xref: /openbmc/linux/fs/btrfs/backref.c (revision 5104d265)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 data_offset;
40 	u64 data_len;
41 	struct extent_inode_elem *e;
42 
43 	data_offset = btrfs_file_extent_offset(eb, fi);
44 	data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 	if (extent_item_pos < data_offset ||
47 	    extent_item_pos >= data_offset + data_len)
48 		return 1;
49 
50 	e = kmalloc(sizeof(*e), GFP_NOFS);
51 	if (!e)
52 		return -ENOMEM;
53 
54 	e->next = *eie;
55 	e->inum = key->objectid;
56 	e->offset = key->offset + (extent_item_pos - data_offset);
57 	*eie = e;
58 
59 	return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 				u64 extent_item_pos,
64 				struct extent_inode_elem **eie)
65 {
66 	u64 disk_byte;
67 	struct btrfs_key key;
68 	struct btrfs_file_extent_item *fi;
69 	int slot;
70 	int nritems;
71 	int extent_type;
72 	int ret;
73 
74 	/*
75 	 * from the shared data ref, we only have the leaf but we need
76 	 * the key. thus, we must look into all items and see that we
77 	 * find one (some) with a reference to our extent item.
78 	 */
79 	nritems = btrfs_header_nritems(eb);
80 	for (slot = 0; slot < nritems; ++slot) {
81 		btrfs_item_key_to_cpu(eb, &key, slot);
82 		if (key.type != BTRFS_EXTENT_DATA_KEY)
83 			continue;
84 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 		extent_type = btrfs_file_extent_type(eb, fi);
86 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 			continue;
88 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 		if (disk_byte != wanted_disk_byte)
91 			continue;
92 
93 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 		if (ret < 0)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105 	struct list_head list;
106 	u64 root_id;
107 	struct btrfs_key key_for_search;
108 	int level;
109 	int count;
110 	struct extent_inode_elem *inode_list;
111 	u64 parent;
112 	u64 wanted_disk_byte;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 			    struct btrfs_key *key, int level,
156 			    u64 parent, u64 wanted_disk_byte, int count)
157 {
158 	struct __prelim_ref *ref;
159 
160 	/* in case we're adding delayed refs, we're holding the refs spinlock */
161 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 	if (!ref)
163 		return -ENOMEM;
164 
165 	ref->root_id = root_id;
166 	if (key)
167 		ref->key_for_search = *key;
168 	else
169 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171 	ref->inode_list = NULL;
172 	ref->level = level;
173 	ref->count = count;
174 	ref->parent = parent;
175 	ref->wanted_disk_byte = wanted_disk_byte;
176 	list_add_tail(&ref->list, head);
177 
178 	return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182 				struct ulist *parents, int level,
183 				struct btrfs_key *key_for_search, u64 time_seq,
184 				u64 wanted_disk_byte,
185 				const u64 *extent_item_pos)
186 {
187 	int ret = 0;
188 	int slot;
189 	struct extent_buffer *eb;
190 	struct btrfs_key key;
191 	struct btrfs_file_extent_item *fi;
192 	struct extent_inode_elem *eie = NULL;
193 	u64 disk_byte;
194 
195 	if (level != 0) {
196 		eb = path->nodes[level];
197 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 		if (ret < 0)
199 			return ret;
200 		return 0;
201 	}
202 
203 	/*
204 	 * We normally enter this function with the path already pointing to
205 	 * the first item to check. But sometimes, we may enter it with
206 	 * slot==nritems. In that case, go to the next leaf before we continue.
207 	 */
208 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209 		ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211 	while (!ret) {
212 		eb = path->nodes[0];
213 		slot = path->slots[0];
214 
215 		btrfs_item_key_to_cpu(eb, &key, slot);
216 
217 		if (key.objectid != key_for_search->objectid ||
218 		    key.type != BTRFS_EXTENT_DATA_KEY)
219 			break;
220 
221 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224 		if (disk_byte == wanted_disk_byte) {
225 			eie = NULL;
226 			if (extent_item_pos) {
227 				ret = check_extent_in_eb(&key, eb, fi,
228 						*extent_item_pos,
229 						&eie);
230 				if (ret < 0)
231 					break;
232 			}
233 			if (!ret) {
234 				ret = ulist_add(parents, eb->start,
235 						(uintptr_t)eie, GFP_NOFS);
236 				if (ret < 0)
237 					break;
238 				if (!extent_item_pos) {
239 					ret = btrfs_next_old_leaf(root, path,
240 							time_seq);
241 					continue;
242 				}
243 			}
244 		}
245 		ret = btrfs_next_old_item(root, path, time_seq);
246 	}
247 
248 	if (ret > 0)
249 		ret = 0;
250 	return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258 				  struct btrfs_path *path, u64 time_seq,
259 				  struct __prelim_ref *ref,
260 				  struct ulist *parents,
261 				  const u64 *extent_item_pos)
262 {
263 	struct btrfs_root *root;
264 	struct btrfs_key root_key;
265 	struct extent_buffer *eb;
266 	int ret = 0;
267 	int root_level;
268 	int level = ref->level;
269 
270 	root_key.objectid = ref->root_id;
271 	root_key.type = BTRFS_ROOT_ITEM_KEY;
272 	root_key.offset = (u64)-1;
273 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
274 	if (IS_ERR(root)) {
275 		ret = PTR_ERR(root);
276 		goto out;
277 	}
278 
279 	root_level = btrfs_old_root_level(root, time_seq);
280 
281 	if (root_level + 1 == level)
282 		goto out;
283 
284 	path->lowest_level = level;
285 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
286 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
287 		 "%d for key (%llu %u %llu)\n",
288 		 (unsigned long long)ref->root_id, level, ref->count, ret,
289 		 (unsigned long long)ref->key_for_search.objectid,
290 		 ref->key_for_search.type,
291 		 (unsigned long long)ref->key_for_search.offset);
292 	if (ret < 0)
293 		goto out;
294 
295 	eb = path->nodes[level];
296 	while (!eb) {
297 		if (!level) {
298 			WARN_ON(1);
299 			ret = 1;
300 			goto out;
301 		}
302 		level--;
303 		eb = path->nodes[level];
304 	}
305 
306 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
307 				time_seq, ref->wanted_disk_byte,
308 				extent_item_pos);
309 out:
310 	path->lowest_level = 0;
311 	btrfs_release_path(path);
312 	return ret;
313 }
314 
315 /*
316  * resolve all indirect backrefs from the list
317  */
318 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
319 				   struct btrfs_path *path, u64 time_seq,
320 				   struct list_head *head,
321 				   const u64 *extent_item_pos)
322 {
323 	int err;
324 	int ret = 0;
325 	struct __prelim_ref *ref;
326 	struct __prelim_ref *ref_safe;
327 	struct __prelim_ref *new_ref;
328 	struct ulist *parents;
329 	struct ulist_node *node;
330 	struct ulist_iterator uiter;
331 
332 	parents = ulist_alloc(GFP_NOFS);
333 	if (!parents)
334 		return -ENOMEM;
335 
336 	/*
337 	 * _safe allows us to insert directly after the current item without
338 	 * iterating over the newly inserted items.
