list if we need to check its 3252 * backrefs, we only do this once while walking up a 3253 * tree as we will catch anything else later on. 3254 */ 3255 if (!upper->checked && need_check) { 3256 need_check = false; 3257 list_add_tail(&edge->list[UPPER], 3258 &cache->pending_edge); 3259 } else { 3260 if (upper->checked) 3261 need_check = true; 3262 INIT_LIST_HEAD(&edge->list[UPPER]); 3263 } 3264 } else { 3265 upper = rb_entry(rb_node, struct btrfs_backref_node, 3266 rb_node); 3267 ASSERT(upper->checked); 3268 INIT_LIST_HEAD(&edge->list[UPPER]); 3269 if (!upper->owner) 3270 upper->owner = btrfs_header_owner(eb); 3271 } 3272 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3273 3274 if (rb_node) { 3275 btrfs_put_root(root); 3276 break; 3277 } 3278 lower = upper; 3279 upper = NULL; 3280 } 3281 out: 3282 btrfs_release_path(path); 3283 return ret; 3284 } 3285 3286 /* 3287 * Add backref node @cur into @cache. 3288 * 3289 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3290 * links aren't yet bi-directional. Needs to finish such links. 3291 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3292 * 3293 * @path: Released path for indirect tree backref lookup 3294 * @iter: Released backref iter for extent tree search 3295 * @node_key: The first key of the tree block 3296 */ 3297 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3298 struct btrfs_path *path, 3299 struct btrfs_backref_iter *iter, 3300 struct btrfs_key *node_key, 3301 struct btrfs_backref_node *cur) 3302 { 3303 struct btrfs_fs_info *fs_info = cache->fs_info; 3304 struct btrfs_backref_edge *edge; 3305 struct btrfs_backref_node *exist; 3306 int ret; 3307 3308 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3309 if (ret < 0) 3310 return ret; 3311 /* 3312 * We skip the first btrfs_tree_block_info, as we don't use the key 3313 * stored in it, but fetch it from the tree block 3314 */ 3315 if (btrfs_backref_has_tree_block_info(iter)) { 3316 ret = btrfs_backref_iter_next(iter); 3317 if (ret < 0) 3318 goto out; 3319 /* No extra backref? This means the tree block is corrupted */ 3320 if (ret > 0) { 3321 ret = -EUCLEAN; 3322 goto out; 3323 } 3324 } 3325 WARN_ON(cur->checked); 3326 if (!list_empty(&cur->upper)) { 3327 /* 3328 * The backref was added previously when processing backref of 3329 * type BTRFS_TREE_BLOCK_REF_KEY 3330 */ 3331 ASSERT(list_is_singular(&cur->upper)); 3332 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3333 list[LOWER]); 3334 ASSERT(list_empty(&edge->list[UPPER])); 3335 exist = edge->node[UPPER]; 3336 /* 3337 * Add the upper level block to pending list if we need check 3338 * its backrefs 3339 */ 3340 if (!exist->checked) 3341 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3342 } else { 3343 exist = NULL; 3344 } 3345 3346 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3347 struct extent_buffer *eb; 3348 struct btrfs_key key; 3349 int type; 3350 3351 cond_resched(); 3352 eb = btrfs_backref_get_eb(iter); 3353 3354 key.objectid = iter->bytenr; 3355 if (btrfs_backref_iter_is_inline_ref(iter)) { 3356 struct btrfs_extent_inline_ref *iref; 3357 3358 /* Update key for inline backref */ 3359 iref = (struct btrfs_extent_inline_ref *) 3360 ((unsigned long)iter->cur_ptr); 3361 type = btrfs_get_extent_inline_ref_type(eb, iref, 3362 BTRFS_REF_TYPE_BLOCK); 3363 if (type == BTRFS_REF_TYPE_INVALID) { 3364 ret = -EUCLEAN; 3365 goto out; 3366 } 3367 key.type = type; 3368 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3369 } else { 3370 key.type = iter->cur_key.type; 3371 key.offset = iter->cur_key.offset; 3372 } 3373 3374 /* 3375 * Parent node found and matches current inline ref, no need to 3376 * rebuild this node for this inline ref 3377 */ 3378 if (exist && 3379 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3380 exist->owner == key.offset) || 3381 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3382 exist->bytenr == key.offset))) { 3383 exist = NULL; 3384 continue; 3385 } 3386 3387 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3388 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3389 ret = handle_direct_tree_backref(cache, &key, cur); 3390 if (ret < 0) 3391 goto out; 3392 continue; 3393 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3394 ret = -EINVAL; 3395 btrfs_print_v0_err(fs_info); 3396 btrfs_handle_fs_error(fs_info, ret, NULL); 3397 goto out; 3398 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3399 continue; 3400 } 3401 3402 /* 3403 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3404 * means the root objectid. We need to search the tree to get 3405 * its parent bytenr. 