1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 data_offset; 40 u64 data_len; 41 struct extent_inode_elem *e; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 50 e = kmalloc(sizeof(*e), GFP_NOFS); 51 if (!e) 52 return -ENOMEM; 53 54 e->next = *eie; 55 e->inum = key->objectid; 56 e->offset = key->offset + (extent_item_pos - data_offset); 57 *eie = e; 58 59 return 0; 60 } 61 62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 63 u64 extent_item_pos, 64 struct extent_inode_elem **eie) 65 { 66 u64 disk_byte; 67 struct btrfs_key key; 68 struct btrfs_file_extent_item *fi; 69 int slot; 70 int nritems; 71 int extent_type; 72 int ret; 73 74 /* 75 * from the shared data ref, we only have the leaf but we need 76 * the key. thus, we must look into all items and see that we 77 * find one (some) with a reference to our extent item. 78 */ 79 nritems = btrfs_header_nritems(eb); 80 for (slot = 0; slot < nritems; ++slot) { 81 btrfs_item_key_to_cpu(eb, &key, slot); 82 if (key.type != BTRFS_EXTENT_DATA_KEY) 83 continue; 84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 85 extent_type = btrfs_file_extent_type(eb, fi); 86 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 87 continue; 88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 90 if (disk_byte != wanted_disk_byte) 91 continue; 92 93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 94 if (ret < 0) 95 return ret; 96 } 97 98 return 0; 99 } 100 101 /* 102 * this structure records all encountered refs on the way up to the root 103 */ 104 struct __prelim_ref { 105 struct list_head list; 106 u64 root_id; 107 struct btrfs_key key_for_search; 108 int level; 109 int count; 110 struct extent_inode_elem *inode_list; 111 u64 parent; 112 u64 wanted_disk_byte; 113 }; 114 115 /* 116 * the rules for all callers of this function are: 117 * - obtaining the parent is the goal 118 * - if you add a key, you must know that it is a correct key 119 * - if you cannot add the parent or a correct key, then we will look into the 120 * block later to set a correct key 121 * 122 * delayed refs 123 * ============ 124 * backref type | shared | indirect | shared | indirect 125 * information | tree | tree | data | data 126 * --------------------+--------+----------+--------+---------- 127 * parent logical | y | - | - | - 128 * key to resolve | - | y | y | y 129 * tree block logical | - | - | - | - 130 * root for resolving | y | y | y | y 131 * 132 * - column 1: we've the parent -> done 133 * - column 2, 3, 4: we use the key to find the parent 134 * 135 * on disk refs (inline or keyed) 136 * ============================== 137 * backref type | shared | indirect | shared | indirect 138 * information | tree | tree | data | data 139 * --------------------+--------+----------+--------+---------- 140 * parent logical | y | - | y | - 141 * key to resolve | - | - | - | y 142 * tree block logical | y | y | y | y 143 * root for resolving | - | y | y | y 144 * 145 * - column 1, 3: we've the parent -> done 146 * - column 2: we take the first key from the block to find the parent 147 * (see __add_missing_keys) 148 * - column 4: we use the key to find the parent 149 * 150 * additional information that's available but not required to find the parent 151 * block might help in merging entries to gain some speed. 152 */ 153 154 static int __add_prelim_ref(struct list_head *head, u64 root_id, 155 struct btrfs_key *key, int level, 156 u64 parent, u64 wanted_disk_byte, int count) 157 { 158 struct __prelim_ref *ref; 159 160 /* in case we're adding delayed refs, we're holding the refs spinlock */ 161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 162 if (!ref) 163 return -ENOMEM; 164 165 ref->root_id = root_id; 166 if (key) 167 ref->key_for_search = *key; 168 else 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 170 171 ref->inode_list = NULL; 172 ref->level = level; 173 ref->count = count; 174 ref->parent = parent; 175 ref->wanted_disk_byte = wanted_disk_byte; 176 list_add_tail(&ref->list, head); 177 178 return 0; 179 } 180 181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 182 struct ulist *parents, int level, 183 struct btrfs_key *key_for_search, u64 time_seq, 184 u64 wanted_disk_byte, 185 const u64 *extent_item_pos) 186 { 187 int ret = 0; 188 int slot; 189 struct extent_buffer *eb; 190 struct btrfs_key key; 191 struct btrfs_file_extent_item *fi; 192 struct extent_inode_elem *eie = NULL; 193 u64 disk_byte; 194 195 if (level != 0) { 196 eb = path->nodes[level]; 197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 198 if (ret < 0) 199 return ret; 200 return 0; 201 } 202 203 /* 204 * We normally enter this function with the path already pointing to 205 * the first item to check. But sometimes, we may enter it with 206 * slot==nritems. In that case, go to the next leaf before we continue. 207 */ 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 209 ret = btrfs_next_old_leaf(root, path, time_seq); 210 211 while (!ret) { 212 eb = path->nodes[0]; 213 slot = path->slots[0]; 214 215 btrfs_item_key_to_cpu(eb, &key, slot); 216 217 if (key.objectid != key_for_search->objectid || 218 key.type != BTRFS_EXTENT_DATA_KEY) 219 break; 220 221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 223 224 if (disk_byte == wanted_disk_byte) { 225 eie = NULL; 226 if (extent_item_pos) { 227 ret = check_extent_in_eb(&key, eb, fi, 228 *extent_item_pos, 229 &eie); 230 if (ret < 0) 231 break; 232 } 233 if (!ret) { 234 ret = ulist_add(parents, eb->start, 235 (uintptr_t)eie, GFP_NOFS); 236 if (ret < 0) 237 break; 238 if (!extent_item_pos) { 239 ret = btrfs_next_old_leaf(root, path, 240 time_seq); 241 continue; 242 } 243 } 244 } 245 ret = btrfs_next_old_item(root, path, time_seq); 246 } 247 248 if (ret > 0) 249 ret = 0; 250 return ret; 251 } 252 253 /* 254 * resolve an indirect backref in the form (root_id, key, level) 255 * to a logical address 256 */ 257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 258 struct btrfs_path *path, u64 time_seq, 259 struct __prelim_ref *ref, 260 struct ulist *parents, 261 const u64 *extent_item_pos) 262 { 263 struct btrfs_root *root; 264 struct btrfs_key root_key; 265 struct extent_buffer *eb; 266 int ret = 0; 267 int root_level; 268 int level = ref->level; 269 270 root_key.objectid = ref->root_id; 271 root_key.type = BTRFS_ROOT_ITEM_KEY; 272 root_key.offset = (u64)-1; 273 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 274 if (IS_ERR(root)) { 275 ret = PTR_ERR(root); 276 goto out; 277 } 278 279 root_level = btrfs_old_root_level(root, time_seq); 280 281 if (root_level + 1 == level) 282 goto out; 283 284 path->lowest_level = level; 285 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 286 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 287 "%d for key (%llu %u %llu)\n", 288 (unsigned long long)ref->root_id, level, ref->count, ret, 289 (unsigned long long)ref->key_for_search.objectid, 290 ref->key_for_search.type, 291 (unsigned long long)ref->key_for_search.offset); 292 if (ret < 0) 293 goto out; 294 295 eb = path->nodes[level]; 296 while (!eb) { 297 if (!level) { 298 WARN_ON(1); 299 ret = 1; 300 goto out; 301 } 302 level--; 303 eb = path->nodes[level]; 304 } 305 306 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 307 time_seq, ref->wanted_disk_byte, 308 extent_item_pos); 309 out: 310 path->lowest_level = 0; 311 btrfs_release_path(path); 312 return ret; 313 } 314 315 /* 316 * resolve all indirect backrefs from the list 317 */ 318 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 319 struct btrfs_path *path, u64 time_seq, 320 struct list_head *head, 321 const u64 *extent_item_pos) 322 { 323 int err; 324 int ret = 0; 325 struct __prelim_ref *ref; 326 struct __prelim_ref *ref_safe; 327 struct __prelim_ref *new_ref; 328 struct ulist *parents; 329 struct ulist_node *node; 330 struct ulist_iterator uiter; 331 332 parents = ulist_alloc(GFP_NOFS); 333 if (!parents) 334 return -ENOMEM; 335 336 /* 337 * _safe allows us to insert directly after the current item without 338 * iterating over the newly inserted items. 339 * we're also allowed to re-assign ref during iteration. 340 */ 341 list_for_each_entry_safe(ref, ref_safe, head, list) { 342 if (ref->parent) /* already direct */ 343 continue; 344 if (ref->count == 0) 345 continue; 346 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 347 parents, extent_item_pos); 348 if (err == -ENOMEM) 349 goto out; 350 if (err) 351 continue; 352 353 /* we put the first parent into the ref at hand */ 354 ULIST_ITER_INIT(&uiter); 355 node = ulist_next(parents, &uiter); 356 ref->parent = node ? node->val : 0; 357 ref->inode_list = node ? 358 (struct extent_inode_elem *)(uintptr_t)node->aux : 0; 359 360 /* additional parents require new refs being added here */ 361 while ((node = ulist_next(parents, &uiter))) { 362 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 363 if (!new_ref) { 364 ret = -ENOMEM; 365 goto out; 366 } 367 memcpy(new_ref, ref, sizeof(*ref)); 368 new_ref->parent = node->val; 369 new_ref->inode_list = (struct extent_inode_elem *) 370 (uintptr_t)node->aux; 371 list_add(&new_ref->list, &ref->list); 372 } 373 ulist_reinit(parents); 374 } 375 out: 376 ulist_free(parents); 377 return ret; 378 } 379 380 static inline int ref_for_same_block(struct __prelim_ref *ref1, 381 struct __prelim_ref *ref2) 382 { 383 if (ref1->level != ref2->level) 384 return 0; 385 if (ref1->root_id != ref2->root_id) 386 return 0; 387 if (ref1->key_for_search.type != ref2->key_for_search.type) 388 return 0; 389 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 390 return 0; 391 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 392 return 0; 393 if (ref1->parent != ref2->parent) 394 return 0; 395 396 return 1; 397 } 398 399 /* 400 * read tree blocks and add keys where required. 401 */ 402 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 403 struct list_head *head) 404 { 405 struct list_head *pos; 406 struct extent_buffer *eb; 407 408 list_for_each(pos, head) { 409 struct __prelim_ref *ref; 410 ref = list_entry(pos, struct __prelim_ref, list); 411 412 if (ref->parent) 413 continue; 414 if (ref->key_for_search.type) 415 continue; 416 BUG_ON(!ref->wanted_disk_byte); 417 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 418 fs_info->tree_root->leafsize, 0); 419 if (!eb || !extent_buffer_uptodate(eb)) { 420 free_extent_buffer(eb); 421 return -EIO; 422 } 423 btrfs_tree_read_lock(eb); 424 if (btrfs_header_level(eb) == 0) 425 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 426 else 427 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 428 btrfs_tree_read_unlock(eb); 429 free_extent_buffer(eb); 430 } 431 return 0; 432 } 433 434 /* 435 * merge two lists of backrefs and adjust counts accordingly 436 * 437 * mode = 1: merge identical keys, if key is set 438 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 439 * additionally, we could even add a key range for the blocks we 440 * looked into to merge even more (-> replace unresolved refs by those 441 * having a parent). 442 * mode = 2: merge identical parents 443 */ 444 static void __merge_refs(struct list_head *head, int mode) 445 { 446 struct list_head *pos1; 447 448 list_for_each(pos1, head) { 449 struct list_head *n2; 450 struct list_head *pos2; 451 struct __prelim_ref *ref1; 452 453 ref1 = list_entry(pos1, struct __prelim_ref, list); 454 455 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 456 pos2 = n2, n2 = pos2->next) { 457 struct __prelim_ref *ref2; 458 struct __prelim_ref *xchg; 459 struct extent_inode_elem *eie; 460 461 ref2 = list_entry(pos2, struct __prelim_ref, list); 462 463 if (mode == 1) { 464 if (!ref_for_same_block(ref1, ref2)) 465 continue; 466 if (!ref1->parent && ref2->parent) { 467 xchg = ref1; 468 ref1 = ref2; 469 ref2 = xchg; 470 } 471 } else { 472 if (ref1->parent != ref2->parent) 473 continue; 474 } 475 476 eie = ref1->inode_list; 477 while (eie && eie->next) 478 eie = eie->next; 479 if (eie) 480 eie->next = ref2->inode_list; 481 else 482 ref1->inode_list = ref2->inode_list; 483 ref1->count += ref2->count; 484 485 list_del(&ref2->list); 486 kfree(ref2); 487 } 488 489 } 490 } 491 492 /* 493 * add all currently queued delayed refs from this head whose seq nr is 494 * smaller or equal that seq to the list 495 */ 496 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 497 struct list_head *prefs) 498 { 499 