339 	 * we're also allowed to re-assign ref during iteration.
340 	 */
341 	list_for_each_entry_safe(ref, ref_safe, head, list) {
342 		if (ref->parent)	/* already direct */
343 			continue;
344 		if (ref->count == 0)
345 			continue;
346 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
347 					     parents, extent_item_pos);
348 		if (err == -ENOMEM)
349 			goto out;
350 		if (err)
351 			continue;
352 
353 		/* we put the first parent into the ref at hand */
354 		ULIST_ITER_INIT(&uiter);
355 		node = ulist_next(parents, &uiter);
356 		ref->parent = node ? node->val : 0;
357 		ref->inode_list = node ?
358 			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
359 
360 		/* additional parents require new refs being added here */
361 		while ((node = ulist_next(parents, &uiter))) {
362 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
363 			if (!new_ref) {
364 				ret = -ENOMEM;
365 				goto out;
366 			}
367 			memcpy(new_ref, ref, sizeof(*ref));
368 			new_ref->parent = node->val;
369 			new_ref->inode_list = (struct extent_inode_elem *)
370 							(uintptr_t)node->aux;
371 			list_add(&new_ref->list, &ref->list);
372 		}
373 		ulist_reinit(parents);
374 	}
375 out:
376 	ulist_free(parents);
377 	return ret;
378 }
379 
380 static inline int ref_for_same_block(struct __prelim_ref *ref1,
381 				     struct __prelim_ref *ref2)
382 {
383 	if (ref1->level != ref2->level)
384 		return 0;
385 	if (ref1->root_id != ref2->root_id)
386 		return 0;
387 	if (ref1->key_for_search.type != ref2->key_for_search.type)
388 		return 0;
389 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
390 		return 0;
391 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
392 		return 0;
393 	if (ref1->parent != ref2->parent)
394 		return 0;
395 
396 	return 1;
397 }
398 
399 /*
400  * read tree blocks and add keys where required.
401  */
402 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
403 			      struct list_head *head)
404 {
405 	struct list_head *pos;
406 	struct extent_buffer *eb;
407 
408 	list_for_each(pos, head) {
409 		struct __prelim_ref *ref;
410 		ref = list_entry(pos, struct __prelim_ref, list);
411 
412 		if (ref->parent)
413 			continue;
414 		if (ref->key_for_search.type)
415 			continue;
416 		BUG_ON(!ref->wanted_disk_byte);
417 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
418 				     fs_info->tree_root->leafsize, 0);
419 		if (!eb || !extent_buffer_uptodate(eb)) {
420 			free_extent_buffer(eb);
421 			return -EIO;
422 		}
423 		btrfs_tree_read_lock(eb);
424 		if (btrfs_header_level(eb) == 0)
425 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
426 		else
427 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
428 		btrfs_tree_read_unlock(eb);
429 		free_extent_buffer(eb);
430 	}
431 	return 0;
432 }
433 
434 /*
435  * merge two lists of backrefs and adjust counts accordingly
436  *
437  * mode = 1: merge identical keys, if key is set
438  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
439  *           additionally, we could even add a key range for the blocks we
440  *           looked into to merge even more (-> replace unresolved refs by those
441  *           having a parent).
442  * mode = 2: merge identical parents
443  */
444 static void __merge_refs(struct list_head *head, int mode)
445 {
446 	struct list_head *pos1;
447 
448 	list_for_each(pos1, head) {
449 		struct list_head *n2;
450 		struct list_head *pos2;
451 		struct __prelim_ref *ref1;
452 
453 		ref1 = list_entry(pos1, struct __prelim_ref, list);
454 
455 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
456 		     pos2 = n2, n2 = pos2->next) {
457 			struct __prelim_ref *ref2;
458 			struct __prelim_ref *xchg;
459 			struct extent_inode_elem *eie;
460 
461 			ref2 = list_entry(pos2, struct __prelim_ref, list);
462 
463 			if (mode == 1) {
464 				if (!ref_for_same_block(ref1, ref2))
465 					continue;
466 				if (!ref1->parent && ref2->parent) {
467 					xchg = ref1;
468 					ref1 = ref2;
469 					ref2 = xchg;
470 				}
471 			} else {
472 				if (ref1->parent != ref2->parent)
473 					continue;
474 			}
475 
476 			eie = ref1->inode_list;
477 			while (eie && eie->next)
478 				eie = eie->next;
479 			if (eie)
480 				eie->next = ref2->inode_list;
481 			else
482 				ref1->inode_list = ref2->inode_list;
483 			ref1->count += ref2->count;
484 
485 			list_del(&ref2->list);
486 			kfree(ref2);
487 		}
488 
489 	}
490 }
491 
492 /*
493  * add all currently queued delayed refs from this head whose seq nr is
494  * smaller or equal that seq to the list
495  */
496 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
497 			      struct list_head *prefs)
498 {
499 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
500 	struct rb_node *n = &head->node.rb_node;
501 	struct btrfs_key key;
502 	struct btrfs_key op_key = {0};
503 	int sgn;
504 	int ret = 0;
505 
506 	if (extent_op && extent_op->update_key)
507 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
508 
509 	while ((n = rb_prev(n))) {
510 		struct btrfs_delayed_ref_node *node;
511 		node = rb_entry(n, struct btrfs_delayed_ref_node,
512 				rb_node);
513 		if (node->bytenr != head->node.bytenr)
514 			break;
515 		WARN_ON(node->is_head);
516 
517 		if (node->seq > seq)
518 			continue;
519 
520 		switch (node->action) {
521 		case BTRFS_ADD_DELAYED_EXTENT:
522 		case BTRFS_UPDATE_DELAYED_HEAD:
523 			WARN_ON(1);
524 			continue;
525 		case BTRFS_ADD_DELAYED_REF:
526 			sgn = 1;
527 			break;
528 		case BTRFS_DROP_DELAYED_REF:
529 			sgn = -1;
530 			break;
531 		default:
532 			BUG_ON(1);
533 		}
534 		switch (node->type) {
535 		case BTRFS_TREE_BLOCK_REF_KEY: {
536 			struct btrfs_delayed_tree_ref *ref;
537 
538 			ref = btrfs_delayed_node_to_tree_ref(node);
539 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
540 					       ref->level + 1, 0, node->bytenr,
541 					       node->ref_mod * sgn);
542 			break;
543 		}
544 		case BTRFS_SHARED_BLOCK_REF_KEY: {
545 			struct btrfs_delayed_tree_ref *ref;
546 
547 			ref = btrfs_delayed_node_to_tree_ref(node);
548 			ret = __add_prelim_ref(prefs, ref->root, NULL,
549 					       ref->level + 1, ref->parent,
550 					       node->bytenr,
551 					       node->ref_mod * sgn);
552 			break;
553 		}
554 		case BTRFS_EXTENT_DATA_REF_KEY: {
555 			struct btrfs_delayed_data_ref *ref;
556 			ref = btrfs_delayed_node_to_data_ref(node);
557 
558 			key.objectid = ref->objectid;
