xref: /openbmc/linux/fs/btrfs/backref.c (revision 55b24334)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!ctx->ignore_extent_item_pos &&
49 	    !btrfs_file_extent_compression(eb, fi) &&
50 	    !btrfs_file_extent_encryption(eb, fi) &&
51 	    !btrfs_file_extent_other_encoding(eb, fi)) {
52 		u64 data_offset;
53 
54 		data_offset = btrfs_file_extent_offset(eb, fi);
55 
56 		if (ctx->extent_item_pos < data_offset ||
57 		    ctx->extent_item_pos >= data_offset + data_len)
58 			return 1;
59 		offset += ctx->extent_item_pos - data_offset;
60 	}
61 
62 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 		goto add_inode_elem;
64 
65 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 				   &root_count);
67 	if (!cached)
68 		goto add_inode_elem;
69 
70 	for (int i = 0; i < root_count; i++) {
71 		int ret;
72 
73 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 						 data_len, root_ids[i],
75 						 ctx->user_ctx);
76 		if (ret)
77 			return ret;
78 	}
79 
80 add_inode_elem:
81 	e = kmalloc(sizeof(*e), GFP_NOFS);
82 	if (!e)
83 		return -ENOMEM;
84 
85 	e->next = *eie;
86 	e->inum = key->objectid;
87 	e->offset = offset;
88 	e->num_bytes = data_len;
89 	*eie = e;
90 
91 	return 0;
92 }
93 
94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 	struct extent_inode_elem *eie_next;
97 
98 	for (; eie; eie = eie_next) {
99 		eie_next = eie->next;
100 		kfree(eie);
101 	}
102 }
103 
104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 			     const struct extent_buffer *eb,
106 			     struct extent_inode_elem **eie)
107 {
108 	u64 disk_byte;
109 	struct btrfs_key key;
110 	struct btrfs_file_extent_item *fi;
111 	int slot;
112 	int nritems;
113 	int extent_type;
114 	int ret;
115 
116 	/*
117 	 * from the shared data ref, we only have the leaf but we need
118 	 * the key. thus, we must look into all items and see that we
119 	 * find one (some) with a reference to our extent item.
120 	 */
121 	nritems = btrfs_header_nritems(eb);
122 	for (slot = 0; slot < nritems; ++slot) {
123 		btrfs_item_key_to_cpu(eb, &key, slot);
124 		if (key.type != BTRFS_EXTENT_DATA_KEY)
125 			continue;
126 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 		extent_type = btrfs_file_extent_type(eb, fi);
128 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 			continue;
130 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 		if (disk_byte != ctx->bytenr)
133 			continue;
134 
135 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 			return ret;
138 	}
139 
140 	return 0;
141 }
142 
143 struct preftree {
144 	struct rb_root_cached root;
145 	unsigned int count;
146 };
147 
148 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149 
150 struct preftrees {
151 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 	struct preftree indirect_missing_keys;
154 };
155 
156 /*
157  * Checks for a shared extent during backref search.
158  *
159  * The share_count tracks prelim_refs (direct and indirect) having a
160  * ref->count >0:
161  *  - incremented when a ref->count transitions to >0
162  *  - decremented when a ref->count transitions to <1
163  */
164 struct share_check {
165 	struct btrfs_backref_share_check_ctx *ctx;
166 	struct btrfs_root *root;
167 	u64 inum;
168 	u64 data_bytenr;
169 	u64 data_extent_gen;
170 	/*
171 	 * Counts number of inodes that refer to an extent (different inodes in
172 	 * the same root or different roots) that we could find. The sharedness
173 	 * check typically stops once this counter gets greater than 1, so it
174 	 * may not reflect the total number of inodes.
175 	 */
176 	int share_count;
177 	/*
178 	 * The number of times we found our inode refers to the data extent we
179 	 * are determining the sharedness. In other words, how many file extent
180 	 * items we could find for our inode that point to our target data
181 	 * extent. The value we get here after finishing the extent sharedness
182 	 * check may be smaller than reality, but if it ends up being greater
183 	 * than 1, then we know for sure the inode has multiple file extent
184 	 * items that point to our inode, and we can safely assume it's useful
185 	 * to cache the sharedness check result.
186 	 */
187 	int self_ref_count;
188 	bool have_delayed_delete_refs;
189 };
190 
191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195 
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197 
198 int __init btrfs_prelim_ref_init(void)
199 {
200 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 					sizeof(struct prelim_ref),
202 					0,
203 					SLAB_MEM_SPREAD,
204 					NULL);
205 	if (!btrfs_prelim_ref_cache)
206 		return -ENOMEM;
207 	return 0;
208 }
209 
210 void __cold btrfs_prelim_ref_exit(void)
211 {
212 	kmem_cache_destroy(btrfs_prelim_ref_cache);
213 }
214 
215 static void free_pref(struct prelim_ref *ref)
216 {
217 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
218 }
219 
220 /*
221  * Return 0 when both refs are for the same block (and can be merged).
222  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
223  * indicates a 'higher' block.
224  */
225 static int prelim_ref_compare(struct prelim_ref *ref1,
226 			      struct prelim_ref *ref2)
227 {
228 	if (ref1->level < ref2->level)
229 		return -1;
230 	if (ref1->level > ref2->level)
231 		return 1;
232 	if (ref1->root_id < ref2->root_id)
233 		return -1;
234 	if (ref1->root_id > ref2->root_id)
235 		return 1;
236 	if (ref1->key_for_search.type < ref2->key_for_search.type)
237 		return -1;
238 	if (ref1->key_for_search.type > ref2->key_for_search.type)
239 		return 1;
240 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
241 		return -1;
242 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
243 		return 1;
244 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
245 		return -1;
246 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
247 		return 1;
248 	if (ref1->parent < ref2->parent)
249 		return -1;
250 	if (ref1->parent > ref2->parent)
251 		return 1;
252 
253 	return 0;
254 }
255 
256 static void update_share_count(struct share_check *sc, int oldcount,
257 			       int newcount, struct prelim_ref *newref)
258 {
259 	if ((!sc) || (oldcount == 0 && newcount < 1))
260 		return;
261 
262 	if (oldcount > 0 && newcount < 1)
263 		sc->share_count--;
264 	else if (oldcount < 1 && newcount > 0)
265 		sc->share_count++;
266 
267 	if (newref->root_id == sc->root->root_key.objectid &&
268 	    newref->wanted_disk_byte == sc->data_bytenr &&
269 	    newref->key_for_search.objectid == sc->inum)
270 		sc->self_ref_count += newref->count;
271 }
272 
273 /*
274  * Add @newref to the @root rbtree, merging identical refs.
275  *
276  * Callers should assume that newref has been freed after calling.
277  */
278 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
279 			      struct preftree *preftree,
280 			      struct prelim_ref *newref,
281 			      struct share_check *sc)
282 {
283 	struct rb_root_cached *root;
284 	struct rb_node **p;
285 	struct rb_node *parent = NULL;
286 	struct prelim_ref *ref;
287 	int result;
288 	bool leftmost = true;
289 
290 	root = &preftree->root;
291 	p = &root->rb_root.rb_node;
292 
293 	while (*p) {
294 		parent = *p;
295 		ref = rb_entry(parent, struct prelim_ref, rbnode);
296 		result = prelim_ref_compare(ref, newref);
297 		if (result < 0) {
298 			p = &(*p)->rb_left;
299 		} else if (result > 0) {
300 			p = &(*p)->rb_right;
301 			leftmost = false;
302 		} else {
303 			/* Identical refs, merge them and free @newref */
304 			struct extent_inode_elem *eie = ref->inode_list;
305 
306 			while (eie && eie->next)
307 				eie = eie->next;
308 
309 			if (!eie)
310 				ref->inode_list = newref->inode_list;
311 			else
312 				eie->next = newref->inode_list;
313 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
314 						     preftree->count);
315 			/*
316 			 * A delayed ref can have newref->count < 0.
317 			 * The ref->count is updated to follow any
318 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
319 			 */
320 			update_share_count(sc, ref->count,
321 					   ref->count + newref->count, newref);
322 			ref->count += newref->count;
323 			free_pref(newref);
324 			return;
325 		}
326 	}
327 
328 	update_share_count(sc, 0, newref->count, newref);
329 	preftree->count++;
330 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
331 	rb_link_node(&newref->rbnode, parent, p);
332 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
333 }
334 
335 /*
336  * Release the entire tree.  We don't care about internal consistency so
337  * just free everything and then reset the tree root.
338  */
339 static void prelim_release(struct preftree *preftree)
340 {
341 	struct prelim_ref *ref, *next_ref;
342 
343 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
344 					     &preftree->root.rb_root, rbnode) {
345 		free_inode_elem_list(ref->inode_list);
346 		free_pref(ref);
347 	}
348 
349 	preftree->root = RB_ROOT_CACHED;
350 	preftree->count = 0;
351 }
352 
353 /*
354  * the rules for all callers of this function are:
355  * - obtaining the parent is the goal
356  * - if you add a key, you must know that it is a correct key
357  * - if you cannot add the parent or a correct key, then we will look into the
358  *   block later to set a correct key
359  *
360  * delayed refs
361  * ============
362  *        backref type | shared | indirect | shared | indirect
363  * information         |   tree |     tree |   data |     data
364  * --------------------+--------+----------+--------+----------
365  *      parent logical |    y   |     -    |    -   |     -
366  *      key to resolve |    -   |     y    |    y   |     y
367  *  tree block logical |    -   |     -    |    -   |     -
368  *  root for resolving |    y   |     y    |    y   |     y
369  *
370  * - column 1:       we've the parent -> done
371  * - column 2, 3, 4: we use the key to find the parent
372  *
373  * on disk refs (inline or keyed)
374  * ==============================
375  *        backref type | shared | indirect | shared | indirect
376  * information         |   tree |     tree |   data |     data
377  * --------------------+--------+----------+--------+----------
378  *      parent logical |    y   |     -    |    y   |     -
379  *      key to resolve |    -   |     -    |    -   |     y
380  *  tree block logical |    y   |     y    |    y   |     y
381  *  root for resolving |    -   |     y    |    y   |     y
382  *
383  * - column 1, 3: we've the parent -> done
384  * - column 2:    we take the first key from the block to find the parent
385  *                (see add_missing_keys)
386  * - column 4:    we use the key to find the parent
387  *
388  * additional information that's available but not required to find the parent
389  * block might help in merging entries to gain some speed.
390  */
391 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
392 			  struct preftree *preftree, u64 root_id,
393 			  const struct btrfs_key *key, int level, u64 parent,
394 			  u64 wanted_disk_byte, int count,
395 			  struct share_check *sc, gfp_t gfp_mask)
396 {
397 	struct prelim_ref *ref;
398 
399 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
400 		return 0;
401 
402 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
403 	if (!ref)
404 		return -ENOMEM;
405 
406 	ref->root_id = root_id;
407 	if (key)
408 		ref->key_for_search = *key;
409 	else
410 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
411 
412 	ref->inode_list = NULL;
413 	ref->level = level;
414 	ref->count = count;
415 	ref->parent = parent;
416 	ref->wanted_disk_byte = wanted_disk_byte;
417 	prelim_ref_insert(fs_info, preftree, ref, sc);
418 	return extent_is_shared(sc);
419 }
420 
421 /* direct refs use root == 0, key == NULL */
422 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
423 			  struct preftrees *preftrees, int level, u64 parent,
424 			  u64 wanted_disk_byte, int count,
425 			  struct share_check *sc, gfp_t gfp_mask)
426 {
427 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
428 			      parent, wanted_disk_byte, count, sc, gfp_mask);
429 }
430 
431 /* indirect refs use parent == 0 */
432 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
433 			    struct preftrees *preftrees, u64 root_id,
434 			    const struct btrfs_key *key, int level,
435 			    u64 wanted_disk_byte, int count,
436 			    struct share_check *sc, gfp_t gfp_mask)
437 {
438 	struct preftree *tree = &preftrees->indirect;
439 
440 	if (!key)
441 		tree = &preftrees->indirect_missing_keys;
442 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
443 			      wanted_disk_byte, count, sc, gfp_mask);
444 }
445 
446 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
447 {
448 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct prelim_ref *ref = NULL;
451 	struct prelim_ref target = {};
452 	int result;
453 
454 	target.parent = bytenr;
455 
456 	while (*p) {
457 		parent = *p;
458 		ref = rb_entry(parent, struct prelim_ref, rbnode);
459 		result = prelim_ref_compare(ref, &target);
460 
461 		if (result < 0)
462 			p = &(*p)->rb_left;
463 		else if (result > 0)
464 			p = &(*p)->rb_right;
465 		else
466 			return 1;
467 	}
468 	return 0;
469 }
470 
471 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
472 			   struct btrfs_root *root, struct btrfs_path *path,
473 			   struct ulist *parents,
474 			   struct preftrees *preftrees, struct prelim_ref *ref,
475 			   int level)
476 {
477 	int ret = 0;
478 	int slot;
479 	struct extent_buffer *eb;
480 	struct btrfs_key key;
481 	struct btrfs_key *key_for_search = &ref->key_for_search;
482 	struct btrfs_file_extent_item *fi;
483 	struct extent_inode_elem *eie = NULL, *old = NULL;
484 	u64 disk_byte;
485 	u64 wanted_disk_byte = ref->wanted_disk_byte;
486 	u64 count = 0;
487 	u64 data_offset;
488 	u8 type;
489 
490 	if (level != 0) {
491 		eb = path->nodes[level];
492 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
493 		if (ret < 0)
494 			return ret;
495 		return 0;
496 	}
497 
498 	/*
499 	 * 1. We normally enter this function with the path already pointing to
500 	 *    the first item to check. But sometimes, we may enter it with
501 	 *    slot == nritems.
502 	 * 2. We are searching for normal backref but bytenr of this leaf
503 	 *    matches shared data backref
504 	 * 3. The leaf owner is not equal to the root we are searching
505 	 *
506 	 * For these cases, go to the next leaf before we continue.