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 500 struct rb_node *n = &head->node.rb_node; 501 struct btrfs_key key; 502 struct btrfs_key op_key = {0}; 503 int sgn; 504 int ret = 0; 505 506 if (extent_op && extent_op->update_key) 507 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 508 509 while ((n = rb_prev(n))) { 510 struct btrfs_delayed_ref_node *node; 511 node = rb_entry(n, struct btrfs_delayed_ref_node, 512 rb_node); 513 if (node->bytenr != head->node.bytenr) 514 break; 515 WARN_ON(node->is_head); 516 517 if (node->seq > seq) 518 continue; 519 520 switch (node->action) { 521 case BTRFS_ADD_DELAYED_EXTENT: 522 case BTRFS_UPDATE_DELAYED_HEAD: 523 WARN_ON(1); 524 continue; 525 case BTRFS_ADD_DELAYED_REF: 526 sgn = 1; 527 break; 528 case BTRFS_DROP_DELAYED_REF: 529 sgn = -1; 530 break; 531 default: 532 BUG_ON(1); 533 } 534 switch (node->type) { 535 case BTRFS_TREE_BLOCK_REF_KEY: { 536 struct btrfs_delayed_tree_ref *ref; 537 538 ref = btrfs_delayed_node_to_tree_ref(node); 539 ret = __add_prelim_ref(prefs, ref->root, &op_key, 540 ref->level + 1, 0, node->bytenr, 541 node->ref_mod * sgn); 542 break; 543 } 544 case BTRFS_SHARED_BLOCK_REF_KEY: { 545 struct btrfs_delayed_tree_ref *ref; 546 547 ref = btrfs_delayed_node_to_tree_ref(node); 548 ret = __add_prelim_ref(prefs, ref->root, NULL, 549 ref->level + 1, ref->parent, 550 node->bytenr, 551 node->ref_mod * sgn); 552 break; 553 } 554 case BTRFS_EXTENT_DATA_REF_KEY: { 555 struct btrfs_delayed_data_ref *ref; 556 ref = btrfs_delayed_node_to_data_ref(node); 557 558 key.objectid = ref->objectid; 559 key.type = BTRFS_EXTENT_DATA_KEY; 560 key.offset = ref->offset; 561 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 562 node->bytenr, 563 node->ref_mod * sgn); 564 break; 565 } 566 case BTRFS_SHARED_DATA_REF_KEY: { 567 struct btrfs_delayed_data_ref *ref; 568 569 ref = btrfs_delayed_node_to_data_ref(node); 570 571 key.objectid = ref->objectid; 572 key.type = BTRFS_EXTENT_DATA_KEY; 573 key.offset = ref->offset; 574 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 575 ref->parent, node->bytenr, 576 node->ref_mod * sgn); 577 break; 578 } 579 default: 580 WARN_ON(1); 581 } 582 if (ret) 583 return ret; 584 } 585 586 return 0; 587 } 588 589 /* 590 * add all inline backrefs for bytenr to the list 591 */ 592 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 593 struct btrfs_path *path, u64 bytenr, 594 int *info_level, struct list_head *prefs) 595 { 596 int ret = 0; 597 int slot; 598 struct extent_buffer *leaf; 599 struct btrfs_key key; 600 struct btrfs_key found_key; 601 unsigned long ptr; 602 unsigned long end; 603 struct btrfs_extent_item *ei; 604 u64 flags; 605 u64 item_size; 606 607 /* 608 * enumerate all inline refs 609 */ 610 leaf = path->nodes[0]; 611 slot = path->slots[0]; 612 613 item_size = btrfs_item_size_nr(leaf, slot); 614 BUG_ON(item_size < sizeof(*ei)); 615 616 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 617 flags = btrfs_extent_flags(leaf, ei); 618 btrfs_item_key_to_cpu(leaf, &found_key, slot); 619 620 ptr = (unsigned long)(ei + 1); 621 end = (unsigned long)ei + item_size; 622 623 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 624 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 625 struct btrfs_tree_block_info *info; 626 627 info = (struct btrfs_tree_block_info *)ptr; 628 *info_level = btrfs_tree_block_level(leaf, info); 629 ptr += sizeof(struct btrfs_tree_block_info); 630 BUG_ON(ptr > end); 631 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 632 *info_level = found_key.offset; 633 } else { 634 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 635 } 636 637 while (ptr < end) { 638 struct btrfs_extent_inline_ref *iref; 639 u64 offset; 640 int type; 641 642 iref = (struct btrfs_extent_inline_ref *)ptr; 643 type = btrfs_extent_inline_ref_type(leaf, iref); 644 offset = btrfs_extent_inline_ref_offset(leaf, iref); 645 646 switch (type) { 647 case BTRFS_SHARED_BLOCK_REF_KEY: 648 ret = __add_prelim_ref(prefs, 0, NULL, 649 *info_level + 1, offset, 650 bytenr, 1); 651 break; 652 case BTRFS_SHARED_DATA_REF_KEY: { 653 struct btrfs_shared_data_ref *sdref; 654 int count; 655 656 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 657 count = btrfs_shared_data_ref_count(leaf, sdref); 658 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 659 bytenr, count); 660 break; 661 } 662 case BTRFS_TREE_BLOCK_REF_KEY: 663 ret = __add_prelim_ref(prefs, offset, NULL, 664 *info_level + 1, 0, 665 bytenr, 1); 666 break; 667 case BTRFS_EXTENT_DATA_REF_KEY: { 668 struct btrfs_extent_data_ref *dref; 669 int count; 670 u64 root; 671 672 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 673 count = btrfs_extent_data_ref_count(leaf, dref); 674 key.objectid = btrfs_extent_data_ref_objectid(leaf, 675 dref); 676 key.type = BTRFS_EXTENT_DATA_KEY; 677 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 678 root = btrfs_extent_data_ref_root(leaf, dref); 679 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 680 bytenr, count); 681 break; 682 } 683 default: 684 WARN_ON(1); 685 } 686 if (ret) 687 return ret; 688 ptr += btrfs_extent_inline_ref_size(type); 689 } 690 691 return 0; 692 } 693 694 /* 695 * add all non-inline backrefs for bytenr to the list 696 */ 697 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 698 struct btrfs_path *path, u64 bytenr, 699 int info_level, struct list_head *prefs) 700 { 701 struct btrfs_root *extent_root = fs_info->extent_root; 702 int ret; 703 int slot; 704 struct extent_buffer *leaf; 705 struct btrfs_key key; 706 707 while (1) { 708 ret = btrfs_next_item(extent_root, path); 709 if (ret < 0) 710 break; 711 if (ret) { 712 ret = 0; 713 break; 714 } 715 716 slot = path->slots[0]; 717 leaf = path->nodes[0]; 718 btrfs_item_key_to_cpu(leaf, &key, slot); 719 720 if (key.objectid != bytenr) 721 break; 722 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 723 continue; 724 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 725 break; 726 727 switch (key.type) { 728 case BTRFS_SHARED_BLOCK_REF_KEY: 729 ret = __add_prelim_ref(prefs, 0, NULL, 730 info_level + 1, key.offset, 731 bytenr, 1); 732 break; 733 case BTRFS_SHARED_DATA_REF_KEY: { 734 struct