559 			key.type = BTRFS_EXTENT_DATA_KEY;
560 			key.offset = ref->offset;
561 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
562 					       node->bytenr,
563 					       node->ref_mod * sgn);
564 			break;
565 		}
566 		case BTRFS_SHARED_DATA_REF_KEY: {
567 			struct btrfs_delayed_data_ref *ref;
568 
569 			ref = btrfs_delayed_node_to_data_ref(node);
570 
571 			key.objectid = ref->objectid;
572 			key.type = BTRFS_EXTENT_DATA_KEY;
573 			key.offset = ref->offset;
574 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
575 					       ref->parent, node->bytenr,
576 					       node->ref_mod * sgn);
577 			break;
578 		}
579 		default:
580 			WARN_ON(1);
581 		}
582 		if (ret)
583 			return ret;
584 	}
585 
586 	return 0;
587 }
588 
589 /*
590  * add all inline backrefs for bytenr to the list
591  */
592 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
593 			     struct btrfs_path *path, u64 bytenr,
594 			     int *info_level, struct list_head *prefs)
595 {
596 	int ret = 0;
597 	int slot;
598 	struct extent_buffer *leaf;
599 	struct btrfs_key key;
600 	struct btrfs_key found_key;
601 	unsigned long ptr;
602 	unsigned long end;
603 	struct btrfs_extent_item *ei;
604 	u64 flags;
605 	u64 item_size;
606 
607 	/*
608 	 * enumerate all inline refs
609 	 */
610 	leaf = path->nodes[0];
611 	slot = path->slots[0];
612 
613 	item_size = btrfs_item_size_nr(leaf, slot);
614 	BUG_ON(item_size < sizeof(*ei));
615 
616 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
617 	flags = btrfs_extent_flags(leaf, ei);
618 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
619 
620 	ptr = (unsigned long)(ei + 1);
621 	end = (unsigned long)ei + item_size;
622 
623 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
624 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
625 		struct btrfs_tree_block_info *info;
626 
627 		info = (struct btrfs_tree_block_info *)ptr;
628 		*info_level = btrfs_tree_block_level(leaf, info);
629 		ptr += sizeof(struct btrfs_tree_block_info);
630 		BUG_ON(ptr > end);
631 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
632 		*info_level = found_key.offset;
633 	} else {
634 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
635 	}
636 
637 	while (ptr < end) {
638 		struct btrfs_extent_inline_ref *iref;
639 		u64 offset;
640 		int type;
641 
642 		iref = (struct btrfs_extent_inline_ref *)ptr;
643 		type = btrfs_extent_inline_ref_type(leaf, iref);
644 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
645 
646 		switch (type) {
647 		case BTRFS_SHARED_BLOCK_REF_KEY:
648 			ret = __add_prelim_ref(prefs, 0, NULL,
649 						*info_level + 1, offset,
650 						bytenr, 1);
651 			break;
652 		case BTRFS_SHARED_DATA_REF_KEY: {
653 			struct btrfs_shared_data_ref *sdref;
654 			int count;
655 
656 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
657 			count = btrfs_shared_data_ref_count(leaf, sdref);
658 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
659 					       bytenr, count);
660 			break;
661 		}
662 		case BTRFS_TREE_BLOCK_REF_KEY:
663 			ret = __add_prelim_ref(prefs, offset, NULL,
664 					       *info_level + 1, 0,
665 					       bytenr, 1);
666 			break;
667 		case BTRFS_EXTENT_DATA_REF_KEY: {
668 			struct btrfs_extent_data_ref *dref;
669 			int count;
670 			u64 root;
671 
672 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
673 			count = btrfs_extent_data_ref_count(leaf, dref);
674 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
675 								      dref);
676 			key.type = BTRFS_EXTENT_DATA_KEY;
677 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
678 			root = btrfs_extent_data_ref_root(leaf, dref);
679 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
680 					       bytenr, count);
681 			break;
682 		}
683 		default:
684 			WARN_ON(1);
685 		}
686 		if (ret)
687 			return ret;
688 		ptr += btrfs_extent_inline_ref_size(type);
689 	}
690 
691 	return 0;
692 }
693 
694 /*
695  * add all non-inline backrefs for bytenr to the list
696  */
697 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
698 			    struct btrfs_path *path, u64 bytenr,
699 			    int info_level, struct list_head *prefs)
700 {
701 	struct btrfs_root *extent_root = fs_info->extent_root;
702 	int ret;
703 	int slot;
704 	struct extent_buffer *leaf;
705 	struct btrfs_key key;
706 
707 	while (1) {
708 		ret = btrfs_next_item(extent_root, path);
709 		if (ret < 0)
710 			break;
711 		if (ret) {
712 			ret = 0;
713 			break;
714 		}
715 
716 		slot = path->slots[0];
717 		leaf = path->nodes[0];
718 		btrfs_item_key_to_cpu(leaf, &key, slot);
719 
720 		if (key.objectid != bytenr)
721 			break;
722 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
723 			continue;
724 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
725 			break;
726 
727 		switch (key.type) {
728 		case BTRFS_SHARED_BLOCK_REF_KEY:
729 			ret = __add_prelim_ref(prefs, 0, NULL,
730 						info_level + 1, key.offset,
731 						bytenr, 1);
732 			break;
733 		case BTRFS_SHARED_DATA_REF_KEY: {
734 			struct btrfs_shared_data_ref *sdref;
735 			int count;
736 
737 			sdref = btrfs_item_ptr(leaf, slot,
738 					      struct btrfs_shared_data_ref);
739 			count = btrfs_shared_data_ref_count(leaf, sdref);
740 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
741 						bytenr, count);
742 			break;
743 		}
744 		case BTRFS_TREE_BLOCK_REF_KEY:
745 			ret = __add_prelim_ref(prefs, key.offset, NULL,
746 					       info_level + 1, 0,
747 					       bytenr, 1);
748 			break;
749 		case BTRFS_EXTENT_DATA_REF_KEY: {
750 			struct btrfs_extent_data_ref *dref;
751 			int count;
752 			u64 root;
753 
754 			dref = btrfs_item_ptr(leaf, slot,
755 					      struct btrfs_extent_data_ref);
756 			count = btrfs_extent_data_ref_count(leaf, dref);
757 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
758 								      dref);
759 			key.type = BTRFS_EXTENT_DATA_KEY;
760 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
761 			root = btrfs_extent_data_ref_root(leaf, dref);
762 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
763 					       bytenr, count);
764 			break;
765 		}
766 		default:
767 			WARN_ON(1);
768 		}
769 		if (ret)
770 			return ret;
771 
772 	}
773 
774 	return ret;
775 }
776 
777 /*
778  * this adds all existing backrefs (inline backrefs, backrefs and delayed
779  * refs) for the given bytenr to the refs list, merges duplicates and resolves
780  * indirect refs to their parent bytenr.