507 	 */
508 	eb = path->nodes[0];
509 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
510 	    is_shared_data_backref(preftrees, eb->start) ||
511 	    ref->root_id != btrfs_header_owner(eb)) {
512 		if (ctx->time_seq == BTRFS_SEQ_LAST)
513 			ret = btrfs_next_leaf(root, path);
514 		else
515 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
516 	}
517 
518 	while (!ret && count < ref->count) {
519 		eb = path->nodes[0];
520 		slot = path->slots[0];
521 
522 		btrfs_item_key_to_cpu(eb, &key, slot);
523 
524 		if (key.objectid != key_for_search->objectid ||
525 		    key.type != BTRFS_EXTENT_DATA_KEY)
526 			break;
527 
528 		/*
529 		 * We are searching for normal backref but bytenr of this leaf
530 		 * matches shared data backref, OR
531 		 * the leaf owner is not equal to the root we are searching for
532 		 */
533 		if (slot == 0 &&
534 		    (is_shared_data_backref(preftrees, eb->start) ||
535 		     ref->root_id != btrfs_header_owner(eb))) {
536 			if (ctx->time_seq == BTRFS_SEQ_LAST)
537 				ret = btrfs_next_leaf(root, path);
538 			else
539 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
540 			continue;
541 		}
542 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
543 		type = btrfs_file_extent_type(eb, fi);
544 		if (type == BTRFS_FILE_EXTENT_INLINE)
545 			goto next;
546 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
547 		data_offset = btrfs_file_extent_offset(eb, fi);
548 
549 		if (disk_byte == wanted_disk_byte) {
550 			eie = NULL;
551 			old = NULL;
552 			if (ref->key_for_search.offset == key.offset - data_offset)
553 				count++;
554 			else
555 				goto next;
556 			if (!ctx->skip_inode_ref_list) {
557 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
558 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
559 				    ret < 0)
560 					break;
561 			}
562 			if (ret > 0)
563 				goto next;
564 			ret = ulist_add_merge_ptr(parents, eb->start,
565 						  eie, (void **)&old, GFP_NOFS);
566 			if (ret < 0)
567 				break;
568 			if (!ret && !ctx->skip_inode_ref_list) {
569 				while (old->next)
570 					old = old->next;
571 				old->next = eie;
572 			}
573 			eie = NULL;
574 		}
575 next:
576 		if (ctx->time_seq == BTRFS_SEQ_LAST)
577 			ret = btrfs_next_item(root, path);
578 		else
579 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
580 	}
581 
582 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
583 		free_inode_elem_list(eie);
584 	else if (ret > 0)
585 		ret = 0;
586 
587 	return ret;
588 }
589 
590 /*
591  * resolve an indirect backref in the form (root_id, key, level)
592  * to a logical address
593  */
594 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
595 				struct btrfs_path *path,
596 				struct preftrees *preftrees,
597 				struct prelim_ref *ref, struct ulist *parents)
598 {
599 	struct btrfs_root *root;
600 	struct extent_buffer *eb;
601 	int ret = 0;
602 	int root_level;
603 	int level = ref->level;
604 	struct btrfs_key search_key = ref->key_for_search;
605 
606 	/*
607 	 * If we're search_commit_root we could possibly be holding locks on
608 	 * other tree nodes.  This happens when qgroups does backref walks when
609 	 * adding new delayed refs.  To deal with this we need to look in cache
610 	 * for the root, and if we don't find it then we need to search the
611 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
612 	 * here.
613 	 */
614 	if (path->search_commit_root)
615 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
616 	else
617 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
618 	if (IS_ERR(root)) {
619 		ret = PTR_ERR(root);
620 		goto out_free;
621 	}
622 
623 	if (!path->search_commit_root &&
624 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
625 		ret = -ENOENT;
626 		goto out;
627 	}
628 
629 	if (btrfs_is_testing(ctx->fs_info)) {
630 		ret = -ENOENT;
631 		goto out;
632 	}
633 
634 	if (path->search_commit_root)
635 		root_level = btrfs_header_level(root->commit_root);
636 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
637 		root_level = btrfs_header_level(root->node);
638 	else
639 		root_level = btrfs_old_root_level(root, ctx->time_seq);
640 
641 	if (root_level + 1 == level)
642 		goto out;
643 
644 	/*
645 	 * We can often find data backrefs with an offset that is too large
646 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
647 	 * subtracting a file's offset with the data offset of its
648 	 * corresponding extent data item. This can happen for example in the
649 	 * clone ioctl.
650 	 *
651 	 * So if we detect such case we set the search key's offset to zero to
652 	 * make sure we will find the matching file extent item at
653 	 * add_all_parents(), otherwise we will miss it because the offset
654 	 * taken form the backref is much larger then the offset of the file
655 	 * extent item. This can make us scan a very large number of file
656 	 * extent items, but at least it will not make us miss any.
657 	 *
658 	 * This is an ugly workaround for a behaviour that should have never
659 	 * existed, but it does and a fix for the clone ioctl would touch a lot
660 	 * of places, cause backwards incompatibility and would not fix the
661 	 * problem for extents cloned with older kernels.
662 	 */
663 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
664 	    search_key.offset >= LLONG_MAX)
665 		search_key.offset = 0;
666 	path->lowest_level = level;
667 	if (ctx->time_seq == BTRFS_SEQ_LAST)
668 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
669 	else
670 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
671 
672 	btrfs_debug(ctx->fs_info,
673 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
674 		 ref->root_id, level, ref->count, ret,
675 		 ref->key_for_search.objectid, ref->key_for_search.type,
676 		 ref->key_for_search.offset);
677 	if (ret < 0)
678 		goto out;
679 
680 	eb = path->nodes[level];
681 	while (!eb) {
682 		if (WARN_ON(!level)) {
683 			ret = 1;
684 			goto out;
685 		}
686 		level--;
687 		eb = path->nodes[level];
688 	}
689 
690 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
691 out:
692 	btrfs_put_root(root);
693 out_free:
694 	path->lowest_level = 0;
695 	btrfs_release_path(path);
696 	return ret;
697 }
698 
699 static struct extent_inode_elem *
700 unode_aux_to_inode_list(struct ulist_node *node)
701 {
702 	if (!node)
703 		return NULL;
704 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
705 }
706 
707 static void free_leaf_list(struct ulist *ulist)
708 {
709 	struct ulist_node *node;
710 	struct ulist_iterator uiter;
711 
712 	ULIST_ITER_INIT(&uiter);
713 	while ((node = ulist_next(ulist, &uiter)))
714 		free_inode_elem_list(unode_aux_to_inode_list(node));
715 
716 	ulist_free(ulist);
717 }
718 
719 /*
720  * We maintain three separate rbtrees: one for direct refs, one for
721  * indirect refs which have a key, and one for indirect refs which do not
722  * have a key. Each tree does merge on insertion.
723  *
724  * Once all of the references are located, we iterate over the tree of
725  * indirect refs with missing keys. An appropriate key is located and
726  * the ref is moved onto the tree for indirect refs. After all missing
727  * keys are thus located, we iterate over the indirect ref tree, resolve
728  * each reference, and then insert the resolved reference onto the
729  * direct tree (merging there too).
730  *
731  * New backrefs (i.e., for parent nodes) are added to the appropriate
732  * rbtree as they are encountered. The new backrefs are subsequently
733  * resolved as above.
734  */
735 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
736 				 struct btrfs_path *path,
737 				 struct preftrees *preftrees,
738 				 struct share_check *sc)
739 {
740 	int err;
741 	int ret = 0;
742 	struct ulist *parents;
743 	struct ulist_node *node;
744 	struct ulist_iterator uiter;
745 	struct rb_node *rnode;
746 
747 	parents = ulist_alloc(GFP_NOFS);
748 	if (!parents)
749 		return -ENOMEM;
750 
751 	/*
752 	 * We could trade memory usage for performance here by iterating
753 	 * the tree, allocating new refs for each insertion, and then
754 	 * freeing the entire indirect tree when we're done.  In some test
755 	 * cases, the tree can grow quite large (~200k objects).
756 	 */
757 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
758 		struct prelim_ref *ref;
759 
760 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
761 		if (WARN(ref->parent,
762 			 "BUG: direct ref found in indirect tree")) {
763 			ret = -EINVAL;
764 			goto out;
765 		}
766 
767 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
768 		preftrees->indirect.count--;
769 
770 		if (ref->count == 0) {
771 			free_pref(ref);
772 			continue;
773 		}
774 
775 		if (sc && ref->root_id != sc->root->root_key.objectid) {
776 			free_pref(ref);
777 			ret = BACKREF_FOUND_SHARED;
778 			goto out;
779 		}
780 		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
781 		/*
782 		 * we can only tolerate ENOENT,otherwise,we should catch error
783 		 * and return directly.
784 		 */
785 		if (err == -ENOENT) {
786 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
787 					  NULL);
788 			continue;
789 		} else if (err) {
790 			free_pref(ref);
791 			ret = err;
792 			goto out;
793 		}
794 
795 		/* we put the first parent into the ref at hand */
796 		ULIST_ITER_INIT(&uiter);
797 		node = ulist_next(parents, &uiter);
798 		ref->parent = node ? node->val : 0;
799 		ref->inode_list = unode_aux_to_inode_list(node);
800 
801 		/* Add a prelim_ref(s) for any other parent(s). */
802 		while ((node = ulist_next(parents, &uiter))) {
803 			struct prelim_ref *new_ref;
804 
805 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
806 						   GFP_NOFS);
807 			if (!new_ref) {
808 				free_pref(ref);
809 				ret = -ENOMEM;
810 				goto out;
811 			}
812 			memcpy(new_ref, ref, sizeof(*ref));
813 			new_ref->parent = node->val;
814 			new_ref->inode_list = unode_aux_to_inode_list(node);
815 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
816 					  new_ref, NULL);
817 		}
818 
819 		/*
820 		 * Now it's a direct ref, put it in the direct tree. We must
821 		 * do this last because the ref could be merged/freed here.
822 		 */
823 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
824 
825 		ulist_reinit(parents);
826 		cond_resched();
827 	}
828 out:
829 	/*
830 	 * We may have inode lists attached to refs in the parents ulist, so we
831 	 * must free them before freeing the ulist and its refs.
832 	 */
833 	free_leaf_list(parents);
834 	return ret;
835 }
836 
837 /*
838  * read tree blocks and add keys where required.
839  */
840 static int add_missing_keys(struct btrfs_fs_info *fs_info,
841 			    struct preftrees *preftrees, bool lock)
842 {
843 	struct prelim_ref *ref;
844 	struct extent_buffer *eb;
845 	struct preftree *tree = &preftrees->indirect_missing_keys;
846 	struct rb_node *node;
847 
848 	while ((node = rb_first_cached(&tree->root))) {
849 		struct btrfs_tree_parent_check check = { 0 };
850 
851 		ref = rb_entry(node, struct prelim_ref, rbnode);
852 		rb_erase_cached(node, &tree->root);
853 
854 		BUG_ON(ref->parent);	/* should not be a direct ref */
855 		BUG_ON(ref->key_for_search.type);
856 		BUG_ON(!ref->wanted_disk_byte);
857 
858 		check.level = ref->level - 1;
859 		check.owner_root = ref->root_id;
860 
861 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
862 		if (IS_ERR(eb)) {
863 			free_pref(ref);
864 			return PTR_ERR(eb);
865 		}
866 		if (!extent_buffer_uptodate(eb)) {
867 			free_pref(ref);
868 			free_extent_buffer(eb);
869 			return -EIO;
870 		}
871 
872 		if (lock)
873 			btrfs_tree_read_lock(eb);
874 		if (btrfs_header_level(eb) == 0)
875 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
876 		else
877 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
878 		if (lock)
879 			btrfs_tree_read_unlock(eb);
880 		free_extent_buffer(eb);
881 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
882 		cond_resched();
883 	}
884 	return 0;
885 }
886 
887 /*
888  * add all currently queued delayed refs from this head whose seq nr is
889  * smaller or equal that seq to the list
890  */
891 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
892 			    struct btrfs_delayed_ref_head *head, u64 seq,
893 			    struct preftrees *preftrees, struct share_check *sc)
894 {
895 	struct btrfs_delayed_ref_node *node;
896 	struct btrfs_key key;
897 	struct rb_node *n;
898 	int count;
899 	int ret = 0;
900 
901 	spin_lock(&head->lock);
902 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
903 		node = rb_entry(n, struct btrfs_delayed_ref_node,
904 				ref_node);
905 		if (node->seq > seq)
906 			continue;
907 
908 		switch (node->action) {
909 		case BTRFS_ADD_DELAYED_EXTENT:
910 		case BTRFS_UPDATE_DELAYED_HEAD:
911 			WARN_ON(1);
912 			continue;
913 		case BTRFS_ADD_DELAYED_REF:
914 			count = node->ref_mod;
915 			break;
916 		case BTRFS_DROP_DELAYED_REF:
917 			count = node->ref_mod * -1;
918 			break;
919 		default:
920 			BUG();
921 		}
922 		switch (node->type) {
923 		case BTRFS_TREE_BLOCK_REF_KEY: {
924 			/* NORMAL INDIRECT METADATA backref */
925 			struct btrfs_delayed_tree_ref *ref;
926 			struct btrfs_key *key_ptr = NULL;
927 
928 			if (head->extent_op && head->extent_op->update_key) {
929 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
930 				key_ptr = &key;
931 			}
932 
933 			ref = btrfs_delayed_node_to_tree_ref(node);
934 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
935 					       key_ptr, ref->level + 1,
936 					       node->bytenr, count, sc,
937 					       GFP_ATOMIC);
938 			break;
939 		}
940 		case BTRFS_SHARED_BLOCK_REF_KEY: {
941 			/* SHARED DIRECT METADATA backref */
942 			struct btrfs_delayed_tree_ref *ref;
943 
944 			ref = btrfs_delayed_node_to_tree_ref(node);
945 
946 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
947 					     ref->parent, node->bytenr, count,
948 					     sc, GFP_ATOMIC);
949 			break;
950 		}
951 		case BTRFS_EXTENT_DATA_REF_KEY: {
952 			/* NORMAL INDIRECT DATA backref */
953 			struct btrfs_delayed_data_ref *ref;
954 			ref = btrfs_delayed_node_to_data_ref(node);
955 
956 			key.objectid = ref->objectid;
957 			key.type = BTRFS_EXTENT_DATA_KEY;
958 			key.offset = ref->offset;
959 
960 			/*
961 			 * If we have a share check context and a reference for
962 			 * another inode, we can't exit immediately. This is
963 			 * because even if this is a BTRFS_ADD_DELAYED_REF
964 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
965 			 * which cancels out this ADD reference.