btrfs_shared_data_ref *sdref; 735 int count; 736 737 sdref = btrfs_item_ptr(leaf, slot, 738 struct btrfs_shared_data_ref); 739 count = btrfs_shared_data_ref_count(leaf, sdref); 740 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 741 bytenr, count); 742 break; 743 } 744 case BTRFS_TREE_BLOCK_REF_KEY: 745 ret = __add_prelim_ref(prefs, key.offset, NULL, 746 info_level + 1, 0, 747 bytenr, 1); 748 break; 749 case BTRFS_EXTENT_DATA_REF_KEY: { 750 struct btrfs_extent_data_ref *dref; 751 int count; 752 u64 root; 753 754 dref = btrfs_item_ptr(leaf, slot, 755 struct btrfs_extent_data_ref); 756 count = btrfs_extent_data_ref_count(leaf, dref); 757 key.objectid = btrfs_extent_data_ref_objectid(leaf, 758 dref); 759 key.type = BTRFS_EXTENT_DATA_KEY; 760 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 761 root = btrfs_extent_data_ref_root(leaf, dref); 762 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 763 bytenr, count); 764 break; 765 } 766 default: 767 WARN_ON(1); 768 } 769 if (ret) 770 return ret; 771 772 } 773 774 return ret; 775 } 776 777 /* 778 * this adds all existing backrefs (inline backrefs, backrefs and delayed 779 * refs) for the given bytenr to the refs list, merges duplicates and resolves 780 * indirect refs to their parent bytenr. 781 * When roots are found, they're added to the roots list 782 * 783 * FIXME some caching might speed things up 784 */ 785 static int find_parent_nodes(struct btrfs_trans_handle *trans, 786 struct btrfs_fs_info *fs_info, u64 bytenr, 787 u64 time_seq, struct ulist *refs, 788 struct ulist *roots, const u64 *extent_item_pos) 789 { 790 struct btrfs_key key; 791 struct btrfs_path *path; 792 struct btrfs_delayed_ref_root *delayed_refs = NULL; 793 struct btrfs_delayed_ref_head *head; 794 int info_level = 0; 795 int ret; 796 struct list_head prefs_delayed; 797 struct list_head prefs; 798 struct __prelim_ref *ref; 799 800 INIT_LIST_HEAD(&prefs); 801 INIT_LIST_HEAD(&prefs_delayed); 802 803 key.objectid = bytenr; 804 key.offset = (u64)-1; 805 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 806 key.type = BTRFS_METADATA_ITEM_KEY; 807 else 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 810 path = btrfs_alloc_path(); 811 if (!path) 812 return -ENOMEM; 813 if (!trans) 814 path->search_commit_root = 1; 815 816 /* 817 * grab both a lock on the path and a lock on the delayed ref head. 818 * We need both to get a consistent picture of how the refs look 819 * at a specified point in time 820 */ 821 again: 822 head = NULL; 823 824 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 825 if (ret < 0) 826 goto out; 827 BUG_ON(ret == 0); 828 829 if (trans) { 830 /* 831 * look if there are updates for this ref queued and lock the 832 * head 833 */ 834 delayed_refs = &trans->transaction->delayed_refs; 835 spin_lock(&delayed_refs->lock); 836 head = btrfs_find_delayed_ref_head(trans, bytenr); 837 if (head) { 838 if (!mutex_trylock(&head->mutex)) { 839 atomic_inc(&head->node.refs); 840 spin_unlock(&delayed_refs->lock); 841 842 btrfs_release_path(path); 843 844 /* 845 * Mutex was contended, block until it's 846 * released and try again 847 */ 848 mutex_lock(&head->mutex); 849 mutex_unlock(&head->mutex); 850 btrfs_put_delayed_ref(&head->node); 851 goto again; 852 } 853 ret = __add_delayed_refs(head, time_seq, 854 &prefs_delayed); 855 mutex_unlock(&head->mutex); 856 if (ret) { 857 spin_unlock(&delayed_refs->lock); 858 goto out; 859 } 860 } 861 spin_unlock(&delayed_refs->lock); 862 } 863 864 if (path->slots[0]) { 865 struct extent_buffer *leaf; 866 int slot; 867 868 path->slots[0]--; 869 leaf = path->nodes[0]; 870 slot = path->slots[0]; 871 btrfs_item_key_to_cpu(leaf, &key, slot); 872 if (key.objectid == bytenr && 873 (key.type == BTRFS_EXTENT_ITEM_KEY || 874 key.type == BTRFS_METADATA_ITEM_KEY)) { 875 ret = __add_inline_refs(fs_info, path, bytenr, 876 &info_level, &prefs); 877 if (ret) 878 goto out; 879 ret = __add_keyed_refs(fs_info, path, bytenr, 880 info_level, &prefs); 881 if (ret) 882 goto out; 883 } 884 } 885 btrfs_release_path(path); 886 887 list_splice_init(&prefs_delayed, &prefs); 888 889 ret = __add_missing_keys(fs_info, &prefs); 890 if (ret) 891 goto out; 892 893 __merge_refs(&prefs, 1); 894 895 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 896 extent_item_pos); 897 if (ret) 898 goto out; 899 900 __merge_refs(&prefs, 2); 901 902 while (!list_empty(&prefs)) { 903 ref = list_first_entry(&prefs, struct __prelim_ref, list); 904 list_del(&ref->list); 905 WARN_ON(ref->count < 0); 906 if (ref->count && ref->root_id && ref->parent == 0) { 907 /* no parent == root of tree */ 908 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 909 if (ret < 0) 910 goto out; 911 } 912 if (ref->count && ref->parent) { 913 struct extent_inode_elem *eie = NULL; 914 if (extent_item_pos && !ref->inode_list) { 915 u32 bsz; 916 struct extent_buffer *eb; 917 bsz = btrfs_level_size(fs_info->extent_root, 918 info_level); 919 eb = read_tree_block(fs_info->extent_root, 920 ref->parent, bsz, 0); 921 if (!eb || !extent_buffer_uptodate(eb)) { 922 free_extent_buffer(eb); 923 ret = -EIO; 924 goto out; 925 } 926 ret = find_extent_in_eb(eb, bytenr, 927 *extent_item_pos, &eie); 928 ref->inode_list = eie; 929 free_extent_buffer(eb); 930 } 931 ret = ulist_add_merge(refs, ref->parent, 932 (uintptr_t)ref->inode_list, 933 (u64 *)&eie, GFP_NOFS); 934 if (ret < 0) 935 goto out; 936 if (!ret && extent_item_pos) { 937 /* 938 * we've recorded that parent, so we must extend 939 * its inode list here 940 */ 941 BUG_ON(!eie); 942 while (eie->next) 943 eie = eie->next; 944 eie->next = ref->inode_list; 945 } 946 } 947 kfree(ref); 948 } 949 950 out: 951 btrfs_free_path(path); 952 while (!list_empty(&prefs)) { 953 ref = list_first_entry(&prefs, struct __prelim_ref, list); 954 list_del(&ref->list); 955 kfree(ref); 956 } 957 while (!list_empty(&prefs_delayed)) { 958 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 959 list); 960 list_del(&ref->list); 961 kfree(ref); 962 } 963 964 return ret; 965 } 966 967 static void free_leaf_list(struct ulist *blocks) 968 { 969 struct ulist_node *node = NULL; 970 struct extent_inode_elem *eie; 971 struct extent_inode_elem *eie_next; 