781  * When roots are found, they're added to the roots list
782  *
783  * FIXME some caching might speed things up
784  */
785 static int find_parent_nodes(struct btrfs_trans_handle *trans,
786 			     struct btrfs_fs_info *fs_info, u64 bytenr,
787 			     u64 time_seq, struct ulist *refs,
788 			     struct ulist *roots, const u64 *extent_item_pos)
789 {
790 	struct btrfs_key key;
791 	struct btrfs_path *path;
792 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
793 	struct btrfs_delayed_ref_head *head;
794 	int info_level = 0;
795 	int ret;
796 	struct list_head prefs_delayed;
797 	struct list_head prefs;
798 	struct __prelim_ref *ref;
799 
800 	INIT_LIST_HEAD(&prefs);
801 	INIT_LIST_HEAD(&prefs_delayed);
802 
803 	key.objectid = bytenr;
804 	key.offset = (u64)-1;
805 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
806 		key.type = BTRFS_METADATA_ITEM_KEY;
807 	else
808 		key.type = BTRFS_EXTENT_ITEM_KEY;
809 
810 	path = btrfs_alloc_path();
811 	if (!path)
812 		return -ENOMEM;
813 	if (!trans)
814 		path->search_commit_root = 1;
815 
816 	/*
817 	 * grab both a lock on the path and a lock on the delayed ref head.
818 	 * We need both to get a consistent picture of how the refs look
819 	 * at a specified point in time
820 	 */
821 again:
822 	head = NULL;
823 
824 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
825 	if (ret < 0)
826 		goto out;
827 	BUG_ON(ret == 0);
828 
829 	if (trans) {
830 		/*
831 		 * look if there are updates for this ref queued and lock the
832 		 * head
833 		 */
834 		delayed_refs = &trans->transaction->delayed_refs;
835 		spin_lock(&delayed_refs->lock);
836 		head = btrfs_find_delayed_ref_head(trans, bytenr);
837 		if (head) {
838 			if (!mutex_trylock(&head->mutex)) {
839 				atomic_inc(&head->node.refs);
840 				spin_unlock(&delayed_refs->lock);
841 
842 				btrfs_release_path(path);
843 
844 				/*
845 				 * Mutex was contended, block until it's
846 				 * released and try again
847 				 */
848 				mutex_lock(&head->mutex);
849 				mutex_unlock(&head->mutex);
850 				btrfs_put_delayed_ref(&head->node);
851 				goto again;
852 			}
853 			ret = __add_delayed_refs(head, time_seq,
854 						 &prefs_delayed);
855 			mutex_unlock(&head->mutex);
856 			if (ret) {
857 				spin_unlock(&delayed_refs->lock);
858 				goto out;
859 			}
860 		}
861 		spin_unlock(&delayed_refs->lock);
862 	}
863 
864 	if (path->slots[0]) {
865 		struct extent_buffer *leaf;
866 		int slot;
867 
868 		path->slots[0]--;
869 		leaf = path->nodes[0];
870 		slot = path->slots[0];
871 		btrfs_item_key_to_cpu(leaf, &key, slot);
872 		if (key.objectid == bytenr &&
873 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
874 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
875 			ret = __add_inline_refs(fs_info, path, bytenr,
876 						&info_level, &prefs);
877 			if (ret)
878 				goto out;
879 			ret = __add_keyed_refs(fs_info, path, bytenr,
880 					       info_level, &prefs);
881 			if (ret)
882 				goto out;
883 		}
884 	}
885 	btrfs_release_path(path);
886 
887 	list_splice_init(&prefs_delayed, &prefs);
888 
889 	ret = __add_missing_keys(fs_info, &prefs);
890 	if (ret)
891 		goto out;
892 
893 	__merge_refs(&prefs, 1);
894 
895 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
896 				      extent_item_pos);
897 	if (ret)
898 		goto out;
899 
900 	__merge_refs(&prefs, 2);
901 
902 	while (!list_empty(&prefs)) {
903 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
904 		list_del(&ref->list);
905 		WARN_ON(ref->count < 0);
906 		if (ref->count && ref->root_id && ref->parent == 0) {
907 			/* no parent == root of tree */
908 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
909 			if (ret < 0)
910 				goto out;
911 		}
912 		if (ref->count && ref->parent) {
913 			struct extent_inode_elem *eie = NULL;
914 			if (extent_item_pos && !ref->inode_list) {
915 				u32 bsz;
916 				struct extent_buffer *eb;
917 				bsz = btrfs_level_size(fs_info->extent_root,
918 							info_level);
919 				eb = read_tree_block(fs_info->extent_root,
920 							   ref->parent, bsz, 0);
921 				if (!eb || !extent_buffer_uptodate(eb)) {
922 					free_extent_buffer(eb);
923 					ret = -EIO;
924 					goto out;
925 				}
926 				ret = find_extent_in_eb(eb, bytenr,
927 							*extent_item_pos, &eie);
928 				ref->inode_list = eie;
929 				free_extent_buffer(eb);
930 			}
931 			ret = ulist_add_merge(refs, ref->parent,
932 					      (uintptr_t)ref->inode_list,
933 					      (u64 *)&eie, GFP_NOFS);
934 			if (ret < 0)
935 				goto out;
936 			if (!ret && extent_item_pos) {
937 				/*
938 				 * we've recorded that parent, so we must extend
939 				 * its inode list here
940 				 */
941 				BUG_ON(!eie);
942 				while (eie->next)
943 					eie = eie->next;
944 				eie->next = ref->inode_list;
945 			}
946 		}
947 		kfree(ref);
948 	}
949 
950 out:
951 	btrfs_free_path(path);
952 	while (!list_empty(&prefs)) {
953 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
954 		list_del(&ref->list);
955 		kfree(ref);
956 	}
957 	while (!list_empty(&prefs_delayed)) {
958 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
959 				       list);
960 		list_del(&ref->list);
961 		kfree(ref);
962 	}
963 
964 	return ret;
965 }
966 
967 static void free_leaf_list(struct ulist *blocks)
968 {
969 	struct ulist_node *node = NULL;
970 	struct extent_inode_elem *eie;
971 	struct extent_inode_elem *eie_next;
972 	struct ulist_iterator uiter;
973 
974 	ULIST_ITER_INIT(&uiter);
975 	while ((node = ulist_next(blocks, &uiter))) {
976 		if (!node->aux)
977 			continue;
978 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
979 		for (; eie; eie = eie_next) {
980 			eie_next = eie->next;
981 			kfree(eie);
982 		}
983 		node->aux = 0;
984 	}
985 
986 	ulist_free(blocks);
987 }
988 
989 /*
990  * Finds all leafs with a reference to the specified combination of bytenr and
991  * offset. key_list_head will point to a list of corresponding keys (caller must
992  * free each list element). The leafs will be stored in the leafs ulist, which
993  * must be freed with ulist_free.