966 			 *
967 			 * If this is a DROP reference and there was no previous
968 			 * ADD reference, then we need to signal that when we
969 			 * process references from the extent tree (through
970 			 * add_inline_refs() and add_keyed_refs()), we should
971 			 * not exit early if we find a reference for another
972 			 * inode, because one of the delayed DROP references
973 			 * may cancel that reference in the extent tree.
974 			 */
975 			if (sc && count < 0)
976 				sc->have_delayed_delete_refs = true;
977 
978 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
979 					       &key, 0, node->bytenr, count, sc,
980 					       GFP_ATOMIC);
981 			break;
982 		}
983 		case BTRFS_SHARED_DATA_REF_KEY: {
984 			/* SHARED DIRECT FULL backref */
985 			struct btrfs_delayed_data_ref *ref;
986 
987 			ref = btrfs_delayed_node_to_data_ref(node);
988 
989 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
990 					     node->bytenr, count, sc,
991 					     GFP_ATOMIC);
992 			break;
993 		}
994 		default:
995 			WARN_ON(1);
996 		}
997 		/*
998 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
999 		 * refs have been checked.
1000 		 */
1001 		if (ret && (ret != BACKREF_FOUND_SHARED))
1002 			break;
1003 	}
1004 	if (!ret)
1005 		ret = extent_is_shared(sc);
1006 
1007 	spin_unlock(&head->lock);
1008 	return ret;
1009 }
1010 
1011 /*
1012  * add all inline backrefs for bytenr to the list
1013  *
1014  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1015  */
1016 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1017 			   struct btrfs_path *path,
1018 			   int *info_level, struct preftrees *preftrees,
1019 			   struct share_check *sc)
1020 {
1021 	int ret = 0;
1022 	int slot;
1023 	struct extent_buffer *leaf;
1024 	struct btrfs_key key;
1025 	struct btrfs_key found_key;
1026 	unsigned long ptr;
1027 	unsigned long end;
1028 	struct btrfs_extent_item *ei;
1029 	u64 flags;
1030 	u64 item_size;
1031 
1032 	/*
1033 	 * enumerate all inline refs
1034 	 */
1035 	leaf = path->nodes[0];
1036 	slot = path->slots[0];
1037 
1038 	item_size = btrfs_item_size(leaf, slot);
1039 	BUG_ON(item_size < sizeof(*ei));
1040 
1041 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1042 
1043 	if (ctx->check_extent_item) {
1044 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	flags = btrfs_extent_flags(leaf, ei);
1050 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1051 
1052 	ptr = (unsigned long)(ei + 1);
1053 	end = (unsigned long)ei + item_size;
1054 
1055 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1056 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1057 		struct btrfs_tree_block_info *info;
1058 
1059 		info = (struct btrfs_tree_block_info *)ptr;
1060 		*info_level = btrfs_tree_block_level(leaf, info);
1061 		ptr += sizeof(struct btrfs_tree_block_info);
1062 		BUG_ON(ptr > end);
1063 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1064 		*info_level = found_key.offset;
1065 	} else {
1066 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1067 	}
1068 
1069 	while (ptr < end) {
1070 		struct btrfs_extent_inline_ref *iref;
1071 		u64 offset;
1072 		int type;
1073 
1074 		iref = (struct btrfs_extent_inline_ref *)ptr;
1075 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1076 							BTRFS_REF_TYPE_ANY);
1077 		if (type == BTRFS_REF_TYPE_INVALID)
1078 			return -EUCLEAN;
1079 
1080 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1081 
1082 		switch (type) {
1083 		case BTRFS_SHARED_BLOCK_REF_KEY:
1084 			ret = add_direct_ref(ctx->fs_info, preftrees,
1085 					     *info_level + 1, offset,
1086 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1087 			break;
1088 		case BTRFS_SHARED_DATA_REF_KEY: {
1089 			struct btrfs_shared_data_ref *sdref;
1090 			int count;
1091 
1092 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1093 			count = btrfs_shared_data_ref_count(leaf, sdref);
1094 
1095 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1096 					     ctx->bytenr, count, sc, GFP_NOFS);
1097 			break;
1098 		}
1099 		case BTRFS_TREE_BLOCK_REF_KEY:
1100 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1101 					       NULL, *info_level + 1,
1102 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1103 			break;
1104 		case BTRFS_EXTENT_DATA_REF_KEY: {
1105 			struct btrfs_extent_data_ref *dref;
1106 			int count;
1107 			u64 root;
1108 
1109 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 			count = btrfs_extent_data_ref_count(leaf, dref);
1111 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1112 								      dref);
1113 			key.type = BTRFS_EXTENT_DATA_KEY;
1114 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1115 
1116 			if (sc && key.objectid != sc->inum &&
1117 			    !sc->have_delayed_delete_refs) {
1118 				ret = BACKREF_FOUND_SHARED;
1119 				break;
1120 			}
1121 
1122 			root = btrfs_extent_data_ref_root(leaf, dref);
1123 
1124 			if (!ctx->skip_data_ref ||
1125 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1126 						ctx->user_ctx))
1127 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1128 						       root, &key, 0, ctx->bytenr,
1129 						       count, sc, GFP_NOFS);
1130 			break;
1131 		}
1132 		default:
1133 			WARN_ON(1);
1134 		}
1135 		if (ret)
1136 			return ret;
1137 		ptr += btrfs_extent_inline_ref_size(type);
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /*
1144  * add all non-inline backrefs for bytenr to the list
1145  *
1146  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1147  */
1148 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1149 			  struct btrfs_root *extent_root,
1150 			  struct btrfs_path *path,
1151 			  int info_level, struct preftrees *preftrees,
1152 			  struct share_check *sc)
1153 {
1154 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1155 	int ret;
1156 	int slot;
1157 	struct extent_buffer *leaf;
1158 	struct btrfs_key key;
1159 
1160 	while (1) {
1161 		ret = btrfs_next_item(extent_root, path);
1162 		if (ret < 0)
1163 			break;
1164 		if (ret) {
1165 			ret = 0;
1166 			break;
1167 		}
1168 
1169 		slot = path->slots[0];
1170 		leaf = path->nodes[0];
1171 		btrfs_item_key_to_cpu(leaf, &key, slot);
1172 
1173 		if (key.objectid != ctx->bytenr)
1174 			break;
1175 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1176 			continue;
1177 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1178 			break;
1179 
1180 		switch (key.type) {
1181 		case BTRFS_SHARED_BLOCK_REF_KEY:
1182 			/* SHARED DIRECT METADATA backref */
1183 			ret = add_direct_ref(fs_info, preftrees,
1184 					     info_level + 1, key.offset,
1185 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1186 			break;
1187 		case BTRFS_SHARED_DATA_REF_KEY: {
1188 			/* SHARED DIRECT FULL backref */
1189 			struct btrfs_shared_data_ref *sdref;
1190 			int count;
1191 
1192 			sdref = btrfs_item_ptr(leaf, slot,
1193 					      struct btrfs_shared_data_ref);
1194 			count = btrfs_shared_data_ref_count(leaf, sdref);
1195 			ret = add_direct_ref(fs_info, preftrees, 0,
1196 					     key.offset, ctx->bytenr, count,
1197 					     sc, GFP_NOFS);
1198 			break;
1199 		}
1200 		case BTRFS_TREE_BLOCK_REF_KEY:
1201 			/* NORMAL INDIRECT METADATA backref */
1202 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1203 					       NULL, info_level + 1, ctx->bytenr,
1204 					       1, NULL, GFP_NOFS);
1205 			break;
1206 		case BTRFS_EXTENT_DATA_REF_KEY: {
1207 			/* NORMAL INDIRECT DATA backref */
1208 			struct btrfs_extent_data_ref *dref;
1209 			int count;
1210 			u64 root;
1211 
1212 			dref = btrfs_item_ptr(leaf, slot,
1213 					      struct btrfs_extent_data_ref);
1214 			count = btrfs_extent_data_ref_count(leaf, dref);
1215 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1216 								      dref);
1217 			key.type = BTRFS_EXTENT_DATA_KEY;
1218 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1219 
1220 			if (sc && key.objectid != sc->inum &&
1221 			    !sc->have_delayed_delete_refs) {
1222 				ret = BACKREF_FOUND_SHARED;
1223 				break;
1224 			}
1225 
1226 			root = btrfs_extent_data_ref_root(leaf, dref);
1227 
1228 			if (!ctx->skip_data_ref ||
1229 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1230 						ctx->user_ctx))
1231 				ret = add_indirect_ref(fs_info, preftrees, root,
1232 						       &key, 0, ctx->bytenr,
1233 						       count, sc, GFP_NOFS);
1234 			break;
1235 		}
1236 		default:
1237 			WARN_ON(1);
1238 		}
1239 		if (ret)
1240 			return ret;
1241 
1242 	}
1243 
1244 	return ret;
1245 }
1246 
1247 /*
1248  * The caller has joined a transaction or is holding a read lock on the
1249  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1250  * snapshot field changing while updating or checking the cache.
1251  */
1252 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1253 					struct btrfs_root *root,
1254 					u64 bytenr, int level, bool *is_shared)
1255 {
1256 	const struct btrfs_fs_info *fs_info = root->fs_info;
1257 	struct btrfs_backref_shared_cache_entry *entry;
1258 
1259 	if (!current->journal_info)
1260 		lockdep_assert_held(&fs_info->commit_root_sem);
1261 
1262 	if (!ctx->use_path_cache)
1263 		return false;
1264 
1265 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1266 		return false;
1267 
1268 	/*
1269 	 * Level -1 is used for the data extent, which is not reliable to cache
1270 	 * because its reference count can increase or decrease without us
1271 	 * realizing. We cache results only for extent buffers that lead from
1272 	 * the root node down to the leaf with the file extent item.
1273 	 */
1274 	ASSERT(level >= 0);
1275 
1276 	entry = &ctx->path_cache_entries[level];
1277 
1278 	/* Unused cache entry or being used for some other extent buffer. */
1279 	if (entry->bytenr != bytenr)
1280 		return false;
1281 
1282 	/*
1283 	 * We cached a false result, but the last snapshot generation of the
1284 	 * root changed, so we now have a snapshot. Don't trust the result.
1285 	 */
1286 	if (!entry->is_shared &&
1287 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1288 		return false;
1289 
1290 	/*
1291 	 * If we cached a true result and the last generation used for dropping
1292 	 * a root changed, we can not trust the result, because the dropped root
1293 	 * could be a snapshot sharing this extent buffer.
1294 	 */
1295 	if (entry->is_shared &&
1296 	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1297 		return false;
1298 
1299 	*is_shared = entry->is_shared;
1300 	/*
1301 	 * If the node at this level is shared, than all nodes below are also
1302 	 * shared. Currently some of the nodes below may be marked as not shared
1303 	 * because we have just switched from one leaf to another, and switched
1304 	 * also other nodes above the leaf and below the current level, so mark
1305 	 * them as shared.
1306 	 */
1307 	if (*is_shared) {
1308 		for (int i = 0; i < level; i++) {
1309 			ctx->path_cache_entries[i].is_shared = true;
1310 			ctx->path_cache_entries[i].gen = entry->gen;
1311 		}
1312 	}
1313 
1314 	return true;
1315 }
1316 
1317 /*
1318  * The caller has joined a transaction or is holding a read lock on the
1319  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1320  * snapshot field changing while updating or checking the cache.
1321  */
1322 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1323 				       struct btrfs_root *root,
1324 				       u64 bytenr, int level, bool is_shared)
1325 {
1326 	const struct btrfs_fs_info *fs_info = root->fs_info;
1327 	struct btrfs_backref_shared_cache_entry *entry;
1328 	u64 gen;
1329 
1330 	if (!current->journal_info)
1331 		lockdep_assert_held(&fs_info->commit_root_sem);
1332 
1333 	if (!ctx->use_path_cache)
1334 		return;
1335 
1336 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1337 		return;
1338 
1339 	/*
1340 	 * Level -1 is used for the data extent, which is not reliable to cache
1341 	 * because its reference count can increase or decrease without us
1342 	 * realizing. We cache results only for extent buffers that lead from
1343 	 * the root node down to the leaf with the file extent item.
1344 	 */
1345 	ASSERT(level >= 0);
1346 
1347 	if (is_shared)
1348 		gen = btrfs_get_last_root_drop_gen(fs_info);
1349 	else
1350 		gen = btrfs_root_last_snapshot(&root->root_item);
1351 
1352 	entry = &ctx->path_cache_entries[level];
1353 	entry->bytenr = bytenr;
1354 	entry->is_shared = is_shared;
1355 	entry->gen = gen;
1356 
1357 	/*
1358 	 * If we found an extent buffer is shared, set the cache result for all
1359 	 * extent buffers below it to true. As nodes in the path are COWed,
1360 	 * their sharedness is moved to their children, and if a leaf is COWed,
1361 	 * then the sharedness of a data extent becomes direct, the refcount of
1362 	 * data extent is increased in the extent item at the extent tree.
1363 	 */
1364 	if (is_shared) {
1365 		for (int i = 0; i < level; i++) {
1366 			entry = &ctx->path_cache_entries[i];
1367 			entry->is_shared = is_shared;
1368 			entry->gen = gen;
1369 		}
1370 	}
1371 }
1372 
1373 /*
1374  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1375  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1376  * indirect refs to their parent bytenr.
1377  * When roots are found, they're added to the roots list
1378  *
1379  * @ctx:     Backref walking context object, must be not NULL.
1380  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1381  *           shared extent is detected.
1382  *
1383  * Otherwise this returns 0 for success and <0 for an error.