972 struct ulist_iterator uiter; 973 974 ULIST_ITER_INIT(&uiter); 975 while ((node = ulist_next(blocks, &uiter))) { 976 if (!node->aux) 977 continue; 978 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 979 for (; eie; eie = eie_next) { 980 eie_next = eie->next; 981 kfree(eie); 982 } 983 node->aux = 0; 984 } 985 986 ulist_free(blocks); 987 } 988 989 /* 990 * Finds all leafs with a reference to the specified combination of bytenr and 991 * offset. key_list_head will point to a list of corresponding keys (caller must 992 * free each list element). The leafs will be stored in the leafs ulist, which 993 * must be freed with ulist_free. 994 * 995 * returns 0 on success, <0 on error 996 */ 997 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 998 struct btrfs_fs_info *fs_info, u64 bytenr, 999 u64 time_seq, struct ulist **leafs, 1000 const u64 *extent_item_pos) 1001 { 1002 struct ulist *tmp; 1003 int ret; 1004 1005 tmp = ulist_alloc(GFP_NOFS); 1006 if (!tmp) 1007 return -ENOMEM; 1008 *leafs = ulist_alloc(GFP_NOFS); 1009 if (!*leafs) { 1010 ulist_free(tmp); 1011 return -ENOMEM; 1012 } 1013 1014 ret = find_parent_nodes(trans, fs_info, bytenr, 1015 time_seq, *leafs, tmp, extent_item_pos); 1016 ulist_free(tmp); 1017 1018 if (ret < 0 && ret != -ENOENT) { 1019 free_leaf_list(*leafs); 1020 return ret; 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * walk all backrefs for a given extent to find all roots that reference this 1028 * extent. Walking a backref means finding all extents that reference this 1029 * extent and in turn walk the backrefs of those, too. Naturally this is a 1030 * recursive process, but here it is implemented in an iterative fashion: We 1031 * find all referencing extents for the extent in question and put them on a 1032 * list. In turn, we find all referencing extents for those, further appending 1033 * to the list. The way we iterate the list allows adding more elements after 1034 * the current while iterating. The process stops when we reach the end of the 1035 * list. Found roots are added to the roots list. 1036 * 1037 * returns 0 on success, < 0 on error. 1038 */ 1039 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1040 struct btrfs_fs_info *fs_info, u64 bytenr, 1041 u64 time_seq, struct ulist **roots) 1042 { 1043 struct ulist *tmp; 1044 struct ulist_node *node = NULL; 1045 struct ulist_iterator uiter; 1046 int ret; 1047 1048 tmp = ulist_alloc(GFP_NOFS); 1049 if (!tmp) 1050 return -ENOMEM; 1051 *roots = ulist_alloc(GFP_NOFS); 1052 if (!*roots) { 1053 ulist_free(tmp); 1054 return -ENOMEM; 1055 } 1056 1057 ULIST_ITER_INIT(&uiter); 1058 while (1) { 1059 ret = find_parent_nodes(trans, fs_info, bytenr, 1060 time_seq, tmp, *roots, NULL); 1061 if (ret < 0 && ret != -ENOENT) { 1062 ulist_free(tmp); 1063 ulist_free(*roots); 1064 return ret; 1065 } 1066 node = ulist_next(tmp, &uiter); 1067 if (!node) 1068 break; 1069 bytenr = node->val; 1070 } 1071 1072 ulist_free(tmp); 1073 return 0; 1074 } 1075 1076 1077 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1078 struct btrfs_root *fs_root, struct btrfs_path *path, 1079 struct btrfs_key *found_key) 1080 { 1081 int ret; 1082 struct btrfs_key key; 1083 struct extent_buffer *eb; 1084 1085 key.type = key_type; 1086 key.objectid = inum; 1087 key.offset = ioff; 1088 1089 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1090 if (ret < 0) 1091 return ret; 1092 1093 eb = path->nodes[0]; 1094 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1095 ret = btrfs_next_leaf(fs_root, path); 1096 if (ret) 1097 return ret; 1098 eb = path->nodes[0]; 1099 } 1100 1101 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1102 if (found_key->type != key.type || found_key->objectid != key.objectid) 1103 return 1; 1104 1105 return 0; 1106 } 1107 1108 /* 1109 * this makes the path point to (inum INODE_ITEM ioff) 1110 */ 1111 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1112 struct btrfs_path *path) 1113 { 1114 struct btrfs_key key; 1115 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1116 &key); 1117 } 1118 1119 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1120 struct btrfs_path *path, 1121 struct btrfs_key *found_key) 1122 { 1123 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1124 found_key); 1125 } 1126 1127 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1128 u64 start_off, struct btrfs_path *path, 1129 struct btrfs_inode_extref **ret_extref, 1130 u64 *found_off) 1131 { 1132 int ret, slot; 1133 struct btrfs_key key; 1134 struct btrfs_key found_key; 1135 struct btrfs_inode_extref *extref; 1136 struct extent_buffer *leaf; 1137 unsigned long ptr; 1138 1139 key.objectid = inode_objectid; 1140 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1141 key.offset = start_off; 1142 1143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1144 if (ret < 0) 1145 return ret; 1146 1147 while (1) { 1148 leaf = path->nodes[0]; 1149 slot = path->slots[0]; 1150 if (slot >= btrfs_header_nritems(leaf)) { 1151 /* 1152 * If the item at offset is not found, 1153 * btrfs_search_slot will point us to the slot 1154 * where it should be inserted. In our case 1155 * that will be the slot directly before the 1156 * next INODE_REF_KEY_V2 item. In the case 1157 * that we're pointing to the last slot in a 1158 * leaf, we must move one leaf over. 1159 */ 1160 ret = btrfs_next_leaf(root, path); 1161 if (ret) { 1162 if (ret >= 1) 1163 ret = -ENOENT; 1164 break; 1165 } 1166 continue; 1167 } 1168 1169 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1170 1171 /* 1172 * Check that we're still looking at an extended ref key for 1173 * this particular objectid. If we have different 1174 * objectid or type then there are no more to be found 1175 * in the tree and we can exit. 1176 */ 1177 ret = -ENOENT; 1178 if (found_key.objectid != inode_objectid) 1179 break; 1180 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1181 break; 1182 1183 ret = 0; 1184 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1185 extref = (struct btrfs_inode_extref *)ptr; 1186 *ret_extref = extref; 1187 if (found_off) 1188 *found_off = found_key.offset; 1189 break; 1190 } 1191 1192 return ret; 1193 } 1194 1195 /* 1196 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1197 * Elements of the path are separated by '/' and the path is guaranteed to be 1198 * 0-terminated. the path is only given within the current file system. 