994  *
995  * returns 0 on success, <0 on error
996  */
997 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
998 				struct btrfs_fs_info *fs_info, u64 bytenr,
999 				u64 time_seq, struct ulist **leafs,
1000 				const u64 *extent_item_pos)
1001 {
1002 	struct ulist *tmp;
1003 	int ret;
1004 
1005 	tmp = ulist_alloc(GFP_NOFS);
1006 	if (!tmp)
1007 		return -ENOMEM;
1008 	*leafs = ulist_alloc(GFP_NOFS);
1009 	if (!*leafs) {
1010 		ulist_free(tmp);
1011 		return -ENOMEM;
1012 	}
1013 
1014 	ret = find_parent_nodes(trans, fs_info, bytenr,
1015 				time_seq, *leafs, tmp, extent_item_pos);
1016 	ulist_free(tmp);
1017 
1018 	if (ret < 0 && ret != -ENOENT) {
1019 		free_leaf_list(*leafs);
1020 		return ret;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * walk all backrefs for a given extent to find all roots that reference this
1028  * extent. Walking a backref means finding all extents that reference this
1029  * extent and in turn walk the backrefs of those, too. Naturally this is a
1030  * recursive process, but here it is implemented in an iterative fashion: We
1031  * find all referencing extents for the extent in question and put them on a
1032  * list. In turn, we find all referencing extents for those, further appending
1033  * to the list. The way we iterate the list allows adding more elements after
1034  * the current while iterating. The process stops when we reach the end of the
1035  * list. Found roots are added to the roots list.
1036  *
1037  * returns 0 on success, < 0 on error.
1038  */
1039 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1040 				struct btrfs_fs_info *fs_info, u64 bytenr,
1041 				u64 time_seq, struct ulist **roots)
1042 {
1043 	struct ulist *tmp;
1044 	struct ulist_node *node = NULL;
1045 	struct ulist_iterator uiter;
1046 	int ret;
1047 
1048 	tmp = ulist_alloc(GFP_NOFS);
1049 	if (!tmp)
1050 		return -ENOMEM;
1051 	*roots = ulist_alloc(GFP_NOFS);
1052 	if (!*roots) {
1053 		ulist_free(tmp);
1054 		return -ENOMEM;
1055 	}
1056 
1057 	ULIST_ITER_INIT(&uiter);
1058 	while (1) {
1059 		ret = find_parent_nodes(trans, fs_info, bytenr,
1060 					time_seq, tmp, *roots, NULL);
1061 		if (ret < 0 && ret != -ENOENT) {
1062 			ulist_free(tmp);
1063 			ulist_free(*roots);
1064 			return ret;
1065 		}
1066 		node = ulist_next(tmp, &uiter);
1067 		if (!node)
1068 			break;
1069 		bytenr = node->val;
1070 	}
1071 
1072 	ulist_free(tmp);
1073 	return 0;
1074 }
1075 
1076 
1077 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1078 			struct btrfs_root *fs_root, struct btrfs_path *path,
1079 			struct btrfs_key *found_key)
1080 {
1081 	int ret;
1082 	struct btrfs_key key;
1083 	struct extent_buffer *eb;
1084 
1085 	key.type = key_type;
1086 	key.objectid = inum;
1087 	key.offset = ioff;
1088 
1089 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	eb = path->nodes[0];
1094 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1095 		ret = btrfs_next_leaf(fs_root, path);
1096 		if (ret)
1097 			return ret;
1098 		eb = path->nodes[0];
1099 	}
1100 
1101 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1102 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1103 		return 1;
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * this makes the path point to (inum INODE_ITEM ioff)
1110  */
1111 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1112 			struct btrfs_path *path)
1113 {
1114 	struct btrfs_key key;
1115 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1116 				&key);
1117 }
1118 
1119 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1120 				struct btrfs_path *path,
1121 				struct btrfs_key *found_key)
1122 {
1123 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1124 				found_key);
1125 }
1126 
1127 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1128 			  u64 start_off, struct btrfs_path *path,
1129 			  struct btrfs_inode_extref **ret_extref,
1130 			  u64 *found_off)
1131 {
1132 	int ret, slot;
1133 	struct btrfs_key key;
1134 	struct btrfs_key found_key;
1135 	struct btrfs_inode_extref *extref;
1136 	struct extent_buffer *leaf;
1137 	unsigned long ptr;
1138 
1139 	key.objectid = inode_objectid;
1140 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1141 	key.offset = start_off;
1142 
1143 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1144 	if (ret < 0)
1145 		return ret;
1146 
1147 	while (1) {
1148 		leaf = path->nodes[0];
1149 		slot = path->slots[0];
1150 		if (slot >= btrfs_header_nritems(leaf)) {
1151 			/*
1152 			 * If the item at offset is not found,
1153 			 * btrfs_search_slot will point us to the slot
1154 			 * where it should be inserted. In our case
1155 			 * that will be the slot directly before the
1156 			 * next INODE_REF_KEY_V2 item. In the case
1157 			 * that we're pointing to the last slot in a
1158 			 * leaf, we must move one leaf over.