1384  *
1385  * FIXME some caching might speed things up
1386  */
1387 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1388 			     struct share_check *sc)
1389 {
1390 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1391 	struct btrfs_key key;
1392 	struct btrfs_path *path;
1393 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1394 	struct btrfs_delayed_ref_head *head;
1395 	int info_level = 0;
1396 	int ret;
1397 	struct prelim_ref *ref;
1398 	struct rb_node *node;
1399 	struct extent_inode_elem *eie = NULL;
1400 	struct preftrees preftrees = {
1401 		.direct = PREFTREE_INIT,
1402 		.indirect = PREFTREE_INIT,
1403 		.indirect_missing_keys = PREFTREE_INIT
1404 	};
1405 
1406 	/* Roots ulist is not needed when using a sharedness check context. */
1407 	if (sc)
1408 		ASSERT(ctx->roots == NULL);
1409 
1410 	key.objectid = ctx->bytenr;
1411 	key.offset = (u64)-1;
1412 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1413 		key.type = BTRFS_METADATA_ITEM_KEY;
1414 	else
1415 		key.type = BTRFS_EXTENT_ITEM_KEY;
1416 
1417 	path = btrfs_alloc_path();
1418 	if (!path)
1419 		return -ENOMEM;
1420 	if (!ctx->trans) {
1421 		path->search_commit_root = 1;
1422 		path->skip_locking = 1;
1423 	}
1424 
1425 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1426 		path->skip_locking = 1;
1427 
1428 again:
1429 	head = NULL;
1430 
1431 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432 	if (ret < 0)
1433 		goto out;
1434 	if (ret == 0) {
1435 		/* This shouldn't happen, indicates a bug or fs corruption. */
1436 		ASSERT(ret != 0);
1437 		ret = -EUCLEAN;
1438 		goto out;
1439 	}
1440 
1441 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1443 		/*
1444 		 * We have a specific time_seq we care about and trans which
1445 		 * means we have the path lock, we need to grab the ref head and
1446 		 * lock it so we have a consistent view of the refs at the given
1447 		 * time.
1448 		 */
1449 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1450 		spin_lock(&delayed_refs->lock);
1451 		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1452 		if (head) {
1453 			if (!mutex_trylock(&head->mutex)) {
1454 				refcount_inc(&head->refs);
1455 				spin_unlock(&delayed_refs->lock);
1456 
1457 				btrfs_release_path(path);
1458 
1459 				/*
1460 				 * Mutex was contended, block until it's
1461 				 * released and try again
1462 				 */
1463 				mutex_lock(&head->mutex);
1464 				mutex_unlock(&head->mutex);
1465 				btrfs_put_delayed_ref_head(head);
1466 				goto again;
1467 			}
1468 			spin_unlock(&delayed_refs->lock);
1469 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1470 					       &preftrees, sc);
1471 			mutex_unlock(&head->mutex);
1472 			if (ret)
1473 				goto out;
1474 		} else {
1475 			spin_unlock(&delayed_refs->lock);
1476 		}
1477 	}
1478 
1479 	if (path->slots[0]) {
1480 		struct extent_buffer *leaf;
1481 		int slot;
1482 
1483 		path->slots[0]--;
1484 		leaf = path->nodes[0];
1485 		slot = path->slots[0];
1486 		btrfs_item_key_to_cpu(leaf, &key, slot);
1487 		if (key.objectid == ctx->bytenr &&
1488 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1490 			ret = add_inline_refs(ctx, path, &info_level,
1491 					      &preftrees, sc);
1492 			if (ret)
1493 				goto out;
1494 			ret = add_keyed_refs(ctx, root, path, info_level,
1495 					     &preftrees, sc);
1496 			if (ret)
1497 				goto out;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * If we have a share context and we reached here, it means the extent
1503 	 * is not directly shared (no multiple reference items for it),
1504 	 * otherwise we would have exited earlier with a return value of
1505 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1506 	 * processing inline or keyed references from the extent tree.
1507 	 * The extent may however be indirectly shared through shared subtrees
1508 	 * as a result from creating snapshots, so we determine below what is
1509 	 * its parent node, in case we are dealing with a metadata extent, or
1510 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511 	 * item pointing to it in case we are dealing with a data extent.
1512 	 */
1513 	ASSERT(extent_is_shared(sc) == 0);
1514 
1515 	/*
1516 	 * If we are here for a data extent and we have a share_check structure
1517 	 * it means the data extent is not directly shared (does not have
1518 	 * multiple reference items), so we have to check if a path in the fs
1519 	 * tree (going from the root node down to the leaf that has the file
1520 	 * extent item pointing to the data extent) is shared, that is, if any
1521 	 * of the extent buffers in the path is referenced by other trees.
1522 	 */
1523 	if (sc && ctx->bytenr == sc->data_bytenr) {
1524 		/*
1525 		 * If our data extent is from a generation more recent than the
1526 		 * last generation used to snapshot the root, then we know that
1527 		 * it can not be shared through subtrees, so we can skip
1528 		 * resolving indirect references, there's no point in
1529 		 * determining the extent buffers for the path from the fs tree
1530 		 * root node down to the leaf that has the file extent item that
1531 		 * points to the data extent.
1532 		 */
1533 		if (sc->data_extent_gen >
1534 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1535 			ret = BACKREF_FOUND_NOT_SHARED;
1536 			goto out;
1537 		}
1538 
1539 		/*
1540 		 * If we are only determining if a data extent is shared or not
1541 		 * and the corresponding file extent item is located in the same
1542 		 * leaf as the previous file extent item, we can skip resolving
1543 		 * indirect references for a data extent, since the fs tree path
1544 		 * is the same (same leaf, so same path). We skip as long as the
1545 		 * cached result for the leaf is valid and only if there's only
1546 		 * one file extent item pointing to the data extent, because in
1547 		 * the case of multiple file extent items, they may be located
1548 		 * in different leaves and therefore we have multiple paths.
1549 		 */
1550 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551 		    sc->self_ref_count == 1) {
1552 			bool cached;
1553 			bool is_shared;
1554 
1555 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1556 						     sc->ctx->curr_leaf_bytenr,
1557 						     0, &is_shared);
1558 			if (cached) {
1559 				if (is_shared)
1560 					ret = BACKREF_FOUND_SHARED;
1561 				else
1562 					ret = BACKREF_FOUND_NOT_SHARED;
1563 				goto out;
1564 			}
1565 		}
1566 	}
1567 
1568 	btrfs_release_path(path);
1569 
1570 	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1571 	if (ret)
1572 		goto out;
1573 
1574 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575 
1576 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1577 	if (ret)
1578 		goto out;
1579 
1580 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581 
1582 	/*
1583 	 * This walks the tree of merged and resolved refs. Tree blocks are
1584 	 * read in as needed. Unique entries are added to the ulist, and
1585 	 * the list of found roots is updated.
1586 	 *
1587 	 * We release the entire tree in one go before returning.
1588 	 */
1589 	node = rb_first_cached(&preftrees.direct.root);
1590 	while (node) {
1591 		ref = rb_entry(node, struct prelim_ref, rbnode);
1592 		node = rb_next(&ref->rbnode);
1593 		/*
1594 		 * ref->count < 0 can happen here if there are delayed
1595 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596 		 * prelim_ref_insert() relies on this when merging
1597 		 * identical refs to keep the overall count correct.
1598 		 * prelim_ref_insert() will merge only those refs
1599 		 * which compare identically.  Any refs having
1600 		 * e.g. different offsets would not be merged,
1601 		 * and would retain their original ref->count < 0.
1602 		 */
1603 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604 			/* no parent == root of tree */
1605 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1606 			if (ret < 0)
1607 				goto out;
1608 		}
1609 		if (ref->count && ref->parent) {
1610 			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611 			    ref->level == 0) {
1612 				struct btrfs_tree_parent_check check = { 0 };
1613 				struct extent_buffer *eb;
1614 
1615 				check.level = ref->level;
1616 
1617 				eb = read_tree_block(ctx->fs_info, ref->parent,
1618 						     &check);
1619 				if (IS_ERR(eb)) {
1620 					ret = PTR_ERR(eb);
1621 					goto out;
1622 				}
1623 				if (!extent_buffer_uptodate(eb)) {
1624 					free_extent_buffer(eb);
1625 					ret = -EIO;
1626 					goto out;
1627 				}
1628 
1629 				if (!path->skip_locking)
1630 					btrfs_tree_read_lock(eb);
1631 				ret = find_extent_in_eb(ctx, eb, &eie);
1632 				if (!path->skip_locking)
1633 					btrfs_tree_read_unlock(eb);
1634 				free_extent_buffer(eb);
1635 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636 				    ret < 0)
1637 					goto out;
1638 				ref->inode_list = eie;
1639 				/*
1640 				 * We transferred the list ownership to the ref,
1641 				 * so set to NULL to avoid a double free in case
1642 				 * an error happens after this.
1643 				 */
1644 				eie = NULL;
1645 			}
1646 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1647 						  ref->inode_list,
1648 						  (void **)&eie, GFP_NOFS);
1649 			if (ret < 0)
1650 				goto out;
1651 			if (!ret && !ctx->skip_inode_ref_list) {
1652 				/*
1653 				 * We've recorded that parent, so we must extend
1654 				 * its inode list here.
1655 				 *
1656 				 * However if there was corruption we may not
1657 				 * have found an eie, return an error in this
1658 				 * case.
1659 				 */
1660 				ASSERT(eie);
1661 				if (!eie) {
1662 					ret = -EUCLEAN;
1663 					goto out;
1664 				}
1665 				while (eie->next)
1666 					eie = eie->next;
1667 				eie->next = ref->inode_list;
1668 			}
1669 			eie = NULL;
1670 			/*
1671 			 * We have transferred the inode list ownership from
1672 			 * this ref to the ref we added to the 'refs' ulist.
1673 			 * So set this ref's inode list to NULL to avoid
1674 			 * use-after-free when our caller uses it or double
1675 			 * frees in case an error happens before we return.
1676 			 */
1677 			ref->inode_list = NULL;
1678 		}
1679 		cond_resched();
1680 	}
1681 
1682 out:
1683 	btrfs_free_path(path);
1684 
1685 	prelim_release(&preftrees.direct);
1686 	prelim_release(&preftrees.indirect);
1687 	prelim_release(&preftrees.indirect_missing_keys);
1688 
1689 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690 		free_inode_elem_list(eie);
1691 	return ret;
1692 }
1693 
1694 /*
1695  * Finds all leaves with a reference to the specified combination of
1696  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698  * function. The caller should free the ulist with free_leaf_list() if
1699  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700  * enough.
1701  *
1702  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703  */
1704 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705 {
1706 	int ret;
1707 
1708 	ASSERT(ctx->refs == NULL);
1709 
1710 	ctx->refs = ulist_alloc(GFP_NOFS);
1711 	if (!ctx->refs)
1712 		return -ENOMEM;
1713 
1714 	ret = find_parent_nodes(ctx, NULL);
1715 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716 	    (ret < 0 && ret != -ENOENT)) {
1717 		free_leaf_list(ctx->refs);
1718 		ctx->refs = NULL;
1719 		return ret;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Walk all backrefs for a given extent to find all roots that reference this
1727  * extent. Walking a backref means finding all extents that reference this
1728  * extent and in turn walk the backrefs of those, too. Naturally this is a
1729  * recursive process, but here it is implemented in an iterative fashion: We
1730  * find all referencing extents for the extent in question and put them on a
1731  * list. In turn, we find all referencing extents for those, further appending
1732  * to the list. The way we iterate the list allows adding more elements after
1733  * the current while iterating. The process stops when we reach the end of the
1734  * list.
1735  *
1736  * Found roots are added to @ctx->roots, which is allocated by this function if
1737  * it points to NULL, in which case the caller is responsible for freeing it
1738  * after it's not needed anymore.
1739  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740  * ulist to do temporary work, and frees it before returning.
1741  *
1742  * Returns 0 on success, < 0 on error.
1743  */
1744 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745 {
1746 	const u64 orig_bytenr = ctx->bytenr;
1747 	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748 	bool roots_ulist_allocated = false;
1749 	struct ulist_iterator uiter;
1750 	int ret = 0;
1751 
1752 	ASSERT(ctx->refs == NULL);
1753 
1754 	ctx->refs = ulist_alloc(GFP_NOFS);
1755 	if (!ctx->refs)
1756 		return -ENOMEM;
1757 
1758 	if (!ctx->roots) {
1759 		ctx->roots = ulist_alloc(GFP_NOFS);
1760 		if (!ctx->roots) {
1761 			ulist_free(ctx->refs);
1762 			ctx->refs = NULL;
1763 			return -ENOMEM;
1764 		}
1765 		roots_ulist_allocated = true;
1766 	}
1767 
1768 	ctx->skip_inode_ref_list = true;
1769 
1770 	ULIST_ITER_INIT(&uiter);
1771 	while (1) {
1772 		struct ulist_node *node;
1773 
1774 		ret = find_parent_nodes(ctx, NULL);
1775 		if (ret < 0 && ret != -ENOENT) {
1776 			if (roots_ulist_allocated) {
1777 				ulist_free(ctx->roots);
1778 				ctx->roots = NULL;
1779 			}
1780 			break;
1781 		}
1782 		ret = 0;
1783 		node = ulist_next(ctx->refs, &uiter);
1784 		if (!node)
1785 			break;
1786 		ctx->bytenr = node->val;
1787 		cond_resched();
1788 	}
1789 
1790 	ulist_free(ctx->refs);
1791 	ctx->refs = NULL;
1792 	ctx->bytenr = orig_bytenr;
1793 	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794 
1795 	return ret;
1796 }
1797 
1798 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799 			 bool skip_commit_root_sem)
1800 {
1801 	int ret;
1802 
1803 	if (!ctx->trans && !skip_commit_root_sem)
1804 		down_read(&ctx->fs_info->commit_root_sem);
1805 	ret = btrfs_find_all_roots_safe(ctx);
1806 	if (!ctx->trans && !skip_commit_root_sem)
1807 		up_read(&ctx->fs_info->commit_root_sem);
1808 	return ret;
1809 }
1810 
1811 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812 {
1813 	struct btrfs_backref_share_check_ctx *ctx;
1814 
1815 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1816 	if (!ctx)
1817 		return NULL;
1818 
1819 	ulist_init(&ctx->refs);
1820 
1821 	return ctx;
1822 }
1823 
1824 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825 {
1826 	if (!ctx)
1827 		return;
1828 
1829 	ulist_release(&ctx->refs);
1830 	kfree(ctx);
1831 }
1832 
1833 /*
1834  * Check if a data extent is shared or not.
1835  *
1836  * @inode:       The inode whose extent we are checking.
1837  * @bytenr:      Logical bytenr of the extent we are checking.
1838  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1839  *               not known.
1840  * @ctx:         A backref sharedness check context.
1841  *
1842  * btrfs_is_data_extent_shared uses the backref walking code but will short
1843  * circuit as soon as it finds a root or inode that doesn't match the
1844  * one passed in. This provides a significant performance benefit for
1845  * callers (such as fiemap) which want to know whether the extent is
1846  * shared but do not need a ref count.