3406 */ 3407 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3408 cur); 3409 if (ret < 0) 3410 goto out; 3411 } 3412 ret = 0; 3413 cur->checked = 1; 3414 WARN_ON(exist); 3415 out: 3416 btrfs_backref_iter_release(iter); 3417 return ret; 3418 } 3419 3420 /* 3421 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3422 */ 3423 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3424 struct btrfs_backref_node *start) 3425 { 3426 struct list_head *useless_node = &cache->useless_node; 3427 struct btrfs_backref_edge *edge; 3428 struct rb_node *rb_node; 3429 LIST_HEAD(pending_edge); 3430 3431 ASSERT(start->checked); 3432 3433 /* Insert this node to cache if it's not COW-only */ 3434 if (!start->cowonly) { 3435 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3436 &start->rb_node); 3437 if (rb_node) 3438 btrfs_backref_panic(cache->fs_info, start->bytenr, 3439 -EEXIST); 3440 list_add_tail(&start->lower, &cache->leaves); 3441 } 3442 3443 /* 3444 * Use breadth first search to iterate all related edges. 3445 * 3446 * The starting points are all the edges of this node 3447 */ 3448 list_for_each_entry(edge, &start->upper, list[LOWER]) 3449 list_add_tail(&edge->list[UPPER], &pending_edge); 3450 3451 while (!list_empty(&pending_edge)) { 3452 struct btrfs_backref_node *upper; 3453 struct btrfs_backref_node *lower; 3454 3455 edge = list_first_entry(&pending_edge, 3456 struct btrfs_backref_edge, list[UPPER]); 3457 list_del_init(&edge->list[UPPER]); 3458 upper = edge->node[UPPER]; 3459 lower = edge->node[LOWER]; 3460 3461 /* Parent is detached, no need to keep any edges */ 3462 if (upper->detached) { 3463 list_del(&edge->list[LOWER]); 3464 btrfs_backref_free_edge(cache, edge); 3465 3466 /* Lower node is orphan, queue for cleanup */ 3467 if (list_empty(&lower->upper)) 3468 list_add(&lower->list, useless_node); 3469 continue; 3470 } 3471 3472 /* 3473 * All new nodes added in current build_backref_tree() haven't 3474 * been linked to the cache rb tree. 3475 * So if we have upper->rb_node populated, this means a cache 3476 * hit. We only need to link the edge, as @upper and all its 3477 * parents have already been linked. 3478 */ 3479 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3480 if (upper->lowest) { 3481 list_del_init(&upper->lower); 3482 upper->lowest = 0; 3483 } 3484 3485 list_add_tail(&edge->list[UPPER], &upper->lower); 3486 continue; 3487 } 3488 3489 /* Sanity check, we shouldn't have any unchecked nodes */ 3490 if (!upper->checked) { 3491 ASSERT(0); 3492 return -EUCLEAN; 3493 } 3494 3495 /* Sanity check, COW-only node has non-COW-only parent */ 3496 if (start->cowonly != upper->cowonly) { 3497 ASSERT(0); 3498 return -EUCLEAN; 3499 } 3500 3501 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3502 if (!upper->cowonly) { 3503 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3504 &upper->rb_node); 3505 if (rb_node) { 3506 btrfs_backref_panic(cache->fs_info, 3507 upper->bytenr, -EEXIST); 3508 return -EUCLEAN; 3509 } 3510 } 3511 3512 list_add_tail(&edge->list[UPPER], &upper->lower); 3513 3514 /* 3515 * Also queue all the parent edges of this uncached node 3516 * to finish the upper linkage 3517 */ 3518 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3519 list_add_tail(&edge->list[UPPER], &pending_edge); 3520 } 3521 return 0; 3522 } 3523 3524 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3525 struct btrfs_backref_node *node) 3526 { 3527 struct btrfs_backref_node *lower; 3528 struct btrfs_backref_node *upper; 3529 struct btrfs_backref_edge *edge; 3530 3531 while (!list_empty(&cache->useless_node)) { 3532 lower = list_first_entry(&cache->useless_node, 3533 struct btrfs_backref_node, list); 3534 list_del_init(&lower->list); 3535 } 3536 while (!list_empty(&cache->pending_edge)) { 3537 edge = list_first_entry(&cache->pending_edge, 3538 struct btrfs_backref_edge, list[UPPER]); 3539 list_del(&edge->list[UPPER]); 3540 list_del(&edge->list[LOWER]); 3541 lower = edge->node[LOWER]; 3542 upper = edge->node[UPPER]; 3543 btrfs_backref_free_edge(cache, edge); 3544 3545 /* 3546 * Lower is no longer linked to any upper backref nodes and 3547 * isn't in the cache, we can free it ourselves. 3548 */ 3549 if (list_empty(&lower->upper) && 3550 RB_EMPTY_NODE(&lower->rb_node)) 3551 list_add(&lower->list, &cache->useless_node); 3552 3553 if (!RB_EMPTY_NODE(&upper->rb_node)) 3554 continue; 3555 3556 /* Add this guy's upper edges to the list to process */ 3557 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3558 list_add_tail(&edge->list[UPPER], 3559 &cache->pending_edge); 3560 if (list_empty(&upper->upper)) 3561 list_add(&upper->list, &cache->useless_node); 3562 } 3563 3564 while (!list_empty(&cache->useless_node)) { 3565 lower = list_first_entry(&cache->useless_node, 3566 struct btrfs_backref_node, list); 3567 list_del_init(&lower->list); 3568 if (lower == node) 3569 node = NULL; 3570 btrfs_backref_drop_node(cache, lower); 3571 } 3572 3573 btrfs_backref_cleanup_node(cache, node); 3574 ASSERT(list_empty(&cache->useless_node) && 3575 list_empty(&cache->pending_edge)); 3576 } 3577