1159 			 */
1160 			ret = btrfs_next_leaf(root, path);
1161 			if (ret) {
1162 				if (ret >= 1)
1163 					ret = -ENOENT;
1164 				break;
1165 			}
1166 			continue;
1167 		}
1168 
1169 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1170 
1171 		/*
1172 		 * Check that we're still looking at an extended ref key for
1173 		 * this particular objectid. If we have different
1174 		 * objectid or type then there are no more to be found
1175 		 * in the tree and we can exit.
1176 		 */
1177 		ret = -ENOENT;
1178 		if (found_key.objectid != inode_objectid)
1179 			break;
1180 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1181 			break;
1182 
1183 		ret = 0;
1184 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1185 		extref = (struct btrfs_inode_extref *)ptr;
1186 		*ret_extref = extref;
1187 		if (found_off)
1188 			*found_off = found_key.offset;
1189 		break;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1197  * Elements of the path are separated by '/' and the path is guaranteed to be
1198  * 0-terminated. the path is only given within the current file system.
1199  * Therefore, it never starts with a '/'. the caller is responsible to provide
1200  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1201  * the start point of the resulting string is returned. this pointer is within
1202  * dest, normally.
1203  * in case the path buffer would overflow, the pointer is decremented further
1204  * as if output was written to the buffer, though no more output is actually
1205  * generated. that way, the caller can determine how much space would be
1206  * required for the path to fit into the buffer. in that case, the returned
1207  * value will be smaller than dest. callers must check this!
1208  */
1209 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1210 			u32 name_len, unsigned long name_off,
1211 			struct extent_buffer *eb_in, u64 parent,
1212 			char *dest, u32 size)
1213 {
1214 	int slot;
1215 	u64 next_inum;
1216 	int ret;
1217 	s64 bytes_left = ((s64)size) - 1;
1218 	struct extent_buffer *eb = eb_in;
1219 	struct btrfs_key found_key;
1220 	int leave_spinning = path->leave_spinning;
1221 	struct btrfs_inode_ref *iref;
1222 
1223 	if (bytes_left >= 0)
1224 		dest[bytes_left] = '\0';
1225 
1226 	path->leave_spinning = 1;
1227 	while (1) {
1228 		bytes_left -= name_len;
1229 		if (bytes_left >= 0)
1230 			read_extent_buffer(eb, dest + bytes_left,
1231 					   name_off, name_len);
1232 		if (eb != eb_in) {
1233 			btrfs_tree_read_unlock_blocking(eb);
1234 			free_extent_buffer(eb);
1235 		}
1236 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1237 		if (ret > 0)
1238 			ret = -ENOENT;
1239 		if (ret)
1240 			break;
1241 
1242 		next_inum = found_key.offset;
1243 
1244 		/* regular exit ahead */
1245 		if (parent == next_inum)
1246 			break;
1247 
1248 		slot = path->slots[0];
1249 		eb = path->nodes[0];
1250 		/* make sure we can use eb after releasing the path */
1251 		if (eb != eb_in) {
1252 			atomic_inc(&eb->refs);
1253 			btrfs_tree_read_lock(eb);
1254 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1255 		}
1256 		btrfs_release_path(path);
1257 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1258 
1259 		name_len = btrfs_inode_ref_name_len(eb, iref);
1260 		name_off = (unsigned long)(iref + 1);
1261 
1262 		parent = next_inum;
1263 		--bytes_left;
1264 		if (bytes_left >= 0)
1265 			dest[bytes_left] = '/';
1266 	}
1267 
1268 	btrfs_release_path(path);
1269 	path->leave_spinning = leave_spinning;
1270 
1271 	if (ret)
1272 		return ERR_PTR(ret);
1273 
1274 	return dest + bytes_left;
1275 }
1276 
1277 /*
1278  * this makes the path point to (logical EXTENT_ITEM *)
1279  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1280  * tree blocks and <0 on error.
1281  */
1282 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1283 			struct btrfs_path *path, struct btrfs_key *found_key,
1284 			u64 *flags_ret)
1285 {
1286 	int ret;
1287 	u64 flags;
1288 	u64 size = 0;
1289 	u32 item_size;
1290 	struct extent_buffer *eb;
1291 	struct btrfs_extent_item *ei;
1292 	struct btrfs_key key;
1293 
1294 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1295 		key.type = BTRFS_METADATA_ITEM_KEY;
1296 	else
1297 		key.type = BTRFS_EXTENT_ITEM_KEY;
1298 	key.objectid = logical;
1299 	key.offset = (u64)-1;
1300 
1301 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1302 	if (ret < 0)
1303 		return ret;
1304 	ret = btrfs_previous_item(fs_info->extent_root, path,
1305 					0, BTRFS_EXTENT_ITEM_KEY);
1306 	if (ret < 0)
1307 		return ret;
1308 
1309 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1310 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1311 		size = fs_info->extent_root->leafsize;
1312 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1313 		size = found_key->offset;
1314 
1315 	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1316 	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1317 	    found_key->objectid > logical ||
1318 	    found_key->objectid + size <= logical) {
1319 		pr_debug("logical %llu is not within any extent\n",
1320 			 (unsigned long long)logical);
1321 		return -ENOENT;
1322 	}
1323 
1324 	eb = path->nodes[0];
1325 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1326 	BUG_ON(item_size < sizeof(*ei));
1327 
1328 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1329 	flags = btrfs_extent_flags(eb, ei);
1330 
1331 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1332 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1333 		 (unsigned long long)logical,
1334 		 (unsigned long long)(logical - found_key->objectid),
1335 		 (unsigned long long)found_key->objectid,
1336 		 (unsigned long long)found_key->offset,
1337 		 (unsigned long long)flags, item_size);
1338 
1339 	WARN_ON(!flags_ret);
1340 	if (flags_ret) {
1341 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1342 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1343 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1344 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1345 		else
1346 			BUG_ON(1);
1347 		return 0;
1348 	}
1349 
1350 	return -EIO;
1351 }
1352 
1353 /*
1354  * helper function to iterate extent inline refs. ptr must point to a 0 value
1355  * for the first call and may be modified. it is used to track state.
1356  * if more refs exist, 0 is returned and the next call to
1357  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1358  * next ref. after the last ref was processed, 1 is returned.