1847  *
1848  * This attempts to attach to the running transaction in order to account for
1849  * delayed refs, but continues on even when no running transaction exists.
1850  *
1851  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852  */
1853 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854 				u64 extent_gen,
1855 				struct btrfs_backref_share_check_ctx *ctx)
1856 {
1857 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858 	struct btrfs_root *root = inode->root;
1859 	struct btrfs_fs_info *fs_info = root->fs_info;
1860 	struct btrfs_trans_handle *trans;
1861 	struct ulist_iterator uiter;
1862 	struct ulist_node *node;
1863 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864 	int ret = 0;
1865 	struct share_check shared = {
1866 		.ctx = ctx,
1867 		.root = root,
1868 		.inum = btrfs_ino(inode),
1869 		.data_bytenr = bytenr,
1870 		.data_extent_gen = extent_gen,
1871 		.share_count = 0,
1872 		.self_ref_count = 0,
1873 		.have_delayed_delete_refs = false,
1874 	};
1875 	int level;
1876 	bool leaf_cached;
1877 	bool leaf_is_shared;
1878 
1879 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881 			return ctx->prev_extents_cache[i].is_shared;
1882 	}
1883 
1884 	ulist_init(&ctx->refs);
1885 
1886 	trans = btrfs_join_transaction_nostart(root);
1887 	if (IS_ERR(trans)) {
1888 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1889 			ret = PTR_ERR(trans);
1890 			goto out;
1891 		}
1892 		trans = NULL;
1893 		down_read(&fs_info->commit_root_sem);
1894 	} else {
1895 		btrfs_get_tree_mod_seq(fs_info, &elem);
1896 		walk_ctx.time_seq = elem.seq;
1897 	}
1898 
1899 	ctx->use_path_cache = true;
1900 
1901 	/*
1902 	 * We may have previously determined that the current leaf is shared.
1903 	 * If it is, then we have a data extent that is shared due to a shared
1904 	 * subtree (caused by snapshotting) and we don't need to check for data
1905 	 * backrefs. If the leaf is not shared, then we must do backref walking
1906 	 * to determine if the data extent is shared through reflinks.
1907 	 */
1908 	leaf_cached = lookup_backref_shared_cache(ctx, root,
1909 						  ctx->curr_leaf_bytenr, 0,
1910 						  &leaf_is_shared);
1911 	if (leaf_cached && leaf_is_shared) {
1912 		ret = 1;
1913 		goto out_trans;
1914 	}
1915 
1916 	walk_ctx.skip_inode_ref_list = true;
1917 	walk_ctx.trans = trans;
1918 	walk_ctx.fs_info = fs_info;
1919 	walk_ctx.refs = &ctx->refs;
1920 
1921 	/* -1 means we are in the bytenr of the data extent. */
1922 	level = -1;
1923 	ULIST_ITER_INIT(&uiter);
1924 	while (1) {
1925 		const unsigned long prev_ref_count = ctx->refs.nnodes;
1926 
1927 		walk_ctx.bytenr = bytenr;
1928 		ret = find_parent_nodes(&walk_ctx, &shared);
1929 		if (ret == BACKREF_FOUND_SHARED ||
1930 		    ret == BACKREF_FOUND_NOT_SHARED) {
1931 			/* If shared must return 1, otherwise return 0. */
1932 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933 			if (level >= 0)
1934 				store_backref_shared_cache(ctx, root, bytenr,
1935 							   level, ret == 1);
1936 			break;
1937 		}
1938 		if (ret < 0 && ret != -ENOENT)
1939 			break;
1940 		ret = 0;
1941 
1942 		/*
1943 		 * More than one extent buffer (bytenr) may have been added to
1944 		 * the ctx->refs ulist, in which case we have to check multiple
1945 		 * tree paths in case the first one is not shared, so we can not
1946 		 * use the path cache which is made for a single path. Multiple
1947 		 * extent buffers at the current level happen when:
1948 		 *
1949 		 * 1) level -1, the data extent: If our data extent was not
1950 		 *    directly shared (without multiple reference items), then
1951 		 *    it might have a single reference item with a count > 1 for
1952 		 *    the same offset, which means there are 2 (or more) file
1953 		 *    extent items that point to the data extent - this happens
1954 		 *    when a file extent item needs to be split and then one
1955 		 *    item gets moved to another leaf due to a b+tree leaf split
1956 		 *    when inserting some item. In this case the file extent
1957 		 *    items may be located in different leaves and therefore
1958 		 *    some of the leaves may be referenced through shared
1959 		 *    subtrees while others are not. Since our extent buffer
1960 		 *    cache only works for a single path (by far the most common
1961 		 *    case and simpler to deal with), we can not use it if we
1962 		 *    have multiple leaves (which implies multiple paths).
1963 		 *
1964 		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965 		 *    and indirect references on a b+tree node/leaf, so we have
1966 		 *    to check multiple paths, and the extent buffer (the
1967 		 *    current bytenr) may be shared or not. One example is
1968 		 *    during relocation as we may get a shared tree block ref
1969 		 *    (direct ref) and a non-shared tree block ref (indirect
1970 		 *    ref) for the same node/leaf.
1971 		 */
1972 		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973 			ctx->use_path_cache = false;
1974 
1975 		if (level >= 0)
1976 			store_backref_shared_cache(ctx, root, bytenr,
1977 						   level, false);
1978 		node = ulist_next(&ctx->refs, &uiter);
1979 		if (!node)
1980 			break;
1981 		bytenr = node->val;
1982 		if (ctx->use_path_cache) {
1983 			bool is_shared;
1984 			bool cached;
1985 
1986 			level++;
1987 			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988 							     level, &is_shared);
1989 			if (cached) {
1990 				ret = (is_shared ? 1 : 0);
1991 				break;
1992 			}
1993 		}
1994 		shared.share_count = 0;
1995 		shared.have_delayed_delete_refs = false;
1996 		cond_resched();
1997 	}
1998 
1999 	/*
2000 	 * If the path cache is disabled, then it means at some tree level we
2001 	 * got multiple parents due to a mix of direct and indirect backrefs or
2002 	 * multiple leaves with file extent items pointing to the same data
2003 	 * extent. We have to invalidate the cache and cache only the sharedness
2004 	 * result for the levels where we got only one node/reference.
2005 	 */
2006 	if (!ctx->use_path_cache) {
2007 		int i = 0;
2008 
2009 		level--;
2010 		if (ret >= 0 && level >= 0) {
2011 			bytenr = ctx->path_cache_entries[level].bytenr;
2012 			ctx->use_path_cache = true;
2013 			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2014 			i = level + 1;
2015 		}
2016 
2017 		for ( ; i < BTRFS_MAX_LEVEL; i++)
2018 			ctx->path_cache_entries[i].bytenr = 0;
2019 	}
2020 
2021 	/*
2022 	 * Cache the sharedness result for the data extent if we know our inode
2023 	 * has more than 1 file extent item that refers to the data extent.
2024 	 */
2025 	if (ret >= 0 && shared.self_ref_count > 1) {
2026 		int slot = ctx->prev_extents_cache_slot;
2027 
2028 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030 
2031 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032 		ctx->prev_extents_cache_slot = slot;
2033 	}
2034 
2035 out_trans:
2036 	if (trans) {
2037 		btrfs_put_tree_mod_seq(fs_info, &elem);
2038 		btrfs_end_transaction(trans);
2039 	} else {
2040 		up_read(&fs_info->commit_root_sem);
2041 	}
2042 out:
2043 	ulist_release(&ctx->refs);
2044 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045 
2046 	return ret;
2047 }
2048 
2049 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050 			  u64 start_off, struct btrfs_path *path,
2051 			  struct btrfs_inode_extref **ret_extref,
2052 			  u64 *found_off)
2053 {
2054 	int ret, slot;
2055 	struct btrfs_key key;
2056 	struct btrfs_key found_key;
2057 	struct btrfs_inode_extref *extref;
2058 	const struct extent_buffer *leaf;
2059 	unsigned long ptr;
2060 
2061 	key.objectid = inode_objectid;
2062 	key.type = BTRFS_INODE_EXTREF_KEY;
2063 	key.offset = start_off;
2064 
2065 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 	if (ret < 0)
2067 		return ret;
2068 
2069 	while (1) {
2070 		leaf = path->nodes[0];
2071 		slot = path->slots[0];
2072 		if (slot >= btrfs_header_nritems(leaf)) {
2073 			/*
2074 			 * If the item at offset is not found,
2075 			 * btrfs_search_slot will point us to the slot
2076 			 * where it should be inserted. In our case
2077 			 * that will be the slot directly before the
2078 			 * next INODE_REF_KEY_V2 item. In the case
2079 			 * that we're pointing to the last slot in a
2080 			 * leaf, we must move one leaf over.
2081 			 */
2082 			ret = btrfs_next_leaf(root, path);
2083 			if (ret) {
2084 				if (ret >= 1)
2085 					ret = -ENOENT;
2086 				break;
2087 			}
2088 			continue;
2089 		}
2090 
2091 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2092 
2093 		/*
2094 		 * Check that we're still looking at an extended ref key for
2095 		 * this particular objectid. If we have different
2096 		 * objectid or type then there are no more to be found
2097 		 * in the tree and we can exit.
2098 		 */
2099 		ret = -ENOENT;
2100 		if (found_key.objectid != inode_objectid)
2101 			break;
2102 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103 			break;
2104 
2105 		ret = 0;
2106 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107 		extref = (struct btrfs_inode_extref *)ptr;
2108 		*ret_extref = extref;
2109 		if (found_off)
2110 			*found_off = found_key.offset;
2111 		break;
2112 	}
2113 
2114 	return ret;
2115 }
2116 
2117 /*
2118  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119  * Elements of the path are separated by '/' and the path is guaranteed to be
2120  * 0-terminated. the path is only given within the current file system.
2121  * Therefore, it never starts with a '/'. the caller is responsible to provide
2122  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123  * the start point of the resulting string is returned. this pointer is within
2124  * dest, normally.
2125  * in case the path buffer would overflow, the pointer is decremented further
2126  * as if output was written to the buffer, though no more output is actually
2127  * generated. that way, the caller can determine how much space would be
2128  * required for the path to fit into the buffer. in that case, the returned
2129  * value will be smaller than dest. callers must check this!
2130  */
2131 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132 			u32 name_len, unsigned long name_off,
2133 			struct extent_buffer *eb_in, u64 parent,
2134 			char *dest, u32 size)
2135 {
2136 	int slot;
2137 	u64 next_inum;
2138 	int ret;
2139 	s64 bytes_left = ((s64)size) - 1;
2140 	struct extent_buffer *eb = eb_in;
2141 	struct btrfs_key found_key;
2142 	struct btrfs_inode_ref *iref;
2143 
2144 	if (bytes_left >= 0)
2145 		dest[bytes_left] = '\0';
2146 
2147 	while (1) {
2148 		bytes_left -= name_len;
2149 		if (bytes_left >= 0)
2150 			read_extent_buffer(eb, dest + bytes_left,
2151 					   name_off, name_len);
2152 		if (eb != eb_in) {
2153 			if (!path->skip_locking)
2154 				btrfs_tree_read_unlock(eb);
2155 			free_extent_buffer(eb);
2156 		}
2157 		ret = btrfs_find_item(fs_root, path, parent, 0,
2158 				BTRFS_INODE_REF_KEY, &found_key);
2159 		if (ret > 0)
2160 			ret = -ENOENT;
2161 		if (ret)
2162 			break;
2163 
2164 		next_inum = found_key.offset;
2165 
2166 		/* regular exit ahead */
2167 		if (parent == next_inum)
2168 			break;
2169 
2170 		slot = path->slots[0];
2171 		eb = path->nodes[0];
2172 		/* make sure we can use eb after releasing the path */
2173 		if (eb != eb_in) {
2174 			path->nodes[0] = NULL;
2175 			path->locks[0] = 0;
2176 		}
2177 		btrfs_release_path(path);
2178 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179 
2180 		name_len = btrfs_inode_ref_name_len(eb, iref);
2181 		name_off = (unsigned long)(iref + 1);
2182 
2183 		parent = next_inum;
2184 		--bytes_left;
2185 		if (bytes_left >= 0)
2186 			dest[bytes_left] = '/';
2187 	}
2188 
2189 	btrfs_release_path(path);
2190 
2191 	if (ret)
2192 		return ERR_PTR(ret);
2193 
2194 	return dest + bytes_left;
2195 }
2196 
2197 /*
2198  * this makes the path point to (logical EXTENT_ITEM *)
2199  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200  * tree blocks and <0 on error.
2201  */
2202 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203 			struct btrfs_path *path, struct btrfs_key *found_key,
2204 			u64 *flags_ret)
2205 {
2206 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2207 	int ret;
2208 	u64 flags;
2209 	u64 size = 0;
2210 	u32 item_size;
2211 	const struct extent_buffer *eb;
2212 	struct btrfs_extent_item *ei;
2213 	struct btrfs_key key;
2214 
2215 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216 		key.type = BTRFS_METADATA_ITEM_KEY;
2217 	else
2218 		key.type = BTRFS_EXTENT_ITEM_KEY;
2219 	key.objectid = logical;
2220 	key.offset = (u64)-1;
2221 
2222 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2223 	if (ret < 0)
2224 		return ret;
2225 
2226 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2227 	if (ret) {
2228 		if (ret > 0)
2229 			ret = -ENOENT;
2230 		return ret;
2231 	}
2232 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2233 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2234 		size = fs_info->nodesize;
2235 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2236 		size = found_key->offset;
2237 
2238 	if (found_key->objectid > logical ||
2239 	    found_key->objectid + size <= logical) {
2240 		btrfs_debug(fs_info,
2241 			"logical %llu is not within any extent", logical);
2242 		return -ENOENT;
2243 	}
2244 
2245 	eb = path->nodes[0];
2246 	item_size = btrfs_item_size(eb, path->slots[0]);
2247 	BUG_ON(item_size < sizeof(*ei));
2248 
2249 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250 	flags = btrfs_extent_flags(eb, ei);
2251 
2252 	btrfs_debug(fs_info,
2253 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254 		 logical, logical - found_key->objectid, found_key->objectid,
2255 		 found_key->offset, flags, item_size);
2256 
2257 	WARN_ON(!flags_ret);
2258 	if (flags_ret) {
2259 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263 		else
2264 			BUG();
2265 		return 0;
2266 	}
2267 
2268 	return -EIO;
2269 }
2270 
2271 /*
2272  * helper function to iterate extent inline refs. ptr must point to a 0 value
2273  * for the first call and may be modified. it is used to track state.