1199 * Therefore, it never starts with a '/'. the caller is responsible to provide 1200 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1201 * the start point of the resulting string is returned. this pointer is within 1202 * dest, normally. 1203 * in case the path buffer would overflow, the pointer is decremented further 1204 * as if output was written to the buffer, though no more output is actually 1205 * generated. that way, the caller can determine how much space would be 1206 * required for the path to fit into the buffer. in that case, the returned 1207 * value will be smaller than dest. callers must check this! 1208 */ 1209 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1210 u32 name_len, unsigned long name_off, 1211 struct extent_buffer *eb_in, u64 parent, 1212 char *dest, u32 size) 1213 { 1214 int slot; 1215 u64 next_inum; 1216 int ret; 1217 s64 bytes_left = ((s64)size) - 1; 1218 struct extent_buffer *eb = eb_in; 1219 struct btrfs_key found_key; 1220 int leave_spinning = path->leave_spinning; 1221 struct btrfs_inode_ref *iref; 1222 1223 if (bytes_left >= 0) 1224 dest[bytes_left] = '\0'; 1225 1226 path->leave_spinning = 1; 1227 while (1) { 1228 bytes_left -= name_len; 1229 if (bytes_left >= 0) 1230 read_extent_buffer(eb, dest + bytes_left, 1231 name_off, name_len); 1232 if (eb != eb_in) { 1233 btrfs_tree_read_unlock_blocking(eb); 1234 free_extent_buffer(eb); 1235 } 1236 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1237 if (ret > 0) 1238 ret = -ENOENT; 1239 if (ret) 1240 break; 1241 1242 next_inum = found_key.offset; 1243 1244 /* regular exit ahead */ 1245 if (parent == next_inum) 1246 break; 1247 1248 slot = path->slots[0]; 1249 eb = path->nodes[0]; 1250 /* make sure we can use eb after releasing the path */ 1251 if (eb != eb_in) { 1252 atomic_inc(&eb->refs); 1253 btrfs_tree_read_lock(eb); 1254 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1255 } 1256 btrfs_release_path(path); 1257 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1258 1259 name_len = btrfs_inode_ref_name_len(eb, iref); 1260 name_off = (unsigned long)(iref + 1); 1261 1262 parent = next_inum; 1263 --bytes_left; 1264 if (bytes_left >= 0) 1265 dest[bytes_left] = '/'; 1266 } 1267 1268 btrfs_release_path(path); 1269 path->leave_spinning = leave_spinning; 1270 1271 if (ret) 1272 return ERR_PTR(ret); 1273 1274 return dest + bytes_left; 1275 } 1276 1277 /* 1278 * this makes the path point to (logical EXTENT_ITEM *) 1279 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1280 * tree blocks and <0 on error. 1281 */ 1282 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1283 struct btrfs_path *path, struct btrfs_key *found_key, 1284 u64 *flags_ret) 1285 { 1286 int ret; 1287 u64 flags; 1288 u64 size = 0; 1289 u32 item_size; 1290 struct extent_buffer *eb; 1291 struct btrfs_extent_item *ei; 1292 struct btrfs_key key; 1293 1294 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1295 key.type = BTRFS_METADATA_ITEM_KEY; 1296 else 1297 key.type = BTRFS_EXTENT_ITEM_KEY; 1298 key.objectid = logical; 1299 key.offset = (u64)-1; 1300 1301 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1302 if (ret < 0) 1303 return ret; 1304 ret = btrfs_previous_item(fs_info->extent_root, path, 1305 0, BTRFS_EXTENT_ITEM_KEY); 1306 if (ret < 0) 1307 return ret; 1308 1309 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1310 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1311 size = fs_info->extent_root->leafsize; 1312 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1313 size = found_key->offset; 1314 1315 if ((found_key->type != BTRFS_EXTENT_ITEM_KEY && 1316 found_key->type != BTRFS_METADATA_ITEM_KEY) || 1317 found_key->objectid > logical || 1318 found_key->objectid + size <= logical) { 1319 pr_debug("logical %llu is not within any extent\n", 1320 (unsigned long long)logical); 1321 return -ENOENT; 1322 } 1323 1324 eb = path->nodes[0]; 1325 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1326 BUG_ON(item_size < sizeof(*ei)); 1327 1328 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1329 flags = btrfs_extent_flags(eb, ei); 1330 1331 pr_debug("logical %llu is at position %llu within the extent (%llu " 1332 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1333 (unsigned long long)logical, 1334 (unsigned long long)(logical - found_key->objectid), 1335 (unsigned long long)found_key->objectid, 1336 (unsigned long long)found_key->offset, 1337 (unsigned long long)flags, item_size); 1338 1339 WARN_ON(!flags_ret); 1340 if (flags_ret) { 1341 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1342 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1343 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1344 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1345 else 1346 BUG_ON(1); 1347 return 0; 1348 } 1349 1350 return -EIO; 1351 } 1352 1353 /* 1354 * helper function to iterate extent inline refs. ptr must point to a 0 value 1355 * for the first call and may be modified. it is used to track state. 1356 * if more refs exist, 0 is returned and the next call to 1357 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1358 * next ref. after the last ref was processed, 1 is returned. 1359 * returns <0 on error 1360 */ 1361 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1362 struct btrfs_extent_item *ei, u32 item_size, 1363 struct btrfs_extent_inline_ref **out_eiref, 1364 int *out_type) 1365 { 1366 unsigned long end; 1367 u64 flags; 1368 struct btrfs_tree_block_info *info; 1369 1370 if (!