1359  * returns <0 on error
1360  */
1361 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1362 				struct btrfs_extent_item *ei, u32 item_size,
1363 				struct btrfs_extent_inline_ref **out_eiref,
1364 				int *out_type)
1365 {
1366 	unsigned long end;
1367 	u64 flags;
1368 	struct btrfs_tree_block_info *info;
1369 
1370 	if (!*ptr) {
1371 		/* first call */
1372 		flags = btrfs_extent_flags(eb, ei);
1373 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1374 			info = (struct btrfs_tree_block_info *)(ei + 1);
1375 			*out_eiref =
1376 				(struct btrfs_extent_inline_ref *)(info + 1);
1377 		} else {
1378 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1379 		}
1380 		*ptr = (unsigned long)*out_eiref;
1381 		if ((void *)*ptr >= (void *)ei + item_size)
1382 			return -ENOENT;
1383 	}
1384 
1385 	end = (unsigned long)ei + item_size;
1386 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1387 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1388 
1389 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1390 	WARN_ON(*ptr > end);
1391 	if (*ptr == end)
1392 		return 1; /* last */
1393 
1394 	return 0;
1395 }
1396 
1397 /*
1398  * reads the tree block backref for an extent. tree level and root are returned
1399  * through out_level and out_root. ptr must point to a 0 value for the first
1400  * call and may be modified (see __get_extent_inline_ref comment).
1401  * returns 0 if data was provided, 1 if there was no more data to provide or
1402  * <0 on error.
1403  */
1404 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1405 				struct btrfs_extent_item *ei, u32 item_size,
1406 				u64 *out_root, u8 *out_level)
1407 {
1408 	int ret;
1409 	int type;
1410 	struct btrfs_tree_block_info *info;
1411 	struct btrfs_extent_inline_ref *eiref;
1412 
1413 	if (*ptr == (unsigned long)-1)
1414 		return 1;
1415 
1416 	while (1) {
1417 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1418 						&eiref, &type);
1419 		if (ret < 0)
1420 			return ret;
1421 
1422 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1423 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1424 			break;
1425 
1426 		if (ret == 1)
1427 			return 1;
1428 	}
1429 
1430 	/* we can treat both ref types equally here */
1431 	info = (struct btrfs_tree_block_info *)(ei + 1);
1432 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1433 	*out_level = btrfs_tree_block_level(eb, info);
1434 
1435 	if (ret == 1)
1436 		*ptr = (unsigned long)-1;
1437 
1438 	return 0;
1439 }
1440 
1441 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1442 				u64 root, u64 extent_item_objectid,
1443 				iterate_extent_inodes_t *iterate, void *ctx)
1444 {
1445 	struct extent_inode_elem *eie;
1446 	int ret = 0;
1447 
1448 	for (eie = inode_list; eie; eie = eie->next) {
1449 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1450 			 "root %llu\n", extent_item_objectid,
1451 			 eie->inum, eie->offset, root);
1452 		ret = iterate(eie->inum, eie->offset, root, ctx);
1453 		if (ret) {
1454 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1455 				 extent_item_objectid, ret);
1456 			break;
1457 		}
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 /*
1464  * calls iterate() for every inode that references the extent identified by
1465  * the given parameters.
1466  * when the iterator function returns a non-zero value, iteration stops.
1467  */
1468 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1469 				u64 extent_item_objectid, u64 extent_item_pos,
1470 				int search_commit_root,
1471 				iterate_extent_inodes_t *iterate, void *ctx)
1472 {
1473 	int ret;
1474 	struct btrfs_trans_handle *trans = NULL;
1475 	struct ulist *refs = NULL;
1476 	struct ulist *roots = NULL;
1477 	struct ulist_node *ref_node = NULL;
1478 	struct ulist_node *root_node = NULL;
1479 	struct seq_list tree_mod_seq_elem = {};
1480 	struct ulist_iterator ref_uiter;
1481 	struct ulist_iterator root_uiter;
1482 
1483 	pr_debug("resolving all inodes for extent %llu\n",
1484 			extent_item_objectid);
1485 
1486 	if (!search_commit_root) {
1487 		trans = btrfs_join_transaction(fs_info->extent_root);
1488 		if (IS_ERR(trans))
1489 			return PTR_ERR(trans);
1490 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1491 	}
1492 
1493 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1494 				   tree_mod_seq_elem.seq, &refs,
1495 				   &extent_item_pos);
1496 	if (ret)
1497 		goto out;
1498 
1499 	ULIST_ITER_INIT(&ref_uiter);
1500 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1501 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1502 					   tree_mod_seq_elem.seq, &roots);
1503 		if (ret)
1504 			break;
1505 		ULIST_ITER_INIT(&root_uiter);
1506 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1507 			pr_debug("root %llu references leaf %llu, data list "
1508 				 "%#llx\n", root_node->val, ref_node->val,
1509 				 (long long)ref_node->aux);
1510 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1511 						(uintptr_t)ref_node->aux,
1512 						root_node->val,
1513 						extent_item_objectid,
1514 						iterate, ctx);
1515 		}
1516 		ulist_free(roots);
1517 	}
1518 
1519 	free_leaf_list(refs);
1520 out:
1521 	if (!search_commit_root) {
1522 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1523 		btrfs_end_transaction(trans, fs_info->extent_root);
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1530 				struct btrfs_path *path,
1531 				iterate_extent_inodes_t *iterate, void *ctx)
1532 {
1533 	int ret;
1534 	u64 extent_item_pos;
1535 	u64 flags = 0;
1536 	struct btrfs_key found_key;
1537 	int search_commit_root = path->search_commit_root;
1538 
1539 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1540 	btrfs_release_path(path);
1541 	if (ret < 0)
1542 		return ret;
1543 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1544 		return -EINVAL;
1545 
1546 	extent_item_pos = logical - found_key.objectid;
1547 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1548 					extent_item_pos, search_commit_root,
1549 					iterate, ctx);
1550 
1551 	return ret;
1552 }
1553 
1554 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1555 			      struct extent_buffer *eb, void *ctx);
1556 
1557 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1558 			      struct btrfs_path *path,
1559 			      iterate_irefs_t *iterate, void *ctx)
1560 {
1561 	int ret = 0;
1562 	int slot;
1563 	u32 cur;
1564 	u32 len;
1565 	u32 name_len;
1566 	u64 parent = 0;
1567 	int found = 0;
1568 	struct extent_buffer *eb;
1569 	struct btrfs_item *item;
1570 	struct btrfs_inode_ref *iref;
1571 	struct btrfs_key found_key;
1572 
1573 	while (!ret) {
1574 		path->leave_spinning = 1;
1575 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1576 				     &found_key);
1577 		if (ret < 0)
1578 			break;
1579 		if (ret) {
1580 			ret = found ? 0 : -ENOENT;
1581 			break;
1582 		}
1583 		++found;
1584 
1585 		parent = found_key.offset;