2274  * if more refs exist, 0 is returned and the next call to
2275  * get_extent_inline_ref must pass the modified ptr parameter to get the
2276  * next ref. after the last ref was processed, 1 is returned.
2277  * returns <0 on error
2278  */
2279 static int get_extent_inline_ref(unsigned long *ptr,
2280 				 const struct extent_buffer *eb,
2281 				 const struct btrfs_key *key,
2282 				 const struct btrfs_extent_item *ei,
2283 				 u32 item_size,
2284 				 struct btrfs_extent_inline_ref **out_eiref,
2285 				 int *out_type)
2286 {
2287 	unsigned long end;
2288 	u64 flags;
2289 	struct btrfs_tree_block_info *info;
2290 
2291 	if (!*ptr) {
2292 		/* first call */
2293 		flags = btrfs_extent_flags(eb, ei);
2294 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296 				/* a skinny metadata extent */
2297 				*out_eiref =
2298 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2299 			} else {
2300 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301 				info = (struct btrfs_tree_block_info *)(ei + 1);
2302 				*out_eiref =
2303 				   (struct btrfs_extent_inline_ref *)(info + 1);
2304 			}
2305 		} else {
2306 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307 		}
2308 		*ptr = (unsigned long)*out_eiref;
2309 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310 			return -ENOENT;
2311 	}
2312 
2313 	end = (unsigned long)ei + item_size;
2314 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316 						     BTRFS_REF_TYPE_ANY);
2317 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2318 		return -EUCLEAN;
2319 
2320 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2321 	WARN_ON(*ptr > end);
2322 	if (*ptr == end)
2323 		return 1; /* last */
2324 
2325 	return 0;
2326 }
2327 
2328 /*
2329  * reads the tree block backref for an extent. tree level and root are returned
2330  * through out_level and out_root. ptr must point to a 0 value for the first
2331  * call and may be modified (see get_extent_inline_ref comment).
2332  * returns 0 if data was provided, 1 if there was no more data to provide or
2333  * <0 on error.
2334  */
2335 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2337 			    u32 item_size, u64 *out_root, u8 *out_level)
2338 {
2339 	int ret;
2340 	int type;
2341 	struct btrfs_extent_inline_ref *eiref;
2342 
2343 	if (*ptr == (unsigned long)-1)
2344 		return 1;
2345 
2346 	while (1) {
2347 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348 					      &eiref, &type);
2349 		if (ret < 0)
2350 			return ret;
2351 
2352 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2354 			break;
2355 
2356 		if (ret == 1)
2357 			return 1;
2358 	}
2359 
2360 	/* we can treat both ref types equally here */
2361 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362 
2363 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364 		struct btrfs_tree_block_info *info;
2365 
2366 		info = (struct btrfs_tree_block_info *)(ei + 1);
2367 		*out_level = btrfs_tree_block_level(eb, info);
2368 	} else {
2369 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370 		*out_level = (u8)key->offset;
2371 	}
2372 
2373 	if (ret == 1)
2374 		*ptr = (unsigned long)-1;
2375 
2376 	return 0;
2377 }
2378 
2379 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380 			     struct extent_inode_elem *inode_list,
2381 			     u64 root, u64 extent_item_objectid,
2382 			     iterate_extent_inodes_t *iterate, void *ctx)
2383 {
2384 	struct extent_inode_elem *eie;
2385 	int ret = 0;
2386 
2387 	for (eie = inode_list; eie; eie = eie->next) {
2388 		btrfs_debug(fs_info,
2389 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390 			    extent_item_objectid, eie->inum,
2391 			    eie->offset, root);
2392 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393 		if (ret) {
2394 			btrfs_debug(fs_info,
2395 				    "stopping iteration for %llu due to ret=%d",
2396 				    extent_item_objectid, ret);
2397 			break;
2398 		}
2399 	}
2400 
2401 	return ret;
2402 }
2403 
2404 /*
2405  * calls iterate() for every inode that references the extent identified by
2406  * the given parameters.
2407  * when the iterator function returns a non-zero value, iteration stops.
2408  */
2409 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410 			  bool search_commit_root,
2411 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2412 {
2413 	int ret;
2414 	struct ulist *refs;
2415 	struct ulist_node *ref_node;
2416 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417 	struct ulist_iterator ref_uiter;
2418 
2419 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420 		    ctx->bytenr);
2421 
2422 	ASSERT(ctx->trans == NULL);
2423 	ASSERT(ctx->roots == NULL);
2424 
2425 	if (!search_commit_root) {
2426 		struct btrfs_trans_handle *trans;
2427 
2428 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429 		if (IS_ERR(trans)) {
2430 			if (PTR_ERR(trans) != -ENOENT &&
2431 			    PTR_ERR(trans) != -EROFS)
2432 				return PTR_ERR(trans);
2433 			trans = NULL;
2434 		}
2435 		ctx->trans = trans;
2436 	}
2437 
2438 	if (ctx->trans) {
2439 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440 		ctx->time_seq = seq_elem.seq;
2441 	} else {
2442 		down_read(&ctx->fs_info->commit_root_sem);
2443 	}
2444 
2445 	ret = btrfs_find_all_leafs(ctx);
2446 	if (ret)
2447 		goto out;
2448 	refs = ctx->refs;
2449 	ctx->refs = NULL;
2450 
2451 	ULIST_ITER_INIT(&ref_uiter);
2452 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453 		const u64 leaf_bytenr = ref_node->val;
2454 		struct ulist_node *root_node;
2455 		struct ulist_iterator root_uiter;
2456 		struct extent_inode_elem *inode_list;
2457 
2458 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459 
2460 		if (ctx->cache_lookup) {
2461 			const u64 *root_ids;
2462 			int root_count;
2463 			bool cached;
2464 
2465 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466 						   &root_ids, &root_count);
2467 			if (cached) {
2468 				for (int i = 0; i < root_count; i++) {
2469 					ret = iterate_leaf_refs(ctx->fs_info,
2470 								inode_list,
2471 								root_ids[i],
2472 								leaf_bytenr,
2473 								iterate,
2474 								user_ctx);
2475 					if (ret)
2476 						break;
2477 				}
2478 				continue;
2479 			}
2480 		}
2481 
2482 		if (!ctx->roots) {
2483 			ctx->roots = ulist_alloc(GFP_NOFS);
2484 			if (!ctx->roots) {
2485 				ret = -ENOMEM;
2486 				break;
2487 			}
2488 		}
2489 
2490 		ctx->bytenr = leaf_bytenr;
2491 		ret = btrfs_find_all_roots_safe(ctx);
2492 		if (ret)
2493 			break;
2494 
2495 		if (ctx->cache_store)
2496 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497 
2498 		ULIST_ITER_INIT(&root_uiter);
2499 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500 			btrfs_debug(ctx->fs_info,
2501 				    "root %llu references leaf %llu, data list %#llx",
2502 				    root_node->val, ref_node->val,
2503 				    ref_node->aux);
2504 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505 						root_node->val, ctx->bytenr,
2506 						iterate, user_ctx);
2507 		}
2508 		ulist_reinit(ctx->roots);
2509 	}
2510 
2511 	free_leaf_list(refs);
2512 out:
2513 	if (ctx->trans) {
2514 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515 		btrfs_end_transaction(ctx->trans);
2516 		ctx->trans = NULL;
2517 	} else {
2518 		up_read(&ctx->fs_info->commit_root_sem);
2519 	}
2520 
2521 	ulist_free(ctx->roots);
2522 	ctx->roots = NULL;
2523 
2524 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525 		ret = 0;
2526 
2527 	return ret;
2528 }
2529 
2530 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531 {
2532 	struct btrfs_data_container *inodes = ctx;
2533 	const size_t c = 3 * sizeof(u64);
2534 
2535 	if (inodes->bytes_left >= c) {
2536 		inodes->bytes_left -= c;
2537 		inodes->val[inodes->elem_cnt] = inum;
2538 		inodes->val[inodes->elem_cnt + 1] = offset;
2539 		inodes->val[inodes->elem_cnt + 2] = root;
2540 		inodes->elem_cnt += 3;
2541 	} else {
2542 		inodes->bytes_missing += c - inodes->bytes_left;
2543 		inodes->bytes_left = 0;
2544 		inodes->elem_missed += 3;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551 				struct btrfs_path *path,
2552 				void *ctx, bool ignore_offset)
2553 {
2554 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555 	int ret;
2556 	u64 flags = 0;
2557 	struct btrfs_key found_key;
2558 	int search_commit_root = path->search_commit_root;
2559 
2560 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561 	btrfs_release_path(path);
2562 	if (ret < 0)
2563 		return ret;
2564 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565 		return -EINVAL;
2566 
2567 	walk_ctx.bytenr = found_key.objectid;
2568 	if (ignore_offset)
2569 		walk_ctx.ignore_extent_item_pos = true;
2570 	else
2571 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2572 	walk_ctx.fs_info = fs_info;
2573 
2574 	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575 				     build_ino_list, ctx);
2576 }
2577 
2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580 
2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582 {
2583 	int ret = 0;
2584 	int slot;
2585 	u32 cur;
2586 	u32 len;
2587 	u32 name_len;
2588 	u64 parent = 0;
2589 	int found = 0;
2590 	struct btrfs_root *fs_root = ipath->fs_root;
2591 	struct btrfs_path *path = ipath->btrfs_path;
2592 	struct extent_buffer *eb;
2593 	struct btrfs_inode_ref *iref;
2594 	struct btrfs_key found_key;
2595 
2596 	while (!ret) {
2597 		ret = btrfs_find_item(fs_root, path, inum,
2598 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599 				&found_key);
2600 
2601 		if (ret < 0)
2602 			break;
2603 		if (ret) {
2604 			ret = found ? 0 : -ENOENT;
2605 			break;
2606 		}
2607 		++found;
2608 
2609 		parent = found_key.offset;
2610 		slot = path->slots[0];
2611 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612 		if (!eb) {
2613 			ret = -ENOMEM;
2614 			break;
2615 		}
2616 		btrfs_release_path(path);
2617 
2618 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619 
2620 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621 			name_len = btrfs_inode_ref_name_len(eb, iref);
2622 			/* path must be released before calling iterate()! */
2623 			btrfs_debug(fs_root->fs_info,
2624 				"following ref at offset %u for inode %llu in tree %llu",
2625 				cur, found_key.objectid,
2626 				fs_root->root_key.objectid);
2627 			ret = inode_to_path(parent, name_len,
2628 				      (unsigned long)(iref + 1), eb, ipath);
2629 			if (ret)
2630 				break;
2631 			len = sizeof(*iref) + name_len;
2632 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633 		}
2634 		free_extent_buffer(eb);
2635 	}
2636 
2637 	btrfs_release_path(path);
2638 
2639 	return ret;
2640 }
2641 
2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643 {
2644 	int ret;
2645 	int slot;
2646 	u64 offset = 0;
2647 	u64 parent;
2648 	int found = 0;
2649 	struct btrfs_root *fs_root = ipath->fs_root;
2650 	struct btrfs_path *path = ipath->btrfs_path;
2651 	struct extent_buffer *eb;
2652 	struct btrfs_inode_extref *extref;
2653 	u32 item_size;
2654 	u32 cur_offset;
2655 	unsigned long ptr;
2656 
2657 	while (1) {
2658 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659 					    &offset);
2660 		if (ret < 0)
2661 			break;
2662 		if (ret) {
2663 			ret = found ? 0 : -ENOENT;
2664 			break;
2665 		}
2666 		++found;
2667 
2668 		slot = path->slots[0];
2669 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670 		if (!eb) {
2671 			ret = -ENOMEM;
2672 			break;
2673 		}
2674 		btrfs_release_path(path);
2675 
2676 		item_size = btrfs_item_size(eb, slot);
2677 		ptr = btrfs_item_ptr_offset(eb, slot);
2678 		cur_offset = 0;
2679 
2680 		while (cur_offset < item_size) {
2681 			u32 name_len;
2682 
2683 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684 			parent = btrfs_inode_extref_parent(eb, extref);
2685 			name_len = btrfs_inode_extref_name_len(eb, extref);
2686 			ret = inode_to_path(parent, name_len,
2687 				      (unsigned long)&extref->name, eb, ipath);
2688 			if (ret)
2689 				break;
2690 
2691 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692 			cur_offset += sizeof(*extref);
2693 		}
2694 		free_extent_buffer(eb);
2695 
2696 		offset++;
2697 	}
2698 
2699 	btrfs_release_path(path);
2700 
2701 	return ret;
2702 }
2703 
2704 /*
2705  * returns 0 if the path could be dumped (probably truncated)
2706  * returns <0 in case of an error
2707  */
2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710 {
2711 	char *fspath;
2712 	char *fspath_min;
2713 	int i = ipath->fspath->elem_cnt;
2714 	const int s_ptr = sizeof(char *);
2715 	u32 bytes_left;
2716 
2717 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718 					ipath->fspath->bytes_left - s_ptr : 0;
2719 
2720 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722 				   name_off, eb, inum, fspath_min, bytes_left);
2723 	if (IS_ERR(fspath))
2724 		return PTR_ERR(fspath);
2725 
2726 	if (fspath > fspath_min) {
2727 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728 		++ipath->fspath->elem_cnt;
2729 		ipath->fspath->bytes_left = fspath - fspath_min;
2730 	} else {
2731 		++ipath->fspath->elem_missed;
2732 		ipath->fspath->bytes_missing += fspath_min - fspath;
2733 		ipath->fspath->bytes_left = 0;
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 /*
2740  * this dumps all file system paths to the inode into the ipath struct, provided
2741  * is has been created large enough. each path is zero-terminated and accessed
2742  * from ipath->fspath->val[i].
2743  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747  * have been needed to return all paths.