*ptr) { 1371 /* first call */ 1372 flags = btrfs_extent_flags(eb, ei); 1373 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1374 info = (struct btrfs_tree_block_info *)(ei + 1); 1375 *out_eiref = 1376 (struct btrfs_extent_inline_ref *)(info + 1); 1377 } else { 1378 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1379 } 1380 *ptr = (unsigned long)*out_eiref; 1381 if ((void *)*ptr >= (void *)ei + item_size) 1382 return -ENOENT; 1383 } 1384 1385 end = (unsigned long)ei + item_size; 1386 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1387 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1388 1389 *ptr += btrfs_extent_inline_ref_size(*out_type); 1390 WARN_ON(*ptr > end); 1391 if (*ptr == end) 1392 return 1; /* last */ 1393 1394 return 0; 1395 } 1396 1397 /* 1398 * reads the tree block backref for an extent. tree level and root are returned 1399 * through out_level and out_root. ptr must point to a 0 value for the first 1400 * call and may be modified (see __get_extent_inline_ref comment). 1401 * returns 0 if data was provided, 1 if there was no more data to provide or 1402 * <0 on error. 1403 */ 1404 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1405 struct btrfs_extent_item *ei, u32 item_size, 1406 u64 *out_root, u8 *out_level) 1407 { 1408 int ret; 1409 int type; 1410 struct btrfs_tree_block_info *info; 1411 struct btrfs_extent_inline_ref *eiref; 1412 1413 if (*ptr == (unsigned long)-1) 1414 return 1; 1415 1416 while (1) { 1417 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1418 &eiref, &type); 1419 if (ret < 0) 1420 return ret; 1421 1422 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1423 type == BTRFS_SHARED_BLOCK_REF_KEY) 1424 break; 1425 1426 if (ret == 1) 1427 return 1; 1428 } 1429 1430 /* we can treat both ref types equally here */ 1431 info = (struct btrfs_tree_block_info *)(ei + 1); 1432 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1433 *out_level = btrfs_tree_block_level(eb, info); 1434 1435 if (ret == 1) 1436 *ptr = (unsigned long)-1; 1437 1438 return 0; 1439 } 1440 1441 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1442 u64 root, u64 extent_item_objectid, 1443 iterate_extent_inodes_t *iterate, void *ctx) 1444 { 1445 struct extent_inode_elem *eie; 1446 int ret = 0; 1447 1448 for (eie = inode_list; eie; eie = eie->next) { 1449 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1450 "root %llu\n", extent_item_objectid, 1451 eie->inum, eie->offset, root); 1452 ret = iterate(eie->inum, eie->offset, root, ctx); 1453 if (ret) { 1454 pr_debug("stopping iteration for %llu due to ret=%d\n", 1455 extent_item_objectid, ret); 1456 break; 1457 } 1458 } 1459 1460 return ret; 1461 } 1462 1463 /* 1464 * calls iterate() for every inode that references the extent identified by 1465 * the given parameters. 1466 * when the iterator function returns a non-zero value, iteration stops. 1467 */ 1468 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1469 u64 extent_item_objectid, u64 extent_item_pos, 1470 int search_commit_root, 1471 iterate_extent_inodes_t *iterate, void *ctx) 1472 { 1473 int ret; 1474 struct btrfs_trans_handle *trans = NULL; 1475 struct ulist *refs = NULL; 1476 struct ulist *roots = NULL; 1477 struct ulist_node *ref_node = NULL; 1478 struct ulist_node *root_node = NULL; 1479 struct seq_list tree_mod_seq_elem = {}; 1480 struct ulist_iterator ref_uiter; 1481 struct ulist_iterator root_uiter; 1482 1483 pr_debug("resolving all inodes for extent %llu\n", 1484 extent_item_objectid); 1485 1486 if (!search_commit_root) { 1487 trans = btrfs_join_transaction(fs_info->extent_root); 1488 if (IS_ERR(trans)) 1489 return PTR_ERR(trans); 1490 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1491 } 1492 1493 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1494 tree_mod_seq_elem.seq, &refs, 1495 &extent_item_pos); 1496 if (ret) 1497 goto out; 1498 1499 ULIST_ITER_INIT(&ref_uiter); 1500 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1501 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1502 tree_mod_seq_elem.seq, &roots); 1503 if (ret) 1504 break; 1505 ULIST_ITER_INIT(&root_uiter); 1506 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1507 pr_debug("root %llu references leaf %llu, data list " 1508 "%#llx\n", root_node->val, ref_node->val, 1509 (long long)ref_node->aux); 1510 ret = iterate_leaf_refs((struct extent_inode_elem *) 1511 (uintptr_t)ref_node->aux, 1512 root_node->val, 1513 extent_item_objectid, 1514 iterate, ctx); 1515 } 1516 ulist_free(roots); 1517 } 1518 1519 free_leaf_list(refs); 1520 out: 1521 if (!search_commit_root) { 1522 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1523 btrfs_end_transaction(trans, fs_info->extent_root); 1524 } 1525 1526 return ret; 1527 } 1528 1529 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1530 struct btrfs_path *path, 1531 iterate_extent_inodes_t *iterate, void *ctx) 1532 { 1533 int ret; 1534 u64 extent_item_pos; 1535 u64 flags = 0; 1536 struct btrfs_key found_key; 1537 int search_commit_root = path->search_commit_root; 1538 1539 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1540 btrfs_release_path(path); 1541 if (ret < 0) 1542 return ret; 1543 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1544 return -EINVAL; 1545 1546 extent_item_pos = logical - found_key.objectid; 1547 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1548 extent_item_pos, search_commit_root, 1549 iterate, ctx); 1550 1551 return ret; 1552 } 1553 1554 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1555 struct extent_buffer *eb, void *ctx); 1556 1557 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1558 struct btrfs_path *path, 1559 iterate_irefs_t *iterate, void *ctx) 1560 { 1561 int ret = 0; 1562 int slot; 1563 u32 cur; 1564 u32 len; 1565 u32 name_len; 1566 u64 parent = 0; 1567 int found = 0; 1568 struct extent_buffer *eb; 1569 struct btrfs_item *item; 1570 struct btrfs_inode_ref *iref; 1571 struct btrfs_key found_key; 1572 1573 while (!ret) { 1574 path->leave_spinning = 1; 1575 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1576 &found_key); 1577 if (ret < 0) 1578 break; 1579 if (ret) { 1580 ret = found ? 