1586 		slot = path->slots[0];
1587 		eb = path->nodes[0];
1588 		/* make sure we can use eb after releasing the path */
1589 		atomic_inc(&eb->refs);
1590 		btrfs_tree_read_lock(eb);
1591 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1592 		btrfs_release_path(path);
1593 
1594 		item = btrfs_item_nr(eb, slot);
1595 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1596 
1597 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1598 			name_len = btrfs_inode_ref_name_len(eb, iref);
1599 			/* path must be released before calling iterate()! */
1600 			pr_debug("following ref at offset %u for inode %llu in "
1601 				 "tree %llu\n", cur,
1602 				 (unsigned long long)found_key.objectid,
1603 				 (unsigned long long)fs_root->objectid);
1604 			ret = iterate(parent, name_len,
1605 				      (unsigned long)(iref + 1), eb, ctx);
1606 			if (ret)
1607 				break;
1608 			len = sizeof(*iref) + name_len;
1609 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1610 		}
1611 		btrfs_tree_read_unlock_blocking(eb);
1612 		free_extent_buffer(eb);
1613 	}
1614 
1615 	btrfs_release_path(path);
1616 
1617 	return ret;
1618 }
1619 
1620 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1621 				 struct btrfs_path *path,
1622 				 iterate_irefs_t *iterate, void *ctx)
1623 {
1624 	int ret;
1625 	int slot;
1626 	u64 offset = 0;
1627 	u64 parent;
1628 	int found = 0;
1629 	struct extent_buffer *eb;
1630 	struct btrfs_inode_extref *extref;
1631 	struct extent_buffer *leaf;
1632 	u32 item_size;
1633 	u32 cur_offset;
1634 	unsigned long ptr;
1635 
1636 	while (1) {
1637 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1638 					    &offset);
1639 		if (ret < 0)
1640 			break;
1641 		if (ret) {
1642 			ret = found ? 0 : -ENOENT;
1643 			break;
1644 		}
1645 		++found;
1646 
1647 		slot = path->slots[0];
1648 		eb = path->nodes[0];
1649 		/* make sure we can use eb after releasing the path */
1650 		atomic_inc(&eb->refs);
1651 
1652 		btrfs_tree_read_lock(eb);
1653 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1654 		btrfs_release_path(path);
1655 
1656 		leaf = path->nodes[0];
1657 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1658 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1659 		cur_offset = 0;
1660 
1661 		while (cur_offset < item_size) {
1662 			u32 name_len;
1663 
1664 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1665 			parent = btrfs_inode_extref_parent(eb, extref);
1666 			name_len = btrfs_inode_extref_name_len(eb, extref);
1667 			ret = iterate(parent, name_len,
1668 				      (unsigned long)&extref->name, eb, ctx);
1669 			if (ret)
1670 				break;
1671 
1672 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1673 			cur_offset += sizeof(*extref);
1674 		}
1675 		btrfs_tree_read_unlock_blocking(eb);
1676 		free_extent_buffer(eb);
1677 
1678 		offset++;
1679 	}
1680 
1681 	btrfs_release_path(path);
1682 
1683 	return ret;
1684 }
1685 
1686 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1687 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1688 			 void *ctx)
1689 {
1690 	int ret;
1691 	int found_refs = 0;
1692 
1693 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1694 	if (!ret)
1695 		++found_refs;
1696 	else if (ret != -ENOENT)
1697 		return ret;
1698 
1699 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1700 	if (ret == -ENOENT && found_refs)
1701 		return 0;
1702 
1703 	return ret;
1704 }
1705 
1706 /*
1707  * returns 0 if the path could be dumped (probably truncated)
1708  * returns <0 in case of an error
1709  */
1710 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1711 			 struct extent_buffer *eb, void *ctx)
1712 {
1713 	struct inode_fs_paths *ipath = ctx;
1714 	char *fspath;
1715 	char *fspath_min;
1716 	int i = ipath->fspath->elem_cnt;
1717 	const int s_ptr = sizeof(char *);
1718 	u32 bytes_left;
1719 
1720 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1721 					ipath->fspath->bytes_left - s_ptr : 0;
1722 
1723 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1724 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1725 				   name_off, eb, inum, fspath_min, bytes_left);
1726 	if (IS_ERR(fspath))
1727 		return PTR_ERR(fspath);
1728 
1729 	if (fspath > fspath_min) {
1730 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1731 		++ipath->fspath->elem_cnt;
1732 		ipath->fspath->bytes_left = fspath - fspath_min;
1733 	} else {
1734 		++ipath->fspath->elem_missed;
1735 		ipath->fspath->bytes_missing += fspath_min - fspath;
1736 		ipath->fspath->bytes_left = 0;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 /*
1743  * this dumps all file system paths to the inode into the ipath struct, provided
1744  * is has been created large enough. each path is zero-terminated and accessed
1745  * from ipath->fspath->val[i].
1746  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1747  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1748  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1749  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1750  * have been needed to return all paths.
1751  */
1752 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1753 {
1754 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1755 			     inode_to_path, ipath);
1756 }
1757 
1758 struct btrfs_data_container *init_data_container(u32 total_bytes)
1759 {
1760 	struct btrfs_data_container *data;
1761 	size_t alloc_bytes;
1762 
1763 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1764 	data = vmalloc(alloc_bytes);
1765 	if (!data)
1766 		return ERR_PTR(-ENOMEM);
1767 
1768 	if (total_bytes >= sizeof(*data)) {
1769 		data->bytes_left = total_bytes - sizeof(*data);
1770 		data->bytes_missing = 0;
1771 	} else {
1772 		data->bytes_missing = sizeof(*data) - total_bytes;
1773 		data->bytes_left = 0;
1774 	}
1775 
1776 	data->elem_cnt = 0;
1777 	data->elem_missed = 0;
1778 
1779 	return data;
1780 }
1781 
1782 /*
1783  * allocates space to return multiple file system paths for an inode.
1784  * total_bytes to allocate are passed, note that space usable for actual path
1785  * information will be total_bytes - sizeof(struct inode_fs_paths).
1786  * the returned pointer must be freed with free_ipath() in the end.
1787  */
1788 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1789 					struct btrfs_path *path)
1790 {
1791 	struct inode_fs_paths *ifp;
1792 	struct btrfs_data_container *fspath;
1793 
1794 	fspath = init_data_container(total_bytes);
1795 	if (IS_ERR(fspath))
1796 		return (void *)fspath;
1797 
1798 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1799 	if (!ifp) {
1800 		kfree(fspath);
1801 		return ERR_PTR(-ENOMEM);
1802 	}
1803 
1804 	ifp->btrfs_path = path;
1805 	ifp->fspath = fspath;
1806 	ifp->fs_root = fs_root;
1807 
1808 	return ifp;
1809 }
1810 
1811 void free_ipath(struct inode_fs_paths *ipath)
1812 {
1813 	if (!ipath)
1814 		return;
1815 	vfree(ipath->fspath);
1816 	kfree(ipath);
1817 }
1818