2748  */
2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750 {
2751 	int ret;
2752 	int found_refs = 0;
2753 
2754 	ret = iterate_inode_refs(inum, ipath);
2755 	if (!ret)
2756 		++found_refs;
2757 	else if (ret != -ENOENT)
2758 		return ret;
2759 
2760 	ret = iterate_inode_extrefs(inum, ipath);
2761 	if (ret == -ENOENT && found_refs)
2762 		return 0;
2763 
2764 	return ret;
2765 }
2766 
2767 struct btrfs_data_container *init_data_container(u32 total_bytes)
2768 {
2769 	struct btrfs_data_container *data;
2770 	size_t alloc_bytes;
2771 
2772 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2774 	if (!data)
2775 		return ERR_PTR(-ENOMEM);
2776 
2777 	if (total_bytes >= sizeof(*data)) {
2778 		data->bytes_left = total_bytes - sizeof(*data);
2779 		data->bytes_missing = 0;
2780 	} else {
2781 		data->bytes_missing = sizeof(*data) - total_bytes;
2782 		data->bytes_left = 0;
2783 	}
2784 
2785 	data->elem_cnt = 0;
2786 	data->elem_missed = 0;
2787 
2788 	return data;
2789 }
2790 
2791 /*
2792  * allocates space to return multiple file system paths for an inode.
2793  * total_bytes to allocate are passed, note that space usable for actual path
2794  * information will be total_bytes - sizeof(struct inode_fs_paths).
2795  * the returned pointer must be freed with free_ipath() in the end.
2796  */
2797 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2798 					struct btrfs_path *path)
2799 {
2800 	struct inode_fs_paths *ifp;
2801 	struct btrfs_data_container *fspath;
2802 
2803 	fspath = init_data_container(total_bytes);
2804 	if (IS_ERR(fspath))
2805 		return ERR_CAST(fspath);
2806 
2807 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2808 	if (!ifp) {
2809 		kvfree(fspath);
2810 		return ERR_PTR(-ENOMEM);
2811 	}
2812 
2813 	ifp->btrfs_path = path;
2814 	ifp->fspath = fspath;
2815 	ifp->fs_root = fs_root;
2816 
2817 	return ifp;
2818 }
2819 
2820 void free_ipath(struct inode_fs_paths *ipath)
2821 {
2822 	if (!ipath)
2823 		return;
2824 	kvfree(ipath->fspath);
2825 	kfree(ipath);
2826 }
2827 
2828 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2829 {
2830 	struct btrfs_backref_iter *ret;
2831 
2832 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2833 	if (!ret)
2834 		return NULL;
2835 
2836 	ret->path = btrfs_alloc_path();
2837 	if (!ret->path) {
2838 		kfree(ret);
2839 		return NULL;
2840 	}
2841 
2842 	/* Current backref iterator only supports iteration in commit root */
2843 	ret->path->search_commit_root = 1;
2844 	ret->path->skip_locking = 1;
2845 	ret->fs_info = fs_info;
2846 
2847 	return ret;
2848 }
2849 
2850 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2851 {
2852 	struct btrfs_fs_info *fs_info = iter->fs_info;
2853 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2854 	struct btrfs_path *path = iter->path;
2855 	struct btrfs_extent_item *ei;
2856 	struct btrfs_key key;
2857 	int ret;
2858 
2859 	key.objectid = bytenr;
2860 	key.type = BTRFS_METADATA_ITEM_KEY;
2861 	key.offset = (u64)-1;
2862 	iter->bytenr = bytenr;
2863 
2864 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2865 	if (ret < 0)
2866 		return ret;
2867 	if (ret == 0) {
2868 		ret = -EUCLEAN;
2869 		goto release;
2870 	}
2871 	if (path->slots[0] == 0) {
2872 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2873 		ret = -EUCLEAN;
2874 		goto release;
2875 	}
2876 	path->slots[0]--;
2877 
2878 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2879 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2880 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2881 		ret = -ENOENT;
2882 		goto release;
2883 	}
2884 	memcpy(&iter->cur_key, &key, sizeof(key));
2885 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2886 						    path->slots[0]);
2887 	iter->end_ptr = (u32)(iter->item_ptr +
2888 			btrfs_item_size(path->nodes[0], path->slots[0]));
2889 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2890 			    struct btrfs_extent_item);
2891 
2892 	/*
2893 	 * Only support iteration on tree backref yet.
2894 	 *
2895 	 * This is an extra precaution for non skinny-metadata, where
2896 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2897 	 * extent flags to determine if it's a tree block.
2898 	 */
2899 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2900 		ret = -ENOTSUPP;
2901 		goto release;
2902 	}
2903 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2904 
2905 	/* If there is no inline backref, go search for keyed backref */
2906 	if (iter->cur_ptr >= iter->end_ptr) {
2907 		ret = btrfs_next_item(extent_root, path);
2908 
2909 		/* No inline nor keyed ref */
2910 		if (ret > 0) {
2911 			ret = -ENOENT;
2912 			goto release;
2913 		}
2914 		if (ret < 0)
2915 			goto release;
2916 
2917 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2918 				path->slots[0]);
2919 		if (iter->cur_key.objectid != bytenr ||
2920 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2921 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2922 			ret = -ENOENT;
2923 			goto release;
2924 		}
2925 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2926 							   path->slots[0]);
2927 		iter->item_ptr = iter->cur_ptr;
2928 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2929 				      path->nodes[0], path->slots[0]));
2930 	}
2931 
2932 	return 0;
2933 release:
2934 	btrfs_backref_iter_release(iter);
2935 	return ret;
2936 }
2937 
2938 /*
2939  * Go to the next backref item of current bytenr, can be either inlined or
2940  * keyed.
2941  *
2942  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2943  *
2944  * Return 0 if we get next backref without problem.
2945  * Return >0 if there is no extra backref for this bytenr.
2946  * Return <0 if there is something wrong happened.
2947  */
2948 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2949 {
2950 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2951 	struct btrfs_root *extent_root;
2952 	struct btrfs_path *path = iter->path;
2953 	struct btrfs_extent_inline_ref *iref;
2954 	int ret;
2955 	u32 size;
2956 
2957 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2958 		/* We're still inside the inline refs */
2959 		ASSERT(iter->cur_ptr < iter->end_ptr);
2960 
2961 		if (btrfs_backref_has_tree_block_info(iter)) {
2962 			/* First tree block info */
2963 			size = sizeof(struct btrfs_tree_block_info);
2964 		} else {
2965 			/* Use inline ref type to determine the size */
2966 			int type;
2967 
2968 			iref = (struct btrfs_extent_inline_ref *)
2969 				((unsigned long)iter->cur_ptr);
2970 			type = btrfs_extent_inline_ref_type(eb, iref);
2971 
2972 			size = btrfs_extent_inline_ref_size(type);
2973 		}
2974 		iter->cur_ptr += size;
2975 		if (iter->cur_ptr < iter->end_ptr)
2976 			return 0;
2977 
2978 		/* All inline items iterated, fall through */
2979 	}
2980 
2981 	/* We're at keyed items, there is no inline item, go to the next one */
2982 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2983 	ret = btrfs_next_item(extent_root, iter->path);
2984 	if (ret)
2985 		return ret;
2986 
2987 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2988 	if (iter->cur_key.objectid != iter->bytenr ||
2989 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2990 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2991 		return 1;
2992 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2993 					path->slots[0]);
2994 	iter->cur_ptr = iter->item_ptr;
2995 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2996 						path->slots[0]);
2997 	return 0;
2998 }
2999 
3000 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3001 			      struct btrfs_backref_cache *cache, int is_reloc)
3002 {
3003 	int i;
3004 
3005 	cache->rb_root = RB_ROOT;
3006 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3007 		INIT_LIST_HEAD(&cache->pending[i]);
3008 	INIT_LIST_HEAD(&cache->changed);
3009 	INIT_LIST_HEAD(&cache->detached);
3010 	INIT_LIST_HEAD(&cache->leaves);
3011 	INIT_LIST_HEAD(&cache->pending_edge);
3012 	INIT_LIST_HEAD(&cache->useless_node);
3013 	cache->fs_info = fs_info;
3014 	cache->is_reloc = is_reloc;
3015 }
3016 
3017 struct btrfs_backref_node *btrfs_backref_alloc_node(
3018 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3019 {
3020 	struct btrfs_backref_node *node;
3021 
3022 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3023 	node = kzalloc(sizeof(*node), GFP_NOFS);
3024 	if (!node)
3025 		return node;
3026 
3027 	INIT_LIST_HEAD(&node->list);
3028 	INIT_LIST_HEAD(&node->upper);
3029 	INIT_LIST_HEAD(&node->lower);
3030 	RB_CLEAR_NODE(&node->rb_node);
3031 	cache->nr_nodes++;
3032 	node->level = level;
3033 	node->bytenr = bytenr;
3034 
3035 	return node;
3036 }
3037 
3038 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3039 		struct btrfs_backref_cache *cache)
3040 {
3041 	struct btrfs_backref_edge *edge;
3042 
3043 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3044 	if (edge)
3045 		cache->nr_edges++;
3046 	return edge;
3047 }
3048 
3049 /*
3050  * Drop the backref node from cache, also cleaning up all its
3051  * upper edges and any uncached nodes in the path.
3052  *
3053  * This cleanup happens bottom up, thus the node should either
3054  * be the lowest node in the cache or a detached node.
3055  */
3056 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3057 				struct btrfs_backref_node *node)
3058 {
3059 	struct btrfs_backref_node *upper;
3060 	struct btrfs_backref_edge *edge;
3061 
3062 	if (!node)
3063 		return;
3064 
3065 	BUG_ON(!node->lowest && !node->detached);
3066 	while (!list_empty(&node->upper)) {
3067 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3068 				  list[LOWER]);
3069 		upper = edge->node[UPPER];
3070 		list_del(&edge->list[LOWER]);
3071 		list_del(&edge->list[UPPER]);
3072 		btrfs_backref_free_edge(cache, edge);
3073 
3074 		/*
3075 		 * Add the node to leaf node list if no other child block
3076 		 * cached.
3077 		 */
3078 		if (list_empty(&upper->lower)) {
3079 			list_add_tail(&upper->lower, &cache->leaves);
3080 			upper->lowest = 1;
3081 		}
3082 	}
3083 
3084 	btrfs_backref_drop_node(cache, node);
3085 }
3086 
3087 /*
3088  * Release all nodes/edges from current cache
3089  */
3090 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3091 {
3092 	struct btrfs_backref_node *node;
3093 	int i;
3094 
3095 	while (!list_empty(&cache->detached)) {
3096 		node = list_entry(cache->detached.next,
3097 				  struct btrfs_backref_node, list);
3098 		btrfs_backref_cleanup_node(cache, node);
3099 	}
3100 
3101 	while (!list_empty(&cache->leaves)) {
3102 		node = list_entry(cache->leaves.next,
3103 				  struct btrfs_backref_node, lower);
3104 		btrfs_backref_cleanup_node(cache, node);
3105 	}
3106 
3107 	cache->last_trans = 0;
3108 
3109 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3110 		ASSERT(list_empty(&cache->pending[i]));
3111 	ASSERT(list_empty(&cache->pending_edge));
3112 	ASSERT(list_empty(&cache->useless_node));
3113 	ASSERT(list_empty(&cache->changed));
3114 	ASSERT(list_empty(&cache->detached));
3115 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3116 	ASSERT(!cache->nr_nodes);
3117 	ASSERT(!cache->nr_edges);
3118 }
3119 
3120 /*
3121  * Handle direct tree backref
3122  *
3123  * Direct tree backref means, the backref item shows its parent bytenr
3124  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3125  *
3126  * @ref_key:	The converted backref key.
3127  *		For keyed backref, it's the item key.
3128  *		For inlined backref, objectid is the bytenr,
3129  *		type is btrfs_inline_ref_type, offset is
3130  *		btrfs_inline_ref_offset.
3131  */
3132 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3133 				      struct btrfs_key *ref_key,
3134 				      struct btrfs_backref_node *cur)
3135 {
3136 	struct btrfs_backref_edge *edge;
3137 	struct btrfs_backref_node *upper;
3138 	struct rb_node *rb_node;
3139 
3140 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3141 
3142 	/* Only reloc root uses backref pointing to itself */
3143 	if (ref_key->objectid == ref_key->offset) {
3144 		struct btrfs_root *root;
3145 
3146 		cur->is_reloc_root = 1;
3147 		/* Only reloc backref cache cares about a specific root */
3148 		if (cache->is_reloc) {
3149 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3150 			if (!root)
3151 				return -ENOENT;
3152 			cur->root = root;
3153 		} else {
3154 			/*
3155 			 * For generic purpose backref cache, reloc root node
3156 			 * is useless.
3157 			 */
3158 			list_add(&cur->list, &cache->useless_node);
3159 		}
3160 		return 0;
3161 	}
3162 
3163 	edge = btrfs_backref_alloc_edge(cache);
3164 	if (!edge)
3165 		return -ENOMEM;
3166 
3167 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3168 	if (!rb_node) {
3169 		/* Parent node not yet cached */
3170 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3171 					   cur->level + 1);
3172 		if (!upper) {
3173 			btrfs_backref_free_edge(cache, edge);
3174 			return -ENOMEM;
3175 		}
3176 
3177 		/*
3178 		 *  Backrefs for the upper level block isn't cached, add the
3179 		 *  block to pending list
3180 		 */
3181 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3182 	} else {
3183 		/* Parent node already cached */
3184 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3185 		ASSERT(upper->checked);
3186 		INIT_LIST_HEAD(&edge->list[UPPER]);
3187 	}
3188 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3189 	return 0;
3190 }
3191 
3192 /*
3193  * Handle indirect tree backref
3194  *
3195  * Indirect tree backref means, we only know which tree the node belongs to.
3196  * We still need to do a tree search to find out the parents. This is for
3197  * TREE_BLOCK_REF backref (keyed or inlined).
3198  *
3199  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3200  * @tree_key:	The first key of this tree block.
3201  * @path:	A clean (released) path, to avoid allocating path every time
3202  *		the function get called.