0 : -ENOENT; 1581 break; 1582 } 1583 ++found; 1584 1585 parent = found_key.offset; 1586 slot = path->slots[0]; 1587 eb = path->nodes[0]; 1588 /* make sure we can use eb after releasing the path */ 1589 atomic_inc(&eb->refs); 1590 btrfs_tree_read_lock(eb); 1591 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1592 btrfs_release_path(path); 1593 1594 item = btrfs_item_nr(eb, slot); 1595 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1596 1597 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1598 name_len = btrfs_inode_ref_name_len(eb, iref); 1599 /* path must be released before calling iterate()! */ 1600 pr_debug("following ref at offset %u for inode %llu in " 1601 "tree %llu\n", cur, 1602 (unsigned long long)found_key.objectid, 1603 (unsigned long long)fs_root->objectid); 1604 ret = iterate(parent, name_len, 1605 (unsigned long)(iref + 1), eb, ctx); 1606 if (ret) 1607 break; 1608 len = sizeof(*iref) + name_len; 1609 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1610 } 1611 btrfs_tree_read_unlock_blocking(eb); 1612 free_extent_buffer(eb); 1613 } 1614 1615 btrfs_release_path(path); 1616 1617 return ret; 1618 } 1619 1620 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1621 struct btrfs_path *path, 1622 iterate_irefs_t *iterate, void *ctx) 1623 { 1624 int ret; 1625 int slot; 1626 u64 offset = 0; 1627 u64 parent; 1628 int found = 0; 1629 struct extent_buffer *eb; 1630 struct btrfs_inode_extref *extref; 1631 struct extent_buffer *leaf; 1632 u32 item_size; 1633 u32 cur_offset; 1634 unsigned long ptr; 1635 1636 while (1) { 1637 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1638 &offset); 1639 if (ret < 0) 1640 break; 1641 if (ret) { 1642 ret = found ? 0 : -ENOENT; 1643 break; 1644 } 1645 ++found; 1646 1647 slot = path->slots[0]; 1648 eb = path->nodes[0]; 1649 /* make sure we can use eb after releasing the path */ 1650 atomic_inc(&eb->refs); 1651 1652 btrfs_tree_read_lock(eb); 1653 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1654 btrfs_release_path(path); 1655 1656 leaf = path->nodes[0]; 1657 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1658 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1659 cur_offset = 0; 1660 1661 while (cur_offset < item_size) { 1662 u32 name_len; 1663 1664 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1665 parent = btrfs_inode_extref_parent(eb, extref); 1666 name_len = btrfs_inode_extref_name_len(eb, extref); 1667 ret = iterate(parent, name_len, 1668 (unsigned long)&extref->name, eb, ctx); 1669 if (ret) 1670 break; 1671 1672 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1673 cur_offset += sizeof(*extref); 1674 } 1675 btrfs_tree_read_unlock_blocking(eb); 1676 free_extent_buffer(eb); 1677 1678 offset++; 1679 } 1680 1681 btrfs_release_path(path); 1682 1683 return ret; 1684 } 1685 1686 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1687 struct btrfs_path *path, iterate_irefs_t *iterate, 1688 void *ctx) 1689 { 1690 int ret; 1691 int found_refs = 0; 1692 1693 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1694 if (!ret) 1695 ++found_refs; 1696 else if (ret != -ENOENT) 1697 return ret; 1698 1699 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1700 if (ret == -ENOENT && found_refs) 1701 return 0; 1702 1703 return ret; 1704 } 1705 1706 /* 1707 * returns 0 if the path could be dumped (probably truncated) 1708 * returns <0 in case of an error 1709 */ 1710 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1711 struct extent_buffer *eb, void *ctx) 1712 { 1713 struct inode_fs_paths *ipath = ctx; 1714 char *fspath; 1715 char *fspath_min; 1716 int i = ipath->fspath->elem_cnt; 1717 const int s_ptr = sizeof(char *); 1718 u32 bytes_left; 1719 1720 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1721 ipath->fspath->bytes_left - s_ptr : 0; 1722 1723 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1724 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1725 name_off, eb, inum, fspath_min, bytes_left); 1726 if (IS_ERR(fspath)) 1727 return PTR_ERR(fspath); 1728 1729 if (fspath > fspath_min) { 1730 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1731 ++ipath->fspath->elem_cnt; 1732 ipath->fspath->bytes_left = fspath - fspath_min; 1733 } else { 1734 ++ipath->fspath->elem_missed; 1735 ipath->fspath->bytes_missing += fspath_min - fspath; 1736 ipath->fspath->bytes_left = 0; 1737 } 1738 1739 return 0; 1740 } 1741 1742 /* 1743 * this dumps all file system paths to the inode into the ipath struct, provided 1744 * is has been created large enough. each path is zero-terminated and accessed 1745 * from ipath->fspath->val[i]. 1746 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1747 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1748 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1749 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1750 * have been needed to return all paths. 1751 */ 1752 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1753 { 1754 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1755 inode_to_path, ipath); 1756 } 1757 1758 struct btrfs_data_container *init_data_container(u32 total_bytes) 1759 { 1760 struct btrfs_data_container *data; 1761 size_t alloc_bytes; 1762 1763 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1764 data = vmalloc(alloc_bytes); 1765 if (!data) 1766 return ERR_PTR(-ENOMEM); 1767 1768 if (total_bytes >= sizeof(*data)) { 1769 data->bytes_left = total_bytes - sizeof(*data); 1770 data->bytes_missing = 0; 1771 } else { 1772 data->bytes_missing = sizeof(*data) - total_bytes; 1773 data->bytes_left = 0; 1774 } 1775 1776 data->elem_cnt = 0; 1777 data->elem_missed = 0; 1778 1779 return data; 1780 } 1781 1782 /* 1783 * allocates space to return multiple file system paths for an inode. 1784 * total_bytes to allocate are passed, note that space usable for actual path 1785 * information will be total_bytes - sizeof(struct inode_fs_paths). 1786 * the returned pointer must be freed with free_ipath() in the end. 1787 */ 1788 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1789 struct btrfs_path *path) 1790 { 1791 struct inode_fs_paths *ifp; 1792 struct btrfs_data_container *fspath; 1793 1794 fspath = init_data_container(total_bytes); 1795 if (IS_ERR(fspath)) 1796 return (void *)fspath; 1797 1798 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1799 if (!ifp) { 1800 kfree(fspath); 1801 return ERR_PTR(-ENOMEM); 1802 } 1803 1804 ifp->btrfs_path = path; 1805 ifp->fspath = fspath; 1806 ifp->fs_root = fs_root; 1807 1808 return ifp; 1809 } 1810 1811 void free_ipath(struct inode_fs_paths *ipath) 1812 { 1813 if (!ipath) 1814 return; 1815 vfree(ipath->fspath); 1816 kfree(ipath); 1817 } 1818