3203  */
3204 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
3205 					struct btrfs_path *path,
3206 					struct btrfs_key *ref_key,
3207 					struct btrfs_key *tree_key,
3208 					struct btrfs_backref_node *cur)
3209 {
3210 	struct btrfs_fs_info *fs_info = cache->fs_info;
3211 	struct btrfs_backref_node *upper;
3212 	struct btrfs_backref_node *lower;
3213 	struct btrfs_backref_edge *edge;
3214 	struct extent_buffer *eb;
3215 	struct btrfs_root *root;
3216 	struct rb_node *rb_node;
3217 	int level;
3218 	bool need_check = true;
3219 	int ret;
3220 
3221 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3222 	if (IS_ERR(root))
3223 		return PTR_ERR(root);
3224 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3225 		cur->cowonly = 1;
3226 
3227 	if (btrfs_root_level(&root->root_item) == cur->level) {
3228 		/* Tree root */
3229 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3230 		/*
3231 		 * For reloc backref cache, we may ignore reloc root.  But for
3232 		 * general purpose backref cache, we can't rely on
3233 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3234 		 * current running relocation and lead to missing root.
3235 		 *
3236 		 * For general purpose backref cache, reloc root detection is
3237 		 * completely relying on direct backref (key->offset is parent
3238 		 * bytenr), thus only do such check for reloc cache.
3239 		 */
3240 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3241 			btrfs_put_root(root);
3242 			list_add(&cur->list, &cache->useless_node);
3243 		} else {
3244 			cur->root = root;
3245 		}
3246 		return 0;
3247 	}
3248 
3249 	level = cur->level + 1;
3250 
3251 	/* Search the tree to find parent blocks referring to the block */
3252 	path->search_commit_root = 1;
3253 	path->skip_locking = 1;
3254 	path->lowest_level = level;
3255 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3256 	path->lowest_level = 0;
3257 	if (ret < 0) {
3258 		btrfs_put_root(root);
3259 		return ret;
3260 	}
3261 	if (ret > 0 && path->slots[level] > 0)
3262 		path->slots[level]--;
3263 
3264 	eb = path->nodes[level];
3265 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3266 		btrfs_err(fs_info,
3267 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3268 			  cur->bytenr, level - 1, root->root_key.objectid,
3269 			  tree_key->objectid, tree_key->type, tree_key->offset);
3270 		btrfs_put_root(root);
3271 		ret = -ENOENT;
3272 		goto out;
3273 	}
3274 	lower = cur;
3275 
3276 	/* Add all nodes and edges in the path */
3277 	for (; level < BTRFS_MAX_LEVEL; level++) {
3278 		if (!path->nodes[level]) {
3279 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3280 			       lower->bytenr);
3281 			/* Same as previous should_ignore_reloc_root() call */
3282 			if (btrfs_should_ignore_reloc_root(root) &&
3283 			    cache->is_reloc) {
3284 				btrfs_put_root(root);
3285 				list_add(&lower->list, &cache->useless_node);
3286 			} else {
3287 				lower->root = root;
3288 			}
3289 			break;
3290 		}
3291 
3292 		edge = btrfs_backref_alloc_edge(cache);
3293 		if (!edge) {
3294 			btrfs_put_root(root);
3295 			ret = -ENOMEM;
3296 			goto out;
3297 		}
3298 
3299 		eb = path->nodes[level];
3300 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3301 		if (!rb_node) {
3302 			upper = btrfs_backref_alloc_node(cache, eb->start,
3303 							 lower->level + 1);
3304 			if (!upper) {
3305 				btrfs_put_root(root);
3306 				btrfs_backref_free_edge(cache, edge);
3307 				ret = -ENOMEM;
3308 				goto out;
3309 			}
3310 			upper->owner = btrfs_header_owner(eb);
3311 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3312 				upper->cowonly = 1;
3313 
3314 			/*
3315 			 * If we know the block isn't shared we can avoid
3316 			 * checking its backrefs.
3317 			 */
3318 			if (btrfs_block_can_be_shared(root, eb))
3319 				upper->checked = 0;
3320 			else
3321 				upper->checked = 1;
3322 
3323 			/*
3324 			 * Add the block to pending list if we need to check its
3325 			 * backrefs, we only do this once while walking up a
3326 			 * tree as we will catch anything else later on.
3327 			 */
3328 			if (!upper->checked && need_check) {
3329 				need_check = false;
3330 				list_add_tail(&edge->list[UPPER],
3331 					      &cache->pending_edge);
3332 			} else {
3333 				if (upper->checked)
3334 					need_check = true;
3335 				INIT_LIST_HEAD(&edge->list[UPPER]);
3336 			}
3337 		} else {
3338 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3339 					 rb_node);
3340 			ASSERT(upper->checked);
3341 			INIT_LIST_HEAD(&edge->list[UPPER]);
3342 			if (!upper->owner)
3343 				upper->owner = btrfs_header_owner(eb);
3344 		}
3345 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3346 
3347 		if (rb_node) {
3348 			btrfs_put_root(root);
3349 			break;
3350 		}
3351 		lower = upper;
3352 		upper = NULL;
3353 	}
3354 out:
3355 	btrfs_release_path(path);
3356 	return ret;
3357 }
3358 
3359 /*
3360  * Add backref node @cur into @cache.
3361  *
3362  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3363  *	 links aren't yet bi-directional. Needs to finish such links.
3364  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3365  *
3366  * @path:	Released path for indirect tree backref lookup
3367  * @iter:	Released backref iter for extent tree search
3368  * @node_key:	The first key of the tree block
3369  */
3370 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3371 				struct btrfs_path *path,
3372 				struct btrfs_backref_iter *iter,
3373 				struct btrfs_key *node_key,
3374 				struct btrfs_backref_node *cur)
3375 {
3376 	struct btrfs_fs_info *fs_info = cache->fs_info;
3377 	struct btrfs_backref_edge *edge;
3378 	struct btrfs_backref_node *exist;
3379 	int ret;
3380 
3381 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3382 	if (ret < 0)
3383 		return ret;
3384 	/*
3385 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3386 	 * stored in it, but fetch it from the tree block
3387 	 */
3388 	if (btrfs_backref_has_tree_block_info(iter)) {
3389 		ret = btrfs_backref_iter_next(iter);
3390 		if (ret < 0)
3391 			goto out;
3392 		/* No extra backref? This means the tree block is corrupted */
3393 		if (ret > 0) {
3394 			ret = -EUCLEAN;
3395 			goto out;
3396 		}
3397 	}
3398 	WARN_ON(cur->checked);
3399 	if (!list_empty(&cur->upper)) {
3400 		/*
3401 		 * The backref was added previously when processing backref of
3402 		 * type BTRFS_TREE_BLOCK_REF_KEY
3403 		 */
3404 		ASSERT(list_is_singular(&cur->upper));
3405 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3406 				  list[LOWER]);
3407 		ASSERT(list_empty(&edge->list[UPPER]));
3408 		exist = edge->node[UPPER];
3409 		/*
3410 		 * Add the upper level block to pending list if we need check
3411 		 * its backrefs
3412 		 */
3413 		if (!exist->checked)
3414 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3415 	} else {
3416 		exist = NULL;
3417 	}
3418 
3419 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3420 		struct extent_buffer *eb;
3421 		struct btrfs_key key;
3422 		int type;
3423 
3424 		cond_resched();
3425 		eb = btrfs_backref_get_eb(iter);
3426 
3427 		key.objectid = iter->bytenr;
3428 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3429 			struct btrfs_extent_inline_ref *iref;
3430 
3431 			/* Update key for inline backref */
3432 			iref = (struct btrfs_extent_inline_ref *)
3433 				((unsigned long)iter->cur_ptr);
3434 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3435 							BTRFS_REF_TYPE_BLOCK);
3436 			if (type == BTRFS_REF_TYPE_INVALID) {
3437 				ret = -EUCLEAN;
3438 				goto out;
3439 			}
3440 			key.type = type;
3441 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3442 		} else {
3443 			key.type = iter->cur_key.type;
3444 			key.offset = iter->cur_key.offset;
3445 		}
3446 
3447 		/*
3448 		 * Parent node found and matches current inline ref, no need to
3449 		 * rebuild this node for this inline ref
3450 		 */
3451 		if (exist &&
3452 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3453 		      exist->owner == key.offset) ||
3454 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3455 		      exist->bytenr == key.offset))) {
3456 			exist = NULL;
3457 			continue;
3458 		}
3459 
3460 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3461 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3462 			ret = handle_direct_tree_backref(cache, &key, cur);
3463 			if (ret < 0)
3464 				goto out;
3465 			continue;
3466 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3467 			ret = -EINVAL;
3468 			btrfs_print_v0_err(fs_info);
3469 			btrfs_handle_fs_error(fs_info, ret, NULL);
3470 			goto out;
3471 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3472 			continue;
3473 		}
3474 
3475 		/*
3476 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3477 		 * means the root objectid. We need to search the tree to get
3478 		 * its parent bytenr.
3479 		 */
3480 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3481 						   cur);
3482 		if (ret < 0)
3483 			goto out;
3484 	}
3485 	ret = 0;
3486 	cur->checked = 1;
3487 	WARN_ON(exist);
3488 out:
3489 	btrfs_backref_iter_release(iter);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3495  */
3496 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3497 				     struct btrfs_backref_node *start)
3498 {
3499 	struct list_head *useless_node = &cache->useless_node;
3500 	struct btrfs_backref_edge *edge;
3501 	struct rb_node *rb_node;
3502 	LIST_HEAD(pending_edge);
3503 
3504 	ASSERT(start->checked);
3505 
3506 	/* Insert this node to cache if it's not COW-only */
3507 	if (!start->cowonly) {
3508 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3509 					   &start->rb_node);
3510 		if (rb_node)
3511 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3512 					    -EEXIST);
3513 		list_add_tail(&start->lower, &cache->leaves);
3514 	}
3515 
3516 	/*
3517 	 * Use breadth first search to iterate all related edges.
3518 	 *
3519 	 * The starting points are all the edges of this node
3520 	 */
3521 	list_for_each_entry(edge, &start->upper, list[LOWER])
3522 		list_add_tail(&edge->list[UPPER], &pending_edge);
3523 
3524 	while (!list_empty(&pending_edge)) {
3525 		struct btrfs_backref_node *upper;
3526 		struct btrfs_backref_node *lower;
3527 
3528 		edge = list_first_entry(&pending_edge,
3529 				struct btrfs_backref_edge, list[UPPER]);
3530 		list_del_init(&edge->list[UPPER]);
3531 		upper = edge->node[UPPER];
3532 		lower = edge->node[LOWER];
3533 
3534 		/* Parent is detached, no need to keep any edges */
3535 		if (upper->detached) {
3536 			list_del(&edge->list[LOWER]);
3537 			btrfs_backref_free_edge(cache, edge);
3538 
3539 			/* Lower node is orphan, queue for cleanup */
3540 			if (list_empty(&lower->upper))
3541 				list_add(&lower->list, useless_node);
3542 			continue;
3543 		}
3544 
3545 		/*
3546 		 * All new nodes added in current build_backref_tree() haven't
3547 		 * been linked to the cache rb tree.
3548 		 * So if we have upper->rb_node populated, this means a cache
3549 		 * hit. We only need to link the edge, as @upper and all its
3550 		 * parents have already been linked.
3551 		 */
3552 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3553 			if (upper->lowest) {
3554 				list_del_init(&upper->lower);
3555 				upper->lowest = 0;
3556 			}
3557 
3558 			list_add_tail(&edge->list[UPPER], &upper->lower);
3559 			continue;
3560 		}
3561 
3562 		/* Sanity check, we shouldn't have any unchecked nodes */
3563 		if (!upper->checked) {
3564 			ASSERT(0);
3565 			return -EUCLEAN;
3566 		}
3567 
3568 		/* Sanity check, COW-only node has non-COW-only parent */
3569 		if (start->cowonly != upper->cowonly) {
3570 			ASSERT(0);
3571 			return -EUCLEAN;
3572 		}
3573 
3574 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3575 		if (!upper->cowonly) {
3576 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3577 						   &upper->rb_node);
3578 			if (rb_node) {
3579 				btrfs_backref_panic(cache->fs_info,
3580 						upper->bytenr, -EEXIST);
3581 				return -EUCLEAN;
3582 			}
3583 		}
3584 
3585 		list_add_tail(&edge->list[UPPER], &upper->lower);
3586 
3587 		/*
3588 		 * Also queue all the parent edges of this uncached node
3589 		 * to finish the upper linkage
3590 		 */
3591 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3592 			list_add_tail(&edge->list[UPPER], &pending_edge);
3593 	}
3594 	return 0;
3595 }
3596 
3597 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3598 				 struct btrfs_backref_node *node)
3599 {
3600 	struct btrfs_backref_node *lower;
3601 	struct btrfs_backref_node *upper;
3602 	struct btrfs_backref_edge *edge;
3603 
3604 	while (!list_empty(&cache->useless_node)) {
3605 		lower = list_first_entry(&cache->useless_node,
3606 				   struct btrfs_backref_node, list);
3607 		list_del_init(&lower->list);
3608 	}
3609 	while (!list_empty(&cache->pending_edge)) {
3610 		edge = list_first_entry(&cache->pending_edge,
3611 				struct btrfs_backref_edge, list[UPPER]);
3612 		list_del(&edge->list[UPPER]);
3613 		list_del(&edge->list[LOWER]);
3614 		lower = edge->node[LOWER];
3615 		upper = edge->node[UPPER];
3616 		btrfs_backref_free_edge(cache, edge);
3617 
3618 		/*
3619 		 * Lower is no longer linked to any upper backref nodes and
3620 		 * isn't in the cache, we can free it ourselves.
3621 		 */
3622 		if (list_empty(&lower->upper) &&
3623 		    RB_EMPTY_NODE(&lower->rb_node))
3624 			list_add(&lower->list, &cache->useless_node);
3625 
3626 		if (!RB_EMPTY_NODE(&upper->rb_node))
3627 			continue;
3628 
3629 		/* Add this guy's upper edges to the list to process */
3630 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3631 			list_add_tail(&edge->list[UPPER],
3632 				      &cache->pending_edge);
3633 		if (list_empty(&upper->upper))
3634 			list_add(&upper->list, &cache->useless_node);
3635 	}
3636 
3637 	while (!list_empty(&cache->useless_node)) {
3638 		lower = list_first_entry(&cache->useless_node,
3639 				   struct btrfs_backref_node, list);
3640 		list_del_init(&lower->list);
3641 		if (lower == node)
3642 			node = NULL;
3643 		btrfs_backref_drop_node(cache, lower);
3644 	}
3645 
3646 	btrfs_backref_cleanup_node(cache, node);
3647 	ASSERT(list_empty(&cache->useless_node) &&
3648 	       list_empty(&cache->pending_edge));
3649 }
3650